A bound for the norms of Tikhonov-regularized solutions and Levenberg-Marquardt steps

B. F. Svaiter ${ }^{\dagger} \dagger$

April 5, 2015

Abstract

We present a new upper bound for the norms of Tikhonov-regularized solutions and LevenbergMarquardt steps.

2010 Mathematics Subject Classification: 46C05, 65F99
Key words: Tikhonov regularization; Levenberg-Marquardt step.

Let X, Y be arbitrary Hilbert spaces and $A: X \rightarrow Y$ a bounded linear operator. The problem

$$
\begin{equation*}
\min \quad \frac{1}{2}\|A x-b\|^{2}+\frac{\mu}{2}\|x\|^{2} \quad x \in X \tag{1}
\end{equation*}
$$

where $\mu>0$, occurs in the computation of Tikhonov regularized solution [4] of the system $A x=b$ as well as in the computation of Levenberg-Marquardt [2, 3] step for finding the least squares solution of $F(x)=0$, where $F \in C^{1}(X, Y)$. Recall that Levenberg-Marquardt step at x for such this least square problem is s the minimizer of

$$
\frac{1}{2}\|D F(x) s+F(x)\|^{2}+\frac{\mu}{2}\|s\|^{2}
$$

Since the linearization error depends on the size of s, it is useful to have an a priory bound for $\|s\|$. In the case of Tikhonov regularized solution of $A x=b$, it is also interesting to bound x because if $\|x\|$ is larger than expected, this means that the regularized parameter μ is too small.

The solution of (1) is $\bar{x}=\left(A^{*} A+\mu I\right)^{-1} A^{*} b$. So, the bound $\|\bar{x}\| \leq\left\|A^{*} b\right\| / \mu$ is readily available. Out aim is to provide a new bound for \bar{x}, as described in the next lemma.

Lemma 1. Let \bar{x} be the solution of problem (1), $R(A)$ the range of $A, \overline{R(A)}$ the closure of this subspace, and $P_{\overline{R(A)}}$ the orthogonal projection onto $\overline{R(A)}$. Then

$$
\|\bar{x}\| \leq \frac{\left\|P_{\overline{R(A)}}(b)\right\|}{2 \sqrt{\mu}} \leq \frac{\|b\|}{2 \sqrt{\mu}}
$$

[^0]The second inequality holds trivially, we need only to prove the first one. Existence and unicity of \bar{x} is a well know trivial result. Define

$$
\begin{equation*}
b^{\prime}=P_{\overline{R(A)}}(b), \quad b^{\prime \prime}=b-b^{\prime} \tag{2}
\end{equation*}
$$

For any $x \in X$,

$$
\|A x-b\|^{2}=\left\|A x-b^{\prime}\right\|^{2}+\left\|b^{\prime \prime}\right\|^{2}
$$

Therefore, \bar{x} is the minimizer of

$$
\min \quad \frac{1}{2}\left\|A x-b^{\prime}\right\|^{2}+\frac{\mu}{2}\|x\|^{2} \quad x \in X
$$

so that

$$
\begin{equation*}
\left(A^{*} A+\mu I\right) \bar{x}=A^{*} b^{\prime} \tag{3}
\end{equation*}
$$

We will prove a particular case of Lemma 1 and use this result to prove the general case.
Proof for A self-adjoint. Assume that $X=Y$ and A is self-adjoint. It follows from the Spectral Theorem [1] that there exist a measure space $(\Omega, \mathcal{M}, \lambda), \sigma \in L^{\infty}(\lambda)$, and $U: X \rightarrow L^{2}(\lambda)$ an isometric isomorphism such that

$$
A=U^{-1} \Sigma U, \quad \Sigma: L^{2}(\lambda) \rightarrow L^{2}(\lambda), \quad(\Sigma f)(w)=\sigma(w) f(w)
$$

Defining $\beta=U b^{\prime}, h=U \bar{x}$, in view of (3), we have

$$
\left(|\sigma(w)|^{2}+\mu\right) h(w)=\sigma(w) \beta(w), \quad[\lambda]-\text { a.e. }
$$

Therefore, $[\lambda]$-a.e.

$$
h=\frac{\sigma}{|\sigma|^{2}+\mu} \beta
$$

It is trivial to verify that for any complex number t

$$
\left|\frac{t}{|t|^{2}+\mu}\right| \leq \frac{1}{2 \sqrt{\mu}}
$$

It follows from the two above equation that

$$
|h| \leq \frac{|\beta|}{2 \sqrt{\mu}}
$$

Hence

$$
\|\bar{x}\|=\|h\|_{2} \leq \frac{\|\beta\|_{2}}{2 \sqrt{\mu}}=\frac{\left\|b^{\prime}\right\|}{2 \sqrt{\mu}}
$$

which proves the lemma for the case of A being self-adjoint.

Proof for the general case: Endow $Z=X \times Y$ with the canonical inner product and norm of Hilbert spaces's Cartesian products

$$
\left\langle(x, y),\left(x^{\prime}, y^{\prime}\right)\right\rangle=\left\langle x, x^{\prime}\right\rangle+\left\langle y, y^{\prime}\right\rangle, \quad\|(x, y)\|=\sqrt{\|x\|^{2}+\|y\|^{2}}
$$

and define

$$
\mathbf{A}: Z \rightarrow Z, \quad \mathbf{A}(x, y)=\left(A^{*} y, A x\right) ; \quad \mathbf{b}=(0, b) .
$$

Observe that

$$
\|\mathbf{A}(x, y)-\mathbf{b}\|^{2}+\mu\|(x, y)\|^{2}=\left(\left\|A^{*} y\right\|^{2}+\mu\|y\|^{2}\right)+\left(\|A x-b\|^{2}+\mu\|x\|^{2}\right) .
$$

Therefore, $\bar{z}=(\bar{x}, 0)$ is the solution of

$$
\begin{equation*}
\min \quad \frac{1}{2}\|\mathbf{A} z-\mathbf{b}\|^{2}+\frac{\mu}{2}\|z\|^{2} \quad z \in Z \tag{4}
\end{equation*}
$$

Moreover $\mathbf{A}^{*}=\mathbf{A}$ and $R(\mathbf{A})=R\left(A^{*}\right) \times R(A)$. Hence, we can apply Lemma 1, for the case of a self-adjoint operator, to such a problem and the conclusion follows.

References

[1] P. R. Halmos. What does the spectral theorem say? Amer. Math. Monthly, 70:241-247, 1963.
[2] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2:164-168, 1944.
[3] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math., 11:431-441, 1963.
[4] A. N. Tikhonov. On the stability of inverse problems. C. R. (Doklady) Acad. Sci. URSS (N.S.), 39:176-179, 1943.

[^0]: *IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil (benar@impa.br) tel: 55 (21) 25295112, fax: 55 (21)25124115.
 ${ }^{\dagger}$ Partially supported by CNPq grants 302962/2011-5, 474996/2013-1, and FAPERJ grant 201.584/2014 (Cientista de Nosso Estado)

