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Abstract. This paper is motivated by a model for the injection of air into an underground
porous medium that contains a solid fuel, taking into account thermal losses to the surrounding
rock. In our previous works the model was simplified and all wave sequences for the Riemann
problem solution were obtained. Additionally, a rigorous proof of the existence of the traveling
wave solution was presented. Taking thermal losses into account is important from a physical
point of view because they play an important role, especially in the laboratory experiments.

In this work the first step is made to understand the effect of heat losses. The model is
modified by including the thermal losses term, making it more physically realistic. In order to
simplify the proof of the existence and uniqueness of the traveling wave solution, we disregard
diffusion effects and the dependence of gas density on temperature. Some numerical examples
are presented to illustrate the theoretical study.

1. Introduction

Air injection with in-situ combustion offers several potential technical and economic advantages
that may include faster oil production, reduced operational costs and increased CO2 content
with decreased oil viscosity. The engineering of the process is more difficult than any other
method of crude oil recovery, but the advantages of in-situ combustion motivate researchers to
investigate it. Despite other difficulties related to engineering and chemical modeling, solving
the equations for such models is a challenge.

This paper is part of long term research project the purpose of which is to identify waves
that arise in one-dimensional models of combustion in porous media, and to understand how
the waves fit together in solutions of Riemann problems; see [1, 2, 3, 4, 5, 6, 7, 8], and references
therein.

The paper is motivated by a model for the injection of air into a porous medium that contains
oil so viscous that it can be considered a solid fuel. The model was proposed in [9] and further
studied in [2]. This model was simplified in [10] in order to (i) reproduce the variety of phenomena
observed when air is injected into a porous medium containing a solid fuel, yet (ii) to be simple
enough to permit a rigorous investigation. This simplification facilitates proofs of existence of
traveling waves by phase plane analysis. One of the simplifications made in [10] neglected the
thermal capacity of the medium as compared to air. A consequence is that oxygen and heat
were both transported at the speed of the moving gas. Unfortunately, the thermal capacity
assumption is not correct for oil recovery and many other applications. Another simplification
present in many works consists in neglecting thermal losses. Such simplification is not admissible
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Figure 1. Sketch of in-situ combustion.

when modeling laboratory scale experiments. The third simplification used in [10] consists in
considering a truncated Arrhenius law, see also [11, 12]. In this work we consider the effect of
thermal losses, correct Arrhenius law and realistic thermal speed.

A model for combustion is presented in Section 2. It consists of three balance laws for energy,
oxygen, and fuel. We use a reaction rate described by Arrhenius law combined with Law of Mass
Action, [13][§102].

The combustion waves studied in this paper have been called “reaction-trailing smolder
waves” [14] and “coflow (or forward) filtration combustion waves” [15] in the context of more
realistic models of air injection into a porous medium. The moving gas brings oxygen into a
region where solid fuel is present. The oxygen is consumed in the reaction. We formulate the
main results of the paper in Section 3. We present the rigorous proofs about the existence
and uniqueness of the combustion traveling waves in Section 4. In Section 5 some numerical
examples showing the phase portrait of the traveling wave appearing in the previous sections
are presented. Finally, in Section 6 some conclusions are discussed.

2. Combustion model

We consider one-dimensional flow due to air injection into a porous medium. We use notation
and assumptions from [2], see Figure 1. The medium initially contains a fuel that is essentially
immobile and does not vaporize, e.g., solid fuel or liquid fuel at low saturations. We assume
that only a small part of the available space is occupied by fuel, so that changes of porosity
during the reaction are negligible. We assume that the temperature of solid and gas is the
same (local thermal equilibrium). This work is concerned with heat losses, which we consider to
depend linearly on temperature difference with the prevailing temperature, see e.g., [9]. We also
assume that pressure variations are small compared to the prevailing pressure, and we neglect
gas expansibility under temperature increase.

The model with time coordinate t and space coordinate x includes the heat balance equation
(1), the molar balance equations for oxygen (2) and immobile fuel (3). Instead of considering the
Ideal Gas Law we assume that the molar density of gas ρ [mole/m3] is constant; it follows that
the Darcy gas speed u [m/s] is also constant. Another simplification we will perform consists in
considering the gas diffusion negligible so that there is no diffusion term in (2). The heat losses
are considered linearly depending on the temperature difference with the reservoir temperature.
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Here T [K] is the temperature, Y [mole/mole] is the oxygen molar fraction in the gas, ρ
[mole/m3] is the molar concentration of immobile fuel. The system parameters together with
their typical values are given in Table 1. These parameters are assumed to be constant
(neglecting the dependence on temperature, gas composition, etc.), an assumption that was
already used in (1).

Table 1. Dimensional parameters for in-situ combustion and their typical values.
Symbol Physical quantity Value Unit

Tres Initial reservoir temperature 273 [K]
Cm Volume heat capacity of porous medium 2 · 106 [J/m3K]
cg Molar heat capacity of gas 27.42 [J/moleK]
ρg Average gas density 45 [mole/m3]
λ Thermal conductivity of porous medium 0.87 [J/(m sK)]
Qr Immobile fuel combustion enthalpy at Tres 4 · 105 [J/mole]
Er Activation energy 58000 [J/mole]
kp Pre-exponential parameter 500 [1/s]
R Ideal gas constant 8.314 [J/(mole K)]
ϕ Porosity 0.3 [·]
u Darcy velocity of injected gas (200 m/day) 2.3 · 10−3 [m/s]
ρres Initial molar density of fuel 372 [mole/m3]
α Specific thermal conductivity 0.2 [J/(m3sK)]
Yinj Injected oxygen concentration 1.0 [·]

In the combustion reaction, µf moles of immobile fuel react with µo moles of oxygen to
generate µg moles of gaseous products and, possibly, unreactive solid products. For simplicity,
we consider the case µf = µo = µg = 1 as, e.g., in the reaction C + O2 → CO2. The reaction
rate is proportional to Wr given by

Wr = kp exp

(

− Er

RT

)

, (4)

where typical values of kp and Er also are given in Table 1.

Remark 2.1. In Table 1 the average gas density is 45 moles per cubic meter, which is close to
the value for air (the molar density of CO2 is 45, N2 is 44, O2 is 44.7). Physically, the difference
between the two thermal conductivities (λ and α) corresponds to tube section area. Dimensional
analysis confirms this idea. Thus if h is the reservoir height we have α = λ/h2. The value in
the table corresponds to a reservoir with section diameter of approximately 2 meters.

2.1. Dimensionless equations
The equations are non-dimensionalized by introducing dimensionless dependent and independent
variables (denoted by tildes) as ratios of the dimensional quantities and reference quantities
(denoted by stars):
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Our choice for reference quantities is
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res
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, ρ∗ = ρres, Y ∗ = Yinj, (6)

where Tres and ρres are the initial reservoir temperature and molar density of fuel, Yinj is the
oxygen molar fraction in the injected gas, ρ is the average gas molar density and u is the injected
gas Darcy velocity.

In (6), t∗ is the characteristic time for fuel combustion at the initial reservoir temperature
Tres; ∆T ∗ is the deviation of peak temperature from reservoir temperature, for the case of
complete combustion of fuel under adiabatic conditions.

Using (5), (6) and omitting the tildes, equations (1)–(4) are written in dimensionless form as
follows. In order to prove rigorously the existence of traveling waves without technical difficulties
we neglect the thermal diffusion effects (λ = 0). The dependent variables are temperature θ,
oxygen fraction Y and fuel ρ:
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with dimensionless constants
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Here vθ and vY are dimensionless thermal and oxygen waves speeds; β is the constant thermal
loss coefficient; λ̄ represents the dimensionless thermal diffusion coefficient; µY represents the
dimensionless quantity of oxygen consumed during the reaction; E is the scaled activation energy
and θ0 is the scaled reservoir temperature. Typical values of the quantities in (11) are given in
Section 5. The oxygen Y is a component of the gas moving with velocity vY > 0. The heat θ
is transported with velocity vθ. We are of course interested in solutions with ρ ≥ 0 and Y ≥ 0
everywhere. We consider (7)–(9) on 0 < x < ∞, t ≥ 0, with the (constant) boundary conditions

(θ, ρ, Y )(0) = (θL, ρL, Y L), (θ, ρ, Y )(∞) = (θR, ρR, Y R). (12)

We assume that the reaction does not occur at the boundaries, i.e., the reaction terms in (7)–(9)
vanish. Differently from [8, 10], here we consider the correct Arrhenius law and thus there are
only two reasons for the reaction terms to vanish:

(i) Fuel control (FC) – the reaction ceases due to lack of fuel, ρ = 0;

(ii) Oxygen control (OC) – the reaction ceases due to lack of oxygen, Y = 0.

In the next section we study the solution of the Riemann problem of the system (7)–(9).



3. Wave sequences

In this section we follow [8, 10] and denote by (θ−, ρ−, Y −)
v−→ (θ+, ρ+, Y +) a wave of velocity

v that connects (θ−, ρ−, Y −) at the left to (θ+, ρ+, Y +) at the right. At the end states of the
wave, the reaction terms in (7)–(9) vanish. States at which the reaction terms vanish can be
classified as FC or OC. The type of the state indicates exactly which conditions hold at that
state. Because of the nondimensionalization we used in Section 2.1 we consider that ρ = 1 in
OC state and Y = 1 in FC state.

3.1. Contact waves
In the non-combustion waves supported by system (7)–(9) the source terms vanish. The
characteristic eigenvalues and corresponding eigenfunctions of the resulting hyperbolic system
are [10]:

λθ = vθ; (1, 0, 0)T ;
λY = vY ; (0, 1, 0)T ;
λf = 0; (0, 0, 1)T .

(13)

We can see that the Riemann problem possesses three non-combustion contact waves. As the
characteristic velocities are constant they correspond to contact discontinuity waves, see [16].
Contact discontinuities must separate moving spatial intervals in which the reaction does not
occur (since (θ, ρ, Y ) is constant). The waves in a wave train must occur in order of increasing
velocity from left to right.

3.2. Combustion waves
As in [10], system (7)–(9) possesses a combustion wave. We formulate the main result below
and prove it in Section 4.

Theorem 3.1. The system (7)–(9) possesses a unique traveling combustion wave in the following
cases

(i) If vY < (µY + 1)vθ then a slow combustion wave with speed v < vθ exists.

(ii) If vY > (µY + 1)vθ then a fast combustion wave with speed v > vθ exists.

(iii) If vY = (µY + 1)vθ then there exists a combustion wave if and only if: either E < 4θ0 or
there are exactly three values of θ > 0 satisfying Eq. (30), namely 4f(θ) = 1.

In all cases the combustion wave is of type FC
v−→ OC, where its velocity is given by Eq. (17).

3.3. Solutions of the Riemann problem
An obvious necessary condition for the existence of a wave sequence describing Riemann solution
is that is has to start as one equilibrium state (FC or OC) and finish at another equilibrium
state (FC or OC). The waves speeds in the sequence appear in increasing order from left to
right. This fact together with the results concerning contact and combustion waves described
above lead to three possibilities for wave sequences corresponding respectively to three cases
described in Theorem 3.1.

(i) If the sequence contains a slow combustion wave FC
v−→ OC

vθ−→ OC.

(ii) If the sequence contains a fast combustion wave FC
vθ−→ FC

v−→ OC.

(iii) If the sequence is composed of a single resonance combustion wave FC
v−→ OC.

In Fig. 2 we plot the wave sequences separated by constant states for the cases (i) (left
figure), (ii) (center figure) and (iii) right figure. Notice that θb indicate the temperature of the
combustion wave.
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Figure 2. Wave sequences in Riemann solution separated by constant states for the cases (i)
(left figure), (ii) (center figure) and (iii) right figure.

4. Existence and uniqueness of the combustion traveling waves

We rewrite the system (7)-(9) in traveling coordinates (x, t) → (ξ = x−vt, t), where v is positive
velocity of the traveling wave

−v∂ξθ + vθ∂ξθ = −βθ + ρY Φ, (14)

−v∂ξY + vY ∂ξY = −µY ρY Φ, (15)

−v∂ξρ = −ρY Φ. (16)

Substituting (16) into (15), integrating in ξ from −∞ to ∞ and using the boundary conditions
(12) yields

v =
vY

µY + 1
. (17)

Notice that this formula allows to classify the velocity of the combustion wave appearing in
the statement of Theorem 3.1. Substituting (16) into (15), integrating from ξ to the boundary
condition at ξ → ∞ we obtain

Y = 1− ρ. (18)

Thus the system (14) –(16) can be rewritten as two ODEs

∂ξρ = ρ(1− ρ)
Φ

v
, (19)

∂ξθ =
ρ(1− ρ)Φ− βθ

vθ − v
. (20)

In the calculations that follow we consider the case when vθ 6= v. The case when vθ = v is known
as resonance condition for the combustion wave, see [15, 17, 4] and references therein. We study
this case separately in Proposition 4.3.

The linearization of the system (19)–(20) at the point (ρ, θ) yields the matrix of derivatives

DF =
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− β
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At OC and FC equilibria the matrix DF has the forms:

DFOC =







−e

v
0

− e

vθ − v

−β

vθ − v






, DFFC =







e

v
0

e

vθ − v

−β

vθ − v






, (22)

where e = exp(−E/θ0) > 0. The corresponding eigenvalues and eigenvectors are

λ1
OC = −e

v
< 0,

[

vθ − v

v
− β

e
, 1

]T

;

λ2
OC =

β

v − vθ
, [0, 1]T ;

(23)

λ1
FC =

e

v
> 0,

[

vθ − v

v
+

β

e
, 1

]T

;

λ2
FC =

β

v − vθ
, [1, 0]T .

(24)

Following [10], waves with velocities v > vθ and v < vθ are called fast combustion wave and
slow combustion wave respectively. We analyze them below.

Proposition 4.1. Exists a unique slow combustion traveling wave solution for the system (7)–
(10).

Proof. Using v < vθ in Eqs. (23)–(24) we notice that the matrix of derivatives at OC equilibrium
possesses two negative eigenvalues, thus OC is a sink. The equilibrium FC is a saddle. It follows
that the only possible combustion wave is FC

v−→ OC.
Let us study the phase portrait in (ρ, θ) space. The horizontal component of the vector field

of (19)–(20) is strictly positive between the lines ρ = 0 and ρ = 1, which are invariant manifolds
for this field. The vertical component of the vector field of (19)–(20) is discussed in Section 4.1.
These fields are plotted schematically in Fig. 3.
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Figure 3. Phase space of the system (19)–(20) for the slow combustion wave with equlibria
FC at (0, 0) and OC at (1, 0). Left: Case 1. Right: Case 2.

The tangent direction to the curve Γ at the equilibrium FC is (1, e/β) and the eigenvector
corresponding to the positive eigenvalue λ1

FC has smaller slope that this direction, see Fig. 3.



Thus, at least some part of the unstable manifold of FC stays inside the region Ω where the
vertical component of the field is negative. As Ω is compact this manifold crosses Γ at some
point P . The orbit starting at P is attracted to the sink OC, see Fig. 3. This proves the
existence of the heteroclinic orbit leaving FC and reaching OC. Uniqueness of this wave follows
from the hiperbolicity of the FC equilibrium. �

Proposition 4.2. Exists a unique fast combustion traveling wave solution for the system (7)–
(10).

Proof. Using v > vθ in Eqs. (23)–(24) we notice that the matrix of derivatives at the equilibrium
FC possesses two positive eigenvalues, thus FC is a source. On the other hand the equilibrium
OC is a saddle. The only possible combustion wave is FC

v−→ OC.
Let us study the phase portrait in (ρ, θ) space. Analogously to the slow combustion case, the

horizontal component of the vector field of (19)–(20) is strictly positive between the lines ρ = 0
and ρ = 1, which are therefore invariant manifolds for this field. The vertical component of the
vector field of (19)–(20) is discussed in Section 4.1. These fields are schematically plotted in
Fig. 4.
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Figure 4. Phase space of the system (19)–(20) for the fast combustion wave with equlibria FC
at (0, 0) and OC at (1, 0). Left: Case 1. Right: Case 2.

The tangent direction to the curve Γ at the equilibrium OC is (1,−e/β) and the eigenvector
corresponding to the positive eigenvalue λ1

OC has less negative slope than this direction, see
Fig. 4. Thus, at least some part of the stable manifold of OC stays inside the region Ω where
the vertical component of the field is negative. As Ω is compact this manifold crosses Γ at some
point P . The orbit reaching P is attracted to the source OC for negative times, see Fig. 4. This
proves the existence of the heteroclinic orbit reaching OC from FC. Uniqueness of this wave
follows from the hiperbolicity of the OC equilibrium. �

Proposition 4.3. For the resonance case v = vθ, exists a unique combustion traveling wave
solution for the system (7)–(10) if and only if either E < 4θ0 or Eq. (30) is satisfied for exactly
three values of θ.

Proof. In the case vθ = v, instead of the system (19)–(20) we obtain:

∂ξρ = ρ(1− ρ)Φ/v, (25)

f(θ) = ρ(1− ρ). (26)



The horizontal component of the flux of this system is strictly positive and the orbit stays on
the curve Γ described in Section 4.1. Thus there is an orbit connecting equilibria FC and OC if

• there exists a continuous part of Γ connecting FC and OC called Γc and

• the horizontal component of the flux stays positive along Γc.

This can happen in two situations (see Section 4.1): for the geometry corresponding to Case 1
if E > 4θ0 and any local map ρ(θ) of Γc does not posses critical points, see left part of Fig. 5;
or for the geometry corresponding to Case 2 (i.e., there are three values of θ > 0, such that
4f(θ) = 1), see right part of Fig. 5. The proof of the uniqueness of this wave is trivial. �
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Figure 5. Phase space of the system (25)–(26) for the resonance combustion wave with equlibria
FC at (0, 0) and OC at (1, 0). Left: Case 1. Right: Case 2.

4.1. The curve Γ
The vertical component of the vector field of (19)–(20) changes sign together with the term
ρ(1−ρ)Φ−βθ, which is a continuous function in θ. Let us define the curve Γ as the geometrical
place were this term is equal to zero

Γ = {(ρ, θ) : ρ(1− ρ) = f(θ), θ ≥ 0}, where f(θ) = βθ exp

( E
θ + θ0

)

. (27)

Notice that Γ contains both equilibria OC and FC. If (ρ, θ) ∈ Γ, then

ρ =
1±

√

1− 4f(θ)

2
. (28)

Inspecting function f(θ) we notice that f(θ) ≥ 0, f(0) = 0, limθ→∞ f(θ) = ∞ and has two
extremal points

f ′(θc) = 0 =⇒ (θc + θ0)
2 − θcE = 0 =⇒ θc± =

E − 2θ0 ±
√
E2 − 4Eθ0

2
. (29)

It is easy to see that if E ≤ 4θ0 then f(θ) possesses either 0 or 1 critical points, thus f(θ) is
monotonic and for each ρ there is exactly one value of θ on Γ. If E > 4θ0 Eq. (29) yields two
critical points for f(θ). It is easy to see that θc+ > θc− > 0. Thus there are either one or tree
values of θ for which

4f(θ) = 1 (30)



is satisfied. We can study two separate cases:
• Case 1: Equation (30) is satisfied for exactly one value of θ.
• Case 2: Equation (30) is satisfied for exactly three values of θ.

Remark 4.4. Notice that in the model (7)–(9) without thermal losses the traveling wave
equations under the resonance condition v = vθ result in a degenerate traveling wave without
combustion. The same situation happens for the model studied in [10]. Thus taking into account
thermal losses allows the appearance of a different type of solution, which is interesting from
the physical point of view.

Remark 4.5 (Bifurcation between case 1 and case 2). The bifurcation point between cases 1
and 2 happens when there is exactly one valid value of θ satisfying 4f(θ) = 1. It can be obtained
impliscitly from Eq. (29):

θ− =
E − 2θ0 −

√
E2 − 4Eθ0

2
; βθ− =

1

4
exp

( −E
θ− + θ0

)

(31)

We conjecture that for more complicaded models this bifurcation evolves to the separation
between stable hot and unstable cold combustion waves, see [9].

5. Numerical Example

Substituting the values from Table 1 into Eq. (11) one obtains:

vθ = 0.0051, λ̄ = 0.00156, β = 2 · 10−10, vY = 2.76,

µY = 2.76, E = 93.8, θ0 = 3.67.
(32)

For the values of Table 1 we plot the curve Γ numerically in Figure 6 for Cases 1 and 2 as
explained in Section 4.1.
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Figure 6. Phase portrait of the system (19)–(20) obtained numerically. Case 1 geometry is
plotted on the left. Case 2 geometry is plotted on the right.

We can obtain a numerical approximation of the hereroclinic orbit by starting close to the
saddle point and integrating toward negative time as shown in Figure 7.
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Figure 7. Phase portrait of the system (19)–(20) with heteroclinic orbit corresponding to the
fast combustion wave in Case 1.

6. Conclusions

In this paper we prove the existence of a traveling wave solution corresponding to the combustion
wave for a simple in-situ combustion model. This model is more general then the previously
considered one [10] in three aspects. First it considers more physically realistic thermal capacity
of the medium, leading to different thermal and gas velocities. Second, we consider more correct
Arrhenius law allowing chemical reaction to happen at any temperatures. Third, we take into
account thermal losses effect, which is important for laboratory experiments.

We solved possible Riemann problems and classified the obtained solutions depending on the
presence of slow, fast or resonance combustion waves. We emphasize that the existence and
uniqueness proofs presented in this paper ate technically simple and should be accessible to
undergraduate and master students.
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