STATISTICAL PROPERTIES OF THE MAXIMAL ENTROPY
MEASURE FOR PARTIALLY HYPERBOLIC ATTRACTORS

ARMANDO CASTRO AND TEOFILO NASCIMENTO

ABSTRACT. We show the existence and uniqueness of the maximal entropy
probability measure for partially hyperbolic diffeomorphisms which are semi-
conjugate to nonuniformly expanding maps. And especially, we obtain good
statistical properties for such measures. More precisely, using the theory of
projective metric on cones we prove exponential decay of correlations for Holder
continuous observables and the central limit theorem for the maximal entropy
probability measure. Furthermore, for systems derived from solenoid-like we
also prove the statistical stability for the maximal entropy probability measure
that we constructed.

1. INTRODUCTION

The thermodynamical formalism from the statistical mechanics was introduced
in Dynamical Systems by the former works of Sinai, Ruelle and Bowen for uniformly
hyperbolic maps and Holder potentials, in the beginning of the 70’s. Beyond the
uniformly hyperbolic context, the theory is still quite incomplete. Several contribu-
tion do exist, for example [BK98, BF09, Yur03, OV08, SV09, BF09, Sar99, Cas02,
VV10, CV13].

In the recent years, the thermodynamical formalism of a class of partial hy-
perbolic diffeomorphisms introduced by Alves, Bonatti, Viana [ABV00] and Cas-
tro [Cas98] has been developed under some conditions that resemble or may lead to
some mostly expanding or mostly contracting assumption in the central direction.

In the non-invertible setting this has been studied by Castro, Oliveira, Varandas
and Viana [OV08, VV10, CV13]. Given a compact metric space M and a local
homeomorphism f : M — M in with Lipschitz inverse branches that admit some
expanding and some possibly contracting domains of invertibility it was proved in
[VV10] that for every Holder continuous potential ¢ satisfying a small variation
condition there are finitely many ergodic equilibrium states for f with respect to
¢. Furthermore, the equilibrium states are absolutely continuous with respect to
some conformal measure and there exists a unique equilibrium state provided that
the dynamical system is topologically exact. Later on, using a functional analytic
approach by means of projective metrics techniques to the study of the spectral
properties of Ruelle-Perron-Frobenius operators on the space of C™*% observables
(r € Nya > 0), Castro and Varandas [CV13] presented a more general proof for the
uniqueness of equilibrium states for this class of maps and deduced many statistical
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properties as exponential decay of correlations, Central Limit Theorem, and also
both statistical and spectral stabilities.

In this paper our motivation is to contribute to the study of the thermodynamical
formalism of a large class of partially hyperbolic diffeomorphisms. For that purpose
we will consider partially hyperbolic diffeomorphisms which are semiconjugate to
the class of local diffeomorphisms discussed above. This class includes many exam-
ples of partially hyperbolic diffeomorphisms that arise as local bifurcations of Axiom
A diffeomorphisms and will be mostly expanding with respect to some conformal
measure. Let us mention that SRB measures for large classes of partially hyper-
bolic diffeomorphisms have been constructed by [Car93, ABV00, BV00, Cas98] and,
more recently, existence and uniqueness of maximal entropy measures have been
proved by Buzzi, Fisher, Sambarino, Vasquez [BFSV12] for derived from Anosov
diffeomorphisms, by Buzzi, Fisher [BF13] for wide class of deformations of Anosov
diffeomorphisms that include the examples by Bonatti and Viana of robustly tran-
sitive non-partiallly hyperbolic diffeomorphisms, and by Ures [Url2] for partially
hyperbolic diffeomorphisms of T2 homotopic to a hyperbolic automorphism. In
most of these cases the approach is to established a semiconjugacy between the
dynamical system and some uniformly hyperbolic one and prove that the points
that remain in a non-hyperbolic region do not contribute much for the topological
entropy. The drawback is that this method is not enough to deduce some good
statistical properties for the original dynamical system. To illustrate this fact let
us mention that in the case of nonuniformly expanding maps the Ruelle-Perron-
Frobenius transfer operator acts in the space of Holder continuous functions and
the dominant eigenvector of its adjoint operator leads to the measure of maximal
entropy, while in the invertible context any invariant measure is an eigenvector for
the adjoint operator. For that reason the cone method used in [CV13] could not be
applied here. So, to deduce exponential decay of correlations for the original dy-
namical systems we introduce a suitable Banach space and prove that the transfer
operator does preserve some cone of functions. The construction of such cone of
functions is done by constructing a family of probability measures on stable leaves
that is equidistributed and holonomy invariant. A very laborious work is to prove
the invariance of such suitable cone of functions by the transfer operator and that
the image of this by the transfer operador has finite diameter in the projective
metrics, which implies that transfer operator is a contraction with respect to the
projective metrics. From that and the duality properties of transfer and Koopman
operators we derive the exponential decay of correlations and the Central Limit
Theorem as a consequence.

This paper is organized as follows. In the initial sections (up to section 4), we
give precise definitions of the family of partially hyperbolic diffeomorphisms that we
consider and state the main results. Some robust class of examples is also discussed.
In sections 5 and 6, we establish the existence and uniqueness of equlibrium states.
and, restricting to the skew-products and derived from solenoid case, in section
7, we also prove statistical stability of the equilibrium states, meaning that the
measure varies continuously in the weak* topology with the dynamics and the
potential. In the remaining sections, we prove that the maximal entropy measure
satisfies good statistical properties, namely exponential decay of correlations and
the Central Limit Theorem in the space of Holder continuous observables.



2. CONTEXT AND STATEMENTS

Let N be a connected compact Riemannian manifold, and let ¢ : N — N be
a local homeomorphism with Lipschitz inverse branches. For that, we mean there
exists L(x) > 0 such that, for all x € N has a neighborhood U, > x such that
9z = 9glu, : Uz — g(U,) is invertible and

d(g; " (), 92 " (2)) < L(z) d(y, 2), Vy,z € g(Uy). (2.1)

Let us denote by deg(g) the degree of g, which coincides with the number of preim-
ages of any z € N by g. We also assume that there exist 0 < A, < 1 and an open
region 2 C N such that

(H1) L(x) < Lforz € Qe L(x) < Ay for z ¢ Q, for some L close to 1.
(H2) There exists a covering U of N by injective domain of g, such that Q can
be covered by ¢ < deg(g) elements of U.

Let M be a compact invariant manifold, and f : M — M a diffeomorphism onto
its image. Suppose there exists a continuous and sujective I : M — N such that

ITof=goll (2.2)
Given y € N, set M, = II"!(y). Therefore, M = U M,. Note that f(M,) C
yeN
Mg, and also suppose that there exists 0 < As; < 1 such that
d(f(2), f(w)) < Asd(z, w) (2.3)

for all z,w € M,.
As the maximizing entropy measure is f-invariant, by Poincaré’s Recurrence
Theorem such measure is supported in the attractor

A= Oof”(M).

Note that A is compact and invariant by f. So, it is sufficient to study the dynamics
of f restricted to A.

Given z,y € M, write & := I(x), § := I(y). We assume that there exist
holonomies 73 4 : Mz N A — Mg N A satisfying
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C
for some constant C' > 0, and djp;, dy to be the metrics of M,N, respectively. For

simplicity we shall write d for any of such metrics.
We suppose such holonomies are invariant by f, that is,

f(m2,5(2) = 7ga),900) (f(2)) (2.5)

(AN (2,9) + da(m2.5(2), )] < dup(w,y) < Cldn(2,9) + dur (7 5(0),y)]  (2.4)

for all z € Mz NA.

3. EXAMPLES

(1) The most simple family of examples is a skew-product obtained from a map
g: N — N asin [CV13] (this means that g can be taken in a robust class
3



of nonuniformly expanding maps that, in particular, includes all expanding
maps) and an endomorphism ® : N x K — K, by the formula

f: NxK — NxK
(,y) = (9(@), (z,9))
such that f is a diffeomorphism onto its image, and for each € N, ®(z,-) :
K — K is a As-contraction. In such case, II is the canonical projection in
the first condinate, and N x K = U K,, where K, = {z} x K forall

rzeN
z € N.

As a subexample, we may take the solenoid generated in the solid torus
S! x D. We define f by

f: S'xD —S'xD
(0,2) = (9(0),0(0) + A(2))

where g is the Manneville-Pomeau map given by

0) = O(1 + 270*) L if0<h<
TI=ZV - +221-0))+1 ,ifL <6<

where a € (0,1), ¢ is a local diffeomorphism and A is a contraction.

One can modify the examples above in order to obtain robust (containing
an open set) classes of examples. These are examples derived from solenoid-
like systems. For sake of simplicity, we will give a construction in dimension
four, which can be easily adapted to similar higher dimensional examples.

Let us begin with a solenoid-like C?—skew-product hyperbolic diffeo-
morphism fy : T? x D — T? x D similar to the examples 1 and 2 above.
We suppose that

fo: T?xD —T?xD
(Z’,y) = (90(‘7’.)7(1)0(3;73/))
is such that gg is an expanding map.

We suppose that the norm of D fy along the stable subbundle and the
norm of D fy ! along the unstable bundle are bounded by a constant Ay <
1/3. Let p be a fixed point of fy and let 6 > 0 be a small constant. Denote
Vo = B(p,6/2). Then, in the same manner as in [Cas02], we deform f;*
inside V|, by a isotopy obtaining a continuous family of maps f;,0 < ¢t < 2
in such a way that

i) The continuation py, of the fixed point p goes through some generic
bifurcation such as a flip bifurcation or a Hopf bifurcation. Points of
different indexes appear in a transitive attractor for values of ¢ between
1 and 2 (staying all the time inside V;). For ¢ = 1 we have the first
moment of the Hopf (or flip) bifurcation, with f; conjugated to fo.
We suppose that the derivative D f;|ge. does not contract vectors. In
the case of Hopf bifurcation, we suppose that D fi|ges(py,) exhibits
complex eigenvalues, for all t;

ii) In the process, there always exist a strong- stable cone field C** (cf.
[Vi97] for definitions) and a center-unstable cone field C%, defined
everywhere, such that C°* contains the unstable direction of the initial
map fo; We also suppose that there exists a continuation of the torus
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T? x {0} which is fo-invariant and normally hyperbolic. So, for each
t € [1,2] there exists a f;-invariant manifold T} that is the normally
hyperbolic continuation of 7% x {0}.

iii) Moreover, the width of the cone fields C** and C* are bounded by a
small constant a > 0.

iv) There exist a constant ¢ > 1 and a neighbourhood Vi C Vu N W*3(p),
such that J¢ = ||detDf; | geu| > o outside Vi;

v) The maps f; * is §—C° close to f; ' outside Vj so that [|[(Df] | geu)|| <
Ao < 1/3 outside Vj.

Note that the properties stated in conditions i) through v), which are
valid for f;,0 < t < 2, are also valid for a whole C'*-neighbourhood U/ of the
set of diffeomorphisms { f;,0 < ¢ < 2}. In particular, by [HPS77] conditions
i) through iii) imply that any f € U has an invariant central foliation, since
the central cone field enables us to define a graph transform associated to it,
with domain in the space of foliations tangent to C'°*, which is not empty,
since the unstable foliation of fy is tangent to it. On the other hand, all
f € U also exhibits a strong stable foliation varying continuously with the
diffeomorphism.

As a consequence of lemma 6.1 of [BV00] there is a C*-neighbourhood
Uy C U of the set {fi,1 < t < 2} such that for all f € Uy, A = T"
is a partially hyperbolic attractor, which is not hyperbolic, because it is
transitive and contains points with different indexes.

One can embed T2 x D as a subset of T%. So, it is easy to extend f,
above to T in a manner that each f; is hyperbolic (and structurally stable)
outside T2 x D. So, we will assume each f; defined in 7% in such way.

Now take f in some small ball B = B(f1,¢'),6’ < §/2. Suppose also
that ¢’ is sufficiently small such that all diffeomorphism in B(f1,d8’) C U
is partially hyperbolic. So, if ¢’ > 0 is small, B(f1,d’) is an open set of
diffeomorphisms of T* satisfying the conditions in section 2.

Corollary 3.1. There exists an open set of non-hyperbolic diffeomorphisms
f:T* — T* satisfying conditions expressed by equations 2.2 through 2.5.

Proof. Just take the open set of diffeomorphisms Us = Uy N B(f1,¢'), ¢’
as in the proposition above. Conditions in equations 2.2-2.5 fit for every
diffeomorphism in a ball B(f;,d"). O

4. DEFINITIONS AND MAIN RESULTS

We recall the definition of topological entropy due to Bowen, using (n, €)-separable
sets. A compacto set K contained in a metric space (X, d) is (n, €)-separable if

Vx,y6K7x7éy,max{d(fj(x),d(fj(y));j:07~-~ ,n—l} > €

We denote by S(n, e, K) the greatest cardinality of a (n,€)-separate subset of K.
The relative entropy of f with respect to a (not necessarily invariant) compact
K C X, is given by

1
h(f, K) := lim limsup — log S(n, €, K).
€e—0 posco N
5



For a uniformly continuous map f : X — X, (X not necessarily compact), the
topological entropy is defined by

h(f) :=sup{h(f, K); K compact }

In our context X = A is a compact set, and f is automaticaly uniformly continuous..
We also have by [W93] that h(f) = h(f, X) does not depend on the metrics.

For an invariant measure p, we also recall the definition by Shannon [Sh48] of
its metric entropy h,. Given a probability space (X, 5, i) such that p € M}(X),
we define the entropy of a finite of a finite partition P of X by:

hu(P) == = > pu(P)log u(P).
PeP
Then the entropy of a partition with respect to f is

.1 - e
h(f,P) 1= lim —hy(PV f7HP) V-V f77H(P)).
and the metric entropy of f with respect to p is given by

hu(f) = sup {hyu(f,P)}
P

The wariational principle stablishes, that for a continuous map f on a compact
metric space X, the equation

h(f) =sup {hu(f);p € MH(X)}

holds. We say that an invariant probability u is a mazimal entropy measure for f
if h(f) = h,(f). We now state the main results in this work:

Theorem A. Ezxistence and Uniqueness of Maximal Entropy measure)
Let f : A — A a diffeomorphism as in section 2 (that is, the conditions given by
equations 2.2 through 2.5). Then, there exists a unique mazimal entropy measure

u for f.
As a by-product of the proof we also obtain

Corollary 4.1. (Statistical Stability in the Derived from Solenoid-like
case.) Let f, be a sequence of derived from solenoid-like diffeomorphisms such
as in example 3 and call @, the maximal entropy probability measure for f,. If
fn — f in the C-topology, then i, converges to the mazximal entropy probability
measure for f in the weak-* topology.

We say that a measure v has exponential decay of correlations for Holder contin-
uous observables, if there exists some 0 < 7 < 1 such that for a-Holder continuous
©, 1 there exists K(p, 1) > 0 satisfying

‘/((pofn)i/)dI//gOdV/Q/}dV

Using the theory of projective metrics over invariant cones, we prove:

< K(p,¢)-1", foralln>1.

Theorem B. (Exponential Decay of Correlations) The maximal measure
entropy p for f : A — A has exponential decay of correlations for Holder continuous
observables.

For the maximal entropy measure p the following theorem also holds:
6



Theorem C. (Central Limit Theorem)
Let v be the maximal entropy measure for f: A — A, as in (2.2) and let ¢ be a
Hélder continuous function. If

ai;/¢2du+2;/¢~(¢0ﬂ)du7 with ¢>:s0*/<pdu,

then o, < 00 e o, = 0 if, and only if, ¢ = uo f —u for some u € L'(u). Moreover,
if 0, > 0 then, for all interval A C R

n—1 2
. 1 ) 1 2
lm plzeM: — ((prx —/ du)eA = /e 2% (dt
holds.

5. CONSTRUCTION OF THE MAXIMAL ENTROPY MEASURE

Due to the contraction in the stable foliation, the dynamics of distinct orbits of
f+ M — M will be determined by the dynamical behavior of the map g : N — N.
As seen in [CV13], such map ¢ has only a unique maximal entropy measure, which
we will denote by v.

We start the construction of the maximal entropy measure for f by definining it
on measurable sets of the form I17!(A), where A is a Borelian set of N.

Since II is a semiconjugation, by [W93] one obtain that,

h(f) = h(g).

Moreover, due to Bowen [BowT71] it follows that

h(f) < h(g) +sup{h(f, 1" (y));y € N}

We now prove that h(f,II"!(y)) = 0 for all y € N. Indeed, since f : M, — My, is
a As-contraction, given € > 0, the only (n, €)-separate subsets restricted to M, are
unitary subsets. AsII71(y) can be writen as a union of m(e) € N balls of e-diameter,
we conclude that the cardinality of any (n, €)-separate subset of II~*(y) is at most
m(e). By the definition entropy due to Bowen, this implies i(f,IT71(y)) = 0 for all
y € N. Therefore, h(f) < h(g), and so h(f) = h(g).

This allows us to construct the maximal entropy measure for f from the one
for g. In fact, denote by v the unique maximal entropy measure built in [CV13].
Due to the variational principle and the fact of h(f) = h(g), it follows that h,(g)
, is greater than, or equal to the metric entropy of any f—invariant probability.
So, for the proof of existence part of the statement, it is sufficient to obtain an
f-invariant probablity p, whose metric entropy with respect to f is greater or equal
than h,(g) = h(g).

For that purpose, let Iy = II|s. Let Ay be the Borel o-algebra on N. Clearly,
Ay = Hxl(.AN) is a o-algebra on A. Since f is a bijection in A and IIpo f = golly,
we have

A=T,(B) = foll,' 0 g~ }(B).
As g71(B) belongs to Ay, it follows that Ag C f(Ag) and therefore A, := f™(Ap)
is a sequence of o-algebras such that Ag C A; C --- C A, C ---. Define u, : A, —
[0,1] by un(f™(Ao)) = v(IIa(Ap)), for all Ag € Ag. Note that u, is an f-invariant
probability for all n € N. In fact, given A = f"(Ag), where Ay = Hxl(B) and
7



B € Ay, due to the g-invariance of v and the surjection of maps g and II,, we
have:

#n(ffl(f"(Ao))) (" (f ( )))
v(TIA(f~ ( )))ZV( A(f7H oI H(B)))

= v(IA(TTy" 0 g~ (B))) = v(g~ ( ))

v(B) = v(IIx(Ao))

= un(f"(A0)) = pn(A)

pn(f1(A))

o0

Now, as A, C Apy1, A:= U A, is an algebra in A.

n=0

Then we define i : A — [0, 1] the probability such that pu(A) = pu,(A) if A € A,.
By the standard measure theory arguments(see [Mane]), u is o-aditive.

Moreover, p is an f-invariant probability, as u, are f-invariant probabilities. It
rests to prove that the smallest c—algebra that contains A is the Borel o—algebra.

For that, it is sufficient to see that A contains a sequence of partitions whose
diameter goes to zero.

This is because f : M, — Mg, is a As-contraction.

In fact, for each n € N, by the continuity of g™, there exists d(n) > 0 such
that d(z,w) < &(n) implies d(¢g"(2), g"(w)) < A?, for all z,w € N. Taking P a
partition of N whose diameter is less than §(n), we define a sequence of partitions
of A by

P = f" (I (P)) (5.1)
Clearly, diam(P,,) — 0 as n — +o0. Indeed, given Z, ¥y in the same element of P,
writing Z = f"(z) and § = f"(y) we have & = l(z),§ = II(y) € PY. Therefore,
noting that g"(2) = ¢"(Il(x)) = I(f"(x)) = & e g"(9) = ¢"(I(y)) = L(f"(y)) = ¥
we obtain

d(f"(x), f"(y)) < Cld(Z,9) + d(mzg0 f*(x), f*(y))]
= Cld(g" oTl(x),g" o (y)) + d(f"(mz,5(x)), " ()]
< O+ Apd(ms 5(z), y)]

< C[1+diam(M)] 2.

By a slight abuse of notation, we also write p for its natural extension to the Borel
o-algebra of M.

Now we prove that p is a maximizing entropy measure for f, by proving that
hu(f) > hu(g). Denote by B!(g,y0) a (n,€)-dynamical ball of g around yo € N,
that is, the set of points y € N, such that d(¢?(y), ¢’ (vo)) < &,¥j € {0, ,n —1}.
Due Brin-Katok Theorem, v-a.e. point y € N,

- 1
u(g) = limlimsup = log e — s
holds.

Take now BP(f,x) the (n,e) dynamical ball of f restricted to A at x € A.
By the uniform continuity of II, given € > 0 there exists 0 < § < e such that
I(Bs(w)) C B.(TI(w)) for all w € M. Note that BY(f,z) C II,' (B"(g,y)) for all
z €T (y).
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In fact, given z € B (f,z) we shall prove that II(z) € B (g,y). AsII(z) =y we
have for all j € {0,--- ,n — 1}

d(g’ o11(2),9’(y)) = dl(g’ oIl(2), 9’ oIl(x)) = d(Ilo f7(2), 1l 0 f/(z)) < e.
Therefore

p (B3 (f,2) < p (T (B (9,9)) = v (B! (9,9))
and since § — 0 as € — 0 we obtain

1
hy(g) < lim limsup — log ——————
(9) 5oy o iP o 108 p (B3 (f,x))

for p—a.e. x € A. So,

1
huo(f) = /Alimlimsupﬁlog

—0 nooo

/A hu(g)dp

= hu(9)

and we conclude that h,(f) > h,(g9) = h(g) = h(f), which is the equivalent to say
that p is maximal entropy measure for f.

1
By (o)™

v

6. UNIQUENESS OF MAXIMAL ENTROPY MEASURE

Now we prove the uniqueness of maximal entropy measure for f built in the last
section. For such purpose, we use the uniqueness of the maximal entropy measure
for g, provided by [CV13]. Suppose that p; is another invariant maximal entropy
measure for f, different to u. Let vq := (II,), 1, the push-forward of p;.

We claim that since p; is different to p, it follows that v is different to v. Indeed,
since p1 # p, p1(A) # p(A) for some A € A= AgU f(Ag)U---U f™(Ag)U---. The
fact that such algebras on P(A) are nested implies that exist Ag € Ag and n € N
such that f"(Ap) = A. By the definition of Ag, there exists By € Ay such that
Hxl(BO) = Ap. We now observe that, on one hand,

vi(Bo) = (I1a), 1 (Bo) = pu (I3 (Bo)) = m1(Ao) = pur (f"(A0)) = pua (A)
and on the other hand,
v(Bo) = v(lA(Ao)) = p(Ao) = p(f"(Ao)) = n(A).
So, 1 # v. By the f-invariance of u; it follow that vq is g-invariant.

Let us prove that v4 is a maximal entropy measure for g, which is a contradiction,
since by [CV13], such probability is unique. For that, it is sufficient to prove that

hu, () 2 hy (f), since hy, (f) = h(f) = h(g).
In fact, we may suppose that the sequence P, = f" (HX1 (732)), in 5.1, is such

that Pp <P <--- <P, <--- and as U P, generates the Borel o-algebra of A,
n=0
hP«l (f) = sup {hHI (fa Pn)} .
Therefore, for all € > 0 there exists n € N such that

h#l (fa Pn) Z hyl (f) — €.
9
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However, if follows from the definition of v that for all n € N

hul(gvpo) Hl(vaA (PS))

Indeed, for a partition P we have
. 1 _ (m—

Due to the definition of v; and the semiconjugation between f and g we obtain

m—1 m—1
151 \/ g_j(Pij) = M HXI \/ g_j(‘Pij)
j=0 7=0

= m| V(P

3=0
m—1 m—1
which guarantees h,, \/ g7 (P)| =hy £ (I3 (P)) | and so, we have
§=0 §=0

huy (9, P) = by, (F 1T (P)).

From the f-invariance of p; it follows that

h/ﬂ (fa HX1 (PS)) = h/ﬂ (fa Pn)
because P,; € P, if and only if there exist P,gj € Py such that P, = f"(HXl(ng ).

ereOmul(\/;"olf i(P) = m (Vi s (o (34r2)))
- (v <HA 7))
( (v g (m )

= (Vi (R ee)) -

‘We then obtain that for all € > 0 there exists n € N such that

= lJJl

th (g) Z hl/l (g7PT(L))
= hHl (f’Hxlpr?)
= h‘Ml (fapn)
2 hu(f) —e€

and this proves that h,, (g) > h,, (f)
measure.

and the uniqueness of the maximal entropy
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7. STATISTICAL STABILITY

Now we prove the statistical stability for the maximizing probability measure p.
That is, given f,, — f in the C'—topology, then u, — i in weak-* topology, where
tn (respectively, p) is the maximizing entropy measure for f,, (respectively, f).

Let us fix such f, and consider the collection C whose elements are open subsets
A C M whose frontier are p-zero sets with the form A = UpcpM,, for some ball
B C N with v-zero frontier. Also denote by C O C the collection whose elements
are nonnegative interate of some element of C. Observe that, if we fix £ € N,
¥(UzenM,) is a neighborhood for the attractors A, where ju, are supported, for
all sufficiently big n. Note that Cisa neighborhood basis for A.

The key ingredient for the proof is the lemma:

Lemma 7.1. Let A € C. Then pn(A) — p(A) as n — +oc.

Proof. Given A = fF(A), with A = UyepM,. We start with the case k = 0, that
is, first we prove that p,(A) — p(A4) as n — +oo.

Set A, := II;1(B). Therefore, u,(A,) = v,(B), where v, is the maximizing
measure g, as in [CV13]. We also have u(A) = v(B), where v is the entropy
maximizing probability associated to g, as in [CV13].

Given € > 0, take BT D B D B™, v—zero frontier such that

v(BT) —¢/3 <v(B) <v(B7)+¢/3,
Let us also assume that AY := II-}(B¥), with p—zero frontier such that there
exists ny that forall n > ny Af D AD A, and
p(AY) —€/3 < u(A) < u(Ay) +€/3,
hold.
Such sets exist by the C°—convergence of (strong stable/center-unstable) folia-

tions for f, to the respective foliations for f.
On the one hand, dny > ng such that
2e

#(A) = pn(A) < p(A) = pn(A) < p(A) = pn(Ay) = v(B) —va(B7) < 7,

for all n > nq, as v,(B~) — v(B~) by the statistical stability for g proved in
[CV13].
In the same manner, we prove the other inequality, implying there exists ng > n
such that
[1(A) = pn(A)] < €,Yn = no.
The same arguments also are valid for the case k > 0.

This finishes the lemma.
O

Theorem 7.2. Given ¢ : M — R a continuous function, then/ wdp, —

M
/ wdp.
M

Proof. Let € > 0 given, and the § > 0 we obtain by the uniform continuity of
¢ associated to €/9. Take a covering U?=10j7 C; € C de A, with diameter less
then /3. There is also ng such that U?Zle D A,, Vn > ng. In particular,
(M \ U?Zle) =0, Vn > ng.

11



Consider a partition of unity {¢;,j =1,...,k} associated to U§:10j.
For each Cj, take x; € C; and set

Therefore, || — ¢|leo < €/3.
Now, take ni > ng such that

[ (ke = 1)(C5)]

So, we conclude that

‘/ sodun—/ wdu'<’/ sodun—/ djin
M M M M
‘/ @dun—/ @du‘+ / s@du—/ @du’
M M M M
k

< llp = @llos + Y Ielloolin(Cy) = 1(Ch)| + Il = Blloc < €Y1 = mo.

j=1

€
< — Vn >ny.
3kl oo

+

8. CONES AND PROJECTIVE METRICS

We recall here some necessary results in Projective Metrics defined in Cones
whose proofs can be found in [Li95,Ba00,Vi95].

Given a linear space E we say that C' C E\{0} is a convex cone if

t>0evelC=t-vel.
and
t1,to >0e vy, v0 €C =ty v +1y-v9 €C.

We define C' to be the set of points w € E such that there exists v € C' and a
sequence of positive numbers (,), oy, going to zero, such that w +t, - v € C forall
n € N. We will only consider the so called projective cones, such that

Tn(-0) = {o}.
We then define
a(v,w) =sup{t > 0;w—t-veC}
and
Bv,w) =inf{s > 0;s-v—w e C}.

We convention sup () = 0 and inf ) = +o00. The projective metrics associated to
C is given by
Bv, w)

alv,w)’

O(v,w) = log
Indeed,

Proposition 8.1. Given a projective cone C then 0(-,-) : C x C — [0,+00] is a
metrics in the projective space of C, that is,
e O(v,w) = 0(w,v).
e O(u,w) < 0(u,v) + 0(v,w).
o O(v,w) = 0 iff there exists t > 0 such that v =1 w.
12



The proof of the following essential result can be found in [Vi97, Proposition 2.3].

Theorem 8.2. Let Ei and Es be linear spaces and let Cy C E1 and Cy C Ey be
projective cones. If L : By — FEs is a linear operador such that L(Cy) C Cy and

D = sup {02(L(v), L(w));v,w € C1} < o0

then
02(L(v), L(w)) < (1 — e P) 01 (v, w),
for all v,w € C1.

9. RUELLE-PERRON-FROBENIUS OPERATOR AND INVARIANT CONES

We recall that the main goal of this work is to deduce good statistical properties
of the maximal entropy probability measure associated to the dynamics f. The
technique presented use the Ruelle-Perron-Frobenius operator(for simplicity called
transfer operator) and its duality with the Koopman operator, U(p) = ¢ o f, to
obtain the exponential decay of correlations and consequently the central limit
theorem.

However, this technique may also be useful to prove exponential decay of cor-
relations and consequently the central limit theorem for more general equilibrium
states, not just particularly for measures of maximum entropy. We recall that given
amap f: A — A, and a fixed potential ¢ : A — R, we say that a measure 7 is an
equilibrium state for f with respect to ¢ if

ha(f) + /¢dn = sup {hu(f) + /(bd,u; i is an f-invariant probability} .

That is, the variational principle tells us that n carries out the topological pressure
P(f,¢). The reader can easily see that in the case where the potential ¢ is a
constant, obtain an equilibrium state is equivalent to obtain a maximum entropy
measure. What we do in this section is to obtain some preliminar results, for more
general potentials than constant potentials, namely, low variation potentials. That
is, we assume that sup ¢ — inf¢ < e for some small enough . Moreover such
potential must belong to the following cone:

‘eﬂa < einfe? (9.1
where |e¢|a = inf {C > 0;]e?(z) — e®(y)| < Cd(z,y)*,Vo,y € A}. Let E is the

space of continuous functions ¢ : A — R. Define the Ruelle-Perron-Frobenius
operator L : E — FE given

L(p)(y) = p(f 7 (y))e? @)

where ¢ satisfies the above conditions.

Our inspiration is the work developed in [CV13], where the exponential decay of
correlations and other good statistical and regularity properties are proven for the
unique equilibrium state in a nonuniformly expanding context. Castro-Varandas de-
fined suitable cones for the Ruelle-Perron-Frobenius (or transfer) operatorL, prov-
ing the invariance and the finite diameter for the image of such cones by L.

More precisely, the basic cone used by [CV13] is the cone of Holder continuous,
positive functions ¢ such that [p|, < xinf ¢. The invariance of such cone by f is due
some increase in the regularity given by the contraction of some inverse branch of f.
In our context, however, we always have backward expansion in stable directions for

13



the points into each strong stable manifold II7!(y) instead of contraction. Since for
the case of entropy (potential ¢ = 0) the transfer operator £, is just the composition
of each observable ¢ with f~1, it is obvious that the Hélder constants of £(i), can
not better, if one take a cone as in [CV13].

In order to avoid this undesirable effect in stable directions, we will analyse
the action of £ in some kind of averages taken in each stable leaf restricted to the
attractor A. We will write the lowercase letter v to denote a stable leaf (instersected
with A) and F* will denote the stable foliation.

Fixed y € N, let y; such that g(y;) = y, where j € {1,--- ,deg(g)}. Writing
v =TI, ! (y) and v; =TT, } (y;), it follows that f(y;) C =, since ITo f(z) = goll(x) =
9(y;) =y, Vx € ;.

Let p be the degree of g. Let us construct a family of measures {/QL,Y}We e

supported in A, such that for all 4, where f™ (%) C v, we have p, (f" (%)) = —.

T

In particular p () = 1. Furthermore, for all ~y;, with f(vy;) C v we will obtain

1
v, = [ o i,
F(v5) D Jy

i

The construction of such family of measures is rather natural. Fix v = Hxl(y)
and n € N n > 0. By setting v; := HA (y;), where y; € g~"(y), one can write
v = U f" (v5), since f™ is a bijection in A and ITo f™ = g™ o II. Therefore,

{f"('yj)}le is a sequence of partitions in 7. As y; = II;"(y;) and f™ : M,, —

Mn(y.y is & A-contraction it follows that the diameter of { f™ ('y-)}Pi goes to zero.
9" (y;) s J)Si=1
So, we just define 1, in the elements of such partition by mass distribution

1 (F () = —

and extend ., by approximation to any Borelian A C A.
If v; = T, ! (24), ©; € g~'(x), then

gy (A) = iy (Ary) = iy | A £ ) | =m0 | | (AN F () Zﬂ'y (ANf(75))

Jj=1 j=1 j=1

Seting p1, (A) == p- iy (f(AN~;)) we obtain py (AN f(v;)) = %uw (f~1(A)) and so

b
Z%

We conclude that for any measurable set A, its indicator function y 4 satisfies

1
/ xadpy = */ XA © fdpy,
f(vi) P Jy;

J

’U\»—*

By Lebesgue Dominated Convergence Theorem, for any g : A — R continuous we

have
1
/ gdpy = */ go fdpy,. (9.2)
FOv) P Jy;

J
14



FIGURE 1. Mass distribution

1
Note also that for all 4, f™ (%) C v, we have pu, (f" (¥)) = —. So it follows that

pn
for all 4 such that f" (7) C ~; and f(y;) C v

pr, (f* () = oy (fF (" () Nyy))
= piy (f”“lﬁ))
p

pn+1 - pn

holds.
That is, j1,; is the mass distribution measure constructed for ;.
Moreover, for y € N and y; such that g(y;) =y, j € {1,--- ,p} if we consider

_ _ P
v =T (y) and v; = T, ' (y;), f(7;) C 7, then v = U;j—1f(7;). Therefore, for all
measurable bounded function ¢ : v — R it follows that

/ by, = Z [ v
(v;

For p: v — R, we conclude that

/E )pdpi, = Z/ ©)pdpiy = Z /@e -po fdp,



1
defining p; := —po fe?, we have
p

P
/ L(p)pdpy = / Ppjdis, -

il j=1"7%
We will study the action of the transfer operator in the strong stable leaves via its
action on the integrals of densities in a suitable cones of functions which are defined
in each strong stable leaf. More precisely, for each v € F° we define the auxiliary

cone of Holder continuous functions
D(v,k):=={p:v— p>0and |plo < kinf p},
with [pla = inf {C' > 0;|p(z) — p(y)| < Cd(z,y)",Vz,y € 7}
Note that for p in a cone D(v, k) we have supp < inf p (1 + & - diamM®).

The next lemma is about the invariance of the auxiliary cones under the action
of the transfer operator.

Lemma 9.1. There exist sufficiently small 0 < A < 1 and k > 0, such that the
following itens hold:

(1) If p € D(v, k) then p; € D(v;,Ak) for all j € {1,...,p}.

1+ A
(2) Forally e Fi., if p,p € D(v, Ax) then 0(p, p) < 2log <1+)\)

, 1-2)\?
(3) If pr, p» € D(v, k) then there exists Ay = 1— (1—1—)\> such that 0;(pj, py) <
Ale(p’ap”) fOT’ all JE {13 s ap};
where 0; e 0 are the projective metrics associated to D(v;, k) and D(v, k), respec-
tively.

Proof. (1) In our context we suppose sup ¢ — inf ¢ <e and ‘eﬂa < einfe?. There-
fore

1
Lpesie
pjla _ p o
i ; 1
CITI [y
p
lpof-efla

inf {po f-e?}

[po fla-eP? +sup{po f}-|e?]a

< -

- inf p - einf®

< Xekinf p - eSP? (14 k- diamM®)inf p - |e?],
- inf p - einf® inf p - einf

< A%kef + (14 k- diamM®)e

= (A\%° +diamM%e)k + ¢
In order to guarantee a 0 < A< 1 such that

(ASef +diamM%e)k +e€ < A&
16



it is sufficient to obtain
(A% + diamM%e)k + ¢
K

< A< 1.

For that we just need
(A%ef + diamM%e)k + €
K

<1

or, equivalently,
€

(A\ees + diamMee)
Note that A and k can be chosen sufficiently small for since we have chosen in our
hipothesis € > 0 and 0 < A; < 1 suitably small.

(2) By a triangular argument, it is sufficient to bound (1, p) for p € D(v, Ak).
There is no loss of generality in assuming that inf p = 1. So, for t =1 — X we have

K> T (9.3)

oty oy _ o w
: = = =K.
inf(p—t) infp—t " 1—t A

Since inf p = 1 it follows that p — ¢ > infp — (1 — A) = A > 0 which guarantees
a(1,p) > 1— X On the other hand, by setting s = 1 + A we obtain
ls—ploa _ lpla Ak AR

inf(s—p)_s—infp<s—1:7:m

As supp < infp (14 kdiamM®*) = 1 4 kdiamM® escolhendo k tal que A >
kdiamM®, segue que s—p =1+X—p > 1+A—supp > 1+ A— (1 + rdiamM*) > 0
1+ A
1-A
Finally, in order to prove (3) it is sufficient to note that by item (1) we have
p;j € D(v;,Ak) for all j € {1,...,p} and by item (2) the diameter D(v;, Ax) in
1+ A

portanto 3(1,p) <1+ A. Logo 8(p,p) < 2log <

D(vj, k) is, at most, 2log T—x) Therefore, the result goes on by theorem 8.2,
14+ A
considering A = 2log <1+)\> and the linear map

1
p— =po fe’
p

we have 0;(p;, pj) < A16(p’, p») where
1-2\?
AM=1l-e?=1-(—2=
! ¢ <1+)\)

For the definition of the main cone on which we will apply the transfer operator
we need to define a notion of distance between two strong stable leaves v e ¥ in F*.
Given z,y € N let v = Hxl(m) and ¥ = HXl(y). Suppose T = Ty, 1 ¥ — 1y satisfies

/wdm:[sOOde
Y vy

for all continuous function ¢ and define the distance d(v,7¥) = sup {d(7(p), p);p € 7}
17
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Now let us define our main cone. Denote by D () the set of densities p € D(vy, k)
such that /pdu,y = 1. Given b > 0, ¢ > 0 and & as in lemma 9.1, let C(b, ¢, ) be

y
the cone of functions ¢ € F satisfying for all v € F* the following:
(A): For all p € D(v,k):

/ pdpiy >0
ol

(B): For all pr, p» € Dy(7):

/tpp’duw—/wp”duw <bd(p,p) inf {/@Pdﬂv}
v ~ PE/Dl(’Y) 0%

(C): Given any 7 sufficiently close to ~:

/ pdpiy, — / pdpy| < cd(vﬁ)ainf{ / ‘Pdﬂv}
¥ ¥ v ¥

Lemma 9.2. C (b,¢,q) is a projective cone.

We then prove:

Proof. We start by the convexity of C (b, ¢, ). Given p, ¢ € C (b, ¢,a) and s,t > 0
we have

(A): /(SQD"‘ti/J)d/J,Y = s/apdﬂy 4—15/1pd,u7 > 0.
8! 8!

;
(B): By hipohesis,
/ p dpiy — / P dpiy
2l 2l
9(p,p) inf / d }
(psp )peplm{ | epdiny

/ Ypdpy — / Yo dpy

0(p, inf d,
(psp”) ot {/wp uw}
Then, it follows

inf s+t d > s inf / d } +t inf {/ d }
PED1(Y) {[,( priv)p Mv} pGDl(w){ ’Y<pp fh pED1(y ey

/ (s + ) pdpy — / (s¢ +tw)p”dm‘
i0d 2l

<b

and

< b.

Therefore,

0(p,p) inf {L(5@+t¢)Pdﬂv}

pPED1(7)
(C): Analogous to (B).
In order to prove that C (b, ¢, a)N—C (b, ¢, ) = 0, take p € C (b, ¢, a)N—C (b, ¢, ).
If p € C (b, ¢, ), there exists ¥ € C (b, ¢, &) and a sequence (t,)nen \, 0 such that
o+t € C(b,c,a) for all n € N. In particular, given v € F* and p € D(v, k), we
18




have /gopd,u,y > —t, / Ypdpy, Vt, > 0. As t, — 0 and /wpdu,y > 0, if follows
v %l %l

that /(ppdun, > 0. On the other hand, if ¢ € —C (b, ¢,a) then ¢ = —p where
v

@ € C(b,e,a) and so, /LppdunY = —/@pdu7 < 0. Therefore, /go,od,mY = 0 for
2

v v
all v € F¢ and p € D(v, k). All that rests is to prove
/cppduAY =0,VyeF and peD(v,k) = ¢ =01in A.

.

Indeed, fixed ~, given any Hoélder continuous function % : v — R we can write ¢ =
1
Yt —4p~, with ¢+, ¥~ belonging in D(v, k). For that, set ¢ = 3 (|| £ ¢) + B for

a sufficiently large B. By linearity, we have / pYdp, = 0. As all bounded function
¥

can be aproximated in L'(u,) by Holder functions, it followd that / edu, = 0,
¥

for all bounded 1 : v — R. By taking ¢ = ¢|a, A is a Borel subset of A restrited
to -, we obtain /4,02|Ad,uw =0 and so ¢|4 = 0 for py-a.e point in A. As A and v

v
are arbitrary, we conclude that ¢ = 0 in A.
O

Proposition 9.3. Let ¢ = 0. There exists 0 < o < 1 such that L(C(b,c,a)) C
C(ob,oc,a) for sufficiently large b,c > 0.

Proof. Invariance of condition (A): Let ¢ € C(b, ¢, o). We know that / L(p)pdpy =
2!

P
Z/ @pjdp,; and by lemma 9.1 p; € D(v;, k). Therefore, /E(go)pd/h > 0.
i—=1vY7 vy

Invariance of condition (B): Denoting by p; we can write

P
inf L d > inf / i
peplm{/7 (¢)p ,U'y} ;peolm{ | opidis,

p

:Z inf

= pED1 ()

Y

Z inf

pE€D1(7v5)

19
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Given p, p» € Dy(y) writing pj// pydpy,; and pj// pydp, for p; and P, Te-
v o2

/ P ;dpy; — / ©pjdy; / P,
Vi Vi Vi

J

/ Pjdpiy; = / Py dpa; | -
Vi

b (9.4)

spectively, follows that

@)p’duv—/vﬁ(w)p”duy‘ < Ep:

Jj=1

p
+ Z / ©p;dpy,
j=1

Vi

By hypothesis, ¢ is in the cone and by lemma 9.1, we have

b0; (p:,p; inf / dptn,.
[Y‘ J (p] pJ) pGDI(’Yj){ L wp Hw}

= bo; (p;7pj inf {/ gapdu%} (9.5)

pED1(7;) 5

IN

©p;dpty; — / ©p iy,
.

J

IN

bA16 (p,p») inf dpty. ¢ .
10 (p, p7) et {A ©p u%}

For all p € D;(7) we obtain the following estimative

|

: < (14 kdiamM®)? (9.6)
inf by
pEDl(’y) {/YJ p] :LL’YJ}

In fact, given § > 0 there exists p € Di(v) such that / (P)jdu,;, < (1 +
¥j

J

§) inf / pjdp; ¢. Moreover, as p and p are normalized, we necessarily have
pED1(7) i

inf p <1 and supp > 1. Therefore,

1
5 ¢
~ —pofe R . o o A
(0); _ ]19 < sup o < (1+ I-@.dmmM _)11nfp~ (1 + rdiamM®Y?.
(P); “5o fet infp = (14 kdiamMe)™ " supp
p
And so / (P)jdpy, < (14 rdiamM®)? / (p)jdp,, we obtain for all 6 > 0
Vi Vi
[ @sius, (14 8) (1+ wdiamdr)? [ (),
i < Vi
inf e / (P)idpy,
pEDs (7) {/Y] p] :u"YJ } vj

< (1+68) (1 + rdiamM®)?
20



giving the estimative we wish.
Now, for fixed j, we obtain

/ ©p;dpy; — / ©pjdpiy,
i 7.

J

/ Pdpy; bA10 (p, p) / Py,
Vi < Vi

inf dfin, inf / dp- 2 007, p inf / .. 5 0(p, p
pe/Dl(’Yj){[}wgDp MA{J}/’GDl("{){ - Pi M”} (e p7) pepl(v){ s Pj :“w} (05 p7)

J

< (1 + kdiamM®*)* A1b
(9.7)
Let us analyse the second parcel of 9.4. First, note that for all p € D;(v),

denoting (p);/ [ (p)jdp, by p;, we claim that

Vi
/ ‘P/T)j dpir, 2
. 14+ A
Vi +> +1

1
| < blog <1 —
inf / ©p;diiy,

Vi

pPED1(Y)

In fact, analogously to what was done in 9.6, it is sufficient to to note that, since ¢
is in the cone, we have

/Soprjd,“'w
S () + 1= b((P) ) + 1
/Sﬁﬁjdﬂw

.

J

By 9.1, we conclude the proof of our claim.
Now, we stablish the other necessary estimative:

J,
0 (p,p>) inf e
(psp )pevl(v){L.pJ u%}

J

iy, — / Py dpiny;
v,

J

< 2(1 + rdiamM®)? .

In order to prove this last estimative we observe that

Pi csupp  supp/imfp g pp) o o)
p; ~ infp T inf p-/sup p»

Therefore, by assuming without loss of generality that / pydpy, > / Py dpiy; we

Vi 7

obtain !
(60 (p,p) _ 1) / prdpn,

[Y Vi
0(p,p+) inf / iy, ¢ 0 (p,pr) inf / i,
(psp )pEDM{ P M%} (psp )peolm{ P Nw}

J
21

pjdpy; — / Py dpy,
7.
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. ) 1 . _—
for 0 (p, p) <1 it follows —————— < 2 and so we obtain our estimative.

0(p,p»)
/,

If 0 (p, p) > 1 we also have that
/ Pjpiy; — / Py djy,
7 g <
0 (p,p») inf / id, inf / id
(p,p7) ind (V){ e Nw} s (7){ e ﬂw}
< 2(1 4 kdiamM®)?

J J
and again for fixed j and by writing M (k, @) for (1 + rdiamM®)?,

/ ©P; A, / / ©p; Ak,
Vi 7.

J 3 S
pjduw}ﬁ(p’,p”) inf { %du%}

inf e inf /
pPED1(7) {[y, PPiH } pPED1(7) { v pPED1(7)

J

iy, — / Py dpiny;
.

J

Pydiy; = / pjdpty,
7.

J

IN

1
(blo A )\ +1|2M(k

IN

2M(/<;alog< ) b+ 2M(k, a)

.8)

©>/

The inequalities 9.7 and 9.8 does not depend on j, so

()p dpy — / L(p)pdpy
Y

inf L(@)pdpy v 0(p, p
pe%llm{ L (@)p m} (p,p7)

IN

M(k, ) A1b + 2M (R, a)log( +i> b+ 2M(k, c)

A
<A1 + 2log ( +>\> > M(k,a)b+2M(k, «)
We need that the term which multiplies b above to be less than 1. Recall that by

1-2\°
lemma (9.1), Ay =1— <1+)\) . So, we need to guarantee that

1-2)\? 1+ A\? , 2
<1—(1+>\> +210g<1_)\> )(1+f€dzamM)

Also by lemma (9.1), we can choose k, such that kdiamM®* < A, X to be fixed. So
let us find a bound 0 < A< 1 such that

<1 - (;1)2 +2log (11”;)2) (1+2)?

It is possible because (9.1), 0 < A < 1 can be taken sufficiently small depending
on the contraction rate in the strong stable directions. So, there exists 0 < 67 < 1
22



such that

1+ A)°
<A1 +210g <1:\) >M(I€7O[) <5’1.

Since M (k,«) does not depend on b, for sufficiently large b we can obtain o7 < 1
such that

Aﬁ(w)p’duw —Lﬁ(w)p”duv
inf { L C(w)pduw}ﬁ(p’»p”)

pPED1(7)

S O'1b

This prove the strict invariance of condition (B).
Invariance of condition (C'): This is the place we need ¢ = 0. This implies that

inf{/ E(pduv} > e?inf {/ apduw}.
v Ly v Uy

For g as in 2.1, every y € N has a pre-image in the region Q such that L(y) < A,.
So, for v = II"(y) and 5 = I1~1(§) sufficiently close to v such that §; is pre-image
g, close to y;, stay in Uy, we obtain that d(7;,7;) < Aud(7,7).

In fact, let o € 7; realizing the distance d(v;,7;). By a slight abuse of notation,
we write d for the product distance equivalent to the original metrics. So,

d(’)’ia;?i) = d(x77r?]i,yi ((t)) = d(gmyz) S )\ud(g(gl)ag(yz))
= Md(8,y) = M [d(G,y) + d(mgy (f(2)), 75,4 (f(2)))]
Aud(f (), 75,4 (f(2))) < Aud(7,7)

Analogously, in the other cases we have d(v;,7;) < Ld(v,7). Furthermore, we
can assume with no loss of generality, that d(y1,71) < Aud(7,7), and for other

pre-images we have d(v;,7;) < I~/d('y, 7). It follows that

¢ P
e
/ Lodpiy — / Lodpzy| < — / ey, — / pdps,
Y v p j=1 |77 Vi
e?C L o
< lnf{/ @duw} > d(v;, 7))
r v U, =
A — 1)L~
< = +r=1) Cd(~,7)” mf{ Egodp,y}
b v ~
A — 1)L
We should obtain M < 1. This is equivalent to
~ p— S\Q
L” =8
< p_1
Due to the fact that L > 1, we have
Py
p—1 =

because :\u < 1. Therefore, there exists 0 < o5 < 1 such that

/ Lodpy — / Lodpz | < o2Cd(7y,7)” inf{ / Ewduw}
¥ ] v v
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which proves (C). By setting ¢ = max{o1, 02}, we finish the proof of the proposi-
tion. [l

10. FINITE DIAMETER OF THE MAIN CONE

In this section, we prove the strict invariance of the main cone C (b, ¢, &) by the
Ruelle-Perron-Frobenius operator £. First, let us calculate the projective metrics
©. Recall that a(p,¥) =sup{t > 0;¢ —tp € C(b,c,a)}. By (A), for all v € F}.

and p € D (v) we have /(1/) — ty)pdu, > 0, that is,
v

Ypdy
t< .
opdpy

S~

By condition (B), one obtains

<bl(p,p7) inf {/7(1# _t@)Pdﬂw}

PED1(7)

/ (¥ = to)pdpy — / (¥ = t) prdpy
¥ ¥

and so, for all pr, p», and p in Dy (y) we have

/ Ypdpy — / Yp»dpy +00(p, p) / Yy
ol v ol

/ opdpy — / pp dpy +06(p7, p7) / opdpiy
vy v ol

t <

and

/ Yprdpy — / Ypdpy +00(p, p) / Ypdpy
Y 2l 2l

/ opdpy — / epdpy +00(p, p7) / ppdpiy
vy ol

Y

t <

By condition (C),

< cd(y,7)" inf {/7 (¥ —tp) d/‘w}

[w=torn, ~ [ - to)dus
¥ gl
therefore, for all v,4 € F;J . and 7 sufficiently close to v we have
/ Ydpsy — / Ydpy + cd(y,7) / Yy
t < ol 2l bl
/~ pdpsy — / edpy + cd(v,7) / pdyi,
gl 2l 2l

and

Yduz +cd(v,7) | Ydps

wdﬂv -

—
—

t< .
pdpy — | pdpy +cd(v,7) | pdus

S~

2
2
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By defining

Y dpiy

s

//wﬁduv +00(p, p)

Ev P07 Py, Y) =
P dpiy

Q\Q\

( L oprdpy —
( L by, — L wdm>

and

/| epdpy +b0(p, p7)

:\“x 2

)
)

/| Ydusy + cd(v,7)

" ( L pdpiy — L sod/w>

we can write

/ Ypdy, / bidy,
7 E(v 007, B 0,
d od
[y PP /‘Pp ey
as B(p,¥) = a(ih,p) "t we obtain
/ opdiiy / opdpiy
B(p, ) = sup ¢ = , =2 (v, 0507, Pt
Ypd Ypd
]C POy jc POy

/ mm+wvw

/ T/Jdﬂv

/
/

/lp 7’3/7’6\7@)/1&)
L/fdeV
Y
/@dlm

)y (7,39, 5, ¥, ©)
[WM
Y

Now, we prove that the ©-diameter of £ (C(b, ¢, «)) is finite.

Proposition 10.1. For all sufficiently large b > 0, ¢ > 0 and for o € (0,1] we

have

A :=sup {0 (Lp, LY) ;0,9 € C(b,c,a)} < 0.

Proof. Given ¢, € C(ob,oc, a), note that

l1-0 140

7< ) )

o Evp s pyip) < T
and

1—a<(~AAw)<1—|—o

T <A ) < T

Indeed, given p', p», p € D1(7)

/ pp dpiy — / ppdpy  obf(pr,p») inf { / sopduv}
< X < PEPL() LIy < obb(p', p7)
[ codus [ i,
Y vy
and
/ p dpy — / ppdpy  —obd(p,p7) inf { / sopduv}
v 5 > PED1(7) /5 > —obi(p, p)

/ ppdpiy
Y

holds.
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The same is valid for ¢ and as ¢ < 1 we conclude that

) (/ wp“duv—/t/fp’duo //wﬁdWrb@(pwp”)

—g < M v Y < l+o
1+o . 1—0
(/ @P”d.u'y/%”dﬂ’y) //wpduv+b9(p’7p”)

vy vy vy

That is,

l1—0 R 1+o0

— < y P P75 Py, < .

o <Stnpp b)) <
In a similar way, we prove that

l1—-0 - l1+o

— < s Iy s Py <

o <A b e) <

Denoting by ©4 the projective metrics associated to the cone defined just by con-

dition (A),
/ opdiy / VYpdps
2i 2l

O+ (p,¢) = sup
7,pED(7),%,pED(Y) /Sﬁﬁdﬂﬁ/wpd/iv
¥ v

it followd by the expression of © that

1—0

2
O(p, %) < O1(p,9) +log (1 +U) -

So, we just need to prove that the ©,-diameter of L (C(b,c,)) is finite. By a
triangular argument, it is sufficient to show that {0, (Ly,1);¢ € C(b,c,a)} is
finite. For that, we just need to find an upper bound for

| codus

2l

/ Lppdpiy
Y

for all p € C(b,c,a), p € D1(7y) and p € D1(%). First, note that

P
/Espﬁd,u,y Z/ e(p)jdus;
gl _ =17
- p
/ Lppdpy 3™ / wpjdiy,
K =17

and we reduce our problem to bound

/ e(p)jdps, / e(p)jdps, / edpis, / pdpy,
7. 7. Vi Vi

J J J J

/ Ppjdpiy, / pdpis; / edpiny, / Ppjdiiy;
ol Yj Vi Yj

J J 3J
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Pj

/pjdlj"}/j /(ﬁ)jdﬂ’y]‘
Vi Vi

lemma 9.1, we obtain

/@(ﬁ)jd“%‘ /‘pﬁjd“%‘/ (ﬁ)jdu%
i i 5

J J J

/ pdjis, / pdjis,
5 5

J J

Denoting by p; e @, respectively, applying (B) and

< (1085 (5,1)) [ (s,
Vi
1+ R
< (1+b10g (1_)\>>/ (D) ;jdps,
Vi
and
/ pdp / pdp <1—|—blog( +)‘)>
Vi Vi —
Vi _ Vs < (1+b91 (ij)) < 1=
/ opjdiy, / ©pjdpy, / pjdpiy, / pjdpiy, / pjafi,
Vi Vi Yi Vi Vi

1 1
We know that (p); = —po f-e® e p; = —po f-e®. Since p and j are normalized,
p p
1 1
it follows that (p); 5(1 + kdiam(M)*)e? and p; > 5(1 + kdiam(M)®)"e?.
Therefore
/ (ﬁ)jd:u’;}’j / e(j)d/“)’j
N < (14 kdiam(M)*)? =2

/ pjdyty, / e?dp,
i i

J J

, e¢|a < einfe? and so supe? < (1 + ediam(M)?®)infe? . We

/ 6¢d:“%‘
»’}.

—— < 14 ediam(M)*

/ e"bd,u%.
-

J

then obtain

and by consequence

A Py,

< (14 kdiam(M)*)?(1 + ediam(M)®).

/ Pj d//’“/j
¥

J

Moreover for v e 4 such that we can apply (C) we have

/ Spd'u”%'
5,

2 <1+cd(5,7)" <1+ cdiam(M)®

/ pdiy,
.

J
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implying that

/ W(ﬁ)jdﬂ%
o < <1+blog<1+>\

1—A
/ ©pjdiiy;
7.

J

))2 (1 + max{k, c, e}diam(M)*)?,

finishing the proof of the proposition. O

11. EXPONENTIAL DECAY OF CORRELATIONS

In this section, we prove the Exponential Decay of Correlation for Holder con-
tinuous.

In our context, the transfer operator is just £(¢) = ¢ o f~! acting in the space
of continuous observables.

The adjoint operador of L is

/ﬁ(pdu: /godﬁ*u.

for all continuous ¢ and all probability measure p. Instead of the nonuniformly ex-
panding case, any invariant probability is an eigenmeasure of the transfer operator’s
adjoint:

Proposition 11.1. If f is invertible, then L*(n) = w if and only if u is f-invariant.

Proof. Let ¢ be a continuous function. If £*(u) = p then

/swf’ldu:/E(s@)du:/@dﬁ*(u) = /s@du,

Now, givem an f-invariant measure p, we have
/wdﬁ*(u) = /E(so)du=/<p0f’1du=/<pdu

Other important relation obtained from the f-invariance of a measure p is that

/(soOf”)wdu=/s0£"(w)du (11.1)

O

Indeed, as £(¢) = ¢ o f~! we have
[wenuin=[eorortveran= [orwan

and by induction,
[ o ryvdu= [ orrwn

The exponential decay of correlations of the maximizing entropy measure will
be a consequence of the strict invariance of the Main Cone that we proved in the
last section, and the following

Lemma 11.2. For all ¢ € C* (M) there exists K(p) > 0 such that ¢ + K(p) €
C(b,c,a).
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Proof. First we prove that there exists K3 = K3(¢) > 0 such that ¢ + K3 satisfies
the condition (C) in the definition of cone C(b, ¢, ). The projections between stable

leaves guarantees that
/@duw =/s0o7rdm
v ¥

Given ¢ € C* (M) we have

— < < |¢l,
i0.3) i), =P
So
/ dpy — [ dpz
sup ¢ — =7 < lepl, < o0
VA d(v,7)

On the other hand, for K > 0, all we have inf {/ (p+ K) du,y} = inf {/ wduy}Jr
v Uy v Ly
K. Tt is sufficient to choose K3 = K3(¢) > 0 such that

cigf{/ (@+K3)du7} > ¢l
vy

In order to see that there exists Ko = Ka(p) such that ¢+ K satisfies the condition

(B), just note that
/ op dpiy — / op”dpy
y v

sup < 00
p,p €D1(7) 0(p,p)
Indeed, as p’, p» € D1(7y) we have L < e??PP") and so, for all bounded ¢
p77
P 14
/s@p’duy - / oprdpy| = / ( - - 1) op dpy| < / — - 1’ lel prdpy
v Y ¥y P v P
p oo
< sup — 1| sup psup p» = |sup — — 1| sup @ sup p-
LRl pH
S |69(p‘,p”) — 1| sup  sup p»

Let B such that sup (¢ + B) = 1. It follows that

/ opduy — / sop”d/m‘
2l 2i

/(¢+B)p’du7—/(s0+B)p”d/»w‘
i8d i8d
0(p,p) 0 (p,p)

(69(%9”) — 1) sup p

<
- 0(p.p)
29




) 1

0 (p, p~)

/ opdpy — / op”dpiy
v ol

0 (psp7)
Now, if 8 (p’, p) > 1 we obtain

/ ppdpy — / pdpiy
24 2l

If 0 (p, p) < 1 then < 2 and as p» € D1(y) we have

< 2(1 + kdiam(M)*)

< o+ B)pdu —/ ¢+ B p”du‘
T L( o~ [ (o4 By
< [le+B) o - p)ldu,
Y
< sup (¢ + B) (sup p + sup p»)
< 2(1 4 kdiam(M)®>)

and this implies

/ op dpy — / op”dpny
sup 2 4

< oQ.
pr,p €D1(7) 0(p,p)

The choice of Ko = Ks(¢p) is similar of what we have done for (C). On condition (A)
, since ¢ is continuous with compact domain, there exists K1 = Ki(p) such that

o+ K >Oandso/(<p—|—K1)pd,u7>0, Vv € F}

loc
v

the proof by taking K (y) = max{Ki, Ko, K3}.

and p € D(v). We complete

O

Now, denote by -, X v the measure given by

MXM@:/AMMWM~

By unicity of the maximal entropy probability measure, we notice that 1 = p, x v,
where v is the maximal entropy probability measure for g. Indeed, let us first
show that p, X v is an f-invariant probability. In fact, for all x € M, given
vy = Oy (z) and v; = I (z;), with f(v;) C v and g(z;) = = we have ., (A) =

1
= E Py (f_l (A)). By Castro-Varandas[CV13], v is an eigenmeasure of the adjoint
D~

j=1

L , given by
Loslp))i= Y Doy,
g(zj)==
for constant potential ¢. More precisely, if r is the spectral radius of £ ,, which

is equal to the degree of g, then L;(ﬁ(y) = rv. By normalizing £} , by 7 = p, we
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obtain for any continuous ¢

[etwar=1 [ o@acs =1 [ coutormm= [ 13 o

j=1
Therefore, for A € Ay we deduce

(i <) A) = o xvla) = [ [ xgcadindy

= [ [ 15
//,LW dl/—//XAdp,vdI/

=y xV(4)
As we have shown in previous sections, this implies the same equality for any
borelian A.
Furthermore 1, x v(A) = u(A) . Indeed, let A =TI, ' (Ay), with Ay € Ax.
On the one hand, we have that

P (Ay)) = v (s (I (AN))) = v (AN) =/ Xaydv
N
and on the other hand,

py x v (I (AN)) = //XHr(AN)dedV
v

As XHXI(AN)(I) = xay(IIa(x)) and for all 4 there exists g € N such that
v =T, (0). So

[ @i = [ xanWata)din, = [ vy o)dit, = xay (ao)

and then, p, x v(A) = p(A) for all A € Ay. Now, given A € A = U A, as

n=0
= f"(Ap), we have that there exist n € N and Ag € Ap such that A = f"(A4y).
Therefore

py X V(A) = py X v(f"(Ao)) = py x v(Ao).
Since p is f-invariant, p(A) = p(f™(Ao)) = u(Ao), we conclude that p = p1y x v.

Teorema B. The measure p has exponential decay of de correlations for Holder
continuous observables.

Proof. We should prove that for a-Hé6lder observables o, v |, there exist 0 < 7 < 1
and K (p,1) > 0 such that

/(Wf"wdu - /@du/wdu‘ < K(p,¥)-7",Vn > 1.
By (11.1) this is equivalent to prove
‘/g@ﬁ" )dp — /wdu/wdu’ < K(p,¥)-7", paratodon > 1.

We start with the case ¢, € D (7), Vy €
[ pdu # 0 and [dp = 1.

and ¢ € C(b,c,ar). We also assume

loc
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Recall that £(1) =10 f = 1. Since ¢, € D(v) for all vy € F;, . by (A) we have

L @L" (¢)dpy

/ edjpy
~

Since ¢ is normalized we have /E”(w)dp = /1pd,u =1. Asp=py xv

/ ( / fn(w)dm)dv [ £rwidu=1

/ d,u@ < 1. We conclude that

< 6+ (En("/})’ 1)

and so there exists 4 such that

V)dps

() 5
ag (L7( "()dps <1
L

lsoc

/ LMWy (£ (), 1)

1 < =
/(pd;uY oy (ﬁn@/’)» 1

By proposition 9.3 and by proposition 10.1, since the cone C (¢b,oc, ) has ©-
diameter less or equal than A, it follows from proposition 8.2 that 30 < 7 < 1 such
that Vi, € C (b,c, o) we have ©(L"(¢), L (1)) < Ar"~L. In consequence,

/ DB (1 / / oL (Y duvdu )
< O (L7 (¥).1) < AT
/ pdp / / edpydv

AT’n, 1
e
Note now that lim ———— = —. So, there exists A > 0 such that eA™" o <

n—oo Tn T

A7, for all n € N. This implies that

"()dp
[
If [4du # 1 then

</7dﬂ
ofr W) du— [ odu [wau| = | [vau|| [ o (2 au— [ odp
/ f e [oanl| [ e (5o
e
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and for all v €

< O+ (£7W)1) < O(Lm().1)

(eATnfl - 1) < ‘/g&du‘ Arm

IN

for all n > 1.



By lemma 11.2 given an a-Hélder continuous function v, there exists K (i) > 0,
such that ¢ + K(¢) € C(b, ¢, ). Therefore ¢ = ¢ + K(¢) — K (¢) and noting that

JoLM(KW)du = [ wdp [ K(¢)du we obtain

’/sofln (w)du/sodu/@bdu‘ - ‘/«:E" (¢+K(¢))du/wdu/(ibJrK(w))du‘

( / wdu’ +K<w)) ‘ / sodu‘ Arn

Now, given an a-Hélder ¢, note that there exists K () € R such that o, 4+ K (@) +
B e D(y) for all v € Ff . and /goJrK(cp) + Bdu > 0, for all B > 0 . Indeed,

IN

o1y + K(¢)],, < winf {g), + K(p)}
if, and only if,

P .
K(p) > ",J ~ inf {ipp,}

1],

‘SDMO‘ } —inf . Observe that K(p) < —% —inf ¢ < oco. As
K

K

YEF]

loc

Set K(p) = sup {

oy + K(p) > M >0 for all vy € F} , it follows that o, + K () + B € D (7)
K

and /(g@ + K(p))du+ B >0, VB > 0. Analogously to the last case

/@En (w)du—/sodu/wdu’ < (‘/wdu’ +K(w)) (’/wdu’ +K(¢)+B> Arn

and since B is any positive number

[t wdu- /sodu/wdu‘ < ('/wdu‘ +K<w>) <’/<Pdu’ +K(90)> Arn
/god,u‘ —inf ¢ > 0, we have /apdu’ + K(¢) > 0. By taking

K(p, ) = ( / ¢du‘ +K<w>) (' / @du’ +K(s0)> A,

we conclude the proof of the Theorem.

Since

12. CENTRAL LIMIT THEOREM

Let G be the Borel o-algebra of M and let G, := f~"(G) be a nonincreasing
family of o-algebras. A function £ : M — R is G,-measurable if, and only if,
€ = &, o f for some G- measurable &,. Let L2(G,) = {¢& € L% (u);€ is Gu-
measurable }. Note that £%(G,41) C £%(G,) for each n > 0. Given ¢ € L%(p), we
will denote by E(p|G,) the L% -orthogonal projection of ¢ on L?(G,,).

We will apply the following adaption of a result due to Gordin, whose proof can
be found in [Vi97]:
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Theorem 12.1. [Gordin.] Let (M, F, u) be a probability space, and let ¢ € L?(1u)
be such that fd)dp = 0. Assume that f : M — M is an invertible bimeasurable
map and that p is an f-ergodic invariant probability. Let Fo C F such that F,, :=
f™(Fo), n € Z, is a nonincreasing family of o-algebras. Define

0} = /¢2du+22¢~ (po f7)dp.
j=1

If
S IE@IF)2 <00 e > [l¢ = E(@1F_p)l2 < o0
n=0

n=0
then oy < 00 € 045 =0 if, and only if p = uo f —u for some u € L'(u). Moreover,
if 0 > 0 then for any interval A C R

1= 1 =
I $€M~ﬁj§(¢(fj($)))€fl _)M/Ae dt,

as n — oQ.

Let Fy the o-algebra whose elements are Borelian subsets of A which are union
local stable leaves (intersected with A). Not that, if ¢ Fy-mensurable then ¢ is
constant along local stable leaves.

We start by proving a statement of exponential decay of correlation concerning
to function in L' (Fp).

Proposition 12.2. Let ¢ € L' (Fy) and ¢ be a a-Hélder continuous function.
Then, there exist constants 0 < 7 <1 and C(¢) > 0 such that

/(wf")wdu—/sodu/wdu‘ < C(¢)/|@|dﬂ.7n

foralln > 1.

Proof. Since ¢ is Fy-measurable, it is constant restricted to local stable leaves, so,

lely], =0, Vy € Fp.. Suppose ¢ > 0 and let K(¢) and K(1) as in the proof of

Th. B. Therefore

’(‘DWIQ
K

K(p) = sup {

YEF e

}—infap:—infap

Since

/(pd,u‘ —infp < /|<p| dp, just as in the proof of Th. B, it follows that

‘/(@Of”)wdu—/wdu/wdu‘ < (‘/wdu‘ +K(w)> /Iso\du-r".

1
Now, we can write ¢ = T —p~ where p* = 5 (l¢] £ ). Noting that / |<pi| dp <

/ || dp from linearity of the integral we obtain
oo rmwdn- [ an [ vau] < cw) [ ol

with C() = 2 <‘/¢du‘ 4 K(U})). 0
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As a consequence of the proposition we are able to prove:

Lemma 12.3. For every Hélder continuous function ¢ with /gpd,u = 0 there is
R = R(y) such that [|E(¢|Fn)|l2 < Rr™ for alln > 0.

Proof. Due to the last proposition, if ¢ € L*(Fy) and /wdu <1, then
’/(¢Of”)@du— /wdu/wdu’ <C(p)-m"
As ||[9]l1 < ||9]|2 and /gpdu = 0 we have

IE@IED e = sup{ [ etz e 12F), el = 1}

= sup{/(w o fM)edusp € L*(Fy), ||tz = 1}

AN

R(p) "

Now, we can prove:

Teorema C. (Central Limit Theorem)
Let p be the mazimal entropy probability for f : A — A, as in (2.2). Given a
Hoélder continuous function ¢ and

03;:/¢2du+2;/¢-<¢ofﬂ‘>du, with 6=~ [ pdp.

Then o, < 0o and o, = 0 if, and only if, ¢ = wo f —u for some u € L'(u).
Moreover, if 0, > 0 then for all interval A C R

n—1 2
1 . 1 -2
lim p xeM:—E <<pfjx —/@dﬂ)EA = /e 202 Jt.
n—oo \/ﬁj:[) ( ( )) 0-90\/ 21 A

Proof. By the last lemma, Z IIE(6]Fn)]|2 < oo, so the first condition for Gordin’s

Theorem holds. The second condition follows from the Hélder continuity of ¢. In
fact, E(¢, F_,) is constant in each n-image n = f™(v) of a stable leaf v and

inf(¢|,) < E(¢, F_p,) < sup(¢l).

Since the diameter of 7 is less Cs AT for some constant Cy which does not depend
on vy, As € (0,1), and ¢ is (A, a)-Holder for some constant A > 0, we obtain that

6 —E(o, Fn)llz < ¢ — E(¢, Fn)llo < ACTA".

which guarantees Z |l — E(¢, F_)|l2 < co. The result then follows as a conse-

n=0
quence of Gordin’s Theorem. O
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