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Abstract

The Quadratic Conic Eigenvalue Complementarity Problem (QCEiCP) is investigated with-
out assuming symmetry on the matrices defining the problem. We present a new sufficient
condition for existence of solutions of QCEiCP, extending to arbitrary pointed, closed and con-
vex cones a condition known to hold when the cone is the nonnegative orthant.

We also address the Conic Eigenvalue Complementarity Problem (CEiCP) when the matrices
are symmetric. We show that this symmetric CEiCP reduces to the computation of a stationary
point of an appropriate merit function on a convex subset of the cone. Furthermore, we discuss
the use of the so called Spectral Projected Gradient (SPG) algorithm for solving the CEiCP
when the cone of interest is the Second Order Cone (SOCEiCP). A new algorithm is designed
for the computation of the projections required by the SPG method to deal with the SOCEiCP.
Numerical results are included to illustrate the efficiency of the SPG method and the new
projection technique in practice.
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1 Introduction

Given matrices B,C ∈ R
n×n, the Eigenvalue Complementarity Problem (to be denoted EiCP(B,C),

see e.g. [26] and [27]), consists of finding (λ, x, w) ∈ R× R
n × R

n such that

w = λBx− Cx, (1)

w ≥ 0, x ≥ 0, (2)

xtw = 0, (3)

etx = 1, (4)

with e = (1, 1, . . . , 1)t ∈ R
n. The last normalization constraint has been introduced, without loss

of generality, in order to prevent the x component of a solution to vanish. The matrix B is usually
assumed to be positive definite. The problem has many applications in engineering (see [1], [24]
and [27]), and can be seen as a generalization of the well-known Generalized Eigenvalue Problem,
denoted GEiP (see e.g. [15]). Indeed, GEiP consists of solving (1) with w = 0, and a solution
(λ, x) of GEiP is just an eigenvalue and eigenvector of the matrix B−1C in the usual sense, when
B is nonsingular. If a triplet (λ, x, w) solves EiCP, then the scalar λ is called a complementary
eigenvalue and x is a complementary eigenvector associated to λ for the pair (B,C). The condition
xtw = 0 and the nonnegative requirements on x and w imply that either xi = 0 or wi = 0 for
1 ≤ i ≤ n. These two variables are called complementary.

It is easy to prove that under strict copositivity of B, EiCP(B,C) always has a solution,
because it can be reformulated as the Variational Inequality Problem VIP(F̄ ,Ω) with feasible set
Ω = {x ∈ R

n : etx = 1, x ≥ 0} and operator F̄ : Ω → R
n given by

F̄ (x) =
xtCx

xtBx
Bx− Cx, (5)

see [19]. Note that F̄ is continuous in Ω as a consequence of the strict copositivity of B, and that
Ω is convex and compact. It is well known that these two conditions ensure existence of solutions
of VIP(F̄ ,Ω) [11].

A number of techniques have been proposed for solving the EiCP and its extensions, see e.g.
[2], [7], [13], [14], [17], [18], [19], [20], [23], [25], [26], [29] and [30].

Recently an extension of the EiCP has been introduced in [28], where some applications are
highlighted. It has been named Quadratic Eigenvalue Complementarity Problem (QEiCP), and it
differs from EiCP through the existence of an additional quadratic term on λ. Its formal definition
follows.

Given A,B,C ∈ R
n×n, QEiCP(A,B,C) consists of finding (λ, x, w) ∈ R× R

n × R
n such that

w = λ2Ax+ λBx+ Cx, (6)

w ≥ 0, x ≥ 0, (7)
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xtw = 0, (8)

etx = 1, (9)

where, as before, e = (1, 1, . . . , 1)t ∈ R
n. As in the case of the EiCP, the normalization (9) has

been introduced, without loss of generality, for preventing the x component of a solution of the
problem from vanishing. Note that QEiCP(A,B,C) reduces to EiCP(B,−C) when A = 0. The
λ component of a solution of QEiCP(A,B,C) is called a quadratic complementary eigenvalue for
A,B,C, and the x component a quadratic complementary eigenvector for A,B,C associated to λ.

The case of the symmetric QEiCP, i.e., when A,B and C are symmetric matrices and −C is the
identity matrix, has been analyzed in [12], where each instance of QEiCP with n × n matrices is
related to an instance of EiCP with 2n×2nmatrices. A new approach for solving the nonsymmetric
QEiCP by a similar reduction has been recently studied in [8].

In this paper, we consider a natural generalization of EiCP and QEiCP, proposed in [28] and
[29], where the nonnegative orthant of Rn is replaced by a more general cone in R

n. We state next
some basic facts and definitions related to cones in R

n.
We recall that a set K ⊂ R

n is a cone when it is closed under multiplication by nonnegative
scalars. We are concerned here with convex cones. It is easy to conclude that convex cones are
precisely those subsets of Rn which are closed by linear combinations with nonnegative scalars. In
this paper we consider exclusively closed convex cones, i.e. those convex cones which are closed
in the standard topology in R

n (i.e. the topology induced by any norm). We recall that a cone
K is pointed if it does not contain lines, or equivalently, if there exists no nonzero x ∈ K such
that −x ∈ K. We mention that any cone K can be written as K = K′ + L where ”+” denotes
the Minkowski sum, K′ is pointed and L is a linear subspace (L is the linearity of K, namely
L = {x ∈ K : −x ∈ K}, and K′ can be taken as K′ = K ∩ L⊥; see, e.g., [16]). Given a cone K,
its dual cone (or positive polar cone) K∗ is defined as K∗ = {x ∈ R

n : xty ≥ 0 ∀y ∈ K}. It is
elementary to check that K is pointed if and only if K∗ has nonempty interior.

We proceed now to define the Conic Eigenvalue Complementary Problem. Let K ⊂ R
n be a

closed, convex and pointed cone. We fix some point a ∈ int(K∗). Given matrices B,C ∈ R
n×n,

the Conic Eigenvalue Complementarity Problem, to be denoted CEiCP(B,C), consists of finding
(λ, x, w) ∈ R× R

n × R
n such that

w = λBx− Cx, (10)

x ∈ K, w ∈ K∗, (11)

xtw = 0, (12)

atx = 1. (13)

If (λ, x, w) solves CEiCP(B,C), then λ is said to be a complementary eigenvalue and x a comple-
mentary eigenvector. Since w is fully determined by λ and x, by virtue of (10), we often comit
a slight abuse of notation and refer to a pair (λ, x) as a solution of CEiCP, understanding that
(11)-(13) hold with w given by (10). As in the case of EiCP, the normalization constraint (13) is
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included to ensure that complementary eigenvectors are nonzero. It is easy to check that chang-
ing the vector a ∈ int(K∗) does not alter the set of complementary eigenvalues, and that each
complementary eigenvector is replaced by a positive multiple of itself. Note that when K = R

n
+

(i.e., the nonnegative orthant of Rn, in which case K∗ = K), and a = e, CEiCP(B,C) reduces to
EiCP(B,C).

It has been proved in [29] that if K is closed, convex and pointed, and xtBx 6= 0 for all nonzero
x ∈ K, then CEiCP(B,C) has solutions. The proof works through the reduction of CEiCP(B,C)
to VIP(F,∆), with F as in (5) and ∆ = {x ∈ K : atx = 1}. Pointedness of K is a key factor in the
proof, because it ensures that int(K∗) 6= ∅, and the fact that the vector a in (13) belongs to int(K∗)
is essential for establishing compactness of ∆, which in turn is a critical ingredient in the proof of
existence of solutions of VIP(F,∆).

Next we define the Quadratic Conic Eigenvalue Complementary Problem. Given A,B,C ∈
R
n×n, a closed, convex and pointed cone K ⊂ R

n and a vector a ∈ int(K∗), QCEiCP(A,B,C)
consists of finding (λ, x, w) ∈ R× R

n × R
n such that

w = λ2Ax+ λBx+ Cx, (14)

x ∈ K, w ∈ K∗, (15)

xtw = 0, (16)

atx = 1. (17)

If (λ, x, w) solves QCEiCP(B,C), then λ is a quadratic complementary eigenvalue and x a quadratic
complementary eigenvector. In this case we refer to a pair (λ, x) as a solution of QCEiCP, under-
standing that (15)-(17) hold with w given by (14). As before, the normalization constraint (17) is
considered to avoid x = 0 to be a solution of the problem. Again, QCEiCP(A,B,C) reduces to
QEiCP(A,B,C) when K = R

n
+.

We start by discussing the issue of existence of solutions of QCEiCP. Contrary to the CE-
iCP, QCEiCP may lack solutions, even under positive definiteness of A. Indeed if we consider
QEICP(I, 0, I) with an arbitrary cone K, then premultiplying (14) by x and using (16), one gets
0 = (λ2 + 1) ‖x‖2, which has no solution λ ∈ R and x 6= 0. This difference between CEiCP and
QCEiCP in terms of existence of solutions mirrors the elementary fact that linear equations in one
real variable always have solutions, while quadratic equations may fail to have them.

Thus, the issue of conditions on (A,B,C) ensuring existence of solutions of QCEiCP(A,B,C)
is a relevant one. We present in Section 2 a sufficient condition for existence of solutions of
QCEiCP(A,B,C), and compare it with the co-regularity and co-hyperbolicity properties intro-
duced by A. Seeger in [28], concluding that both conditions are indeed independent of each other.
This new condition extends to the conic case a set of sufficient conditions for existence of solutions
of QEiCP introduced in [8].

In Section 3 we show that in the symmetric case (i.e., when both B and C are symmetric)
CEiCP reduces to finding a stationary point for the problem of optimizing the so-called Rayleigh
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Quotient function on a convex set defined by the cone K and a special normalization constraint
that depends on the cone under study.

We also discuss in this paper the numerical solution of CEiCP when the cone K is the so called
Second Order Cone, defined as follows:

K = K1 ×K2 × . . .×Kr, (18)

where
Ki = {xi ∈ R

ni :
∥

∥x̄i
∥

∥ ≤ xi0} ⊂ R
ni (1 ≤ i ≤ r), (19)

r
∑

i=1

ni = n.

Then any x ∈ K takes the form
x = (x1, . . . , xr) ∈ R

n

with
xi = (xi0, x̄

i) ∈ R× R
ni−1, (1 ≤ i ≤ r).

It is rather immediate that each Ki is pointed and self-dual, i.e., it satisfies Ki = K∗
i . As a

consequence, the Second Order Cone K is pointed and satisfies K = K∗ [3]. In this case CEiCP is
called a Second-Order Cone Eigenvalue Complementarity Problem (SOCEiCP) and is denoted by
SOCEiCP.

This cone has been chosen because optimization problems whose feasible sets are Second Order
Cones are computationally tractable and appear in a large variety of applications, such as filter
design, antenna array weight design, truss design, robust estimation and friction in robot grasp.
We recommend [3, 6, 21] for Second-Order Cone optimization problems and their applications.

In Section 4 we investigate the numerical solution of the symmetric SOCEiCP, i.e., the case
in which the matrices B and C are both symmetric. As stated before, solution of the symmetric
SOCEiCP reduces to the computation of a stationary point of a maximization problem whose
objective function is the Rayleigh Quotient. As in [17], we propose the Spectral Projected (SPG)
algorithm for computing such a stationary point. The efficiency of the algorithm depends on
the computation of projections on the feasible (convex) set of the maximization problem. The
normalization constraint

r
∑

i=1

xi0 = 1 (20)

is introduced, so that these projections can be computed efficiently by a new algorithm proposed
in Section 4. Numerical results with the SPG algorithm, using this new technique for comput-
ing projections, are reported, showing the efficiency of this approach for solving the symmetric
SOCEiCP.

The paper is organized as follows. The sufficient condition for existence of solutions of QCEiCP
is introduced in Section 2. The symmetric case is discussed in Section 3. The SPG algorithm
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for the SOCEiCP is described in Section 4. Numerical results with this algorithm are reported in
Section 5 and some conclusions are presented in the last section of the paper.

2 Existence of solutions of QCEiCP

In this section we present a sufficient condition for the existence of solutions of QCEiCP(A,B,C).
We start by recalling the sufficient conditons introduced in [28].

Definition 1. Consider a cone K ⊂ R
n.

i) A matrix A ∈ R
n×n is K-regular if xtAx 6= 0 for all nonzero x ∈ K.

ii) A triplet (A,B,C), with A,B,C ∈ R
n×n is K-hyperbolic if

(xtBx)2 ≥ 4(xtAx)(xtCx) (21)

for all nonzero x ∈ K.

Theorem 1. If K is a closed, convex and pointed cone, A is K-regular and (A,B,C) is K-hyperbolic,
then QCEiCP(A,B,C) has solutions.

Proof. See Theorem 3.3 in [28].

In this paper, we guarantee the existence of solutions of QCEiCP by a different approach based
on the relationship between an arbitrary n-dimensional QCEiCP and two specific instances of
CEiCP with matrices in R

2n×2n. A similar relation has been considered in [8] for QEiCP.
Consider now QCEiCP(A,B,C) with A,B,C ∈ R

n×n and define D,G,H ∈ R
2n×2n as

D =

(

A 0
0 I

)

, (22)

G =

(

−B −C
I 0

)

, (23)

H =

(

B −C
I 0

)

. (24)

Given the cone K ⊂ R
n, we define the cone K̃ ⊂ R

2n as K̃ = K × K. Furthermore, for a given
a ∈ int(K∗), we define ã ∈ R

2n as ã = (a, a) Note that ã belongs to int(K̃). Assuming that the
cone related to QCEiCP(A,B,C) is K, and the vector in int(K) appearing in (17) is a, we consider
CEiCP(D,G) and CEiCP(D,H) with cone K̃ and vector ã.

Next we prove a relation between the solutions of QCEiCP(A,B,C) and those of CEiCP(D,G)
and CEiCP(D,H). We emphasize that the following result holds without making any additional
hypotheses on A,B,C. We also mention that the proof of Proposition 1(b) differs in a substantial
way from the proof of its counterpart for the case of K = R

n
+, namely Proposition 1 in [8].
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Proposition 1. a) Assume that (λ, x) solves QCEiCP(A,B,C) and consider D,G,H as in
(22)–(24).

i) If λ = 0 then (λ, z) = (0, z) solves both CEiCP(D,G) and CEiCP(D,H), where z ∈ R
2n

is defined as z = (0, x).

ii) If λ > 0 then (λ, z) solves EiCP(D,G), where z ∈ R
2n is defined as z = (1+λ)−1(λx, x).

iii) If λ < 0 then the pair (−λ, z) solves EiCP(D,H), where z ∈ R
2n is defined as z =

(1− λ)−1(−λx, x).

b) Consider D,G,H as in (22)–(24).

i) If (λ, z) solves CEiCP(D,G) with z = (y, x) ∈ R
n × R

n and λ 6= 0, then λ > 0 and
(λ, (1 + λ)x) solves QCEiCP(A,B,C)

ii) If (λ, z) solves CEiCP(D,H) with z = (y, x) ∈ R
n × R

n and λ 6= 0, then λ > 0 and
(−λ, (1 + λ)x) solves QCEiCP(A,B,C).

Proof. a) For item (i), note that checking whether (0, x) solves QCEiCP(A,B,C) reduces to
verifying that Cx ∈ K∗, x ∈ K, xtCx = 0, and the same happens when verifying that (0, (0, x))
solves either CEiCP(D,G) or CEiCP(D,H). We deal now with item (ii). Note that checking
that a pair (λ, z) with z = (u, v) ∈ R

n × R
n solves CEiCP(D,G) is equivalent to verifying:

λAu+Bu+ Cv ∈ K∗, (25)

λv − u ∈ K∗, (26)

u ∈ K, v ∈ K, (27)

ut(λAu+Bu+ Cv) + vt(λv − u) = 0, (28)

at(u+ v) = 1. (29)

On the other hand, since (λ, x) solves QCEiCP(A,B,C), we know that

λ2Ax+ λBx+ Cx ∈ K∗, (30)

x ∈ K, (31)

xt(λ2Ax+ λBx+ Cx) = 0, (32)

atx = 1. (33)

If we take u = λ
1+λ

x, v = 1
1+λ

x, then we have λv − u = 0 and (26) holds trivially. The
condition (25) follows from (30), and (27) follows from (31) and positivity of λ. The first
term of the left hand side of (28) vanishes as a consequence of (32). Since λv = u then
the equality (28) holds. Now at(u + v) = (1 + λ)−1(λatx + atx) = atx = 1 by (33). Hence
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the condition (17) is true. For item (iii), note that if (λ, x) solves QCEiCP(A,B,C) then
(−λ, x) solves QCEiCP(A,−B,C). In such a case, as −λ is positive, we can apply item (ii)
to QCEiCP(A,−B,C), replacing λ by −λ and B by −B. This gives the result, taking into
account the definitions of z and H.

b) Consider first item (i). We know that (25)–(29) hold with (u, v) = (y, x), and we need to
check that

(1 + λ)(λ2Ax+ λBx+ Cx) ∈ K∗, (34)

(1 + λ)x ∈ K, (35)

(1 + λ)2
[

xt(λ2Ax+ λBx+ Cx)
]

= 0, (36)

(1 + λ)atx = 1. (37)

If λ ≥ 0 then (35) follows immediately from (27). It is rather elementary to verify that if

y = λx, (38)

then (34) follows from (25), (36) follows from (32), and (37) follows from (33). Therefore
(λ, (1 + λ)x) solves QCEiCP(A,B,C), provided λ ≥ 0.

We prove next that (38) holds. We claim first that x 6= 0. Otherwise (26) gives −y ∈
K∗. Since y ∈ K by (27), we get −yty ≥ 0, which implies y = 0. Since x = 0, we have
at(x+ y) = 0, contradicting (29). Consider now (28). Note that each term in the right hand
side is nonnegative, because x, y belong to K, and λAy + By + Cx, λx − y belong to K∗,
by (24)–(27). It follows that both terms vanish, and in particular the second one. Hence
0 = xt(λx− y), i.e.

λ =
xty

‖x‖2
, (39)

taking into account that x 6= 0. It follows from (39) that y 6= 0, since both x and λ are known
to be nonzero. On the other hand, since λx− y ∈ K∗, y ∈ K by (14), (15), we have

‖y‖2 ≤ λxty. (40)

Substituting (39) in (40), we obtain ‖x‖2 ‖y‖2 ≤ (xty)2. By using the Cauchy-Schwartz
inequality,

‖x‖ ‖y‖ ≤
∣

∣xty
∣

∣ ≤ ‖x‖ ‖y‖ . (41)

It follows from (41) that Cauchy-Schwartz inequality holds with equality. Therefore x and y
are colinear, i.e. there exists σ ∈ R such that y = σx. Replacing this equation in (39) and
using that fact that x 6= 0, we conclude that λ = σ. Hence (38) holds.
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Finally, positivity of λ follows also from (38). Since (x, y) ∈ K̃, we get that x ∈ K and λx ∈ K,
so that λ < 0 contradicts the pointedness of K.

For item (ii), we apply the same argument as in item (i) to CEiCP(D,H). Since G and H
differ just by the sign of B, we conclude that (λ, (1+λ)x) solves QCEiCP(A,−B,C). It now
follows from the definition of QCEiCP(A,B,C) that (−λ, (1 + λ)x) solves it.

We comment that our sufficient condition requires only item (b) of Proposition 1. However,
item (a) has some interesting consequences, see Remarks 3 and 4 below.

Now we rephrase the result of Proposition 1 in terms of complementary eigenvalues.

Corollary 1. Consider QCEiCP(A,B,C) with A,B,C ∈ R
n×n and the matrices D,G,H ∈ R

2n×2n

as defined in (22)–(24). Then,

i) all quadratic complementary eigenvuales for (A,B,C) are complementary eigenvalues for ei-
ther (D,G), or (D,H), or both,

ii) all nonzero complementary eigenvalues for (D,G) are positive, and are quadratic complemen-
tary eigenvalues for (A,B,C),

iii) all nonzero complementary eigenvalues for (D,H) are positive, and their additive inverses
are quadratic complementary eigenvalues for (A,B,C).

Proof. Elementary from Proposition 1.

Corollary 1 signals a clear path for obtaining a sufficient condition for existence of solutions
of QCEiCP(A,B,C). We must first find a sufficient condition for solvability of CEiCP(D,G) or
CEiCP(D,H) (which in principle depends only on the matrix in the leading term in (1), namely
D in this case, and henceforth just on A, in terms of the data of the QCEiCP), and then impose
conditions ensuring that either 0 is a quadratic complementary eigenvalue for (A,B,C), or that 0 is
not a complementary eigenvalue of (D,G), (D,H) (which, as mentioned in the proof of Proposition
1(a), depends only upon C).

We present next some classes of matrices needed for our sufficient conditions.

Definition 2. Consider a cone K ⊂ R
n.

i) A matrix M ∈ R
n×n is said to be strictly K-copositive if xtMx > 0 for all 0 6= x ∈ K.

ii) The class R′
0(K) ⊂ R

n×n consists of those matrices M ∈ R
n×n such that xtMx = 0 for all

x ∈ K such that Mx ∈ K∗.

iii) The class S′
0(K) ⊂ R

n×n consists of those matrices M ∈ R
n×n such that there exists no

nonzero x ∈ K such that Mx ∈ K∗.
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We comment that for K = R
n
+, the complements of classes R′

0(K), C ′
0(K) are the well known

classes S0, R0 respectively (see e.g. [10]).

Proposition 2. i) If M ∈ R
n×n is strictly K-copositive then CEiCP(M,C) has solutions for

any C ∈ R
n×n.

ii) If C ∈ R′
0(K) then 0 is a quadratic complementary eigenvalue for (A,B,C) for any A,B,C ∈

R
n×n.

iii) If C ∈ S′
0(K) then 0 is not a complementary eigenvalue for either (D,G) or (D,H) with

D,G,H as in (22)–(24).

Proof. Item (i) has been proved in [29], as mentioned in the introduction. Item (ii) is immediate
from the definitions of QCEiCP and R′

0(K). For item (iii), assume that 0 is a complementary
eigenvalue for (D,G), with associated complementary eivenvector 0 6= z = (y, x) ∈ R

n × R
n. It

follows immediately that By + Cx ∈ K∗, −y ∈ K∗, x ∈ K, y ∈ K. Hence y = 0 and Cx ∈ K∗. As
z 6= 0, then x 6= 0 and we have a contradiction with the assumption that C ∈ S′

0(K). The same
argument can be used for the case of (D,H).

Now, all the pieces are in place for stating and proving our existence result for QCEiCP.

Theorem 2. Consider QCEiCP(A,B,C).

i) C ∈ R′
0(K) if and only if 0 is a quadratic complementary eigenvalue for QEiCP(A,B,C).

ii) If C ∈ S′
0(K) and A is strictly K-copositive, then there exist at least one positive and one

negative quadratic complementary eigenvalue for (A,B,C).

Proof. Item (i) is a consequence of Proposition 2 (ii). To prove item (ii) we first note that strict K-
copositivity of A implies strict K-copositivity of D. Hence both CEiCP(D,G) and CEiCP(D,H)
have complementary eigenvalues by Proposition 2(i), which are nonzero by Proposition 2 (iii).
Hence, they are positive by items (ii) and (iii) of Corollary 1. Therefore there exist at least one
positive and one negative quadratic complementary eigenvalue for (A,B,C).

In the remainder of this section, we discuss the existence result given in Theorem 2. We start
with a corollary, stating that the roles of A and C in item (ii) of Theorem 2 can be reversed.

Corollary 2. Consider QCEiCP(A,B,C) and assume that A ∈ S′
0(K) and C is strictly K-

copositive. Then there exist at least one positive and one negative quadratic complementary eigen-
value for (A,B,C).

Proof. Apply Theorem 2(ii) to QCEiCP(C,B,A) and conclude that it has a solution (λ, x) with
λ > 0, so that

w = λ2Cx+ λBx+Ax ∈ K∗, x ∈ K, wtx = 0. (42)
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Let µ = λ−1. Divide the first inequality in (42) by λ2, and get from (42) w̄ = µ2Ax+ µBx+Cx ∈
K∗, x ∈ K, w̄tx = 0, so that (µ, x) solves QCEiCP(A,B,C) and µ > 0. Proceeding in the same
fashion with QCEiCP(C,−B,A), get a solution (λ̄, x̄) of this problem with λ̄ > 0, take µ̄ = λ̄−1 and
conclude that (µ̄, x̄) solves QCEiCP(A,−B,C). Hence −µ̄ is a negative quadratic complementary
eigenvalue for (A,B,C).

We continue with two remarks related to the result in Theorem 2.

Remark 3. When we move from QCEiCP(A,B,C) to CEiCP(D,G), we can settle the issue of
existence of solutions for the former except for one “undeterminated” case: when we only know that
0 is a complementary eigenvalue for (D,G). If EiCP(D,G) has no solutions then the same happens
to QCEiCP(A,B,C) by Corollary 1(i); if CEiCP(D,G) has a solution (λ, x) with λ 6= 0 then λ
is a quadratic complementary eigenvalue for (A,B,C) by Corollary 1(ii), but the fact that 0 is a
complementary eigenvalue for (D,G) entails no conclusion at all about the existence of solutions
of QCEiCP(A,B,C). The same considerations hold for CEiCP(D,H).

Remark 4. As another consequence of Corollary 1, if a method for finding all complementary
eigenvalues for an arbitrary instance of CEiCP is available, applying it to CEiCP(D,G) and
CEiCP(D,H) provides all quadratic complementary eigenvalues of QCEiCP(A,B,C). In fact,
all complementary eigenvalues of these two CEiCP’s are quadratic complementary eigenvalues for
QCEiCP(A,B,C) (with the possible exception of 0, which can be checked separately) by virtue of
Corollary 1(ii)–(iii), and no quadratic complementary eigenvalue can be missed, as a consequence
of Corollary 1(i).

Finally, we close the section with the comparison between the two sets of sufficient conditions
for existence of solutions of QCEiCP(A,B,C) given in Theorems 1 and 2.

For the comparison between the assumptions of Theorem 1 and Theorem 2, we say that a triplet
(A,B,C) satisfies (P) when either C ∈ S′

0(K) and A is strictly K-copositive, or C ∈ R′
0(K), and

that it satisfies (P’) when A is K-regular and (A,B,C) is K-hyperbolic.
We mention that if both A and −C are strictly K-copositive, then (P’) holds, because in such

a case one has xtAx ≥ 0, xtCx ≤ 0 for all x ∈ K, so that the right hand side in (21) is nonpositive,
making this inequality valid.

On the other hand, it is easy to exhibit instances in which (P) holds but (P’) does not. Indeed,
consider any pointed cone K which is not a halfline (i.e., it contains at least two linearly independent
vectors, say c, d), take a ∈ int(K∗), find a vector b ∈ R

n such that btc < 0, btd > 0, and define
C ∈ R

n×n as C = bat. We claim that if A is positive definite then the triplet (A, 0, C) satisfies (P)
but not (P’). Observe that (21) fails with x = d, since

(dtBd)2 − 4(dtAd)(dtCd) = −4(dtAd)(atd)(btd) < 0.

11



On the other hand, (A, 0, C) satisfies (P). Since A is a positive definite matrix then A is K-copositive
for all K. To show that C ∈ S′

0(K) take any nonzero x ∈ K. Hence Cx = (atx)b. If Cx ∈ K∗,
then 0 ≤ (Cx)tc = (atx)(btc) < 0, as atx > 0 and btc < 0 by construction. Hence Cx /∈ K∗ and
C /∈ S′

0(K).
There are also many instances of QCEiCP for which (P’) holds but not (P). Take for instance

an arbitrary K, A = C = I and B = 2I. Validity of (P’) for any K is immediate, but (P) fails,
because I /∈ R′

0(K) ∪ S′
0(K) for any K. Hence, (P) and (P’) are independent of each other for a

generic cone K.
Observe also that (P) depends only upon the matrices A and C, while (P’) also involves the

matrix B.

3 The symmetric CEiCP

It has been proved in [29] that if B is K-regular (as in Definition 1), then the set of solutions of
CEiCP(B,C) coincides with the set of solutions of VIP(F̄ ,∆), with F̄ as in (5) and ∆ = {x ∈
K : atx = 1}. Now, it is well known that if S ⊂ R

n is a closed and convex set and h : S → R is
differentiable on an open set containing S, then a point x̄ ∈ S satisfies the first order optimality
condition for the problem of minimizing h(x) subject to x ∈ S if and only if

∇h(x̄)t(x− x̄) ≥ 0 ∀x ∈ S, (43)

which is the same as saying that x̄ solves VIP(∇h, S). Note that the condition (43) means that no
direction starting at x̄ and pointing to a point in S is a descent direction for h.

Hence, if there exists a function h such that the solutions of VIP(F̄ ,∆) coincide with those of
VIP(∇h,∆), then the solutions of CEiCP(B,C) are precisely the stationary points for the problem
of minimizing h on ∆. This is the case when CEiCP(B,C) is symmetric, meaning that both B and
C are symmetric matrices. Indeed, assume that B is K-regular and consider h : K → R defined as

h(x) = −x
tCx

xtBx
. (44)

We mention that the quotient in (44) is called the Rayleigh quotient for B,C. Note that K-regularity
of B implies that h is well defined (and indeed differentiable) in an open set containing ∆, and that
its gradient is given by

∇h(x) = 1

xtBx

[

xtCx

xtBx
Bx− Cx

]

=
1

xtBx
F̄ (x). (45)

Now, note that if B is K-regular then either B is K-copositive or −B is K-copositive. If B is
K-copositive, then it follows from (45) that ∇h(x̄)t(x − x̄) ≥ 0 if and only if F̄ (x̄)t(x − x̄) ≥ 0, so
that the solution sets of VIP(F̄ ,∆) and VIP(∇h,∆) coincide. If −B is K-copositive, then we take
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h̄ = −h, and we conclude in the same way that the solution sets of VIP(F̄ ,∆) and VIP(∇h̄,∆)
coincide. Hence if B is K-regular the solutions of CEiCP(B,C) are the stationary points for the
problem of minimizing or maximizing h, given by (44), on K (where we minimize when B is
K-copositive and maximize when −B is K-copositive). We remark that, from a computational
viewpoint, computing a stationary point of an optimization problem is in general much easier than
finding a solution of a variational inequality problem. We also mention that in the case of K = R

n
+,

the equivalence between solving EiCP and finding a stationary point of the Rayleigh quotient was
established in [26].

4 Numerical solution of the symmetric CEiCP with a Second or-

der Cone

In Section 3, we showed that if B and C are symmetric matrices and B is positive definite, then
any stationary point x̃ 6= 0 of the function h defined by (44) on a convex self-dual cone K solves the
symmetric CEiCP. In this section we consider the Second-Order cone defined by (18) and (19). We
start by introducing the normalization constraint (20) that avoids x = 0 to be a feasible solution
of the corresponding nonlinear program to be solved. Then we consider the maximization of the
Rayleigh Quotient function on the set defined by the constraints (18), (19) and (20), that is, the
following problem:

NLP: Minimize h(x) = −x
tCx

xtBx
subject to (18), (19), (20).

(46)

Next, we discuss the use of the so-called Spectral Projected-Gradient (SPG) algorithm for
computing a stationary point x̃ of NLP (46). As stated before, h(x̃) and x̃ are a complementary
eigenvalue and a complementary eigenvector respectively for the symmetric Second-Order cone
(SOCEiCP). The SPG algorithm is a feasible descent method, which means that in each iteration
k the current point xk is feasible, i.e., xk ∈ K, and is updated by using a descent direction for the
function h and a positive stepsize.

At iteration k, the projected gradient search direction dk is given by

dk = PK(xk − ηk∇h(xk))− xk, (47)

where ηk > 0, ∇h(xk) represents the gradient of h at xk, and PK(y) denotes the projection of y
on K. If uk = xk − xk−1 and vk = ∇h(xk) − ∇h(xk−1) satisfy utkvk > 0, the so called Spectral
parameter

ηk =
utkuk
utkvk

should be used. If utkvk ≤ 0, then ηk should be a positive real number chosen according to [17].
Now, either dk = 0 and xk is a stationary point of h at xk or xk is updated by xk+1 = xk + δkdk,
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where the stepsize δk ∈ (0, 1] is computed by the exact line-search technique discussed in [17]. As
discussed in [5], the algorithm converges to a stationary point of h under reasonable hypotheses.
The steps of the SPG algorithm are described below.

Spectral Projection Algorithm (SPG)

Step 0. Let ǫ > 0 be a tolerance, choose x0 ∈ K and let k := 0.

Step 1. Compute dk according to (47).
If ‖dk‖ < ǫ, terminate. The current vector xk is a stationary point of h on K. Otherwise,
compute the stepsize δk ∈ (0, 1] by an exact line-search.

Step 2. Update
xk+1 := xk + δkdk

and return to Step 1 with k := k + 1.

Next, we focus our attention to the choice of the initial point and the computation of the
gradient, search direction and the stepsize.

(1) Initial Point
The initial point x0 = (x1, . . . , xr) ∈ R

n with xi = (xi0, x̄
i) ∈ R× R

ni−1, i = 1, . . . , r, has the
following components:

xi0 =
1

r
, x̄i =

1

r
es,

where es is a vector of the canonical basis and s = min{i, ni − 1}.

(2) Computation of the gradient ∇h(x)
The gradient of the (negative) Rayleigh Quotient function h at x is given by (45).

(3) Computation of the Projected-Gradient Direction d
The projected gradient search direction at each iteration is given by (47). Due to the choice of
the normalization constraint (20), it is possible to design a special purpose efficient algorithm
for the computation of the projection that is required for the definition of the search direction.
Next, we discuss in detail this new algorithm. Let a point u = (u1, . . . , ur) ∈ R

n with
ui = (ui0, ū

i) ∈ R × R
ni−1 , i = 1, . . . , r, be given. Then the projection of u onto the set K is

the unique solution of the convex optimization problem:

Minimize
x∈Rn

1

2

r
∑

i=1

‖xi − ui‖2

subject to ‖x̄i‖ − xi0 ≤ 0, i = 1, . . . , r,
r

∑

i=1

xi0 = 1.

(48)
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For finding the optimal solution of problem (48), first fix xi0 ≥ 0, i = 1, . . . , r arbitrarily, and
consider the following optimization problem for each i:

Minimize
x̄i∈Rni−1

1
2
‖xi − ui‖2

subject to ‖x̄i‖ − xi0 ≤ 0.

Noticing that ‖xi − ui‖2 = (xi0 − ui0)
2 + ‖x̄i − ūi‖2, it is not difficult to see that the optimal

solution x̄i of this problem is given by

x̄i =

{

ūi if xi0 ≥ ‖ūi‖
xi

0

‖ūi‖
ūi if xi0 < ‖ūi‖, (49)

and the optimal value is given by

φi(x
i
0|ui) :=

{

1
2
(xi0 − ui0)

2 if xi0 ≥ ‖ūi‖
1
2
(xi0 − ui0)

2 + 1
2
(xi0 − ‖ūi‖)2 if xi0 < ‖ūi‖.

Thus the optimal solution of problem (48) is obtained by solving the following convex opti-
mization problem with variables xi0 ∈ R, i = 1, . . . , r:

Minimize
r

∑

i=1

φi(x
i
0|ui)

subject to
r

∑

i=1

xi0 = 1,

xi0 ≥ 0, i = 1, . . . , r.

(50)

In the sequel, for the sake of a simpler notation, we denote φi(x
i
0) for φi(x

i
0|ui), i = 1, . . . , r.

Note that the functions φi are strongly convex and continuously differentiable. More specifi-
cally, the first derivatives of φi are given by

φ′i(x
i
0) =

{

xi0 − ui0 if xi0 ≥ ‖ūi‖
2xi0 − (ui0 + ‖ūi‖) if xi0 < ‖ūi‖. (51)

Observe that φ′i is an increasing, piecewise linear and concave function for all i. More specif-
ically, each φ′i has two linear pieces and a single kink, where the right directional derivative
is 1 and the left one is 2, which means limt→−∞ φ′i(t) = −∞ and limt→∞ φ′i(t) = ∞.

Since problem (50) is convex, the following KKT conditions are necessary and sufficient for
optimality:

φ′i(x
i
0)− v − wi = 0, i = 1, . . . , r, (52)

r
∑

i=1

xi0 = 1, (53)

xi0 ≥ 0, wi ≥ 0, xi0wi = 0, i = 1, . . . , r, (54)
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where v ∈ R and wi ∈ R, i = 1, . . . , r, are Lagrange multipliers.

From (52) and (54), we have

wi = φ′i(x
i
0)− v ≥ 0, i = 1, . . . , r,

which implies
xi0 ≥ (φ′i)

−1(v), i = 1, . . . , r, (55)

where (φ′i)
−1 is the inverse function of φ′i, which is well-defined by the above-mentioned

property of φ′i. In fact, the function (φ′i)
−1 has the following explicit representation for each

i, cf. (51):

(φ′i)
−1(v) =

{

v + ui0 if v ≥ −(ui0 − ‖ūi‖)
1
2
(v + ui0 + ‖ūi‖) if v < −(ui0 − ‖ūi‖).

Moreover, from (55) and the complementarity condition (54), we obtain

xi0 = max(0, (φ′i)
−1(v)), i = 1, . . . , r, (56)

which together with (53) yields the following equation with variable v ∈ R:

r
∑

i=1

max(0, (φ′i)
−1(v)) = 1. (57)

To proceed further, it will be convenient to define the functions ψi : R → R, i = 1, . . . , r, by

ψi(v) = max(0, (φ′i)
−1(v))

and scalars αi, βi, i = 1, . . . , r, by

αi := −(ui0 + ‖ūi‖), (58)

βi := −(ui0 − ‖ūi‖).

Note that αi ≤ βi for all i; moreover, αi = βi if and only if ūi = 0. Then the functions ψi can
be represented explicitly as follows:

• If αi < βi, then

ψi(v) =







v + ui0 if v ≥ βi
1
2
(v + ui0 + ‖ūi‖) if αi ≤ v < βi

0 if v < αi.

• If αi = βi, then

ψi(v) =

{

v + ui0 if v ≥ αi

0 if v < αi.
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In any case, the functions ψi are piecewise linear and convex. The subgradients of these
functions are given as follows:

• If αi < βi, then

∂ψi(v) =























{1} if v > βi
[

1
2
, 1
]

if v = βi
{1
2
} if αi < v < βi

[

0, 1
2

]

if v = αi

{0} if v < αi.

• If αi = βi, then

∂ψi(v) =







{1} if v > αi

[0, 1] if v = αi

{0} if v < αi.

Now let us define the function ϕ : R → R as:

ϕ(v) =
r

∑

i=1

ψi(v)− 1.

Then the equation (57) can be rewritten as

ϕ(v) = 0. (59)

It is not difficult to see that ϕ(v) = −1 for all v ≤ α, where

α := min
1≤i≤r

αi

with αi given by (58). Moreover, ϕ is increasing for v ≥ α, and limv→∞ ϕ(v) = ∞. Conse-
quently, equation (59) has a unique solution v∗ ∈ (α,∞). Once v∗ is computed, the optimal
solution of problem (50) is obtained from (56) with v = v∗. Moreover, the optimal solution
of problem (48), i.e., the projection of u onto K, is recovered from (49) with xi0 so obtained.

A number of algorithms are available for solving the univariate equation (59). Below we
present a (generalized) Newton method. Since the function ϕ is monotonically increasing,
piecewise linear and convex, it can easily be shown that the method is finitely convergent to
the unique solution v∗.

Newton’s method for solving equation (59).

Step 0 Find an initial solution v0 such that ϕ(v0) > 0. Let k := 0.

Step 1 If ϕ(vk) = 0, then terminate. Otherwise, go to Step 2.
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Step 2 Choose a subgradient ξk ∈ ∂ϕ(vk) = ∂ψ1(vk) + · · ·+ ∂ψr(vk), and compute vk+1 by

vk+1 = vk −
ϕ(vk)

ξk
.

Let k := k + 1 and go to Step 1.

Remark 5. (i) We need to find an initial solution v0 such that ϕ(v0) > 0. From a practical
viewpoint, a small initial value v0 is preferred, as long as it satisfies ϕ(v0) > 0. Since
ϕ(α) = −1 and ϕ is monotonically increasing for v > α, we may set v0 := α + ℓ̂δ for
some δ > 0, where ℓ̂ is the smallest positive integer ℓ such that ϕ(α+ ℓδ) > 0.

(ii) In Step 1 we use the stopping criterion |ϕ(vk)| < ε, with ε a small positive tolerance (in
practice ε =

√
ǭ, where ǭ is the machine precision).

(4) Computation of the stepsize δ
The value of the stepsize is obtained with an exact line-search, i.e., it is the solution of the
univariate optimization problem

Minimize g(δ)
subject to 0 ≤ δ ≤ 1,

where g : R → R is defined by g(δ) = h(x+ δd), for given vectors x and d. According to [17],
any solution δ of g′(δ) = 0 associated with the Rayleigh quotient function is a root of the
following equation of degree two:

a1 + δa2 + δ2a3 = 0, (60)

where
a1 = (dtAx)(xtBx)− (dtBx)(xtAx),

a2 = (dtAd)(xtBx)− (dtBd)(xtAx),

a3 = (dtAd)(xtBd)− (dtBd)(xtAd).

Let s1 and s2 be the solutions of equation (60). Noticing that ϕ′(0) < 0 and 0 ≤ δ ≤ 1, we
can determine the stepsize as

δ =























1 if a3 = 0 or s1, s2 /∈ [0, 1]

si if si ∈ [0, 1], sj /∈ [0, 1]

si if s1, s2 ∈ [0, 1] and ϕ(si) ≤ ϕ(sj), ϕ(si) ≤ ϕ(1)

1 if s1, s2 ∈ [0, 1] and ϕ(1) ≤ ϕ(si) (i = 1, 2).
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5 Computational Experience

In this section we report some computational experience with the SPG algorithm discussed in the
previous section for the solution of symmetric SOCEiCPs. The experiments have been performed
on a Pentium IV (Intel) with 3.0 GHz and 2 GBytes of RAM memory, using the operating system
Linux. The algorithm was coded in FORTRAN 90 and compiled with the Intel compiler, version
10.0. The algorithm was also implemented in the General Algebraic Modeling System (GAMS)
language (Rev 118 Linux/Intel) [9] and the solver MINOS [22] (Version 5.51) was used to solve the

problem (46), where the constraints
∥

∥x̄i
∥

∥ ≤ xi0 were replaced by
∥

∥x̄i
∥

∥

2 ≤ (xi0)
2. Running times

presented in this section are always given in CPU seconds.
In our set of test problems, B is always the identity matrix and C ∈ R

n×n is a symmetric positive
semidefinite matrix (C = EEt) or C = (E +Et)/2, where E is randomly generated such that each
element is uniformly distributed in the interval [−1, 1]. Furthermore, for the SPG algorithm the
value of the stopping tolerance has been set to 1.0E-06 and the values of ηmin and ηmax have been
fixed to 1.0E-05 and 1.0E+05, respectively.

Tables 1 and 2 report the results obtained with the SPG algorithm and its comparison with the
solver MINOS for r = 3, 5. The notation (∗) stands for instances where the solver MINOS was not
able to find a solution (solver found the problem unbounded or badly scaled). In these tables It

is the total number of iterations, λ is the complementary eigenvalue computed, and T is the total
CPU time in seconds required to solve each problem.

The results shown in these tables demonstrate the efficiency and efficacy of the SPG algorithm
for solving the symmetric SOCEiCP. The projection technique described in the previous section
has performed very well for all the instances. The performance of this projection technique and of
the SPG algorithm do not seem to be influenced by an increase of the number r of the Lorenz cones
Ki. The SPG algorithm requires in general a number of iterations of order equal to the dimension
of the EiCP.

In order to have a better idea of the efficiency of the SPG algorithm, we also solve all the test
problems by the well-known code MINOS. The performance of this last method is also illustrated
in Tables 1 and 2. It seems that SPG algorithm is in general more efficient than MINOS as the
CPU time for SPG method is smaller and the gap between the times of both algorithms tends to
increase with the dimension of the EiCP.

6 Conclusions

In this paper, we discuss the existence of a solution to the Quadratic Conic Eigenvalue Com-
plementarity Problem (QCEiCP), where the vectors x and w of complementary variables belong
to an arbitrary pointed, closed and convex cone K and its dual K∗. A sufficient condition for the
existence of a solution for QCEiCP is introduced.

It is shown that the symmetric CEiCP reduces to the computation of a stationary point x̃ 6= 0
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Table 1: Performance of the algorithms for r = 3.
SPG Minos

C n n1 n2 n3 It λ T It λ T

10 5 3 2 37 9.0559E+00 2.00E-04 57 9.0559E+00 1.30E-02

20 10 5 5 66 1.4730E+01 5.00E-04 231 1.3680E+01 2.70E-02

30 15 8 7 19 3.2365E+01 9.00E-04 97 3.2365E+01 2.50E-02

40 20 10 10 32 3.4207E+01 1.40E-03 369 3.3029E+01 7.60E-02

50 25 13 12 168 4.6001E+01 4.00E-03 291 4.6001E+01 8.80E-02

60 30 15 15 105 5.4414E+01 4.60E-03 302 5.4414E+01 1.26E-01

70 35 18 17 73 6.6755E+01 5.30E-03 399 6.5617E+01 2.08E-01

80 40 20 20 130 6.9076E+01 8.40E-03 634 6.4299E+01 3.68E-01

90 45 23 22 99 9.0406E+01 9.70E-03 374 9.0406E+01 3.27E-01

100 50 25 25 258 9.4997E+01 1.91E-02 799 9.1198E+01 6.84E-01

200 100 50 50 127 2.0870E+02 5.17E-02 481 2.0870E+02 2.00E+00

300 150 75 75 134 3.0175E+02 1.18E-01 535 3.0175E+02 5.46E+00

400 200 100 100 391 3.9770E+02 3.84E-01 815 3.9770E+02 1.39E+01

500 250 125 125 229 4.9011E+02 4.36E-01 924 4.9011E+02 2.44E+01

1000 500 250 250 305 9.8749E+02 2.55E+00 1930 9.8749E+02 2.12E+02

10 5 3 2 33 2.0491E+00 2.00E-04 56 2.3141E+00 1.40E-02

20 10 5 5 40 2.8138E+00 5.00E-04 190 2.5457E+00 2.40E-02

30 15 8 7 55 2.7716E+00 1.10E-03 119 2.7716E+00 2.60E-02

40 20 10 10 97 2.7837E+00 1.90E-03 283 2.7695E+00 6.10E-02

50 25 13 12 57 4.3995E+00 2.70E-03 141 4.3995E+00 5.50E-02

60 30 15 15 77 4.6203E+00 4.00E-03 192 4.6203E+00 8.40E-02

70 35 18 17 61 5.0735E+00 5.00E-03 207 5.0735E+00 1.20E-01

80 40 20 20 90 5.2576E+00 7.20E-03 195 5.2576E+00 1.46E-01

90 45 23 22 82 5.5120E+00 8.80E-03 266 5.5120E+00 2.27E-01

100 50 25 25 220 5.9158E+00 1.72E-02 371 5.8207E+00 3.41E-01

200 100 50 50 347 8.7372E+00 8.88E-02 390 8.7372E+00 1.38E+00

300 150 75 75 1598 1.0444E+01 7.06E-01 882 9.1407E+00 5.98E+00

400 200 100 100 201 1.2547E+01 2.54E-01 674 1.2547E+01 8.92E+00

500 250 125 125 145 1.3274E+01 3.40E-01 755 1.3274E+01 1.59E+01

1000 500 250 250 168 1.9215E+01 1.73E+00 1416 1.9215E+01 1.23E+02

of an appropriate merit function on a convex subset of the cone K. The numerical solution of
the symmetric CEiCP when K is the so called Second-Order Cone (SOCEiCP) by the Spectral
Projected-Gradient (SPG) algorithm is also investigated. A new technique for computing projec-
tions required by the SPG method is introduced. The SPG method and the projection technique
seem to perform very well in practice for solving the symmetric SOCEiCP. The solution of the
nonsymmetric SOCEiCP is certainly one of our main research interests in the near future.
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Table 2: Performance of the algorithms for r = 5.
ni, SPG Minos

C n i = 1, . . . , 5 It λ T It λ T

10 2 28 8.2063E+00 2.00E-04 110 7.9596E+00 1.70E-02

20 4 22 1.6731E+01 4.00E-04 240 1.2162E+01 2.80E-02

30 6 24 2.4235E+01 9.00E-04 365 2.3143E+01 4.90E-02

40 8 46 3.3827E+01 1.60E-03 631 2.7542E+01 1.09E-01

50 10 56 4.1911E+01 2.60E-03 647 3.8522E+01 1.59E-01

60 12 72 5.3729E+01 3.90E-03 1000 4.2615E+01 3.20E-01

70 14 193 6.2644E+01 8.30E-03 1270 5.1216E+01 5.14E-01

80 16 40 8.4495E+01 5.70E-03 292 7.6975E+01 2.19E-01
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