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Abstract

We study the proximal method with the regularized logarithmic barrier, originally stated
by Attouch and Teboulle for positively constrained optimization problems, in the more general
context of nonlinear complementarity problems with monotone operators. We consider two
sequence generated by the method. We prove that one of them, called the ergodic sequence, is
globally convergent to the solution set of the problem, assuming just monotonicity of the operator
and existence of solutions; for convergence of the other one, called the proximal sequence, we
demand some stronger property, like paramonotonicity of the operator or the so called “cut
property” of the problem.

1 Introduction

Given a point-to-set operator T : Rn → P(Rn) and a closed and convex set C ⊂ R
n, the variational

inequality problem VIP(T,C) consists of finding x∗ ∈ C such that 〈u∗, x − x∗〉 ≥ 0 for some
u∗ ∈ T (x∗) and all x ∈ C.

When T is the subdifferential ∂f of a convex function f : Rn → R, we are in the so-called
optimization case, and VIP(T,C) reduces to the problem of minimizing f on C. When C = R

n
+ :=

{x ∈ R
n : xj ≥ 0 (1 ≤ j ≤ n)}, i.e., C is the nonnegative orthant, VIP(T,C) reduces to the

nonlinear complementarity problem NCP(T ), which consists of finding x∗ ∈ R
n, u∗ ∈ T (x∗) such

that x∗ ≥ 0, u∗ ≥ 0, 〈u∗, x∗〉 = 0.
The proximal point algorithm, introduced in [25], is one of the main tools for solving variational

inequality problems. It generates a sequence {xk} ⊆ C, starting at any x0 ∈ C, where xk+1 is a
solution of VIP(Tk, C), with Tk(x) := λkT (x)+x−x

k for some λk > 0. When T is maximal mono-
tone, and dom(T )∩ int(C) 6= ∅, VIP(Tk, C) has a unique solution and the sequence {xk} converges
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to a solution of VIP(T,C) under the only assumption of existence of solutions of VIP(T,C) (see
e.g. [27]).

Formulated in this way, the proximal point method is a regularization procedure, which at
each step replaces T by the better conditioned operator Tk. Later on, the proximal method was
modified so as to achieve also a penalization effect, generating sequences which stay in the interior of
C (assumed to be nonempty). This effect have been attained through the replacement of the linear
regularization term x− xk in the definition of Tk by another one involving e.g. Bregman distances
with zone C (see [9], [10], [12], [13], [16], [23]), ϕ-divergences (see [19], [20], [21] for the optimization
case, [5] for complementarity problems and [17] for saddle-point computations), or the logarithmic
quadratic barrier (see [1] and [2]). The general idea consists of defining Tk so that it has a unique
zero which belongs to the interior of C, in which case VIP(Tk, C) reduces to the unconstrained
problem of finding the zero of Tk, and the iterative step take the form xk+1 = T−1

k (0). In all these
cases, one starts with a “distance-like” differentiable function δ defined at least on int(C)× int(C),
whose partial derivative with respect to the first argument, say δ′, diverges on the boundary of C,
and defines Tk(x) = λkT (x) + δ′(x, xk), where {λk} is a sequence of positive real numbers, called
regularization coefficients, bounded away from 0.

We discuss next the convergence results for the above mentioned scheme, which depend on the
properties of T , C and the choice of δ. The expected result is the convergence of the sequence given
by

xk+1 = T−1

k (0) (1)

to a solution of VIP(T,C), whenever this problem has solutions. A blanket assumption is the
maximal monotonicity of T . This hypothesis turns out to be sufficient in the unconstrained case
(i.e. C = R

n), when δ is taken as the square of the Euclidean distance, i.e. δ(x, y) = ‖x− y‖2.
This is the classical proximal point method analyzed e.g. in [27].

In the constrained case, i.e., when C 6= R
n, the only known case for which convergence has been

proved assuming just monotonicity of T and existence of solutions corresponds to the logarithmic-
quadratic method of Auslender, Teboulle and Ben Tiba (see [2]), where C = R

n
+, i.e., the nonneg-

ative orthant of Rn, and δ : Rn
++ × R

n
++ → R+ is chosen as

δ(x, y) =
ν

2
‖x− y‖2 + µ

n∑

j=1

y2jϕ(y
−1

j xj), (2)

with ϕ(r) = r− ln(r)−1 and µ, ν > 0 (here Rn
++,R+ denote the interior of the nonnegative orthant

and the nonnegative halfline respectively).
In all other constrained cases (i.e., with C 6= R

n), it has not been possible to establish conver-
gence of the sequence given by (1) without further assumptions (though no counterexample has
been exhibited). In order to obtain the desired convergence results, three alternative strategies
have been developed:
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a) Imposing on T a condition stronger than monotonicity or pseudomonotonicity, e.g. paramono-
tonicity or the so-called cut property (which involves also the set C), whose formal definitions
can be found in Section 2.

b) Perturbing the generated sequence; for instance, the step given by (1) becomes an auxiliary
one (yk = T−1

k (0)), and then the next iterate xk+1 is taken as a certain convex combination
of xk and yk ({xk} is the so-called ergodic sequence).

c) Imposing some regularity condition on C (or perhaps jointly on C and T ).

The study of all the above mentioned methods follows one of the three strategies above. The
convergence analysis of the proximal point method with Bregman distances or ϕ-divergences follow
strategy (a), assuming hypotheses which imply the cut property. Strategy (b) has been used in [14]
and [18], replacing the original proximal sequence by the ergodic one, and in [4] and [28], where a
re-scalarization is performed. Strategy (c) has been applied in [24], where convergence is ensured
assuming that the boundary of C contains no line segments, and in [18], where the operator T
is assumed to be a saddle-point one (which is not paramonotone) but the problem VIP(T,C) is
assumed to enjoy strict complementarity.

A modified version of the distance-like δ given by (2), was introduced in [1], where C = R
n
+ and

δ is taken as d : Rn
+ × R

n
++ → R+ defined as

d(x, y) =
ν

2
||x− y||2 + µ

n∑

j=1

yjϕ(y
−1

j xj). (3)

Note that the difference between (2) and (3) is the exponent of the first factor in each term of the
summation (2 in (2), 1 in (3)). The method induced by d was studied in [1] for the optimization case,
i.e. when T is the subdifferential of a convex function. Since subdifferentials of convex functions are
paramonotone and enjoy the cut property, no further assumption was required in the convergence
analysis of [1]. In this paper, we consider the regularization given by (3) with a general maximal
monotone T , i.e. for the nonlinear complementarity problem.

We will apply strategies (a) and (b), establishing convergence of the proximal sequence under
the cut property, and convergence of the ergodic sequence in the absence of this property.

We emphasize that this case has not been covered in any of the above mentioned papers (note
e.g. that for C = R

n
+ the boundary of C contains segments, so that we cannot consider an approach

like the one in [24]). We also point out that the convergence analysis for the complementarity case
differs substantially from the optimization case studied in [1]. When T is not the subdifferential of
a convex function f , one cannot exploit the monotonicity properties of the sequence of functional
values {f(xk)}. Instead, we will invoke properties of the enlargements of monotone operators
introduced in [6], like the transportation formula established in [7] (see Section 2).
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2 Preliminaries

We denote as 〈·, ·〉 the Euclidean inner product. We recall next several monotonicity-like properties
of operators, needed for the convergence analysis.

Definition 2.1. A point-to-set operator T : Rn → P(Rn) is said to be monotone if

〈w − w′, x− x′〉 ≥ 0, for all x, x′ ∈ R
n and all w ∈ T (x), w′ ∈ T (x′),

where 〈·, ·〉 denotes the Euclidean inner product. If the inequality above is strict whenever x 6= x′

then T is called strictly monotone.

Definition 2.2. A monotone operator is maximal if its graph,

G(T ) = {(x, v) ∈ R
n × R

n : v ∈ T (x)},

is not properly contained in the graph of any other monotone operator.

Definition 2.3. A monotone operator T : Rn → P(Rn) is paramonotone (on its domain) if it
satisfies:

〈w − w′, z − z′〉 = 0, w ∈ T (z), w′ ∈ T (z′) =⇒ w ∈ T (z′), w′ ∈ T (z).

We remark that strictly monotone operators are always paramonotone.

Definition 2.4. An operator T : Rn → P(Rn) is pseudomonotone if it satisfies:

〈w′, z − z′〉 ≥ 0, w ∈ T (z), w′ ∈ T (z′) =⇒ 〈w, z − z′〉 ≥ 0.

Moreover, a pseudomonotone operator is pseudomonotone∗ (see [11], [15], [24]), if

〈w, z − z′〉 = 0 = 〈w′, z − z′〉, w ∈ T (z), w′ ∈ T (z′) =⇒ ∃k > 0 such that kw′ ∈ T (z).

Note that any monotone operator is pseudomonotone and, by definition, paramonotone opera-
tors are monotone.

We recall next the cut property introduced by [11] for single-valued operators and in [15], [24]
for set-valued ones, which is strongly connected to paramotonocity.

Definition 2.5. The variational inequality problem VIP(T,C) satisfies the cut property when for
any solution x∗ the condition

x̂ ∈ C, v̂ ∈ T (x̂), 〈v̂, x∗ − x̂〉 ≥ 0

implies that x̂ is a solution too.
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If the set-valued operator T is paramonotone on C, with C closed and convex, then V IP (T,C)
satisfies the cut property (see [17]); the same is true when T is pseudomonotone∗, as shown in [11]
for single-valued operators and in Theorem 4.1(i) of [15] for set-valued ones. It was observed in [11]
that pseudomonotonicity∗ is in a certain way a minimal condition ensuring that the cut property
holds. This result was improved upon in Theorem 4.1(ii) of [15], where it was proved that among
all pseudomonotone mappings on C, with C convex, those having convex and compact values, and
satisfying the cut property on every compact subset of C, are pseudomonotone∗ on the interior of
C.

We mention that the cut property cannot be expected to hold in variational inequalities asso-
ciated to saddle point operators (see Remark 1.2 in [22]).

We close the section with some elements of the theory of enlargements of monotone operators,
introduced in [6], also needed in our convergence analysis.

Definition 2.6. Given a monotone operator T : Rn → P(Rn) and a nonnegative parameter ε, the
ε−enlargement of T is the operator T̃ : R+ × R

n → P(Rn) defined by

T̃ (ε, x) = {u ∈ R
n : 〈v − u, y − x〉 ≥ −ε, ∀(y, v) ∈ G(T )}.

We will occasionally use the notation T ε(x) as an alternative to T̃ (ε, x). We recall that when
T is maximal monotone then the graph of T̃ is closed (see Proposition 3.4 in [7]).

Next we state the so called transportation formula.

Proposition 2.7. Given any set of m triplets {(βi, x
i, vi)}mi=1 ⊆ G(T̃ ) and any α ∈ ∆m := {α ∈

R
m
+ :

∑m
i=1

αi = 1}, it holds that β̂ ≥ 0 and that (β̂, x̂, v̂) belongs to G(T̃ ), where

x̂ =
m∑

i=1

αix
i, v̂ =

m∑

i=1

αiv
i and β̂ =

m∑

i=1

αi

[
βi + 〈vi − v̂, xi − x̂〉

]
.

Proof. See Theorem 3.11 in [7].

3 A proximal-like algorithm

We consider the following entropy proximal scheme for solving the nonlinear complementarity
problem NCP(T ), to be denoted as Algorithm EPNLC. It requires positive parameters µ and ν,
a sequence of regularizing parameters {λk} ⊂ [λ̄,∞) for some λ̄ > 0, and the auxiliary function
ϕ : R++ → R+ defined by ϕ(r) = r − ln(r)− 1.

Algorithm EPNLC:

Initialization: Choose any x0 ∈ R
n
++ and define y0 = x0, σ0 = 0.
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Step 1: Given xk−1, yk−1 and λk > 0, find yk ∈ R
n and vk ∈ R

n satisfying

vk ∈ T (yk), (4)

λkv
k
j + ν(ykj − yk−1

j ) + µϕ′(ykj /y
k−1

j ) = 0 (1 ≤ j ≤ n). (5)

Step 2: Given σk−1, define σk = λk + σk−1,

xk =
λk
σk
yk +

(
1−

λk
σk

)
xk−1. (6)

Several comment on Algorithm EPNLC are in order. Observe first that the sequence {yk}
generated by Algorithm EPNLC satisfies yk = T−1

k (0) with

Tk = λkT + d′(·, yk−1) (7)

and d : Rn
++ × R

n
++ → R+ given by (3), which is the regularized logarithmic barrier functional

studied in [1], a variation of the log-quadratic given by (2), introduced in [2].
Note that when T is single-valued, Step 1 reduces to the solution of the system of n nonlinear

equations given by (5) in the n unknowns yk1 , . . . , y
k
n, with T (y

k
j ) substituting for vkj . The solution of

such system requires in general some auxiliary procedure, to be chosen according to the properties
of T (e.g., one could use Newton method or a quasi-Newton one, if T is continuously differentiable).
It follows that the computational burden of the iterative procedure is fully concentrated in Step 1,
since Steps 2 entails just very elementary computations.

We will write now the system (4)-(5) in a more explicit way and compare it with the correspond-
ing system for the method with the log-quadratic method of Auslender, Teboulle and Ben-Tiba
presented in [2], which uses the function δ defined in (2). For the sake of simplicity, we carry
out this comparison only for the case of a single-valued T . The system of equations in Step 1 of
Algorithm EPNLC in the unknowns y1 . . . , yn ∈ R can be written as:

λkT (y)j +

(
ν +

µ

yj

)
(yj − yk−1

j ) = 0 (1 ≤ j ≤ n), (8)

while the corresponding system for the method in [2] is:

λkT (y)j +

(
ν + yk−1

j

µ

yj

)
(yj − yk−1

j ) = 0 (1 ≤ j ≤ n). (9)

The difference between both methods lies in the factor yk−1

j , which multiplies µ in (9) and is absent

in (8). Now, the expression ν(yj − yk−1

j ) is the regularization term (λkT + νI is in general better

conditioned than T ) while the expressions (µ/yj)(y
j−yk−1

j ) in (8) and yk−1

j (µ/yj)(y
j−yk−1

j ) in (9)
are the penalization terms, which force the solution y of the system to be strictly positive. Consider
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now a component j such that x∗j = 0 for all solution x∗ of NCP(T ) and assume that the sequence

{yk} for any of the methods converges to a solution. Then limk→∞ ykj = 0 in both cases. The

additional factor yk−1

j multiplying µ in (9) makes the penalization term become negligible for large
k as compared both to the regularization term and to the operator term λkT (y)j (remember that the
λk’s are bounded away from 0), and hence the same happens with the penalization effect, making
the method in [2] numerically less stable than Algorithm EPNLC. Another attractive feature of the
penalization function d given by (3) is that in its continuous version it induces a Lotka-Volterra
dynamical system, enjoying several interesting properties, as discussed in [1].

The sequence {yk} generated by Algorithm EPNLC will be dubbed the proximal sequence, while
the sequence {xk} will be called ergodic. The term “ergodic” is due to the following equalities, which
follow easily from the definitions of σk and xk in Step 2 of the algorithm, stated next for future
reference:

σk =
k∑

ℓ=1

λℓ, (10)

xk =
k∑

ℓ=1

ρℓ,ky
ℓ, (11)

k∑

ℓ=1

ρℓ,k = 1, (12)

with

ρℓ,k =
λℓ
σk

(1 ≤ ℓ ≤ k). (13)

Observe that limk→∞ σk = +∞, and that limk→∞ ρℓ,k = 0 for any fixed ℓ. It follows that if yk

converges, say to ȳ, then {xk} also converges to ȳ. Hence, the convergence analysis of {xk} is
relevant only when convergence of {yk} cannot be ensured.

Assuming maximal monotonicity of T and existence of solutions of NCP(T ), we will prove
that the ergodic sequence is bounded and all its cluster points are solutions of NCP(T ). We
will also prove that the the proximal sequence converges to a solution of NCP(T ), but with a
stronger assumption on the problem, namely the cut property of NCP(T ) (or paramonotonicity
of T ). Observe that, since xk−1 is not required for the computation of yk, under the assumptions
which imply the convergence of {yk} one can exclude the sequence {xk} from the algorithm (i.e.,
eliminate Step 2). However, as already mentioned, this exclusion will have a negligible effect on
the computational performance of the method.

We prove next that Algorithm EPNLC is well defined.

Theorem 3.1. Assume that T is maximal monotone and D(T ) ∩ R
n
++ 6= ∅. Then, for any given

sequence {λk} ⊆ R++ and any initial point x0 ∈ R
n
++, Algorithm EPNLC is well defined, i.e., at

iteration k ≥ 1, given xk−1, yk−1 ∈ R
n
++, there exists a unique yk ∈ R

n
++ and vk ∈ R

n satisfying

7



(4) and (5) and, a unique xk ∈ R
n
++ satisfying (6). Moreover, if yk = yk−1 then vk = 0 and yk is

a zero of T , and, in particular, a solution of NCP(T ).

Proof. We proceed by induction, assuming that the method has found yk−1 ∈ R
n
++. We must prove

that there exists a unique yk ∈ R
n
++, v

k ∈ T (yk) satisfying (4) and (5). As we have observed, this is
equivalent to proving that T−1

k (0) is a singleton in R
n
++, with Tk as in (7). Define now hk : Rn → R

as

hk(y) =





∑n
j=1

yk−1

j ϕ

(
yj

yk−1

j

)
if y ∈ R

n
++

+∞ otherwise.

Note that hk is convex by convexity of ϕ, and therefore its subdifferential ∂hk is maximal monotone.
Since λk and µ are positives, T is maximal monotone and D(T )∩R

n
++ 6= ∅, a well known result in

convex analysis ensures that the operator T̂k : Rn → P(Rn) defined as T̂ = λkT +µ∂hk is maximal
monotone.

It is easy to check that the equation y = T−1

k (0) is equivalent to the inclusion

νyk−1 ∈ (T̂k + νI)−1(y). (14)

We invoke now Minty’s Theorem (see [26]), which states that if U : R
n → P(Rn) is maximal

monotone and I is the identity operator in R
n, then the operator U + γI is onto and its inverse is

point-to-point for all γ ∈ R++. Since ν > 0 and T̂k is maximal monotone, Minty’s Theorem implies
that there exists a unique y satisfying (14), and so yk is uniquely determined by (4)-(5). Moreover,
the definition of ϕ ensures that yk belongs to R

n
++, and so does xk, in view of (6). Hence, xk is

well defined and belongs to R
n
++. Finally, ϕ

′(1) = 0, so that yk = yk−1 implies vk = 0.

4 Convergence Analysis

We recall next a result on the regularized Kullback-Leibler entropy functional E : R
n
+ × R

n
++,

defined as

E(x, y) =
ν

2
‖x− y‖2 + µ

p∑

j=1

yjψ(xj/yj), (15)

where ψ : R+ → R is defined as ψ(r) = rln(r) − r + 1 if r > 0, ψ(0) = 1, so that ψ is continuous
on R+.

Lemma 4.1. For any x ∈ R
n
+ and y, z ∈ R

n
++ it holds that

E(x, z)− E(x, y) ≥ ν〈x− y, y − z〉+
ν

2
‖y − z‖2 + µ

p∑

j=1

[
xjϕ

′(yj/zj) + zj − yj
]
.

Proof. See equations (15) and (16) in Theorem 6.1 of [1]
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We state next some basic properties of the sequences generated by Algorithm EPNLC.

Proposition 4.2. Assume that {xk}, {yk} and {vk} are the sequences generated by the Algorithm
EPNLC. Define

wk =
k∑

ℓ=1

ρℓ,kv
ℓ, (16)

with ρℓ,k as defined by (13). Then,

i)

E(x, yk−1)− E(x, yk) ≥ λk〈v
k, yk − x〉+

ν

2

∥∥∥yk − yk−1

∥∥∥
2

≥ λk〈v
k, yk − x〉, (17)

〈wk, x〉 ≥
k∑

ℓ=1

ρℓ,k〈v
ℓ, yℓ〉 −

1

σk
E(x, x0) (18)

for all x ∈ R
n
+.

ii) If T is monotone then
E(x, yk−1)− E(x, yk) ≥ λk〈v, y

k − x〉, (19)

〈v, xk − x〉 ≤
1

σk
E(x, x0) (20)

for all x ∈ R
n
+ and all v ∈ T (x).

iii) If T is maximal monotone then wk ∈ T βk(xk), with T βk as in Definition 2.6, where

βk =
k∑

ℓ=1

ρℓ,k〈w
k − vℓ, xk − yℓ〉 ≥ 0. (21)

Proof. Multiplying the j-th equation in (5) by xj − ykj and summing with j between 1 and n, we
get from (5) that

λk〈v
k, x− yk〉+ ν〈yk − yk−1, x− yk〉+ µ

n∑

j=1

ϕ′(ykj /y
k−1

j )(xj − ykj ) = 0 (22)

for all x ∈ R
n. Using (22) and Lemma 4.1 with the choice y = yk and z = yk−1, we obtain (17).

Looking now at (17) with ℓ substituting for k, and summing then with ℓ between 1 and k, we obtain
(18), taking into account the nonnegativity of E(x, yk), (10), (13) and (16), thus completing the
proof of item (i).
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Note that (19) is a direct consequence of the monotonicity of T , because vk ∈ T (yk) and
v ∈ T (x), so that 〈vk − v, yk − x〉 ≥ 0 and hence 〈vk, yk − x〉 ≥ 〈v, yk − x〉. Substituting ℓ for k in
(19) and summing with ℓ from 1 to k, we get

E(x, x0)− E(x, yk) ≥
k∑

ℓ=1

λℓ〈v, y
ℓ − x〉 =

〈
v,

k∑

ℓ=1

λℓy
ℓ
〉
− σk〈v, x〉. (23)

It follows from (23) and (11) that

1

σk
E(x, x0) ≥

〈
v,

k∑

ℓ=1

ρℓ,ky
ℓ
〉
− 〈v, x〉 = 〈v, xk − x〉,

so that (20) holds, completing the proof of item (ii). Finally, we prove item (iii). Since vℓ ∈
T (yℓ) = T 0(yℓ), we apply the transportation formula of Proposition 2.7 to the set of k triplets
{(0, yℓ, vℓ)}kℓ=1

, with α = (ρ1,k · · · , ρk,k) ∈ ∆k, and we conclude that wk ∈ T βk(xk) with

βk =
k∑

ℓ=1

ρℓ,k

[
0 + 〈wk − vℓ, xk − yℓ〉

]
≥ 0.

Now we will show that the algorithm generates bounded sequences whenever NCP(T ) has
solutions and, as it is usual with proximal point methods, the difference between consecutive iterates
yk − yk−1 converges to zero. Moreover, the entropy functional of yk with respect to any solution
x∗, namely E(x∗, yk), is nonincreasing. We will denote by S the set of solutions of NCP(T ).

Corollary 4.3. Assume that T is maximal monotone and S 6= ∅. Then, the sequences {yk}, {xk}
generated by Algorithm EPNLC are bounded, the sequence {yk − yk−1} converges to zero and the
sequence {E(x∗, yk)} is nonincreasing and convergent for any x∗ ∈ S. Moreover, for any v∗ ∈
T (x∗),

0 ≤
∞∑

k=1

λk〈v
∗, yk − x∗〉 ≤

∞∑

k=1

λk〈v
k, yk − x∗〉 <∞

and
∞∑

k=1

∥∥∥yk − yk−1

∥∥∥
2

<∞.

Proof. Take any x∗ ∈ S and any v∗ ∈ T (x∗), and apply Proposition 4.2(i) and monotonicity of T
in order to obtain

E(x∗, yk−1)− E(x∗, yk) ≥ λk〈v
k, yk − x∗〉+

ν

2

∥∥∥yk − yk−1

∥∥∥
2

≥ λk〈v
∗, yk − x∗〉 ≥ 0, (24)
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where the last inequality follows from the facts that yk ∈ R
n
+, x

∗ ∈ S and λk > 0. Then,

E(x∗, yk−1) ≥ E(x∗, yk) ≥ ν
2

∥∥x∗ − yk
∥∥2 ≥ 0 for all k. Therefore, {E(x∗, yk)} is nonincreasing

and nonnegative, hence convergent, and {yk} is bounded, since
∥∥x∗ − yk

∥∥2 ≤ 2

ν
E(x∗, y0). Bound-

edness of {xk} follows then from (11) and (12). Finally, we invoke (24) in order to get

E(x∗, y0)− lim
k→∞

E(x∗, yk) ≥
∞∑

k=1

[
λk〈v

k, yk − x∗〉+
ν

2

∥∥∥yk − yk−1

∥∥∥
2
]
≥ 0.

Thus,
∞∑

k=1

λk〈v
∗, yk − x∗〉 ≤

∞∑

k=1

λk〈v
k, yk − x∗〉 <∞

and
∞∑

k=1

∥∥∥yk − yk−1

∥∥∥
2

<∞.

Summability of
∥∥yk − yk−1

∥∥2 implies then that the sequence {yk − yk−1} converges to 0.

Next we prove convergence of the proximal sequence {yk}, assuming that the cut property holds.

Theorem 4.4. Assume that T is maximal monotone, that S 6= ∅, that Rn
+ ⊂ int(D(T )) and that

the cut property in Definition 2.5 holds. Then, the sequence {yk} generated by Algorithm EPNLC
converges to a solution of NCP(T ).

Proof. The sequences {vk}, {yk} and {xk} are well defined by Theorem 3.1. Corollary 4.3, together
with the assumptions of monotonicity of T and existence of solutions, ensures that {yk} is bounded,
that {E(x∗, yk)} converges for all x∗ ∈ S and that

0 ≤
∞∑

k=1

λk〈v
k, yk − x∗〉 <∞. (25)

Since λk ≥ λ̄ > 0 for all k, we get from (25) that

lim
k→∞

〈vk, yk − x∗〉 = 0. (26)

Let now y∞ be a cluster point of the bounded sequence {yk}, say the limit of a subsequence {yki}.
Note that vki ∈ T (yki) for all i and that y∞ ∈ R

n
+ ⊂ int(D(T )). Since maximal monotone operators

are locally bounded in the interior of their domains, we conclude that {vki} is bounded and has
therefore some cluster point v∞. Since maximal monotonicity of T also implies that G(T ) is closed,
we get that v∞ belongs to T (y∞). Moreover, in view of equation (26), 〈v∞, x∗ − y∞〉 = 0. Thus,
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by the cut property assumption, y∞ is a solution of NCP(T ). Hence, {E(y∞, yk)} converges too,
and

lim
k→∞

E(y∞, yk) = lim
i→∞

E(y∞, yki) = lim
i→∞

ν

2

∥∥∥y∞ − yki
∥∥∥
2

+ µ
n∑

j=1

y∞j ψ(y
∞
j /y

ki
j ) = 0,

which easily implies that limk→∞

∥∥y∞ − yk
∥∥2 = 0, so that the whole sequence {yk} converges to a

unique cluster point which solves NCP(T ).

The next proposition shows that our convergence result holds for the wider class of pseu-
domonotone operators if we assume, instead of maximal monotonicity of T and R

n
+ ⊂ int(D(T )),

that Algorithm EPNLC is well defined and that
(AC): If {zk} is bounded and (zk, uk) ∈ G(T ) then for any accumulation point z∞ of {zk} there
exists some accumulation point u∞ of {uk} such that (z∞, u∞) ∈ G(T ).

Note that assumption (AC) holds true, e.g., when the range of T is compact or when T is locally
bounded in bounded sets.

Proposition 4.5. Assume that T is pseudomonotone and verifies (AC), that S 6= ∅, that the cut
property in Definition 2.5 holds and that Algorithm EPNLC generates an infinite sequence (yk, vk)
satisfying (4) and (5). Then, the sequence {yk} converges to a solution of NCP(T ).

Proof. Note that (17) in Proposition 4.2(i) demands no monotonicity assumptions on T . Thus, for
any x∗ ∈ S and some v∗ ∈ T (x∗) we have

E(x∗, yk−1)− E(x∗, yk) ≥ λk〈v
k, yk − x∗〉+

ν

2

∥∥∥yk − yk−1

∥∥∥
2

≥ λk〈v
k, yk − x∗〉, (27)

and, since yk ∈ R
n
++ ⊆ R

n
+,

〈v∗, yk − x∗〉 ≥ 0. (28)

Now, (4) and pseudomonotonicity of T imply

〈vk, yk − x∗〉 ≥ 0. (29)

From (27)

E(x∗, yk−1)− E(x∗, yk) ≥ λk〈v
k, yk − x∗〉+

ν

2

∥∥∥yk − yk−1

∥∥∥
2

≥ λk〈v
k, yk − x∗〉 ≥ 0. (30)

From this point on we can follow the proof of Corollary 4.3 in order to ensure that {E(x∗, yk)} is
nonincreasing and convergent, that {yk} is bounded, that the sequence {yk − yk−1} converges to
zero, and that

0 ≤
∞∑

k=1

λk〈v
k, yk − x∗〉 <∞

∞∑

k=1

∥∥∥yk − yk−1

∥∥∥
2

<∞.

12



Thus,
lim
k→∞

〈vk, yk − x∗〉 = 0.

Choose now any cluster point y∞ of the bounded sequence {yk}. Then, by assumption (AC), there
exists a cluster point v∞ of {vk} with v∞ ∈ T (y∞). Thus, 〈v∞, y∞ − x∗〉 = 0, and by the cut
property we have y∞ ∈ S. Hence, as in Theorem 4.4, we can conclude that {E(y∞, yk)} converges
to 0, implying that {yk} converges to a solution of NCP(T ).

Next we establish the convergence properties of the ergodic sequence {xk}, without assuming
the cut property.

Theorem 4.6. Assume that T is maximal monotone, that S 6= ∅, and that Rn
+ ⊂ int(D(T )). Then

the sequences {xk}, {wk} generated by Algorithm EPNLC are bounded and every cluster point
(x∞, w∞) of {(xk, wk)} provides a solution of NCP(T ), i.e., x∞, w∞ ∈ R

n
+, 〈x∞, w∞〉 = 0 and

w∞ ∈ T (x∞).

Proof. The sequences {vk}, {yk} and {xk} are well defined by Theorem 3.1. By (4) and (5), we
have vk ∈ T (yk) and

λkv
k
j + ν(ykj − yk−1

j ) + µ
(
1− yk−1

j /ykj

)
= 0 (1 ≤ j ≤ n),

implying

vkj y
k
j = λ−1

k

(
yk−1

j − ykj

)(
µ+ νykj

)
(1 ≤ j ≤ n). (31)

Corollary 4.3, together with the maximal monotonicity of T and the nonemptiness of S, ensures
that {yk} and {xk} are bounded and that {yk − yk−1} converges to zero. Since λk ≥ λ̄ > 0, and
limk→∞(yk−1

j − ykj ) = 0, (31) implies that

lim
k→∞

vkj y
k
j = 0 (1 ≤ j ≤ n). (32)

By (32)

lim
k→∞

〈vk, yk〉 = 0 and lim
k→∞

k∑

ℓ=1

ρℓ,k〈v
ℓ, xℓ〉 = 0. (33)

Since T is maximal monotone, it is locally bounded in the interior of its domain, and hence the
sequences {vk} and {wk}, as defined by (16), are bounded too, taking into account (12). Apply
now inequality (18) in Proposition 4.2(i) to (33) in order to obtain that

lim inf
k→∞

〈wk, x〉 ≥ 0 (34)

for all x ∈ R
n
+. Let w∞ be a cluster point of {wk}. By (34), 〈w∞, x〉 ≥ 0 for all x ∈ R

n
+, and

consequently
w∞ ∈ R

n
+. (35)
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Note that xk ∈ R
n
+ by Theorem 3.1 and (12). Moreover, since {E(xk, x0)} is bounded too, we

can apply inequality (18) in Proposition 4.2(i) with x = xk ∈ R
n
+, and conclude that

lim inf
k→∞

〈wk, xk〉 ≥ 0. (36)

Recall that βk as defined in (21), is nonnegative by Proposition 4.2(iii). Thus, in view of (11),
(12) and (16),

0 ≤ βk =
k∑

ℓ=1

ρℓ,k〈w
k − vℓ, xk − yℓ〉 =

k∑

ℓ=1

ρℓ,k

[
〈wk, xk〉 − 〈wk, yℓ〉 − 〈vℓ, xk〉+ 〈vℓ, xℓ〉

]

= 〈wk, xk〉
k∑

ℓ=1

ρℓ,k +
k∑

ℓ=1

ρℓ,k〈v
ℓ, yℓ〉 − 2〈wk, xk〉 =

k∑

ℓ=1

ρℓ,k〈v
ℓ, yℓ〉 − 〈wk, xk〉. (37)

By (37), 〈wk, xk〉 ≤
∑k

ℓ=1
ρℓ,k〈v

ℓ, yℓ〉, and therefore, in view of (33),

lim sup
k→∞

〈wk, xk〉 ≤ 0. (38)

Hence, combining (36) and (38), we have

lim
k→∞

〈wk, xk〉 = 0. (39)

From (39), (33) and (37) we obtain that

lim
k→∞

βk = 0. (40)

Consider now any cluster point (x∞, w∞) of the bounded sequence {(xk, wk)}. By Proposition
4.2(iii), wk ∈ T̃ (βk, x

k) for all k. As mentioned in Section 2, the graph of T̃ is closed, so that,
taking limits along an appropriate subsequence, we get, in view of (40),

w∞ ∈ T̃ (0, x∞) = T (x∞). (41)

Taking limits along the same subsequence in (39), we get

〈w∞, x∞〉 = 0. (42)

On the other hand, since xk ∈ R
n
++ for all k, we get that

x∞ ∈ R
n
+. (43)

This fact, together with (41), (42) and (35), entails that x∞ is a solution of NCP(T ), as required.
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We consider next the case in which D(T ) ⊆ R
n
+, excluded in the hypotheses of Theorem 4.6,

and show that the cluster points of the ergodic sequence are also solutions of NCP(T ); actually,
in this case, they are zeroes of T . Note that if T is maximal monotone and D(T ) ⊂ C then any
solution of VIP(T,C) is a zero of T , so that S 6= ∅ implies T−1(0) 6= ∅.

Theorem 4.7. Assume that T is maximal monotone, that S 6= ∅, and that D(T ) ⊆ R
n
+. Then the

sequence {xk} generated by Algorithm EPNLC is bounded and all its cluster points are zeroes of T .

Proof. By Corollary 4.3, {xk} is bounded. Moreover, in view of (20) in Proposition 4.2(ii), we have

〈v, xk − x〉 ≤
1

σk
E(x, x0)

for all x ∈ R
n
+ and all v ∈ T (x). Thus, since limk→∞ σk = +∞, it follows that

lim sup
k→∞

〈v, xk − x〉 ≤ 0

for all x ∈ R
n
+ and all v ∈ T (x), and hence we conclude that

〈v, x∞ − x〉 ≤ 0

for all x ∈ R
n
+, all v ∈ T (x) and all cluster points x∞ of {xk}. Thus, since D(T ) ⊆ R

n
+ by

assumption, we get that
〈v − 0, x− x∞〉 ≥ 0

for all (x, v) ∈ G(T ). Finally, we apply maximal monotonicity of T in order to conclude that
0 ∈ T (x∞).

Remark 4.8. We remark that the statement of Theorem 4.6 regarding the sequence {xk} (i.e.,
the fact that all its cluster points solve NCP(T )), can be obtained as a simple corollary of Theorem
4.7: it suffices to apply Theorem 4.7 to the operator T̄ defined as T̄ = T + NC with C = R

n
+,

where NC denotes the normal cone operator associated to a closed and convex C ⊂ R
n. Indeed

T +NC is maximal monotone by maximal monotonicity of T , its domain is contained in R
n
+, and

it coincides with T in R
n
++, so that the sequences obtained by applying Algorithm EPNLC to T

coincide with the corresponding sequences for T̄ , because, since {yk} ⊂ R
n
++, we have that the

condition vk ∈ T (yk) given by (4) is equivalent to vk ∈ T̄ (yk). Theorem 4.7 applied to T̄ ensures
that the cluster points of {xk} are zeroes of T̄ , but it is elementary to check that the zeroes of
T̄ are the x-components of the solutions of NCP(T ). On the other hand, Theorem 4.6 gives also
information on the behavior of the sequence {wk}, and provides a solution of NCP(T ) in the form
of the full pair (x∞, w∞), instead of just the x-component of the pair. Thus, we considered it
worthwhile to present both theorems, with their proofs.
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Remark 4.9. We comment that our convergence analysis can be easily extended to an inexact
version of Algorithm EPNLC, allowing for an approximate solution of the system (4)–(5). This
approximation consists of replacing Tk by a suitable enlargement, in the sense of Definition 2.6.
More precisely, we can replace (4) by vk ∈ T εk(yk). In view of Proposition 2.7, the results in
Theorems 4.6 and 4.7 will remain valid for a sufficiently small εk, for instance such that εk ≤

ν/(2λk)
∥∥yk − yk−1

∥∥2.

Remark 4.10. We make now some comments on the issue of the convergence properties of the
proximal sequence {yk} in the absence of the cut property. Proposition 4.2 establishes that {yk} is
bounded, contained in R

n
++, that {v

k} is bounded and that limk→∞(yk − yk−1) = 0. It is easy to
check that if (y∞, v∞) is a cluster point of {(yk, vk)}, then it holds that y∞ ≥ 0 and 〈y∞, v∞〉 = 0.
However, it has not been possible to prove that v∞ is nonnegative. Indeed, if the sequence {yk}
has a unique cluster point, then it can be established that v∞ ≥ 0, but the possibility that {vk}
oscillates between two cluster points laying outside the positive orthant has not been excluded. Our
analysis shows that this improper behavior cannot occur for the ergodic sequences {(xk, wk)}, due
to the averaging effect resulting from (16). As observed above, the possible lack of convergence of
{yk} is irrelevant for any practical purposes.

Remark 4.11. Another open issue is the uniqueness of the cluster points of {xk}, again in the
absence of the cut property. We conjecture that the whole sequence is indeed convergent to a
solution of NCP(T ), but we have found no proof of this fact.
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