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Abstract

We present a new upper bound for the norms of Tikhonov-regularized solutions and Levenberg-
Marquardt steps.
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Let X, Y be arbitrary Hilbert spaces and A : X — Y a bounded linear operator. The problem
1
min )4z~ bl + gnxuz ze X, (1)

where p > 0, occurs in the computation of Tikhonov regularized solution [4] of the system Az = b as
well as in the computation of Levenberg-Marquardt [2, [3] step for finding the least squares solution
of F(z) = 0, where F € C}(X,Y). Recall that Levenberg-Marquardt step at = for such this least
square problem is s the minimizer of
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Since the linearization error depends on the size of s, it is useful to have an a priory bound for ||s||.
In the case of Tikhonov regularized solution of Ax = b, it is also interesting to bound x because if
|lz|| is larger than expected, this means that the regularized parameter p is too small.

The solution of is 7 = (A*A 4 uI)~1A*b. So, the bound ||Z| < [|A*b||/u is readily available.
Out aim is to provide a new bound for Z, as described in the next lemma.

Lemma 1. Let & be the solution of problem (1)), R(A) the range of A, R(A) the closure of this

subspace, and Pm the orthogonal projection onto R(A). Then
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The second inequality holds trivially, we need only to prove the first one. Existence and unicity of
Z is a well know trivial result. Define

W =Pr(b), b =b-1. (2)

For any z € X,
| Az —b]|* = || Az — ¥'[|* + [[b"||*.

Therefore, z is the minimizer of
min %HAw—b’HQ—FgHmHQ reX,
so that
(A*A+ ul)z = A*Y. (3)
We will prove a particular case of Lemma [1| and use this result to prove the general case.

Proof for A self-adjoint. Assume that X =Y and A is self-adjoint. It follows from the Spectral
Theorem [I] that there exist a measure space (£, M, ), o € L°(\), and U : X — L%()\) an isometric
isomorphism such that

A=U"1x2U, Y L2\ = L2V, (2f)(w) = o(w) f(w).

Defining 8 = UV, h = Uz, in view of (3)), we have

(lo(w)* + ph(w) = o(w)B(w),  [N-ae.
Therefore, [\]-a.e.
"o

It is trivial to verify that for any complex number ¢
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It follows from the two above equation that

n < oL

N
Hence ,
I AV/TEAVT]

which proves the lemma for the case of A being self-adjoint. O



Proof for the general case: Endow Z = X x Y with the canonical inner product and norm of Hilbert
spaces’s Cartesian products

(@), @ y) = (@.2) +{.y),  @l=VIzl*+lyl?
and define
A:7Z— Z, A(z,y) = (A%y, Ax); b = (0,b).
Observe that
1A (2, y) = bl* + pll (@, 9)II* = A" + pllyl?) + ([Az = b]* + pll|).

Therefore, z = (z,0) is the solution of

1
min §||Az—b||2+%HzH2 zeZ (4)
Moreover A* = A and R(A) = R(A*) x R(A). Hence, we can apply Lemma 1} for the case of a
self-adjoint operator, to such a problem and the conclusion follows. ]
References

[1] P. R. Halmos. What does the spectral theorem say? Amer. Math. Monthly, 70:241-247, 1963.

[2] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quart. Appl. Math., 2:164-168, 1944.

[3] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc.
Indust. Appl. Math., 11:431-441, 1963.

[4] A. N. Tikhonov. On the stability of inverse problems. C. R. (Doklady) Acad. Sci. URSS (N.S.),
39:176-179, 1943.



