The Second-Order Cone Quadratic Eigenvalue Complementarity Problem

Alfredo N. Iusem • Joaquim J. Júdice
Valentina Sessa . Hanif D. Sherali

Received: date / Accepted: date

Abstract

We investigate the solution of the Second-Order Cone Quadratic Eigenvalue Complementarity Problem (SOCQEiCP), which has a solution under reasonable assumptions on the matrices included in its definition. A Nonlinear Programming Problem (NLP) formulation of the SOCQEiCP is introduced. A necessary and sufficient condition for a stationary point (SP) of NLP to be a solution of SOCQEiCP is established. This condition indicates that, in many cases, the computation of a single SP of NLP is sufficient for solving SOCQEiCP. In order to compute a global minimum of NLP for the general case, we develop an enumerative method based on the Reformulation-Linearization Technique and prove its convergence. For computational effectiveness, we also introduce a hybrid method that combines the enumerative algorithm and a semi-smooth Newton method. Computational experience on the solution of a set of test problems demonstrates the efficacy of the proposed hybrid method for solving SOCQEiCP.

Keywords Eigenvalue Problems • Complementarity Problems • Nonlinear Programming • Global Optimization • Reformulation-Linearization Technique.

Mathematics Subject Classification (2000) 60F15 • 90C33 - 90C30 • 90C26

A. N. Iusem

Instituto de Matématica Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Rio de Janeiro, RJ, CEP 22460-320, Brazil, E-mail: iusp@impa.br. The work of this author was partially supported by CNPq grant no. 301280/86.

J. J. Júdice

Instituto de Telecomunicações, Portugal, E-mail: joaquim.judice@co.it.pt. In the scope of R\&D Unit UID/EEA/5008/2013, financed by the applicable financial framework (FCT/MEC through national funds and when applicable co-funded by FEDER PT2020 partnership agreement).
V. Sessa

Instituto de Matématica Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Rio de Janeiro, RJ, CEP 22460-320, Brazil, E-mail: valsessa@impa.br.
H. D. Sherali

Grado Department of Industrial \& Systems Engineering, Virginia Tech, Blacksburg, VA, USA E-mail: hanifs@vt.edu.

1 Introduction

The Eigenvalue Complementarity Problem (EiCP) [25, 27] consists of finding a real number λ and a vector $x \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\begin{gather*}
w=\lambda B x-C x \tag{1}\\
x \geq 0, w \geq 0 \tag{2}\\
x^{\top} w=0, \tag{3}
\end{gather*}
$$

where $w \in R^{n}$, and B and $C \in \mathbb{R}^{n \times n}$, and where B is assumed to be positive definite (PD). This problem finds many applications in engineering [18, 23, 27]. If a triplet ($\lambda, x, w)$ solves EiCP, then the scalar λ is called a complementary eigenvalue and x is a complementary eigenvector associated with λ. The condition $x^{\top} w=0$ and the nonnegativity requirements on x and w imply that either $x_{i}=0$ or $w_{i}=0$ for all $1 \leq i \leq n$, and so, these pairs of variables are called complementary. The EiCP always has a solution provided that the matrix B is PD [18]. A number of techniques have been proposed for solving EiCP and its extensions [2, 6, 13, 14, 16-19, 21, 24, 29].

An extension of the EiCP, called the Quadratic Eigenvalue Complementarity Problem (QEiCP), was introduced in [28]. This problem differs from the EiCP through the existence of an additional quadratic term in λ, and consists of finding a real number λ and a vector $x \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\begin{gather*}
w=\lambda^{2} A x+\lambda B x+C x \tag{4}\\
x \geq 0, w \geq 0 \tag{5}\\
x^{\top} w=0, \tag{6}
\end{gather*}
$$

where $w \in \mathbb{R}^{n}$ and A, B, and $C \in \mathbb{R}^{n \times n}$. (We differ from (11) and use $+C x$ in (4) for notational convenience.) The λ-component of a solution to $\operatorname{QEiCP}(A, B, C)$ is called a quadratic complementary eigenvalue and the corresponding x-component is called a quadratic complementary eigenvector associated with λ. Contrary to EiCP, QEiCP may have no solution. However, under some not too restrictive conditions on the problem matrices A, B or C, QEiCP always has a solution [4,28], which can be found by either solving QEiCP directly [2, 13, 14] or by reducing it to a $2 n$-dimensional EiCP [4]15]. In particular, semi-smooth Newton methods [2], enumerative algorithms [13-15], and a hybrid method that combines both previous techniques [14] 15], have been recommended for solving the QEiCP.

The EiCP and the QEiCP can be viewed as mixed nonlinear complementarity problems [10], where the complementary vectors x and w belong to the cone $K=\mathbb{R}_{+}^{n}$ and its dual $K^{*}=\mathbb{R}_{+}^{n}$, respectively. The case of EiCP with K being the so-called second-order cone, or Lorentz cone, denoted SOCEiCP, was introduced in [1], and can be stated as follows: Find a real number λ and a vector $x \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\begin{gather*}
w=\lambda B x-C x \tag{7}\\
x \in K, w \in K^{*} \tag{8}\\
x^{\top} w=0, \tag{9}
\end{gather*}
$$

where B and $C \in \mathbb{R}^{n \times n}, B$ is PD , and K is the second-order cone defined by

$$
\begin{equation*}
K=K_{1} \times K_{2} \times \ldots \times K_{r}, \tag{10}
\end{equation*}
$$

where

$$
\begin{gather*}
K_{i}=\left\{x^{i} \in \mathbb{R}^{n_{i}}:\left\|\bar{x}_{i}\right\| \leq x_{0}^{i}\right\} \subseteq \mathbb{R}^{n_{i}},(1 \leq i \leq r) \tag{11}\\
\sum_{i=1}^{r} n_{i}=n \tag{12}
\end{gather*}
$$

and where

$$
\begin{equation*}
x=\left(x^{1}, \ldots, x^{r}\right) \in \mathbb{R}^{n}, \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
x^{i}=\left(x_{0}^{i}, \bar{x}^{i}\right) \in \mathbb{R} \times \mathbb{R}^{n_{i}-1},(1 \leq i \leq r) . \tag{14}
\end{equation*}
$$

Here, $\|\cdot\|$ denotes the Euclidean norm and the dual cone K^{*} of K is defined by

$$
\begin{equation*}
K^{*}=\left\{y \in \mathbb{R}^{n}: y^{\top} x \geq 0, \forall x \in K\right\} . \tag{15}
\end{equation*}
$$

Observe that each cone K_{i} is pointed and self-dual, i.e., it satisfies $K_{i}=K_{i}^{*}$. In [1], several semi-smooth Newton type algorithms were analyzed for finding a solution to SOCEiCP, but none of these algorithms induces global convergence and there is no guarantee that they find a solution of the SOCEiCP even if a line-search procedure is employed. Alternative approaches for solving SOCEiCP consist of considering this problem as a nonlinear programming problem (NLP) with a nonconvex objective function minimized over a convex set defined by the intersection of the Lorentz cone with a set defined by linear constraints. In the so-called symmetric case (where B and C are both symmetric matrices), the computation of a single stationary point (SP) of this NLP is sufficient to solve the SOCEiCP [5]. In general, the computation of just one SP of NLP may not be enough to find a solution for the SOCEiCP and a global minimum of NLP has to be computed. An enumerative algorithm was introduced in [11] for finding such a global minimum, and was combined with a semi-smooth Newton method to enhance its computational efficiency [11].

In this paper, we study the Second-Order Cone Quadratic Eigenvalue Complementarity Problem (SOCQEiCP), which consists of finding a real number λ and a vector $x \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\begin{gather*}
w=\lambda^{2} A x+\lambda B x+C x \tag{16a}\\
x \in K, w \in K^{*} \tag{16b}\\
x^{\top} w=0, \tag{16c}
\end{gather*}
$$

where A, B, and $C \in \mathbb{R}^{n \times n}$ and where K is defined in (10)- Similar to the SOCEiCP [11], in order to guarantee a nonzero complementary eigenvector, the following normalization constraint is added to the problem:

$$
\begin{equation*}
\sum_{i=1}^{r}\left(e^{i}\right)^{\top} x^{i}-1=0 \tag{17}
\end{equation*}
$$

where $e^{i}=(1,0, \ldots, 0)^{\top} \in \mathbb{R}^{n_{i}}$.
The remainder of this paper is organized as follows. In Section 2 we first recall the results established in [5], which reduce the SOCQEiCP into a $2 n$-dimensional SOCEiCP under some sufficient conditions on the matrices A and C. As for the SOCEiCP, we introduce an NLP formulation for the $2 n$-dimensional SOCEiCP in Section 3, and we establish a necessary and sufficient condition for a SP of this NLP to be a solution of SOCQEiCP. An enumerative algorithm is next proposed and analyzed in Sections 4 and 5 in order to provably solve the SOCQEiCP by computing a global minimum of the equivalent NLP formulation. Furthermore, similar to the SOCEiCP, a semi-smooth Newton method is developed in Section 6 and a hybrid procedure that combines the enumerative algorithm and the semi-smooth Newton method is designed for enhancing the computational efficiency of using just the former (convergent) algorithm. Numerical results with a number of test problems are reported in Section 8 in order to illustrate the efficiency of the hybrid method in practice, and Section 0 closes the paper with some concluding remarks.

2 A 2n-dimensional SOCEiCP

Consider again the SOCQEiCP given by (16). Similar to [5], we impose the following (not too restrictive) conditions on the matrices A and C :
(A1) The matrix A is positive definite (PD), i.e.,

$$
x^{\top} A x>0, \forall x \neq 0 .
$$

(A2) $C \in S_{0}^{\prime}$ matrix, i.e., $x=0$ is the unique feasible solution of

$$
\begin{align*}
& \left\|\bar{x}^{i}\right\| \leq x_{0}^{i}, i=1, \ldots, r \tag{18a}\\
& v=C x \tag{18b}\\
& \left\|\bar{v}^{i}\right\| \leq v_{0}^{i}, i=1, \ldots, r \tag{18c}\\
& x_{0}^{i} \geq 0 . \tag{18d}
\end{align*}
$$

Note that a matrix C is S_{0}^{\prime} if there is no $x \neq 0$ satisfying the conditions 18 and the regularization constraint (17). Now, consider the following $2 n$-dimensional SOCEiCP on $K \times K$ as defined in [5] along with the normalization constraint (17):

$$
\begin{gather*}
\lambda\left[\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
y \\
x
\end{array}\right]-\left[\begin{array}{cc}
-B & -C \\
I & 0
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{c}
w \\
t
\end{array}\right] \tag{19a}\\
y^{\top} w+x^{\top} t=0 \tag{19b}\\
x, y, w, t \in K \tag{19c}\\
\sum_{i=1}^{r}\left(x_{0}^{i}+y_{0}^{i}\right)=1 \tag{19d}\\
x_{0}^{i} \geq 0, y_{0}^{i} \geq 0 \tag{19e}
\end{gather*}
$$

Then the following property holds [5]:

Proposition 1 (i) The SOCEiCP (19) has at least one solution (λ, z), with $z=$ $(x, y) \in \mathbb{R}^{2 n}$.
(ii) In any solution of the SOCEiCP (19), $t=0$ and $\lambda>0$.
(iii) If (λ, z) is a solution of the SOCEiCP (19) with $z=(x, y) \in \mathbb{R}^{2 n}$, then $(\lambda,(1+$ $\lambda) x$) solves SOCQEiCP.

As analyzed in [5], a negative eigenvalue for SOCQEiCP can be guaranteed if B replaces $-B$ in the definition of the $2 n$-dimensional SOCEiCP.

Many optimization textbooks [3, 22] discuss the importance of scaling in order to improve the numerical accuracy of the solutions computed by optimization algorithms. We define the following diagonal matrix:

$$
\begin{equation*}
D=\frac{1}{\alpha} I_{n} \tag{20}
\end{equation*}
$$

where I_{n} is the identity matrix of order n, and where

$$
\begin{equation*}
\alpha=\sqrt{\max \left\{\left|a_{i j}\right|,\left|b_{i j}\right|,\left|c_{i j}\right|\right\}} \tag{21}
\end{equation*}
$$

$i=1, \ldots, n$ and $j=1, \ldots, n$. Then the following properties can be easily shown.

Proposition 2 (i) A is $P D$ if and only if $D A D$ is $P D$.
(ii) C is S_{0}^{\prime} if and only $D C D$ is S_{0}^{\prime}.

Due to Proposition2 the $\operatorname{SOCQEiCP}(D A D, D B D, D B D)$ satisfies the assumptions (A1) and (A2) if $A \in \mathrm{PD}$ and C belongs to S_{0}^{\prime}. Therefore, one can always reduce the SOCQEiCP to one where the elements of the matrix of the problem belong to the interval $[0,1]$. It is easy to show that this scaled SOCQEiCP has the same eigenvalues of the original problem but the eigenvectors are scaled by a factor $1 / \alpha$, where α is given by (21).

3 A nonlinear programming formulation for SOCQEiCP

In this section, we propose an equivalent nonlinear programming formulation for the 2n-dimensional SOCEiCP. By following the approach given in [4] and in [11], we introduce the vectors:

$$
\begin{align*}
y_{j}^{i} & =\lambda x_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{22}\\
v_{j}^{i} & =\lambda y_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r, \tag{23}
\end{align*}
$$

where (22) follows from the second row in (19a), noting that $t=0$. Since $\lambda>0$ and $t=0$ in any solution to SOCEiCP (19), then $y^{\top} w=x^{\top} w=v^{\top} w=0$ in such a
solution. This leads to the consideration of the following nonlinear program:

$$
\begin{array}{cl}
\mathbf{N L P}_{1}: \text { Minimize } & f(x, y, v, w, \lambda)=\|y-\lambda x\|^{2}+\|v-\lambda y\|^{2}+\left(x^{\top} w\right)^{2}+\left(y^{\top} w\right)^{2} \\
& +\left(v^{\top} w\right)^{2} \\
\text { subject to } & w=A v+B y+C x \\
& \left\|\bar{x}^{i}\right\|^{2} \leq\left(x_{0}^{i}\right)^{2}, \quad i=1, \ldots, r \\
& \left\|\bar{y}^{i}\right\|^{2} \leq\left(y_{0}^{i}\right)^{2}, \quad i=1, \ldots, r \\
& \left\|\bar{v}^{i}\right\|^{2} \leq\left(v_{0}^{i}\right)^{2}, \quad i=1, \ldots, r \\
& \left\|\bar{w}^{i}\right\|^{2} \leq\left(w_{0}^{i}\right)^{2}, \quad i=1, \ldots, r \\
& \sum_{i=1}^{r}\left(x_{0}^{i}+y_{0}^{i}\right)=1 \\
& \sum_{i=1}^{r}\left(y_{0}^{i}+v_{0}^{i}\right)=\lambda \\
& x_{0}^{i} \geq 0, i=1, \ldots, r \\
& y_{0}^{i} \geq 0, i=1, \ldots, r \\
& v_{0}^{i} \geq 0, i=1, \ldots, r \\
& w_{0}^{i} \geq 0, i=1, \ldots, r \tag{241}
\end{array}
$$

where $w^{i}=\left(w_{0}^{i}, \bar{w}^{i}\right) \in \mathbb{R}^{n_{i}}, y^{i}=\left(y_{0}^{i}, \bar{y}^{i}\right), \in \mathbb{R}^{n_{i}}, v^{i}=\left(v_{0}^{i}, \bar{v}^{i}\right), \in \mathbb{R}^{n_{i}}$ for $i=1, \ldots, r$, and $w=\left(w^{1}, w^{2}, \ldots, w^{r}\right) \in \mathbb{R}^{n}, y=\left(y^{1}, y^{2}, \ldots, y^{r}\right) \in \mathbb{R}^{n}$, and $v=\left(v^{1}, v^{2}, \ldots, v^{r}\right) \in \mathbb{R}^{n}$.

Proposition 3 The nonlinear problem $\mathbf{N L P}_{1}$ in (24) has a global minimum $\left(x^{*}, y^{*}, v^{*}\right.$, $\left.w^{*}, \lambda^{*}\right)$ such that $f\left(x^{*}, y^{*}, v^{*}, w^{*}, \lambda^{*}\right)=0$ if and only if $\left(\lambda^{*}, y^{*}, x^{*}\right)$ is a solution of SOCEiCP (19) with $\lambda^{*}>0$ and $t^{*}=0$.

Proof If the optimal value of $\mathbf{N L P} \mathbf{P}_{1}$ is equal to zero, all the constraints of the SOCEiCP (19) are satisfied with $t^{*}=0$. Note that if $\lambda^{*}=0$ then $y^{*}=v^{*}=0$ by (24d), (24e), 24h), 24j], and 24k, and this contradicts the assumption (A2) by 24b), (24c), (24f), 24g), and (24i]. On the other hand, since $y^{*}=\lambda^{*} x^{*}$, then $\lambda^{*}<0$ is impossible by (24g), (24i), and (24j). The sufficiency implication is obvious.

Since any global minimum of $\mathbf{N L P}_{1}$ is a stationary point and a stationary point is much easier to compute, it is interesting to investigate when a stationary point of $\mathbf{N L P}_{1}$ provides a solution of SOCQEiCP. The following proposition addresses this issue.

Proposition 4 A stationary point $\left(x^{*}, y^{*}, v^{*}, w^{*}, \boldsymbol{\lambda}^{*}\right)$ of $\boldsymbol{N L} \boldsymbol{P}_{1}$ is a global minimum of the nonlinear problem $\boldsymbol{N L} \boldsymbol{P}_{1}$ (24) with $f\left(x^{*}, y^{*}, v^{*}, w^{*}, \lambda^{*}\right)=0$ (i.e., a solution to SOCQEiCP) if and only if the Lagrange multipliers associated with the constraints 24g) and 24h are equal to zero.

Proof Let $\alpha \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{r}, \mu \in \mathbb{R}^{r}, \sigma \in \mathbb{R}^{r}, \zeta \in \mathbb{R}^{r}, \gamma \in \mathbb{R}, \xi \in \mathbb{R}, \delta \in \mathbb{R}^{r}, \theta \in \mathbb{R}^{r}$, $v \in \mathbb{R}^{r}$, and $\rho \in \mathbb{R}^{r}$ be the Lagrange multipliers associated with the constraints 24b),
(24c), 24d), 24e), (24f), 24g), (24h), 24id, 24j], (24k), and (241), respectively. Define

$$
D=\left[\begin{array}{cccc}
2 x_{0}^{1} & 0 & \cdots & 0 \\
-2 \bar{x}^{1} & 0 & \cdots & 0 \\
0 & 2 x_{0}^{2} & \cdots & 0 \\
0 & -2 \bar{x}^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 2 x_{0}^{r} \\
0 & 0 & \cdots & -2 \bar{x}^{r}
\end{array}\right] \in \mathbb{R}^{n \times r}, E=\left[\begin{array}{cccc}
e^{1} & 0 & \cdots & 0 \\
0 & e^{2} & \cdots & 0 \\
\vdots & 0 & \ddots & \vdots \\
0 & 0 & 0 & e^{r}
\end{array}\right] \in \mathbb{R}^{n \times r}, e=\left[\begin{array}{c}
e^{1} \\
e^{2} \\
\vdots \\
e^{r}
\end{array}\right] \in \mathbb{R}^{n}
$$

(25a)

$$
F=\left[\begin{array}{cccc}
2 y_{0}^{1} & 0 & \cdots & 0 \tag{25b}\\
-2 \bar{y}^{1} & 0 & \cdots & 0 \\
0 & 2 y_{0}^{2} & \cdots & 0 \\
0 & -2 \bar{y}^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 2 y_{0}^{r} \\
0 & 0 & \cdots & -2 \bar{y}^{r}
\end{array}\right] \in \mathbb{R}^{n \times r}, H=\left[\begin{array}{cccc}
2 w_{0}^{1} & 0 & \cdots & 0 \\
-2 \bar{w}^{1} & 0 & \cdots & 0 \\
0 & 2 w_{0}^{2} & \cdots & 0 \\
0 & -2 \bar{w}^{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 2 w_{0}^{r} \\
0 & 0 & \cdots & -2 \bar{w}^{r}
\end{array}\right] \in \mathbb{R}^{n \times r}
$$

$L=\left[\begin{array}{cccc}2 v_{0}^{1} & 0 & \cdots & 0 \\ -2 \bar{v}^{1} & 0 & \cdots & 0 \\ 0 & 2 v_{0}^{2} & \cdots & 0 \\ 0 & -2 \bar{v}^{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 2 v_{0}^{r} \\ 0 & 0 & \cdots & -2 \bar{v}^{r}\end{array}\right] \in \mathbb{R}^{n \times r}$.
The stationary point (x, y, v, w, λ) of the problem $\mathbf{N L P}_{1}$ satisfies the following KKT conditions [3, 22]

$$
\begin{align*}
& -2 \lambda(y-\lambda x)+2\left(x^{\top} w\right) w=-C^{\top} \alpha+D \beta+E \delta+\gamma e \tag{26a}\\
& 2(y-\lambda x)-2 \lambda(v-\lambda y)+2\left(y^{\top} w\right) w=-B^{\top} \alpha+F \mu+E \theta+\gamma e+\xi e \tag{26b}\\
& 2(v-\lambda y)+2\left(v^{\top} w\right) w=-A^{\top} \alpha+\xi e+L \gamma+E v \tag{26c}\\
& 2\left(x^{\top} w\right) x+2\left(y^{\top} w\right) y+2\left(v^{\top} w\right) v=\alpha+H \zeta+E \rho \tag{26d}\\
& -2 x^{\top}(y-\lambda x)-2 y^{\top}(v-\lambda y)=-\xi \tag{26e}\\
& \beta_{i}\left[\left\|\bar{x}_{i}\right\|^{2}-\left(x_{0}^{i}\right)^{2}\right]=0, \quad i=1, \ldots, r \tag{26f}\\
& \mu_{i}\left[\left\|\overline{y_{i}}\right\|^{2}-\left(y_{0}^{i}\right)^{2}\right]=0, \quad i=1, \ldots, r \tag{26~g}\\
& \sigma_{i}\left[\left\|\bar{v}_{i}\right\|^{2}-\left(v_{0}^{i}\right)^{2}\right]=0, \quad i=1, \ldots, r \tag{26h}\\
& \zeta_{i}\left[\left\|\bar{w}_{i}\right\|^{2}-\left(w_{0}^{i}\right)^{2}\right]=0, \quad i=1, \ldots, r \tag{26i}\\
& \delta_{i} x_{0}^{i}=\theta_{i} y_{0}^{i}=v_{i} v_{0}^{i}=\rho_{i} w_{0}^{i}=0, \quad i=1, \ldots, r \tag{26j}\\
& \beta_{i} \geq 0, \mu_{i} \geq 0, \sigma_{i} \geq 0, \zeta_{i} \geq 0, \delta_{i} \geq 0, \theta_{i} \geq 0, v_{i} \geq 0, \rho_{i} \geq 0, \quad i=1, \ldots, r \tag{26k}
\end{align*}
$$

where $\beta_{i}, \mu_{i}, \sigma_{i}, \zeta_{i}, \delta_{i}, \theta_{i}, v_{i}$, and ρ_{i} are the i-th components of the vectors β, μ, σ, ζ, δ, θ, v, and $\rho \in \mathbb{R}^{r}$, respectively. By multiplying both sides of 26a), 26b), 26c , and 26d by $x^{\top}, y^{\top}, v^{\top}$, and w^{\top}, respectively, and by using 26j], we have

$$
\begin{aligned}
&-2 \lambda x^{\top}(y-\lambda x)+2\left(x^{\top} w\right)^{2}=-\alpha^{\top} C x+2 \sum_{i=1}^{r} \beta_{i}\left(-\left\|\bar{x}_{i}\right\|^{2}+\left(x_{0}^{i}\right)^{2}\right)+\gamma x^{\top} e \\
& 2 y^{\top}(y-\lambda x)-2 \lambda y^{\top}(v-\lambda y)+2\left(y^{\top} w\right)^{2}=-\alpha^{\top} B y+2 \sum_{i=1}^{r} \mu_{i}\left(-\left\|\bar{y}_{i}\right\|^{2}+\left(y_{0}^{i}\right)^{2}\right)+\gamma y^{\top} e \\
&+\xi y^{\top} e \\
& 2 v^{\top}(v-\lambda y)+2\left(v^{\top} w\right)^{2}=-\alpha^{\top} A v+\xi v^{\top} e+2 \sum_{i=1}^{r} \sigma_{i}\left(-\left\|\bar{v}_{i}\right\|^{2}+\left(v_{0}^{i}\right)^{2}\right) \\
& 2\left(x^{\top} w\right)^{2}+2\left(y^{\top} w\right)^{2}+2\left(v^{\top} w\right)^{2}=\alpha^{\top} w+\sum_{i=1}^{r} \zeta_{i}\left(-\left\|\bar{w}_{i}\right\|^{2}+\left(w_{0}^{i}\right)^{2}\right) .
\end{aligned}
$$

By adding the above equalities and by using (24b), 24g), 24h), 26f), 26g), 26h), and (26i], we get

$$
\begin{equation*}
2\left(x^{\top} w\right)^{2}+2\left(y^{\top} w\right)^{2}+2\left(v^{\top} w\right)^{2}+2 f(x, y, v, w, \lambda)=\gamma+\xi \lambda . \tag{28}
\end{equation*}
$$

If $\gamma=0$ and $\xi=0$, then the objective function value is zero, which means that the stationary point is a solution of SOCQEiCP. Conversely, suppose that (x, y, w, λ) is a solution of SOCQEiCP. Then, by Proposition 3, $f(x, y, v, w, \lambda)$ is null and the same holds for the terms $\left(x^{\top} w\right)^{2},\left(y^{\top} w\right)^{2}$, and $\left(v^{\top} w\right)^{2}$. Since $f(x, y, v, w, \lambda)=0$, we have $y=\lambda x$ and $v=\lambda y$, and so $\xi=0$ from (26e) and $\gamma=0$ from (28).

4 Additional constraints for the nonlinear programming formulation

Following the approach in [11], we show how to compute compact intervals for the variables involved in the enumerative algorithm to be described in Section 5 In particular, we impose the following bounds on the variables:

$$
\begin{align*}
c & \leq x \leq d \tag{29a}\\
g & \leq y \leq h \tag{29b}\\
l & \leq \lambda \leq u \tag{29c}\\
L & \leq w \leq U \tag{29~d}
\end{align*}
$$

where $c=\left[c_{j}^{i}\right], d=\left[d_{j}^{i}\right], g=\left[g_{j}^{i}\right], h=\left[h_{j}^{i}\right], L=\left[L_{j}^{i}\right]$, and $U=\left[U_{j}^{i}\right], j=0,1, \ldots, n_{i}-1$, $i=1, \ldots, r$. In what follows, we show how to compute the foregoing bounds, and we embed these within an enumerative search process based on the ReformulationLinearization Technique [26].
4.1 Lower and upper bounds for the $x-$ and y-variables

Any feasible vectors x and y in the formulation $\mathbf{N L P}_{1}$ belong to the set

$$
\Delta=\left\{(x, y) \in \mathbb{R}^{2 n}: \sum_{i=1}^{r}\left(x_{0}^{i}+y_{0}^{i}\right)=1, \left\lvert\, \begin{array}{c}
x_{0}^{i} \geq 0,-1 \leq x_{j}^{i} \leq 1 \tag{30}\\
y_{0}^{i} \geq 0,-1 \leq y_{j}^{i} \leq 1 \\
j=1, \ldots, n_{i}-1, i=1, \ldots, r
\end{array}\right.\right\}
$$

Accordingly, lower and upper bounds for the variables x and y can be set as

$$
\begin{align*}
& g_{0}^{i}=c_{0}^{i}=0, h_{0}^{i}=d_{0}^{i}=1, \quad i=1, \ldots, r \tag{31a}\\
& g_{j}^{i}=c_{j}^{i}=-1, h_{j}^{i}=d_{j}^{i}=1, \quad j=1, \ldots, n_{i}-1, i=1, \ldots, r \text {. } \tag{31b}
\end{align*}
$$

4.2 Upper bound for the variable λ

The next result provides an upper bound for the complementarity eigenvalue λ.

Theorem 1 Let $\mu=\sum_{i=1}^{n}\left(\sum_{j=i}^{n}\left|b_{i j}\right|+\left|c_{i j}\right|\right)+1$. Then we can take

$$
\begin{equation*}
u=\frac{\mu}{\bar{y}^{\top} A \bar{y}^{\top}+\bar{x}^{\top} \bar{x}}, \tag{32}
\end{equation*}
$$

where (\bar{x}, \bar{y}) is a global minimum of the following problem

$$
\begin{array}{ll}
\text { Minimize } & y^{\top} A y+x^{\top} x \\
\text { subject to } & (x, y) \in \Delta, \tag{33}
\end{array}
$$

where Δ is given by (30).

Proof See [11] for the proof.

Due to the assumption (A1), the problem (33) is a strictly convex quadratic problem. Hence, this program has a unique optimal solution, which is a stationary point of the objective function in the simplex Δ.
4.3 Lower bound for the variable λ

Consider the following convex nonlinear program:

$$
\begin{array}{ll}
\mathbf{N L P}_{2}: & \text { Minimize } \\
& \sum_{i=1}^{r}\left(y_{0}^{i}+v_{0}^{i}\right) \\
\text { subject to } & w=A v+B y+C x \\
& (x, y) \in \Delta \\
& L_{0}^{i} \leq w_{0}^{i} \leq U_{0}^{i}, i=1, \ldots, r \\
& v_{0}^{i} \geq 0, i=1, \ldots, r \\
& \left\|\bar{x}^{i}\right\|^{2} \leq\left(x_{0}^{i}\right)^{2}, i=1, \ldots, r \\
& \left\|\bar{y}^{i}\right\|^{2} \leq\left(y_{0}^{i}\right)^{2}, i=1, \ldots, r \\
& \left\|\bar{v}^{i}\right\|^{2} \leq\left(v_{0}^{i}\right)^{2}, i=1, \ldots, r \tag{34i}\\
& \left\|\bar{w}^{i}\right\|^{2} \leq\left(w_{0}^{i}\right)^{2}, i=1, \ldots, r
\end{array}
$$

where L_{0}^{i} and U_{0}^{i} are, respectively, some finite lower and upper bounds for the variable w_{0}^{i}, which are derived in Section 4.4

An optimal solution to $\mathbf{N L P}_{2}$ provides the required lower bound l for the variable λ. Note that $\mathbf{N L P}_{2}$ is convex (noting that (34f)-(34i) are equivalent to the corresponding convex Lorentz cone constraints), which means that a stationary (KKT) point gives a global minimum. This fact is a consequence of Propositions 5 and 6 stated below.

Proposition $5 \mathbf{N L P}_{2}$ has an optimal solution.
Proof Let $(\tilde{x}, \tilde{y}) \in \Delta$ satisfying (34f) and (34g) and let \tilde{w} satisfying (34d) and (34i). Hence, $(\tilde{x}, \tilde{y}, \tilde{w}, \tilde{v})$ is a feasible solution of $\mathbf{N L P}_{2}$, where \tilde{v} is the unique solution of the linear system $A \tilde{v}=\tilde{w}-B \tilde{y}-C \tilde{x}(A \in \mathrm{PD})$. So it remains to show that $\mathbf{N L P}_{2}$ has no nonzero recession direction $d=\left[d_{x}, d_{y}, d_{w}, d_{v}\right]^{\top}$, where $d_{x}, d_{y}, d_{w}, d_{v}$ are the components of d corresponding to the $x-, y-, w-$ and v-variables, respectively. From (34c), 34d) and (34i), any such recession direction must satisfy $d_{x}=d_{y}=$ $d_{w}=0$ and from (34b) we have $A d_{v}=0$, which yields $d_{v}=0$ because $A \in$ PD. Thus the feasible region of $\mathbf{N L P} \mathbf{P}_{2}$ is nonempty and bounded, and so $\mathbf{N L P}_{2}$ has an optimal solution.

Proposition 6 If $C \in S_{0}^{\prime}$, then $\mathbf{N L P}_{2}$ has a positive optimal value.
Proof $\mathbf{N L P}_{2}$ has a zero optimal value if and only if $y_{0}^{i}=v_{0}^{i}=0$ for all $i=1, \ldots, r$, which implies together with $\sqrt{34 \mathrm{~g}}$) and (34h) that $v=y=0$. Hence there must exist vectors w and x, such that $w=C x$ and the constraints (34b), (34c), (34f), 34i) hold. This is impossible, because of assumption (A2). Thus, if $C \in S_{0}^{\prime}$, we conclude that the lower bound l is strictly positive.
4.4 Lower and upper bounds for the w-variables

In this section, we compute the bounds for each of the r sets of variables w_{0}^{i} and for \bar{w}^{i}. First of all, $w_{0}^{i} \geq 0 \equiv L_{0}^{i}$ for $i=1, \ldots, r$. Moreover, from the equation

$$
\begin{equation*}
w=\lambda^{2} A x+\lambda B x+C x \tag{35}
\end{equation*}
$$

we have

$$
\begin{equation*}
w_{0}^{i}=\sum_{j=1}^{n}\left(\lambda^{2} a_{t_{i}, j}+\lambda b_{t_{i}, j}+c_{t_{i}, j}\right) x_{j}, \quad i=1, \ldots, r, \tag{36}
\end{equation*}
$$

where $t_{1}=1$ and $t_{i}=1+\sum_{k=1}^{i-1} n_{k}, i=2, \ldots, r$. Hence, by (31),

$$
\begin{equation*}
w_{0}^{i} \leq \sum_{j=1}^{n}\left(u^{2}\left|a_{t_{i}, j}\right|+u\left|b_{t_{i}, j}\right|+\left|c_{t_{i}, j}\right|\right) \equiv U_{0}^{i}, \quad i=1, \ldots, r \tag{37}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|\bar{w}^{i}\right\| \leq w_{0}^{i}, i=1, \ldots, r \tag{38}
\end{equation*}
$$

we get the following lower and upper bounds for the variables w_{j}^{i} :

$$
\begin{equation*}
L_{j}^{i} \equiv-U_{0}^{i} \leq w_{j}^{i} \leq U_{0}^{i} \equiv U_{j}^{i}, j=1, \ldots, n_{i}-1, i=1, \ldots, r \tag{39}
\end{equation*}
$$

Note that L_{j}^{i} and $U_{j}^{i}, j=0, \ldots, n_{i}, i=1, \ldots, r$ depend on u, that is the upper bound of the variable λ. Such value could be modified during the performance of the enumerative method. Therefore, at each node the bounds for the w-variables are updated by using the current value of u in that node.

4.5 Reformulation-Linearization Technique (RLT) constraints

Given the lower and the upper bounds in (29), we can incorporate additional RLTbased constraints [26] within the nonlinear problem $\mathbf{N L P}_{1}$ in order design the enumerative method presented in the next section. We begin by introducing the following n additional variables:

$$
\begin{equation*}
z_{j}^{i} \equiv x_{j}^{i} w_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{40}
\end{equation*}
$$

By using the approach in [26], we define nonnegative bound-factors for the x-, y-, w-, and λ-variables as follows: $(x-c)$ and $(d-x) ;(y-g)$ and $(h-y) ;(w-L)$ and $(U-w)$; and, $(\lambda-l)$ and $(u-\lambda)$. Then we generate the so-called bound-factor RLT constraints by considering the following product restrictions:

$$
\begin{array}{r}
{\left[c_{j}^{i} \leq x_{j}^{i} \leq d_{j}^{i}\right] *\left[L_{j}^{i} \leq w_{j}^{i} \leq U_{j}^{i}\right], j=0,1, \ldots, n_{i}-1, i=1, \ldots, r} \\
{\left[c_{j}^{i} \leq x_{j}^{i} \leq d_{j}^{i}\right] *[l \leq \lambda \leq u], j=0,1, \ldots, n_{i}-1, i=1, \ldots, r} \\
{\left[g_{j}^{i} \leq y_{j}^{i} \leq h_{j}^{i}\right] *[l \leq \lambda \leq u], j=0,1, \ldots, n_{i}-1, i=1, \ldots, r .} \tag{43}
\end{array}
$$

In (41), we consider the nonnegative product of each of the two bound-factors associated with the x_{j}^{i}-variable with each of the two bound-factors associated with the $w_{j}^{i}-$ variable, for each $j=0,1, \ldots, n_{i}-1, i=1, \ldots, r$, which are subsequently linearized using the substitutions specified in (40). In the same way, we consider the nonnegative products of the bound-factors associated with the x-variables and y-variables with the bound-factors for the λ-variable together with the substitutions (22) and (23). The following resulting $12 n$ constraints are then incorporated within the nonlinear program $\mathbf{N L P}_{1}$:

$$
\begin{align*}
& z_{j}^{i} \geq c_{j}^{i} w_{j}^{i}+L_{j}^{i} x_{j}^{i}-c_{j}^{i} L_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44a}\\
& z_{j}^{i} \geq d_{j}^{i} w_{j}^{i}+U_{j}^{i} x_{j}^{i}-d_{j}^{i} U_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44b}\\
& z_{j}^{i} \leq c_{j}^{i} w_{j}^{i}+U_{j}^{i} x_{j}^{i}-c_{j}^{i} U_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44c}\\
& z_{j}^{i} \leq d_{j}^{i} w_{j}^{i}+L_{j}^{i} x_{j}^{i}-d_{j}^{i} U_{j}^{i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44d}\\
& y_{j}^{i} \geq x_{j}^{i} l+c_{j}^{i} \lambda-c_{j}^{i} l, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44e}\\
& y_{j}^{i} \geq x_{j}^{i} u+d_{j}^{i} \lambda-d_{j}^{i} u, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44f}\\
& y_{j}^{i} \leq x_{j}^{i} u+c_{j}^{i} \lambda-c_{j}^{i} u, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44~g}\\
& y_{j}^{i} \leq x_{j}^{i} l+d_{j}^{i} \lambda-d_{j}^{i} l, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44h}\\
& v_{j}^{i} \geq y_{j}^{i} l+g_{j}^{i} \lambda-g_{j}^{i} l, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44i}\\
& v_{j}^{i} \geq y_{j}^{i} u+h_{j}^{i} \lambda-h_{j}^{i} u, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44j}\\
& v_{j}^{i} \leq y_{j}^{i} u+g_{j}^{i} \lambda-g_{j}^{i} u, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r \tag{44k}\\
& v_{j}^{i} \leq y_{j}^{i} l+h_{j}^{i} \lambda-h_{j}^{i} l, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r . \tag{441}
\end{align*}
$$

The complementarity constraint $x^{\top} w=\sum_{i=1}^{r}\left(x^{i}\right)^{\top} w^{i}$ is the sum of nonnegative terms, noting that

$$
\begin{equation*}
\left(x^{i}\right)^{\top} w^{i}=x_{0}^{i} w_{0}^{i}+\left(\bar{x}^{i}\right)^{\top} \bar{w}^{i} \geq x_{0}^{i} w_{0}^{i}-\left\|\bar{x}^{i}\right\|\left\|\bar{w}^{i}\right\| \geq 0, i=1, \ldots, r \tag{45}
\end{equation*}
$$

This means that to have $x^{\top} w=0$ with $x \in K$ and $w \in K$, we must have $\left(x^{i}\right)^{\top} w^{i}=0$ for $i=1, \ldots, r$. So we can remove the quadratic term $\left(x^{\top} w\right)^{2}$ from the objective function and, instead, add the term shown in (47a) along with the following r linear constraints:

$$
\begin{equation*}
\sum_{j=0}^{n_{i}-1} z_{j}^{i}=0, i=1, \ldots, r \tag{46}
\end{equation*}
$$

Accordingly, the nonlinear programming formulation of SOCQEiCP, which we propose to solve by means of the enumerative method presented in the next section, is
given as follows:

$$
\begin{align*}
\mathbf{N L P}_{3}: \text { Minimize } \quad \tilde{f}(x, y, v, w, \lambda, z)= & \|y-\lambda x\|^{2}+\|v-\lambda y\|^{2}+\|z-x \circ w\|^{2} \\
& +\left(y^{\top} w\right)^{2}+\left(v^{\top} w\right)^{2} \tag{47a}
\end{align*}
$$

s.t. $\quad w=A v+B y+C x$
$\left\|\bar{x}^{i}\right\|^{2} \leq\left(x_{0}^{i}\right)^{2}, \quad i=1, \ldots, r$
$\left\|\bar{y}^{i}\right\|^{2} \leq\left(y_{0}^{i}\right)^{2}, \quad i=1, \ldots, r$
$\left\|\bar{v}^{i}\right\|^{2} \leq\left(v_{0}^{i}\right)^{2}, \quad i=1, \ldots, r$
$\left\|\bar{w}^{i}\right\|^{2} \leq\left(w_{0}^{i}\right)^{2}, \quad i=1, \ldots, r$
$\sum_{i=1}^{r}\left(x_{0}^{i}+y_{0}^{i}\right)=1$
$\sum_{i=1}^{r}\left(y_{0}^{i}+v_{0}^{i}\right)=\lambda$
(29)
(44)
(46)
where \circ is the Hadamard product. Note that $\mathbf{N L P}_{3}$ is a convex constrained program with a nonconvex objective function, where (47c -47f) are equivalent to the corresponding Lorentz cone inclusion constraints.

Similar to Proposition 3 for the nonlinear problem $\mathbf{N L P}_{1}$, the following results hold for $\mathbf{N L P}_{3}$:

Proposition 7 SOCQEiCP has a solution $(\widetilde{x}, \widetilde{w}, \widetilde{\lambda})$ if and only if $(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$ is a global minimum of $\boldsymbol{N L} \boldsymbol{P}_{3}$ with $\widetilde{f}(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})=0$.

Proposition 8 For any given solution $\left(x^{*}, w^{*}, \lambda^{*}\right)$ to SOCQEiCP, there corresponds a stationary point $\left(x^{*}, y^{*}, v^{*}, w^{*}, \lambda^{*}, z^{*}, \tau^{*}, s^{*}\right)$ of $\boldsymbol{N L P} \boldsymbol{P}_{3}$.

5 An enumerative method

In this section, we introduce an enumerative algorithm for finding a global minimum to the nonlinear problem $\mathbf{N L P}_{3}$. This is done by exploring a binary tree that is constructed by partitioning the intervals $\left[c_{j}^{i}, d_{j}^{i}\right]$ associated with the variables x_{j}^{i}, $j=0,1, \ldots, n_{i}-1, i=1, \ldots, r$ and the interval $[l, u]$ associated with the variable λ. The steps of the enumerative method are as follows:

Algorithm 1 Enumerative algorithm for SOCQEiCP

Step 0 (Initialization)
1: Set $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.

```
Set \(k=1\) and find a stationary point \((\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})\) of \(\mathbf{N L P}_{3}(1)\).
if \(\widetilde{f}(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})=0\) then
    terminate with \((\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})\) as solution to SOCQEiCP.
else if \(\mathbf{N L P}_{3}(1)\) is infeasible then
    SOCQEiCP has no solution; terminate.
else
    Let \(P=\{1\}\) be initialized as the set of open nodes.
    Let \(U B(1)=\widetilde{f}(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})\).
    Let \(N=1\) be the number of nodes enumerated.
end if
Let
\[
\begin{gather*}
\theta_{1}=\max \left\{\left|\widetilde{z}_{j}^{i}-\widetilde{x}_{j}^{i} \widetilde{w}_{j}^{i}\right|: j=0,1, \ldots, n_{i}-1, i=1, \ldots, r\right\}  \tag{48}\\
\theta_{2}=\max \left\{| | \hat{y}_{j}^{i}-\widetilde{\lambda} \widetilde{x}_{j}^{i}\left|,\left|\hat{v}_{j}^{i}-\widetilde{\lambda} \widetilde{y}_{j}^{i}\right|: j=0,1, \ldots, n_{i}-1, i=1, \ldots, r\right\}\right. \tag{49}
\end{gather*}
\]
```

and let the maximum in 48) be achieved by $\left(i^{*}, j^{*}\right)$.
while $\left(\theta_{1}>\varepsilon_{1}\right.$ OR $\left.\theta_{2}>\varepsilon_{2}\right)$ do

Step 1 (Choice of node)

if $P=\emptyset$ then

terminate; SOCQEiCP has no solution.
else
Select $k \in P$ such that $U B(k)=\min \{U B(i): i \in L\}$.
Let $(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$ be the stationary point that was previously found at this node.

If $k \neq 1$, compute θ_{1} and θ_{2} in (48) and (49), respectively.
end if

Step 2: (Branching rule)

if $\theta_{1}>\theta_{2}$ then
Let $\left[\tilde{c}_{j^{*}}^{*}, \widetilde{d}_{j^{*}}^{i^{*}}\right]$ be the interval for the variable $x_{j^{*}}^{i^{*}}$.
Partition the interval $\left[\widetilde{c}_{j^{*}}^{i^{*}}, \widetilde{d}_{j^{*}}^{i^{*}}\right]$ for this variable at node k into $\left[\widetilde{c}_{j^{*}}^{*}, \hat{x}_{j^{*}}^{i^{*}}\right]$ and $[\hat{x}_{j^{*}}^{i^{*}}, \widetilde{\overbrace{j^{*}}^{*}}]$ to generate two new nodes $N+1$ and $N+2$, where

$$
\hat{x}_{j^{*}}^{i^{*}}= \begin{cases}\widetilde{x}_{j^{*}}^{*} & \text { if } \min \left\{\left(\widetilde{x}_{j^{*}}^{*}-\widetilde{c}_{j^{*}}^{*}\right),\left(\widetilde{d}_{j^{*}}^{*}-\widetilde{x}_{j^{*}}^{*}\right)\right\} \geq 0.1\left(\widetilde{d}_{j^{*}}^{i *}-\widetilde{c}_{j^{*}}^{*}\right) \tag{50}\\ \frac{d_{j^{*}}^{*}+\tilde{c}_{j^{*}}^{*}}{2} & \text { otherwise }\end{cases}
$$

else if $\theta_{1} \leq \theta_{2}$ then
Let $[\widetilde{l}, \widetilde{u}]$ be the interval for the variable λ.
Partition the interval $[\widetilde{l}, \widetilde{u}]$ for λ at node k into $[\widetilde{l}, \hat{\lambda}]$ and $[\hat{\lambda}, \widetilde{u}]$ to generate two new nodes $N+1$ and $N+2$, where

$$
\hat{\lambda}= \begin{cases}\widetilde{\lambda} & \text { if } \min \{(\widetilde{\lambda}-\widetilde{l}),(\widetilde{u}-\widetilde{\lambda})\} \geq 0.1(\widetilde{u}-\widetilde{l}) \tag{51}\\ \frac{\widetilde{u}+\tilde{l}}{2} & \text { otherwise }\end{cases}
$$

end if

Step 3 (Solve, Update and Queue)

For each of $v=N+1$ and $v=N+2$, find a stationary point $(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$
of $\mathbf{N L P}_{3}(v)$.
If $\mathbf{N L P}_{3}(v)$ is feasible, set $P=P \cup\{v\}$ and $U B(v)=\widetilde{f}(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$.
Set $P=P \backslash\{k\}$.
end while
Below, we state the main convergence theorem for the foregoing enumerative algorithm for solving SOCQEiCP. The proof closely follows that in [18], but we include the details for the sake of insights and completeness.

Theorem 2 The enumerative algorithm for $\boldsymbol{N L P} \mathbf{P}_{3}$ run with $\varepsilon_{1}=0$ and $\varepsilon_{2}=0$ either terminates finitely with a solution to SOCQEiCP, or else, an infinite branch-andbound $(B \& B)$ tree is generated such that along any infinite branch of this tree, any accumulation point of the stationary points obtained for $\boldsymbol{N L P}_{3}$ solves SOCQEiCP.

Proof The case of finite termination is obvious. Hence, suppose that an infinite B\&B tree is generated, and consider any infinite branch. For notational convenience, denote $\zeta \equiv(x, y, v, w, \lambda, z)$ and let $\left\{\zeta^{s}\right\}_{S}$, with $s \in S$, be a sequence of stationary points of $\mathbf{N L P}_{3}$ that correspond to nodes on this infinite branch. Then, by taking a subsequence if necessary, we may assume

$$
\left\{\zeta^{s}\right\}_{S} \rightarrow \zeta^{*},\left\{\left[c^{s}, d^{s}\right]\right\}_{S} \rightarrow\left[c^{*}, d^{*}\right], \text { and }\left\{\left[l^{s}, u^{s}\right]\right\}_{S} \rightarrow\left[l^{*}, u^{*}\right]
$$

where $\left[c^{s}, d^{s}\right]$ and $\left[l^{s}, u^{s}\right]$ respectively denote the vectors of bounds on x and λ at node $s \in S$ of the B\&B tree. We will show that ζ^{*} yields a solution to SOCQEiCP.

Note that along the infinite branch under consideration, we either branch on λ infinitely often, or else, there exists some index-pair (\hat{i}, \hat{j}) such that we branch on the interval for $x_{\hat{i}}^{\hat{j}}$ infinitely often. Let us assume the latter (the case of branching on λ infinitely often is similar, as discussed below), and suppose that this sequence of partitions corresponds to nodes indexed by $s \in S_{1} \subseteq S$. By the partitioning rule (50), since the interval length for $x_{\hat{i}}^{\hat{i}}$ decreases by a geometric ratio of at most 0.9 over $s \in S_{1}$, we have in the limit that

$$
\begin{equation*}
c_{\hat{j}}^{* \hat{i}}=d_{\hat{j}}^{* \hat{i}}=x_{\hat{j}}^{* \hat{i}}=v^{*}, \text { say. } \tag{52}
\end{equation*}
$$

Furthermore, from (52) and the RLT bound-factor constraints (44a)-44d), we have in the limit that

$$
\begin{equation*}
z_{\hat{j}}^{* \hat{i}}=w_{\hat{j}}^{* *} v^{*}=w_{\hat{j}}^{* \hat{i}} x_{\hat{j}}^{* \hat{i}} . \tag{53}
\end{equation*}
$$

Moreover, by the selection of the index-pair (\hat{i}, \hat{j}) for $s \in S_{1}$, via (48) and (49) and the branching selection rule, we get that $\theta_{1} \rightarrow 0$ and so $\theta_{2} \rightarrow 0$ as well. (The case of branching on λ infinitely often likewise leads to $l^{*}=u^{*}$ in the limit, which from (44e)-(441) yields that (22) and (23) hold true in the limit, and so again both θ_{1} and
θ_{2} approach zero in the limit.) Thus in either case, we get in the limit as $s \rightarrow \infty, s \in S_{1}$, that

$$
\begin{equation*}
z_{j}^{* i}=w_{j}^{* i} x_{j}^{* i}, y_{j}^{* i}=\lambda^{*} x_{j}^{* i}, \text { and } v_{j}^{* i}=\lambda^{*} y_{j}^{* i}, j=0,1, \ldots, n_{i}-1, i=1, \ldots, r, \tag{54}
\end{equation*}
$$

or that (22), (23), and (40) hold true in the limit at ζ^{*}. Consequently, the set of constraints 47b yields from (54) that, in the limit, $w^{*}-A \lambda^{*} y^{*}-B y^{*}-C x^{*}=0$, i.e., by applying the second set of identities in (54), we have

$$
\begin{equation*}
w^{*}=\lambda^{* 2} A x^{*}+\lambda^{*} B x^{*}+C x^{*} . \tag{55}
\end{equation*}
$$

Furthermore, by (46) and (54), we get

$$
\begin{equation*}
x^{* \top} w^{*}=0 . \tag{56}
\end{equation*}
$$

Likewise, from (47c)-(47f), (24i)-(241), and (54), we get

$$
\begin{equation*}
x^{*} \in K \text { and } w^{*} \in K . \tag{57}
\end{equation*}
$$

Thus, (55)-(57) imply that the $\left(x^{*}, w^{*}, \lambda^{*}\right)$-part of ζ^{*} represents a solution to SOCQEiCP.

There are a couple of insightful points worth noting in regard to the proof of Theorem 2. First, observe that by (54) and (56), we get that $\widetilde{f}\left(\zeta^{*}\right)=0$ in the limit, as expected by Proposition 6. Second, observe that for (54) to hold true, i.e., for (53) to be a consequence of (52) (and similarly for the case of branching infinitely often on λ variable), we need just one pair of the four constraints from 44a)-44d) (and likewise, one pair from each of (44e)-(44h) and (44i)-(441)). However, we carry the entire set (44) because they assert additional valid inequalities that serve to assist in the convergence process.

6 A semi-smooth algorithm

In this section, we use a semi-smooth algorithm for solving the SOCQEiCP (19). Due to Proposition 1, we know that $t=0$ and the complementarity constraints 19b can be replaced by

$$
\begin{equation*}
\left(x^{i}\right)^{\top} t^{i}=\left(y^{i}\right)^{\top} w^{i}=0, \quad i=1, \ldots, r \tag{58}
\end{equation*}
$$

As in [11], we introduce the so-called natural residual function $\varphi_{\mathrm{NR}}^{i}: \mathbb{R}^{n_{i}} \times \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{n_{i}}$ associated with the second-order cone K_{i}, which is defined by

$$
\begin{align*}
\varphi_{\mathrm{NR}}^{i}\left(x^{i}, t^{i}\right) & =x^{i}-P_{K_{i}}\left(x^{i}-t^{i}\right) \tag{59}\\
\varphi_{\mathrm{NR}}^{i}\left(y^{i}, w^{i}\right) & =y^{i}-P_{K_{i}}\left(y^{i}-w^{i}\right), \tag{60}
\end{align*}
$$

where $P_{K_{i}}\left(\eta^{i}\right)$ is the projection of a vector $\eta^{i}=\left(\eta_{0}^{i}, \bar{\eta}^{i}\right) \in \mathbb{R} \times \mathbb{R}^{n_{i}-1}$ onto the secondorder cone K_{i} for each $i=1, \ldots, r$, i.e.,

$$
\begin{equation*}
P_{K_{i}}\left(\eta^{i}\right)=\arg \min _{\tau^{i} \in K_{i}}\left\|\tau^{i}-\eta^{i}\right\| . \tag{61}
\end{equation*}
$$

The natural residual function $\varphi_{\mathrm{NR}}^{i}$ satisfies the following relations:

$$
\begin{align*}
\varphi_{\mathrm{NR}}^{i}\left(x^{i}, t^{i}\right) & =0 \Leftrightarrow x^{i} \in K, t^{i} \in K,\left(x^{i}\right)^{\top} t^{i}=0 \tag{62}\\
\varphi_{\mathrm{NR}}^{i}\left(y^{i}, w^{i}\right) & =0 \Leftrightarrow y^{i} \in K, w^{i} \in K,\left(y^{i}\right)^{\top} w^{i}=0 . \tag{63}
\end{align*}
$$

Consider the functions $\Phi_{1}(x, t): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\Phi_{2}(y, w): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\Phi_{1}(x, t)=\left[\begin{array}{c}
\varphi_{\mathrm{NR}}^{1}\left(x^{1}, t^{1}\right) \tag{64}\\
\vdots \\
\varphi_{\mathrm{NR}}^{r}\left(x^{r}, t^{r}\right)
\end{array}\right] \text { and } \Phi_{2}(y, w)=\left[\begin{array}{c}
\varphi_{\mathrm{NR}}^{1}\left(y^{1}, w^{1}\right) \\
\vdots \\
\varphi_{\mathrm{NR}}^{r}\left(y^{r}, w^{r}\right)
\end{array}\right] .
$$

Then the SOCQEiCP (19) can be reformulated as follows

$$
\Psi(x, y, w, t, \lambda)=\left[\begin{array}{c}
\Phi_{1}(x, t) \tag{65}\\
\Phi_{2}(y, w) \\
(\lambda A+B) y+C x-w \\
\lambda x-y-t \\
\sum_{i=1}^{r}\left[\left(e^{i}\right)^{\top} x^{i}+\left(e^{i}\right)^{\top} y^{i}\right]-1
\end{array}\right]=0
$$

Algorithm 2 given below describes the steps of the semi-smooth algorithm for finding a solution of 65). Here, the Clarke generalized Jacobian of Φ at (x, y, w, t, λ) has the following form:

$$
G J(x, y, w, t, \lambda)=\left[\begin{array}{ccccc}
I_{n}-\tilde{V} & 0 & 0 & \tilde{V} & 0 \tag{66}\\
0 & I_{n}-\hat{V} & \hat{V} & 0 & 0 \\
C & (\lambda A+B) & -I_{n} & 0 & A y \\
\lambda I_{n} & -I_{n} & 0 & -I_{n} & x \\
e^{T} & e^{T} & 0 & 0 & 0
\end{array}\right],
$$

where I_{n} denotes the $n \times n$ identity matrix, e is given in and $\tilde{V}, \hat{V} \in R^{n \times n}$ are given as follows

$$
\tilde{V}=\left[\begin{array}{ccc}
\tilde{V}^{1} & 0 & 0 \tag{67}\\
0 & \ddots & 0 \\
0 & 0 & \tilde{V}^{r}
\end{array}\right], \quad \hat{V}=\left[\begin{array}{ccc}
\hat{V}^{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \hat{V}^{r}
\end{array}\right]
$$

The matrices \tilde{V}^{i} and $\hat{V}^{i}, i=1, \ldots, r$ can be explicitly computed as in [11].

```
Algorithm 2 Semi-smooth Newton algorithm
    Step 0 (Initialization)
    Let \((\hat{x}, \hat{y}, \hat{w}, \hat{h}, \hat{\lambda})\) be an initial point such that \((\hat{x}, \hat{y}) \in \Delta\).
    Let \(\tilde{\varepsilon}_{1}\) and \(\tilde{\varepsilon}_{2}\) be selected positive tolerance.
    Compute \(\Phi_{1}\) and \(\Phi_{2}\) given in (64).
while \(\left(\max \{\|\hat{w}-(\hat{\lambda} A+B) \hat{y}-C \hat{x}\|,\|\hat{t}-\hat{\lambda} \hat{x}+\hat{y}\|\}>\tilde{\varepsilon}_{1}\right.\) OR \(\max \left\{\left\|\Phi_{1}\right\|,\left\|\Phi_{2}\right\|\right\}>\)
\(\tilde{\varepsilon}_{2}\) ) do
```


Step 1 (Newton direction)

```
    Compute the Clarke generalized Jacobian GJ at \((\hat{x}, \hat{y}, \hat{w}, \hat{\lambda}, \hat{\lambda})\).
    if \(G J(\hat{x}, \hat{y}, \hat{w}, \hat{t}, \hat{\lambda})\) is singular then
            Stop, and terminate with an unsuccessful termination.
        else
            Compute the semi-smooth Newton direction
                \(G J(\hat{x}, \hat{y}, \hat{w}, \hat{t}, \hat{\lambda})\left[\begin{array}{l}d_{x} \\ d_{y} \\ d_{w} \\ d_{t} \\ d_{\lambda}\end{array}\right]=-\Psi(\hat{x}, \hat{y}, \hat{w}, \hat{t}, \hat{\lambda})\).
```


Step 3 (Update)

```
Compute the new point
\[
\tilde{x}=\hat{x}+d_{x}, \tilde{y}=\hat{y}+d_{y}, \tilde{w}=\hat{w}+d_{w}, \tilde{t}=\hat{t}+d_{t}, \text { and } \tilde{\lambda}=\hat{\lambda}+d_{\lambda}
\]
and let \(\hat{x}=\tilde{x}, \hat{y}=\tilde{y}, \hat{w}=\tilde{w}, \hat{t}=\tilde{t}\), and \(\hat{\lambda}=\tilde{\lambda}\).
end if
end while
If the algorithm terminates with success, then \(\hat{\lambda}\) is a quadratic complementary eigenvalue, \(\hat{t}=0\) in this solution and \((1+\hat{\lambda}) \hat{x}\) is the corresponding quadratic complementary eigenvector.
```


7 A hybrid method

In order to combine the benefits of the enumerative method (Algorithm 1) with that of the semi-smooth Newton method (Algorithm 2), (as borne by our computational results reported in Section 8), we also explore the following hybrid algorithm:

Algorithm 3 Hybrid algorithm

Step 0 (Initialization)

Let $\bar{\varepsilon}_{1}$ and $\bar{\varepsilon}_{2}$ be two positive tolerances for switching from the enumerative method to the semi-smooth and, let ε_{1} and ε_{2} be the tolerances used in Algorithm 1 , such that $\varepsilon_{1}<\overline{\varepsilon_{1}}$ and $\varepsilon_{2}<\overline{\varepsilon_{2}}$.
Let nmaxit be the maximum number of iterations allowed to be performed by the semi-smooth Newton method.

Step 1 (Method selection decision step)

Let $(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$ be the stationary point associated with the node k and compute θ_{1} and θ_{2} in (48) and (49), respectively.
while $\left(\theta_{1}>\varepsilon_{1}\right.$ OR $\left.\theta_{2}>\varepsilon_{2}\right)$ do
if ($\theta_{1} \leq \bar{\varepsilon}_{1}$ AND $\theta_{2} \leq \bar{\varepsilon}_{2}$) then
Apply Algorithm 2.
if Algorithm 2 terminates with a solution $\left(x^{*}, y^{*}, w^{*}, t^{*}, \lambda^{*}\right)$ then
Stop; set $\tilde{\lambda}=\lambda^{*}$ and $\tilde{x}=x^{*}$.
else if $\operatorname{GJ}(\hat{x}, \hat{y}, \hat{w}, \hat{x}, \hat{\lambda})$ is singular OR if the number of iterations is equal to nmaxit then

Apply Steps 2 and 3 of Algorithm 1 continuing with the node k and the solution $(\widetilde{x}, \widetilde{y}, \widetilde{v}, \widetilde{w}, \widetilde{\lambda}, \widetilde{z})$ given at the beginning of this step.
Compute θ_{1} and θ_{2} in (48) and (49), respectively.

end if

else
Apply Steps 2 and 3 of Algorithm 1.
Compute θ_{1} and θ_{2} in (48) and 49), respectively.
end if
end while

8 Computational experience

In this section, we discuss the numerical performance of the proposed algorithms for computing quadratic complementary eigenvalues. The enumerative algorithm has been implemented in MATLAB [20] and the IPOPT (Interior Point OPTimizer) solver [31] has been used to find a (local) solution to the nonlinear problem $\mathbf{N L P}_{3}(\mathrm{k})$ in (47) at each node k.

The matrices A and $-C$ were both chosen as the identity matrix, while the matrix B was randomly generated with elements uniformly distributed in the intervals $[0,1]$, $[0,5],[0,10]$, and $[0,20]$. For these preliminary test problems we have taken $r=1$. These problems are denoted by $\operatorname{RAND}(0, m, n)$, where 0 and m are the end-points of the interval, and n represents the dimension of the problem, i.e., of the matrices $A, B, C \in \mathbb{R}^{n \times n}$. We have considered for generating $B, n=5,10,20,30,40$, and 50 . Each SOCQEiCP was suitably scaled by using the arguments in Section 2 and with the normalization constraint $\sum_{k=1}^{r} x_{0}^{k}=1$.

Problem	λ	f	1	u	Nodes	CPU	Fe	compl
RAND ($0,1,5$)	1.082938	$4.26029 \mathrm{e}-09$	0.020000	35.272922	0	$2.34870 \mathrm{e}+00$	$2.02926 \mathrm{e}-06$	3.96564e-05
$\operatorname{RAND}(0,1,10)$	1.593798	$6.52343 \mathrm{e}-11$	0.627456	124.253405	0	$2.08824 \mathrm{e}+00$	$8.70040 \mathrm{e}-07$	$2.70959 \mathrm{e}-06$
$\operatorname{RAND}(0,1,20)$	1.659763	$2.81584 \mathrm{e}-10$	0.553049	427.686658	0	$1.84855 \mathrm{e}+00$	$2.00214 \mathrm{e}-06$	6.42486e-06
$\operatorname{RAND}(0,1,30)$	1.946947	$4.98848 \mathrm{e}-08$	0.515724	937.744286	5	$4.28787 \mathrm{e}+01$	$9.32290 \mathrm{e}-06$	$5.27508 \mathrm{e}-05$
$\operatorname{RAND}(0,1,40)$	1.706686	$5.06694 \mathrm{e}-08$	0.376076	1688.709420	7	$9.30902 \mathrm{e}+01$	6.55095e-06	6.76991e-05
$\operatorname{RAND}(0,1,50)$	2.074764	$5.37378 \mathrm{e}-08$	0.660755	2598.493157	11	$2.58905 \mathrm{e}+02$	4.25443e-06	4.89964e-05
RAND ($0,5,5$)	3.460789	$4.95718 \mathrm{e}-09$	0.396632	77.997883	0	$1.71447 \mathrm{e}+00$	$2.68093 \mathrm{e}-06$	5.76957e-06
$\operatorname{RAND}(0,5,10)$	1.523588	$2.24121 \mathrm{e}-09$	0.211826	331.050776	0	$2.96092 \mathrm{e}+00$	$1.33716 \mathrm{e}-06$	$1.75369 \mathrm{e}-05$
$\operatorname{RAND}(0,5,20)$	2.812431	$2.68931 \mathrm{e}-07$	0.108645	1220.999048	11	$6.63263 \mathrm{e}+01$	$2.01636 \mathrm{e}-06$	$6.22590 \mathrm{e}-05$
$\operatorname{RAND}(0,5,30)$	8.890165	$2.42596 \mathrm{e}-07$	0.279609	2834.246323	29	$1.88836 \mathrm{e}+02$	$1.05060 \mathrm{e}-05$	6.48083e-06
$\operatorname{RAND}(0,5,40)$	7.126082	$1.48623 \mathrm{e}-05$	0.000002	4919.380520	17	$2.15128 \mathrm{e}+02$	$3.95135 \mathrm{e}-07$	$7.52232 \mathrm{e}-05$
$\operatorname{RAND}(0,5,50)$	6.778310	$2.30355 \mathrm{e}-08$	0.108923	7658.289831	33	$6.82388 \mathrm{e}+02$	$2.69855 \mathrm{e}-06$	$3.66761 \mathrm{e}-06$
$\operatorname{RAND}(0,10,5)$	1.721980	$4.55823 \mathrm{e}-10$	0.071138	146.082341	0	$5.04101 \mathrm{e}+00$	$9.90465 \mathrm{e}-07$	$6.38694 \mathrm{e}-06$
$\operatorname{RAND}(0,10,10)$	*	[2.14363e-04]					1.92697e-04	$1.75494 \mathrm{e}-02$
$\operatorname{RAND}(0,10,20)$	10.831012	$1.28806 \mathrm{e}-06$	0.026954	2253.090185	45	$3.24989 \mathrm{e}+02$	6.65534e-06	$1.02847 \mathrm{e}-05$
$\operatorname{RAND}(0,10,30)$	13.028430	$4.62255 \mathrm{e}-09$	0.177992	5015.490181	15	$1.21843 \mathrm{e}+02$	6.12185e-06	5.10067e-07
$\operatorname{RAND}(0,10,40)$	*	[1.50762e-03]					$6.12468 \mathrm{e}-03$	$1.18574 \mathrm{e}-01$
$\operatorname{RAND}(0,10,50)$	13.738982	$3.98646 \mathrm{e}-04$	0.000278	13714.150693	67	$1.56999 \mathrm{e}+03$	$4.50216 \mathrm{e}-05$	$1.05689 \mathrm{e}-04$
$\operatorname{RAND}(0,20,5)$	16.255630	$1.90235 \mathrm{e}-09$	0.317963	267.804999	9	$3.63311 \mathrm{e}+01$	$2.43221 \mathrm{e}-06$	$1.99696 \mathrm{e}-07$
$\operatorname{RAND}(0,20,10)$	*	[2.61659e-06]					$8.19066 \mathrm{e}-05$	8.79952e-03
$\operatorname{RAND}(0,20,20)$	21.691343	$6.55340 \mathrm{e}-08$	0.030432	4217.129671	41	$3.16184 \mathrm{e}+02$	8.94613e-06	$6.82192 \mathrm{e}-07$
$\operatorname{RAND}(0,20,30)$	25.043734	$4.32816 \mathrm{e}-06$	0.137434	9410.157670	53	7.09780e+02	$3.06579 \mathrm{e}-06$	$3.42778 \mathrm{e}-06$
$\operatorname{RAND}(0,20,40)$	*	[7.78051e-01]					$8.06774 \mathrm{e}-03$	$2.59614 \mathrm{e}-03$
$\operatorname{RAND}(0,20,50)$	*	[2.71665e-04]					$3.34161 \mathrm{e}-02$	$4.24448 \mathrm{e}-03$

Table 1 Performance of the enumerative method for solving the scaled SOCQEiCP.

Problem	λ	f	CPU	Fe	Compl
RAND $(0,1,5)$	1.082341	$4.31470 \mathrm{e}-10$	$2.02500 \mathrm{e}+00$	$1.30062 \mathrm{e}-06$	$1.10085 \mathrm{e}-05$
RAND $(0,1,10)$	1.593563	$4.55799 \mathrm{e}-10$	$1.50600 \mathrm{e}+00$	$1.58997 \mathrm{e}-06$	$6.75148 \mathrm{e}-06$
RAND $(0,1,20)$	1.660184	$2.16221 \mathrm{e}-12$	$4.34000 \mathrm{e}+00$	$1.27705 \mathrm{e}-08$	$4.36405 \mathrm{e}-07$
RAND $(0,1,30)$	1.942111	$6.28458 \mathrm{e}-11$	$4.65900 \mathrm{e}+00$	$3.23224 \mathrm{e}-08$	$1.81879 \mathrm{e}-06$
RAND $(0,1,40)$	1.704470	$1.17660 \mathrm{e}-16$	$3.73360 \mathrm{e}+01$	$5.45797 \mathrm{e}-10$	$3.08607 \mathrm{e}-09$
RAND $(0,1,50)$	$*$				
RAND $(0,5,5)$	3.459575	$1.30447 \mathrm{e}-11$	$2.24100 \mathrm{e}+00$	$1.07787 \mathrm{e}-06$	$2.88253 \mathrm{e}-07$
RAND $(0,5,10)$	1.446998	$2.99299 \mathrm{e}-10$	$1.12800 \mathrm{e}+00$	$4.96887 \mathrm{e}-06$	$6.29473 \mathrm{e}-06$
RAND $(0,5,20)$	2.710466	$6.54488 \mathrm{e}-15$	$6.15600 \mathrm{e}+00$	$2.51409 \mathrm{e}-11$	$1.02480 \mathrm{e}-08$
RAND $(0,5,30)$	8.877550	$9.33578 \mathrm{e}-14$	$2.99770 \mathrm{e}+01$	$2.08784 \mathrm{e}-10$	$3.85227 \mathrm{e}-09$
RAND $(0,5,40)$	$*$				
RAND $(0,5,50)$	$*$				
RAND $(0,10,5)$	1.718571	$3.15284 \mathrm{e}-11$	$2.51100 \mathrm{e}+00$	$1.50084 \mathrm{e}-06$	$1.54437 \mathrm{e}-06$
RAND $(0,10,10)$	4.330785	$4.12716 \mathrm{e}-10$	$1.04500 \mathrm{e}+00$	$7.50345 \mathrm{e}-07$	$1.05383 \mathrm{e}-06$
RAND $(0,10,20)$	$*$				
RAND $(0,10,30)$	13.019492	$8.08185 \mathrm{e}-12$	$2.24020 \mathrm{e}+01$	$5.76955 \mathrm{e}-09$	$1.67219 \mathrm{e}-08$
RAND $(0,10,40)$	$*$				
RAND $(0,10,50)$	$*$				
RAND $(0,20,5)$	16.260461	$1.01362 \mathrm{e}-12$	$4.65100 \mathrm{e}+00$	$3.12245 \mathrm{e}-07$	$-3.51639 \mathrm{e}-10$
RAND $(0,20,10)$	2.940613	$1.02493 \mathrm{e}-11$	$1.42800 \mathrm{e}+00$	$1.69245 \mathrm{e}-07$	$3.48378 \mathrm{e}-07$
RAND $(0,20,20)$	$*$				
RAND $(0,20,30)$	25.225560	$4.50830 \mathrm{e}-14$	$1.37040 \mathrm{e}+02$	$4.04710 \mathrm{e}-07$	$2.52569 \mathrm{e}-08$
RAND $(0,20,40)$	$*$				
RAND $(0,20,50)$	$*$				

Table 2 Performance of BARON for solving the scaled SOCQEiCP.

8.1 Performance of the enumerative method

Table 1 reports the computational experience when solving the aforementioned test problems. The enumerative method was run with the tolerances $\varepsilon_{1}=10^{-5}$ and $\varepsilon_{2}=$ 10^{-5}. In this table, we report the computed value of the eigenvalue, the value of the function f derived at the solution, the value of the lower and upper bounds for λ computed as in Sections 4.3 and 4.2 respectively, the number of nodes enumerated by the algorithm, and the CPU time in seconds. Furthermore, the column titled "Fe" reports the value of $\left\|w-\lambda^{2} A x-\lambda B x-C x\right\|_{\infty}$ derived at the solution, while the last
column titled "compl" shows the value of $x^{\top} w$ at this solution. The value zero in the column titled "Nodes" indicates that a solution to SOCQEiCP was found at the root node itself. The symbol * indicates that the enumerative algorithm was not able to solve the problem, i.e., the algorithm attained the maximum number of iterations, fixed as $n_{\max }=300$. In this case we include the value of the objective function, the corresponding value of "Fe", and "compl" for the best stationary point available at termination.

As a benchmark for comparison, we solved these same problems using BARON (Branch-And-Reduce Optimization Navigator [30]), which is an optimization solver for the global solution of algebraic nonlinear programs and mixed-integer nonlinear problems. This software package implements a branch-and-reduce algorithm, enhanced with a variety of constraint propagation and duality techniques for reducing ranges of variables in the course of the algorithm. The code for solving the nonlinear problem NLP ${ }_{1}$ given in (24) was implemented in the General Algebraic Modeling Systems (GAMS) language [7] and the solver BARON was used with default options. The numerical results for solving the same set of test problems as above are displayed in Table 2 We use the notation * to indicate that BARON was not able to find a solution to SOCQEiCP.

Comparing Tables 1and 2, we see that the enumerative method terminates prematurely with just an approximate global optimizer for five test problems, while BARON fails in finding a global minimum for nine instances. The values of "Fe" and "compl" obtained with the application of the enumerative algorithm are similar, in general, to those delivered by the global minima given by BARON. Moreover, the computational time for the enumerative method was comparable to that required by BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-smooth Newton algorithm presented in Section 6 and the results are shown in Tables 3 The starting point was chosen as $\lambda=1,\left(x^{0}, \bar{x}, y^{0}, \bar{y}\right)=(1 / 2,0,1 / 2,0), \bar{w}=\lambda^{2} A x+\lambda B x+C x$, and $\bar{h}=\lambda x-$ y. The algorithm was run with $\widetilde{\varepsilon}_{1}$ and $\widetilde{\varepsilon}_{2}$ both equal to 10^{-4}. In Table 3 we report the value of the computed eigenvalue, the number of iterations taken by the algorithm to converge, and the CPU time in seconds. The notation "*" indicates that the algorithm was not able to converge within the maximum number of iterations, which was set at 100. Note that the semi-smooth method is much faster than the enumerative algorithm for obtaining a solution, but on the other hand, it is often not able to converge within the given number of iterations.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative method required more than one node for finding a solution, we applied the hybrid method proposed in Section 7 The values of the tolerances $\bar{\varepsilon}_{1}$ and $\bar{\varepsilon}_{2}$ used to switch from the enumerative method to the semi-smooth Newton method were set to 10^{-1}. For the semi-smooth Newton

Problem	λ	It	CPU
RAND $(0,1,5)$	1.081800	5	$1.56439 \mathrm{e}-01$
RAND $(0,1,10)$	1.593743	7	$6.02723 \mathrm{e}-03$
RAND $(0,1,20)$	1.660417	50	$8.24431 \mathrm{e}-02$
RAND $(0,1,30)$	1.942184	11	$4.53060 \mathrm{e}-02$
RAND $(0,1,40)$	1.704506	16	$9.33797 \mathrm{e}-02$
RAND $(0,1,50)$	2.076201	38	$3.15395 \mathrm{e}-01$
RAND $(0,5,5)$	3.459636	22	$2.22559 \mathrm{e}-02$
RAND $(0,5,10)$	1.494006	8	$1.24778 \mathrm{e}-02$
RAND $(0,5,20)$	2.710538	10	$2.41175 \mathrm{e}-02$
RAND $(0,5,30)$	$*$		
RAND $0,5,40)$	6.978216	66	$3.45564 \mathrm{e}-01$
RAND $(0,5,50)$	$*$		
RAND $(0,10,5)$	1.759891	5	$5.53116 \mathrm{e}-03$
RAND $(0,10,10)$	$*$		
RAND $(0,10,20)$	$*$		
RAND $(0,10,30)$	$*$		
RAND $(0,10,40)$	$*$		
RAND $(0,10,50)$	$*$		
RAND $(0,20,5)$	$*$		
RAND $(0,20,10)$	2.944632	11	$1.05081 \mathrm{e}-02$
RAND $(0,20,20)$	$*$		
RAND $(0,20,30)$	$*$		
RAND $(0,20,40)$	$*$		
RAND $(0,20,50)$	$*$		

Table 3 Performance of the semi-smooth Newton method for solving the scaled SOCQEiCP.
algorithm, the values of the tolerances to terminate the algorithm were taken as $\widetilde{\varepsilon}_{1}=$ 10^{-4} and $\widetilde{\varepsilon}_{2}=10^{-4}$. The maximum number of iterations for the semi-smooth method was fixed as 100 .

Table4displays the value of the computed eigenvalue, the number of nodes enumerated by the algorithm, the number of times that the semi-smooth Newton method was called, which we indicate as "Ntime", the CPU time in seconds, and the values of "Fe" and "compl" defined as above.

We observe that the additional use of the semi-smooth Newton method greatly improves the efficiency and efficacy of the enumerative method. Indeed, the algorithm is able find a solution by enumerating a fewer number of nodes and succeeds in solving all the test problems.

The efficiency of the hybrid algorithm was also investigated when K is the Cartesian product of Lorentz cones K_{i} as in (10) with $r>1$. In Table 5] we report the results obtained for $n=30,40,50,100$, and $r=5,10$. The results confirm the efficiency of the hybrid method for dealing with these more complicated problems. We therefore recommend the proposed hybrid algorithm for solving SOCQEiCPs.

9 Conclusions

In this paper, we have investigated the solution of the Second-Order Cone Quadratic Eigenvalue Complementarity Problem, $\operatorname{SOCQEiCP}(A, B, C)$, with $A \in \operatorname{PD}$ and $C \in S_{0}^{\prime}$. By exploiting the equivalence between the n-dimensional SOCQEiCP and a suitable $2 n$-order SOCEiCP, we introduced an appropriate Nonlinear Programming (NLP) formulation for the latter having a known global optimal value. An enumerative

Problem	λ	Nodes	Ntime	CPU	Fe	compl
RAND $(0,1,30)$	1.942184	0	1	$2.02698 \mathrm{e}+00$	$3.08087 \mathrm{e}-15$	$-1.64018 \mathrm{e}-15$
RAND $(0,1,40)$	1.704506	0	1	$5.62104 \mathrm{e}+00$	$1.41935 \mathrm{e}-14$	$-1.48770 \mathrm{e}-13$
RAND $(0,1,50)$	2.076201	0	1	$5.97575 \mathrm{e}+00$	$3.76871 \mathrm{e}-12$	$-1.38359 \mathrm{e}-12$
RAND $(0,5,20)$	2.710538	0	1	$4.60102 \mathrm{e}+00$	$8.92193 \mathrm{e}-13$	$-3.58477 \mathrm{e}-13$
RAND $(0,5,30)$	8.877496	0	1	$3.87405 \mathrm{e}+00$	$5.73297 \mathrm{e}-10$	$-5.70326 \mathrm{e}-11$
RAND $(0,5,40)$	6.978216	0	1	$7.41294 \mathrm{e}+00$	$6.62892 \mathrm{e}-12$	$-4.09478 \mathrm{e}-13$
RAND $(0,5,50)$	6.787334	0	1	$9.21684 \mathrm{e}+00$	$4.59986 \mathrm{e}-10$	$-1.08617 \mathrm{e}-10$
RAND $(0,10,10)$	4.330815	0	1	$1.49573 \mathrm{e}+00$	$6.37987 \mathrm{e}-10$	$-4.92289 \mathrm{e}-11$
RAND $(0,10,20)$	10.831012	2	1	$9.18055 \mathrm{e}+00$	$7.34059 \mathrm{e}-11$	$-1.00148 \mathrm{e}-11$
RAND $(0,10,30)$	13.019383	0	1	$5.05396 \mathrm{e}+00$	$2.96528 \mathrm{e}-09$	$-3.96873 \mathrm{e}-10$
RAND $(0,10,40)$	8.349292	0	1	$6.21859 \mathrm{e}+00$	$3.64334 \mathrm{e}-11$	$-3.56923 \mathrm{e}-12$
RAND $(0,10,50)$	13.185873	0	1	$6.59344 \mathrm{e}+00$	$1.24879 \mathrm{e}-11$	$-3.69148 \mathrm{e}-12$
RAND($0,20,5)$	16.260338	0	1	$5.58621 \mathrm{e}+00$	$3.84712 \mathrm{e}-12$	$-1.37479 \mathrm{e}-13$
RAND $(0,20,10)$	2.944632	0	1	$2.49894 \mathrm{e}+00$	$1.12554 \mathrm{e}-08$	$-2.40425 \mathrm{e}-09$
RAND $(0,20,20)$	21.671241	0	1	$4.60443 \mathrm{e}+00$	$3.34048 \mathrm{e}-12$	$2.17000 \mathrm{e}-13$
RAND $(0,20,30)$	25.225542	0	1	$9.70190 \mathrm{e}+00$	$6.67380 \mathrm{e}-12$	$-1.19377 \mathrm{e}-12$
RAND $(0,20,40)$	26.071054	1	1	$3.33318 \mathrm{e}+01$	$2.32863 \mathrm{e}-13$	$-6.69950 \mathrm{e}-15$
RAND $(0,20,50)$	26.459219	1	2	$3.48536 \mathrm{e}+01$	$8.51749 \mathrm{e}-16$	$-8.67362 \mathrm{e}-18$

Table 4 Performance of the hybrid method for solving the scaled SOCQEiCP.

	$\mathrm{r}=5$						$\mathrm{r}=10$			
Problem	λ	Nodes	Ntime	Fe	compl	λ	Nodes	Ntime	Fe	compl
RAND $(0,1,30)$	1.507567	0	1	$3.78057 \mathrm{e}-12$	$-5.97117 \mathrm{e}-13$	1.745894	0	1	$6.47855 \mathrm{e}-10$	$-2.63029 \mathrm{e}-11$
RAND $(0,5,30)$	4.618213	0	1	$4.66058 \mathrm{e}-10$	$-3.06677 \mathrm{e}-11$	4.793496	1	1	$5.99856 \mathrm{e}-09$	$-4.52674 \mathrm{e}-10$
RAND $(0,10,30)$	10.242716	1	1	$9.50619 \mathrm{e}-10$	$-1.92155 \mathrm{e}-11$	12.447275	3	3	$3.92070 \mathrm{e}-09$	$-5.77478 \mathrm{e}-11$
RAND $(0,20,30)$	25.079701	0	1	$2.63178 \mathrm{e}-13$	$-3.94712 \mathrm{e}-15$	22.839777	9	2	$3.28573 \mathrm{e}-15$	$-7.34547 \mathrm{e}-18$
RAND $(0,1,40)$	1.669932	0	1	$1.69323 \mathrm{e}-13$	$-5.22984 \mathrm{e}-14$	1.621706	0	1	$7.87309 \mathrm{e}-12$	$-1.09884 \mathrm{e}-12$
RAND $(0,5,40)$	4.237988	0	1	$2.98267 \mathrm{e}-08$	$-5.01146 \mathrm{e}-09$	4.77489	3	4	$1.42131 \mathrm{e}-10$	$-7.10721 \mathrm{e}-12$
RAND $(0,10,40)$	10.240786	1	1	$8.65350 \mathrm{e}-13$	$-1.71890 \mathrm{e}-13$	13.427837	0	1	$7.02989 \mathrm{e}-10$	$-1.20675 \mathrm{e}-11$
RAND $(0,20,40)$	28.774659	0	1	$1.03278 \mathrm{e}-09$	$-1.31259 \mathrm{e}-11$	20.303234	5	2	$2.64979 \mathrm{e}-16$	$-8.67362 \mathrm{e}-19$
RAND $(0,1,50)$	2.100357	0	1	$2.05926 \mathrm{e}-10$	$-2.39811 \mathrm{e}-11$	2.025522	0	1	$5.06818 \mathrm{e}-12$	$-2.51581 \mathrm{e}-12$
RAND $(0,5,50)$	5.280643	0	1	$1.16584 \mathrm{e}-07$	$-8.44835 \mathrm{e}-08$	7.659915	1	2	$7.59458 \mathrm{e}-11$	$-2.07326 \mathrm{e}-12$
RAND $(0,10,50)$	13.966155	0	1	$1.46927 \mathrm{e}-07$	$-8.74790 \mathrm{e}-09$	13.128826	1	1	$3.36279 \mathrm{e}-07$	$-2.16985 \mathrm{e}-08$
RAND $(0,20,50)$	29.397506	0	1	$1.25672 \mathrm{e}-11$	$-6.36429 \mathrm{e}-13$	27.394438	3	1	$3.86771 \mathrm{e}-14$	$-2.46336 \mathrm{e}-15$
RAND $(0,1,100)$	2.470418	0	1	$2.78978 \mathrm{e}-13$	$-1.44331 \mathrm{e}-14$	2.294175	3	1	$7.68383 \mathrm{e}-10$	$-1.76786 \mathrm{e}-10$
RAND $(0,5,100)$	8.471858	11	5	$1.66967 \mathrm{e}-16$	$-4.33681 \mathrm{e}-19$	7.728152	5	1	$1.93562 \mathrm{e}-13$	$-5.22204 \mathrm{e}-14$
RAND $(0,10,100)$	17.613880	9	4	$1.58521 \mathrm{e}-15$	$-8.02310 \mathrm{e}-18$	20.952430	9	2	$3.25973 \mathrm{e}-13$	$-1.51641 \mathrm{e}-14$
RAND $(0,20,100)$	36.270876	13	1	$4.39339 \mathrm{e}-08$	$-7.37002 \mathrm{e}-10$	34.565427	9	1	$5.42460 \mathrm{e}-08$	$-1.62659 \mathrm{e}-09$

Table 5 Performance of the hybrid method for solving some instances of the scaled SOCQEiCP with $r=5$ and $r=10$.
method was developed for solving this NLP formulation and was proven to globally converge to a solution of the SOCQEiCP. However, for some test problems, the enumerative method was able to compute only an approximate solution in practice. Hence, a hybrid method that combines the enumerative algorithm with a semi-smooth method was proposed for implementation, and numerical results were presented to demonstrate that this hybrid method is highly efficient for solving SOCQEiCP.

References

1. Adly, S., Rammal, H. A new method for solving second-order cone eigenvalue complementarity problem. To appear in Journal of Optimization Theory and Applications.
2. Adly, S., Seeger, A. A nonsmooth algorithm for cone constrained eigenvalue problems. Computational Optimization and Applications 49 (2011) 299-318.
3. Bazaraa, M. S., Sherali, H. D., Shetty C. M. Nonlinear Programming: Theory and Algorithms. John Wiley \& Sons, New York (2006).
4. Brás, C., Iusem, A.N., Júdice, J. On the quadratic eigenvalue complementarity problem. To appear in Journal of Global Optimazion
5. Brás, C., Fukushima, M., Iusem, A.N., Júdice, J. On the conic eigenvalue complementarity problem (submitted).
6. Brás, C., Fukushima, M., Júdice, J., Rosa, S. Variational inequality formulation for the asymmetric eigenvalue complementarity problem and its solution by means of a gap function. Pacific Journal of Optimization 8 (2012) 197-215.
7. Brooke, A., Kendrik, D., Meeraus, A., Raman, R. GAMS: A Users' Guide. GAMS Development Corporation, Washington (1998).
8. Clarke, F. H. Optimization and Nonsmooth Analysis Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (1990).
9. Cottle, R. W., Pang, J.S., Stone, R. S. The Linear Complementarity Problem. Academic Press, New York (1992).
10. Facchinei, F., Pang, J. S. Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003).
11. Fernandes, L. M., Fukushima, M. Júdice, J., Sherali, H. D. The second-order cone eigenvalue complementarity problem. (submitted)
12. Fernandes, L. M., Júdice, J., Fukushima, M., Iusem, A. On the symmetric quadratic eigenvalue complementarity problem. Optimization Methods and Software 29 (2014) 751-770.
13. Fernandes, L. M., Júdice, J., Sherali, H. D., Forjaz, M. A. On an enumerative algorithm for solving eigenvalue complementarity problems. Computational Optimization and Applications 59 (2014) 113134.
14. Fernandes, L. M., Júdice, J., Sherali, H. D., Fukushima, M. On the computation of all eigenvalues for the eigenvalue complementarity problems. Journal of Global Optimization 59 (2014) 307-326.
15. Iusem, A.N., Júdice, J., Sessa, V., Sherali, H. D. On the numerical solution of the quadratic eigenvalue complementarity problem. (submitted)
16. Júdice, J., Raydan, M., Rosa, S., Santos, S. On the solution of the symmetric complementarity problem by the spectral projected gradient method. Numerical Algorithms 44 (2008) 391-407.
17. Júdice, J, Sherali, H. D., Ribeiro, I. The eigenvalue complementarity problem. Computational Optimization and Applications 37 (2007) 139-156.
18. Júdice, J., Sherali, H. D., Ribeiro, I., Rosa, S. On the asymmetric eigenvalue complementarity problem. Optimization Methods and Software 24 (2009) 549-586.
19. Le Thi, H., Moeini, M., Pham Dinh, T., Júdice, J. A DC programming approach for solving the symmetric eigenvalue complementarity problem. Computational Optimization and Applications 5 (2012) 1097-1117.
20. MATLAB, version 8.0.0.783 (R2012b). The MathWorks Inc., Natick, MS (2012).
21. Niu, Y.S., Pham, T. Le Thi, H.A., Júdice, J. Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem. Optimization Methods and Software 28 (2013) 812-829.
22. Nocedal, J., Wright, S. Numerical Optimization Springer, New York (2006).
23. Pinto da Costa, A., Martins, J., Figueiredo, I., Júdice, J. The directional instability problem in systems with frictional contact. Computer Methods in Applied Mechanics and Engineering 193 (2004) 357-384.
24. Pinto da Costa, A., Seeger, A. Cone constrained eigenvalue problems, theory and algorithms. Computational Optimization and Applications 45 (2010) 25-57.
25. Queiroz, M., Júdice, J., Humes, C. The symmetric eigenvalue complementarity problem. Mathematics of Computation 73 (2003) 1849-1863.
26. Sherali, H. D., Adams, W. P. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, Kluwer Academic Publishers, Dordrecht (1999).
27. Seeger, A. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algrebra and Its Applications 294 (1999) 1-14.
28. Seeger, A. Quadratic eigenvalue problems under conic constraints. SIAM Journal on Matrix Analysis and Applications 32 (2011) 700-721.
29. Seeger, A., Torky, M. On eigenvalues induced by a cone constraint. Linear Algebra and Its Applications 372 (2003) 181-206.
30. Tawarmalani, M. Sahinidis, N.V. A polyhedral branch-and-cut approach to global optimization. Mathematical Programming 103 (2005) 225-249.
31. Wächter, A., Biegler, L.T. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106 (2006) 25-57.
