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Abstract

We present a new upper bound for the norms of Tikhonov-regularized solutions and Levenberg-
Marquardt steps.
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Let X,Y be arbitrary Hilbert spaces and A : X → Y a bounded linear operator. The problem

min
1

2
‖Ax− b‖2 +

µ

2
‖x‖2 x ∈ X, (1)

where µ > 0, occurs in the computation of Tikhonov regularized solution [4] of the system Ax = b as
well as in the computation of Levenberg-Marquardt [2, 3] step for finding the least squares solution
of F (x) = 0, where F ∈ C1(X,Y ). Recall that Levenberg-Marquardt step at x for such this least
square problem is s the minimizer of

1

2
‖DF (x)s+ F (x)‖2 +

µ

2
‖s‖2.

Since the linearization error depends on the size of s, it is useful to have an a priory bound for ‖s‖.
In the case of Tikhonov regularized solution of Ax = b, it is also interesting to bound x because if
‖x‖ is larger than expected, this means that the regularized parameter µ is too small.

The solution of (1) is x̄ = (A∗A+ µI)−1A∗b. So, the bound ‖x̄‖ ≤ ‖A∗b‖/µ is readily available.
Out aim is to provide a new bound for x̄, as described in the next lemma.

Lemma 1. Let x̄ be the solution of problem (1), R(A) the range of A, R(A) the closure of this
subspace, and P

R(A)
the orthogonal projection onto R(A). Then

‖x̄‖ ≤
‖P

R(A)
(b)‖

2
√
µ

≤ ‖b‖
2
√
µ
.
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The second inequality holds trivially, we need only to prove the first one. Existence and unicity of
x̄ is a well know trivial result. Define

b′ = P
R(A)

(b), b′′ = b− b′. (2)

For any x ∈ X,
‖Ax− b‖2 = ‖Ax− b′‖2 + ‖b′′‖2.

Therefore, x̄ is the minimizer of

min
1

2
‖Ax− b′‖2 +

µ

2
‖x‖2 x ∈ X,

so that

(A∗A+ µI)x̄ = A∗b′. (3)

We will prove a particular case of Lemma 1 and use this result to prove the general case.

Proof for A self-adjoint. Assume that X = Y and A is self-adjoint. It follows from the Spectral
Theorem [1] that there exist a measure space (Ω,M, λ), σ ∈ L∞(λ), and U : X → L2(λ) an isometric
isomorphism such that

A = U−1ΣU, Σ : L2(λ)→ L2(λ), (Σf)(w) = σ(w)f(w).

Defining β = Ub′, h = Ux̄, in view of (3), we have

(|σ(w)|2 + µ)h(w) = σ(w)β(w), [λ]−a.e.

Therefore, [λ]-a.e.

h =
σ

|σ|2 + µ
β.

It is trivial to verify that for any complex number t∣∣∣∣ t

|t|2 + µ

∣∣∣∣ ≤ 1

2
√
µ
.

It follows from the two above equation that

|h| ≤ |β|
2
√
µ
.

Hence

‖x̄‖ = ‖h‖2 ≤
‖β‖2
2
√
µ

=
‖b′‖
2
√
µ

which proves the lemma for the case of A being self-adjoint.
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Proof for the general case: Endow Z = X × Y with the canonical inner product and norm of Hilbert
spaces’s Cartesian products

〈(x, y), (x′, y′)〉 = 〈x, x′〉+ 〈y, y′〉, ‖(x, y)‖ =
√
‖x‖2 + ‖y‖2,

and define

A : Z → Z, A(x, y) = (A∗y,Ax); b = (0, b).

Observe that

‖A(x, y)− b‖2 + µ‖(x, y)‖2 = (‖A∗y‖2 + µ‖y‖2) + (‖Ax− b‖2 + µ‖x‖2).

Therefore, z̄ = (x̄, 0) is the solution of

min
1

2
‖Az − b‖2 +

µ

2
‖z‖2 z ∈ Z (4)

Moreover A∗ = A and R(A) = R(A∗) × R(A). Hence, we can apply Lemma 1, for the case of a
self-adjoint operator, to such a problem and the conclusion follows.
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