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1 Introduction

TheEigenvalue Complementarity Problem(EiCP) [25, 27] consists of finding a real
numberλ and a vectorx∈R

n \ {0} such that

w= λBx−Cx (1)

x≥ 0,w≥ 0 (2)

x⊤w= 0, (3)

wherew∈ Rn, andB andC ∈ R
n×n, and whereB is assumed to be positive definite

(PD). This problem finds many applications in engineering [18, 23, 27]. If a triplet
(λ ,x,w) solves EiCP, then the scalarλ is called acomplementary eigenvalueand
x is a complementary eigenvectorassociated withλ . The conditionx⊤w = 0 and
the nonnegativity requirements onx andw imply that eitherxi = 0 or wi = 0 for all
1≤ i ≤ n, and so, these pairs of variables are called complementary.The EiCP always
has a solution provided that the matrixB is PD [18]. A number of techniques have
been proposed for solving EiCP and its extensions [2,6,13,14,16–19,21,24,29].

An extension of the EiCP, called theQuadratic Eigenvalue Complementarity
Problem(QEiCP), was introduced in [28]. This problem differs from the EiCP through
the existence of an additional quadratic term inλ , and consists of finding a real num-
berλ and a vectorx∈ R

n\ {0} such that

w= λ 2Ax+λBx+Cx (4)

x≥ 0,w≥ 0 (5)

x⊤w= 0, (6)

wherew ∈ R
n andA,B, andC ∈ R

n×n. (We differ from (1) and use+Cx in (4) for
notational convenience.) Theλ -component of a solution to QEiCP(A,B,C) is called
a quadratic complementary eigenvalueand the correspondingx-component is called
aquadratic complementary eigenvectorassociated withλ . Contrary to EiCP, QEiCP
may have no solution. However, under some not too restrictive conditions on the
problem matricesA, B orC, QEiCP always has a solution [4,28], which can be found
by either solving QEiCP directly [2, 13, 14] or by reducing itto a 2n-dimensional
EiCP [4,15]. In particular, semi-smooth Newton methods [2], enumerative algorithms
[13–15], and a hybrid method that combines both previous techniques [14, 15], have
been recommended for solving the QEiCP.

The EiCP and the QEiCP can be viewed as mixed nonlinear complementarity
problems [10], where the complementary vectorsx andw belong to the coneK =R

n
+

and its dualK∗ = R
n
+, respectively. The case of EiCP withK being the so-called

second-order cone, or Lorentz cone, denoted SOCEiCP, was introduced in [1], and
can be stated as follows: Find a real numberλ and a vectorx∈ R

n\ {0} such that

w= λBx−Cx (7)

x∈ K,w∈ K∗ (8)

x⊤w= 0, (9)



The Second-Order Cone Quadratic Eigenvalue Complementarity Problem 3

whereB andC∈ R
n×n, B is PD, andK is the second-order cone defined by

K = K1×K2× . . .×Kr , (10)

where

Ki = {xi ∈ R
ni : ||x̄i || ≤ xi

0} ⊆ R
ni , (1≤ i ≤ r) (11)

r

∑
i=1

ni = n, (12)

and where

x= (x1, . . . ,xr) ∈ R
n, (13)

with

xi = (xi
0, x̄

i) ∈R×R
ni−1,(1≤ i ≤ r). (14)

Here,‖·‖ denotes the Euclidean norm and the dual coneK∗ of K is defined by

K∗ = {y∈ R
n : y⊤x≥ 0,∀x∈ K}. (15)

Observe that each coneKi is pointed and self-dual, i.e., it satisfiesKi = K∗
i . In [1],

several semi-smooth Newton type algorithms were analyzed for finding a solution to
SOCEiCP, but none of these algorithms induces global convergence and there is no
guarantee that they find a solution of the SOCEiCP even if a line-search procedure is
employed. Alternative approaches for solving SOCEiCP consist of considering this
problem as a nonlinear programming problem (NLP) with a nonconvex objective
function minimized over a convex set defined by the intersection of the Lorentz cone
with a set defined by linear constraints. In the so-called symmetric case (whereB and
C are both symmetric matrices), the computation of a single stationary point (SP) of
this NLP is sufficient to solve the SOCEiCP [5]. In general, the computation of just
one SP of NLP may not be enough to find a solution for the SOCEiCPand a global
minimum of NLP has to be computed. An enumerative algorithm was introduced
in [11] for finding such a global minimum, and was combined with a semi-smooth
Newton method to enhance its computational efficiency [11].

In this paper, we study the Second-Order Cone Quadratic Eigenvalue Comple-
mentarity Problem (SOCQEiCP), which consists of finding a real numberλ and a
vectorx∈R

n \ {0} such that

w= λ 2Ax+λBx+Cx (16a)

x∈ K, w∈ K∗ (16b)

x⊤w= 0, (16c)

whereA, B, andC∈R
n×n and whereK is defined in (10)–(14). Similar to the SOCE-

iCP [11], in order to guarantee a nonzero complementary eigenvector, the following
normalization constraint is added to the problem:

r

∑
i=1

(ei)⊤xi −1= 0, (17)
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whereei = (1,0, . . . ,0)⊤ ∈R
ni .

The remainder of this paper is organized as follows. In Section 2, we first recall
the results established in [5], which reduce the SOCQEiCP into a 2n-dimensional
SOCEiCP under some sufficient conditions on the matricesA and C. As for the
SOCEiCP, we introduce an NLP formulation for the 2n-dimensional SOCEiCP in
Section 3, and we establish a necessary and sufficient condition for a SP of this NLP
to be a solution of SOCQEiCP. An enumerative algorithm is next proposed and an-
alyzed in Sections 4 and 5 in order to provably solve the SOCQEiCP by computing
a global minimum of the equivalent NLP formulation. Furthermore, similar to the
SOCEiCP, a semi-smooth Newton method is developed in Section 6, and a hybrid
procedure that combines the enumerative algorithm and the semi-smooth Newton
method is designed for enhancing the computational efficiency of using just the for-
mer (convergent) algorithm. Numerical results with a number of test problems are
reported in Section 8 in order to illustrate the efficiency ofthe hybrid method in prac-
tice, and Section 9 closes the paper with some concluding remarks.

2 A 2n-dimensional SOCEiCP

Consider again the SOCQEiCP given by (16). Similar to [5], weimpose the following
(not too restrictive) conditions on the matricesA andC:

(A1) The matrixA is positive definite (PD), i.e.,

x⊤Ax> 0, ∀x 6= 0.

(A2) C∈ S′0 matrix, i.e.,x= 0 is the unique feasible solution of

‖x̄i‖ ≤ xi
0, i = 1, . . . , r (18a)

v=Cx (18b)

‖v̄i‖ ≤ vi
0, i = 1, . . . , r (18c)

xi
0 ≥ 0. (18d)

Note that a matrixC is S′0 if there is nox 6= 0 satisfying the conditions (18) and the
regularization constraint (17). Now, consider the following 2n-dimensional SOCEiCP
onK×K as defined in [5] along with the normalization constraint (17):

λ
[
A 0
0 I

][
y
x

]
−

[
−B −C
I 0

][
y
x

]
=

[
w
t

]
(19a)

y⊤w+ x⊤t = 0 (19b)

x,y,w, t ∈ K (19c)
r

∑
i=1

(xi
0+ yi

0) = 1 (19d)

xi
0 ≥ 0, yi

0 ≥ 0. (19e)

Then the following property holds [5]:
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Proposition 1 (i) The SOCEiCP(19) has at least one solution(λ ,z), with z=
(x,y) ∈ R

2n.
(ii) In any solution of the SOCEiCP(19), t = 0 andλ > 0.
(iii) If (λ ,z) is a solution of the SOCEiCP(19) with z= (x,y) ∈ R

2n, then(λ ,(1+
λ )x) solves SOCQEiCP.

As analyzed in [5], a negative eigenvalue for SOCQEiCP can beguaranteed ifB
replaces−B in the definition of the 2n-dimensional SOCEiCP.

Many optimization textbooks [3, 22] discuss the importanceof scaling in order
to improve the numerical accuracy of the solutions computedby optimization algo-
rithms. We define the following diagonal matrix:

D =
1
α

In, (20)

whereIn is the identity matrix of ordern, and where

α =
√

max{|ai j |, |bi j |, |ci j |}, (21)

i = 1, . . . ,n and j = 1, . . . ,n. Then the following properties can be easily shown.

Proposition 2 (i) A is PD if and only if DAD is PD.
(ii) C is S′0 if and only DCD is S′0.

Due to Proposition 2, the SOCQEiCP(DAD,DBD,DBD) satisfies the assumptions
(A1) and(A2) if A∈ PD andC belongs toS′0. Therefore, one can always reduce the
SOCQEiCP to one where the elements of the matrix of the problem belong to the
interval[0,1]. It is easy to show that this scaled SOCQEiCP has the same eigenvalues
of the original problem but the eigenvectors are scaled by a factor 1/α, whereα is
given by (21).

3 A nonlinear programming formulation for SOCQEiCP

In this section, we propose an equivalent nonlinear programming formulation for the
2n-dimensional SOCEiCP. By following the approach given in [4] and in [11], we
introduce the vectors:

yi
j = λxi

j , j = 0,1, . . . ,ni −1, i = 1, . . . , r (22)

vi
j = λyi

j , j = 0,1, . . . ,ni −1, i = 1, . . . , r, (23)

where (22) follows from the second row in (19a), noting thatt = 0. Sinceλ > 0
andt = 0 in any solution to SOCEiCP (19), theny⊤w = x⊤w= v⊤w= 0 in such a
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solution. This leads to the consideration of the following nonlinear program:

NLP1 :Minimize f (x,y,v,w,λ ) = ‖y−λx‖2+ ‖v−λy‖2+(x⊤w)2+(y⊤w)2

+(v⊤w)2 (24a)

subject to w= Av+By+Cx (24b)

‖x̄i‖2 ≤ (xi
0)

2, i = 1, . . . , r (24c)

‖ȳi‖2 ≤ (yi
0)

2, i = 1, . . . , r (24d)

‖v̄i‖2 ≤ (vi
0)

2, i = 1, . . . , r (24e)

‖w̄i‖2 ≤ (wi
0)

2, i = 1, . . . , r (24f)
r

∑
i=1

(xi
0+ yi

0) = 1 (24g)

r

∑
i=1

(yi
0+ vi

0) = λ (24h)

xi
0 ≥ 0, i = 1, . . . , r (24i)

yi
0 ≥ 0, i = 1, . . . , r (24j)

vi
0 ≥ 0, i = 1, . . . , r (24k)

wi
0 ≥ 0, i = 1, . . . , r (24l)

wherewi = (wi
0, w̄

i) ∈R
ni , yi = (yi

0, ȳ
i),∈R

ni , vi = (vi
0, v̄

i),∈R
ni for i = 1, . . . , r, and

w= (w1,w2, . . . ,wr) ∈ R
n, y= (y1,y2, . . . ,yr) ∈R

n, andv= (v1,v2, . . . ,vr) ∈R
n.

Proposition 3 The nonlinear problemNLP1 in (24)has a global minimum(x∗,y∗,v∗,
w∗,λ ∗) such that f(x∗,y∗,v∗,w∗,λ ∗) = 0 if and only if (λ ∗,y∗,x∗) is a solution of
SOCEiCP(19) with λ ∗ > 0 and t∗ = 0.

Proof If the optimal value ofNLP1 is equal to zero, all the constraints of the SOCE-
iCP (19) are satisfied witht∗ = 0. Note that ifλ ∗ = 0 theny∗ = v∗ = 0 by (24d),
(24e), (24h), (24j), and (24k), and this contradicts the assumption (A2) by (24b),
(24c), (24f), (24g), and (24i). On the other hand, sincey∗ = λ ∗x∗, thenλ ∗ < 0 is
impossible by (24g), (24i), and (24j). The sufficiency implication is obvious. ⊓⊔

Since any global minimum ofNLP1 is a stationary point and a stationary point
is much easier to compute, it is interesting to investigate when a stationary point of
NLP1 provides a solution of SOCQEiCP. The following propositionaddresses this
issue.

Proposition 4 A stationary point(x∗,y∗,v∗,w∗,λ ∗) of NLP1 is a global minimum
of the nonlinear problemNLP1 (24) with f(x∗,y∗,v∗,w∗,λ ∗) = 0 (i.e., a solution to
SOCQEiCP) if and only if the Lagrange multipliers associated with the constraints
(24g)and(24h)are equal to zero.

Proof Let α ∈ R
n, β ∈ R

r , µ ∈ R
r , σ ∈ R

r , ζ ∈ R
r , γ ∈ R, ξ ∈ R, δ ∈ R

r , θ ∈ R
r ,

ν ∈R
r , andρ ∈R

r be the Lagrange multipliers associated with the constraints (24b),
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(24c), (24d), (24e), (24f), (24g), (24h), (24i), (24j), (24k), and (24l), respectively.
Define

D =




2x1
0 0 · · · 0

−2x̄1 0 · · · 0
0 2x2

0 · · · 0
0 −2x̄2 · · · 0
...

... · · ·
...

0 0 · · · 2xr
0

0 0 · · · −2x̄r




∈ R
n×r , E =




e1 0 · · · 0
0 e2 · · · 0
... 0

...
...

0 0 0 er


 ∈R

n×r , e=




e1

e2

...
er


 ∈ R

n

(25a)

F =




2y1
0 0 · · · 0

−2ȳ1 0 · · · 0
0 2y2

0 · · · 0
0 −2ȳ2 · · · 0
...

... · · ·
...

0 0 · · · 2yr
0

0 0 · · · −2ȳr




∈ R
n×r , H =




2w1
0 0 · · · 0

−2w̄1 0 · · · 0
0 2w2

0 · · · 0
0 −2w̄2 · · · 0
...

... · · ·
...

0 0 · · · 2wr
0

0 0 · · · −2w̄r




∈ R
n×r

(25b)

L =




2v1
0 0 · · · 0

−2v̄1 0 · · · 0
0 2v2

0 · · · 0
0 −2v̄2 · · · 0
...

... · · ·
...

0 0 · · · 2vr
0

0 0 · · · −2v̄r




∈ R
n×r . (25c)

The stationary point(x,y,v,w,λ ) of the problemNLP1 satisfies the following
KKT conditions [3,22]

−2λ (y−λx)+2(x⊤w)w=−C⊤α +Dβ +Eδ + γe (26a)

2(y−λx)−2λ (v−λy)+2(y⊤w)w=−B⊤α +Fµ +Eθ + γe+ ξ e (26b)

2(v−λy)+2(v⊤w)w=−A⊤α + ξ e+Lγ +Eν (26c)

2(x⊤w)x+2(y⊤w)y+2(v⊤w)v= α +Hζ +Eρ (26d)

−2x⊤(y−λx)−2y⊤(v−λy) =−ξ (26e)

βi[‖x̄i‖
2− (xi

0)
2] = 0, i = 1, . . . , r (26f)

µi [‖ȳi‖
2− (yi

0)
2] = 0, i = 1, . . . , r (26g)

σi [‖v̄i‖
2− (vi

0)
2] = 0, i = 1, . . . , r (26h)

ζi [‖w̄i‖
2− (wi

0)
2] = 0, i = 1, . . . , r (26i)

δix
i
0 = θiy

i
0 = νiv

i
0 = ρiw

i
0 = 0, i = 1, . . . , r (26j)

βi ≥ 0, µi ≥ 0, σi ≥ 0, ζi ≥ 0, δi ≥ 0, θi ≥ 0, νi ≥ 0, ρi ≥ 0, i = 1, . . . , r, (26k)
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whereβi , µi , σi , ζi , δi , θi , νi , andρi are thei-th components of the vectorsβ , µ , σ ,
ζ , δ , θ , ν, andρ ∈R

r , respectively. By multiplying both sides of (26a), (26b), (26c),
and (26d) byx⊤, y⊤, v⊤, andw⊤, respectively, and by using (26j), we have

−2λx⊤(y−λx)+2(x⊤w)2 =−α⊤Cx+2
r

∑
i=1

βi(−‖x̄i‖
2+(xi

0)
2)+ γx⊤e

2y⊤(y−λx)−2λy⊤(v−λy)+2(y⊤w)2 =−α⊤By+2
r

∑
i=1

µi(−‖ȳi‖
2+(yi

0)
2)+ γy⊤e

+ ξ y⊤e

2v⊤(v−λy)+2(v⊤w)2 =−α⊤Av+ ξ v⊤e+2
r

∑
i=1

σi(−‖v̄i‖
2+(vi

0)
2)

2(x⊤w)2+2(y⊤w)2+2(v⊤w)2 = α⊤w+
r

∑
i=1

ζi(−‖w̄i‖
2+(wi

0)
2).

By adding the above equalities and by using (24b), (24g), (24h), (26f), (26g), (26h),
and (26i), we get

2(x⊤w)2+2(y⊤w)2+2(v⊤w)2+2 f (x,y,v,w,λ ) = γ + ξ λ . (28)

If γ = 0 andξ = 0, then the objective function value is zero, which means that the
stationary point is a solution of SOCQEiCP. Conversely, suppose that(x,y,w,λ ) is a
solution of SOCQEiCP. Then, by Proposition 3,f (x,y,v,w,λ ) is null and the same
holds for the terms(x⊤w)2, (y⊤w)2, and(v⊤w)2. Since f (x,y,v,w,λ ) = 0, we have
y= λx andv= λy, and soξ = 0 from (26e) andγ = 0 from (28). ⊓⊔

4 Additional constraints for the nonlinear programming for mulation

Following the approach in [11], we show how to compute compact intervals for the
variables involved in the enumerative algorithm to be described in Section 5. In par-
ticular, we impose the following bounds on the variables:

c≤ x≤ d (29a)

g≤ y≤ h (29b)

l ≤ λ ≤ u (29c)

L ≤ w≤U, (29d)

wherec= [ci
j ], d= [di

j ], g= [gi
j ], h= [hi

j ], L = [Li
j ], andU = [U i

j ], j = 0,1, . . . ,ni −1,
i = 1, . . . , r. In what follows, we show how to compute the foregoing bounds, and
we embed these within an enumerative search process based onthe Reformulation-
Linearization Technique [26].
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4.1 Lower and upper bounds for thex− andy−variables

Any feasible vectorsx andy in the formulationNLP1 belong to the set

∆ =




(x,y) ∈ R
2n :

r

∑
i=1

(xi
0+ yi

0) = 1,

∣∣∣∣∣∣

xi
0 ≥ 0, −1≤ xi

j ≤ 1,
yi

0 ≥ 0, −1≤ yi
j ≤ 1,

j = 1, . . . ,ni −1, i = 1, . . . , r




 . (30)

Accordingly, lower and upper bounds for the variablesx andy can be set as

gi
0 = ci

0 = 0, hi
0 = di

0 = 1, i = 1, . . . , r (31a)

gi
j = ci

j =−1, hi
j = di

j = 1, j = 1, . . . ,ni −1, i = 1, . . . , r. (31b)

4.2 Upper bound for the variableλ

The next result provides an upper bound for the complementarity eigenvalueλ .

Theorem 1 Let µ = ∑n
i=1

(
∑n

j=i |bi j |+ |ci j |
)
+1. Then we can take

u=
µ

ȳ⊤Aȳ⊤+ x̄⊤x̄
, (32)

where(x̄, ȳ) is a global minimum of the following problem

Minimize y⊤Ay+ x⊤x

subject to (x,y) ∈ ∆ , (33)

where∆ is given by(30).

Proof See [11] for the proof. ⊓⊔

Due to the assumption (A1), the problem (33) is a strictly convex quadratic problem.
Hence, this program has a unique optimal solution, which is astationary point of the
objective function in the simplex∆ .
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4.3 Lower bound for the variableλ

Consider the following convex nonlinear program:

NLP2 : Minimize
r

∑
i=1

(yi
0+ vi

0) (34a)

subject tow= Av+By+Cx (34b)

(x,y) ∈ ∆ (34c)

Li
0 ≤ wi

0 ≤U i
0, i = 1, . . . , r (34d)

vi
0 ≥ 0, i = 1, . . . , r (34e)

‖x̄i‖2 ≤ (xi
0)

2, i = 1, . . . , r (34f)

‖ȳi‖2 ≤ (yi
0)

2, i = 1, . . . , r (34g)

‖v̄i‖2 ≤ (vi
0)

2, i = 1, . . . , r (34h)

‖w̄i‖2 ≤ (wi
0)

2, i = 1, . . . , r, (34i)

whereLi
0 andU i

0 are, respectively, some finite lower and upper bounds for thevariable
wi

0, which are derived in Section 4.4.
An optimal solution toNLP2 provides the required lower boundl for the variable

λ . Note thatNLP2 is convex (noting that (34f)–(34i) are equivalent to the corre-
sponding convex Lorentz cone constraints), which means that a stationary (KKT)
point gives a global minimum. This fact is a consequence of Propositions 5 and 6
stated below.

Proposition 5 NLP2 has an optimal solution.

Proof Let (x̃, ỹ) ∈ ∆ satisfying (34f) and (34g) and let ˜w satisfying (34d) and (34i).
Hence,(x̃, ỹ, w̃, ṽ) is a feasible solution ofNLP2, where ˜v is the unique solution of
the linear systemAṽ = w̃−Bỹ−Cx̃ (A ∈ PD). So it remains to show thatNLP2

has no nonzero recession directiond = [dx,dy,dw,dv]
⊤, wheredx, dy, dw, dv are the

components ofd corresponding to thex−, y−, w− andv−variables, respectively.
From (34c), (34d) and (34i), any such recession direction must satisfydx = dy =
dw = 0 and from (34b) we haveAdv = 0, which yieldsdv = 0 becauseA∈ PD. Thus
the feasible region ofNLP2 is nonempty and bounded, and soNLP2 has an optimal
solution. ⊓⊔

Proposition 6 If C ∈ S′0, thenNLP2 has a positive optimal value.

Proof NLP2 has a zero optimal value if and only ifyi
0 = vi

0 = 0 for all i = 1, . . . , r,
which implies together with (34g) and (34h) thatv = y= 0. Hence there must exist
vectorsw andx, such thatw=Cx and the constraints (34b), (34c), (34f), (34i) hold.
This is impossible, because of assumption (A2). Thus, ifC∈ S′0, we conclude that the
lower boundl is strictly positive. ⊓⊔



The Second-Order Cone Quadratic Eigenvalue Complementarity Problem 11

4.4 Lower and upper bounds for thew−variables

In this section, we compute the bounds for each of ther sets of variableswi
0 and for

w̄i . First of all,wi
0 ≥ 0≡ Li

0 for i = 1, . . . , r. Moreover, from the equation

w= λ 2Ax+λBx+Cx, (35)

we have

wi
0 =

n

∑
j=1

(λ 2ati , j +λbti , j + cti , j)x j , i = 1, . . . , r, (36)

wheret1 = 1 andti = 1+∑i−1
k=1nk, i = 2, . . . , r. Hence, by (31),

wi
0 ≤

n

∑
j=1

(u2|ati , j |+u|bti, j |+ |cti , j |)≡U i
0, i = 1, . . . , r. (37)

Since

‖w̄i‖ ≤ wi
0, i = 1, . . . , r, (38)

we get the following lower and upper bounds for the variableswi
j :

Li
j ≡−U i

0 ≤ wi
j ≤U i

0 ≡U i
j , j = 1, . . . ,ni −1, i = 1, . . . , r. (39)

Note thatLi
j andU i

j , j = 0, . . . ,ni , i = 1, . . . , r depend onu, that is the upper
bound of the variableλ . Such value could be modified during the performance of
the enumerative method. Therefore, at each node the bounds for thew-variables are
updated by using the current value ofu in that node.

4.5 Reformulation-Linearization Technique (RLT) constraints

Given the lower and the upper bounds in (29), we can incorporate additional RLT-
based constraints [26] within the nonlinear problemNLP1 in order design the enu-
merative method presented in the next section. We begin by introducing the following
n additional variables:

zi
j ≡ xi

jw
i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r. (40)

By using the approach in [26], we define nonnegative bound-factors for thex-, y-,
w-, andλ -variables as follows:(x− c) and(d− x); (y−g) and(h− y); (w−L) and
(U −w); and,(λ − l) and(u−λ ). Then we generate the so-called bound-factor RLT
constraints by considering the following product restrictions:

[ci
j ≤ xi

j ≤ di
j ]∗ [L

i
j ≤ wi

j ≤U i
j ], j = 0,1, . . . ,ni −1, i = 1, . . . , r (41)

[ci
j ≤ xi

j ≤ di
j ]∗ [l ≤ λ ≤ u], j = 0,1, . . . ,ni −1, i = 1, . . . , r (42)

[gi
j ≤ yi

j ≤ hi
j ]∗ [l ≤ λ ≤ u], j = 0,1, . . . ,ni −1, i = 1, . . . , r. (43)



12 Alfredo N. Iusem et al.

In (41), we consider the nonnegative product of each of the two bound-factors associ-
ated with thexi

j -variable with each of the two bound-factors associated with thewi
j -

variable, for eachj = 0,1, . . . ,ni −1, i = 1, . . . , r, which are subsequently linearized
using the substitutions specified in (40). In the same way, weconsider the nonnegative
products of the bound-factors associated with thex-variables andy-variables with the
bound-factors for theλ -variable together with the substitutions (22) and (23). The
following resulting 12n constraints are then incorporated within the nonlinear pro-
gramNLP1:

zi
j ≥ ci

jw
i
j +Li

jx
i
j − ci

jL
i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44a)

zi
j ≥ di

jw
i
j +U i

jx
i
j −di

jU
i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44b)

zi
j ≤ ci

jw
i
j +U i

jx
i
j − ci

jU
i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44c)

zi
j ≤ di

jw
i
j +Li

jx
i
j −di

jU
i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44d)

yi
j ≥ xi

j l + ci
jλ − ci

j l , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44e)

yi
j ≥ xi

ju+di
jλ −di

ju, j = 0,1, . . . ,ni −1, i = 1, . . . , r (44f)

yi
j ≤ xi

ju+ ci
jλ − ci

ju, j = 0,1, . . . ,ni −1, i = 1, . . . , r (44g)

yi
j ≤ xi

j l +di
jλ −di

j l , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44h)

vi
j ≥ yi

j l +gi
jλ −gi

j l , j = 0,1, . . . ,ni −1, i = 1, . . . , r (44i)

vi
j ≥ yi

ju+hi
jλ −hi

ju, j = 0,1, . . . ,ni −1, i = 1, . . . , r (44j)

vi
j ≤ yi

ju+gi
jλ −gi

ju, j = 0,1, . . . ,ni −1, i = 1, . . . , r (44k)

vi
j ≤ yi

j l +hi
jλ −hi

j l , j = 0,1, . . . ,ni −1, i = 1, . . . , r. (44l)

The complementarity constraintx⊤w= ∑r
i=1(x

i)⊤wi is the sum of nonnegative terms,
noting that

(xi)⊤wi = xi
0wi

0+(x̄i)⊤w̄i ≥ xi
0wi

0−‖x̄i‖‖w̄i‖ ≥ 0, i = 1, . . . , r. (45)

This means that to havex⊤w= 0 with x ∈ K andw∈ K, we must have(xi)⊤wi = 0
for i = 1, . . . , r. So we can remove the quadratic term(x⊤w)2 from the objective
function and, instead, add the term shown in (47a) along withthe following r linear
constraints:

ni−1

∑
j=0

zi
j = 0, i = 1, . . . , r. (46)

Accordingly, the nonlinear programming formulation of SOCQEiCP, which we pro-
pose to solve by means of the enumerative method presented inthe next section, is
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given as follows:

NLP3 :Minimize f̃ (x,y,v,w,λ ,z) = ‖y−λx‖2+ ‖v−λy‖2+ ‖z− x◦w‖2

+(y⊤w)2+(v⊤w)2 (47a)

s.t. w= Av+By+Cx (47b)

‖x̄i‖2 ≤ (xi
0)

2, i = 1, . . . , r (47c)

‖ȳi‖2 ≤ (yi
0)

2, i = 1, . . . , r (47d)

‖v̄i‖2 ≤ (vi
0)

2, i = 1, . . . , r (47e)

‖w̄i‖2 ≤ (wi
0)

2, i = 1, . . . , r (47f)
r

∑
i=1

(xi
0+ yi

0) = 1 (47g)

r

∑
i=1

(yi
0+ vi

0) = λ (47h)

(29) (47i)

(44) (47j)

(46) (47k)

where◦ is the Hadamard product. Note thatNLP3 is a convex constrained program
with a nonconvex objective function, where (47c)–(47f) areequivalent to the corre-
sponding Lorentz cone inclusion constraints.

Similar to Proposition 3 for the nonlinear problemNLP1, the following results
hold forNLP3:

Proposition 7 SOCQEiCP has a solution(x̃, w̃, λ̃ ) if and only if(x̃, ỹ, ṽ, w̃, λ̃ , z̃) is a

global minimum ofNLP3 with f̃ (x̃, ỹ, ṽ, w̃, λ̃ , z̃) = 0.

Proposition 8 For any given solution(x∗,w∗,λ ∗) to SOCQEiCP, there corresponds
a stationary point(x∗,y∗,v∗,w∗,λ ∗,z∗,τ∗,s∗) of NLP3.

5 An enumerative method

In this section, we introduce an enumerative algorithm for finding a global mini-
mum to the nonlinear problemNLP3. This is done by exploring a binary tree that
is constructed by partitioning the intervals[ci

j ,d
i
j ] associated with the variablesxi

j ,
j = 0,1, . . . ,ni −1, i = 1, . . . , r and the interval[l ,u] associated with the variableλ .
The steps of the enumerative method are as follows:

—————————————————————————————————–
Algorithm 1 Enumerative algorithm for SOCQEiCP
—————————————————————————————————–
⊲ Step0 (Initialization)
1: Setε1 > 0 andε2 > 0.
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2: Setk= 1 and find a stationary point(x̃, ỹ, ṽ, w̃, λ̃ , z̃) of NLP3(1).

3: if f̃ (x̃, ỹ, ṽ, w̃, λ̃ , z̃) = 0 then
4: terminate with(x̃, ỹ, ṽ, w̃, λ̃ , z̃) as solution to SOCQEiCP.
5: else if NLP3(1) is infeasiblethen
6: SOCQEiCP has no solution; terminate.
7: else
8: Let P= {1} be initialized as the set of open nodes.
9: LetUB(1) = f̃ (x̃, ỹ, ṽ, w̃, λ̃ , z̃).

10: Let N = 1 be the number of nodes enumerated.
11: end if
12: Let

θ1 = max
{
|z̃i

j − x̃i
jw̃

i
j | : j = 0,1, . . . ,ni −1, i = 1, . . . , r

}
(48)

θ2 = max
{
|ỹi

j − λ̃ x̃i
j |, |ṽ

i
j − λ̃ ỹi

j | : j = 0,1, . . . ,ni −1, i = 1, . . . , r
}

(49)

13: and let the maximum in (48) be achieved by(i∗, j∗).
14: while (θ1 > ε1 OR θ2 > ε2) do

⊲ Step1 (Choice of node)
15: if P= /0 then
16: terminate; SOCQEiCP has no solution.
17: else
18: Selectk∈ P such thatUB(k) = min{UB(i) : i ∈ L}.
19: Let (x̃, ỹ, ṽ, w̃, λ̃ , z̃) be the stationary point that was previously found at

this node.
20: If k 6= 1, computeθ1 andθ2 in (48) and (49), respectively.
21: end if

⊲ Step2: (Branching rule)
22: if θ1 > θ2 then
23: Let [c̃i∗

j∗ , d̃
i∗
j∗ ] be the interval for the variablexi∗

j∗ .

24: Partition the interval[c̃i∗
j∗ , d̃

i∗
j∗ ] for this variable at nodek into [c̃i∗

j∗ , x̂
i∗
j∗ ] and

[x̂i∗
j∗ , d̃

i∗
j∗ ] to generate two new nodesN+1 andN+2, where

x̂i∗
j∗ =





x̃i∗

j∗ if min{(x̃i∗
j∗ − c̃i∗

j∗),(d̃
i∗
j∗ − x̃i∗

j∗)} ≥ 0.1(d̃i∗
j∗ − c̃i∗

j∗)
d̃i∗

j∗+c̃i∗
j∗

2 otherwise.
(50)

25: else ifθ1 ≤ θ2 then
26: Let [l̃ , ũ] be the interval for the variableλ .
27: Partition the interval[l̃ , ũ] for λ at nodek into [l̃ , λ̂ ] and[λ̂ , ũ] to generate

two new nodesN+1 andN+2, where

λ̂ =

{
λ̃ if min{(λ̃ − l̃),(ũ− λ̃)} ≥ 0.1(ũ− l̃)
ũ+l̃
2 otherwise.

(51)
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28: end if

⊲ Step3 (Solve, Update and Queue)
29: For each ofν = N+1 andν = N+2, find a stationary point(x̃, ỹ, ṽ, w̃, λ̃ , z̃)

of NLP3(ν).
30: If NLP3(ν) is feasible, setP= P∪{ν} andUB(ν) = f̃ (x̃, ỹ, ṽ, w̃, λ̃ , z̃).
31: SetP= P\ {k}.
32: end while

Below, we state the main convergence theorem for the foregoing enumerative
algorithm for solving SOCQEiCP. The proof closely follows that in [18], but we
include the details for the sake of insights and completeness.

Theorem 2 The enumerative algorithm forNLP3 run with ε1 = 0 andε2 = 0 either
terminates finitely with a solution to SOCQEiCP, or else, an infinite branch-and-
bound (B&B) tree is generated such that along any infinite branch of this tree, any
accumulation point of the stationary points obtained forNLP3 solves SOCQEiCP.

Proof The case of finite termination is obvious. Hence, suppose that an infinite B&B
tree is generated, and consider any infinite branch. For notational convenience, denote
ζ ≡ (x,y,v,w,λ ,z) and let{ζ s}S, with s∈ S, be a sequence of stationary points of
NLP3 that correspond to nodes on this infinite branch. Then, by taking a subsequence
if necessary, we may assume

{ζ s}S→ ζ ∗, {[cs,ds]}S→ [c∗,d∗], and{[ls,us]}S→ [l∗,u∗],

where[cs,ds] and[ls,us] respectively denote the vectors of bounds onx andλ at node
s∈ Sof the B&B tree. We will show thatζ ∗ yields a solution to SOCQEiCP.

Note that along the infinite branch under consideration, we either branch onλ
infinitely often, or else, there exists some index-pair(î, ĵ) such that we branch on
the interval forxî

ĵ
infinitely often. Let us assume the latter (the case of branching on

λ infinitely often is similar, as discussed below), and suppose that this sequence of
partitions corresponds to nodes indexed bys∈ S1 ⊆ S. By the partitioning rule (50),
since the interval length forxî

ĵ
decreases by a geometric ratio of at most 0.9 over

s∈ S1, we have in the limit that

c∗î
ĵ = d∗î

ĵ = x∗î
ĵ = ν∗, say. (52)

Furthermore, from (52) and the RLT bound-factor constraints (44a)–(44d), we
have in the limit that

z∗î
ĵ = w∗î

ĵ ν∗ = w∗î
ĵ x∗î

ĵ . (53)

Moreover, by the selection of the index-pair (î, ĵ) for s∈ S1, via (48) and (49) and
the branching selection rule, we get thatθ1 → 0 and soθ2 → 0 as well. (The case
of branching onλ infinitely often likewise leads tol∗ = u∗ in the limit, which from
(44e)–(44l) yields that (22) and (23) hold true in the limit,and so again bothθ1 and
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θ2 approach zero in the limit.) Thus in either case, we get in thelimit ass→ ∞, s∈S1,
that

z∗i
j = w∗i

j x∗i
j , y∗i

j = λ ∗x∗i
j , andv∗i

j = λ ∗y∗i
j , j = 0,1, . . . ,ni −1, i = 1, . . . , r, (54)

or that (22), (23), and (40) hold true in the limit atζ ∗. Consequently, the set of con-
straints (47b) yields from (54) that, in the limit,w∗−Aλ ∗y∗−By∗−Cx∗ = 0, i.e., by
applying the second set of identities in (54), we have

w∗ = λ ∗2Ax∗+λ ∗Bx∗+Cx∗. (55)

Furthermore, by (46) and (54), we get

x∗⊤w∗ = 0. (56)

Likewise, from (47c)–(47f), (24i)–(24l), and (54), we get

x∗ ∈ K andw∗ ∈ K. (57)

Thus, (55)–(57) imply that the (x∗,w∗,λ ∗)-part ofζ ∗ represents a solution to SOC-
QEiCP. ⊓⊔

There are a couple of insightful points worth noting in regard to the proof of
Theorem 2. First, observe that by (54) and (56), we get thatf̃ (ζ ∗) = 0 in the limit,
as expected by Proposition 6. Second, observe that for (54) to hold true, i.e., for (53)
to be a consequence of (52) (and similarly for the case of branching infinitely often
on λ variable), we need just one pair of the four constraints from(44a)–(44d) (and
likewise, one pair from each of (44e)–(44h) and (44i)–(44l)). However, we carry the
entire set (44) because they assert additional valid inequalities that serve to assist in
the convergence process.

6 A semi-smooth algorithm

In this section, we use a semi-smooth algorithm for solving the SOCQEiCP (19). Due
to Proposition 1, we know thatt = 0 and the complementarity constraints (19b) can
be replaced by

(xi)⊤t i = (yi)⊤wi = 0, i = 1, . . . , r. (58)

As in [11], we introduce the so-called natural residual function ϕ i
NR :Rni ×R

ni →R
ni

associated with the second-order coneKi , which is defined by

ϕ i
NR(x

i , t i) = xi −PKi (x
i − t i) (59)

ϕ i
NR(y

i ,wi) = yi −PKi (y
i −wi), (60)

wherePKi (η i) is the projection of a vectorη i = (η i
0, η̄

i)∈R×R
ni−1 onto the second-

order coneKi for eachi = 1, . . . , r, i.e.,

PKi (η
i) = arg min

τ i∈Ki

‖τ i −η i‖. (61)
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The natural residual functionϕ i
NR satisfies the following relations:

ϕ i
NR(x

i , t i) = 0⇔ xi ∈ K, t i ∈ K,(xi)⊤t i = 0 (62)

ϕ i
NR(y

i ,wi) = 0⇔ yi ∈ K,wi ∈ K,(yi)⊤wi = 0. (63)

Consider the functionsΦ1(x, t) :Rn×R
n →R

n andΦ2(y,w) :Rn×R
n →R

n defined
by

Φ1(x, t) =




ϕ1
NR(x

1, t1)
...

ϕ r
NR(x

r , tr)


 andΦ2(y,w) =




ϕ1
NR(y

1,w1)
...

ϕ r
NR(y

r ,wr)


 . (64)

Then the SOCQEiCP (19) can be reformulated as follows

Ψ(x,y,w, t,λ ) =




Φ1(x, t)
Φ2(y,w)

(λA+B)y+Cx−w
λx− y− t

∑r
i=1[(e

i)⊤xi +(ei)⊤yi ]−1



= 0. (65)

Algorithm 2 given below describes the steps of the semi-smooth algorithm for finding
a solution of (65). Here, the Clarke generalized Jacobian ofΦ at (x,y,w, t,λ ) has the
following form:

GJ(x,y,w, t,λ ) =




In− Ṽ 0 0 Ṽ 0
0 In− V̂ V̂ 0 0
C (λA+B) −In 0 Ay

λ In −In 0 −In x
e⊤ e⊤ 0 0 0



, (66)

whereIn denotes then× n identity matrix,e is given in (25a) and̃V,V̂ ∈ Rn×n are
given as follows

Ṽ =




Ṽ1 0 0

0
... 0

0 0 Ṽr


 , V̂ =




V̂1 0 0

0
... 0

0 0 V̂r


 . (67)

The matrices̃V i andV̂ i , i = 1, . . . , r can be explicitly computed as in [11].
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—————————————————————————————————–
Algorithm 2 Semi-smooth Newton algorithm
—————————————————————————————————–
⊲ Step0 (Initialization)
1: Let (x̂, ŷ, ŵ, ĥ, λ̂ ) be an initial point such that(x̂, ŷ) ∈ ∆ .
2: Let ε̃1 andε̃2 be selected positive tolerance.
3: ComputeΦ1 andΦ2 given in (64).
4: while (max{‖ŵ− (λ̂A+B)ŷ−Cx̂‖,‖t̂− λ̂ x̂+ ŷ‖}> ε̃1 OR max{‖Φ1‖,‖Φ2‖}>

ε̃2) do

⊲ Step1 (Newton direction)
5: Compute the Clarke generalized Jacobian GJ at(x̂, ŷ, ŵ, t̂, λ̂ ).
6: if GJ(x̂, ŷ, ŵ, t̂, λ̂ ) is singularthen
7: Stop, and terminate with an unsuccessful termination.
8: else
9: Compute the semi-smooth Newton direction

GJ(x̂, ŷ, ŵ, t̂, λ̂ )




dx

dy

dw

dt

dλ



=−Ψ(x̂, ŷ, ŵ, t̂, λ̂ ).

⊲ Step3 (Update)
10: Compute the new point

x̃= x̂+dx, ỹ= ŷ+dy, w̃= ŵ+dw, t̃ = t̂ +dt , andλ̃ = λ̂ +dλ

11: and letx̂= x̃, ŷ= ỹ, ŵ= w̃, t̂ = t̃, andλ̂ = λ̃ .
12: end if
13: end while
14: If the algorithm terminates with success, thenλ̂ is a quadratic complementary

eigenvalue,̂t = 0 in this solution and(1+ λ̂ )x̂ is the corresponding quadratic
complementary eigenvector.

7 A hybrid method

In order to combine the benefits of the enumerative method (Algorithm 1) with that
of the semi-smooth Newton method (Algorithm 2), (as borne byour computational
results reported in Section 8), we also explore the following hybrid algorithm:
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—————————————————————————————————–
Algorithm 3 Hybrid algorithm
—————————————————————————————————–
⊲ Step0 (Initialization)
1: Let ε̄1 and ε̄2 be two positive tolerances for switching from the enumerative

method to the semi-smooth and, letε1 andε2 be the tolerances used in Algo-
rithm 1, such thatε1 < ε̄1 andε2 < ε̄2.

2: Let nmaxitbe the maximum number of iterations allowed to be performed by the
semi-smooth Newton method.

⊲ Step1 (Method selection decision step)
3: Let (x̃, ỹ, ṽ, w̃, λ̃ , z̃) be the stationary point associated with the nodek and compute

θ1 andθ2 in (48) and (49), respectively.
4: while (θ1 > ε1 OR θ2 > ε2) do
5: if (θ1 ≤ ε̄1 AND θ2 ≤ ε̄2) then
6: Apply Algorithm 2.
7: if Algorithm 2 terminates with a solution(x∗,y∗,w∗, t∗,λ ∗) then
8: Stop; set̃λ = λ ∗ andx̃= x∗.
9: else ifGJ(x̂, ŷ, ŵ, t̂, λ̂ ) is singular ORif the number of iterations is equal

to nmaxit then

10:
Apply Steps 2 and 3 of Algorithm 1 continuing with the nodek and

the solution(x̃, ỹ, ṽ, w̃, λ̃ , z̃) given at the beginning of this step.
11: Computeθ1 andθ2 in (48) and (49), respectively.
12: end if
13: else
14: Apply Steps 2 and 3 of Algorithm 1.
15: Computeθ1 andθ2 in (48) and (49), respectively.
16: end if
17: end while

8 Computational experience

In this section, we discuss the numerical performance of theproposed algorithms
for computing quadratic complementary eigenvalues. The enumerative algorithm has
been implemented in MATLAB [20] and the IPOPT (Interior Point OPTimizer) solver
[31] has been used to find a (local) solution to the nonlinear problemNLP3(k) in (47)
at each nodek.

The matricesA and−C were both chosen as the identity matrix, while the matrix
B was randomly generated with elements uniformly distributed in the intervals[0,1],
[0,5], [0,10], and[0,20]. For these preliminary test problems we have takenr = 1.
These problems are denoted by RAND(0,m,n), where 0 andm are the end-points
of the interval, andn represents the dimension of the problem, i.e., of the matrices
A, B,C ∈R

n×n. We have considered for generatingB, n= 5, 10, 20, 30, 40, and 50.
Each SOCQEiCP was suitably scaled by using the arguments in Section 2 and with
the normalization constraint∑r

k=1xk
0 = 1.
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Problem λ f l u Nodes CPU Fe compl
RAND( 0, 1, 5) 1.082938 4.26029e-09 0.020000 35.272922 0 2.34870e+00 2.02926e-06 3.96564e-05
RAND( 0, 1, 10) 1.593798 6.52343e-11 0.627456 124.253405 0 2.08824e+00 8.70040e-07 2.70959e-06
RAND( 0, 1, 20) 1.659763 2.81584e-10 0.553049 427.686658 0 1.84855e+00 2.00214e-06 6.42486e-06
RAND( 0, 1, 30) 1.946947 4.98848e-08 0.515724 937.744286 5 4.28787e+01 9.32290e-06 5.27508e-05
RAND( 0, 1, 40) 1.706686 5.06694e-08 0.376076 1688.709420 7 9.30902e+01 6.55095e-06 6.76991e-05
RAND( 0, 1, 50) 2.074764 5.37378e-08 0.660755 2598.493157 11 2.58905e+024.25443e-06 4.89964e-05
RAND( 0, 5, 5) 3.460789 4.95718e-09 0.396632 77.997883 0 1.71447e+00 2.68093e-06 5.76957e-06
RAND( 0, 5, 10) 1.523588 2.24121e-09 0.211826 331.050776 0 2.96092e+00 1.33716e-06 1.75369e-05
RAND( 0, 5, 20) 2.812431 2.68931e-07 0.108645 1220.999048 11 6.63263e+012.01636e-06 6.22590e-05
RAND( 0, 5, 30) 8.890165 2.42596e-07 0.279609 2834.246323 29 1.88836e+021.05060e-05 6.48083e-06
RAND( 0, 5, 40) 7.126082 1.48623e-05 0.000002 4919.380520 17 2.15128e+023.95135e-07 7.52232e-05
RAND( 0, 5, 50) 6.778310 2.30355e-08 0.108923 7658.289831 33 6.82388e+022.69855e-06 3.66761e-06
RAND( 0, 10, 5) 1.721980 4.55823e-10 0.071138 146.082341 0 5.04101e+00 9.90465e-07 6.38694e-06
RAND( 0, 10, 10) * [2.14363e-04] 1.92697e-04 1.75494e-02
RAND( 0, 10, 20) 10.831012 1.28806e-06 0.026954 2253.090185 45 3.24989e+02 6.65534e-06 1.02847e-05
RAND( 0, 10, 30) 13.028430 4.62255e-09 0.177992 5015.490181 15 1.21843e+02 6.12185e-06 5.10067e-07
RAND( 0, 10, 40) * [1.50762e-03] 6.12468e-03 1.18574e-01
RAND( 0, 10, 50) 13.738982 3.98646e-04 0.000278 13714.150693 67 1.56999e+03 4.50216e-05 1.05689e-04
RAND( 0, 20, 5) 16.255630 1.90235e-09 0.317963 267.804999 9 3.63311e+01 2.43221e-06 1.99696e-07
RAND( 0, 20, 10) * [2.61659e-06] 8.19066e-05 8.79952e-03
RAND( 0, 20, 20) 21.691343 6.55340e-08 0.030432 4217.129671 41 3.16184e+02 8.94613e-06 6.82192e-07
RAND( 0, 20, 30) 25.043734 4.32816e-06 0.137434 9410.157670 53 7.09780e+02 3.06579e-06 3.42778e-06
RAND( 0, 20, 40) * [7.78051e-01] 8.06774e-03 2.59614e-03
RAND( 0, 20, 50) * [2.71665e-04] 3.34161e-02 4.24448e-03

Table 1 Performance of the enumerative method for solving the scaled SOCQEiCP.

Problem λ f CPU Fe Compl
RAND( 0, 1, 5) 1.082341 4.31470e-10 2.02500e+00 1.30062e-06 1.10085e-05
RAND( 0, 1, 10) 1.593563 4.55799e-10 1.50600e+00 1.58997e-06 6.75148e-06
RAND( 0, 1, 20) 1.660184 2.16221e-12 4.34000e+00 1.27705e-08 4.36405e-07
RAND( 0, 1, 30) 1.942111 6.28458e-11 4.65900e+00 3.23224e-08 1.81879e-06
RAND( 0, 1, 40) 1.704470 1.17660e-16 3.73360e+01 5.45797e-10 3.08607e-09
RAND( 0, 1, 50) *
RAND( 0, 5, 5) 3.459575 1.30447e-11 2.24100e+00 1.07787e-06 2.88253e-07
RAND( 0, 5, 10) 1.446998 2.99299e-10 1.12800e+00 4.96887e-06 6.29473e-06
RAND( 0, 5, 20) 2.710466 6.54488e-15 6.15600e+00 2.51409e-11 1.02480e-08
RAND( 0, 5, 30) 8.877550 9.33578e-14 2.99770e+01 2.08784e-10 3.85227e-09
RAND( 0, 5, 40) *
RAND( 0, 5, 50) *
RAND( 0, 10, 5) 1.718571 3.15284e-11 2.51100e+00 1.50084e-06 1.54437e-06
RAND( 0, 10, 10) 4.330785 4.12716e-10 1.04500e+00 7.50345e-07 1.05383e-06
RAND( 0, 10, 20) *
RAND( 0, 10, 30) 13.019492 8.08185e-12 2.24020e+01 5.76955e-09 1.67219e-08
RAND( 0, 10, 40) *
RAND( 0, 10, 50) *
RAND( 0, 20, 5) 16.260461 1.01362e-12 4.65100e+00 3.12245e-07 -3.51639e-10
RAND( 0, 20, 10) 2.940613 1.02493e-11 1.42800e+00 1.69245e-07 3.48378e-07
RAND( 0, 20, 20) *
RAND( 0, 20, 30) 25.225560 4.50830e-14 1.37040e+02 4.04710e-07 2.52569e-08
RAND( 0, 20, 40) *
RAND( 0, 20, 50) *

Table 2 Performance of BARON for solving the scaled SOCQEiCP.

8.1 Performance of the enumerative method

Table 1 reports the computational experience when solving the aforementioned test
problems. The enumerative method was run with the tolerances ε1 = 10−5 andε2 =
10−5. In this table, we report the computed value of the eigenvalue, the value of the
function f derived at the solution, the value of the lower and upper bounds for λ
computed as in Sections 4.3 and 4.2, respectively, the number of nodes enumerated
by the algorithm, and the CPU time in seconds. Furthermore, the column titled “Fe”
reports the value of‖w−λ 2Ax−λBx−Cx‖∞ derived at the solution, while the last
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column titled “compl” shows the value ofx⊤w at this solution. The value zero in
the column titled “Nodes” indicates that a solution to SOCQEiCP was found at the
root node itself. The symbol * indicates that the enumerative algorithm was not able
to solve the problem, i.e., the algorithm attained the maximum number of iterations,
fixed asnmax = 300. In this case we include the value of the objective function, the
corresponding value of “Fe”, and “compl” for the best stationary point available at
termination.

As a benchmark for comparison, we solved these same problemsusing BARON
(Branch-And-Reduce Optimization Navigator [30]), which is an optimization solver
for the global solution of algebraic nonlinear programs andmixed-integer nonlin-
ear problems. This software package implements a branch-and-reduce algorithm, en-
hanced with a variety of constraint propagation and dualitytechniques for reducing
ranges of variables in the course of the algorithm. The code for solving the nonlinear
problemNLP1 given in (24) was implemented in the General Algebraic Modeling
Systems (GAMS) language [7] and the solver BARON was used with default op-
tions. The numerical results for solving the same set of testproblems as above are
displayed in Table 2. We use the notation * to indicate that BARON was not able to
find a solution to SOCQEiCP.

Comparing Tables 1 and 2, we see that the enumerative method terminates prema-
turely with just an approximate global optimizer for five test problems, while BARON
fails in finding a global minimum for nine instances. The values of “Fe” and “compl”
obtained with the application of the enumerative algorithmare similar, in general, to
those delivered by the global minima given by BARON. Moreover, the computational
time for the enumerative method was comparable to that required by BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-smooth Newton algorithm
presented in Section 6 and the results are shown in Tables 3. The starting point was
chosen asλ = 1, (x0, x̄,y0, ȳ) = (1/2,0,1/2,0), w̄= λ 2Ax+λBx+Cx, andh̄= λx−
y. The algorithm was run with̃ε1 andε̃2 both equal to 10−4. In Table 3, we report the
value of the computed eigenvalue, the number of iterations taken by the algorithm to
converge, and the CPU time in seconds. The notation “*” indicates that the algorithm
was not able to converge within the maximum number of iterations, which was set at
100. Note that the semi-smooth method is much faster than theenumerative algorithm
for obtaining a solution, but on the other hand, it is often not able to converge within
the given number of iterations.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative method required more than one
node for finding a solution, we applied the hybrid method proposed in Section 7.
The values of the tolerances̄ε1 and ε̄2 used to switch from the enumerative method
to the semi-smooth Newton method were set to 10−1. For the semi-smooth Newton
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Problem λ It CPU
RAND( 0, 1, 5) 1.081800 5 1.56439e-01
RAND( 0, 1, 10) 1.593743 7 6.02723e-03
RAND( 0, 1, 20) 1.660417 50 8.24431e-02
RAND( 0, 1, 30) 1.942184 11 4.53060e-02
RAND( 0, 1, 40) 1.704506 16 9.33797e-02
RAND( 0, 1, 50) 2.076201 38 3.15395e-01
RAND( 0, 5, 5) 3.459636 22 2.22559e-02
RAND( 0, 5, 10) 1.494006 8 1.24778e-02
RAND( 0, 5, 20) 2.710538 10 2.41175e-02
RAND( 0, 5, 30) *
RAND( 0, 5, 40) 6.978216 66 3.45564e-01
RAND( 0, 5, 50) *
RAND( 0, 10, 5) 1.759891 5 5.53116e-03
RAND( 0, 10, 10) *
RAND( 0, 10, 20) *
RAND( 0, 10, 30) *
RAND( 0, 10, 40) *
RAND( 0, 10, 50) *
RAND( 0, 20, 5) *
RAND( 0, 20, 10) 2.944632 11 1.05081e-02
RAND( 0, 20, 20) *
RAND( 0, 20, 30) *
RAND( 0, 20, 40) *
RAND( 0, 20, 50) *

Table 3 Performance of the semi-smooth Newton method for solving the scaled SOCQEiCP.

algorithm, the values of the tolerances to terminate the algorithm were taken as̃ε1 =
10−4 andε̃2 = 10−4. The maximum number of iterations for the semi-smooth method
was fixed as 100.

Table 4 displays the value of the computed eigenvalue, the number of nodes enu-
merated by the algorithm, the number of times that the semi-smooth Newton method
was called, which we indicate as “Ntime”, the CPU time in seconds, and the values
of “Fe” and “compl” defined as above.

We observe that the additional use of the semi-smooth Newtonmethod greatly
improves the efficiency and efficacy of the enumerative method. Indeed, the algorithm
is able find a solution by enumerating a fewer number of nodes and succeeds in
solving all the test problems.

The efficiency of the hybrid algorithm was also investigatedwhenK is the Carte-
sian product of Lorentz conesKi as in (10) withr > 1. In Table 5, we report the results
obtained forn= 30, 40, 50, 100, andr = 5, 10. The results confirm the efficiency of
the hybrid method for dealing with these more complicated problems. We therefore
recommend the proposed hybrid algorithm for solving SOCQEiCPs.

9 Conclusions

In this paper, we have investigated the solution of the Second-Order Cone Quadratic
Eigenvalue Complementarity Problem, SOCQEiCP(A,B,C), with A∈ PD andC∈S′0.
By exploiting the equivalence between then-dimensional SOCQEiCP and a suitable
2n-order SOCEiCP, we introduced an appropriate Nonlinear Programming (NLP)
formulation for the latter having a known global optimal value. An enumerative
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Problem λ Nodes Ntime CPU Fe compl
RAND( 0, 1, 30) 1.942184 0 1 2.02698e+00 3.08087e-15 -1.64018e-15
RAND( 0, 1, 40) 1.704506 0 1 5.62104e+00 1.41935e-14 -1.48770e-13
RAND( 0, 1, 50) 2.076201 0 1 5.97575e+00 3.76871e-12 -1.38359e-12
RAND( 0, 5, 20) 2.710538 0 1 4.60102e+00 8.92193e-13 -3.58477e-13
RAND( 0, 5, 30) 8.877496 0 1 3.87405e+00 5.73297e-10 -5.70326e-11
RAND( 0, 5, 40) 6.978216 0 1 7.41294e+00 6.62892e-12 -4.09478e-13
RAND( 0, 5, 50) 6.787334 0 1 9.21684e+00 4.59986e-10 -1.08617e-10
RAND( 0, 10, 10) 4.330815 0 1 1.49573e+00 6.37987e-10 -4.92289e-11
RAND( 0, 10, 20) 10.831012 2 1 9.18055e+00 7.34059e-11 -1.00148e-11
RAND( 0, 10, 30) 13.019383 0 1 5.05396e+00 2.96528e-09 -3.96873e-10
RAND( 0, 10, 40) 8.349292 0 1 6.21859e+00 3.64334e-11 -3.56923e-12
RAND( 0, 10, 50) 13.185873 0 1 6.59344e+00 1.24879e-11 -3.69148e-12
RAND( 0, 20, 5) 16.260338 0 1 5.58621e+00 3.84712e-12 -1.37479e-13
RAND( 0, 20, 10) 2.944632 0 1 2.49894e+00 1.12554e-08 -2.40425e-09
RAND( 0, 20, 20) 21.671241 0 1 4.60443e+00 3.34048e-12 2.17000e-13
RAND( 0, 20, 30) 25.225542 0 1 9.70190e+00 6.67380e-12 -1.19377e-12
RAND( 0, 20, 40) 26.071054 1 1 3.33318e+01 2.32863e-13 -6.69950e-15
RAND( 0, 20, 50) 26.459219 1 2 3.48536e+01 8.51749e-16 -8.67362e-18

Table 4 Performance of the hybrid method for solving the scaled SOCQEiCP.

r=5 r=10
Problem λ Nodes Ntime Fe compl λ Nodes Ntime Fe compl
RAND( 0, 1, 30) 1.507567 0 1 3.78057e-12 -5.97117e-131.745894 0 1 6.47855e-10 -2.63029e-11
RAND( 0, 5, 30) 4.618213 0 1 4.66058e-10 -3.06677e-114.793496 1 1 5.99856e-09 -4.52674e-10
RAND( 0, 10, 30) 10.242716 1 1 9.50619e-10 -1.92155e-1112.447275 3 3 3.92070e-09 -5.77478e-11
RAND( 0, 20, 30) 25.079701 0 1 2.63178e-13 -3.94712e-1522.839777 9 2 3.28573e-15 -7.34547e-18
RAND( 0, 1, 40) 1.669932 0 1 1.69323e-13 -5.22984e-141.621706 0 1 7.87309e-12 -1.09884e-12
RAND( 0, 5, 40) 4.237988 0 1 2.98267e-08 -5.01146e-094.774869 3 4 1.42131e-10 -7.10721e-12
RAND( 0, 10, 40) 10.240786 1 1 8.65350e-13 -1.71890e-1313.427837 0 1 7.02989e-10 -1.20675e-11
RAND( 0, 20, 40) 28.774659 0 1 1.03278e-09 -1.31259e-1120.303234 5 2 2.64979e-16 -8.67362e-19
RAND( 0, 1, 50) 2.100357 0 1 2.05926e-10 -2.39811e-112.025522 0 1 5.06818e-12 -2.51581e-12
RAND( 0, 5, 50) 5.280643 0 1 1.16584e-07 -8.44835e-087.659915 1 2 7.59458e-11 -2.07326e-12
RAND( 0, 10, 50) 13.966155 0 1 1.46927e-07 -8.74790e-0913.128826 1 1 3.36279e-07 -2.16985e-08
RAND( 0, 20, 50) 29.397506 0 1 1.25672e-11 -6.36429e-1327.394438 3 1 3.86771e-14 -2.46336e-15
RAND( 0, 1, 100) 2.470418 0 1 2.78978e-13 -1.44331e-142.294175 3 1 7.68383e-10 -1.76786e-10
RAND( 0, 5, 100) 8.471858 11 5 1.66967e-16 -4.33681e-197.728152 5 1 1.93562e-13 -5.22204e-14
RAND( 0, 10, 100) 17.613880 9 4 1.58521e-15 -8.02310e-1820.952430 9 2 3.25973e-13 -1.51641e-14
RAND( 0, 20, 100) 36.270876 13 1 4.39339e-08 -7.37002e-1034.565427 9 1 5.42460e-08 -1.62659e-09

Table 5 Performance of the hybrid method for solving some instancesof the scaled SOCQEiCP withr = 5
andr = 10.

method was developed for solving this NLP formulation and was proven to glob-
ally converge to a solution of the SOCQEiCP. However, for some test problems, the
enumerative method was able to compute only an approximate solution in practice.
Hence, a hybrid method that combines the enumerative algorithm with a semi-smooth
method was proposed for implementation, and numerical results were presented to
demonstrate that this hybrid method is highly efficient for solving SOCQEiCP.

References

1. Adly, S., Rammal, H. A new method for solving second-ordercone eigenvalue complementarity prob-
lem. To appear inJournal of Optimization Theory and Applications.

2. Adly, S., Seeger, A. A nonsmooth algorithm for cone constrained eigenvalue problems.Computational
Optimization and Applications49 (2011) 299-318.

3. Bazaraa, M. S., Sherali, H. D., Shetty C. M.Nonlinear Programming: Theory and Algorithms. John
Wiley & Sons, New York (2006).



24 Alfredo N. Iusem et al.
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