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1 Introduction

Given matricesB, C € R"™", the Eigenvalue Complementarity Problem (denoted
EiCP@®,C); see, e.g.[121] and[22]), consists of findiflg x,w) € R x R" x R" such
that

w = ABx—Cx (1)
w>0,x>0 (2)
x'w=0 (3)
e'x=1, (4)

withe=(1,1,...,1)" € R", where constrainf{4) is introduced, without loss of gen-
erality, to prevent th&-component of a solution to vanish. Usually, the maBiis
assumed to be positive definite (PD). This problem has maplicapions in engi-
neering (se€ [19]/[22]). If a triplefA ,x,w) solves EiCP, then the scalaris called

a complementary eigenvalue andx is a complementary eigenvector associated with

A for the pair(B,C). The conditiorx” w = 0 and the nonnegative requirementson
andw imply that eithen =0 orw; = 0 for 1 <i < n. These pairs of variables are
called complementary. The EiCP always has a solution peavillat the matriB is

PD [13].

If the matricesB andC are both symmetric, then EiCP is called symmetric and
reduces to the problem of findingstationary point (SP) of the so-called Rayleigh
Quotient function on the simple® (see, e.g[[21]/122]), which is essentially a SP of
the following standard quadratic fractional program:

.
Maximize

X" Bx
subject toe' x= 1 (5)
x> 0.

A number of techniques have been proposed for solving EiCRtaextensions;
see, e.g.[[1]12],19],[110],121],112],[1213] [ T14] T18][20], and [24]. As expected,
the symmetric EiCP is easier to solve.

Recently an extension of the EiCP has been introducédin@g}re some appli-
cations are highlighted, which is called tieiadratic Eigenvalue Complementarity
Problem (QEICP). This problem differs from the EiCP through the &ige of an
additional quadratic term iA. Its formal definition follows.

GivenA,B,C € R™", QEICPA, B,C) consists of findindA ,x,w) € R x R" x R"
such that

W= A2Ax+ A Bx+Cx, (6)
w>0,x>0, (7)
x"'w=0, (8)

e'x=1, 9)
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where, as beforee = (1,1,...,1)" € R". Note that QEICP%,B,C) reduces to
EiCP®B, —C) whenA = 0. Furthermore, finding a positive complementary eigerezalu
for EICP(B,C) is equivalent to computing a nonzero quadratic complenngeigen-
value of QEICPB, 0, —C). TheA -component of a solution to QEICR(B,C) is called

a quadratic complementary eigenvalue for A, B,C, and thex-component is called a
guadratic complementary eigenvector for A, B,C associated witiA .

The case of the symmetric QEICP, i.e., wh&iB, andC are symmetric matri-
ces, andC = —I, wherel is the identity matrix, has been analyzed [in [8], where
each instance of QEICP withx n matrices is related to an instance of EiCP with
2n x 2n matrices. In this paper, we remove the symmetry assuminthfocus on
the general QEICP. In[3], a relation betweemadimensional QEiCP and certain2
dimensional instances of EICP was introduced. This “radntif QEICP to EiCP
was suggested mainly with a theoretical purpose in mind,ahgrto establish nec-
essary and/or sufficient conditions énB,C that ensure the existence of solutions
to QEICPA, B,C). In particular, QEICP has positive and negative quadatiople-
mentary eigenvalues# € PD andC is not anSy-matrix, i.e., there exists no®x >0
such thatCx > 0 [3]. Note that these considerations should be consideseaha&x-
tension of the sufficient conditions for the symmetric QEI@®C = —I is not an
S matrix. Furthermore, these conditions imply that an asyinm&iCP(B,C) has
at least a positive complementary eigenvalu & PD andC' is anS-matrix, i.e.,
there exists & > 0 such thaC ' x > 0. This result is proved later in this paper along
with a discussion on its importance in practice. Recall iuahe applications of the
EiCP require the complementary eigenvalue to be positi9g [1

Another set of sufficient conditions for the existence ofiiohs to QEICP, called
co-regularity and co-hyperbolicity, was proposed in_[23]. An enumerative method
and a hybrid algorithm for QEICP, combining this enumemativethod with a semi-
smooth approach, have been introduced’in [9] [10]. Thesdénods are able
to solve the QEICP when the co-regularity and co-hyperkiglzonditions are as-
sumed to hold. In[]3], the numerical solution of QEICP by $ujvits equivalent
2n-dimensional EiCP referred to above has been discussethtigaal Inequality
(VI) and Nonlinear Programming (NLP) formulations have mé@groduced for this
purpose. Numerical experiments reportedin [3] clearlydatk that the NLP formu-
lation seems to be more effective, particularly since tiobagl optimal value is known
to be zero. In this paper, we propose an enumerative methdidding a global min-
imum of such an NLP that exploits this desirable feature oPNLhis algorithm is
based on ideas similar to the ones discussed in [9] and it atesstationary points
of the objective function of NLP until it finds one that achesvthe known zero op-
timal value. As in[[10], this method can be combined with taenssmooth method
similar to the one introduced ih [23] in order to enhance @sputational efficiency.
Numerical results included in the paper indicate the effiear efficiency of the hy-
brid (enumerative plus semi-smooth) method for the satutithe QEICP whe €
PD andC is not anS-matrix.

The organization of the remainder of this paper is as folldwsSectior 2, the
2n-dimensional EiCPs that are equivalent to the QEICP and MigP formulations
are introduced. The enumerative method is described inddsf} and . The semi-
smooth algorithm for ther2dimensional EiCPs is introduced in Sectidn 5. The hy-
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brid approach combining the enumerative and the semi-dmoethods is discussed
in Sectior 6. The computation of a positive complementaggm®ialue for an EiCP
is discussed in Sectidrh 7. Numerical results are report&gatior{ 8, and some con-
cluding comments are given in Sectfdn 9.

2 A Nonlinear Programming Formulation

Consider QEICPA,B,C) with A,B,C € R™" and assume tha& is a PD matrix and
Cis not ang-matrix, that is

(i) x"Ax>0forallx#0
(i) thereis no 0# x> 0 such tha€x > 0.

Note that it is relatively easy to verify whether a given mais PD orS,. TheLDL "
decomposition of the symmetric form &fis required for checking the first property
while the solution of a linear program suffices for checkimg second property.

As in [3], we introduce the 2dimensional EICHD, G) and EiCPD,H) formula-

tion, where
AO -B-C B -C
o=[o1]. o= "] #=[5]. a0

with | being the identity matrix of orden. Note that the matriD of the A-term of
the two EiCPs is PD. This means that these EiCPs have at leastodution[[13].

In order to see the implementation of solving QEICP by findirsplution to these
EiCPs, we write the EiCBY, G) as follows:

BN e

e'y+e'x=1 (11b)
y'w=x"t=0 (11c)
XY, W,t,A > 0. (11d)

Then the following result hold§]3]:

Theorem1 LetAc PDandC ¢ &. If ()T,)?,{/) isa solution of EICP(D, G) then:
(i) A>0andy=AX B
(ii) A isaquadratic complementary eigenvalue of QEICP and (1+ A)Xis an asso-
ciated eigenvector.

Note that a similar result holds for Ei0P(H) with —A instead ofA in (ii) (how-
ever, the eigenvector has the same form). TherefofeciPD andC ¢ S, the QEICP
has at least a positive and a negative quadratic complenyeziggenvalue, which can
be computed by solving EIiCB(G) and EiCPD,H), respectively. In this paper, we
concentrate our attention solely on the computation of digesjuadratic comple-
mentary eigenvalue as the case of a negative eigenvalurilarsi
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Consider again the EICP_({11). By TheorEht % 0 in any solution of the EiCP.
If we introduce the vectov such thatv = Ay, then we get the following Nonlinear
Programmming Formulation of the EiCP{11) introduced(in [3]

NLP; :Minimize  f(X,y,\,W,A) = (y—AX) " (y—AX)+ (v—Ay) T (v—Ay)

+ (x+y+v)'w (12a)

subjectto  w= Av+ By+Cx (12b)
ely+e'x=1 (12¢)
e'v+e'y=2 (12d)

X, ¥, V,w > 0. (12e)

Furthermore, the following result holds [3]:

Theorem 2 Let A be strictly copositive and C ¢ S. Then the nonlinear problem
NLP; in (I2) has a global minimumand (A, (1+ A)x) is a solution of QEiCP.

Proof See Proposition 7 in[3]. O

In the next two sections, we introduce an enumerative mefhrdichding a global
minimum for NLP;. Since the global optimal value ®LP; is equal to zero, the
algorithm computes stationary points fdLP 4 in a systematic way until finding one
with a null objective function value (or a value smaller treaprescribed tolerance).
These stationary points are associated with the nodes obayltiree that is generated
according to the branching strategy defined’in [13]. Bound¢he complementary
eigenvalue are required in order to generate constraistsban the Reformulation-
Linearization Technique (RLT)[25] that facilitate the sgfafor a global minimum
of NLP1. In the next section, we discuss how these bounds and RLTreants are
generated. The enumerative algorithm is then describeddtich 4.

3 Lower and upper bounds for a quadratic complementary eigemalue
3.1 Computing an upper bound

The next theorem provides an upper bourfdr a quadratic complementary eigen-
valueA.

Theorem 3 Let pi = 1+ 373 (max{0, —bij} + max{0, —¢jj}) for al i = 1,....n,
and let p € R" be a vector with components p;. Then we can take

P'y
u= m (13)
where (X,y) is a stationary point of the following nonlinear problem:
p'y
yT Ay +XxTx
subjectto e'y+e'x=1
X,y > 0.

NLP, : Maximize
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Proof If A is a solution of EICPD, G), given by [I1), then

z' Gz

dzelA: A =——,
z'Dz

(14)

with A = {ze R :eTz=1,z> 0}, z= (x,y), and withG and D given by [10).
Hence,

2'Gz=—-y'By—y'Cx+x"y=y' (~By - Cx+x) (15a)
z'Dz=y ' Ay+x'x (15b)
But
(=By —Cx+x)i =} (=bijyj —Gijxj) +%

M= M=

IN

max{0, —bij}yj +max{0, —Cij }Xj + X

1
Spiv Vi:]-v"'vnv

wherep; (pi, i =1,...,n) is defined in the theorem. SinceVy; <1 and 0< x; <1
foralli=1,...,n,thenz'Gz< p'y. Now, consider the function

p'y

f(xy) = VAL XX (16)

SinceA is positive definite then the expression in the denominatd®) is strictly
convex on the simpled. Hencef is pseudo-concavé,|[1], and any stationary point
(x,y) of f in A is a global maximum. Thus, an upper bound can be computed as

in @3). O

3.2 Computing a lower bound
For the computation of the lower bouhdconsider the following linear program:

LP: Minimize e'v+e'y
subject to Av+By+Cx>0
e'ly+e'x=1
X, Y,V,w > 0.

An optimal solution toLP provides a lower boundl on A, as established by the
following results:

Theorem 4 If AisPD, LP has an optimal solution.
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Proof Letx,y> 0 such thae"x+e"y= 1. SinceAis PD, the system

Av+ (By+Cx) >0
v>0

has a solution[]6]. HenceP has an optimal solution, since it is feasible and the
objective function is bounded from below on its feasible set O

Theorem 5 If C ¢ S, then LP has a positive optimal value.

Proof LP has a zero optimal value if and onlyif= v =0 in any optimal solution. In
this case, there must exist an> 0 such thaCx > 0 andex = 1. This is impossible
becaus€ ¢ . O

Thus, the lower boundt, defined by the optimal value afP, exists and is strictly
positive whemA € PD andC ¢ .

3.3 Reformulation-Linearization Technigue (RLT) constts
Based on the lower and the upper bounda aterived above, an additional constraint

| <A < ucan be added to the nonlinear probl&iaP 1. Furthermore, sincg = Ax
andv = Ay, the following RLT bound-factor constrainis [25] can alsoduided

Ixi <yi <ux (17a)
ly; <vi <uy; (17b)
I(1-x)<(A-y)<u(l-x) (17¢)
[(1-y) <(A—vi)<u(l-vi) (17d)

foreachi=1,...,n.
By incorporating these constraints, we obtain the follapgmgmented nonlinear
program:

NLP3:Minimize  f(X,y,\,W,A) = (y—AX) " (y—AX)+ (v—Ay) T (v—Ay)

+ (x+y+v)'w (18a)

subjectto  w= Av+ By+Cx (18b)
e'y+e'x=1 (18¢c)
e'v+e'y=2 (18d)

| <A <u (18e)

Ix <yi<ux, Vi=1...,n (18f)
lyi<vi<uy,, Vi=1...,n (189)
I(1-%)<(A—-yi)<u(l-x), Vi=1...n (18h)
I(1-yi)<(A—=vi))<u(l-y), Vi=1...,n (18i)

(XY, v,w) > 0. (18))
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4 An enumerative algorithm for QEICP

In this section, we introduce an enumerative algorithmédviag the nonlinear prob-
lemNLP 3, which explores a binary tree that is constructed underaivitly managed
branching strategies. The first is based on the complenmigntanditions between
the variablesv andx, i.e., eitherw; =0 orx =y; =Vv; = 0 for eachi = 1,...,n as
yi = AX andv; = Ay; for eachi = 1,...,n. The second branching strategy consists
of partitioning the intervall, u] for A. This algorithm is based on ideas similar to the
enumerative algorithm of EIiCP proposed[in][13].

Define the set$ andJ that record thew- and (X, Vi, vi)-variables that are cur-
rently set to zero, respectively. At each node of the tree xeenéne NLR with A
constrained in the intervdl, U] C [I,u] along with the following constraints:

Ix <yi<ix, Vied

lyi <vi<ly, Vied
I(1-x)<(A-w) <UW1-x), Vied
I(1-y) <(A-w) <UWil-y), Vied

vi:yi:xi:O, Vied

w =0, Viel,

wherel <1 <0<u,I C{1,...,n},JC{1,...,n},I={1,...,n}\JandINJ = 0.
Consider also the seks=1UJ, K= {1,....,n} \K andl = {1,....n} \|. Then, at
each nodé of the binary tree, we examine the following nonlinear peobi

NLP4(K) :Minimize  f(X,y,,W,A) = (y—AX)" (y—AX)+ (V=Ay) " (v=Ay)

+(x+y+v)'w (19a)

subjectto w= Av+ By+Cx (19b)
e'y+e'x=1 (19¢)
e'v+e'y=2 (19d)
l<A<U (19¢)
I <y <, Vied (19)
lyi <vi<yi, Vied (199)
(1-x)<(A—y) <Ul-x), Vied (19h)
I(1-y) <A —-w) <dl-w), Viel (190)
(Xy,v,w) >0 (19))
Vi=yi=x=0, Vjel (19k)
w=0, Viel. (191)

The steps of the algorithm are as follows:
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Algorithm 1 Enumerative algorithm

> StepO (Initialization)

1: Setg; andé, such that < &1 < €. _

2: Setk=1,1 =0,J =0 and find a stationary poifk,y,v,w, A ) of NLP4(1).

3: if NLP 4(2) is infeasiblehen

4: QEICP has no solution; terminate.

5: else

6: LetL = {1} be the set of open nodes.

7: LetUB(1) = f(X,y,V,w,A).

8: LetN = 1 be the number of generated nodes.

9: end if

10: Let
61 = max{wix; : i € K} = WX (20)
62 = max{|Vi — Ail, |yi — AXi| 11 € J} (21)

11: while (6, > &1 OR 6, > &) do
> Stepl (Choice of node)
12: if L=0then

13: terminate; QEICP has no solution.

14: else

15: Selectk € L such that)B(k) = min{UB(i) :i € L}.

16: Let (X,y,Vv,w, A) be the stationary point that was previously found at this
node.

17: If k= 1, computed;, and6; in (20) and[[Z1), respectively.

18: end if

> Step2: (Branching rule)
19: if (61 > 6,) then
20: Branch on the complementarity variabbes and (X.,yr,V,) associated
with 8; and generate two new nodist- 1 andN + 2.
21  elseif(61 < 6y) then _ . .
22: Partition the intervall,u] for A at nodekinto [I,A] and[A,u] to generate
23: two new noded®N + 1 andN + 2, where

y=J"
utl otherwise

{A_ it min{(A —1),(@=A)} > 0.1(a—1)
2

24: end if
> Step3 (Solve, Update and Queue)
25: For each ofp=N+1 andp = N+ 2, find a stationary poiniX, ¥, ¥, W, A ) of
NLP4(p). .
26: If NLP4(p) is feasible, set = LU {p} andUB(p) = f(X,¥,V,W,A).
27: SetL =L\ {k}.
28: end while
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We remark that if the algorithm terminates successfullgnth is a quadratic
complementarity eigenvalue foA(B,C) (within the tolerances;) and (1+ A)X is
the corresponding quadratic complementarity eigenvetltm convergence of Algo-
rithm 1 follows from Theorem 4 in [13].

Another strategy for selecting the branching decision atich iteration could be
to compared; with €1/¢& 6, instead of comparing it directly witB,. Such a scaling
strategy could help make the comparison betw&eand 6, commensurable. How-
ever, our computational experience has revealed that typed unscaled strategy
seems to work better for the typical practical values of tlerances; ande&; as
delineated in Sectiohnl 8. Moreover, the chosen values; 6f & induce a limited
priority-type branching strategy that suitably favorsrmiaing on the complementar-
ity restrictions to some extent, which promotes computeti@ffectiveness.

5 A semi-smooth algorithm for QEICP

We begin by writing the systeri (L1) as follows:

BN e

e'ly+e'x=1 (22b)
Yi>0,w>0,yw=0,i=1,...,n (22c¢)
X >0,t>0xt=0i=1,...,n (22d)

SinceA € PD andC ¢ ), Theoreni]L implies that > 0 in any solution, whence
A >0 does not need to be included in the solution. Furthermioessanstraint$ (22c)
and [224) are a consequence of the complementarity conslifidE).

It is well known that complementarity constraints can besfarmed into equal-
ity constraints by using suitable semi-smooth functions. &gply such a transfor-
mation to our system of inequalities, using first #ischer-Burmeister function and
then themin function.

Approach 1 The Fischer-Burmeister functiaprs : R — R is defined as

dre(a,b)=a+b— a2+ b2

This function satisfies the following relation (s€é [7]):
¢re(a,b)=0<a>0,b>0,ab=0.

As a consequence, the constraififs [22¢) andl (22d), can lzeedpby equality
constraints, by introducing the functiods : R?" — R" and @, : R?" — R" defined
as

dre(X1,t1) dre(Y1,W1)
P1(x,t) = : and @;(y,w) = : ; (23)
®rB(Xn, th) ®rB(Yn, Wn)
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and by setting
P1(x,t)=0 and @(y,w)=0.

Thus, the systeni (22) can be seen as a system of equations

He(xy,Wt,A) =0 (24)
with
(Dl(xat)
P2(y, W)
Yp(X,y,Wt,A) = | (AA+B)y+Cx—w| . (25)
Ax—y—t

elytrelx—1

Note that[(Zh) is a nonsmooth set of equations, because ieéidn ¢ is every-
where differentiable except at the origin. However, sibd¢g is semi-smooth (see
e.g.[9]), we can apply theemi-smooth Newton method for solving [23), as described
in the following. Let(X,y,w,t,A) be the current iterate, satisfyirgy+e'x = 1.
Such a point can be regarded as a solution to the syktdm (#2)oérancess, &, if
it satisfies

max{[W— (AA+B)y—CX]|, [{— AX+ Y|} < &1, max{|| 21 (X, )|, | @27 W) |} < &,
(26)

with @; and @, given by [23). If [26) does not hold, then we update the pojnt b
applying a Newton iteration, i.e., by computing tseni-smooth Newton direction as
a solution to the following linear system

dy X+t2—Xx—t
|9y VYW —y—w
GI(XY,W,t,A) |dw| = |[W— (AA+B)y—Cx] , (27)
o t—AX+Y
dy 0

E 0 0 FoO
B 0 E F 00
GIXY,W,t,A) = | C (AA+B) —I, 0 Ay| e R4Lx@+D) — (2g)

Herel,, is the identity matrix of orden, andE, F,E,F € R™" are diagonal matrices
whose diagonal elements are defined as follows:

X & P
(EiB) = (1 i/ngrth’l \/EZHTZ) IT06,6) #0 Vi=1,....,n, (29)

) ) ?

(1-&1-7) it (%.6) =0
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with &2+ 52 = 1,

. 1- 41— “) if (i, W) #0
(Eii, Fi) = ( NAE V2 O, W) # Vi=1,...,n, (30)
(1-&1-) if (55,W%) =0

with 3i2+ fi? = 1. In practice we uséa,ﬁi) = (1,0) and (&, Ai) = (1,0) for all
i=1,...,n _

If GJ(X,y,W,t,A) is singular, then the algorithm terminates unsuccessfollly-
erwise the search directidaly, dy, dw,d,d, ) is uniquely determined by (27) and a
new point is obtained by

K =X+ 0y, §=y+dy, W=W+dy, f =T+, andA = A +d,. (31)

Note that the new point satisfiesX+e'§ = 1, and is thus used in the next iteration
of the method.

Approach 2 The complementarity constraints can be also replaced log tisemin
function defined as

®min(a,b) =0, (32)

wheregmin : R? — R is the minimum function mifia, b}, which is equal to zero if
and only ifa>0,b > 0, andab = 0. The complementarity constrainEs (22c) dnd {22d)
can be represented by setting to zero the functibnsR?" — R" and®, : R?" — R"
defined by

¢min(xlatl) ¢min(y1,W1)
@p(x,t) = : and @, (y,w) = : . (33)
¢min(Xn7tn) ¢min(Yn,Wn)
Then, the systeni_(22) is equivalent to the following systémguations:
L‘Umin(xv y7 Watv/\) = O (34)
with
(Dl(X,t)
(DZ(yv W)
Whin(% Y, W,t,A) = | (AA+B)y+Cx—w| . (35)
AX—y—t
e'y+e'x—1

Since the functio®nin(x,y,w,t,A ) is semi-smooth, a solution of the system of equa-
tions can be found as in the previous approach by applyingeih@-smooth Newton
method until the following conditions are satisfied:

max{||\W— (AA+B)y—CX], [t = AX+ 1|} < er,max{|| @1 (D)1, || 227, W) |} < &2,
(36)
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where®; and @, are given by[(3B), an¢k,y,w, t_,)T) is the current iterate satisfying
e'y+e'x= 1. At each Newton iteration a new direction is computed via

dyx —min{x,t}
_|dy —min{y,w}
GIXY.W.ELA) [dw| = |W— (AA+B)y—CX] . (37)
o t—AX+y
dy 0

The Clarke generalized Jacobi@d(x, ,vV,t,)T) is given by

E O 0 F O
3 0O E F 00
GIXY,W,t,A) = | C (AA+B) —I, 0 Ay| e R4Lx@n+l) (3g)
Ay —lh 0 =y X
el el 0 0O

wherely is the identity matrix of orden, and Whereé, IE, E,F ¢ R™" are diagonal
matrices with the following diagonal elements:

(1,0) if X <ti
(Eii,Fi) = ¢ (0,1) iff<x Vi=1..,n (39)
i, 1-vi) ifx=t
with v; € [0,1], and where
) if yi <w
) ifw <y Vi=1,...,n (40)
(Oi,l—\”/i) ifyi=w
with U; € [0,1]. In practice we use; = 0 andV; =0 forall 1,...,n.
If GJ(X,y,W,t,A) is singular, then the algorithm terminates unsuccessfOlli-

erwise, the directioridy, dy, dw,d,d, ) is uniquely determined by (87) and the new
iterate is defined by

K =X+ O, § =Y+ 0y, W= W+, f =t+ch, andA = A +d,, (41)
which satisfiee’ % +el§= 1.

Next, we present in a formal way the main steps of the semietimalgorithm
for solving the systeni(22), which is valid for both the FisciBurmeister and min
function approaches.
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Algorithm 2 Semi-smooth Newton algorithm

> StepO (Initialization)

1: Let (X,y,w,t,A) be an initial point such tha'y+e'x= 1.

2: Let & and&; be selected positive tolerances.

3: Compute®; and @, given in [Z3) (or[(3B)).

4: while (max{[|W— (AA+B)y—CX], [t —AX+V]|} > & OR max || @], || ®2||} >
52) do

5: > Step 1 (Newton direction)

6:  Compute the diagonal matricésF,E,F € R"™" given by [30) and{29) (or

@Q) and[(39)).

7: Compute the Clarke generalized Jacobian G, _vV,t_,)T) by using

8: if GI(X,V,W,t,A) is singularthen

9: Stop, and terminate with an unsuccessful termination.
10: else
11 Find the semi-smooth Newton direction
dx _(Dl()zt_)
s VAT
GI(X,Y,w,t,A) |dw| = |W— (AA+B)y—CX]
ck t—AX+y
d, 0

with @, and®, given in [23) (or[(3B)).

12: > Step3 (Update)
13: Compute the new point
K =X+ 0y, §=y+dy, W=W+dy, f =T+, andA =2 +d,
14: and letx=%X,y =9, W=w, f =f, andA = A.
15: end if

16: end while

If the algorithm terminates with success, thers a quadratic complementarity
eigenvalue, an¢il + A )x is a corresponding quadratic complementarity eigenvector
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6 A hybrid algorithm for QEICP

As discussed if[10], the enumerative algorithm is globedipvergent to a solution
of QEICP. However, in many cases, the algorithm is only ableetminate with a
near-solution to QEICP. On the other hand, the semi-smoethaa is a fast local
algorithm, but lacks the global convergence feature. Hameean combine the good
features of both the algorithms in a hybrid method based esdéime ideas of a sim-
ilar procedure discussed in[10]. The steps of the hybrichodare presented below.

Algorithm 3 Hybrid algorithm

> StepO (Initialization)

1: Let & and & be two positive tolerances for switching from the enumeeati
method to the semi-smooth and, Btande, be the tolerances used in Algo-
rithm 1, such that; < & ande; < &.

2: Letnmaxit be the maximum number of iterations allowed to be performetthé
semi-smooth method.

_ > Step 1 (Decision step)

3: Let (x,y,v,w,A) be the stationary point associated with the nk@ad compute
6: and6; in (20) and[[21), respectively.

4: while (61 > &1 OR 6, > &) do
5: if (6, <& AND 6, < &) then
6: Apply Algorithm 2.
7: if Algorithm 2 terminates with a solutiofx*,y*,w*,t*,A*) then
8: Stop; sed = A* andx = x*.
o: else ifGJX,y,w,t,A) is singular ORf the number of iterations is equal
to nmaxit then
10 Apply Steps 2 and 3 of Algorithm 1 continuing with the nddand
' the solution(x,y,v,w, A ) given at the beginning of this step.
11: Computed; and6; in (20) and[(21), respectively.
12: end if
13: else
14 Apply Steps 2 and 3 of Algorithm 1.
15: Computed; and6, in (20) and[(Z21L), respectively.
16: end if

17: end while

7 Computing a positive complementary eigenvalue for EIiCP

Consider the EICHI1)E(4). In this section, we address tbblpm of the existence
and computation of a positive complementary eigenvalder this EiCP. In prac-
tice, such a demand occurs quite often|[19]. If EiCP is symimeéte., B andC are
symmetric matrices (B is PD), then the problem can be solgeih 421]. Hence,
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we consider the asymmetric case, where at least one of thécesB or C is not
symmetric. Furthermore, we consider the following clasdewatrices:

(i) CisaV-matrix C € V) if and only if there exists ar > 0 such thak"Cx > 0
(i) CisanS-matrix (C € §) if and only if there exists ar > 0 such thaCx > 0.

The following properties, proved in][6], hold between th@edclasses and the PD
andS classes:

Theorem6 (i) CePD=CecS=CeV.
(i) CeSe C' ¢S

Due to this property, verifying th& is not anS-matrix reduces to solving a linear
program. Furthermore, showing that a ma€ix V is equivalent to showing that the
following nonlinear program has a feasible poiwith f(x) > O:

Maximize %XT (C+CMx= f(x)

subjectto e'x=1
x>0,

whereeis a conformable vector of ones. Despite this problem beiRehird [15], it
is in many cases very easy to verify whether a matrix belomtiset clasy/ [11]], [21].
Moreover, the following result has been established’in:[21]

Theorem 7 If Cissymmetric and B € PD, then EiCP(B, C) has a positive eigenvalue
ifand only if C e V.

Furthermore, such a positive complementary eigenvaludeaomputed by ap-
plying an ascent nonlinear programming algorithm with adtiahpoint x satisfying
x' Cx > 0 in order to find a stationary point to the quadratic fractiggrogramming
©) (seel[11],[[21]).

Consider now the case & or C or both being symmetric. Thed € V is still a
necessary condition for a positive complementary eigervédr EiCP, but it is no
longer sufficient. In fact,

2-3
C= [11] eV

and the EiCHB,C) with B being the identity matrix has no positive complementary
eigenvalue. Theorers$ 1 and 6 provide a sufficient conditothfe existence of such
an eigenvalue, as the following result holds:

Theorem 8 If B PD andC' ¢ S, then EiCP(B,C) has a positive complementary
eigenvalue.

Proof If CT € S, then by Theoreml6;C ¢ S. SinceB € PD, then QEICF8,0, —C)
has a positive (and a negative) eigenvalue. Hehee? is a positive complementary
eigenvalue of EiCP. O
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This condition is sufficient, but not necessary. In fact far following matrices:

10 1 -2
=[od =[50

the EiCPB,C) has a positive complementary eigenvalue,®ut S.
The following example shows that an Ei@RC) with B € PD andC' € Smay
have a negative eigenvalue. Consider the matrices

10 -11

S EHE Pl
Then it is easy to see th& < PD andC' <€ S. By TheorenB, EiCFg,C) has at
least a positive complementary eigenvalue. However, tiiEalso has the nega-
tive complementary eigenvalue= —1. If we apply an ordinary algorithm to com-
pute a solution to the EiCP, then this procedure may find tlgathee eigenvalue.
Instead of solving the EiCB(C) directly, it is more advisable to find a solution to
QEICP@,0,—C) in order to guarantee the computation of a positive compleaary
eigenvaluet for EICP@,C), that is, to findA = u? > 0, with u being the quadratic
complementary eigenvalue computed by the hybrid enumveratgorithm discussed
in this paper.

8 Computational experience

In this section, we discuss the numerical performance ofptloposed algorithms
for computing quadratic complementary eigenvalues. Thenamative algorithm has
been implemented in MATLAET16] and the IPOPT (Interior PddPTimizer) solver
[27] has been used to find a (local) solution to the nonlineatolemNLP 4(k) in (18)
at each nodé&.

We consider two sets of test problems wite PD andC ¢ &. The first set of
problems, called Test Problems 1, deal with co-regular andyperbolic QEICPs,
which always have a solution. The matrideand—C were both chosen as the iden-
tity matrix, while the matrixB was randomly generated with elements uniformly
distributed in the interval§0, 1], [0,10], [0,100, and[0,300. These problems are
denoted by RANDO, m,n), where 0 andn are the end-points of the interval, and
represents the dimension of the problem, i.e., the matAc8sC € R™". We have
considerech = 3,5,10,20,30,50, and 100. For the second test, called Test Problems
2,C ¢ Sywas chosen such that the resulting QEICP is not co-hyperolparticular,

C has the following structure:
—E —h
C= |:_gT Cnn:| 5

whereE € R("™1x("-1) js a square matrix with randomly generated elements in the
interval[0,m], h € R"~! andg € R"~! are vectors with randomly generated elements
in the same interval, and the element = (m/2)2 + 1. The matriceA andB were
chosen as in the first case.
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Problem A f | u Nodes CPU

RAND( 0, 1, 3) 0.540591 8.55776e-17  0.288722 7.242641 0 9.43264¢-02
RAND(0, 1, 5) 0.579740 1.63562e-16  0.250875  12.071068 0 1.08970¢-01
RAND( 0, 1, 10) 0.353326  2.54107e-16  0.121939  24.142136 0 1.17104¢-01
RAND( 0, 1, 20) 0.216038 2.72803e-15 0.076108  48.284271 0 1.77654¢-01
RAND( 0, 1, 30) 0.152153 9.71651e-12  0.049863  72.426407 0 2.99098¢-01
RAND( 0, 1, 50) 0.071278  2.31483e-10 0.030815 120.710678 0 1.02978¢+00
RAND( 0, 1, 100) 0.029856 2.32097e-09 0.017024  241.421356 0 2.94410¢+00
RAND( 0, 10, 3) 0.064433  6.17703e-16  0.044192 7.242641 0 3.71968¢-02
RAND( 0, 10, 5) 0.181341  7.09644e-15 0.032618  12.071068 0 8.36979¢-02
RAND( 0, 10, 10) 0.031470 5.08357e-08 0.014044  24.142136 0 2.00814¢-01
RAND( 0, 10, 20) 0.037200 4.74654e-14  0.008171  48.284271 0 7.75963¢-01
RAND( 0, 10, 30) 0.021879 9.05131e-08 0.005807  72.426407 0 4.16905¢-01
RAND( 0, 10, 50) 0.005521  1.44288e-09  0.003487 120.710678 0 9.68685¢-01
RAND( 0, 10, 100) | 0.004779 1.41496e-09 0.001826  241.421356 0 2.89875e+00
RAND( 0, 100, 3) 0.006558  4.76544e-12  0.005080 7.242641 0 1.06655¢-01
RAND( 0, 100, 5) 0.004492  1.13846e-11 0.002625  12.071068 0 2.52097¢-01
RAND( 0, 100, 10) | 0.002790 5.87198e-11  0.001509  24.142136 0 1.78784¢-01
RAND( 0, 100, 20) | 0.010015 2.01563e-09 0.000745  48.284271 0 1.81592¢-01
RAND( 0, 100, 30) | 0.005434 1.29756e-08 0.000557  72.426407 0 6.95276¢-01
RAND( 0, 100, 50) | 0.005470 1.07865e-08 0.000335 120.710678 0 4.45850¢+00
RAND( 0, 100, 100) | 0.001888 2.29598e-09  0.000177 241.421356 0 9.19532¢+00
RAND( 0, 300, 3) 0.002392 2.27355e-11  0.002198 7.242641 0 8.54462¢-02
RAND( 0, 300, 5) 0.001428 5.69616e-11  0.001060  12.071068 0 1.19519¢-01
RAND( 0, 300, 10) | 0.000664 1.20981e-10 0.000550  24.142136 0 1.68899¢-01
RAND( 0, 300, 20) | 0.000647 8.75978e-09 0.000273  48.284271 0 1.50398¢-01
RAND( 0, 300, 30) | 0.000671 2.67442e-08 0.000164  72.426407 0 6.04931¢-01
RAND( 0, 300, 50) | 0.000622 9.60127e-09 0.000115 120.710678 1 8.93506¢-01
RAND( 0, 300, 100) | 0.001598 6.58115e-08 0.000060 241.421356 1 4.03082¢+01

Table 1 Performance of the enumerative method for solving Test/Enab 1.

8.1 Performance of the enumerative method

Tableg1 anf]2 report the computational experience whemgphest Problems 1 and
2, respectively. The enumerative method was run with treraolces; = 10~° and
& = 107%. In these tables, we have reported the computed value ofigeewalue,
the value of the functiorf derived at the solution, the value of the lower and upper
bounds computed as in Sect[dn 3, the number of nodes enwaddnathe algorithm,
and the CPU time in seconds. The symbol * indicates that thenenative algorithm
was not able to solve the problem, i.e., the algorithm at¢hihe maximum number
of iterations, fixed a®max = 500. In this case we include the value of the objective
function for the best stationary point. The value zero in¢bkimn titled “Nodes”
indicates that a solution to QEICP was found at the root ntadfi Note that the
greater computational effort, i.e., the larger number gflesed nodes, in solving
Test Problems 2 is due to the more complex structure of thex@t

As a benchmark for comparison, we solved these same prohisimg BARON
(Branch-And-Reduce Optimization Navigator; sgel[26]),ckhis an optimization
solver for the global solution of algebraic nonlinear praogs and mixed-integer non-
linear programs. This software package implements a brandhcut algorithm, en-
hanced with a variety of constraint propagation and du#ithniques for reducing
ranges of variables in the course of the algorithm. The codsdlving the nonlinear
problemNLP; given in [12) for both Test Problems 1 and 2 was implemented in
the General Algebraic Modeling Systems (GAMS) language [Sp and the solver
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Problem A f | u Nodes CPU

RAND(O, 1, 3) 0.553862 6.14338e-15  0.290421 8.684863 6 3.08398e-01
RAND( O, 1, 5) 0.820148 1.36299%e-16  0.435208 20.763329 0 1.22634e-01
RAND( 0, 1, 10) 0.703165 5.17996e-15 0.391192 60.947348 11 3.04822e+00
RAND( 0, 1, 20) 1.157398 1.81742e-14  0.468243 262.834609 89 1.24254¢+01
RAND( 0, 1, 30) 0.987340 1.83278e-10  0.463858 576.074031 0 1.66142e+00
RAND( 0, 1, 50) 1.077929 6.24270e-09 0.487771 1600.322504 5 1.48014¢+01
RAND( 0, 1, 100) 1.067021 3.50061e-07 0.481082 6107.568272 34 2.20742¢+02
RAND( 0, 10, 3) 1.440810 1.11071e-16 0.461292 70.978749 0 4.24581e-02
RAND( 0, 10, 5) 1.715031 1.35236e-15 0.511997 186.674901 1 1.42548¢-01
RAND( 0, 10, 10) 0.899639 5.72321e-13  0.406875 577.396692 19 3.12358¢+00
RAND( 0, 10, 20) 1.922596  1.22525e-13  0.472350 2427.677751 28 1.98347¢+01

RAND( 0, 100, 30) | 4.313552 4.09191e-11  0.472373  53597.732297 66 2.11926¢+0
RAND( 0, 10, 50) 1.432682 2.80619e-11  0.477837  15390.665702 32 1.59720e+0
RAND(0, 10, 100) | 1.786507 7.19200e-12 0.477161  60715.982034 34 5.00920¢+0

RAND( 0, 100, 3) 0.537246  1.91113e-16  0.289377 347.188118 0 6.04616¢-02
RAND( 0, 100, 5) 1.078916  1.02845e-12  0.387015 1377.115452 20 1.48914¢+00
RAND(0, 100, 10) | 1.161560 1.02364e-11  0.443875 6175.750686 23 1.47605¢+01

RAND(0, 100, 20) | 1.760194 2.31492e-09 0.474284  24220.474672 33 5.53303¢+0
RAND(0,100,30) | 1.231730 5.09885¢-09 0.472373  53507.732297 261  2.74036e+
RAND(0, 100, 50) | 1.359856 6.97896e-09 0.481880 152454.077061 77  4.26082e+
RAND(0, 100, 100) | 1.081376 4.76065e-05 0.479115 601687.297576 173  6.17035
RAND(0, 300, 3) | 1.100964 90.26871e-17 0.452189  1736.939519 17 9.45302e-01
RAND(0,300,5) | 0.814907 1.63479e¢-08 0.403250  3645.329574 24 5.98033¢+00
RAND( 0, 300, 10) | 4.927159 7.82831e-13  0.441231  18197.076729 24 4.83416¢+0

RAND(0, 300, 20) | 2.295587 2.25558e-06 0.451253  71033.543172 72 1.28525¢+0

RAND(0,300,30) | 1.310145 1.80424e-08 0.467756 164262.282508 76  1.44923p+
RAND( 0, 300, 50) * [4.05705e-01]
RAND( 0, 300, 100) * [2.48154e-01]

Table 2 Performance of the enumerative method for solving TestIEnab 2.

BARON was used with default options. The numerical resudtsTest Problems 1
are shown in Tablgl3, while those for Test Problems 2 areaijspl in Tablé¥. We
use the notation * to indicate that BARON was not able to findlatgon to QEICP.

Comparing TableS]2 arid 4, we see that the enumerative dgofiils only two
times in finding a solution versus seven times for BARON. Moz, the computa-
tional time for the enumerative method was comparable awgneral smaller than
that required by BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-sm@uwttoN algorithm; the
complementarity constraints were represented by using thet Fischer-Burmeister
function and the min function (see Sectigh 5). Taliles 5[dndeGgnt the results
for Test Problems 1 and 2, respectively. The starting poet whosen ag = 1,
(X,y) = (1/2n,...,1/2n), W= (AA +B)y+Cx, t = Ax— V. It is well-known that the
semi-smooth Newton algorithm is very sensitive to the caaitthe starting point.
Thus, numerical experiments were also performed wheredftegs of the simplex
were taken as starting points. In this particular case, énfopmance of the algorithm
turned out to be similar for all choices of the starting ppartd hence we have only
reported the results for the first choice. In Taljles 5[@nd 6repert the value of the
computed eigenvalue, the number of iterations taken by Itharithm to converge,
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Problem A f CPU
RAND(O, 1, 3) 0.580550 3.49656e-15  3.86000e-(
RAND( O, 1, 5) 0.604048 8.56266e-12  1.50000e-Q

RAND(0, 1, 10) 0.638287 8.21710e-14  2.00000e-Q
RAND( 0, 1, 20) 0.670098 1.76270e-13  1.62000e-Q
RAND( 0, 1, 30) 0.688537  7.13992e-14  1.91000e-Q
RAND( 0, 1, 50) 0.492137  1.59410e-11  2.00000e-Q
RAND( 0, 1, 100) 0.020337 5.83765e-11  3.39100e+
RAND( 0, 10, 3) 0.116253  1.93421e-12  1.84000e-Q
RAND( 0, 10, 5) 0.071066  1.78546e-13  1.67000e-Q
RAND( 0, 10, 10) 0.113500 6.48410e-14  2.29000e-
RAND( 0, 10, 20) 0.105702  2.40212e-10  1.63000e-Q
RAND( 0, 10, 30) 0.099982  4.04072e-12  1.93000e-(
RAND( 0, 10, 50) 0.087719  1.86553e-13  1.37000e-Q
RAND(0, 10, 100) | 0.004859 1.58826e-10  1.53500e+
RAND( 0, 100, 3) 0.020546  1.23185e-16  1.75000e-(
RAND( 0, 100, 5) 0.013835 3.51415e-19  1.73000e-Q
RAND(0, 100, 10) | 0.021313  1.04600e-14  1.53000e-Q
RAND( 0, 100, 20) | 0.012589 1.56146e-15  1.61000e-Q
RAND( 0, 100, 30) | 0.008782 3.41173e-10  2.38000e-Q
RAND( 0, 100, 50) | 0.007166 4.50590e-10  3.17000e-Q
RAND( 0, 100, 100) | 0.000357 5.02497e-10  7.02000e-(
RAND( 0, 300, 3) 0.003900 4.55744e-18  1.47000e-Q
RAND( 0, 300, 5) 0.004200 1.37019e-23  1.42000e-Q
RAND( 0, 300, 10) | 0.004485 1.50219e-12  1.49000e-Q
RAND( 0, 300, 20) | 0.002689  7.00246e-12  2.41000e-Q
RAND( 0, 300, 30) | 0.002670 5.06612e-10  1.76000e-Q
RAND( 0, 300, 50) | 0.005649 6.26275e-13  1.55000e-(
RAND( 0, 300, 100) | 0.000205 3.09113e-10  6.45100e+

SR PP PRPRPRPRPRRPRPRRPRPRRORRPRRPRRORRPRPRRPE PR

Table 3 Performance of BARON for solving Test Problems 1.

and the CPU time in seconds. The notation “GJ singular” i that the algorithm
terminated unsuccessfully with the singularity of the &ageneralized Jacobian.

Tabledd andl6 also provide a comparison for the performahtieeaalgorithm
when using the Fischer-Burmeister function versus the omiiction for representing
the complementarity constraints. If we consider the nunabéimes that a solution
was found, the use of the min function seems to be preferabl@est Problems 1,
while the use of the FB function works better in solving Tesitifems 2.

Note that the semi-smooth method is faster than the enuiveedgorithm for
obtaining a solution, but on the other hand, it often tert@sainsuccessfully with
the singularity of the Generalized Jacobian.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative methgdired more than one
node for finding a solution, we applied the hybrid method pssal in Sectiof]6.
This algorithm was implemented by using both the FishemiBister and the min
functions. The values of the toleran@sinde, used to switch from the enumerative
method to the semi-smooth Newton method were both set t3. 1or the semi-
smooth Newton algorithm, the values of the tolerances tmiteate the algorithm
were taken as; = 1078 ande, = 10-%. The maximum number of iterations for the
semi-smooth method was fixed as 100. The results for Testdtnsld and 2 are sum-
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Problem A f CPU
RAND(O, 1, 3) 0.553862 1.16923e-13  4.43000e-01
RAND( O, 1, 5) 0.820147 1.84665e-11  1.53000e-01
RAND( 0, 1, 10) 0.703152 5.83075e-11  2.00000e-01
RAND( 0, 1, 20) 1.157398  7.97059e-17  7.26500e+00
RAND( 0, 1, 30) 0.987340 1.38197e-19  4.72100e+00
RAND( 0, 1, 50) *

RAND( 0, 1, 100) *

RAND( 0, 10, 3) 1.440809 5.73612e-13  1.07100e+00
RAND( 0, 10, 5) 1.713643  1.04554e-13  7.15000e-01
RAND( 0, 10, 10) 0.879084  1.54890e-11  1.96000e-01
RAND( 0, 10, 20) 1.922596  1.79492e-18  1.22591e+02
RAND( 0, 10, 30) 0.967767 6.21467e-20  9.28900e+00
RAND( 0, 10, 50) 1591280 3.48178e-10  3.88145e+(2
RAND( 0, 10, 100) *

RAND( 0, 100, 3) 0.805417 1.15432e-13  3.64000e-01
RAND( 0, 100, 5) 1597662  4.23887e-12  1.71000e-01
RAND( 0, 100, 10) | 2.386302 4.04346e-12  3.62000e-01
RAND( 0, 100, 20) | 1.751899 1.84497e-10  4.96000e-01
RAND( 0, 100, 30) | 1.218751 4.92004e-23  6.54917e+02
RAND( 0, 100, 50) *

RAND( 0, 100, 100) *

RAND( 0, 300, 3) 1.100964  1.33835e-27  2.43300e+00
RAND( 0, 300, 5) 0.814898 3.07773e-14  1.87000e-01
RAND( 0, 300, 10) | 1.325918 4.43267e-11  9.51000e-01
RAND( 0, 300, 20) | 1.684025 3.50538e-10 5.38800e+00
RAND( 0, 300, 30) | 2.043501 7.55092e-10  7.33890e+02
RAND( 0, 300, 50) *

RAND( 0, 300, 100) *

Table 4 Performance of BARON for solving Test Problems 2.

marized in TableEl7 arld 8, respectively, where we report déheevof the computed
eigenvalue, the number of times that the semi-smooth Newtethod was called,
which we indicate as “Ntime”, the number of nodes enumeratethe algorithm,
and the CPU time in seconds. The symbol * indicates that ta@fithe semi-smooth
Newton method was not helpful in finding a solution.

We observe that the additional use of the semi-smooth Newtetihod allows
us to find a solution by enumerating a fewer number of nodesnk@ problems,
the semi-smooth method with the use of the Fischer-Burereiishction was called
only once. This happens seven times when the min functidmisen. However, even
when the hybrid method solves both the minimization probMR 4(k) and applies
the semi-smooth method for sorkein general, the performance in terms of CPU
time improves.

We also note that the use of the hybrid method was not helpffihding a so-
lution for five problems by using the Fischer-Burmeisterdiion and in four cases
with the use of the min function. Moreover the min functiorswet able to solve two
problems within the given number of iterations, while thisigtion does not occur
for the Fischer-Burmeister function. So in general, thelés-Burmeister function
appears to perform better than the min function.

We conclude that the hybrid method with the Fischer-Burteeiinction im-
proves over the enumerative method and is recommendeddtigardor solving the
QEICP withA € PD andC ¢ &, via the equivalent EiCP.
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FB function min function
Problem A niter CPU A niter CPU
RAND(O, 1, 3) 0.540591 11 1.79230e-02 0.747744 8 1.16965e-02
RAND( 0, 1, 5) 0.832908 42 1.01189e-02 0.409159 7 1.30902e-0
RAND( 0, 1, 10) 0.305448 12 4.54200e-08 0.231762 7 1.77044e-03
RAND( 0, 1, 20) * GJ singular 0.108348 7 3.16456e-0
RAND( 0, 1, 30) 0.483898 55 6.20506e-02 0.075831 6 5.60512e-0
RAND( 0, 1, 50) * GJ singular * GJ singular
RAND( 0, 1, 100) 0.043377 37 3.33108e-01 * GJ singular
RAND( 0, 10, 3) 0.084907 17 5.12231e-08 0.054726 5 8.87787e-04
RAND( 0, 10, 5) 0.045114 20 4.22854e-08 0.942878 7 1.02378e-0
RAND( 0, 10, 10) 0.028512 26 7.31569e-08 0.082063 6 2.07664e-0
RAND( 0, 10, 20) * GJ singular 0.037174 13 6.32527e-03
RAND( 0, 10, 30) * GJ singular 0.020982 6 4.06817e-0
RAND( 0, 10, 50) * GJ singular 0.009154 5 8.86932e-0
RAND( 0, 10, 100) * GJ singular * GJ singular
RAND( 0, 100, 3) * GJ singular 0.008239 6 8.56142e-04
RAND( 0, 100, 5) 0.017293 31 5.93911e-08 0.023631 5 8.67260e-04
RAND( 0, 100, 10) * GJ singular 0.001904 6 1.49119e-03
RAND( 0, 100, 20) * GJ singular 0.000998 6 2.73863e-0
RAND( 0, 100, 30) | 0.000663 16 1.44868e-02 0.001345 5 3.60375e-0
RAND( 0, 100, 50) | 0.000406 16 3.86470e-02 * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
RAND( 0, 300, 3) 0.002543 35 7.36188e-08 0.002386 6 8.47589e-04
RAND( 0, 300, 5) * GJ singular 0.002880 5 1.12000e-0
RAND( 0, 300, 10) * GJ singular 0.000639 6 1.59596e-0
RAND( 0, 300, 20) | 0.000339 17 9.84050e-08 0.000339 5 2.25753e-0
RAND( 0, 300, 30) | 0.000217 16 1.47687e-02 0.000374 5 4.27258e-0
RAND( 0, 300, 50) * GJ singular 0.000289 5 8.31467e-0
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 5 Performance of the semi-smooth Newton method for solvirgj Peoblems 1.

As discussed before, the algorithm always find a positiveltatec complemen-
tary eigenvalue for QEICP. If we are interested in a negatigenvalue, then the
matrix H should be used instead of the matéxin the 2-dimensional EiCP. The
algorithmic process is similar with replaced by-B.

8.4 Computing a positive eigenvalue for EICP

We present the numerical performance of the argumentsmesben Sectiof]7 for
computing a positive complementary eigenvaluéor the EiCP [1)-f(}). The enu-
merative and the hybrid methods proposed in this paper arigedfor solving the

QEICP@,0,—C) whereB is the identity matrix and

co {1 eT]
gH
wheree € R" 1 is a vector of oned;l = RAND(0,m,n—1) — (m+1) I,_1 with I,_;
being the identity matrix of order— 1, andg € R"! is a null vector. Note tha ¢
PD and-C ¢ S, then QEICPB, 0, —C) has a solution witiA > 0 and by Theorem 8
the EiCP(B,C) has a positive complementary eigenvalueléguét.

Table$® and 10 report the computational experience whemgdDEICP@,0, —C)
by the enumerative and the hybrid methods with the same saitimlerances used
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FB function min function

Problem A niter CPU A niter CPU
RAND( 0, 1, 3) 0.553862 10 2.72663e-02 0.553862 20 2.97779e-02
RAND(O0, 1, 5) 0.820148 7 1.83033e-03 0.820148 4 1.35607e-0
RAND( 0, 1, 10) 0.703165 20 8.45372e-08 * GJ singular
RAND( 0, 1, 20) * GJ singular 1.157398 18 1.71405e-02
RAND( 0, 1, 30) 1.033856 26 5.98098e-02 1.033856 42 4.69800e-02
RAND( 0, 1, 50) 1.158910 97 4.71429e-01 * GJ singular
RAND( 0, 1, 100) * GJ singular * GJ singular
AND( 0, 10, 3) 1.440810 7 2.79211e-03 1.440810 7 1.17902e-0
RAND( 0, 10, 5) 1.713642 7 1.47239e-03 1.713642 5 7.19302e-04
RAND( 0, 10, 10) 0.864754 5 3.03672e-03 0.864754 4 1.61223e-0
RAND( 0, 10, 20) * GJ singular * GJ singular
RAND( 0, 10, 30) * GJ singular * GJ singular
RAND( 0, 10, 50) * GJ singular * GJ singular
RAND( 0, 10, 100) * GJ singular * GJ singular
AND( 0, 100, 3) 0.537246 11 2.76645e-03 * GJ singular
RAND( 0, 100, 5) 0.715387 4 1.02165e-03 0.715387 4 6.18377e-04
RAND( 0, 100, 10) 1.614171 7 2.23232e-03 1.614171 6 1.53910e-03
RAND( 0, 100, 20) * GJ singular * GJ singular
RAND( 0, 100, 30) * GJ singular * GJ singular
RAND( 0, 100, 50) * GJ singular * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
AND( 0, 300, 3) 1.100964 14 3.57641e-08 1.100963 6 2.93524e-02
RAND( 0, 300, 5) 0.814898 5 1.10761e-03 0.814898 4 4.84952e-04
RAND( 0, 300, 10) | 1.513050 7 3.52424e-03 1.513050 6 1.60881e-0
RAND( 0, 300, 20) * GJ singular * GJ singular
RAND( 0, 300, 30) * GJ singular * GJ singular
RAND( 0, 300, 50) * GJ singular * GJ singular
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 6 Performance of the semi-smooth Newton method for solvirgj Peoblems 2.

FB function min function

Problem A Ntime  Nodes CPU A Ntime  Nodes CPU
RAND( 0, 300,50) | 0.005113 1 0 7.71793e-01 0.005113 1 0 6.99095e-01
RAND( 0, 300, 100) | 0.013423 1 0 3.99891e+01 0.013423 1 0 3.95370e+01

Table 7 Performance of hybrid method for solving Test Problems 1.

for the above test problems. Also in this case, the use of yheidmethod largely
reduces the number of iterations necessary to find a solatidrit is greatly recom-
mended for computing positive eigenvalues of EiCP.

9 Conclusions

In this paper, we have proposed a hybrid method for solvia@thadratic Eigenvalue
Complementarity Problem QEICR(B,C) (6)—(3) whem is a PD matrix an€ is not
an $-matrix. These hypotheses seem to be quite realistic irtipead he algorithm
combines a tree search enumerative method with a fast aatidemi-smooth New-
ton algorithm. The method can also be applied to compute @iyBsigenvalue of
the EiCPB,C) ()-({@) wherBc PD andC' €S, i.e.,—C ¢ S. Computational expe-
rience shows that the hybrid enumerative algorithm is cefifieient for solving the
QEICP. As discussed ifi][4], the use of such an approach foE®Hiith other cones,
different fromR" , is certainly an interesting subject of future researchttfexmore,
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FB function min function

Problem A Ntime  Nodes CPU A Ntime  Nodes CPU
RAND( 0, 1, 3) 0.553862 1 0 2.13562e-01 0.553862 1 0 3.74785e-01
RAND( 0, 1, 10) 0.703165 1 0 5.46687e-01 0.703165 9 8 2.38656e+0(
RAND( 0, 1, 20) 1.157398 1 0 4.66968e-01 1.157398 1 0 4.27643e-01
RAND( 0, 1, 50) 1.088287 1 0 4.90474e+00 1.158910 5 4 1.30513e+01
RAND( 0, 1, 100) 1.067021 34 *34 2.64755e+02 1.067021 34 *34 2.62171e+02
RAND( 0, 10, 5) 1.715031 1 0 8.62953e-02 1.715031 1 0 7.20144e-02
RAND( 0, 10, 10) 0.899637 1 0 1.89607e-01 0.864754 1 0 1.91404e-01
RAND( 0, 10, 20) 2.600551 22 22 1.86157e+0[L 2.600551 8 7 7.29273e+00
RAND( 0, 10, 30) 0.967767 20 19 3.57694e+01 1.055296 17 16 2.93933e+01
RAND( 0, 10, 50) 1.432682 31 *32 1.78146e+02 1.432682 31 *32 1.78071e+02
RAND( 0, 10, 100) 1.786507 33 *34 5.31730e+02 1.786507 33 *34 5.42240e+02
RAND( 0, 100, 5) 1.078917 1 0 1.75172e-01 1.597674 1 0 1.66163e-01
RAND( 0, 100, 10) 1.762110 1 0 8.72616e-01 1.573841 1 0 8.68189e-01]
RAND( 0, 100, 20) 1.760173 28 32 5.96798e+0[L 1.496242 2 1 8.66096e+00Q
RAND( 0, 100, 30) | 6.665640 24 26 7.90853e+01 6.665640 24 26 8.74352e+01
RAND( 0, 100, 50) | 3.077892 31 36 2.41082e+0R 3.077891 31 36 2.79176e+02
RAND( 0, 100, 100) | 1.081376 156 *173 6.32093e+0B3 1.081376 156 *173 6.39869e+03
RAND( 0, 300, 3) 1.100964 6 9 6.00009e-01 1.100964 6 9 5.31684e-01
RAND( 0, 300, 5) 0.814907 12 *24 6.07113e+00 0.814898 1 0 3.85505e-01]
RAND( 0, 300, 10) 1.369286 1 0 2.82615e+00 1.513050 10 9 2.32130e+01
RAND( 0, 300, 20) | 1.247195 36 67 1.22568e+0p 1.319769 1 1 3.57244e+00
RAND( 0, 300, 30) 1.309542 35 48 1.32772e+0R 1.309542 35 48 1.32300e+02
RAND( 0, 300,50) | 1.311051 150 267 1.16466e+03  * [4.05705e-01]
RAND( 0, 300, 100) | 1.303152 327 395 9.03701e+03  * [2.48154e-01]

Table 8 Performance of hybrid method for solving Test Problems 2.

Problem A f | u Nodes CPU
RAND(O, 1, 3) 1.000008  1.24565e-10  1.000000 8.884124 0 2.00879e-01
RAND( O, 1, 5) 1.000029 6.11137e-10  1.000000 19.733040 0 7.12639¢-02
RAND( 0, 1, 10) 1521117  9.71181e-15 1.000000 67.985335 0 1.17073e-01
RAND( 0, 1, 20) 2.656284  1.10049e-15  1.000000 251.204372 0 4.49557¢-01
RAND( 0, 1, 30) 3.493475  1.03825e-13  1.000000 560.502976 0 4.53038¢-01
RAND( 0, 1, 50) 4.752954  7.62902e-10  1.000000 1561.188930 0 3.40887¢+00
RAND( 0, 1, 100) 6.907058  3.76504e-08  1.000000 6155.036696 1 3.12231e+01
RAND( 0, 10, 3) 1.000009  1.24475e-10  1.000000 22.025204 0 7.04963¢-02
RAND( 0, 10, 5) 2.446982  3.39458e-14  1.000000 87.089985 0 1.26205e-01
RAND( 0, 10, 10) 5.824257  6.83614e-12  1.000000 455.743311 0 5.67927¢-01
RAND( 0, 10, 20) 9.183330 5.41627e-09  1.000000 2134.554441 1 3.25248¢+00
RAND( 0, 10, 30) 11.536522 1.93411e-08  1.000000 4984.086452 0 2.13387¢+00
RAND( 0, 10, 50) 15.243998  4.98166e-09  1.000000 14279.027031 13 7.13060e+
RAND( 0, 10, 100) 1.000011  6.04386e-11  1.000000 58632.497378 21 3.59529¢+0
RAND( 0, 100, 3) 2.633042  3.65720e-16  1.000000 119.520429 0 7.54934¢-02
RAND( 0, 100, 5) 10.565073  1.40079e-08  1.000000 837.420623 3 9.18979¢+00

RAND( 0, 100, 10) 1.000023  3.14679e-10  1.000000 4632.781263 11 1.44446¢+01
RAND( 0, 100, 20) 1.000033  6.10497e-10  1.000000 20711.816072 15 5.68845¢+0
RAND( 0, 100, 30) 1.000006  1.8774le-11  1.000000 48475.452360 19 7.35683¢+0
RAND( 0, 100, 50) 1.000046  1.10611e-09 1.000000  140942.375463 19 2.78083e+
RAND( 0, 100, 100) | 1.000069  2.44184e-09 1.000000  590448.766570 23 1.05081e+
RAND( 0, 300, 3) 10.784435  1.27460e-13  1.000000 674.123199 0 3.88764¢-01
RAND( 0, 300, 5) 1.000018  2.49321e-10  1.000000 2284.241728 9 2.36784e+01
RAND( 0, 300, 10) 1.000071  3.08010e-09  1.000000 13405.223524 13 4.14812¢+0
RAND( 0, 300, 20) 1.000004  9.08293e-12  1.000000 66894.917939 19 7.69437¢+0
RAND( 0, 300, 30) 1.000038  7.82981e-10 1.000000  150981.249208 19 1.31027e+
RAND( 0, 300, 50) 1.000048  1.20049e-09  1.000000  437408.346927 21 3.18031e+
RAND( 0, 300, 100) | 1.000065  2.20512e-09 1.000000 1766076.567513 23 8.84026¢

Table 9 Performance of the enumerative method for solving QERC®,(—C).

many applications lead to more general eigenvalue compitarity problems, where
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FB function min function

Problem A Ntime  Nodes CPU A Ntime  Nodes CPU

RAND( 0, 1, 100) 6.911841 1 0 1.10600e+0] 6.911841 1 0 1.12283e+01
RAND( 0, 10, 20) 9.182325 1 0 1.21474e+0Q 9.182325 1 0 1.23527e+0
RAND( 0, 10, 50) 15.241381 1 0 1.04002e+0]L 15.241381 1 0 1.03022e+0]L
RAND( 0, 10, 100) 21.929891 1 0 4.19420e+0L 21.929891 1 0 4.19704e+0[L
RAND( 0, 100, 5) 10.564909 1 0 2.75402e+0p 10.564909 1 0 2.83090e+0p
RAND( 0, 100, 10) 18.401286 1 0 2.72986e+0p 18.401286 1 0 2.63761e+00
RAND( 0, 100, 20) 29.002661 1 0 3.74956e+0p 29.002661 1 0 3.88819e+00
RAND( 0, 100, 30) 36.295914 1 0 6.48282e+0p 36.295914 1 0 6.48330e+00
RAND( 0, 100, 50) | 47.957940 4 7 1.63330e+0R 47.957940 4 7 1.63667e+02
RAND( 0, 100, 100) | 69.780913 2 3 2.28199e+0P 69.780913 2 3 2.28554e+0p
RAND( 0, 300, 5) 20.232286 1 1 1.06610e+0[L 20.232286 1 1 1.07462e+00L
RAND( 0, 300, 10) 31.862852 1 0 3.25188e+0p 31.862852 1 0 3.28776e+00
RAND( 0, 300, 20) 52.304464 1 1 1.65669e+0[L 52.304464 1 1 1.64167e+0]L
RAND( 0, 300, 30) 64.155291 1 0 1.69281e+0[L 64.155291 1 0 1.74003e+01L
RAND( 0, 300, 50) 84.828259 5 9 2.09547e+0R 84.828259 5 9 2.09481e+0p
RAND( 0, 300, 100) | 120.743763 3 5 3.35190e+0p 120.743763 3 5 3.42279e+0p

Table 10 Performance of the hybrid method for solving QEiBRY, —C).

the investigation of such approaches seems to be worthtehalersue in future stud-
ies.
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