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Abstract. We show the existence and uniqueness of the maximal entropy
probability measure for partially hyperbolic diffeomorphisms which are semi-
conjugate to nonuniformly expanding maps. And especially, we obtain good
statistical properties for such measures. More precisely, using the theory of
projective metric on cones we prove exponential decay of correlations for Hölder
continuous observables and the central limit theorem for the maximal entropy
probability measure. Furthermore, for systems derived from solenoid-like we
also prove the statistical stability for the maximal entropy probability measure
that we constructed.

1. Introduction

The thermodynamical formalism from the statistical mechanics was introduced
in Dynamical Systems by the former works of Sinai, Ruelle and Bowen for uniformly
hyperbolic maps and Hölder potentials, in the beginning of the 70’s. Beyond the
uniformly hyperbolic context, the theory is still quite incomplete. Several contribu-
tion do exist, for example [BK98, BF09, Yur03, OV08, SV09, BF09, Sar99, Cas02,
VV10, CV13].

In the recent years, the thermodynamical formalism of a class of partial hy-
perbolic diffeomorphisms introduced by Alves, Bonatti, Viana [ABV00] and Cas-
tro [Cas98] has been developed under some conditions that resemble or may lead to
some mostly expanding or mostly contracting assumption in the central direction.

In the non-invertible setting this has been studied by Castro, Oliveira, Varandas
and Viana [OV08, VV10, CV13]. Given a compact metric space M and a local
homeomorphism f : M → M in with Lipschitz inverse branches that admit some
expanding and some possibly contracting domains of invertibility it was proved in
[VV10] that for every Hölder continuous potential φ satisfying a small variation
condition there are finitely many ergodic equilibrium states for f with respect to
φ. Furthermore, the equilibrium states are absolutely continuous with respect to
some conformal measure and there exists a unique equilibrium state provided that
the dynamical system is topologically exact. Later on, using a functional analytic
approach by means of projective metrics techniques to the study of the spectral
properties of Ruelle-Perron-Frobenius operators on the space of Cr+α observables
(r ∈ N, α > 0), Castro and Varandas [CV13] presented a more general proof for the
uniqueness of equilibrium states for this class of maps and deduced many statistical
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properties as exponential decay of correlations, Central Limit Theorem, and also
both statistical and spectral stabilities.

In this paper our motivation is to contribute to the study of the thermodynamical
formalism of a large class of partially hyperbolic diffeomorphisms. For that purpose
we will consider partially hyperbolic diffeomorphisms which are semiconjugate to
the class of local diffeomorphisms discussed above. This class includes many exam-
ples of partially hyperbolic diffeomorphisms that arise as local bifurcations of Axiom
A diffeomorphisms and will be mostly expanding with respect to some conformal
measure. Let us mention that SRB measures for large classes of partially hyper-
bolic diffeomorphisms have been constructed by [Car93, ABV00, BV00, Cas98] and,
more recently, existence and uniqueness of maximal entropy measures have been
proved by Buzzi, Fisher, Sambarino, Vasquez [BFSV12] for derived from Anosov
diffeomorphisms, by Buzzi, Fisher [BF13] for wide class of deformations of Anosov
diffeomorphisms that include the examples by Bonatti and Viana of robustly tran-
sitive non-partiallly hyperbolic diffeomorphisms, and by Ures [Ur12] for partially
hyperbolic diffeomorphisms of T3 homotopic to a hyperbolic automorphism. In
most of these cases the approach is to established a semiconjugacy between the
dynamical system and some uniformly hyperbolic one and prove that the points
that remain in a non-hyperbolic region do not contribute much for the topological
entropy. The drawback is that this method is not enough to deduce some good
statistical properties for the original dynamical system. To illustrate this fact let
us mention that in the case of nonuniformly expanding maps the Ruelle-Perron-
Frobenius transfer operator acts in the space of Hölder continuous functions and
the dominant eigenvector of its adjoint operator leads to the measure of maximal
entropy, while in the invertible context any invariant measure is an eigenvector for
the adjoint operator. For that reason the cone method used in [CV13] could not be
applied here. So, to deduce exponential decay of correlations for the original dy-
namical systems we introduce a suitable Banach space and prove that the transfer
operator does preserve some cone of functions. The construction of such cone of
functions is done by constructing a family of probability measures on stable leaves
that is equidistributed and holonomy invariant. A very laborious work is to prove
the invariance of such suitable cone of functions by the transfer operator and that
the image of this by the transfer operador has finite diameter in the projective
metrics, which implies that transfer operator is a contraction with respect to the
projective metrics. From that and the duality properties of transfer and Koopman
operators we derive the exponential decay of correlations and the Central Limit
Theorem as a consequence.

This paper is organized as follows. In the initial sections (up to section 4), we
give precise definitions of the family of partially hyperbolic diffeomorphisms that we
consider and state the main results. Some robust class of examples is also discussed.
In sections 5 and 6, we establish the existence and uniqueness of equlibrium states.
and, restricting to the skew-products and derived from solenoid case, in section
7, we also prove statistical stability of the equilibrium states, meaning that the
measure varies continuously in the weak∗ topology with the dynamics and the
potential. In the remaining sections, we prove that the maximal entropy measure
satisfies good statistical properties, namely exponential decay of correlations and
the Central Limit Theorem in the space of Hölder continuous observables.
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2. Context and Statements

Let N be a connected compact Riemannian manifold, and let g : N → N be
a local homeomorphism with Lipschitz inverse branches. For that, we mean there
exists L(x) ≥ 0 such that, for all x ∈ N has a neighborhood Ux $ x such that
gx := g|Ux : Ux → g(Ux) is invertible and

d(g−1
x (y), g−1

x (z)) ≤ L(x) d(y, z), ∀y, z ∈ g(Ux). (2.1)

Let us denote by deg(g) the degree of g, which coincides with the number of preim-
ages of any x ∈ N by g. We also assume that there exist 0 < λu < 1 and an open
region Ω ⊂ N such that

(H1) L(x) ≤ L for x ∈ Ω e L(x) < λu for x /∈ Ω, for some L close to 1.
(H2) There exists a covering U of N by injective domain of g, such that Ω can

be covered by q < deg(g) elements of U .

Let M be a compact invariant manifold, and f : M → M a diffeomorphism onto
its image. Suppose there exists a continuous and sujective Π : M → N such that

Π ◦ f = g ◦Π. (2.2)

Given y ∈ N , set My = Π−1(y). Therefore, M =
⋃

y∈N

My. Note that f(My) ⊂

Mg(y), and also suppose that there exists 0 < λs < 1 such that

d(f(z), f(w)) ≤ λsd(z, w) (2.3)

for all z, w ∈ My.
As the maximizing entropy measure is f -invariant, by Poincaré’s Recurrence

Theorem such measure is supported in the attractor

Λ :=
∞⋂

n=0

fn(M).

Note that Λ is compact and invariant by f . So, it is sufficient to study the dynamics
of f restricted to Λ.

Given x, y ∈ M , write x̂ := Π(x), ŷ := Π(y). We assume that there exist
holonomies πx̂,ŷ : Mx̂ ∩ Λ → Mŷ ∩ Λ satisfying

1
C

[dN (x̂, ŷ) + dM (πx̂,ŷ(x), y)] ≤ dM (x, y) ≤ C [dN (x̂, ŷ) + dM (πx̂,ŷ(x), y)] (2.4)

for some constant C > 0, and dM , dN to be the metrics of M ,N , respectively. For
simplicity we shall write d for any of such metrics.

We suppose such holonomies are invariant by f , that is,

f (πx̂,ŷ(z)) = πg(x̂),g(ŷ) (f(z)) (2.5)

for all z ∈ Mx̂ ∩ Λ.

3. Examples

(1) The most simple family of examples is a skew-product obtained from a map
g : N → N as in [CV13] (this means that g can be taken in a robust class
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of nonuniformly expanding maps that, in particular, includes all expanding
maps) and an endomorphism Φ : N ×K → K, by the formula

f : N ×K → N ×K
(x, y) +→ (g(x),Φ(x, y))

such that f is a diffeomorphism onto its image, and for each x ∈ N , Φ(x, ·) :
K → K is a λs-contraction. In such case, Π is the canonical projection in
the first condinate, and N × K =

⋃

x∈N

Kx, where Kx = {x} × K forall

x ∈ N .
(2) As a subexample, we may take the solenoid generated in the solid torus

S1 ×D. We define f by

f : S1 ×D → S1 ×D
(θ, z) +→ (g(θ), ϕ(θ) + A(z))

where g is the Manneville-Pomeau map given by

g(θ) =
{

θ(1 + 2αθα) , if 0 ≤ θ ≤ 1
2

(θ − 1)(1 + 2α(1− θ)α) + 1 , if 1
2 < θ ≤ 1

where α ∈ (0, 1), ϕ is a local diffeomorphism and A is a contraction.
(3) One can modify the examples above in order to obtain robust (containing

an open set) classes of examples. These are examples derived from solenoid-
like systems. For sake of simplicity, we will give a construction in dimension
four, which can be easily adapted to similar higher dimensional examples.

Let us begin with a solenoid-like C2−skew-product hyperbolic diffeo-
morphism f0 : T 2 × D → T 2 × D similar to the examples 1 and 2 above.
We suppose that

f0 : T 2 ×D → T 2 ×D
(x, y) +→ (g0(x),Φ0(x, y))

is such that g0 is an expanding map.
We suppose that the norm of Df0 along the stable subbundle and the

norm of Df−1
0 along the unstable bundle are bounded by a constant λ0 <

1/3. Let p be a fixed point of f0 and let δ > 0 be a small constant. Denote
V0 = B(p, δ/2). Then, in the same manner as in [Cas02], we deform f−1

0

inside V0 by a isotopy obtaining a continuous family of maps ft, 0 < t < 2
in such a way that

i) The continuation pft of the fixed point p goes through some generic
bifurcation such as a flip bifurcation or a Hopf bifurcation. Points of
different indexes appear in a transitive attractor for values of t between
1 and 2 (staying all the time inside V0). For t = 1 we have the first
moment of the Hopf (or flip) bifurcation, with f1 conjugated to f0.
We suppose that the derivative Df1|Ecu does not contract vectors. In
the case of Hopf bifurcation, we suppose that Dft|Ecu(pft) exhibits
complex eigenvalues, for all t;

ii) In the process, there always exist a strong- stable cone field Css (cf.
[Vi97] for definitions) and a center-unstable cone field Ccu, defined
everywhere, such that Ccu contains the unstable direction of the initial
map f0; We also suppose that there exists a continuation of the torus
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T 2 × {0} which is f0-invariant and normally hyperbolic. So, for each
t ∈ [1, 2] there exists a ft-invariant manifold Tt that is the normally
hyperbolic continuation of T 2 × {0}.

iii) Moreover, the width of the cone fields Css and Ccu are bounded by a
small constant α > 0.

iv) There exist a constant σ > 1 and a neighbourhood V1 ⊂ V0 ∩W s(p),
such that Jc = ‖detDf−1

t |Ecu‖ > σ outside V1;
v) The maps f−1

t is δ−C0 close to f−1
0 outside V0 so that ‖(Df−1

1 |Ecu)‖ <
λ0 < 1/3 outside V0.

Note that the properties stated in conditions i) through v), which are
valid for ft, 0 ≤ t ≤ 2, are also valid for a whole C1-neighbourhood U of the
set of diffeomorphisms {ft, 0 ≤ t ≤ 2}. In particular, by [HPS77] conditions
i) through iii) imply that any f ∈ U has an invariant central foliation, since
the central cone field enables us to define a graph transform associated to it,
with domain in the space of foliations tangent to Ccu, which is not empty,
since the unstable foliation of f0 is tangent to it. On the other hand, all
f ∈ U also exhibits a strong stable foliation varying continuously with the
diffeomorphism.

As a consequence of lemma 6.1 of [BV00] there is a C1-neighbourhood
U1 ⊂ U of the set {ft, 1 < t ≤ 2} such that for all f ∈ U1, Λ = Tn

is a partially hyperbolic attractor, which is not hyperbolic, because it is
transitive and contains points with different indexes.

One can embed T 2 × D as a subset of T 4. So, it is easy to extend ft

above to T 4 in a manner that each ft is hyperbolic (and structurally stable)
outside T 2 ×D. So, we will assume each ft defined in T 4 in such way.

Now take f in some small ball B = B(f1, δ′), δ′ < δ/2. Suppose also
that δ′ is sufficiently small such that all diffeomorphism in B(f1, δ′) ⊂ U
is partially hyperbolic. So, if δ′ > 0 is small, B(f1, δ′) is an open set of
diffeomorphisms of T 4 satisfying the conditions in section 2.

Corollary 3.1. There exists an open set of non-hyperbolic diffeomorphisms
f : T 4 → T 4 satisfying conditions expressed by equations 2.2 through 2.5.

Proof. Just take the open set of diffeomorphisms U2 = U1 ∩ B(f1, δ′), δ′

as in the proposition above. Conditions in equations 2.2-2.5 fit for every
diffeomorphism in a ball B(f1, δ′). !

4. Definitions and main results

We recall the definition of topological entropy due to Bowen, using (n, ε)-separable
sets. A compacto set K contained in a metric space (X, d) is (n, ε)-separable if

∀x, y ∈ K, x .= y, max
{
d(f j(x), d(f j(y)); j = 0, · · · , n− 1

}
> ε

We denote by S(n, ε,K) the greatest cardinality of a (n, ε)-separate subset of K.
The relative entropy of f with respect to a (not necessarily invariant) compact
K ⊂ X, is given by

h(f, K) := lim
ε→0

lim sup
n→∞

1
n

log S(n, ε,K).
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For a uniformly continuous map f : X → X, (X not necessarily compact), the
topological entropy is defined by

h(f) := sup {h(f, K);K compact }

In our context X = Λ is a compact set, and f is automaticaly uniformly continuous..
We also have by [W93] that h(f) = h(f, X) does not depend on the metrics.

For an invariant measure µ, we also recall the definition by Shannon [Sh48] of
its metric entropy hµ. Given a probability space (X,B, µ) such that µ ∈ M1

f (X),
we define the entropy of a finite of a finite partition P of X by:

hµ(P) := −
∑

P∈P
µ(P ) log µ(P ).

Then the entropy of a partition with respect to f is

hµ(f,P) := lim
n→∞

1
n

hµ(P ∨ f−1(P) ∨ · · · ∨ fn−1(P)).

and the metric entropy of f with respect to µ is given by

hµ(f) := sup
P
{hµ(f,P)} .

The variational principle stablishes, that for a continuous map f on a compact
metric space X, the equation

h(f) = sup
{
hµ(f);µ ∈M1

f (X)
}

holds. We say that an invariant probability µ is a maximal entropy measure for f
if h(f) = hµ(f). We now state the main results in this work:

Theorem A. Existence and Uniqueness of Maximal Entropy measure)
Let f : Λ → Λ a diffeomorphism as in section 2 (that is, the conditions given by
equations 2.2 through 2.5). Then, there exists a unique maximal entropy measure
µ for f .

As a by-product of the proof we also obtain

Corollary 4.1. (Statistical Stability in the Derived from Solenoid-like
case.) Let fn be a sequence of derived from solenoid-like diffeomorphisms such
as in example 3 and call µn the maximal entropy probability measure for fn. If
fn → f in the C1-topology, then µn converges to the maximal entropy probability
measure for f in the weak-* topology.

We say that a measure ν has exponential decay of correlations for Hölder contin-
uous observables, if there exists some 0 < τ < 1 such that for α-Hölder continuous
ϕ, ψ there exists K(ϕ, ψ) > 0 satisfying

∣∣∣∣
∫

(ϕ ◦ fn)ψdν −
∫

ϕdν

∫
ψdν

∣∣∣∣ ≤ K(ϕ, ψ) · τn, for all n ≥ 1.

Using the theory of projective metrics over invariant cones, we prove:

Theorem B. (Exponential Decay of Correlations) The maximal measure
entropy µ for f : Λ → Λ has exponential decay of correlations for Hölder continuous
observables.

For the maximal entropy measure µ the following theorem also holds:
6



Theorem C. (Central Limit Theorem)
Let µ be the maximal entropy measure for f : Λ → Λ, as in (2.2) and let ϕ be a

Hölder continuous function. If

σ2
ϕ :=

∫
φ2dµ + 2

∞∑

j=1

∫
φ · (φ ◦ f j) dµ, with φ = ϕ−

∫
ϕ dµ,

then σϕ < ∞ e σϕ = 0 if, and only if, ϕ = u◦f −u for some u ∈ L1(µ). Moreover,
if σϕ > 0 then, for all interval A ⊂ R

lim
n→∞

µ



x ∈ M :
1√
n

n−1∑

j=0

(
ϕ(f j(x))−

∫
ϕdµ

)
∈ A



 =
1

σϕ

√
2π

∫

A
e
− t2

2σ2
ϕ dt

holds.

5. Construction of the Maximal Entropy Measure

Due to the contraction in the stable foliation, the dynamics of distinct orbits of
f : M → M will be determined by the dynamical behavior of the map g : N → N .
As seen in [CV13], such map g has only a unique maximal entropy measure, which
we will denote by ν.

We start the construction of the maximal entropy measure for f by definining it
on measurable sets of the form Π−1(A), where A is a Borelian set of N .

Since Π is a semiconjugation, by [W93] one obtain that,

h(f) ≥ h(g).

Moreover, due to Bowen [Bow71] it follows that

h(f) ≤ h(g) + sup{h(f,Π−1(y)); y ∈ N}
We now prove that h(f,Π−1(y)) = 0 for all y ∈ N . Indeed, since f : My → Mg(y) is
a λs-contraction, given ε > 0, the only (n, ε)-separate subsets restricted to My are
unitary subsets. As Π−1(y) can be writen as a union of m(ε) ∈ N balls of ε-diameter,
we conclude that the cardinality of any (n, ε)-separate subset of Π−1(y) is at most
m(ε). By the definition entropy due to Bowen, this implies h(f,Π−1(y)) = 0 for all
y ∈ N . Therefore, h(f) ≤ h(g), and so h(f) = h(g).

This allows us to construct the maximal entropy measure for f from the one
for g. In fact, denote by ν the unique maximal entropy measure built in [CV13].
Due to the variational principle and the fact of h(f) = h(g), it follows that hν(g)
, is greater than, or equal to the metric entropy of any f−invariant probability.
So, for the proof of existence part of the statement, it is sufficient to obtain an
f -invariant probablity µ, whose metric entropy with respect to f is greater or equal
than hν(g) = h(g).

For that purpose, let ΠΛ = Π|Λ. Let AN be the Borel σ-algebra on N . Clearly,
A0 := Π−1

Λ (AN ) is a σ-algebra on Λ. Since f is a bijection in Λ and ΠΛ◦f = g◦ΠΛ,
we have

A = Π−1
Λ (B) = f ◦Π−1

Λ ◦ g−1(B).
As g−1(B) belongs to AN , it follows that A0 ⊂ f(A0) and therefore An := fn(A0)
is a sequence of σ-algebras such that A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · . Define µn : An →
[0, 1] by µn(fn(A0)) = ν(ΠΛ(A0)), for all A0 ∈ A0. Note that µn is an f -invariant
probability for all n ∈ N. In fact, given A = fn(A0), where A0 = Π−1

Λ (B) and
7



B ∈ AN , due to the g-invariance of ν and the surjection of maps g and ΠΛ, we
have:

µn(f−1(A)) = µn(f−1(fn(A0))) = µn(fn(f−1(A0)))
= ν(ΠΛ(f−1(A0))) = ν(ΠΛ(f−1 ◦Π−1

Λ (B)))
= ν(ΠΛ(Π−1

Λ ◦ g−1(B))) = ν(g−1(B))
= ν(B) = ν(ΠΛ(A0))
= µn(fn(A0)) = µn(A)

Now, as An ⊂ An+1, A :=
∞⋃

n=0

An is an algebra in Λ.

Then we define µ : A → [0, 1] the probability such that µ(A) = µn(A) if A ∈ An.
By the standard measure theory arguments(see [Mane]), µ is σ-aditive.

Moreover, µ is an f -invariant probability, as µn are f -invariant probabilities. It
rests to prove that the smallest σ−algebra that contains A is the Borel σ−algebra.

For that, it is sufficient to see that A contains a sequence of partitions whose
diameter goes to zero.

This is because f : My → Mg(y) is a λs-contraction.
In fact, for each n ∈ N, by the continuity of gn, there exists δ(n) > 0 such

that d(z, w) < δ(n) implies d(gn(z), gn(w)) < λn
s , for all z, w ∈ N . Taking P0

n a
partition of N whose diameter is less than δ(n), we define a sequence of partitions
of Λ by

Pn := fn
(
Π−1

Λ

(
P0

n

))
(5.1)

Clearly, diam(Pn) → 0 as n → +∞. Indeed, given x̄, ȳ in the same element of Pn,
writing x̄ = fn(x) and ȳ = fn(y) we have x̂ = Π(x), ŷ = Π(y) ∈ P 0

n . Therefore,
noting that gn(x̂) = gn(Π(x)) = Π(fn(x)) = x̃ e gn(ŷ) = gn(Π(y)) = Π(fn(y)) = ỹ
we obtain

d(fn(x), fn(y)) ≤ C [d(x̃, ỹ) + d(πx̃,ỹ ◦ fn(x), fn(y))]

= C [d(gn ◦Π(x), gn ◦Π(y)) + d(fn(πx̂,ŷ(x)), fn(y))]

≤ C [λn
s + λn

s d(πx̂,ŷ(x), y)]

≤ C [1 + diam(M)]λn
s .

By a slight abuse of notation, we also write µ for its natural extension to the Borel
σ-algebra of M .

Now we prove that µ is a maximizing entropy measure for f , by proving that
hµ(f) ≥ hν(g). Denote by Bn

ε (g, y0) a (n, ε)-dynamical ball of g around y0 ∈ N ,
that is, the set of points y ∈ N , such that d(gj(y), gj(y0)) < ε,∀j ∈ {0, · · · , n− 1}.
Due Brin-Katok Theorem, ν-a.e. point y ∈ N ,

hν(g) = lim
ε→0

lim sup
n→∞

1
n

log
1

ν (Bn
ε (g, y))

holds.
Take now Bn

ε (f, x) the (n, ε) dynamical ball of f restricted to Λ at x ∈ Λ.
By the uniform continuity of Π, given ε > 0 there exists 0 < δ < ε such that
Π(Bδ(w)) ⊂ Bε(Π(w)) for all w ∈ M . Note that Bn

δ (f, x) ⊂ Π−1
Λ (Bn

ε (g, y)) for all
x ∈ Π−1

Λ (y).
8



In fact, given z ∈ Bn
δ (f, x) we shall prove that Π(z) ∈ Bn

ε (g, y). As Π(x) = y we
have for all j ∈ {0, · · · , n− 1}

d(gj ◦Π(z), gj(y)) = d(gj ◦Π(z), gj ◦Π(x)) = d(Π ◦ f j(z),Π ◦ f j(x)) < ε.

Therefore
µ (Bn

δ (f, x)) ≤ µ
(
Π−1

Λ (Bn
ε (g, y))

)
= ν (Bn

ε (g, y))
and since δ → 0 as ε → 0 we obtain

hν(g) ≤ lim
δ→0

lim sup
n→∞

1
n

log
1

µ (Bn
δ (f, x))

for µ−a.e. x ∈ Λ. So,

hµ(f) =
∫

Λ
lim
δ→0

lim sup
n→∞

1
n

log
1

µ (Bn
δ (f, x))

dµ

≥
∫

Λ
hν(g)dµ

= hν(g)

and we conclude that hµ(f) ≥ hν(g) = h(g) = h(f), which is the equivalent to say
that µ is maximal entropy measure for f .

6. Uniqueness of Maximal Entropy Measure

Now we prove the uniqueness of maximal entropy measure for f built in the last
section. For such purpose, we use the uniqueness of the maximal entropy measure
for g, provided by [CV13]. Suppose that µ1 is another invariant maximal entropy
measure for f , different to µ. Let ν1 := (ΠΛ)∗ µ1, the push-forward of µ1.

We claim that since µ1 is different to µ, it follows that ν1 is different to ν. Indeed,
since µ1 .= µ, µ1(A) .= µ(A) for some A ∈ A = A0∪f(A0)∪· · ·∪fn(A0)∪· · · . The
fact that such algebras on P(Λ) are nested implies that exist A0 ∈ A0 and n ∈ N
such that fn(A0) = A. By the definition of A0, there exists B0 ∈ AN such that
Π−1

Λ (B0) = A0. We now observe that, on one hand,

ν1(B0) = (ΠΛ)∗ µ1(B0) = µ1(Π−1
Λ (B0)) = µ1(A0) = µ1(fn(A0)) = µ1(A)

and on the other hand,

ν(B0) = ν(ΠΛ(A0)) = µ(A0) = µ(fn(A0)) = µ(A).

So, ν1 .= ν. By the f -invariance of µ1 it follow that ν1 is g-invariant.
Let us prove that ν1 is a maximal entropy measure for g, which is a contradiction,

since by [CV13], such probability is unique. For that, it is sufficient to prove that
hν1(g) ≥ hµ1(f), since hµ1(f) = h(f) = h(g).

In fact, we may suppose that the sequence Pn = fn
(
Π−1

Λ

(
P0

n

))
, in 5.1, is such

that P0 ≤ P1 ≤ · · · ≤ Pn ≤ · · · and as
∞⋃

n=0

Pn generates the Borel σ-algebra of Λ,

we obtain
hµ1(f) = sup

n
{hµ1(f, Pn)} .

Therefore, for all ε > 0 there exists n ∈ N such that

hµ1(f, Pn) ≥ hµ1(f)− ε.
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However, if follows from the definition of ν1 that for all n ∈ N

hν1(g, P 0
n) = hµ1(f,Π−1

Λ

(
P 0

n

)
).

Indeed, for a partition P we have

hν1(g,P) = lim
m→∞

1
m

hν1

(
P ∨ g−1(P) ∨ · · · ∨ g−(m−1)(P)

)

Due to the definition of ν1 and the semiconjugation between f and g we obtain

ν1




m−1∨

j=0

g−j(Pij )



 = µ1



Π−1
Λ




m−1∨

j=0

g−j(Pij )









= µ1




m−1∨

j=0

Π−1
Λ

(
g−j(Pij )

)




= µ1




m−1∨

j=0

f−j
(
Π−1

Λ (Pij )
)




which guarantees hν1




m−1∨

j=0

g−j(P)



 = hµ1




m−1∨

j=0

f−j
(
Π−1

Λ (P)
)


 and so, we have

hν1(g,P) = hµ1(f,Π−1
Λ (P)).

From the f -invariance of µ1 it follows that

hµ1(f,Π−1
Λ

(
P0

n

)
) = hµ1(f,Pn)

because Pnj ∈ Pn if and only if there exist P 0
nj
∈ P0

n such that Pnj = fn(Π−1
Λ (P 0

nj
)).

Therefore

µ1

(∨m−1
j=0 f−j(Pnj )

)
= µ1

(∨m−1
j=0 f−j

(
fn

(
Π−1

Λ (P 0
nj

)
)))

= µ1

(∨m−1
j=0 fn

(
f−j

(
Π−1

Λ (P 0
nj

)
)))

= µ1

(
fn

(∨m−1
j=0 f−j

(
Π−1

Λ (P 0
nj

)
)))

= µ1

(∨m−1
j=0 f−j

(
Π−1

Λ (P 0
nj

)
))

.

We then obtain that for all ε > 0 there exists n ∈ N such that

hν1 (g) ≥ hν1

(
g, P 0

n

)

= hµ1

(
f,Π−1

Λ P 0
n

)

= hµ1 (f, Pn)
≥ hµ1(f)− ε

and this proves that hν1(g) ≥ hµ1(f), and the uniqueness of the maximal entropy
measure.
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7. Statistical Stability

Now we prove the statistical stability for the maximizing probability measure µ.
That is, given fn → f in the C1−topology, then µn → µ in weak-∗ topology, where
µn (respectively, µ) is the maximizing entropy measure for fn (respectively, f).

Let us fix such f , and consider the collection C whose elements are open subsets
A ⊂ M whose frontier are µ-zero sets with the form A = ∪x∈BMx, for some ball
B ⊂ N with ν-zero frontier. Also denote by Ĉ ⊃ C the collection whose elements
are nonnegative interate of some element of C. Observe that, if we fix k ∈ N,
fk(∪x∈NMx) is a neighborhood for the attractors Λn where µn are supported, for
all sufficiently big n. Note that Ĉ is a neighborhood basis for Λ.

The key ingredient for the proof is the lemma:

Lemma 7.1. Let Â ∈ Ĉ. Then µn(Â) → µ(Â) as n → +∞.

Proof. Given Â = fk(A), with A = ∪x∈BMx. We start with the case k = 0, that
is, first we prove that µn(A) → µ(A) as n → +∞.

Set An := Π−1
n (B). Therefore, µn(An) = νn(B), where νn is the maximizing

measure gn as in [CV13]. We also have µ(A) = ν(B), where ν is the entropy
maximizing probability associated to g, as in [CV13].

Given ε > 0, take B+ ⊃ B ⊃ B−, ν−zero frontier such that

ν(B+)− ε/3 < ν(B) < ν(B−) + ε/3,

Let us also assume that A±
n := Π−1

n (B±), with µ−zero frontier such that there
exists n2 that forall n ≥ n2 A+

n ⊃ A ⊃ A−n and

µ(A+
n )− ε/3 < µ(A) < µ(A−n ) + ε/3,

hold.
Such sets exist by the C0−convergence of (strong stable/center-unstable) folia-

tions for fn to the respective foliations for f .
On the one hand, ∃n1 ≥ n2 such that

µ(A)− µn(A) ≤ µ(A)− µn(A) ≤ µ(A)− µn(A−n ) = ν(B)− νn(B−) ≤ 2ε

3
,

for all n ≥ n1, as νn(B−) → ν(B−) by the statistical stability for g proved in
[CV13].

In the same manner, we prove the other inequality, implying there exists n0 ≥ n1

such that
|µ(A)− µn(A)| < ε,∀n ≥ n0.

The same arguments also are valid for the case k > 0.
This finishes the lemma.

!

Theorem 7.2. Given ϕ : M → R a continuous function, then
∫

M
ϕdµn →

∫

M
ϕdµ.

Proof. Let ε > 0 given, and the δ > 0 we obtain by the uniform continuity of
ϕ associated to ε/9. Take a covering ∪k

j=1Cj , Cj ∈ C de Λ, with diameter less
then δ/3. There is also n0 such that ∪k

j=1Cj ⊃ Λn, ∀n ≥ n0. In particular,
µn(M \ ∪k

j=1Cj) = 0, ∀n ≥ n0.
11



Consider a partition of unity {ψj , j = 1, . . . , k} associated to ∪k
j=1Cj .

For each Cj , take xj ∈ Cj and set

ϕ̂ :=
k∑

j=1

ϕ(xj)ψj .

Therefore, ‖ϕ− ϕ̂‖∞ < ε/3.
Now, take n1 ≥ n0 such that

|(µn − µ)(Cj)| <
ε

3k‖ϕ‖∞
,∀n ≥ n1.

So, we conclude that
∣∣∣∣
∫

M
ϕdµn −

∫

M
ϕdµ

∣∣∣∣ ≤
∣∣∣∣
∫

M
ϕdµn −

∫

M
ϕ̂dµn

∣∣∣∣ +
∣∣∣∣
∫

M
ϕ̂dµn −

∫

M
ϕ̂dµ

∣∣∣∣ +
∣∣∣∣
∫

M
ϕdµ−

∫

M
ϕ̂dµ

∣∣∣∣

≤ ‖ϕ− ϕ̂‖∞ +
k∑

j=1

‖ϕ‖∞|µn(Cj)− µ(Cj)|+ ‖ϕ− ϕ̂‖∞ < ε,∀n ≥ n0.

!

8. Cones and Projective Metrics

We recall here some necessary results in Projective Metrics defined in Cones
whose proofs can be found in [Li95,Ba00,Vi95].

Given a linear space E we say that C ⊂ E\{0} is a convex cone if

t > 0 e v ∈ C ⇒ t · v ∈ C.

and
t1, t2 > 0 e v1, v2 ∈ C ⇒ t1 · v1 + t2 · v2 ∈ C.

We define C to be the set of points w ∈ E such that there exists v ∈ C and a
sequence of positive numbers (tn)n∈N, going to zero, such that w + tn · v ∈ C forall
n ∈ N. We will only consider the so called projective cones, such that

C ∩
(
−C

)
= {0}.

We then define
α(v, w) = sup {t > 0; w − t · v ∈ C}

and
β(v, w) = inf {s > 0; s · v − w ∈ C} .

We convention sup ∅ = 0 and inf ∅ = +∞. The projective metrics associated to
C is given by

θ(v, w) = log
β(v, w)
α(v, w)

.

Indeed,

Proposition 8.1. Given a projective cone C then θ(·, ·) : C × C → [0,+∞] is a
metrics in the projective space of C, that is,

• θ(v, w) = θ(w, v).
• θ(u, w) ≤ θ(u, v) + θ(v, w).
• θ(v, w) = 0 iff there exists t > 0 such that v = t · w.

12



The proof of the following essential result can be found in [Vi97, Proposition 2.3].

Theorem 8.2. Let E1 and E2 be linear spaces and let C1 ⊂ E1 and C2 ⊂ E2 be
projective cones. If L : E1 → E2 is a linear operador such that L(C1) ⊂ C2 and

D = sup {θ2(L(v), L(w)); v, w ∈ C1} < ∞
then

θ2(L(v), L(w)) ≤
(
1− e−D

)
θ1(v, w),

for all v, w ∈ C1.

9. Ruelle-Perron-Frobenius Operator and Invariant Cones

We recall that the main goal of this work is to deduce good statistical properties
of the maximal entropy probability measure associated to the dynamics f . The
technique presented use the Ruelle-Perron-Frobenius operator(for simplicity called
transfer operator) and its duality with the Koopman operator, U(ϕ) = ϕ ◦ f , to
obtain the exponential decay of correlations and consequently the central limit
theorem.

However, this technique may also be useful to prove exponential decay of cor-
relations and consequently the central limit theorem for more general equilibrium
states, not just particularly for measures of maximum entropy. We recall that given
a map f : Λ → Λ, and a fixed potential φ : Λ → R, we say that a measure η is an
equilibrium state for f with respect to φ if

hη(f) +
∫

φdη = sup
{

hµ(f) +
∫

φdµ;µ is an f -invariant probability
}

.

That is, the variational principle tells us that η carries out the topological pressure
P (f, φ). The reader can easily see that in the case where the potential φ is a
constant, obtain an equilibrium state is equivalent to obtain a maximum entropy
measure. What we do in this section is to obtain some preliminar results, for more
general potentials than constant potentials, namely, low variation potentials. That
is, we assume that sup φ − inf φ < ε for some small enough ε. Moreover such
potential must belong to the following cone:

∣∣eφ
∣∣
α
≤ ε inf eφ (9.1)

where
∣∣eφ

∣∣
α

= inf
{
C > 0; |eφ(x)− eφ(y)| ≤ Cd(x, y)α,∀x, y ∈ Λ

}
. Let E is the

space of continuous functions ϕ : Λ → R. Define the Ruelle-Perron-Frobenius
operator L : E → E given

L(ϕ)(y) = ϕ(f−1(y))eφ(f−1(y))

where φ satisfies the above conditions.
Our inspiration is the work developed in [CV13], where the exponential decay of

correlations and other good statistical and regularity properties are proven for the
unique equilibrium state in a nonuniformly expanding context. Castro-Varandas de-
fined suitable cones for the Ruelle-Perron-Frobenius (or transfer) operatorL, prov-
ing the invariance and the finite diameter for the image of such cones by L.

More precisely, the basic cone used by [CV13] is the cone of Hölder continuous,
positive functions ϕ such that |ϕ|α ≤ κ inf ϕ. The invariance of such cone by f is due
some increase in the regularity given by the contraction of some inverse branch of f .
In our context, however, we always have backward expansion in stable directions for
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the points into each strong stable manifold Π−1(y) instead of contraction. Since for
the case of entropy (potential φ ≡ 0) the transfer operator L, is just the composition
of each observable ϕ with f−1, it is obvious that the Hölder constants of L(ϕ), can
not better, if one take a cone as in [CV13].

In order to avoid this undesirable effect in stable directions, we will analyse
the action of L in some kind of averages taken in each stable leaf restricted to the
attractor Λ. We will write the lowercase letter γ to denote a stable leaf (instersected
with Λ) and Fs will denote the stable foliation.

Fixed y ∈ N , let yj such that g(yj) = y, where j ∈ {1, · · · , deg(g)}. Writing
γ = Π−1

Λ (y) and γj = Π−1
Λ (yj), it follows that f(γj) ⊂ γ, since Π◦f(x) = g◦Π(x) =

g(yj) = y, ∀x ∈ γj .
Let p be the degree of g. Let us construct a family of measures {µγ}γ∈Fs

supported in Λ, such that for all γ̂, where fn (γ̂) ⊂ γ, we have µγ (fn (γ̂)) =
1
pn

.

In particular µγ(γ) = 1. Furthermore, for all γj , with f(γj) ⊂ γ we will obtain
∫

f(γj)
ψdµγ =

1
p

∫

γj

ψ ◦ fdµγj .

The construction of such family of measures is rather natural. Fix γ = Π−1
Λ (y)

and n ∈ N, n > 0. By setting γj := Π−1
Λ (yj), where yj ∈ g−n(y), one can write

γ =
⋃̇pn

j=1
fn(γj), since fn is a bijection in Λ and Π ◦ fn = gn ◦ Π. Therefore,

{fn(γj)}pn

j=1 is a sequence of partitions in γ. As γj = Π−1
Λ (yj) and fn : Myj →

Mgn(yj) is a λn
s -contraction it follows that the diameter of {fn(γj)}pn

j=1 goes to zero.
So, we just define µγ in the elements of such partition by mass distribution

µγ(fn(γj)) =
1
pn

and extend µγ by approximation to any Borelian A ⊂ Λ.
If γj = Π−1

Λ (xj), xj ∈ g−1(x), then

µγ(A) = µγ(A∩γ) = µγ



A ∩
p⋃

j=1

f(γj)



 = µγ




p⋃

j=1

(A ∩ f(γj))



 =
p∑

j=1

µγ(A∩f(γj))

Seting µγj (A) := p ·µγ(f(A∩ γj)) we obtain µγ(A∩ f(γj)) =
1
p
µγj (f

−1(A)) and so

µγ(A) =
1
p

p∑

j=1

µγj (f
−1(A)).

We conclude that for any measurable set A, its indicator function χA satisfies
∫

f(γj)
χAdµγ =

1
p

∫

γj

χA ◦ fdµγj

By Lebesgue Dominated Convergence Theorem, for any g : Λ → R continuous we
have ∫

f(γj)
gdµγ =

1
p

∫

γj

g ◦ fdµγj . (9.2)

14



Figure 1. Mass distribution

Note also that for all γ̂, fn (γ̂) ⊂ γ, we have µγ (fn (γ̂)) =
1
pn

. So it follows that

for all γ̃ such that fn (γ̃) ⊂ γj and f (γj) ⊂ γ

µγj (fn (γ̃)) = pµγ (f (fn (γ̃) ∩ γj))
= pµγ

(
fn+1(γ̃)

)

=
p

pn+1
=

1
pn

holds.
That is, µγj is the mass distribution measure constructed for γj .
Moreover, for y ∈ N and yj such that g(yj) = y, j ∈ {1, · · · , p} if we consider

γ = Π−1
Λ (y) and γj = Π−1

Λ (yj), f(γj) ⊂ γ, then γ =
⋃̇p

j=1f(γj). Therefore, for all
measurable bounded function ψ : γ → R it follows that

∫

γ
ψdµγ =

p∑

j=1

∫

f(γj)
ψdµγ .

For ρ : γ → R, we conclude that
∫

γ
L(ϕ)ρdµγ =

p∑

j=1

∫

f(γj)
L(ϕ)ρdµγ =

p∑

j=1

1
p

∫

γj

ϕ · eφ · ρ ◦ fdµγj
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defining ρj :=
1
p
ρ ◦ feφ, we have

∫

γ
L(ϕ)ρdµγ =

p∑

j=1

∫

γj

ϕρjdµγj .

We will study the action of the transfer operator in the strong stable leaves via its
action on the integrals of densities in a suitable cones of functions which are defined
in each strong stable leaf. More precisely, for each γ ∈ Fs we define the auxiliary
cone of Hölder continuous functions

D(γ, κ) := {ρ : γ → ρ > 0 and |ρ|α < κ inf ρ},
with |ρ|α = inf {C > 0; |ρ(x)− ρ(y)| ≤ Cd(x, y)α,∀x, y ∈ γ}.

Note that for ρ in a cone D(γ, κ) we have sup ρ ≤ inf ρ (1 + κ · diamMα).
The next lemma is about the invariance of the auxiliary cones under the action

of the transfer operator.

Lemma 9.1. There exist sufficiently small 0 < λ < 1 and κ > 0, such that the
following itens hold:

(1) If ρ ∈ D(γ, κ) then ρj ∈ D(γj , λκ) for all j ∈ {1, . . . , p}.

(2) For all γ ∈ Fs
loc, if ρ, ρ̂ ∈ D(γ, λκ) then θ(ρ, ρ̂) ≤ 2 log

(
1 + λ

1− λ

)
.

(3) If ρ,, ρ,, ∈ D(γ, κ) then there exists Λ1 = 1−
(

1− λ

1 + λ

)2

such that θj(ρ,
j , ρ

,,
j ) ≤

Λ1θ(ρ,, ρ,,) for all j ∈ {1, . . . , p};
where θj e θ are the projective metrics associated to D(γj , κ) and D(γ, κ), respec-
tively.

Proof. (1) In our context we suppose supφ− inf φ <ε and
∣∣eφ

∣∣
α

< ε inf eφ. There-
fore

|ρj |α
inf {ρj}

=

∣∣∣∣
1
p
ρ ◦ f · eφ

∣∣∣∣
α

inf
{

1
p
ρ ◦ f · eφ

}

=
|ρ ◦ f · eφ|α

inf {ρ ◦ f · eφ}

≤ |ρ ◦ f |α · esup φ + sup {ρ ◦ f} · |eφ|α
inf ρ · einf φ

≤ λα
s κ inf ρ · esup φ

inf ρ · einf φ
+

(1 + κ · diamMα) inf ρ · |eφ|α
inf ρ · einf φ

≤ λα
s κeε + (1 + κ · diamMα)ε

= (λα
s eε + diamMαε)κ + ε

In order to guarantee a 0 < λ< 1 such that

(λα
s eε + diamMαε)κ + ε < λκ
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it is sufficient to obtain
(λα

s eε + diamMαε)κ + ε

κ
< λ< 1.

For that we just need
(λα

s eε + diamMαε)κ + ε

κ
< 1

or, equivalently,

κ >
ε

1− (λα
s eε + diamMαε)

. (9.3)

Note that λ and κ can be chosen sufficiently small for since we have chosen in our
hipothesis ε > 0 and 0 < λs < 1 suitably small.

(2) By a triangular argument, it is sufficient to bound θ(1, ρ) for ρ ∈ D(γ, λκ).
There is no loss of generality in assuming that inf ρ = 1. So, for t = 1− λ we have

|ρ− t|α
inf (ρ− t)

=
|ρ|α

inf ρ− t
<

λκ

1− t
=

λκ

λ
= κ.

Since inf ρ = 1 it follows that ρ − t ≥ inf ρ − (1 − λ) = λ > 0 which guarantees
α(1, ρ) ≥ 1− λ. On the other hand, by setting s = 1 + λ we obtain

|s− ρ|α
inf (s− ρ)

=
|ρ|α

s− inf ρ
<

λκ

s− 1
=

λκ

λ
= κ.

As sup ρ ≤ inf ρ (1 + κdiamMα) = 1 + κdiamMα escolhendo κ tal que λ >
κdiamMα, segue que s−ρ = 1+λ−ρ ≥ 1+λ−sup ρ ≥ 1+λ−(1 + κdiamMα) > 0

portanto β(1, ρ) ≤ 1 + λ. Logo θ(ρ, ρ̂) ≤ 2 log
(

1 + λ

1− λ

)
.

Finally, in order to prove (3) it is sufficient to note that by item (1) we have
ρj ∈ D(γj , λκ) for all j ∈ {1, . . . , p} and by item (2) the diameter D(γj , λκ) in

D(γj , κ) is, at most, 2 log
(

1 + λ

1− λ

)
. Therefore, the result goes on by theorem 8.2,

considering ∆ = 2 log
(

1 + λ

1− λ

)
and the linear map

ρ +→ 1
p
ρ ◦ feφ

we have θj(ρ,
j , ρ

,,
j ) ≤ Λ1θ(ρ,, ρ,,) where

Λ1 = 1− e−∆ = 1−
(

1− λ

1 + λ

)2

!

For the definition of the main cone on which we will apply the transfer operator
we need to define a notion of distance between two strong stable leaves γ e γ̃ in Fs.
Given x, y ∈ N let γ = Π−1

Λ (x) and γ̃ = Π−1
Λ (y). Suppose π = πx,y : γ̃ → γ satisfies

∫

γ
ϕdµγ =

∫

eγ
ϕ ◦ πdµeγ

for all continuous function ϕ and define the distance d(γ, γ̃) = sup {d(π(p), p); p ∈ γ̃}.
17



Now let us define our main cone. Denote by D1(γ) the set of densities ρ ∈ D(γ, κ)

such that
∫

γ
ρdµγ = 1. Given b > 0, c > 0 and κ as in lemma 9.1, let C(b, c, α) be

the cone of functions ϕ ∈ E satisfying for all γ ∈ Fs the following:
(A): For all ρ ∈ D(γ, κ):

∫

γ
ϕρdµγ > 0

(B): For all ρ,, ρ,, ∈ D1(γ):

∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣ < bθ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γ
ϕρdµγ

}

(C): Given any γ̃ sufficiently close to γ:
∣∣∣∣
∫

γ
ϕdµγ −

∫

eγ
ϕdµeγ

∣∣∣∣ < cd(γ, γ̃)α inf
γ

{∫

γ
ϕdµγ

}

We then prove:

Lemma 9.2. C (b, c, α) is a projective cone.

Proof. We start by the convexity of C (b, c, α). Given ϕ, ψ ∈ C (b, c, α) and s, t > 0
we have

(A):
∫

γ
(sϕ + tψ)dµγ = s

∫

γ
ϕdµγ + t

∫

γ
ψdµγ > 0.

(B): By hipohesis,
∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ(ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γ
ϕρdµγ

} < b

and ∣∣∣∣
∫

γ
ψρ,dµγ −

∫

γ
ψρ,,dµγ

∣∣∣∣

θ(ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γ
ψρdµγ

} < b.

Then, it follows

inf
ρ∈D1(γ)

{∫

γ
(sϕ + tψ) ρdµγ

}
≥ s inf

ρ∈D1(γ)

{∫

γ
ϕρdµγ

}
+ t inf

ρ∈D1(γ)

{∫

γ
ψρdµγ

}
.

Therefore,

∣∣∣∣
∫

γ
(sϕ + tψ)ρ,dµγ −

∫

γ
(sϕ + tψ)ρ,,dµγ

∣∣∣∣

θ(ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γ
(sϕ + tψ) ρdµγ

} < b.

(C): Analogous to (B).
In order to prove that C (b, c, α)∩−C (b, c, α) = 0, take ϕ ∈ C (b, c, α)∩−C (b, c, α).
If ϕ ∈ C (b, c, α), there exists ψ ∈ C (b, c, α) and a sequence (tn)n∈N ↘ 0 such that
ϕ + tnψ ∈ C (b, c, α) for all n ∈ N . In particular, given γ ∈ Fs and ρ ∈ D(γ, κ), we
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have
∫

γ
ϕρdµγ > −tn

∫

γ
ψρdµγ , ∀tn > 0. As tn → 0 and

∫

γ
ψρdµγ > 0, if follows

that
∫

γ
ϕρdµγ ≥ 0. On the other hand, if ϕ ∈ −C (b, c, α) then ϕ = −ϕ where

ϕ ∈ C (b, c, α) and so,
∫

γ
ϕρdµγ = −

∫

γ
ϕρdµγ ≤ 0. Therefore,

∫

γ
ϕρdµγ = 0 for

all γ ∈ Fs and ρ ∈ D(γ, κ). All that rests is to prove

∫

γ
ϕρdµγ = 0,∀γ ∈ Fs and ρ ∈ D (γ, κ) ⇒ ϕ = 0 in Λ.

Indeed, fixed γ, given any Hölder continuous function ψ : γ → R we can write ψ =

ψ+−ψ−, with ψ+, ψ− belonging in D(γ, κ). For that, set ψ± =
1
2

(|ψ| ± ψ)+B for

a sufficiently large B. By linearity, we have
∫

γ
ϕψdµγ = 0. As all bounded function

can be aproximated in L1(µγ) by Hölder functions, it followd that
∫

γ
ϕψdµγ = 0,

for all bounded ψ : γ → R. By taking ψ = ϕ|A, A is a Borel subset of Λ restrited

to γ, we obtain
∫

γ
ϕ2|Adµγ = 0 and so ϕ|A = 0 for µγ-a.e point in A. As A and γ

are arbitrary, we conclude that ϕ = 0 in Λ.
!

Proposition 9.3. Let φ ≡ 0. There exists 0 < σ < 1 such that L(C(b, c, α)) ⊂
C(σb, σc, α) for sufficiently large b,c > 0.

Proof. Invariance of condition (A): Let ϕ ∈ C(b, c, α). We know that
∫

γ
L(ϕ)ρdµγ =

p∑

j=1

∫

γj

ϕρjdµγj and by lemma 9.1 ρj ∈ D(γj , κ). Therefore,
∫

γ
L(ϕ)ρdµγ > 0.

Invariance of condition (B): Denoting
ρj∫

γj

ρjdµγj

by ρ̂j we can write

inf
ρ∈D1(γ)

{∫

γ
L(ϕ)ρdµγ

}
≥

p∑

j=1

inf
ρ∈D1(γ)

{∫

γj

ϕρjdµγj

}

=
p∑

j=1

inf
ρ∈D1(γ)

{∫

γj

ϕρ̂jdµγj

∫

γj

ρjdµγj

}

≥
p∑

j=1

inf
ρ∈D1(γj)

{∫

γj

ϕρdµγj

}
inf

ρ∈D1(γ)

{∫

γj

ρjdµγj

}
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Given ρ,, ρ,, ∈ D1(γ) writing ρ,
j/

∫

γj

ρ,
jdµγj and ρ,,

j /

∫

γj

ρ,,
j dµγj for ρj and ρj , re-

spectively, follows that
∣∣∣∣
∫

γ
L(ϕ)ρ,dµγ −

∫

γ
L(ϕ)ρ,,dµγ

∣∣∣∣ ≤
p∑

j=1

∣∣∣∣∣

∫

γj

ϕρjdµγj −
∫

γj

ϕρjdµγj

∣∣∣∣∣

∫

γj

ρ,
jdµγj

+
p∑

j=1

∫

γj

ϕρjdµγj

∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣ .

(9.4)
By hypothesis, ϕ is in the cone and by lemma 9.1, we have

∣∣∣∣∣

∫

γj

ϕρjdµγj −
∫

γj

ϕρjdµγj

∣∣∣∣∣ ≤ bθj

(
ρj , ρj

)
inf

ρ∈D1(γj)

{∫

γj

ϕρdµγj

}

= bθj

(
ρ,

j , ρ
,,
j

)
inf

ρ∈D1(γj)

{∫

γj

ϕρdµγj

}

≤ bΛ1θ (ρ,, ρ,,) inf
ρ∈D1(γj)

{∫

γj

ϕρdµγj

}
.

(9.5)

For all ρ̂ ∈ D1(γ) we obtain the following estimative
∫

γj

(ρ̂)jdµγj

inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

} ≤ (1 + κdiamMα)2 (9.6)

In fact, given δ > 0 there exists ρ̃ ∈ D1(γ) such that
∫

γj

(ρ̃)jdµγj ≤ (1 +

δ) inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

}
. Moreover, as ρ̂ and ρ̃ are normalized, we necessarily have

inf ρ̂ ≤ 1 and sup ρ̃ ≥ 1. Therefore,

(ρ̂)j

(ρ̃)j
=

1
p
ρ̂ ◦ feφ

1
p
ρ̃ ◦ feφ

≤ sup ρ̂

inf ρ̃
≤ (1 + κdiamMα) inf ρ̂

(1 + κdiamMα)−1 sup ρ̃
= (1 + κdiamMα)2 .

And so
∫

γj

(ρ̂)jdµγj ≤ (1 + κdiamMα)2
∫

γj

(ρ̃)jdµγj , we obtain for all δ > 0

∫

γj

(ρ̂)jdµγj

inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

} ≤
(1 + δ) (1 + κdiamMα)2

∫

γj

(ρ̃)jdµγj

∫

γj

(ρ̃)jdµγj

≤ (1 + δ) (1 + κdiamMα)2
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giving the estimative we wish.
Now, for fixed j, we obtain

∣∣∣∣∣

∫

γj

ϕρjdµγj −
∫

γj

ϕρjdµγj

∣∣∣∣∣

∫

γj

ρ,
jdµγj

inf
ρ∈D1(γj)

{∫

γj

ϕρdµγj

}
inf

ρ∈D1(γ)

{∫

γj

ρjdµγj

}
θ(ρ,, ρ,,)

≤
bΛ1θ (ρ,, ρ,,)

∫

γj

ρ,
jdµγj

inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

}
θ(ρ,, ρ,,)

≤ (1 + κdiamMα)2 Λ1b
(9.7)

Let us analyse the second parcel of 9.4. First, note that for all ρ̂ ∈ D1(γ),

denoting (ρ̂)j/

∫

γj

(ρ̂)jdµγj by ¯̂ρj , we claim that

∫

γj

ϕ ¯̂ρjdµγj

inf
ρ∈D1(γ)

{∫

γj

ϕρjdµγj

} < b log
(

1 + λ

1− λ

)2

+ 1

In fact, analogously to what was done in 9.6, it is sufficient to to note that, since ϕ
is in the cone, we have

∫

γj

ϕ ¯̂ρjdµγj

∫

γj

ϕρjdµγj

< bθ(¯̂ρj , ρj) + 1 = bθ((ρ̂)j , ρj) + 1

By 9.1, we conclude the proof of our claim.
Now, we stablish the other necessary estimative:

∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣

θ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

} ≤ 2 (1 + κdiamMα)2 .

In order to prove this last estimative we observe that

ρ,
j

ρ,,
j

≤ sup ρ,

inf ρ,,
≤ sup ρ,/ inf ρ,

inf ρ,,/ sup ρ,,
= eθ+(ρ,,ρ,,) ≤ eθ(ρ,,ρ,,)

Therefore, by assuming without loss of generality that
∫

γj

ρ,
jdµγj ≥

∫

γj

ρ,,
j dµγj we

obtain
∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣

θ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

} ≤

(
eθ (ρ,, ρ,,) − 1

) ∫

γj

ρ,,
j dµγj

θ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

}
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for θ (ρ,, ρ,,) ≤ 1 it follows
eθ (ρ,, ρ,,) − 1

θ (ρ,, ρ,,)
< 2 and so we obtain our estimative.

If θ (ρ,, ρ,,) ≥ 1 we also have that
∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣

θ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

} ≤

∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣

inf
ρ∈D1(γ)

{∫

γj

ρjdµγj

}

≤ 2 (1 + κdiamMα)2

and again for fixed j and by writing M(κ, α) for (1 + κdiamMα)2,
∫

γj

ϕρjdµγj

∣∣∣∣∣

∫

γj

ρ,
jdµγj −

∫

γj

ρ,,
j dµγj

∣∣∣∣∣

inf
ρ∈D1(γ)

{∫

γj

ϕρjdµγj

}
inf

ρ∈D1(γ)

{∫

γj

ρjdµγj

}
θ(ρ,, ρ,,)

≤

∫

γj

ϕρjdµγj

inf
ρ∈D1(γ)

{∫

γj

ϕρjdµγj

}2M(κ, α)

≤
(

b log
(

1 + λ

1− λ

)2

+ 1

)
2M(κ, α)

≤ 2M(κ, α) log
(

1 + λ

1− λ

)2

b + 2M(κ, α)

(9.8)
The inequalities 9.7 and 9.8 does not depend on j, so

∣∣∣∣
∫

γ
L(ϕ)ρ,dµγ −

∫

γ
L(ϕ)ρ,,dµγ

∣∣∣∣

inf
ρ∈D1(γ)

{∫

γ
L(ϕ)ρdµγ

}
θ(ρ,, ρ,,)

≤ M(κ, α)Λ1b + 2M(κ, α) log
(

1 + λ

1− λ

)2

b + 2M(κ, α)

=

(
Λ1 + 2 log

(
1 + λ

1− λ

)2
)

M(κ, α)b + 2M(κ, α)

We need that the term which multiplies b above to be less than 1. Recall that by

lemma (9.1), Λ1 = 1−
(

1− λ

1 + λ

)2

. So, we need to guarantee that

(
1−

(
1− λ

1 + λ

)2

+ 2 log
(

1 + λ

1− λ

)2
)

(1 + κdiamMα)2 < 1

Also by lemma (9.1), we can choose κ, such that κdiamMα < λ, λ to be fixed. So
let us find a bound 0 < λ< 1 such that

(
1−

(
1− λ

1 + λ

)2

+ 2 log
(

1 + λ

1− λ

)2
)

(1 + λ)2 < 1.

It is possible because (9.1), 0 < λ < 1 can be taken sufficiently small depending
on the contraction rate in the strong stable directions. So, there exists 0 < σ̃1 < 1
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such that (
Λ1 + 2 log

(
1 + λ

1− λ

)2
)

M(κ, α) < σ̃1.

Since M(κ, α) does not depend on b, for sufficiently large b we can obtain σ1 < 1
such that ∣∣∣∣

∫

γ
L(ϕ)ρ,dµγ −

∫

γ
L(ϕ)ρ,,dµγ

∣∣∣∣

inf
ρ∈D1(γ)

{∫

γ
L(ϕ)ρdµγ

}
θ(ρ,, ρ,,)

≤ σ1b

This prove the strict invariance of condition (B).
Invariance of condition (C): This is the place we need φ ≡ 0. This implies that

inf
γ

{∫

γ
Lϕdµγ

}
≥ eφ inf

γ

{∫

γ
ϕdµγ

}
.

For g as in 2.1, every y ∈ N has a pre-image in the region Ω such that L(y) ≤ λu.
So, for γ = Π−1(y) and γ̃ = Π−1(ỹ) sufficiently close to γ such that ỹi is pre-image
ỹ, close to yi, stay in Uyi we obtain that d(γi, γ̃i) ≤ λud(γ, γ̃).

In fact, let x ∈ γ̃i realizing the distance d(γi, γ̃i). By a slight abuse of notation,
we write d for the product distance equivalent to the original metrics. So,

d(γi, γ̃i) = d(x, πỹi,yi(x)) = d(ỹi, yi) ≤ λud(g(ỹi), g(yi))
= λud(ỹ, y) = λu [d(ỹ, y) + d(πỹ,y(f(x)), πỹ,y(f(x)))]
= λud(f(x), πỹ,y(f(x))) ≤ λud(γ̃, γ)

Analogously, in the other cases we have d(γj , γ̃j) ≤ Ld(γ, γ̃). Furthermore, we
can assume with no loss of generality, that d(γ1, γ̃1) ≤ λ̃ud(γ, γ̃), and for other
pre-images we have d(γj , γ̃j) ≤ L̃d(γ, γ̃). It follows that

∣∣∣∣
∫

γ
Lϕdµγ −

∫

eγ
Lϕdµeγ

∣∣∣∣ ≤ eφ

p

p∑

j=1

∣∣∣∣∣

∫

γj

ϕdµγj −
∫

eγj

ϕdµeγj

∣∣∣∣∣

≤ eφC

p
inf
γ

{∫

γ
ϕdµγ

} p∑

j=1

d(γj , γ̃j)α

≤ λ̃α
u + (p− 1)L̃α

p
Cd(γ, γ̃)α inf

γ

{∫

γ
Lϕdµγ

}

We should obtain
λ̃α

u + (p− 1)L̃α

p
< 1. This is equivalent to

L̃α <
p− λ̃α

u

p− 1
.

Due to the fact that L̃ ≥ 1, we have

p− λ̃α
u

p− 1
≥ 1

because λ̃u < 1. Therefore, there exists 0 < σ2 < 1 such that
∣∣∣∣
∫

γ
Lϕdµγ −

∫

eγ
Lϕdµeγ

∣∣∣∣ < σ2Cd(γ, γ̃)α inf
γ

{∫

γ
Lϕdµγ

}
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which proves (C). By setting σ = max{σ1, σ2}, we finish the proof of the proposi-
tion. !

10. Finite Diameter of the Main Cone

In this section, we prove the strict invariance of the main cone C (b, c, α) by the
Ruelle-Perron-Frobenius operator L. First, let us calculate the projective metrics
Θ. Recall that α(ϕ, ψ) = sup {t > 0;ψ − tϕ ∈ C (b, c, α)}. By (A), for all γ ∈ Fs

loc

and ρ ∈ D (γ) we have
∫

γ
(ψ − tϕ)ρdµγ > 0, that is,

t <

∫

γ
ψρdµγ

∫

γ
ϕρdµγ

.

By condition (B), one obtains
∣∣∣∣
∫

γ
(ψ − tϕ)ρ,dµγ −

∫

γ
(ψ − tϕ)ρ,,dµγ

∣∣∣∣ < bθ (ρ,, ρ,,) inf
ρ∈D1(γ)

{∫

γ
(ψ − tϕ)ρdµγ

}

and so, for all ρ,, ρ,,, and ρ̂ in D1(γ) we have

t <

∫

γ
ψρ,dµγ −

∫

γ
ψρ,,dµγ + bθ(ρ,, ρ,,)

∫

γ
ψρ̂dµγ

∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ + bθ(ρ,, ρ,,)

∫

γ
ϕρ̂dµγ

and

t <

∫

γ
ψρ,,dµγ −

∫

γ
ψρ,dµγ + bθ(ρ,, ρ,,)

∫

γ
ψρ̂dµγ

∫

γ
ϕρ,,dµγ −

∫

γ
ϕρ,dµγ + bθ(ρ,, ρ,,)

∫

γ
ϕρ̂dµγ

.

By condition (C),
∣∣∣∣
∫

γ
(ψ − tϕ)dµγ −

∫

eγ
(ψ − tϕ)dµeγ

∣∣∣∣ < cd(γ, γ̃)α inf
γ

{∫

γ
(ψ − tϕ) dµγ

}

therefore, for all γ, γ̂ ∈ Fs
loc and γ̃ sufficiently close to γ we have

t <

∫

eγ
ψdµeγ −

∫

γ
ψdµγ + cd(γ, γ̃)

∫

γ̂
ψdµγ̂

∫

eγ
ϕdµeγ −

∫

γ
ϕdµγ + cd(γ, γ̃)

∫

γ̂
ϕdµγ̂

and

t <

∫

γ
ψdµγ −

∫

eγ
ψdµeγ + cd(γ, γ̃)

∫

γ̂
ψdµγ̂

∫

γ
ϕdµγ −

∫

eγ
ϕdµeγ + cd(γ, γ̃)

∫

γ̂
ϕdµγ̂

.
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By defining

ξ(γ, ρ,, ρ,,, ρ̂, ϕ, ψ) =

(∫

γ
ψρ,,dµγ −

∫

γ
ψρ,dµγ

)
/

∫

γ
ψρ̂dµγ + bθ(ρ,, ρ,,)

(∫

γ
ϕρ,,dµγ −

∫

γ
ϕρ,dµγ

)
/

∫

γ
ϕρ̂dµγ + bθ(ρ,, ρ,,)

and

η(γ, γ̃, γ̂, ρ̂, ϕ, ψ) =

(∫

γ
ψdµγ −

∫

eγ
ψdµeγ

)
/

∫

γ̂
ψdµγ̂ + cd(γ, γ̃)

(∫

γ
ϕdµγ −

∫

eγ
ϕdµeγ

)
/

∫

γ̂
ϕdµγ̂ + cd(γ, γ̃)

.

we can write

α(ϕ, ψ) = inf






∫

γ
ψρdµγ

∫

γ
ϕρdµγ

,

∫

γ
ψρ̂dµγ

∫

γ
ϕρ̂dµγ

ξ(γ, ρ,, ρ,,, ρ̂, ϕ, ψ),

∫

γ̂
ψdµγ̂

∫

γ̂
ϕdµγ̂

η(γ, γ̃, γ̂, ρ̂, ϕ, ψ)






as β(ϕ, ψ) = α(ψ, ϕ)−1 we obtain

β(ϕ, ψ) = sup






∫

γ
ϕρdµγ

∫

γ
ψρdµγ

,

∫

γ
ϕρ̂dµγ

∫

γ
ψρ̂dµγ

ξ(γ, ρ,, ρ,,, ρ̂, ψ, ϕ),

∫

γ̂
ϕdµγ̂

∫

γ̂
ψdµγ̂

η(γ, γ̃, γ̂, ρ̂, ψ, ϕ)






Now, we prove that the Θ-diameter of L (C(b, c, α)) is finite.

Proposition 10.1. For all sufficiently large b > 0, c > 0 and for α ∈ (0, 1] we
have

∆ := sup {Θ (Lϕ,Lψ) ;ϕ, ψ ∈ C(b, c, α)} < ∞.

Proof. Given ϕ, ψ ∈ C(σb, σc, α), note that
1− σ

1 + σ
< ξ(γ, ρ,, ρ,,, ρ̂, ψ, ϕ) <

1 + σ

1− σ

and
1− σ

1 + σ
< η(γ, γ̃, γ̂, ρ̂, ψ, ϕ) <

1 + σ

1− σ
Indeed, given ρ,, ρ,,, ρ̂ ∈ D1(γ)

∫

γ
ϕρ,,dµγ −

∫

γ
ϕρ,dµγ

∫

γ
ϕρ̂dµγ

≤
σbθ(ρ,, ρ,,) inf

ρ∈D1(γ)

{∫

γ
ϕρdµγ

}

∫

γ
ϕρ̂dµγ

≤ σbθ(ρ,, ρ,,)

and
∫

γ
ϕρ,,dµγ −

∫

γ
ϕρ,dµγ

∫

γ
ϕρ̂dµγ

≥
−σbθ(ρ,, ρ,,) inf

ρ∈D1(γ)

{∫

γ
ϕρdµγ

}

∫

γ
ϕρ̂dµγ

≥ −σbθ(ρ,, ρ,,)

holds.
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The same is valid for ψ and as σ < 1 we conclude that

1− σ

1 + σ
<

(∫

γ
ψρ,,dµγ −

∫

γ
ψρ,dµγ

)
/

∫

γ
ψρ̂dµγ + bθ(ρ,, ρ,,)

(∫

γ
ϕρ,,dµγ −

∫

γ
ϕρ,dµγ

)
/

∫

γ
ϕρ̂dµγ + bθ(ρ,, ρ,,)

<
1 + σ

1− σ

That is,
1− σ

1 + σ
< ξ(γ, ρ,, ρ,,, ρ̂, ψ, ϕ) <

1 + σ

1− σ
.

In a similar way, we prove that

1− σ

1 + σ
< η(γ, γ̃, γ̂, ρ̂, ψ, ϕ) <

1 + σ

1− σ

Denoting by Θ+ the projective metrics associated to the cone defined just by con-
dition (A),

Θ+ (ϕ, ψ) = sup
γ,ρ∈D(γ),γ̂,ρ̂∈D(γ̂)






∫

γ
ϕρdµγ

∫

γ̂
ψρ̂dµγ̂

∫

γ̂
ϕρ̂dµγ̂

∫

γ
ψρdµγ






it followd by the expression of Θ that

Θ(ϕ, ψ) < Θ+(ϕ, ψ) + log

(
1 + σ

1− σ

)2

.

So, we just need to prove that the Θ+-diameter of L (C(b, c, α)) is finite. By a
triangular argument, it is sufficient to show that {Θ+(Lϕ, 1);ϕ ∈ C(b, c, α)} is
finite. For that, we just need to find an upper bound for

∫

γ̂
Lϕρ̂dµγ̂

∫

γ
Lϕρdµγ

for all ϕ ∈ C(b, c, α), ρ ∈ D1(γ) and ρ̂ ∈ D1(γ̂). First, note that

∫

γ̂
Lϕρ̂dµγ̂

∫

γ
Lϕρdµγ

=

p∑

j=1

∫

γ̂j

ϕ(ρ̂)jdµγ̂j

p∑

j=1

∫

γj

ϕρjdµγj

and we reduce our problem to bound
∫

γ̂j

ϕ(ρ̂)jdµγ̂j

∫

γj

ϕρjdµγj

=

∫

γ̂j

ϕ(ρ̂)jdµγ̂j

∫

γ̂j

ϕdµγ̂j

∫

γ̂j

ϕdµγ̂j

∫

γj

ϕdµγj

∫

γj

ϕdµγj

∫

γj

ϕρjdµγj
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Denoting
ρj∫

γj

ρjdµγj

and
(ρ̂)j∫

γ̂j

(ρ̂)jdµγ̂j

by ρj e ρj , respectively, applying (B) and

lemma 9.1, we obtain
∫

γ̂j

ϕ(ρ̂)jdµγ̂j

∫

γ̂j

ϕdµγ̂j

=

∫

γ̂j

ϕρjdµγ̂j

∫

γ̂j

(ρ̂)jdµγ̂j

∫

γ̂j

ϕdµγ̂j

≤
(
1 + bθj

(
ρj , 1

)) ∫

γ̂j

(ρ̂)jdµγ̂j

≤
(

1 + b log
(

1 + λ

1− λ

)) ∫

γ̂j

(ρ̂)jdµγ̂j

and∫

γj

ϕdµγj

∫

γj

ϕρjdµγj

=

∫

γj

ϕdµγj

∫

γj

ϕρjdµγj

∫

γj

ρjdµγj

≤
(
1 + bθj

(
1, ρj

))
∫

γj

ρjdµγj

≤

(
1 + b log

(
1 + λ

1− λ

))

∫

γj

ρjdµγj

We know that (ρ̂)j =
1
p
ρ̂ ◦ f · eφ e ρj =

1
p
ρ ◦ f · eφ. Since ρ and ρ̂ are normalized,

it follows that (ρ̂)j ≤
1
p
(1 + κdiam(M)α)eφ and ρj ≥

1
p
(1 + κdiam(M)α)−1eφ.

Therefore ∫

γ̂j

(ρ̂)jdµγ̂j

∫

γj

ρjdµγj

< (1 + κdiam(M)α)2

∫

γ̂j

eφdµγ̂j

∫

γj

eφdµγj

,

On the other hand,
∣∣eφ

∣∣
α

< ε inf eφ and so sup eφ < (1 + εdiam(M)α) inf eφ . We
then obtain ∫

γ̂j

eφdµγ̂j

∫

γj

eφdµγj

< 1 + εdiam(M)α

and by consequence
∫

γ̂j

(ρ̂)jdµγ̂j

∫

γj

ρjdµγj

< (1 + κdiam(M)α)2(1 + εdiam(M)α).

Moreover for γ e γ̂ such that we can apply (C) we have
∫

γ̂j

ϕdµγ̂j

∫

γj

ϕdµγj

≤ 1 + cd (γ̂j , γj)
α ≤ 1 + c.diam(M)α

27



implying that
∫

γ̂j

ϕ(ρ̂)jdµγ̂j

∫

γj

ϕρjdµγj

<

(
1 + b log

(
1 + λ

1− λ

))2

(1 + max{κ, c, ε}diam(M)α)4,

finishing the proof of the proposition. !

11. Exponential Decay of Correlations

In this section, we prove the Exponential Decay of Correlation for Hölder con-
tinuous.

In our context, the transfer operator is just L(ϕ) = ϕ ◦ f−1 acting in the space
of continuous observables.

The adjoint operador of L is
∫
L̃ϕdµ =

∫
ϕdL∗µ.

for all continuous ϕ and all probability measure µ. Instead of the nonuniformly ex-
panding case, any invariant probability is an eigenmeasure of the transfer operator’s
adjoint:

Proposition 11.1. If f is invertible, then L∗(µ) = µ if and only if µ is f-invariant.

Proof. Let ϕ be a continuous function. If L∗(µ) = µ then
∫

ϕ ◦ f−1dµ =
∫
L(ϕ)dµ =

∫
ϕdL∗(µ) =

∫
ϕdµ,

Now, givem an f -invariant measure µ, we have
∫

ϕdL∗(µ) =
∫
L̃(ϕ)dµ =

∫
ϕ ◦ f−1dµ =

∫
ϕdµ

!

Other important relation obtained from the f -invariance of a measure µ is that
∫

(ϕ ◦ fn) ψdµ =
∫

ϕLn(ψ)dµ (11.1)

Indeed, as L̃(ϕ) = ϕ ◦ f−1 we have
∫

(ϕ ◦ f) ψdµ =
∫

ϕ ◦ f ◦ f−1ψ ◦ f−1dµ =
∫

ϕL(ψ)dµ

and by induction, ∫
(ϕ ◦ fn) ψdµ =

∫
ϕLn(ψ)dµ.

The exponential decay of correlations of the maximizing entropy measure will
be a consequence of the strict invariance of the Main Cone that we proved in the
last section, and the following

Lemma 11.2. For all ϕ ∈ Cα (M) there exists K(ϕ) > 0 such that ϕ + K(ϕ) ∈
C(b, c, α).
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Proof. First we prove that there exists K3 = K3(ϕ) > 0 such that ϕ + K3 satisfies
the condition (C) in the definition of cone C(b, c, α). The projections between stable
leaves guarantees that

∫

γ
ϕdµγ =

∫

eγ
ϕ ◦ πdµeγ

Given ϕ ∈ Cα (M) we have

ϕ(x)− ϕ(π(x))
d(γ, γ̃)

≤ ϕ(x)− ϕ(π(x))
d(π(x), x)

≤ |ϕ|α

So

sup
γ,eγ






∣∣∣∣
∫

γ
ϕdµγ −

∫

eγ
ϕdµeγ

∣∣∣∣

d(γ, γ̃)





≤ |ϕ|α < ∞

On the other hand, for K > 0, all we have inf
γ

{∫

γ
(ϕ + K) dµγ

}
= inf

γ

{∫

γ
ϕdµγ

}
+

K. It is sufficient to choose K3 = K3(ϕ) > 0 such that

c inf
γ

{∫

γ
(ϕ + K3) dµγ

}
> |ϕ|α

In order to see that there exists K2 = K2(ϕ) such that ϕ+K2 satisfies the condition
(B), just note that

sup
ρ,,ρ,,∈D1(γ)






∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)





< ∞.

Indeed, as ρ,, ρ,, ∈ D1(γ) we have
ρ,

ρ,,
≤ eθ(ρ,,ρ,,) and so, for all bounded ϕ

∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣ =
∣∣∣∣
∫

γ

(
ρ,

ρ,,
− 1

)
ϕρ,,dµγ

∣∣∣∣ ≤
∫

γ

∣∣∣∣
ρ,

ρ,,
− 1

∣∣∣∣ |ϕ| ρ
,,dµγ

≤ sup
∣∣∣∣
ρ,

ρ,,
− 1

∣∣∣∣ supϕ sup ρ,, =
∣∣∣∣sup

ρ,

ρ,,
− 1

∣∣∣∣ supϕ sup ρ,,

≤
∣∣eθ(ρ,,ρ,,) − 1

∣∣ supϕ sup ρ,,

Let B such that sup (ϕ + B) = 1. It follows that
∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)
=

∣∣∣∣
∫

γ
(ϕ + B) ρ,dµγ −

∫

γ
(ϕ + B) ρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)

≤
(
eθ(ρ,,ρ,,) − 1

)
sup ρ,,

θ (ρ,, ρ,,)
.
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If θ (ρ,, ρ,,) < 1 then
eθ(ρ,,ρ,,) − 1

θ (ρ,, ρ,,)
< 2 and as ρ,, ∈ D1(γ) we have

∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)
≤ 2(1 + κdiam(M)α)

Now, if θ (ρ,, ρ,,) ≥ 1 we obtain
∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)
≤

∣∣∣∣
∫

γ
(ϕ + B) ρ,dµγ −

∫

γ
(ϕ + B) ρ,,dµγ

∣∣∣∣

≤
∫

γ
|(ϕ + B) (ρ, − ρ,,)| dµγ

≤ sup (ϕ + B) (sup ρ, + sup ρ,,)

≤ 2(1 + κdiam(M)α)

and this implies

sup
ρ,,ρ,,∈D1(γ)






∣∣∣∣
∫

γ
ϕρ,dµγ −

∫

γ
ϕρ,,dµγ

∣∣∣∣

θ (ρ,, ρ,,)





< ∞.

The choice of K2 = K2(ϕ) is similar of what we have done for (C). On condition (A)
, since ϕ is continuous with compact domain, there exists K1 = K1(ϕ) such that

ϕ + K1 > 0 and so
∫

γ
(ϕ + K1) ρdµγ > 0, ∀γ ∈ F s

loc and ρ ∈ D(γ). We complete

the proof by taking K(ϕ) = max{K1, K2, K3}.
!

Now, denote by µγ × ν the measure given by

µγ × ν(ϕ) :=
∫ ∫

γ
ϕdµγdν(γ).

By unicity of the maximal entropy probability measure, we notice that µ = µγ × ν,
where ν is the maximal entropy probability measure for g. Indeed, let us first
show that µγ × ν is an f -invariant probability. In fact, for all x ∈ M , given
γ = Π−1

Λ (x) and γj = Π−1
Λ (xj), with f(γj) ⊂ γ and g(xj) = x we have µγ(A) =

1
p

p∑

j=1

µγj

(
f−1(A)

)
. By Castro-Varandas[CV13], ν is an eigenmeasure of the adjoint

L∗g,φ given by

Lg,φ(ϕ)(x) :=
∑

g(xj)=x

eφ(xj))ϕ(xj),

for constant potential φ. More precisely, if r is the spectral radius of L∗g,φ, which
is equal to the degree of g, then L∗g,φ(ν) = rν. By normalizing L∗g,φ by r = p, we
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obtain for any continuous φ
∫

ϕ(x)dν =
1
r

∫
ϕ(x)dL∗g,φν =

1
r

∫
Lg,φ(ϕ)(x)dν =

∫
1
p

p∑

j=1

ϕ(xj)dν.

Therefore, for A ∈ A0 we deduce

(µγ × ν)(f−1(A)) = µγ × ν(χf−1(A)) =
∫ ∫

γ
χf−1(A)dµγdν

=
∫

µγ

(
f−1(A)

)
dν =

∫
1
p

p∑

j=1

µγj

(
f−1(A)

)
dν

=
∫

µγ(A)dν =
∫ ∫

γ
χAdµγdν

= µγ × ν(A)
As we have shown in previous sections, this implies the same equality for any
borelian A.

Furthermore µγ × ν(A) = µ(A) . Indeed, let A = Π−1
Λ (AN ), with AN ∈ AN .

On the one hand, we have that

µ(Π−1
Λ (AN )) = ν

(
ΠΛ

(
Π−1

Λ (AN )
))

= ν (AN ) =
∫

N
χAN dν

and on the other hand,

µγ × ν
(
Π−1

Λ (AN )
)

=
∫ ∫

γ
χΠ−1

Λ (AN )dµγdν

As χΠ−1
Λ (AN )(x) = χAN (ΠΛ(x)) and for all γ there exists x0 ∈ N such that

γ = Π−1
Λ (x0). So
∫

γ
χΠ−1

Λ (AN )(x)dµγ =
∫

γ
χAN (ΠΛ(x))dµγ =

∫

γ
χAN (x0)dµγ = χAN (x0)

and then, µγ × ν(A) = µ(A) for all A ∈ A0. Now, given A ∈ A =
∞⋃

n=0

An, as

An = fn(A0), we have that there exist n ∈ N and A0 ∈ A0 such that A = fn(A0).
Therefore

µγ × ν(A) = µγ × ν(fn(A0)) = µγ × ν(A0).
Since µ is f -invariant, µ(A) = µ(fn(A0)) = µ(A0), we conclude that µ = µγ × ν.

Teorema B. The measure µ has exponential decay of de correlations for Hölder
continuous observables.

Proof. We should prove that for α-Hölder observables ϕ, ψ , there exist 0 < τ < 1
and K(ϕ, ψ) > 0 such that

∣∣∣∣
∫

(ϕ ◦ fn)ψdµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ K(ϕ, ψ) · τn,∀n ≥ 1.

By (11.1) this is equivalent to prove
∣∣∣∣
∫

ϕL̃n (ψ) dµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ K(ϕ, ψ) · τn, para todo n ≥ 1.

We start with the case ϕ|γ ∈ D (γ), ∀γ ∈ Fs
loc and ψ ∈ C(b, c, α). We also assume∫

ϕdµ .= 0 and
∫

ψdµ = 1.
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Recall that L(1) = 1 ◦ f = 1. Since ϕ|γ ∈ D(γ) for all γ ∈ Fs
loc by (A) we have

∫

γ
ϕL̃n(ψ)dµγ

∫

γ
ϕdµγ

≤ β+

(
L̃n(ψ), 1

)

Since ψ is normalized we have
∫
L̃n(ψ)dµ =

∫
ψdµ = 1. As µ = µγ × ν

∫ (∫

γ
L̃n(ψ)dµγ

)
dν =

∫
L̃n(ψ)dµ = 1

and so there exists γ̂ such that
∫

γ̂
L̃n(ψ)dµγ̂ ≤ 1. We conclude that

α+

(
L̃n(ψ), 1

)
≤

∫

γ̂
L̃n(ψ)dµγ̂

∫

γ̂
dµγ̂

=
∫

γ̂
L̃n(ψ)dµγ̂ ≤ 1

and for all γ ∈ Fs
loc∫

γ
ϕL̃n(ψ)dµγ

∫

γ
ϕdµγ

≤
β+

(
L̃n(ψ), 1

)

α+

(
L̃n(ψ), 1

) ≤ eΘ+(L̃n(ψ),1) ≤ eΘ(L̃n(ψ),1).

By proposition 9.3 and by proposition 10.1, since the cone C (σb, σc, α) has Θ-
diameter less or equal than ∆, it follows from proposition 8.2 that ∃ 0 < τ < 1 such
that ∀ϕ, ψ ∈ C (b, c, α) we have Θ(L̃n(ϕ), L̃n(ψ)) ≤ ∆τn−1. In consequence,

∫
ϕL̃n(ψ)dµ
∫

ϕdµ
=

∫ ∫

γ
ϕL̃n(ψ)dµγdν

∫ ∫

γ
ϕdµγdν

≤ eΘ(L̃n(ψ),1) ≤ e∆τn−1
.

Note now that lim
n→∞

e∆τn−1 − 1
τn

=
∆
τ

. So, there exists ∆̃ > 0 such that e∆τn−1−1 <

∆̃τn, for all n ∈ N. This implies that

∣∣∣∣
∫

ϕdµ

∣∣∣∣

∣∣∣∣∣∣∣∣

∫
ϕL̃n(ψ)dµ
∫

ϕdµ
− 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣
∫

ϕdµ

∣∣∣∣
(
e∆τn−1

− 1
)
≤

∣∣∣∣
∫

ϕdµ

∣∣∣∣ ∆̃τn

If
∫

ψdµ .= 1 then

∣∣∣∣
∫

ϕL̃n (ψ) dµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ =
∣∣∣∣
∫

ψdµ

∣∣∣∣

∣∣∣∣
∫

ϕL̃n

(
ψ∫
ψdµ

)
dµ−

∫
ϕdµ

∣∣∣∣

≤
∣∣∣∣
∫

ψdµ

∣∣∣∣

∣∣∣∣
∫

ϕdµ

∣∣∣∣ ∆̃τn

for all n ≥ 1.
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By lemma 11.2 given an α-Hölder continuous function ψ, there exists K(ψ) > 0,
such that ψ + K(ψ) ∈ C(b, c, α). Therefore ψ = ψ + K(ψ)−K(ψ) and noting that∫

ϕLn(K(ψ))dµ =
∫

ϕdµ
∫

K(ψ)dµ we obtain
∣∣∣∣
∫

ϕL̃n (ψ) dµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ =
∣∣∣∣
∫

ϕL̃n (ψ + K(ψ)) dµ−
∫

ϕdµ

∫
(ψ + K(ψ))dµ

∣∣∣∣

≤
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
) ∣∣∣∣

∫
ϕdµ

∣∣∣∣ ∆̃τn

Now, given an α-Hölder ϕ, note that there exists K(ϕ) ∈ R such that ϕ|γ +K(ϕ)+

B ∈ D (γ) for all γ ∈ Fs
loc and

∫
ϕ + K(ϕ) + Bdµ > 0, for all B > 0 . Indeed,

∣∣ϕ|γ + K(ϕ)
∣∣
α

< κ inf
{
ϕ|γ + K(ϕ)

}

if, and only if,

K(ϕ) >

∣∣ϕ|γ
∣∣
α

κ
− inf

{
ϕ|γ

}

Set K(ϕ) = sup
γ∈Fs

loc

{∣∣∣∣∣

∣∣ϕ|γ
∣∣
α

κ

∣∣∣∣∣

}
− inf ϕ. Observe that K(ϕ) ≤

|ϕ|α
κ
− inf ϕ < ∞. As

ϕ|γ + K(ϕ) ≥
∣∣ϕ|γ

∣∣
α

κ
≥ 0 for all γ ∈ Fs

loc, it follows that ϕ|γ + K(ϕ) + B ∈ D (γ)

and
∫

(ϕ + K(ϕ))dµ + B > 0, ∀B > 0. Analogously to the last case
∣∣∣∣
∫

ϕL̃n (ψ) dµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
) (∣∣∣∣

∫
ϕdµ

∣∣∣∣ + K(ϕ) + B

)
∆̃τn

and since B is any positive number
∣∣∣∣
∫

ϕL̃n (ψ) dµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
) (∣∣∣∣

∫
ϕdµ

∣∣∣∣ + K(ϕ)
)

∆̃τn

.

Since
∣∣∣∣
∫

ϕdµ

∣∣∣∣− inf ϕ ≥ 0, we have
∣∣∣∣
∫

ϕdµ

∣∣∣∣ + K(ϕ) ≥ 0. By taking

K(ϕ, ψ) :=
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
) (∣∣∣∣

∫
ϕdµ

∣∣∣∣ + K(ϕ)
)

∆̃,

we conclude the proof of the Theorem.
!

12. Central Limit Theorem

Let G be the Borel σ-algebra of M and let Gn := f−n(G) be a nonincreasing
family of σ-algebras. A function ξ : M → R is Gn-measurable if, and only if,
ξ = ξn ◦ fn for some G- measurable ξn. Let L2(Gn) = {ξ ∈ L2 (µ) ; ξ is Gn-
measurable }. Note that L2(Gn+1) ⊂ L2(Gn) for each n ≥ 0. Given ϕ ∈ L2(µ), we
will denote by E(ϕ|Gn) the L2-orthogonal projection of ϕ on L2(Gn).

We will apply the following adaption of a result due to Gordin, whose proof can
be found in [Vi97]:
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Theorem 12.1. [Gordin.] Let (M,F , µ) be a probability space, and let φ ∈ L2(µ)
be such that

∫
φdµ = 0. Assume that f : M → M is an invertible bimeasurable

map and that µ is an f-ergodic invariant probability. Let F0 ⊂ F such that Fn :=
f−n(F0), n ∈ Z, is a nonincreasing family of σ-algebras. Define

σ2
φ :=

∫
φ2dµ + 2

∞∑

j=1

φ · (φ ◦ f j) dµ.

If
∞∑

n=0

‖E(φ|Fn)‖2 < ∞ e
∞∑

n=0

‖φ− E(φ|F−n)‖2 < ∞

then σφ < ∞ e σφ = 0 if, and only if φ = u ◦ f − u for some u ∈ L1(µ). Moreover,
if σφ > 0 then for any interval A ⊂ R

µ



x ∈ M :
1√
n

n−1∑

j=0

(
φ(f j(x))

)
∈ A



 → 1
σφ

√
2π

∫

A
e
− t2

2σ2
φ dt,

as n →∞.

Let F0 the σ-algebra whose elements are Borelian subsets of Λ which are union
local stable leaves (intersected with Λ). Not that, if ϕ F0-mensurable then ϕ is
constant along local stable leaves.

We start by proving a statement of exponential decay of correlation concerning
to function in L1 (F0).

Proposition 12.2. Let ϕ ∈ L1 (F0) and ψ be a α-Hölder continuous function.
Then, there exist constants 0 < τ < 1 and C(ψ) > 0 such that

∣∣∣∣
∫

(ϕ ◦ fn)ψdµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ C(ψ)
∫
|ϕ| dµ · τn

for all n ≥ 1.

Proof. Since ϕ is F0-measurable, it is constant restricted to local stable leaves, so,
|ϕ|γ |α = 0, ∀γ ∈ Fs

loc. Suppose ϕ ≥ 0 and let K(ϕ) and K(ψ) as in the proof of
Th. B. Therefore

K(ϕ) = sup
γ∈Fs

loc

{∣∣∣∣∣

∣∣ϕ|γ
∣∣
α

κ

∣∣∣∣∣

}
− inf ϕ = − inf ϕ

Since
∣∣∣∣
∫

ϕdµ

∣∣∣∣− inf ϕ ≤
∫
|ϕ| dµ, just as in the proof of Th. B, it follows that

∣∣∣∣
∫

(ϕ ◦ fn)ψdµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
) ∫

|ϕ| dµ · τn.

Now, we can write ϕ = ϕ+−ϕ− where ϕ± =
1
2

(|ϕ| ± ϕ). Noting that
∫ ∣∣ϕ±

∣∣ dµ ≤
∫
|ϕ| dµ from linearity of the integral we obtain

∣∣∣∣
∫

(ϕ ◦ fn)ψdµ−
∫

ϕdµ

∫
ψdµ

∣∣∣∣ ≤ C(ψ)
∫
|ϕ| dµ · τn

with C(ψ) := 2
(∣∣∣∣

∫
ψdµ

∣∣∣∣ + K(ψ)
)

. !
34



As a consequence of the proposition we are able to prove:

Lemma 12.3. For every Hölder continuous function ϕ with
∫

ϕdµ = 0 there is

R = R(ϕ) such that ‖E(ϕ|Fn)‖2 ≤ Rτn for all n ≥ 0.

Proof. Due to the last proposition, if ψ ∈ L1(F0) and
∫

ψdµ ≤ 1, then
∣∣∣∣
∫

(ψ ◦ fn)ϕdµ−
∫

ψdµ

∫
ϕdµ

∣∣∣∣ ≤ C(ϕ) · τn.

As ‖ψ‖1 ≤ ‖ψ‖2 and
∫

ϕdµ = 0 we have

‖E(ϕ|Fn)‖2 = sup
{∫

ξϕdµ; ξ ∈ L2(Fn), ‖ξ‖2 = 1
}

= sup
{∫

(ψ ◦ fn) ϕdµ;ψ ∈ L2(F0), ‖ψ‖2 = 1
}

≤ R (ϕ) τn

!

Now, we can prove:

Teorema C. (Central Limit Theorem)
Let µ be the maximal entropy probability for f : Λ → Λ, as in (2.2). Given a

Hölder continuous function ϕ and

σ2
ϕ :=

∫
φ2dµ + 2

∞∑

j=1

∫
φ · (φ ◦ f j) dµ, with φ = ϕ−

∫
ϕ dµ.

Then σϕ < ∞ and σϕ = 0 if, and only if, ϕ = u ◦ f − u for some u ∈ L1(µ).
Moreover, if σϕ > 0 then for all interval A ⊂ R

lim
n→∞

µ



x ∈ M :
1√
n

n−1∑

j=0

(
ϕ(f j(x))−

∫
ϕdµ

)
∈ A



 =
1

σϕ

√
2π

∫

A
e
− t2

2σ2
ϕ dt.

Proof. By the last lemma,
∞∑

n=0

‖E(φ|Fn)‖2 < ∞, so the first condition for Gordin’s

Theorem holds. The second condition follows from the Hölder continuity of ϕ. In
fact, E(φ,F−n) is constant in each n-image η = fn(γ) of a stable leaf γ and

inf(φ|γ) ≤ E(φ,F−n) ≤ sup(φ|γ).

Since the diameter of η is less Csλn
s for some constant Cs which does not depend

on γ, λs ∈ (0, 1), and φ is (A, α)-Hölder for some constant A > 0, we obtain that

‖φ− E(φ,F−n)‖2 ≤ ‖φ− E(φ,F−n)‖0 ≤ ACα
s λαn

s .

which guarantees
∞∑

n=0

‖φ − E(φ,F−n)‖2 < ∞. The result then follows as a conse-

quence of Gordin’s Theorem. !
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