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1 Introduction

The Eigenvalue Complementarity Problg@iCP) [25[27] consists of finding a real
numberA and a vectox € R"\ {0} such that

w = ABx—Cx (2)
Xx>0,w>0 (2)
x'w=0, (3)

wherew € R", andB andC € R™", and whereB is assumed to be positive definite
(PD). This problem finds many applications in engineering[PB/27]. If a triplet
(A,x,w) solves EiCP, then the scalaris called acomplementary eigenvalwnd

x is a complementary eigenvectassociated withh. The conditionx'w = 0 and
the nonnegativity requirements arandw imply that eitherx, = 0 orw; = O for all
1<i<n,and so, these pairs of variables are called complemeiitagyEiCP always
has a solution provided that the matBxis PD [18]. A number of techniques have
been proposed for solving EiCP and its extensibis [2,64,3.6-19, 21, 24, 29].

An extension of the EiCP, called th@uadratic Eigenvalue Complementarity
Problem(QEICP), was introduced it [28]. This problem differs frame £iCP through
the existence of an additional quadratic termi jrand consists of finding a real num-
berA and a vectox € R"\ {0} such that

W= A2Ax+ ABx+Cx (4)
Xx>0,w>0 (5)
x"w =0, (6)

wherew € R" andA, B, andC € R™". (We differ from [1) and use-Cx in (@) for
notational convenience.) The-component of a solution to QEICR(B,C) is called
aquadratic complementary eigenvalaed the correspondingcomponentis called
aquadratic complementary eigenvectmsociated witfA . Contrary to EiCP, QEICP
may have no solution. However, under some not too resteictanditions on the
problem matrice#\, B or C, QEICP always has a solutidn/[4/28], which can be found
by either solving QEICP directly [2,13,114] or by reducingdta -dimensional
EiCP [4[15]. In particular, semi-smooth Newton methads¢Aumerative algorithms
[13-15], and a hybrid method that combines both previousriguies[[14, 15], have
been recommended for solving the QEICP.

The EIiCP and the QEICP can be viewed as mixed nonlinear congpi&rity
problems([10], where the complementary vectoandw belong to the conk =R}
and its dualk* = R}, respectively. The case of EiCP with being the so-called
second-order cone, or Lorentz cone, denoted SOCEICP, waslited in[[1], and
can be stated as follows: Find a real numbend a vectox € R"\ {0} such that

w = ABx—Cx (7
xeK,weK* (8)
x'w=0, )
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whereB andC € R"™", Bis PD, anK is the second-order cone defined by

K=K xKox...xK;, (20)
where
Ki={xX eR":[|%]| <x4} CR™ (1<i<r) (11)
r
i;ni =n, (12)
and where
x=(x},... x') eR", (13)
with
X = (X0, X) ERx R (1<i<r). (14)

Here,|| - || denotes the Euclidean norm and the dual dénef K is defined by
K*={yeR":y'x>0,¥xeK}. (15)

Observe that each corig is pointed and self-dual, i.e., it satisfigs= K. In [1],
several semi-smooth Newton type algorithms were analyazefirfding a solution to
SOCEICP, but none of these algorithms induces global cgevere and there is no
guarantee that they find a solution of the SOCEICP even ifeadiearch procedure is
employed. Alternative approaches for solving SOCEICP isbrd considering this
problem as a nonlinear programming problem (NLP) with a worex objective
function minimized over a convex set defined by the intersacif the Lorentz cone
with a set defined by linear constraints. In the so-calledagiric case (wherB and
C are both symmetric matrices), the computation of a singigostary point (SP) of
this NLP is sufficient to solve the SOCEICE [5]. In generad domputation of just
one SP of NLP may not be enough to find a solution for the SOCEi@Pa global
minimum of NLP has to be computed. An enumerative algorithas \wtroduced
in [21] for finding such a global minimum, and was combinedwatsemi-smooth
Newton method to enhance its computational efficiency [11].

In this paper, we study the Second-Order Cone Quadrationkiihiee Comple-
mentarity Problem (SOCQEICP), which consists of findinga& reimberA and a
vectorx € R"\ {0} such that

W = A?Ax+ ABx+Cx (16a)
xe K, weK* (16b)
x"'w =0, (16c)

whereA, B, andC € R™" and where is defined in[(ID)-£(T4). Similar to the SOCE-
iCP [11], in order to guarantee a nonzero complementanynegeor, the following
normalization constraint is added to the problem:

r

Zl(é)TXi —1=0, (17)
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whereé = (1,0,...,0)" € R",

The remainder of this paper is organized as follows. In 8afi we first recall
the results established inl[5], which reduce the SOCQEIiG® ant-dimensional
SOCEICP under some sufficient conditions on the matrikesdC. As for the
SOCEICP, we introduce an NLP formulation for the-&mensional SOCEICP in
Sectior B, and we establish a necessary and sufficient camébir a SP of this NLP
to be a solution of SOCQEICP. An enumerative algorithm ist peaposed and an-
alyzed in Sectionsl4 aid 5 in order to provably solve the SOCBby computing
a global minimum of the equivalent NLP formulation. Furtimere, similar to the
SOCEICP, a semi-smooth Newton method is developed in $d6ti@and a hybrid
procedure that combines the enumerative algorithm andehm®-smooth Newton
method is designed for enhancing the computational effigien using just the for-
mer (convergent) algorithm. Numerical results with a numidfetest problems are
reported in Sectiopnl8 in order to illustrate the efficiencyha hybrid method in prac-
tice, and Section9 closes the paper with some concludingniem

2 A 2n-dimensional SOCEICP

Consider again the SOCQEICP given byl(16). Similarto [5]jmpose the following
(not too restrictive) conditions on the matrickandC:

(A1) The matrixA is positive definite (PD), i.e.,
x"Ax> 0, ¥x # 0.

(A2) C e §, matrix, i.e.,x= 0 is the unique feasible solution of

X < Xo, i =1,...,r (18a)
v=Cx (18b)
IVl < Vo, i=1,....r (18c)
X > 0. (18d)

Note that a matrix is S if there is nox # 0 satisfying the condition§ (18) and the
regularization constrairfi{17). Now, consider the follog/n-dimensional SOCEICP
onK x K as defined in[5] along with the normalization constrdini)(17

S

y'w+x't=0 (19b)
X, Y,wt € K (19¢)
r
(Xo+Yo) =1 (19d)
2,00t
Xo >0, ¥ > 0. (19)

Then the following property hold5][5]:
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Proposition 1 (i) The SOCEICP(I3) has at least one solutiofA,z), with z=
(x,y) € R,
(i) In any solution of the SOCEICLY), t =0andA > 0.
(i) If (A,2) is a solution of the SOCEICEY) with z= (x,y) € R?", then(A, (1+
A)x) solves SOCQEICP.

As analyzed in([b], a negative eigenvalue for SOCQEICP caguaganteed 8
replaces-B in the definition of the B-dimensional SOCEICP.

Many optimization textbooks [3,22] discuss the importantscaling in order
to improve the numerical accuracy of the solutions compbtedptimization algo-
rithms. We define the following diagonal matrix:

1
D: Eln, (20)

wherel, is the identity matrix of orden, and where

o = y/max{[ay by |, Iy |}, (21)
i=1,...,nandj =1,...,n. Then the following properties can be easily shown.

Proposition 2 (i) Ais PD if and only if DAD is PD.
(i) Cisgyifandonly DCD is §.

Due to Proposition]2, the SOCQEI@PXD, DBD, DBD) satisfies the assumptions
(Al) and(A2) if A PD andC belongs tdS,. Therefore, one can always reduce the
SOCQEICP to one where the elements of the matrix of the prnotblelong to the
interval[0, 1]. It is easy to show that this scaled SOCQEICP has the sameveiges
of the original problem but the eigenvectors are scaled actof 1/a, wherea is

given by [21).

3 A nonlinear programming formulation for SOCQEICP

In this section, we propose an equivalent nonlinear progreng formulation for the
2n-dimensional SOCEICP. By following the approach givenl(ihdAd in [11], we
introduce the vectors:

L= Ax, j=01,...,n—1,i=1,...r 22
J |
Vi=Av =01 m—1i=1..r (23)

where [Z2) follows from the second row ih_(19a), noting that 0. SinceA > 0
andt = 0 in any solution to SOCEICHR(119), thenw = x'w=v'w = 0 in such a
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solution. This leads to the consideration of the followirngnlinear program:

NLP; :Minimize  f(x,y,\,W,A) = |ly—AX||?+ [v—Ay||?+ (x"w)? + (y"w)?

+ (vIw)? (24a)
subjectto w= Av-+ By+Cx (24b)
X2 < (00)%, i=1,....r (24¢)
V1P < (0)% i=1r (24d)
V1P < ()%, i=1,.r (24e)
W2 < (Wp)?, i=1,....r (24f)
r . .
(Xo+Yo) =1 (249)
2,00 %
r . .
i;(>/o+\fo) =A (24h)
X>0i=1,...,r (24i)
Yh>0,i=1,...,r (24))
Vo>0,i=1,...,r (24K)
Wh>0,i=1,...,r (241)

wherew = (Wh, W) € R, y' = (yh,¥), € R, vl = (vi),V),e R" fori=1,...,r, and
w=W,w? ... W) eR", y=(yLy?....,y¥) €R", andv = (VL,V,...,V') € R".

Proposition 3 The nonlinear problerhLP; in (24) has a global minimunfix*, y*, v*,
w*,A*) such that fx*,y*,v*,w*,A*) = 0 if and only if (A*,y*,x") is a solution of
SOCEICP@9)with A* > 0and t* = 0.

Proof If the optimal value oNLP1 is equal to zero, all the constraints of the SOCE-
iCP (19) are satisfied with* = 0. Note that ifA* = 0 theny* = v* = 0 by (24d),
(248), [24h),[(23)), and_(24k), and this contradicts theuagstion (A2) by [24b),

(244), [24¥), [(24D), and(2Ki). On the other hand, sigte= A*x*, thenA* < 0 is
impossible by[(Z4g) [(2Ki), anfl (24j). The sufficiency ineplion is obvious. O

Since any global minimum dfILP is a stationary point and a stationary point
is much easier to compute, it is interesting to investigdtema stationary point of
NLP; provides a solution of SOCQEICP. The following propositaddresses this
issue.

Proposition 4 A stationary point(x*,y*,v*,w*,A*) of NLPy is a global minimum
of the nonlinear problenNLP; 24) with f(x*,y*,v*,w*,A*) = 0 (i.e., a solution to
SOCQEICP) if and only if the Lagrange multipliers assoaibtégth the constraints

(24d)and (248)are equal to zero.

Proof Leta e R", BeR", ueR',0eR", (eR",yeR, EcR,0cR", 6 R,
v €R", andp € R" be the Lagrange multipliers associated with the conssdib),
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(244), (244), [(24e) [(2H) [ (249) (2WhL_(24i), (P4]L. ®4and [24I), respectively.
Define

s 0 -~ 0
) va .
R e 0.0 et
Z"Oﬁ 0€---0 e
D= 0 —2¢..- 0 ER”XF,E: o eRnxr,e_ cR"
AR 000¢ ¢
0 0 - 24
| O 0 - —2X |
(25a)
Zy% 0 0 ] _ZW% 0 0
-2y 0 - 0 -2 0 - 0
0 2% - 0 0 2w -~ 0
F = 0 —292 0 GRHXI"H: 0 —2\/?/2 0 ERHXI’
0 0 A 0 0 20y
| O 0 -2y | O 0 —2W |
(25b)
25 0 0
-2 0 0
0 2\/% : 0
L—| 0 —27*. 0 | erm. (25c¢)
0 0 - 24
| 0 0 - —2V)

The stationary pointx,y,v,w,A) of the problemNLP; satisfies the following
KKT conditions [3[22]

—2A(y—AX)+2(x'ww=—-C"a+DB+E5+ye (26a)
2(y—AX) = 2A(v=Ay)+2(y'ww=-B'a+Fu+EB+ye+ e (26b)
2(v—Ay)+2(v'ww=—-ATa 4 Ee+Ly+Ev (26¢)
2(x"W)x+2(y'w)y+2(v'wyv=a +H{ +Ep (26d)
—2x"(y—Ax)—2y" (v—2Ay) = =& (26e)
BlIXIZ— ()7 =0, i=1,...r (26f)
HllIVE1P = ()2 =0, i=1,...,r (269)
Gl = ()2 =0, i=1,....r (26h)
Gl [* = (Wp)?] =0, i=1,....r (26i)
dXg=6BYp=Vivp=pWp =0, i=1,....r (26j)

B>01>00>0¢>05>06>0v>0p>0 i=1..r (26K
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wheref3;, ui, @i, ¢, &, 6, vi, andp; are thei-th components of the vectofs u, g,
{, 9, 0,v,andp € R", respectively. By multiplying both sides ¢f (264), (26@64),
and [264) byx", y", v, andw', respectively, and by using (26j), we have

~ 2 [y )+ 207w =~ Cxr 2 B+ (o)) + e

2y (y =A%) —24y" (v=Ay) +2(y'w)* = —a "By + 23 (Y112 + (o)) +vy'e
+&y'e

2 (v 0y)+ 207w =~ A 2T+ 25 (P ()
206 Wi+ 2y Wi+ 20 W) = 0w 3 G+ ().

By adding the above equalities and by using {24b), [(2#gYi\A&6T), [269), [26h),
and [26i), we get

2(x"w)? +2(y'W)? + 2(vIW)? + 2 (X, Y, v, WA ) = v+ EA. (28)

If y=0 andé = 0, then the objective function value is zero, which means tta
stationary point is a solution of SOCQEICP. Converselypsage thatx,y,w,A) is a
solution of SOCQEICP. Then, by Propositidn f3x,y,v,w,A) is null and the same
holds for the termgx"w)?, (y"w)?, and(v'w)2. Sincef(x,y,v,w,A) = 0, we have
y=Axandv= Ay, and so¢ =0 from (26¢) and/ = 0 from (28). O

4 Additional constraints for the nonlinear programming for mulation

Following the approach i [11], we show how to compute conpwervals for the
variables involved in the enumerative algorithm to be descrin Sectiof b. In par-
ticular, we impose the following bounds on the variables:

<x<d (29a)
g<y<h (29b)
<A <u (29c¢)
L<w<U, (29d)

wherec=[c}],d = [d}], g=[g}],h=[h|], L=[L}],andU = [U]], j=0,1,...,n —1,
i =1,...,r. In what follows, we show how to compute the foregoing bouraasl
we embed these within an enumerative search process baskd Beformulation-

Linearization Techniqué[26].
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4.1 Lower and upper bounds for tke andy—variables

Any feasible vectorg andy in the formulatiorNLP 1 belong to the set

¢ X >0, -1<x <1,
A=< (xy) eRM: Z(Xbﬂ/o):l, 5>0, 1<y <1, (30)
i= i=1,....m=1i=1,...r
Accordingly, lower and upper bounds for the variablemdy can be set as
gh=ch=0,hh=dy=1, i=1,...r (31a)
d=c¢=-1Lh=d=1 j=1..m-1i=1..r (31b)
4.2 Upper bound for the variable
The next result provides an upper bound for the complemignegenvalue .
Theorem 1 Letu = 31, (37 [bij| 4 |cij|) + 1. Then we can take
u
S e 2
Iy (32)
where(x,y) is a global minimum of the following problem
Minimize y Ay+x'x
subjectto (x,y) € A, (33)
whereA is given by(30).
Proof See[[11] for the proof. O

Due to the assumption (A1), the probldml(33) is a strictlyvexguadratic problem.
Hence, this program has a unique optimal solution, whichsigtionary point of the
objective function in the simple&.
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4.3 Lower bound for the variable

Consider the following convex nonlinear program:

r

NLP,: Minimize Z(y‘b+v"0) (34a)
i=

subject tow = Av+ By—+ Cx (34b)

(x,y)eA (34c¢)

Lh<wh<Ubi=1,...r (34d)

Vh>0,i=1,...,r (34e)

X[ < ()%, i=1,....r (34f)

HVHZS (yIO)za [ =1,...r (349)

IVII2< (M)% i=1,....r (34h)

W< (Wp)?, i=1,...,r, (34i)
w_hereLiO andU(i) are, respectively, some finite lower and upper bounds fordhiable
W, which are derived in Sectién 4.4.

An optimal solution taNLP provides the required lower bouhébr the variable
A. Note thatNLP, is convex (noting that (34f)E(34i) are equivalent to thereer
sponding convex Lorentz cone constraints), which meansalstationary (KKT)
point gives a global minimum. This fact is a consequence ofBsitiond s anf]6
stated below.

Proposition 5 NLP; has an optimal solution.

Proof Let (X, ¥) € A satisfying [34f) and[(34g) and let Satisfying [34H) and_(3Ki).
the linear systenAV = W — BY — CX (A € PD). So it remains to show thiLP»
has no nonzero recession directiba= [dy, dy, dw, dV]T, wheredy, dy, dy, dy are the
components ofl corresponding to the&—, y—, w— andv—variables, respectively.
From [34¢), [[(340) and_(34i), any such recession directiostrsatisfydy = dy =
dy = 0 and from[(34b) we hav&d, = 0, which yieldsd, = 0 becausé € PD. Thus
the feasible region dfiLP, is nonempty and bounded, anddtP, has an optimal
solution. O

Proposition 6 If C € S, thenNLP, has a positive optimal value.

Proof NLP; has a zero optimal value if and onlyy§ = vy =0 foralli = 1,...,r,
which implies together witH (34g) and (34h) thaet y = 0. Hence there must exist
vectorsw andx, such thatv = Cx and the constraints (34bl, (34d), (B4, (34i) hold.
This is impossible, because of assumption (A2). Thu8 4fS;,, we conclude that the
lower bound is strictly positive. O
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4.4 Lower and upper bounds for thxe-variables

In this section, we compute the bounds for each ofrthets of variabless, and for
W. First of all,wy > 0= L, fori=1,...,r. Moreover, from the equation

W= A2Ax+ ABx+Cx, (35)

we have

X n
Wo =Yy (A%aqj+Abyj+oyj)x, i=1...r (36)
=1

wheret; = 1 andtj = 1+ 3|2 n, i = 2,...,r. Hence, by[(3l),

W‘Og_
J

(UPlag,j|+ulby j| + ey j]) =Up, i=1,....r. (37)

M=

Since
W <wp, i=1,....r, (38)
we get the following lower and upper bounds for the variabJ‘Fs
Li=-Uj<w, <Uy=U}, j=1...m-Li=1..r (39)

Note thatL| andU], j =0,...,n;, i = 1,...,r depend oru, that is the upper
bound of the variablé . Such value could be modified during the performance of
the enumerative method. Therefore, at each node the boantisefw-variables are
updated by using the current valuelwih that node.

4.5 Reformulation-Linearization Technique (RLT) constta

Given the lower and the upper bounds[inl(29), we can incotpadditional RLT-
based constraints [26] within the nonlinear problRicP; in order design the enu-
merative method presented in the next section. We beginttnducing the following
n additional variables:

Z=xXw, j=01...m-1i=1..r (40)
By using the approach in [26], we define nonnegative bountbfa for thex-, y-,
w-, andA -variables as follows(x — ¢) and(d — x); (y—g) and(h—y); (w—L) and

(U —w); and,(A —I) and(u—A). Then we generate the so-called bound-factor RLT
constraints by considering the following product restoics:

¢ <x <d]«[Lj<w, <U]], j=01....m-1i=1..r (41)
[ <x <d]«[<A<u],j=01..n—-1i=1__r (42)

[gij gyij §hij]>k[| <A<u,j=01,...n—1i=1,...r (43)
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In (#1), we consider the nonnegative product of each of tleewund-factors associ-
ated with thex. -variable with each of the two bound-factors associateti tiew -
variable, foreachh =0,1,....,n—1,i = 1,...,r, which are subsequently linearized
using the substitutions specified[in{40). In the same waygamsider the nonnegative
products of the bound-factors associated withxvariables ang-variables with the
bound-factors for theé -variable together with the substitutioris22) ahdl (23)e Th
following resulting 12 constraints are then incorporated within the nonlinear pro
gramNLP:

4 >cwW +Lx -, j=01,...m—1i=1..r (44a)
Z >diw, +UX, —diUl, j=0,1,....n—1i=1_r (44b)
Z <cwj+Up—cU}, j=01,...n—1i=1__r (44c)
Z <diw, +Lix, —dlU}, j=0,1,....n—1i=1_.r (44d)
Yi > Xl +cA —cjl, j=0,1,....m—1i=1...r (44e)
Yy >Xu+did —diu, j=01,...m—1i=1...r (44f)
Yi SXju+ciA —cju, j=0,1,....n =1 i=1....r (449)
Y <xXl+did—dil, j=01,...m—1i=1...r (44h)
Vi >yl +giA —djl, j=0,1,....m—1i=1...r (44i)
Vi >Yju+hid —hju, j=0,1,....n =1, i=1,....r (44))
Vi <yiutgid —diu, =01, m—1i=1...r (44k)
Vi<Wl HhA =l =01 . m-1i=1..r (44)

The complementarity constraintw = y1_; (X ) "W is the sum of nonnegative terms,
noting that

(X)W = xowp + (X) TW > xowh — [[X|[W[| > 0, i =1,....r. (45)

This means that to have w = 0 with x € K andw € K, we must havéx ) w =0

fori=1,...,r. So we can remove the quadratic tefri w)? from the objective
function and, instead, add the term showrnIn{47a) along thighfollowingr linear
constraints:

ni—1

Z2=0,i=1,...r (46)
,Zo j

Accordingly, the nonlinear programming formulation of SQEICP, which we pro-
pose to solve by means of the enumerative method presented itext section, is
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given as follows:

NLP3:Minimize  f(x,y,v,W,A,2) = ||y — AX||?+ [[v—Ay||?+ ||z— xow]||?

+ (y"w)? 4 (vIw)? (47a)

s.t. w = Av+ By+Cx (47b)
X2 < ()2, i=1,....r (47c¢)
HVHZS (yIO)zv [ :1a"'7r (47d)
V]2 < (V)2 i=1,...r (47e)
W% < Wp)?, i=1,...r (47f)
;(x‘oﬂ/o) =1 (479)
;% +Vp) = (47h)
29) (47i)
(44) (47))
(48) (47k)

whereo is the Hadamard product. Note tHdtP3 is a convex constrained program
with a nonconvex objective function, whefe (#7E)={47f) egaivalent to the corre-
sponding Lorentz cone inclusion constraints.

Similar to Proposition 3 for the nonlinear proble¥iLP,, the following results
hold for NLP3:

global minimum oNLP3 with f(X,y,V,W,A,Z) = 0.
Proposition 8 For any given solutiorfx*,w*, A*) to SOCQEICP, there corresponds
a stationary poin{x*,y*, v, w*,A*, z*, 7*,s*) of NLPs.

5 An enumerative method

In this section, we introduce an enumerative algorithm fodifig a global mini-
mum to the nonlinear problemLP 3. This is done by exploring a binary tree that
is constructed by partitioning the intervatd, di] associated with the variables,
i=0,1,...,m—1,i=1,...,r and the intervall,u] associated with the variabke
The steps of the enumerative method are as follows:

Algorithm 1 Enumerative algorithm for SOCQEICP

> StepO (Initialization)
1: Setg; > 0 ande, > 0.
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2: Setk =1 and find a stationary poirk, y, vV, w, AZ ,Z) of NLP3(1).
3: if f()?)ZVvT//\ Z) =0then
4: terminate with(X, y, v, W, Az ,Z) as solution to SOCQEICP.
5: else if NLP5(1) is infeasiblethen
6: SOCQEICP has no solution; terminate.
7: else
8: LetP = {1} be initialized as the set of open nodes.
o: LetUB(1 )ff(iy,VvT//\”)
10: LetN = 1 be the number of nodes enumerated.
11: end if
12: Let
max{|? | i=01...m—-1i=1..r} (48)
6 = max{|§/ij —X¢j|,|\7*j —Xyﬂ j=0,1,...,ni—1i= 1,...,r} (49)
13: and let the maximum ir{(48) be achieved (@Y, j*)
14: while (61 > €1 OR 6, > &) do
> Stepl (Choice of node)
15: if P=0then
16: terminate; SOCQEICP has no solution.
17: else
18: Selectk € P such thatUB(k) = min{UB(i) :i € L}.
19: Let (XY, V, W, Az ,Z) be the stationary point that was previously found at
this node.
20: If k= 1, computed;, and6s in (@8) and[(4D), respectively.
21: end if
> Step2: (Branching rule)
22: if 6, > 6, then _
23: Let[c).,dl.] be the interval for the variabld. .
24: Partition the mtervaﬂc w5 s di"] for this variable at nodk into [¢} *,X'J ]and
R i i ii.] to generate two new nodék+ 1 andN + 2, where
» féji if min{ (%, —&.), (dl. %)} > 0.1(dl. —cil)
Xj= = diirel _ (50)
> otherwise
25: else if6y < 6, then
26: Let [I,U] be the interval for the variable.
27 Partition the intervall, U] for A at nodek into [I,A] and[A, U] to generate

two new node$N + 1 andN + 2, where

5 {X if min{(A —1),(@—A)} > 0.1(T—1)

. . (5)
42 otherwise
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28: end if

> Step3 (Solve, Update and Queue) N
29: For each ofv = N+ 1 andv = N + 2, find a stationary poinfX,y,v,w, A ,2)
of NLP3(v). B
30: If NLP3(v) is feasible, seP = PU{v} andUB(v) = f(X,V,V,W, A, 2).
31 SetP =P\ {k}.
32: end while

Below, we state the main convergence theorem for the fonggenumerative
algorithm for solving SOCQEICP. The proof closely followsat in [18], but we
include the details for the sake of insights and completenes

Theorem 2 The enumerative algorithm fodL P3 run with &, = 0 and &, = O either
terminates finitely with a solution to SOCQEICP, or else, afinite branch-and-
bound (& B) tree is generated such that along any infinite branch of tree, any
accumulation point of the stationary points obtainedfirP3; solves SOCQEICP.

Proof The case of finite termination is obvious. Hence, suppogethmfinite B&B
tree is generated, and consider any infinite branch. Fotiootd convenience, denote
{ = (x,y,v,W,A,z) and let{{}s, with s€ S, be a sequence of stationary points of
NLP 3 that correspond to nodes on this infinite branch. Then, bin¢gk subsequence
if necessary, we may assume

{¢®ts— 7 {[c%, dT}s — [c",d"], and{[I°, uT}s — [I",u],

where[c®, d%] and([I®, u%] respectively denote the vectors of bounds@mdA at node
s e Sof the B&B tree. We will show thaf * yields a solution to SOCQEICP.

Note that along the infinite branch under consideration, itfeeebranch om
infinitely often, or else, there exists some index-ffaiy) such that we branch on
the interval forx‘jA infinitely often. Let us assume the latter (the case of bramgchbn
A infinitely often is similar, as discussed below), and sugpibsit this sequence of
partitions corresponds to nodes indexedsleyS; C S. By the partitioning rule[(50),
since the interval length far. decreases by a geometric ratio of at mo& 6ver
se S, we have in the limit that

c]_if — djff = xjff =Vv*, say. (52)

Furthermore, from[{32) and the RLT bound-factor constea{@éa)-{{(44d), we
have in the limit that

Zj«j _ V\fjifv* _ thijir_ (53)

Moreover, by the selection of the index-paif{ for s Sy, via (48) and[(4B) and
the branching selection rule, we get titht— 0 and so8, — 0 as well. (The case
of branching om infinitely often likewise leads tb* = u* in the limit, which from
(44é)-[44)) yields thaf(22) anf([23) hold true in the linaihd so again both; and
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6, approach zero in the limit.) Thus in either case, we get idithgéass— o, s€ S,
that

Z' =w'x!, yi =A™ andvi = Aty j=0,1,..m—1i=1...r (54)
or that [22),[(2B), and_(40) hold true in the limit &t. Consequently, the set of con-
straints[[47b) yields froni.($4) that, in the limit} — AA*y* — By* —Cx* =0, i.e., by
applying the second set of identities[(n}54), we have

W' = A*2AX + A*BX +CX. (55)
Furthermore, by[(46) anfl(b4), we get
X Tw* =0. (56)
Likewise, from [47t)-H(47f) [(24#i)E(24I), and (b4), we get
X" € Kandw" € K. (57)

Thus, [E5)-(57) imply that thex{(,w*, A *)-part of {* represents a solution to SOC-
QEICP. O

There are a couple of insightful points worth noting in rebé the proof of
Theorem 2. First, observe that By {54) ahdl (56), we get tiét) = 0 in the limit,
as expected by Proposition 6. Second, observe thdtfor¢3#)ld true, i.e., forl(33)
to be a consequence 6f {52) (and similarly for the case ofdhiag infinitely often
on A variable), we need just one pair of the four constraints f(@da)—{44H) (and

likewise, one pair from each df (Z4€)—(44h) and (441 However, we carry the
entire set[(44) because they assert additional valid ingigsahat serve to assist in
the convergence process.

6 A semi-smooth algorithm

In this section, we use a semi-smooth algorithm for solvirlg3OCQEICH (19). Due
to Proposition 1, we know that= 0 and the complementarity constrairits {L9b) can
be replaced by

)t =@wH'wW=0, i=1,..,r (58)

As in [11], we introduce the so-called natural residual fiored; : R x R — R
associated with the second-order cétewhich is defined by

Pur(X 1) =X — R (X —t)) (59)
PR W) =y — Ry —w), (60)

whereP, (n') is the projection of a vectay' = (n},n') € R x R"~1 onto the second-
order con& foreachi=1,...,r,i.e.,

P (n') =arg min|| T —n'|. (61)
T'eK;
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The natural residual functio:pg‘\,R satisfies the following relations:
dr(X,t)=0sX eK t'eK,(X)t'=0 (62)
MRy W)=0sy eKweK,(y) W =0.

(63)
Consider the function®; (x,t) : R" x R" — R" and®,(y,w) : R" x R" — R" defined
by

¢I%IR(Xlatl>

¢&R(ylvwl)
D1(x,t) = : and®,(y,w) = : (64)
Ry Bl )
Then the SOCQEICHR(19) can be reformulated as follows
(Dl(xvt)
(DZ(ya W)
WYix,y,w,t,A) = (AA+B)y+Cx—w =0. (65)
AX—y—t

Si-al(€) X +(€)Ty] -1

Algorithm 2 given below describes the steps of the semi-gmalgorithm for finding
a solution of [6F). Here, the Clarke generalized Jacobiah af (x,y,w,t,A) has the
following form:

Ih—V 0 0V 0
0 Im,—-V V 0 0

GJxywt,A)=1| C (AA+B)—Iy 0 Ay|, (66)
Al —In 0 —In x
el el 0 0O

wherel, denotes the x n identity matrix,e is given in [25h) an®/,V € R™" are
given as follows

vio o vio o
V=100l V=|o0" ol- (67)
0 OV’ 0 0V

The matrice&/' andV',i =1,....r can be explicitly computed as in[11].
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Algorithm 2 Semi-smooth Newton algorithm

StepO (Initialization)

: Let (X,y,W,h,A) be an initial point such thak,y) € A.

. Let & andég; be selected positive tolerance.

: Compute®; and @, given in [63). .

- while (max{|[W— (AA+B)y—CX|, [[f = AR+9||} > & OR max|| @1, || @[} >
52) do

A W N PEV

Step1 (Newton direction) R
Compute the Clarke generalized Jacobian GX 3t w,E,A).
if GJ(X,¥,W,,A) is singularthen

Stop, and terminate with an unsuccessful termination.
else
Compute the semi-smooth Newton direction

© o N avVv

> Step3 (Update)
10: Compute the new point
K =R+ O, § =Y+ 0y, W=W+dy, T =f+ck, andA = A +d,

=A.

>

11: andletX=%, y=¥, w=w, { =t, and

12: end if

13: end while R

14: If the algorithm terminates with success, theris a quadratic complementary
eigenvaluef = 0 in this solution and1+ A)X is the corresponding quadratic
complementary eigenvector.

7 A hybrid method

In order to combine the benefits of the enumerative methogawthm 1) with that
of the semi-smooth Newton method (Algorithm 2), (as bornebycomputational
results reported in Secti@h 8), we also explore the follgwigbrid algorithm:
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Algorithm 3 Hybrid algorithm

> StepO (Initialization)

: Let & and &, be two positive tolerances for switching from the enumeeati

method to the semi-smooth and, Btande, be the tolerances used in Algo-
rithm 1, such that; < & ande; < &.

. Letnmaxitbe the maximum number of iterations allowed to be performettié

semi-smooth Newton method.

Step1 (Method selection decision step)

3: Let(X,y,V,W,A,Z) be the stationary point associated with the nkead compute

© o N gk

10:

11:
12:
13:
14:
15:
16:
17:

6, and 6, in (@8) and[(4D), respectively.

: while (61 > €1 OR 6, > &) do

if (6, <& AND 6, < &) then
Apply Algorithm 2.
if Algorithm 2 terminates with a solutiofx*,y*,w*,t*,A*) then
Stop; seft = A* andX = x*.
else ifGJ X, ¥,W,t,A) is singular ORf the number of iterations is equal

to nmaxitthen
Apply Steps 2 and 3 of Algorithm 1 continuing with the nddand

the solution(X,y,V,W, A, Z) given at the beginning of this step.
Computed; and6; in (48) and[(4D), respectively.
end if
else
Apply Steps 2 and 3 of Algorithm 1.
Computed; and6, in (48) and[[(49), respectively.
end if
end while

8 Computational experience

In this section, we discuss the numerical performance ofptloposed algorithms
for computing quadratic complementary eigenvalues. Thenamative algorithm has
been implemented in MATLAET20] and the IPOPT (Interior PddPTimizer) solver
[31] has been used to find a (local) solution to the nonlineablemMNLP 3(k) in (41)
at each nodé&.

The matriceA and—C were both chosen as the identity matrix, while the matrix

B was randomly generated with elements uniformly distributethe intervalg0, 1],
[0,5], [0,10], and[0,20]. For these preliminary test problems we have takenl.
These problems are denoted by RANDM,n), where 0 andn are the end-points
of the interval, andh represents the dimension of the problem, i.e., of the nedric
A, B,C € R™". We have considered for generatBgn = 5, 10, 20, 30, 40, and 50.
Each SOCQEICP was suitably scaled by using the argumentitio8[2 and with
the normalization constraifgtf,_, x§ = 1.
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Problem A f | u Nodes CPU Fe compl
RAND(0, 1, 5) 1.082938 4.26029e-09 0.020000 35.272922 0 2.34870e+00 2926@-06  3.96564e-0
RAND(O, 1,10) | 1.593798 6.52343e-11  0.627456 124.253405 0 2.08824e+00700&0e-07  2.70959e-0
RAND( 0, 1, 20) 1.659763 2.81584e-10 0.553049 427.686658 0 1.84855e+0@024e-06  6.42486e-0

5

7

1

RAND(0, 1, 30) 1.946947 4.98848e-08  0.515724 937.744286 4.28787e+0B22%e-06  5.27508e-0!
RAND(0, 1, 40) 1.706686 5.06694e-08  0.376076  1688.709420 9.30902e+05509be-06  6.76991e-05
RAND(0, 1, 50) 2.074764 5.37378e-08  0.660755  2598.493157 2.58905e+025443e-06  4.89964e-05
RAND(0, 5, 5) 3.460789 4.95718e-09  0.396632 77.997883 0 1.71447e+00 80236-06  5.76957e-0l
RAND( 0, 5, 10) 1.523588 2.24121e-09  0.211826 331.050776 0 2.96092e+0®3716e-06  1.75369e-0!

[

RAND(0,5,20) | 2.812431  2.68931e-07  0.108645  1220.999048 11  6.63263e+BD1636e-06  6.22590e-05
RAND(0,5,30) | 8.890165  2.42596e-07  0.279609  2834.246323 20 1.88836e+DD5060e-05 6.48083e-06
RAND(0,5,40) | 7.126082  1.48623e-05  0.000002  4919.380520 17 2.15128e+8®5135e-07  7.52232e-05
RAND(0,5,50) | 6.778310  2.30355e-08  0.108923  7658.289831 33 6.82388e+DBI855e-06  3.66761e-06
RAND(O, 10,5) | 1.721980  4.55823e-10  0.071138  146.082341 0 5.04101e+0@0466e-07  6.38694e-0

RAND( 0, 10, 10) * [2.14363e-04] 1.92697e-04  1.75494e-02
RAND(0, 10,20) | 10.831012  1.28806e-06  0.026954  2253.090185 45  3.24980e+6.65534e-06  1.02847e-05
RAND(0, 10,30) | 13.028430  4.62255e-09  0.177992  5015.490181 15  1.21823e+6.12185e-06  5.10067e-07
RAND( 0, 10, 40) * [1.50762¢-03] 6.12468¢-03  1.18574e-0lL
RAND(0, 10,50) | 13.738982  3.98646e-04  0.000278 13714.150693 67  1.56089e+4.50216e-05 1.05689e-04
RAND( 0, 20,5) | 16.255630  1.00235e-09 _ 0.317963 _ 267.804999 9 3.63311e+083221e-06  1.996966-07
RAND( 0, 20, 10) * [2.61659¢-06] 8.19066e-05  8.79952e-03
RAND(0, 20,20) | 21.691343  6.55340e-08  0.030432  4217.129671 41 3.16184+8.94613e-06  6.82192e-07
RAND(0, 20,30) | 25.043734  4.32816e-06  0.137434  9410.157670 53 7.09780e+B.06579e-06  3.42778e-0B
RAND( 0, 20, 40) * [7.78051e-01] 8.06774e-03  2.59614e-03
RAND( 0, 20, 50) * [2.71665e-04] 3.34161e-02  4.24448e-03

Table 1 Performance of the enumerative method for solving the dca@CQEICP.

Problem A f CPU Fe Compl
RAND(O, 1, 5) 1.082341  4.31470e-10  2.02500e+00  1.30062e-06  1.100B5E-0
RAND( 0, 1, 10) 1593563  4.55799e-10  1.50600e+00  1.58997e-06  6.751818e-0
RAND( 0, 1, 20) 1.660184  2.16221e-12  4.34000e+00  1.27705e-08  4.364D5e-0
RAND( 0, 1, 30) 1.942111  6.28458e-11  4.65900e+00  3.23224e-08  1.81&9e-0
RAND( 0, 1, 40) 1.704470  1.17660e-16  3.73360e+01  5.45797e-10  3.086D7e-0
RAND( 0, 1, 50) *
RAND( 0, 5, 5) 3.459575  1.30447e-11  2.24100e+00 1.07787e-06  2.882h3g-0
RAND( 0, 5, 10) 1.446998  2.99299e-10  1.12800e+00  4.96887e-06  6.29453e-0
RAND( 0, 5, 20) 2.710466 6.54488e-15  6.15600e+00  2.51409e-11 1.02480e-0
RAND( 0, 5, 30) 8.877550  9.33578e-14  2.99770e+01  2.08784e-10  3.85227¢-0
RAND( 0, 5, 40) *
RAND( 0, 5, 50) *
RAND( 0, 10, 5) 1.718571  3.15284e-11 2.51100e+00 1.50084e-06  1.54487p-0
RAND(O, 10, 10) | 4.330785  4.12716e-10  1.04500e+00  7.50345e-07  1.05383e-0
RAND( 0, 10, 20) *
RAND( O, 10, 30) | 13.019492 8.08185e-12  2.24020e+01  5.76955e-09  1.67@9e-
RAND( 0, 10, 40) *
RAND( 0, 10, 50) *
RAND(O, 20,5) | 16.260461 1.01362e-12  4.65100e+00 3.12245e-07 -3.51H3Ye
RAND( O, 20, 10) | 2.940613  1.02493e-11  1.42800e+00 1.69245e-07  3.48378e-0

RAND( 0, 20, 20) *
RAND(0, 20, 30) | 25.225560 4.50830e-14  1.37040e+02  4.04710e-07  2.525B9p-
RAND( 0, 20, 40) *
RAND( 0, 20, 50) *

Table 2 Performance of BARON for solving the scaled SOCQEICP.

8.1 Performance of the enumerative method

Table[d reports the computational experience when solViegaforementioned test
problems. The enumerative method was run with the tolesafice 10° ands, =
107°. In this table, we report the computed value of the eigemyahe value of the
function f derived at the solution, the value of the lower and upper deunor A
computed as in Sectiohs #.3 dndl4.2, respectively, the nuailmedes enumerated
by the algorithm, and the CPU time in seconds. Furthermbesgolumn titled “Fe”
reports the value ofw — A2Ax— A Bx— Cx||. derived at the solution, while the last
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column titled “compl” shows the value of' w at this solution. The value zero in
the column titled “Nodes” indicates that a solution to SOQCEwas found at the
root node itself. The symbol * indicates that the enumeeggilgorithm was not able
to solve the problem, i.e., the algorithm attained the maxmmumber of iterations,
fixed asnmax = 300. In this case we include the value of the objective fum;tthe
corresponding value of “Fe”, and “compl” for the best statioy point available at
termination.

As a benchmark for comparison, we solved these same prohigimg BARON
(Branch-And-Reduce Optimization Navigatbr[30]), whishain optimization solver
for the global solution of algebraic nonlinear programs amged-integer nonlin-
ear problems. This software package implements a brandfrezfuce algorithm, en-
hanced with a variety of constraint propagation and du#ithniques for reducing
ranges of variables in the course of the algorithm. The codsdlving the nonlinear
problemNLP; given in [24) was implemented in the General Algebraic Mivdgl
Systems (GAMS) languaggl[7] and the solver BARON was usel daffault op-
tions. The numerical results for solving the same set ofgesiblems as above are
displayed in Tablg]2. We use the notation * to indicate thaRBN was not able to
find a solution to SOCQEICP.

Comparing Tablds 1 and 2, we see that the enumerative methoohates prema-
turely with just an approximate global optimizer for fivettpsoblems, while BARON
fails in finding a global minimum for nine instances. The \edwf “Fe” and “compl”
obtained with the application of the enumerative algorimasimilar, in general, to
those delivered by the global minima given by BARON. Moreaoilee computational
time for the enumerative method was comparable to that redjioy BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-smamilioN algorithm
presented in Sectidd 6 and the results are shown in Teblelse3starting point was
chosenad =1, (xX%,x,y°,y) = (1/2,0,1/2,0), W= A 2Ax+ABx+Cx andh = Ax—

y. The algorithm was run witl; andz, both equal to 10%. In Table[3, we report the
value of the computed eigenvalue, the number of iteratiakeart by the algorithm to
converge, and the CPU time in seconds. The notation “*” iatis that the algorithm
was not able to converge within the maximum number of iteretj which was set at
100. Note that the semi-smooth method is much faster thagrthmmerative algorithm
for obtaining a solution, but on the other hand, it is oftehalude to converge within
the given number of iterations.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative methgdired more than one
node for finding a solution, we applied the hybrid method pssal in Sectioh]7.
The values of the tolerances andé, used to switch from the enumerative method
to the semi-smooth Newton method were set to1@or the semi-smooth Newton



22 Alfredo N. lusem et al.

Problem A It CPU
RAND( 0, 1, 5) 1.081800 5  1.56439e-01
RAND(O, 1,10) | 1593743 7  6.02723e-0
RAND(O, 1,20) | 1.660417 50 8.24431le-02
RAND(O, 1,30) | 1.942184 11 4.53060e-02
RAND(O, 1,40) | 1.704506 16 9.33797e-02
RAND(O0, 1,50) | 2.076201 38 3.15395e-01
RAND( 0, 5, 5) 3.459636 22  2.22559e-02
RAND( 0, 5, 10) 1.494006 8 1.24778e-02
RAND( 0, 5,20) | 2.710538 10 2.41175e-02
RAND( 0, 5, 30) *

RAND( 0, 5,

40) | 6.978216 66  3.45564e-0
RAND( 0, 5, 50) *
RAND(0,10,5) | 1.759891 5  553116e-0
RAND( 0, 10, 10) *

RAND( 0, 10, 20)
RAND( 0, 10, 30)
RAND( 0, 10, 40)
RAND( 0, 10, 50)
RAND(0, 20, 5)
RAND(0, 20, 10) | 2.9
RAND( 0, 20, 20)
RAND( 0, 20, 30)
RAND( 0, 20, 40)
RAND( 0, 20, 50)

4632 11  1.05081e-02

* ook ok x Dol o+ o+ ox %

Table 3 Performance of the semi-smooth Newton method for solviegtialed SOCQEICP.

algorithm, the values of the tolerances to terminate therityn were taken ag, =
10~*and&, = 104, The maximum number of iterations for the semi-smooth metho
was fixed as 100.

Table[4 displays the value of the computed eigenvalue, theoeu of nodes enu-
merated by the algorithm, the number of times that the senoiesh Newton method
was called, which we indicate as “Ntime”, the CPU time in setx) and the values
of “Fe” and “compl” defined as above.

We observe that the additional use of the semi-smooth Newietihod greatly
improves the efficiency and efficacy of the enumerative netthmleed, the algorithm
is able find a solution by enumerating a fewer number of nodessaicceeds in
solving all the test problems.

The efficiency of the hybrid algorithm was also investigatdenK is the Carte-
sian product of Lorentz conés as in [10) withr > 1. In Tabld®, we report the results
obtained fom = 30, 40, 50, 100, and =5, 10. The results confirm the efficiency of
the hybrid method for dealing with these more complicatexbf@ms. We therefore
recommend the proposed hybrid algorithm for solving SOGIPEIL

9 Conclusions

In this paper, we have investigated the solution of the Sé@rder Cone Quadratic
Eigenvalue Complementarity Problem, SOCQEI&B(C), withAc PD andC € S,.

By exploiting the equivalence between thelimensional SOCQEICP and a suitable
2n-order SOCEICP, we introduced an appropriate Nonlineagfaraming (NLP)
formulation for the latter having a known global optimal wal An enumerative
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Problem A Nodes  Ntime CPU Fe compl

RAND(0, 1,30) | 1.942184 0 1 2.02698e+00  3.08087e-15 -1.64018¢-15

RAND(0, 1,40) | 1.704506 0 1 5.62104e+00  1.41935e-14  -1.48770¢-13

RAND( 0, 1, 50) 2.076201 0 1 5.97575e+00 3.76871e-12  -1.38359¢-12

RAND(0, 5,20) | 2.710538 0 1 4.60102e+00 8.92193e-13  -3.58477¢-13

RAND( 0, 5, 30) 8.877496 0 1 3.87405e+00 5.73297e-10  -5.70326¢-11

RAND(0, 5,40) | 6.978216 0 1 7.41294e+00  6.62892e-12  -4.09478¢-13

RAND( 0, 5, 50) 6.787334 0 1 9.21684e+00 4.59986e-10 -1.08617¢-10

RAND(0, 10, 10) | 4.330815 0 1 1.49573e+00 6.37987e-10  -4.92289¢-11

RAND( 0, 10, 20) | 10.831012 2 1 9.18055e+00  7.34059e-11  -1.00148¢-11

RAND( 0, 10, 30) | 13.019383 0 1 5.05396e+00  2.96528e-09  -3.96873g-10

RAND( 0, 10, 40) | 8.349292 0 1 6.21859e+00  3.64334e-11  -3.56923¢-12

RAND( 0, 10, 50) | 13.185873 0 1 6.59344e+00  1.24879%e-11  -3.69148¢-12

RAND(0, 20, 5) | 16.260338 0 1 5.58621e+00 3.84712e-12 -1.37479¢-13

RAND( 0, 20, 10) | 2.944632 0 1 2.49894e+00  1.12554e-08  -2.40425¢-09

RAND( 0, 20, 20) | 21.671241 0 1 4.60443e+00  3.34048e-12  2.17000et13

RAND( 0, 20, 30) | 25.225542 0 1 9.70190e+00  6.67380e-12  -1.19377¢-12

RAND( 0, 20, 40) | 26.071054 1 1 3.33318e+01  2.32863e-13  -6.69950g-15

RAND( 0, 20, 50) | 26.459219 1 2 3.48536e+01  8.51749e-16  -8.67362g-18

Table 4 Performance of the hybrid method for solving the scaled SBICR.
r=5 r=10

Problem A Nodes  Ntime Fe compl A Nodes  Ntime Fe compl
RAND(O, 1, 30) 1.507567 0 1 3.78057e-12  -5.97117e-[31.745894 0 1 6.47855e-10  -2.63029e-11
RAND(0, 5, 30) 4.618213 0 1 4.66058e-10  -3.06677e-].14.793496 1 1 5.99856e-09  -4.52674e-1.0
RAND(0, 10, 30) | 10.242716 1 1 9.50619e-10  -1.92155e-[L112.447275 3 3 3.92070e-09  -5.77478e-[L1
RAND(0, 20, 30) | 25.079701 0 1 2.63178e-13  -3.94712e-[122.839777 9 2 3.28573e-15  -7.34547e-18
RAND(0, 1, 40) 1.669932 0 1 1.69323e-13  -5.22984e-[41.621706 0 1 7.87300e-12  -1.09884e-].2
RAND( 0, 5, 40) 4.237988 0 1 2.98267e-08  -5.01146e-D94.774869 3 4 1.42131e-10  -7.10721e-12
RAND(0, 10, 40) | 10.240786 1 1 8.65350e-13  -1.71890e-[13.3.427837 0 1 7.02989e-10  -1.20675e-[L1
RAND(0, 20, 40) | 28.774659 0 1 1.03278e-09  -1.31250e-[.120.303234 5 2 2.64979e-16  -8.67362e-[19
RAND(O, 1, 50) 2.100357 0 1 2.05926e-10  -2.39811e-[12.025522 0 1 5.06818e-12  -2.51581e-12
RAND( 0, 5, 50) 5.280643 0 1 1.16584e-07  -8.44835e-P87.659915 1 2 7.59458e-11  -2.07326e-12
RAND(0, 10, 50) | 13.966155 0 1 1.46927e-07  -8.74790e-PAL3.128826 1 1 3.36279e-07  -2.16985e-P8
RAND(0, 20, 50) | 29.397506 0 1 1.25672e-11  -6.36429e-[127.394438 3 1 3.86771e-14  -2.46336e-[15
RAND(O, 1, 100) | 2.470418 0 1 2.78978e-13  -1.44331e-[42.294175 3 1 7.68383e-10 -1.76786e-10
RAND(0, 5,100) | 8.471858 11 5 1.66967e-16  -4.33681e-[197.728152 5 1 1.93562e-13  -5.22204e-14
RAND( 0, 10, 100) | 17.613880 9 4 1.58521e-15  -8.02310e-[L&0.952430 9 2 3.25973e-13  -1.51641e-[l4
RAND(0, 20, 100) | 36.270876 13 1 4.39339e-08  -7.37002e-[L(B4.565427 9 1 5.42460e-08  -1.62659e-P9

Table 5 Performance of the hybrid method for solving some instantése scaled SOCQEICP with=5

andr = 10.

method was developed for solving this NLP formulation and weoven to glob-

ally converge to a solution of the SOCQEICP. However, for sa@est problems, the

enumerative method was able to compute only an approxino&iéan in practice.

Hence, a hybrid method that combines the enumerative #igorith a semi-smooth
method was proposed for implementation, and numericalteegere presented to

demonstrate that this hybrid method is highly efficient favasg SOCQEICP.
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