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abstract

This thesis is concerned with the extremal properties and typical structure of sparse
random combinatorial objects.

The �rst chapter, which is joint work with Morris, deals with a sparse random vari-
ant of a generalisation of Sperner’s theorem. Denoting by P(n,p) the p-random subset
of the power set of {1, . . . ,n}, we show that, if pn → ∞, the largest subset of P(n,p)
containing no k-chain has size (k − 1 + o(1))p

(
n
n/2

)
with high probability. The case

k = 2 con�rms a conjecture of Osthus.
The second chapter, which is joint work with Bushaw, Morris and Smith, focuses

on a probabilistic result in additive combinatorics. We determine, for any even-order
abelian group G, a sharp threshold for the following property: Each maximum-size
sum-free subset of a p-random subset of G is contained in a maximum-size sum-free
subset of the whole of G. This strengthens a result of Balogh, Morris and Samotij.

The third chapter, which is joint work with Balogh, Bushaw, Liu, Morris and Shar-
ifzadeh, contains a result on the typical structure of graphs in a certain family. Weprove
that, for r 6 (logn)1/4, almost everyKr+1-free graph onn vertices is r-partite. This gen-
eralizes a result of Kolaitis, Prömel and Rothschild, who obtained the same result for
�xed r, and strengthens a result of Mousset, Nenadov and Steger, who computed the
number of Kr+1-free graphs for the same range of r.

Keywords: sparse random problems, probabilistic combinatorics, hypergraph con-
tainer method, thresholds.
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resumo

Esta tese lida com propriedades extremais e com a estrutura típica de objetos combi-
natoriais esparsos aleatórios.

O primeiro capítulo, relativo a trabalho conjunto com Morris, trata de uma versão
esparsa aleatória de uma generalização do teorema de Sperner. Denotando por P(n,p)
o conjunto p-aleatório da família de todos os subconjuntos de {1, . . . ,n}, mostramos
que, se pn→∞, o maior subconjunto de P(n,p) sem k-cadeias tem tamanho (k− 1+
o(1))p

(
n
n/2

)
com alta probabilidade. O caso k = 2 con�rma uma conjectura de Osthus.

O segundo capítulo, relativo a trabalho conjunto com Bushaw, Morris e Smith, foca
num resultado probabilístico em combinatória aditiva. Determinamos, para qualquer
grupo abeliano G de ordem par, um limiar sharp para a seguinte propriedade: Todo
subconjunto sem somas de tamanho máximo de um subconjunto p-aleatório de G está
contido num subconjunto sem somas de tamanho máximo relativo a todo o G. Tal
teorema melhora um resultado de Balogh, Morris e Samotij.

O terceiro capítulo, relativo a trabalho conjunto com Balogh, Bushaw, Liu, Morris
e Sharifzadeh, contém um resultado sobre a estrutura típica dos grafos de uma certa
família. Provamos que, para r 6 (logn)1/4, quase todo grafo (com n vértices) sem
Kr+1 é r-partido. Isso generaliza um resultado de Kolaitis, Prömel e Rothschild, que
mostraram o mesmo resultado no caso em que r é �xo, e melhora um resultado de
Mousset, Nenadov e Steger, que computaram o número de grafos sem Kr+1 com as
mesmas restrições sobre r que usamos no nosso teorema.

Palavras-chave: problemas esparsos aleatórios, combinatória probabilística,método
dos containers em hipergrafos, limiares.
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introduction

A vibrant area of research in combinatorics, especially in the last 20 years, concerns the
formulation and proof of probabilistic and counting analogues of classical extremal
results such as Turán’s theorem and Szemerédi’s theorem. More concretely, we are
interested in problems such as “what is the typical structure of a subset of [n] containing
no solution to a given equation?” and “what is the largest H-free subgraph of Gn,p?”.

A representative example of a “typical structure” result in the context of graphs is
a theorem of Erdős, Kleitman and Rothschild, which states that almost all triangle-free
graphs are bipartite. Usually, a �rst step towards determining the precise structure of
objects avoiding some forbidden structure is to prove a counting result, i.e. to try to
determine asymptotic bounds on the total number of such objects with and without
the relevant structure. The famous conjecture of Cameron and Erdős [21], which states
that there aren’t many more subsets of [n] with no solution to the equation x + y = z

than the obvious ones, provides an example of this.
The study of such questions gave rise to the so-called “sparse random problems”,

which dealwith proving extremal andRamsey-type results on a sparse randomground
set. For example, suppose a particular property holds for the largestH-free subgraph of
Kn. For what values of p can we prove that it also holds for the largestH-free subgraph
of Gn,p?

We will now describe some relevant problems in more detail. In order to do so, we
must go back and begin at the beginning.

1.1 extremal problems

The �rst example of an extremal result in combinatorics is provided by a century-old
result known as Mantel’s theorem [67].

Theorem 1.1.1 (Mantel, 1907). Any n-vertex graph G with more than bn/2cdn/2e edges
contains a triangle.

Although the above theorem is elementary, it is a starting point for several gener-
alisations of great importance in the �eld. For example, the following famous result
of Turán [88] replaces “triangle” in the above theorem by larger complete graphs. It is
considered by many (e.g. [16]) to be the founding theorem of extremal graph theory.1

1Erdős almost initiated this area �ve years earlier when he, in the course of proving a number-
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2 Introduction

Theorem 1.1.2 (Turán, 1941). A Kr+1-free graphG on n vertices has at most e(Tn,r) vertices,
where Tn,r is the r-partite complete graph with parts of size as equal as possible.

Turán’s theorem is the �rst step towards asymptotically determining the extremal
numbers ex(n,H), which are de�ned to be themaximumnumber of edges in an-vertex
graph containing no copy of H. In 1946, Erdős and Stone made major progress in this
task by computing the extremal number of any graph in terms of its chromatic number.

Theorem 1.1.3 (Erdős-Stone, 1946). Let H be a graph with χ(H) > 2. Then

ex(n,H) =
(
1− 1

χ(H) − 1 + o(1)
)(

n

2

)
This completely determines the asymptotic order of growth of ex(n,H) for every

graph with χ(H) > 3. Determining the asymptotic order of growth of ex(n,H) in the
bipartite case is a major open problem, currently solved only in a few particular cases.

Between the formulation of Mantel’s theorem and the founding of extremal graph
theory, another important area of extremal combinatorics was born through the proof,
by Sperner, of a Mantel-like result. A k-chain is simply a k-tuple of nested sets A1 (
· · · ( Ak, and we say a family A of sets is an antichain if it contains no 2-chain.

Theorem 1.1.4 (Sperner, 1928). Let A ⊂ P([n]) be an antichain. Then |A| 6
(
n
bn/2c

)
.

Much in the same way Mantel’s theorem extends to larger cliques, this admits a
generalisation to larger chains, as was shown by Erdős [29]. In order to state it, note
that P([n]) can be decomposed into n+ 1 subfamilies of equally-sized subsets, and call
the largest k such subfamilies2 the k middle layers of P([n]).

Theorem 1.1.5 (Erdős, 1945). Any family of sets A ⊂ P([n]) containing more elements than
the k− 1 middle layers of P([n]) contains a k-chain. In particular,

|A| 6 (k− 1)
(
n

n/2

)
.

Although it is slightly out of the scope of this thesis to discussmany of the determin-
istic results from the beautiful area of Ramsey theory, we must mention the following
cornerstone of combinatorics. This result, along with further developments by Erdős
theoretical result, showed that a n-vertex C4-free graph can have at mostO

(
n3/2) edges. Here’s how he

tells the story in [32]: “Being struck by a curious blindness and lack of imagination, I did not at the time
extend the problem from C4 to other graphs and thus missed founding an interesting and fruitful new
branch of graph theory”.

2Some subfamilies will have equal cardinality. An ordering of those can be chosen arbitrarily.
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and Székeres [39], is responsible for kickstarting some of the most interesting branches
of modern combinatorics.

Theorem 1.1.6 (Ramsey, 1930). For any s, t ∈ N, there exists an R such that any red-blue
colouring of the edges of the complete graph KR contains either a red Ks or a blue Kt.

Ramsey-type theorems (which guarantee the existence of a monochromatic struc-
ture no matter the way an object is coloured) are often studied in parallel to density-
type theorems (which guarantee the existence of a structure in any su�ciently dense
object), and as such they will feature prominently below, when we describe the origins
of sparse random problems.

Extremal and Ramsey-type problems in arithmetic combinatorics

Combinatorial problems are of great importance in number theory, and this was true
long before the term “arithmetic combinatorics” was coined. One of the �rst problems
in the area was studied by Schur [83], who proved the following theorem and used it
as a tool to show that, for every n ∈ N, the equation an + bn ≡ cn (mod q) has a
non-trivial solution for in�nitely many primes q.

Theorem 1.1.7 (Schur, 1917). Any �nite colouring of N contains a monochromatic solution
to the equation x+ y = z.

The above result does not follow from a density-type result, in the sense that it is
not enough to look at the largest colour class to �nd a monochromatic solution to the
equation. Indeed, the odds have density 1/2 and are sum-free, that is, admit no solution
to the equation x+ y = z.

A related Ramsey-type result was conjectured by Baudet and proved by van der
Waerden [90] with the help of Artin and Schreier3. Unlike Schur’s theorem, this result
admits a non-trivial density version, as is now well-known (see Theorem 1.1.9 below).

Theorem1.1.8 (vanderWaerden, 1927). Any �nite colouring ofN contains ak-termmonochro-
matic arithmetic progression for any k ∈ N.

A system of linear equations Ax = 0 is partition-regular if every �nite colouring of
N contains a monochromatic solution of Ax = 0. In 1933, Rado [72] generalised both
theorems by providing a linear-algebraic condition for a system of linear equations to
be partition-regular.

3See [91], reprinted in [85], for a fascinating account of the discovery of this proof.
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Arguably the most famous problem in the area is the density version of van der
Waerden’s result, conjectured by Erdős and Turán [40] in 1936 and now known as Sze-
merédi’s theorem. Roth [77] �rst proved it for k = 3 using Fourier analysis, and Sze-
merédi [87] gave a fully combinatorial proof of the general case using his Regularity
Lemma.

Theorem 1.1.9 (Szemerédi, 1975). Any set A ∈ N satisfying

lim sup
n→∞

|A ∩ [n]|

n
> 0

contains a k-term arithmetic progression for any k ∈ N.

Frankl, GrahamandRödl [42] noticed that Szemerédi’s theorem implies that an irre-
ducible partition-regular system admits a monochromatic solution in sets of arbitrarily
small density if and only if the columns of A sum up to the zero vector.

It is di�cult to pass up the opportunity to mention that Erdős [31] conjectured the
following generalisation of Szemerédi’s theorem, as a possible way of proving that the
primes contain arbitrarily long arithmetic progressions. The general conjecture, stated
below, is one of the main open problems in combinatorics.

Conjecture 1.1.10 (Erdős). Any set A ⊂ N satisfying∑
a∈A

1
a
=∞

contains a k-term arithmetic progression for any k ∈ N.

A major result of Green and Tao [50] showed that this conjecture is true if A is the
set of prime numbers (the original motivation for the conjecture). They did so by show-
ing so-called “transference principles”, inspiring a major development in the study of
sparse random problems we will discuss in Section 1.5.

1.2 stability results and typical-structure problems

A di�erent direction in which to take extremal results such as that of Turán is to prove
a stability theorem, that is, to show that an object almost as big as the extremal example
must possess some additional structure. For example, Erdős and Simonovits (see [84])
showed the example of Turán has the stability property: Any n-vertex Kr+1-free graph
whose density is su�ciently close to maximum looks like Tn,r.
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Theorem 1.2.1 (Erdős–Simonovits, 1968). For every r ∈ N and ε > 0, there exists a δ > 0
such that every Kr+1-free n-vertex graph G with

e(G) >

(
1− 1

r
− δ

)(
n

2

)
can be turned into Tn,r by adding and removing at most εn2 edges.

The above theorem of Erdős and Simonovits just provides a characterisation of
all close-to-extremal Kr+1-free graphs, mainly because there is very little we can say
structure-wise for all Kr+1-free graphs, especially ones with few edges. Surprisingly,
however, Erdős, Kleitman and Rothschild [36] showed that it is possible to provide
a �ner characterisation if we discard an asymptotically negligible proportion of such
graphs.

Theorem1.2.2 (Erdős–Kleitman–Rothschild, 1976). Almost alln-vertex triangle-free graphs
are bipartite.

Aswe remarked earlier, the �rst step towards showing that a result holds for almost
all graphs is to prove a counting result. For example, Erdős, Kleitman and Rothschild
showed, in the same paper, the following result for r > 2.

Theorem 1.2.3 (Erdős–Kleitman–Rothschild, 1976). For r > 2, let Fr+1(n) be the number
of n-vertex graphs containing no Kr+1. Then

log2 Fr+1(n) =

(
1− 1

r

)(
n

2

)
+ o(n2). (1.1)

In particular, ifMr(n) denotes the number of n-vertex r-partite graphs, then

lim
n→∞

log2 Fr+1(n)

log2Mr(n)
= 1.

This result is, as expected, weaker than an “almost all”-type result. Kolaitis, Prömel
and Rothschild [60] announced in 1985 the stronger typical-structure result (see [61] for
their proof).

Theorem 1.2.4 (Kolaitis–Prömel–Rothschild, 1987). Let r > 3 be �xed. Then almost all
Kr+1-free graphs on n vertices are r-partite. That is, Fr+1(n) = (1+ o(1)) ·Mr(n).

The history of this problem goes on, and it again exempli�es the interplay between
stability, counting and typical-structure problems. In 1986, Erdős, Frankl, andRödl [33]
asked if forbidding a graph H with χ(H) = r has the same e�ect as forbidding a copy
of Kr. They �rst showed a stability theorem under such conditions (cf. Theorem 1.2.1).
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Theorem 1.2.5 (Erdős–Frankl–Rödl, 1986). Let H be a graph with χ(H) = r + 1 > 3. For
every ε > 0, there exists a δ > 0 such that every H-free n-vertex graph G with

e(G) >

(
1− 1

r
− δ

)(
n

2

)
can be made r-partite by the deletion of at most εn2 edges.

Using this stability result, they showed the following counting result, which gener-
alises Theorem 1.2.3.

Theorem 1.2.6 (Erdős–Frankl–Rödl, 1986). Let H be a �xed graph with χ(H) > 3. The
number of H-free n-vertex graphs is

2(1+o(1)) ex(n,H) = 2(1−
1

χ(H)−1)(
n
2)+o(n2).

This result was improved by Balogh, Bollobás and Simonovits [10], who showed
that, for any graph H with χ(H) > 3, there exists α > 0 such that one may replace the
o(n2) term in the exponent of the above theorem by an O(n2−α logn) term. They also
conjectured that this result is sharp, which they later proved in [11] by establishing a
strong Erdős–Simonovits-type result.

In a 2013 preprint, Mousset, Nenadov and Steger [70] generalised the counting re-
sult of Erdős, Kleitman and Rothschild, Theorem 1.2.3, by allowing the clique size to
grow. Note that, in order to get a non-trivial statement in the case where the clique size
goes to in�nity, the error term must not overshadow the 1

r

(
n
2

)
term in equation (1.1).

Mousset, Nenadov and Steger proved the result below, which has this property.

Theorem 1.2.7 (Mousset–Nenadov–Steger, 2013+). Let r = r(n) 6 (logn)1/4. Then,
denoting by Fr+1(n) the number of Kr+1-free graphs on n vertices, we have

log2 Fr+1(n) =

(
1− 1

r

)(
n

2

)
+ o

(
n2

r

)
.

In Chapter 4, which is joint work with József Balogh, Neal Bushaw, Hong Liu,
Robert Morris and Maryam Sharifzadeh, we strengthen this result by extending the
typical-structure result ofKolaitis, Prömel andRothschild, Theorem1.2.4, to non-constant
values of r in a similar manner. This is the content of Theorem 4.1.1, which we repro-
duce below.
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Theorem 1.2.8 (Balogh–Bushaw–CN–Liu–Morris–Sharifzadeh, 2014+). Let r = r(n) ∈
N be a function satisfying r 6 (logn)1/4 for every n ∈ N. Then almost all Kr+1-free graphs on
n vertices are r-partite. Formally,

lim
n→∞

Fr+1(n)

Mr(n)
= 1,

where Fr+1(n) denotes the number of Kr+1-free graphs and Mr(n) denotes the number of r-
partite graphs on n vertices.

Our result uses the method of Balogh, Bollobás and Simonovits together with hy-
pergraph container methods. We also prove and use a new supersaturation result,
Theorem 4.1.2 (reproduced below), which is a generalisation of Theorem 1.2.1. It al-
lows us to �nd many copies of Kr+1 in any graph Gwhich cannot be made r-partite by
the deletion of few edges. It is optimal up to a factor of er.

Theorem1.2.9 (Balogh–Bushaw–CN–Liu–Morris–Sharifzadeh, 2014+). For everyn, r, t ∈
N, the following holds. Every graphG on n vertices which cannot be made r-partite by the dele-
tion of t edges contains at least

nr−1

e2r · r!

(
e(G) + t−

(
1− 1

r

)
n2

2

)
copies of Kr+1.

Typical-structure problems in arithmetic combinatorics

Problems about typical structure also play a central role in many other areas. For ex-
ample, one of the most famous problems in arithmetic combinatorics is the Cameron–
Erdős conjecture [21], which states that the number of sum-free subsets of [n] isO(2n/2).
The conjecture is optimal up to a constant factor, as all subsets of {1, 3, . . .} ∩ [n] and of
{bn/2c+1, . . . ,n} are sum-free. It was proven by Sapozhenko [79] (see also [80]) and in-
dependently byGreen [48]. More precisely, they proved the following typical-structure
result4.

Theorem 1.2.10 (Sapozhenko, 2003 and Green, 2004). Almost all sum-free subsets of [n]
either consist entirely of odd numbers or are contained in {d(n+ 1)/3e, . . . ,n}.

4We note that Alon, Balogh, Morris and Samotij [4] recently proved a stronger result, characterising
the typical structure of a sum-freem-subset of [n].
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Since Cameron and Erdős had previously shown that the number of sum-free ele-
ments of {d(n+ 1)/3e, . . . ,n} is exactly cn2n/2, where (c2n)∞n=1 and (c2n−1)

∞
n=1 are con-

vergent sequences, the typical-structure result of Sapozhenko and Green implies the
Cameron–Erdős conjecture.

A related counting result for �nite groups was �rst shown by Alon [1]. He proved
that the size of SF(G), the family of all sum-free sets of a n-element abelian group G,
is at most 2(1/2+o(1))n. A sharper bound was proven in the abelian case by Lev, Łuczak
and Schoen [63].

Theorem 1.2.11 (Lev–Łuczak–Schoen, 2001). There exists δ > 0 with the following prop-
erty. Let G be an n-element abelian group with canonical decomposition

G ∼= Z2a1 ⊕ · · · ⊕ Z2ak ⊕ J,

where 1 6 a1 6 · · · 6 ak and J is an odd-order group. Then

|SF(G)| =
(
2k − 1

)
2n/2 +O

(
2(1/2−δ)n

)
.

While proving the above result, they showed the following stability theorem for
sum-free subsets (see also [49]). We say a triple (x,y, z) is a Schur triple if x+ y = z.

Theorem 1.2.12 (Lev–Łuczak–Schoen, 2001). Let G be an n-element abelian group. Any
set A ⊂ G with size |A| > (1/3 + ε)n and at most ε3n2/27 Schur triples contains a sum-free
subset S with |A \ S| 6 εn.

It turns out that sum-free subsets in a particular type of group satisfy an even
stronger stability property, shown by Green and Ruzsa [49]: Unlike in Theorem 1.2.1,
we don’t need to delete any elements to turn close-to-extremal sets into extremal ones.
We say a group G is of type I if |G| is divisible by a prime q ≡ 2 (mod 3), and we say G
is of type I(q) if q is the smallest such prime.

Theorem 1.2.13 (Green–Ruzsa, 2005). Let G be an n-element abelian group of type I(q). If
A ⊂ G is a sum-free set satisfying

|A| >

(
1
3 +

1
3(q+ 1)

)
n,

then A is contained in a maximum-size sum-free subset of G.

In order to clarify the size condition on the above theorem, we note that an older
result of Diananda and Yap [28] shows that maximum sum-free subsets of an abelian
group G of type I(q) have size

(
1
3 +

1
3q

)
|G|.
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1.3 sparse random problems

In a nutshell, sparse random problems consist of generalising classic extremal and
Ramsey-type results to a probabilistic set-up. The story of such problems, however,
begins with an entirely deterministic folklore fact from graph theory.

Fact 1.3.1. Any graph G contains a bipartite subgraph H with e(H) > e(G)/2.

In 1983, Erdős and Nešetřil (see [30]) asked whether this result could be strength-
ened if we forbid copies of K4.

Question 1.3.2 (Erdős–Nešetřil, 1983). Does every K4-free graph G contain a bipartite sub-
graph H with e(G) > C · e(H), for some constant C > 1/2?

Frankl and Rödl [43] answered this in the negative by taking Gn,p(n) for p(n) =

n−1/2+ε and, in their words, showing that “random graphs behave as complete graphs,
i.e. they are like sparse complete graphs”. More technically, they proved the following.

Theorem 1.3.3 (Frankl–Rödl, 1986). For any small ε > 0, let p(n) = n−1/2+ε. Then the
largest triangle-free subgraph of Gn,p(n) has density 1

2 + o(1) with high probability.

Since replacingGn,p(n) in the above byKn leads to an asymptotic version ofMantel’s
theorem, we will call this a sparse random analogue of Mantel’s result. In fact, for this
value of p(n), the largestK4-free subgraph ofGn,p(n) satis�es the same property, which
implies that Question 1.3.2 has a negative answer.

Two key aspects of the above theorem warrant more investigation. We will take a
more careful look at them in the next two subsections.

Thresholds

A property of graphs is merely a subfamily of the family of all graphs. A function f(n)
is a threshold function for a property A if

lim
n→∞P(Gn,p(n) ∈ A) =

0 if p(n)/f(n)→ 0

1 if p(n)/f(n)→∞.

Moreover, we say a property A is non-trivial if some but not all graphs satisfy it.
The word sparse in the context of sparse random problems refers to the fact that, in

this area, most interesting thresholds are functions p(n) that go to zero as n goes to
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in�nity. In fact, the case where p is constant is so uncommon that the parameter n is
often omitted, and so p(n) is usually just denoted by p. We will follow this practice
from now on.

In 1987, Bollobás and Thomason [15] proved a general and important result about
thresholds. They showed that every non-trivial monotone increasing5 property has a
threshold. In fact, they showed that f(n) = sup{p : P(Gn,p ∈ A) 6 1/2} is always a
threshold function.

Many of the global problems in combinatorics, such as the connectivity problem
studied by Erdős and Rényi [37] in their seminal paper on random graphs, admit a
stronger notion of threshold: a so-called sharp threshold. Formally, a threshold f(n) is
sharp if, for every ε > 0,

lim
n→∞P(Gn,p ∈ A) =

0 if p 6 (1− ε)f(n)

1 if p > (1+ ε)f(n).

However, other properties, such as that of containing a �xed subgraph H, only admit
coarse (i.e., not sharp) thresholds, as was �rst shown by Bollobás [17]. In a spectacular
breakthrough, Friedgut [44] characterised the graph properties (families) that do not
admit sharp thresholds. In his words, his theorem essentially means that “a family
with a coarse threshold can be approximated by a family whose minimal graphs are
all small”. Thus, all properties with coarse thresholds are essentially local ones.

Obviously, properties also make sense in contexts other than graph theory. It is
trivial to generalise all of the above de�nitions to those contexts.

Asymptotic and precise problems

The theorem proved by Frankl and Rödl is a sparse random version of Mantel’s theo-
rem, but only asymptotically. Indeed, the latter says the largest triangle-free subgraph
and the largest bipartite subgraph ofKn have precisely the same size, with no error term.

Babai, Simonovits and Spencer [6] were the �rst to show a precise version of Theo-
rem 1.3.3. We state a slightly weaker version of their result for simplicity.

Theorem1.3.4 (Babai–Simonovits–Spencer, 1990). Forp > 1/2, anymaximum-size triangle-
free subgraph of Gn,p is bipartite with high probability.

5We say a property A is monotone increasing if G ∈ A and G ⊂ H imply H ∈ A.
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Precise versions of sparse random results generally use the asymptotic version as
a starting point, and they are usually much harder to prove, involving technical esti-
mates of an ad-hoc nature and using only standard probabilistic tools (such as Janson’s
inequality). In fact, the threshold for the above theorem was only determined (up to a
constant factor) in 2014 by DeMarco and Kahn [27].

Ramsey problems

In the �eld of Ramsey theory, sparse random problems also play a signi�cant role. In
stating several results, we will use the following standard notation.

De�nition 1.3.5. Let F andG be two graphs and r ∈ N. The statement “any r-colouring
of the edges of F contains a monochromatic copy of G” will be denoted by F → (G)r.
The same statement for vertex colourings will be denoted by F v−→ (G)r.

In 1967, Erdős and Hajnal [34] (see also [35]) proposed the following question.

Question 1.3.6 (Erdős–Hajnal, 1967). For every k > 3 and r > 2, does there exist aKk+1-free
graph G satisfying G→ (Kk)r?

Folkman [41] proved the vertex-colouring version of the above result, and used this
to provide an a�rmative answer to the question of Erdős and Hajnal for the case r = 2.
The given proof was a complicated inductive construction. This, in the words of Rödl
and Ruciński, “made everyone believe that such graphs are very rare”.

Although the method of proof of Theorem 1.3.3 also showed that G(n,p) → (K3)2

holds with high probability for p = n−1/2+ε, the �rst paper focusing solely on sparse
random Ramsey properties was published by Łuczak, Ruciński and Voigt [66].

In it, they showed that, for the property Gn,p
v−→ (G)r, the change of behaviour

happens when a typical vertex of Gn,p is contained in a constant number of copies of
G. To be more precise, de�ne

m∗(G) = max
H⊂G
|H|>1

e(H)

v(H) − 1

so that, for any given subgraphH ⊂ G, the expected number of copies ofH containing
a vertex v isΩ(pe(H)nv(H)−1) = Ω

(
pm

∗(G)n
)v(H)−1. They showed the following.
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Theorem 1.3.7 (Łuczak–Ruciński–Voigt, 1992). For any non-trivial graph G and r > 2,
there exist positive constants c and C such that

lim
n→∞P(Gn,p

v−→ (G)r) =

0 if p 6 cn−1/m∗(G)

1 if p > Cn−1/m∗(G).

The above is one of the �rst results that fully represents the spirit of sparse random
questions. They also showed that the result of Frankl and Rödl, Theorem 1.3.3, is es-
sentially sharp by computing the actual threshold for the property G(n,p) → (K3)2.
This was then extended to an arbitrary number of colours by Rödl and Ruciński [74] in
1994, and to arbitrary graphs (in place of K3) by the same authors [75] in 1995. This last
general version is as follows, where, analogously to the vertex case,

m2(G) = max
H⊂G
|H|>2

e(H) − 1
v(H) − 2

is such that, for any subgraph H ⊂ G, a typical edge of Gn,p is contained in at least
Ω(pe(H)−1nv(H)−2) = Ω

(
pm2(G)n

)v(H)−2 copies of H.

Theorem 1.3.8 (Rödl–Ruciński, 1995). For any graph G which is not a star forest6 and any
r > 2, there exist positive constants c and C such that

lim
n→∞P(Gn,p → (G)r) =

0 if p 6 cn−1/m2(G)

1 if p > Cn−1/m2(G).

In the same paper, they also showed a sparse random version of van der Waerden’s
theorem. Generalising the arrow notation, the statement “any r-colouring of F contains
a monochromatic k-term arithmetic progression” by F→ (APk)r.

Theorem 1.3.9 (Rödl–Ruciński, 1995). For any k > 3 and r > 2, there exist positive con-
stants c and C such that

lim
n→∞P([n]p → (APk)r) =

0 if p 6 cn−1/(k−1)

1 if p > Cn−1/(k−1).

The sparse Turán problem

In 1995, Haxell, Kohayawaka and Łuczak [52] conjectured a sparse random version of
the Erdős–Stone theorem, which they then proved for all cycles in two papers [52, 53].

6That is, a disjoint union of graphs of the form K1,t for some t ∈ N.
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The statement of the conjecture, nowknown as the sparse Turán problem, is as follows7.
We denote by ex(Gn,p,H) the number of edges of the largest H-free subgraph of Gn,p.

Conjecture 1.3.10 (Haxell–Kohayakawa–Łuczak, 1995). Let H be a non-trivial graph, and
let 0 < p 6 1 be such that pn1/m2(H) →∞. Then, with high probability,

ex(Gn,p,H) =
(
1− 1

χ(H) − 1 + o(1)
)
e(Gn,p).

In 1997, Kohayakawa, Łuczak and Rödl [58] proved Conjecture 1.3.10 for H = K4

(the H = K3 case was essentially shown by Frankl and Rödl). In the same paper, they
also conjectured the following sparse random version of Erdős–Simonovits stability
theorem, and proved it for H = K3.

Conjecture 1.3.11 (Kohayakawa–Łuczak–Rödl, 1997). Let H be a non-trivial graph, and
let 0 < p 6 1 be such that pn1/m2(H) → ∞. For every ε > 0 there exists a δ > 0 such that,
with high probability, any H-free subgraph J ⊂ Gn,p with

e(J) >

(
1− 1

χ(H) − 1 − δ

)
e(Gn,p)

can be made (χ(H) − 1)-partite by the deletion of at most εe(Gn,p) edges.

A common thread among all of the mentioned partial solutions for the above con-
jectures is a sparse version of the Szemerédi Regularity Lemma, independently dis-
covered by Kohayakawa and Rödl [55]. With this technique, Kohayakawa, Łuczak and
Rödl [59] were able to prove another major result: a sparse random version of Roth’s
theorem (cf. Theorem 1.3.9).

Theorem 1.3.12 (Kohayakawa–Łuczak–Rödl, 1996). For any α > 0, there exists C > 0
such that, for p > Cn−1/2, any subset A ⊂ [n]p of size |A| > α · |[n]p| contains a 3-term
arithmetic progression with high probability.

The KŁR results brought renewed interest to the area, e�ectively starting the sys-
tematic study of sparse random problems. The result is a vibrant and fruitful research
area, which is going strong to this day. For readers interested in knowing more about
sparse random problems in the context of graph theory, we recommend the excellent
survey of Rödl and Schacht [76].

7Below the conjectured threshold, the 0-statements for these results are easy: As explained before,
there are fewer copies ofH than edges inGn,p when pn1/m2(H) → 0, meaning that all copies ofH can be
deleted without a�ecting the asymptotic number of edges. Therefore the result, if true, would be best
possible.
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A sparse random Sperner theorem

Recall that Sperner’s theorem, Theorem 1.1.4, says that no antichain of P([n]) is larger
than its middle layer. In 2000, Osthus [71] proved the following sparse analogue of
Sperner’s result. We denote by P(n,p) the p-random subset of P([n]).

Theorem 1.3.13 (Osthus, 2000). Let 0 6 p = p(n) 6 1 be such that pn/ logn → ∞. The
largest subset A ⊂ P(n,p) containing no 2-chains has size

|A| = (1+ o(1))p
(
n

n/2

)
.

with high probability.

He also observed that, for pn→ C, a secondmoment calculation tells us thatP(n,p)
contains an antichain of size

(
1+ e−C/2 + o(1)

)
p

(
n

n/2

)
with high probability. The gap between the two restrictions on the probability function
led Osthus to conjecture that the conclusion of Theorem 1.3.13 is also true whenever
pn → ∞. By his observation, the conjecture is equivalent to saying that f(n) = 1/n is
a (coarse) threshold function for the sparse random version of Sperner’s theorem.

In Chapter 2, which is joint work with Robert Morris, we generalise Osthus’ con-
jecture to the k-chains case and prove the 1/n threshold for every k ∈ N, e�ectively
showing a sparse random analogue of Theorem 1.1.5. Our result, Theorem 2.1.1, is
reproduced below.

Theorem 1.3.14 (CN–Morris, 2014+). Let 2 6 k ∈ N, and let p = p(n) be such that
pn→∞. Then the largest subset A ⊂ P(n,p) containing no k-chain has size

|A| = (k− 1+ o(1))p
(
n

n/2

)
with high probability.

In the following sections, wewill look at fundamental advances in the area of sparse
random problems in the last �ve years.
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1.4 independent sets in hypergraphs

Recall that an independent set for a hypergraphH is a setA ⊂ V(H) for which e(H[A]) =

0, that is, a set A which contains no edge e ∈ E(H).
Many of the combinatorial problems we saw can be restated as problems about

independent sets in hypergraph families. The advantage of doing so might not be ob-
vious at �rst, but we will study general theorems in the next few sections which allow
us to deduce sparse random versions of problems about independent sets in hyper-
graphs. In fact, since all of the discussed combinatorial results are asymptotic and deal
with increasingly large ground sets, the natural object to study for this purpose is a
hypergraph family (Hn)

∞
n=1 instead of a single hypergraph.

In order to show that such restatements are possible, we will focus on two repre-
sentative examples, the sparse Szemerédi and sparse Turán problems.

• The case of k-term arithmetic progressions (k-APs) is the simplest to model as an
independent set problem. We �rst construct a family of k-uniform hypergraphs
as follows:

V(Hn) := [n]

E(Hn) := {{a1,a2, . . . ,ak} : (a1, . . . ,ak) is a k-AP}

Notice that Szemerédi’s theorem (Theorem 1.1.9) says that for every δ > 0 there
exists n0 ∈ N such that, for n > n0, any set X ⊂ V(Hn) with |X| > δv(Hn) is
not independent. In other words, any sequence of independent sets In ⊂ V(Hn)
satis�es |In| = o(n).

• The case of H-free graphs just has slightly more complicated terminology. Re-
member that we choose edges at random in the Gn,p model, and for this reason,
the vertices of our constructed hypergraph will be pairs of vertices representing
possible edges of Gn,p.

Also, since we want to talk about independent sets, the edges of our hypergraph
must encode the restrictions of our problem, which are forbidden copies of H.
Thus, we will letm = e(H) and construct am-uniform hypergraph in which the
edges of H represent copies of H in Kn.

V(Hn) = E(Kn) =

(
[n]

2

)
E(Hn) = {{e1, . . . , em} forming a copy of H}



16 Introduction

Notice that the theorem of Erdős and Stone (Theorem 1.1.3) states that for every
δ > 0 there exists n0 ∈ N such that, for n > n0, any set X ⊂ V(Hn) with |X| >(
1− 1

χ(H)−1 + δ
)
v(Hn) is not independent.

The sparse random version of both problems can be restated as follows: For appro-
priate p and large enough n, the corresponding statement about independent sets still
holdswith high probability ifwe replaceHn by the hypergraph induced by ap-random
subset of V(Hn).

1.5 transference theorems

In 2009 and 2010, Schacht [82] and Conlon and Gowers [24] independently obtained
powerful theorems which allow robust (in a sense we will clarify later) extremal re-
sults to be transferred to the sparse setting, therefore resolving a large number of open
questions in the �eld. For example, they proved8 Conjecture 1.3.10.

Theorem 1.5.1 (Schacht, 2009+, Conlon–Gowers, 2010+). LetH be a non-empty graph and
ε > 0. Then there exist positive constants c and C such that

lim
n→∞P

(
ex(Gn,p,H) 6

(
1− 1

χ(H) − 1 + ε

)
e(Gn,p)

)
=

0 if p 6 cn1/m2(H)

1 if p > Cn1/m2(H).

Both methods require robust versions of the dense combinatorial result (also called
“supersaturation results”), that is, a version that guarantees the existence of not just one
but many copies of the desired structure whenever the ground set is a bit bigger than
the extremal example. Such theorems usually follow by simple averaging arguments.
For example, a robust version of Szemerédi’s theorem may be obtained by applying
the averaging argument of Varnavides [89]. It looks like this.

Theorem 1.5.2 (Szemerédi, 1974). For every ε > 0 and k ∈ N, there exists δ > 0 such that,
for large n, any set A ⊂ [n] with |A| > εn has δn2 k-term arithmetic progressions.

Despite this commonality, the methods of Conlon–Gowers and Schacht use very
di�erent techniques, each one having its own strengths andweaknesses. Wewill brie�y
discuss the two methods below.

8To be precise, Conlon andGowers [24] proved their density and stability results for strictly balanced
graphs, those graphsG for whichm2(G) > m2(H) for anyH ⊂ G. According to their paper, it is possible
to adapt their idea to obtain the general result when p > n−1/m2(H) · (logn)c, for some c > 0. The
method of Schacht fully proves the stated results.
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The work of Conlon and Gowers [24] is based on a functional transference prin-
ciple9. This requires restating the relevant combinatorial theorem in terms of [0, 1]-
valued functions (instead of {0, 1}-valued functions, i.e. sets) in discrete spaces. As an
example, here is the functional version of Szemerédi’s theorem. For convenience, we
state the result in Zn instead of in [n].

Theorem 1.5.3 (Szemerédi, 1974). For every ε > 0 and k ∈ N, there exists δ > 0 such that
any function g : Zn → [0, 1] with 1

n

∑n−1
x=0 g(x) > ε satis�es the inequality

1
n2

n−1∑
x=0

n−1∑
d=0

g(x)g(x+ d) · · ·g(x+ (k− 1)d) > δ

Given a function supported on a sparse random set, their principle proceeds by
associating to it a function corresponding to a dense object. The dense function has
global and local properties which are close to the sparse one, meaning that dense results
lead to proofs for the sparse case under some technical probability conditions. For
example, the above functional restatement gives rise to the following theorem.

Theorem 1.5.4 (Schacht, 2009+, Conlon–Gowers, 2010+). For any ε > 0 and k > 2, there
exists C > 0 such that, for p > Cn−1/(k−1), any subset A ⊂ [n]p of size |A| > ε · |[n]p|
contains a k-term arithmetic progression with high probability.

In the language of hypergraph families (see Section 1.4), Schacht quanti�ed the con-
cept of robustness by saying a property is robust if, for someα, any vertex set of density
larger than α contains a positive proportion of the edges of Hn. Formally, this is his
de�nition.

De�nition 1.5.5 (Schacht, 2009+). For α > 0, a k-uniform hypergraph family (Hn)
∞
n=1

is α-dense if for every ε > 0 there exists δ > 0 with the following property: Any set
U ⊂ V(Hn) with |U| > (α+ ε)v(Hn) satis�es e(Hn[U]) > δe(Hn) for large enough n.

In the case of arithmetic progressions, for example, Szemerédi’s theorem says pre-
cisely that the corresponding hypergraph family is 0-dense.

In order to relate overlaps among edges of the hypergraph family to probabilistic
restrictions for the 1-statement of a sparse random analogue, Schacht introduced the
concept of (K,p)-boundedness. We note that, as usual, the probabilities p and q are
functions of n (see Section 1.3).

9Transference principles have their roots in the previously mentioned work of Green and Tao [50].
A good introduction to the subject is the paper of Gowers [47].
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De�nition 1.5.6 (Schacht, 2009+). For 0 6 p 6 1 and K > 1, a k-uniform hypergraph
family is (K,p)-bounded if for every 1 6 i < k and every q > p,

E

 ∑
v∈V(Hn)

degi(v,V(Hn)q)
2

 6 Kq2ie(Hn))
2

v(Hn)

holds for su�ciently large n, where V(Hn)q is a q-random subset of V(Hn) and

degi(v,U) = |{e ∈ E(Hn) : |e ∩ (U \ {v})| > i and v ∈ e}| .

Having those de�nitions, we can summarize Schacht’s theorem in the following
manner: The 1-statement of a sparse random analogue of a combinatorial result is true
for p > C(K,α) · p ′ whenever the corresponding hypergraph family is α-dense and
(K,p ′)-bounded for some K and α.

For many problems, the de�nition of (K,p)-boundedness leads to thresholds which
are optimal up to a constant. For example, a standard calculation shows that the hy-
pergraph family for the sparse Szemerédi problem is (K,n−1/(k−1))-bounded for large
enough K. Also, the family for the sparse Turán problem is (K,n−1/m2(H))-bounded for
large enough K.

Schacht’s proof gives exponential bounds on the probability of failure, whereas the
functional approach of Conlon and Gowers provides only polynomial bounds. On the
other hand, the functional transference theorem of Conlon and Gowers also re�ects
local properties, and is thus strong enough to prove asymptotic counting results. In
fact, some two-sided counting results can only hold with polynomially-decaying fail-
ure probabilities: Theorem 1.6 (ii) of [25], proved via the method of Conlon and Gow-
ers, is one such result.

Having mentioned this, we take an opportunistic pause to marvel at one of their
stability results, which we stated before as Conjecture 1.3.11. Since Samotij [78] re�ned
the method of Schacht to allow for obtaining stability results, we attribute the result to
both approaches.

Theorem 1.5.7 (Schacht, 2009+, Conlon–Gowers, 2010+ and Samotij, 2014). Let H be a
graph with maximum degree at least two, and let ε > 0. Then there exist positive constants C
and δ such that, for p > Cn1/m2(H), every H-free subgraph of Gn,p with more than(

1− 1
χ(H) − 1 − δ

)
e(Gn,p)

edges can be made (χ(H) − 1)-partite by the removal of at most εe(G) edges.
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A sparse stability theorem for sum-free subsets

With the above techniques, the stability theorem for sum-free subsets in abelian groups,
Theorem 1.2.13, can also be naturally transferred to a sparse random context. This was
�rst shown by Balogh, Morris and Samotij in [13] (see also [78]).

Theorem 1.5.8 (Balogh–Morris–Samotij, 2014). For any small δ > 0 and prime number
q ≡ 2 (mod 3), there exist constants C > 0 and ε > 0 with the following property. Let G be
any n-element abelian group of type I(q). If

p > Cn−1/2

then, with high probability, for every sum-free subset B ⊂ Gp with

|B| >

(
1
3 +

1
3q − ε

)
p|G|

there exists a maximum-size sum-free subset O of G with |B \ O| 6 δpn.

Motivated by the above result, we say a subsetA of a groupG is sum-free good if some
maximum-size sum-free subset of A is contained in a maximum-size sum-free subset
of G. Roughly speaking, this precise property (in the sense of Section 1.3) means that
A “inherits” its sum-free subset structure from G.

In Chapter 3, which is joint work with Neal Bushaw, Robert Morris and Paul Smith,
we deal with even-order abelian groups. For such a group G, we extend the above by
calculating the sharp threshold for the property of a p-random subset of G being sum-
free good with high probability. The location of the sharp threshold depends on the
number of order 2 elements of G (see Fact 3.2.2).

It is arguably easier to introduce the results of Chapter 3 by talking about a sequence
of groups G = (Gn)

∞
n=1, and we will do so in this Introduction, although our result is

slightly more general. We start with this de�nition, which provides the constant used
in our sharp threshold. For an abelian group G ′, let r(G ′) be the number of elements x
of G ′ satisfying x = −x.

De�nition 1.5.9 (Bushaw–CN–Morris–Smith, 2013+). A group sequenceG = (Gn)
∞
n=1

is well-behaved if the two limits below exist.

α(G) := lim
n→∞

log r(Gn)
log(|Gn|/2)

and β(G) := lim
n→∞

r(Gn)

|Gn|/2
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For a well-behaved sequence G, de�ne moreover

λ(G) :=


1/3 if α(G) 6 5/6

α(G) − 1/2 if α(G) > 5/6 and β(G) = 0

2/
(
4− β(G)

)
if β(G) > 0.

In this context, our result is the following.

Theorem 1.5.10 (Bushaw–CN–Morris–Smith, 2013+). Let G = (Gn)
∞
n=1 be a well-behaved

sequence of even-order abelian groups, let p ∈ (0, 1) with p > (logn)2/n and let An be a p-
random subset of Gn. Then, for every ε > 0,

P(An is sum-free good)→


0 if p 6 (λ(G) − ε)

√
logn
n

1 if p > (λ(G) + ε)
√

logn
n

.

This answers a natural question arising from the previous work of Balogh, Morris
and Samotij [13], who established the existence of a threshold for any sequence of even-
order abelian groups10 but showed a sharp threshold only for the particular caseGn =

Z2n.

1.6 hypergraph containers

In 2012, a di�erent approach to the above problems was found by Balogh, Morris and
Samotij [8] and independently by Saxton and Thomason [81], who provided a simple
but powerful characterisation of the independent sets in a hypergraph. They showed
that, if the edges of a hypergraph H are “well-distributed” (in a sense made precise
below), then the independent sets of H are “clustered”, in the sense that there exists
a small family C ⊂ P(V(H)) of containers, each signi�cantly smaller than V(H), such
that every independent set ofH is contained in some C ∈ C.

We will state the main lemma in the notation of Balogh, Morris and Samotij [8,
Proposition 3.1]. The version of Saxton and Thomason [81, Theorem 2.5] replaces the
maximum degree conditions by a more elaborate version of uniformity expressed in
terms of co-degree functions11.

10The result they proved was slightly more general and worked for all sequences of groups of type
I(q), for any �xed prime q ≡ 2 (mod 3). We focused on the even-order case because we thought it
contained most of the essential di�culties of the problem.

11So far, there are no known applications for which only one of the versions work.
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The Hypergraph Container Lemma. For every k ∈ N and c > 0, there exists a δ > 0
such that the following holds. Let τ ∈ (0, 1) and suppose that H is a nonempty k-uniform
hypergraph on N vertices such that

∆`(H) 6 c · τ`−1e(H)

N
(1.2)

for every 1 6 ` 6 k, where

∆`(H) := max
|T |=`

|{e ∈ E(H) : T ⊂ e}| .

Then there exist a family C of subsets of V(H), and a function f : P(V(H))→ C such that:

(a) For every independent set I there exists T ⊂ I with |T | 6 k · τN and I ⊂ f(T),

(b) |C| 6 (1− δ)N for every C ∈ C.

The power of this method comes from the fact that the Hypergraph Container
Lemma can be iterated. That is, if we have any supersaturation result and we let F
denote the family of hypergraphs for which this result holds, we can repeatedly apply
the lemma to ensure none of the containers are in F. Once this happens, the containers
will typically either be small enough to easily count, or have a very special structure
which we can exploit.

There are several di�erences between this result and the transference theorems
discussed in the previous section. Although containers are frequently used to prove
asymptotic results, its non-asymptotic nature provides a great deal of �exibility. For
example, all of the constants in the theorem can be explicitly estimated, which allows
for results in which the size of the hypergraph is not �xed. All of these advantages will
be used to our favor in Chapter 4.

Moreover, this statement provides a meaningful deterministic counting assertion
and not just a probabilistic one. Thus, it should come as no surprise that it is also
signi�cantly easier to obtain counting results for several of the problems we discussed.
In fact, once the counting is done, a sparse random result often follows from a simple
application of a concentration inequality such as Cherno�’s (or even Markov’s).

1.7 organisation of this thesis

The rest of this thesis is organised as follows. A simple description of each of the main
results proved can be found in the sections above, near the corresponding theorem
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statement. Amore detailed introduction to problem can be found in the corresponding
chapter.

In Chapter 2, which is joint work with Robert Morris, we prove Theorem 1.3.14,
which determines the threshold for the sparse random Sperner theorem, verifying a
conjecture of Osthus, and generalises it to k-chains.

In Chapter 3, which is joint work with Neal Bushaw, Robert Morris and Paul Smith,
we prove a slightly more general version of Theorem 1.5.10, which determines the
sharp threshold for a problem related to sum-free sets of abelian groups.

In Chapter 4, which is joint work with József Balogh, Neal Bushaw, Hong Liu,
Robert Morris and Maryam Sharifzadeh, we prove Theorem 1.2.8, which shows that
asymptotically almost all Kr+1-free graphs are r-partite even in the case of unbounded
r = r(n). Alongwith this, we prove a new supersaturation result, Theorem 1.2.9, which
guarantees the existence ofmany copies ofKr in graphswhich cannot bemade r-partite
by the deletion of few edges.



maximum-size antichains in random sets

The work in this chapter is joint with Robert Morris. It is adapted from a preprint [23].

2.1 introduction

One of the cornerstones of extremal set theory is the famous theorem of Sperner [86],
who proved in 1928 that the largest antichain in P(n), the family of all subsets of
{1, . . . ,n}, has size

(
n
n/2

)
. In 1945, Erdős [29] generalised this result by showing that

any family of sets larger than the k− 1 middle layers of P(n) contains a k-chain.
The study of the random set-system P(n,p) was initiated in 1961 by Rényi [73],

who determined the threshold for the event that P(n,p) is an antichain. More re-
cently, Kreuter [62] and Kohayakawa, Kreuter and Osthus [57] studied the length of
the longest chain in P(n,p), and Kohayakawa and Kreuter [56] and Osthus [71] stud-
ied the size of the largest antichain. In particular, Osthus [71] proved that (2.1) holds in
the case k = 2 if pn� logn, and conjectured that pn� 1 is su�cient. We note that this
conjecture has also been proved independently by Balogh, Mycroft and Treglown [9],
whomoreover obtained a corresponding result for sparser random set systems, though
again only in the case k = 2.

In this chapter we will prove a sparse random analogue of Erdős’ theorem. More
precisely, for every function p � 1/n we will determine, with high probability, the
(asymptotic) size of the largest subset of P(n,p), the p-random subset1 of P(n), con-
taining no k-chain. In the case k = 2, this con�rms a conjecture of Osthus [71].

Theorem 2.1.1. Let 2 6 k ∈ N, let p = p(n) be such that pn → ∞. Then the largest subset
A ⊂ P(n,p) containing no k-chain has size

|A| =
(
k− 1+ o(1)

)
p

(
n

n/2

)
(2.1)

with high probability as n→∞.

We remark that the bound on p is best possible, since the result fails to hold when-
ever pn → C. Indeed, in this case Osthus [71] showed that, with high probability, the
two middle layers of P(n,p) contain an antichain A of size

(
1 + e−C/2 + o(1)

)
p
(
n
n/2

)
;

adding k−2 further layers toA gives a set of size
(
k−1+e−C/2+o(1)

)
p
(
n
n/2

)
containing

no k-chains.
1That is, P(n,p) is a random variable such that P(A ∈ P(n,p)) = p for each A ∈ P(n), and such

events are independent for di�erent values of A.

23
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In order to e�ectively apply the hypergraph container method (see Section 2.2), one
requires a so-called ‘balanced supersaturation theorem’, and the proof of such a re-
sult (see Theorem 2.1.2, below) is the main innovation of this work. An ‘unbalanced’
supersaturation theorem (giving a lower bound on the number of k-chains, but not
controlling the distribution of these chains) was proved by Kleitman [54] in the case
k = 2, and by Das, Gan and Sudakov [26] in general. More precisely, the authors of [26]
used the permutation method pioneered by Katona and LYMB2 in order to show that
a family with tmore elements than the extremal example above containsΩ

(
tnk−1) k-

chains. One of the key ideas from [26] will also play an important role in our proof, see
Lemma 2.3.4 below.

In order to state our balanced supersaturation theorem, we will need a couple of
simple de�nitions. For each k > 2 and n ∈ N, let Gk = Gk(n) denote the k-uniform
hypergraph on vertex set P(n)whose edges encode k-chains, i.e., {F1, . . . , Fk} ∈ E(Gk) if
and only if F1 ) · · · ) Fk for some ordering of the elements. Given F ⊂ P(n), we write
H ⊂ Gk[F] to denote that H is a k-uniform hypergraph with vertex set F whose edges
are all members of E(Gk). For each ` ∈ [k], we write ∆`(H) for the maximum degree of
an `-set inH, that is

∆`(H) = max
{
dH(L) : L ⊂ V(H), |L| = `

}
,

where dH(L) =
∣∣{A ∈ E(H) : L ⊂ A

}∣∣. We also write I(H) for the collection of
independent sets ofH, and α(H) for the size of the largest member of I(H).

We can now state the key new tool that we will use to prove Theorem 2.1.1. It says
that a familywith slightlymore thanα(Gk) =

(
k−1+o(1)

)(
n
n/2

)
elements not only con-

tainsmany k-chains, but that these chains can be chosen to be fairly ‘evenly distributed’
over P(n).

Theorem 2.1.2. For every k > 2 and α > 0, there exists δ = δ(α,k) > 0 such that the
following holds. Let n ∈ N and F ⊂ P(n) satisfy |F| > (k − 1 + α)

(
n
n/2

)
, and suppose that

δ−1 6 m 6
(
|F|
|G|

)
for every F,G ∈ F with F ) G. Then there existsH ⊂ Gk[F] satisfying

(a) e(H) > δkmk−1( n
n/2

)
,

(b) ∆`(H) 6 (δm)k−` for every 1 6 ` 6 k.

We remark that the bounds in Theorem 2.1.2 are all close to best possible. To see
this set m = n/3 and consider the k − 1 middle layers of the hypercube, together

2The acronym LYMB refers to Lubell [65], Yamamoto [93], Mešalkin [68] and Bollobás [14]. It often
causes spelling confusion due to the silent B.
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with α
(
n
n/2

)
elements from the next layer up. Then Gk[F] has O

(
nk−1( n

n/2

))
edges and

∆`
(
Gk[F]

)
= Ω(nk−`) for every 1 6 ` 6 k. The technical assumptionm 6

(
|F|
|G|

)
for every

F,G ∈ Fwith F ) Gwill be useful because it will allow us to deduce su�ciently strong
bounds both when |F| is close to α(Gk), and when it is much larger, see Section 2.2.

The rest of this chapter is organised as follows. In Section 2.2 we apply the hyper-
graph container method together with Theorem 2.1.2 to obtain a collection of contain-
ers tuned to our needs (see Corollary 2.2.3). In Section 2.3 we prove Theorem 2.1.2,
and in Section 2.4 we perform the necessary technical computations in order to deduce
Theorem 2.1.1.

2.2 hypergraph containers

In this section, we will apply the powerful method of hypergraph containers described
in Section 1.6. We will use the Hypergraph Container Lemma together with Theo-
rem 2.1.2 to deduce that there exists a relatively small family of “containers”, each not
too large, which cover the family I(H) of independent sets of a k-uniform hypergraph
H ⊂ Gk.

In more detail, we �rst apply the Hypergraph Container Lemma to the hypergraph
Gk, to obtain a large family C1 of containers, each of size at most (1 − δ)2n. We then
apply the lemma again, for each F ∈ C1 with |F| > (k − 1 + α)

(
n
n/2

)
(for some small

α > 0), to the hypergraph H ⊂ Gk[F] given by Theorem 2.1.2. We repeat this process
until all containers have size at most (k − 1 + α)

(
n
n/2

)
. The conditions (a) and (b) in

Theorem 2.1.2 allow us to check that (1.2) holds for a suitable value of τ, and hence
to count the containers in our �nal collection. See [69] for a similar application of the
container lemma in the context of C2k-free graphs.

In order to further motivate the statement of Theorem 2.1.2 (and the technical con-
dition m 6

(
|F|
|G|

)
for every F,G ∈ F with F ) G), we will next deduce from it the

following two lemmas, which we will use to check the condition (1.2) from the Hyper-
graph Container Lemma. The �rst shows that we can take τ = 1/n when F is slightly
larger than α(Gk).

Lemma 2.2.1. For every k > 2 and α > 0, there exists c = c(α,k) > 0 such that the following
holds. Let n ∈ N be su�ciently large and F ⊂ P(n) satisfy (k−1+α)

(
n
n/2

)
6 |F| 6 3k

(
n
n/2

)
.

Then there exists a nonemptyH ⊂ Gk[F] satisfying

∆`(H) 6
c

n`−1 ·
e(H)

|F|
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for every 1 6 ` 6 k.

Proof. First, observe that (by adjusting α slightly) we may assume that |F| > n/3 for
every F ∈ F, since the number of sets smaller than this is much smaller than

(
n
n/2

)
.

Thus, applying Theorem 2.1.2 withm = n/3, it follows that there exists a hypergraph
H ⊂ Gk[F] and a constant δ = δ(α,k) > 0 with e(H) > δknk−1( n

n/2

)
and ∆`(H) 6

(3δn)k−` for every 1 6 ` 6 k. It follows that

∆`(H) 6 (3δn)k−` = 3k−`+1k

δ`n`−1 ·
δknk−1( n

n/2

)
3k
(
n
n/2

) 6
c

n`−1 ·
e(H)

|F|
,

where c = 3kk · (1/δ)k, as required.

The next lemma shows that if |F| is larger, then we can in fact take τmuch smaller.

Lemma 2.2.2. For every k > 2, there exists c = c(k) > 0 such that the following holds. Let
n ∈ N be su�ciently large and F ⊂ P(n) satisfy |F| > 3k

(
n
n/2

)
. Then there exists a nonempty

H ⊂ Gk[F] satisfying

∆`(H) 6
c

n3`−3 ·
e(H)

|F|

for every 1 6 ` 6 k.

Proof. First, choose an arbitrary partition F = F0∪F1∪ · · · ∪Ft such that |Fi| = 3k
(
n
n/2

)
for every i ∈ [t] and |F0| < 3k

(
n
n/2

)
. Fix i ∈ [t], and observe that, by the pigeonhole

principle, there are at least k
(
n
n/2

)
elements of Fi whose sizes have the same remainder

modulo 3. Let F ′i be a collection of
(
k − o(1)

)(
n
n/2

)
such elements, all of size at least

n/3, and note that
(
|F|
|G|

)
>
(
n/3
3

)
for every F,G ∈ F ′i with F ) G. Thus, applying

Theorem 2.1.2 with m =
(
n/3
3

)
, it follows that there exists a hypergraph Hi ⊂ Gk[F

′
i]

and a constant δ = δ(k) > 0 such that e(Hi) = δk+1n3k−3( n
n/2

)
and

∆`(Hi) 6 (δn3)k−` =
k

δ`n3`−3 ·
δkn3k−3( n

n/2

)
k
(
n
n/2

) 6
c ′

n3`−3 ·
e(Hi)

|F ′i|

for some c ′ = c ′(k) and every 1 6 ` 6 k. LetH = H1 ∪ · · · ∪Ht, and observe that

∆`(H) 6 max
16i6t

{
∆`(Hi)

}
6

c

n3`−3 ·
e(H)

|F|

as claimed, since e(H) = t · e(Hi) and |F| = O(t · |F ′i|) for every i ∈ [t].
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Motivated by the above bounds, �x τ : P(n)→ R to be the function de�ned by

τ(A) :=

n−1 if |A| 6 3k
(
n
n/2

)
n−3 otherwise.

(2.2)

We can now specialise the Hypergraph Container Lemma to our application by com-
bining it with Lemma 2.2.1 and Lemma 2.2.2. The following corollary will be used in
Section 2.4 to count the containers of a given size produced by repeated applications
of the Hypergraph Container Lemma, see Theorem 2.4.2.

Corollary 2.2.3. For every 2 6 k ∈ N and α > 0, there exists δ = δ(α,k) > 0 such that the
following holds. Let n ∈ N be su�ciently large and C ⊂ P(n) with |C| > (k − 1 + α)

(
n
n/2

)
.

Then there exists a collection C ⊂ P(C) and a function f : P(C)→ C such that

(a) For every I ∈ I(Gk[C]), there exists T with |T | 6 k · τ(C)|C| and T ⊂ I ⊂ f(T).

(b) |C ′| 6 (1− δ)|C| for every C ′ ∈ C.

Proof. Apply the Hypergraph Container Lemma to the hypergraph H ⊂ Gk[C] given
by Lemma 2.2.1 (if |C| 6 3k

(
n
n/2

)
), or by Lemma 2.2.2 (otherwise), and observe that (for

a suitable choice of the constant c) the inequality (1.2) holds with τ = τ(C) for every
1 6 ` 6 k. It follows immediately that there exist a family C of subsets of C, and a
function f : P(C)→ C such that (a) and (b) hold, as required.

2.3 balanced supersaturation

In this section, wewill prove Theorem 2.1.2 by constructingH one edge at a time. More
precisely, starting with H = ∅, we will repeatedly apply the following lemma, adding
new edges toH until the conditions of Theorem 2.1.2 are satis�ed.

Lemma 2.3.1. For every k > 2 and α > 0, there exists δ = δ(α,k) > 0 such that the
following holds. Let n ∈ N and F ⊂ P(n) satisfy |F| > (k − 1 + α)

(
n
n/2

)
, and suppose that

δ−1 6 m 6
(
|F|
|G|

)
for every F,G ∈ F with F ) G. IfH ⊂ Gk[F] is a hypergraph satisfying

(a) e(H) 6 δkmk−1( n
n/2

)
,

(b) ∆`(H) 6 (δm)k−` for every ` ∈ [k].

then there exists an edge f ∈ Gk[F] \ H for which ∆`({f} ∪H) 6 (δm)k−` for every ` ∈ [k].
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The rest of this section will be dedicated to proving the above lemma, so from now
on let us �x α > 0 and k > 2, and choose δ > 0 su�ciently small and m > δ−1.
Moreover, let us �x n ∈ N, a set F ⊂ P(n) and a hypergraph H ⊂ Gk[F] satisfying the
conditions of the lemma. The degree function of H will simply be denoted by d, for
simplicity.

We say that a non-empty set A ⊂ P(n) is saturated if d(A) = b(δm)k−|A|c, that is, if
no edge of F containing this set can be added to the hypergraph H without violating
condition (b). A setA ⊂ P(n) is bad if it contains a saturated set, and it is good otherwise.
With this terminology, the conclusion of Lemma 2.3.1 is that Gk[F] contains a good
edge. Indeed, since a good edge f ∈ Gk[F] is not saturated, then d(f) < 1, and so f 6∈ H.

The following easy lemma will be a crucial tool in the proof of Lemma 2.3.1. It says
that there are not too many ways to turn a good family bad.

Lemma 2.3.2. For any good A ⊂ P(n), there are at most 2|A| · 2δkm sets F ∈ P(n) for which
{F} ∪A is bad and {F} is not saturated.

Proof. The result follows from a simple double-counting argument, which we spell out
below. Since A is good, any saturated subset of {F}∪Amust contain F. In other words,
any F such that {F} ∪A is bad belongs to

S(B) = {F ∈ P(n) : d({F} ∪B) = b(δm)k−|B|−1c}

for some B ⊂ A. Moreover, if {F} is not saturated, then B cannot be empty. Therefore,
it is enough to bound the size of S(B) when B is non-empty. We do so by noting that

|S(B)|b(δm)k−|B|−1c =
∑
F∈S(B)

d({F} ∪B) 6 kd(B) 6 k(δm)k−|B|,

where the �rst inequality is true because each edge of H containing B contributes at
most k to the sum. Sincem > δ−1, we obtain |S(B)| 6 2δkm. The claimed bound now
follows by summing over all choices of B.

Similarly, writing S = S(∅) for the family of saturated sets, we have |S|b(δm)k−1c 6
k · e(H). By condition (a) and the boundm > δ−1, it follows that |S| 6 2δk

(
n
n/2

)
. Thus,

by adjusting α slightly if necessary, we can remove the elements of S from F. Therefore,
from now on we will assume that F contains no saturated vertices.

We will next sketch the proof of Lemma 2.3.1. The key idea is that if we choose
F1 to be of minimal cardinality such that the “density” of k-chains below F1 (see De�ni-
tion 2.3.3) is bigger than α/k (see Lemma 2.3.6), then only few of those k-chains will be
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bad, and hence at least one of them will be good. In order to bound the density of bad
k-chains below F1, let us de�ne a chain F1 ) · · · ) F` to be critical if {F1, . . . , F`−1} is good
but {F1, . . . , F`} is not. We will use Lemma 2.3.2 to show that the density of critical `-
chains is small (see Lemma 2.3.7). We will then use the minimality of F1 to deduce that
the operation of extending critical `-chains to bad k-chains only increases the density
by a bounded factor.

In order to make the above sketch more precise, let us next formalise the notion
of density that we will use. This de�nition is inspired by the work of Das, Gan and
Sudakov [26], see Lemma 2.3.4 below. We remark that, despite its name, the `-chain
density of a set is not bounded above by 1, and in fact can be as large asΩ(n`−1).

De�nition 2.3.3. The `-chain density of a set F1 ∈ F, denoted by c`(F1), is given by

c`(F1) :=
∑

F2,...,F`∈F
F1)F2)···)F`

(
|F1|

|F2|

)−1

· · ·
(
|F`−1|

|F`|

)−1

In particular, c1(F) = 1 for all F ∈ F.

The following lemma is essentially due to Das, Gan and Sudakov [26]. Since it was
not explicitly stated in their paper, we will give the proof for completeness.

Lemma 2.3.4 (Das, Gan and Sudakov). For any �xed 1 6 i < j 6 k, we have

∑
F∈F

1(
n
|F|

)( ci(F) − cj(F)
)
6 max

s∈N

(
s

i

)
−

(
s

j

)
.

Proof. Following the permutation method, say a permutation π of [n] contains a set F if
F = {π(1), . . . ,π(|F|)}. Moreover, say it contains a chain if it contains all sets of the chain.
Note that the number of permutations containing a given chain F1 ) · · · ) F` is

(n− |F1|)! · |F1 \ F2|! · · · |F`−1 \ F`|! · |F`|! = n! ·
(
n

|F1|

)−1(
|F1|

|F2|

)−1

. . .
(
|F`−1|

|F`|

)−1

,

and so, denoting by X`(π) the number of `-chains contained in π, the expected value of
X` with respect to the uniform probability measure on the set of permutations is

E(X`) =
∑

F1,...,F`∈F
F1)...)F`

(
n

|F1|

)−1(
|F1|

|F2|

)−1

. . .
(
|F`−1|

|F`|

)−1

=
∑
F1∈F

c`(F1)
/(

n

|F1|

)
.
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On the other hand, since sets contained in a single permutation always form a chain,
X`(π) equals

(
s
`

)
, where s is the number of elements of F contained in π. We deduce

that
Xi(π) − Xj(π) 6 max

s∈N

(
s

i

)
−

(
s

j

)
,

and the conclusion follows by taking the expected value of both sides.

A very useful feature of Lemma 2.3.4 is that the upper bound it provides does not
depend on n. We will next use this to show that `-chain densities cannot decrease
too quickly as a function of `, and hence that it is enough to upper bound the k-chain
density of a set whenever we want an upper bound for all of its lower densities.

Lemma 2.3.5. For every F ∈ F and 1 6 ` < k, we have c`(F) 6 ck(F) + 4k.

Proof. The result is trivial for ` = 1, as c1(F) = 1. For ` > 2, we can use the identity

c`(F) =
∑
F2∈F
F)F2

(
|F|

|F2|

)−1 ∑
F3,...,Fk∈F
F2)···)F`

(
|F2|

|F3|

)−1

· · ·
(
|F`−1|

|F`|

)−1

=
∑

F)F2∈F

c`−1(F2)

/(
|F|

|F2|

)

together with Lemma 2.3.4 (applied to the hypercube of subsets of F) to obtain

c`(F) − ck(F) =
∑

F)F2∈F

1(
|F|
|F2|

)(c`−1(F2) − ck−1(F2)) 6 max
s∈N

(
s

`− 1

)
−

(
s

k− 1

)
.

Since the function being maximised is negative for all s > 2k − 1, the right side is at
most

(2k−1
`−1

)
6 4k, which proves the result.

Lemma 2.3.4 also allows us to deduce that at least one element of our family has
large k-chain density, as we show in the following pigeonhole-like observation.

Lemma 2.3.6. If 0 6 α 6 1 and |F| > (k− 1+ α)
(
n
n/2

)
, then maxF ck(F) > α/k.

Proof. By Lemma 2.3.4 with i = 1 and j = k, and since c1(F) = 1, we have∑
F∈F

1(
n
|F|

)(1− ck(F)) 6 max
s∈N

(
s

1

)
−

(
s

k

)
= k− 1.

However, if the desired conclusion were not true, we would have∑
F∈F

1(
n
|F|

) (1− ck(F)) >
∑
F∈F

1(
n
n/2

) (1− α

k

)
> (k− 1+ α) · k− α

k
> k− 1,

where, for the last step, note that equality holds when α ∈ {0, 1}.
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Finally, we will need the following lemma, which bounds the density of critical `-
chains. It is a simple consequence of Lemma 2.3.2 and our assumption thatm 6

(
|F|
|G|

)
for every F,G ∈ F with F ) G.

Lemma 2.3.7. For every F1 ∈ F and 1 6 ` < k,∑
F2,...,F`+1∈F

F1)···)F`+1 critical

(
|F1|

|F2|

)−1

· · ·
(

|F`|

|F`+1|

)−1

6 2` · 2δk · c`(F1) (2.3)

Proof. Recall that if F1 ) · · · ) F`+1 is critical, then {F1, . . . , F`} is good but {F1, . . . , F`+1}

is not. By Lemma 2.3.2, it follows that the left-hand side of (2.3) is at most∑
F2,...,F`∈F
F1)···)F`

(
|F1|

|F2|

)−1

· · ·
(
|F`−1|

|F`|

)−1

· 2` · 2δkm · max
F`)F`+1∈F

(
|F`|

|F`+1|

)−1

.

The result then follows from our upper bound onm and the de�nition of c`(F1).

We are now ready to carry out the plan outlined above, and prove Lemma 2.3.1.

Proof of Lemma 2.3.1. Wemay assume, without loss of generality, that 0 < α < 1. Let F1
be of minimal cardinality such that ck(F1) > α/k (note that at least one such F1 exists,
by Lemma 2.3.6). We claim that∑

F2,...,Fk∈F
F1)···)Fk bad

(
|F1|

|F2|

)−1

· · ·
(
|Fk−1|

|Fk|

)−1

6
ck(F1)

2 , (2.4)

which immediately implies that the total k-chain density of good chains is positive, and
therefore that at least one good chain exists. In order to prove (2.4), notice that every bad
k-chain F1 ) · · · ) Fk is associated with a unique 1 6 ` < k such that F1 ) · · · ) F`+1 is
critical. As such, we can write the left side of (2.4) as

k−1∑
`=1

( ∑
F2,...,F`+1∈F

F1)···)F`+1 critical

(
|F1|

|F2|

)−1

· · ·
(

|F`|

|F`+1|

)−1

· ck−`(F`+1)

)
.

Wewill proceed by bounding each termof the outer sum separately, so �x 1 6 ` < k. By
Lemma 2.3.5 and theminimality of F1, we have ck−`(F`+1) 6 ck(F`+1)+4k < α/k+4k <
5k. Using this bound and Lemma 2.3.7, we obtain∑

F2,...,F`+1∈F
F1)···)F`+1 critical

(
|F1|

|F2|

)−1

· · ·
(

|F`|

|F`+1|

)−1

· ck−`(F`+1) 6 2` · 2δk · c`(F1) · 5k. (2.5)
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Using Lemma 2.3.5 once again for the bound c`(F1) 6 ck(F1) + 4k and summing (2.5)
over 1 6 ` < k, we conclude that

∑
F2,...,Fk∈F

F1)···)Fk bad

(
|F1|

|F2|

)−1

· · ·
(
|Fk−1|

|Fk|

)−1

= δ · 2O(k) · (ck(F1) + 4k) = δ · 2O(k)

α
· ck(F1),

since ck(F1) > α/k. The right side can be made less than ck(F1)/2 by choosing δ to be
small (only as a function of α and k), and so the proof is complete.

2.4 proof of theorem 2.1.1

In this section we will deduce Theorem 2.1.1 from the results of the previous two sec-
tions. More precisely, we will use Corollary 2.2.3 to prove a ‘�ngerprint theorem’ (The-
orem 2.4.2, below), which easily implies Theorem 2.1.1. A coloured vertex set is simply
a set A ⊂ P(n) together with a function c : A → N. We will need the following de�ni-
tion.

De�nition 2.4.1. A�ngerprint of Gk is a family S of coloured vertex sets, together with:

(a) A �ngerprint function T : I(Gk)→ S with T(I) ⊂ I for every I ∈ I(Gk).

(b) A container function C : S→ P(V(Gk)) such that I ⊂ C(T(I)) for every I ∈ I(Gk).

Each S ∈ S should be thought of as a sequence of sets given by repeated application
of the Hypergraph Container Lemma. The container function is obtained by applying
the sequence of functions f given by these repeated applications. We will prove the
following theorem.

Theorem 2.4.2. For every k > 2 and ε > 0, there exist a constant K = K(ε,k) > 0 and a
�ngerprint (S, T ,C) of Gk such that the following hold:

(a) Every S ∈ S satis�es |S| 6 K
n

(
n
n/2

)
;

(b) The number of sets of size s in S is at most(
K
(
n
n/2

)
s

)s
exp

(
K

n

(
n

n/2

))
;

(c) |C(T(I))| 6 (k− 1+ ε)
(
n
n/2

)
for every I ∈ I(H).

Before proving Theorem 2.4.2, let us see how it implies Theorem 2.1.1.
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Proof of Theorem 2.1.1. Let k > 2 and ε > 0 be arbitrary, and let K = K(ε,k) > 0 and
(S, T ,C) be the constant and �ngerprint given by Theorem 2.4.2. Let n ∈ N be su�-
ciently large, and note that pn > Kε−1, since pn→∞. If I ⊂ P(n,p) is an independent
set of Gk of size at least (k− 1+ 3ε)p

(
n
n/2

)
, then it follows that T(I) ⊂ P(n,p) and

∣∣C(T(I)) ∩ P(n,p)
∣∣ > (k− 1+ 3ε

)
p

(
n

n/2

)
.

Let X be the number of elements of S for which these two properties hold. Then

E(X) 6
∑
A∈S

P
(
A ⊂ P(n,p)

)
· P
(∣∣(C(A) \A) ∩ P(n,p)

∣∣ > (k− 1+ 2ε)p
(
n

n/2

))
,

where we used that |A| 6 εp
(
n
n/2

)
by the lower bound on pn and Theorem 2.4.2 (a).

Hence, by the properties of (S, T ,C) guaranteed by Theorem 2.4.2, and Cherno�’s in-
equality,

E(X) 6

K
n(

n
n/2)∑
s=1

(
K
(
n
n/2

)
s

)s
exp

(
K

n

(
n

n/2

))
· ps · exp

(
−ε2p

(
n

n/2

))
6
K

n

(
n

n/2

)
exp

(
K log(pn)

n

(
n

n/2

)
+
K

n

(
n

n/2

)
− ε2p

(
n

n/2

))
,

since the summand is increasing in s on the interval
(
0, (Kp/e)

(
n
n/2

))
, and K/n �

Kp/e. Therefore, by Markov’s inequality, and since pn� log(pn)� 1, we have

P
(
α
(
P(n,p)

)
>
(
k− 1+ 3ε

)
p

(
n

n/2

))
6 exp

(
−
ε2p

2

(
n

n/2

))
→ 0

as n→∞, as required.

It only remains to prove Theorem 2.4.2. We will use a straightforward but technical
lemma.

Lemma 2.4.3. LetM > 0, s > 0 and 0 < δ < 1. For any �nite sequence (a1, . . . ,am) of real
numbers summing to s such that 1 6 aj 6 (1− δ)jM for each j ∈ [m], we have

s log s 6
m∑
j=1

aj logaj +O(M).

Proof. Fix m ∈ N and note that, by compactness, we can assume that the sequence
(a1, . . . ,am) achieves the minimum of

∑m
j=1 xj log xj subject to the given conditions.

Let
J1 = {j ∈ [m] : aj < (1− δ)jM}
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and J2 = [m]\ J1; de�ne also si =
∑
j∈Ji aj for i ∈ {1, 2}. The convexity of x log x implies

that all of the elements of the subsequence (aj)j∈J1 are equal and that J1 = [t] for some
t ∈ {0, . . . ,m}, so that s1 6 t(1− δ)tM. Note that s =

∑
j aj = O(M) and

s2 logM−
∑
j∈J2

aj logaj =
∑
j∈J2

aj log
M

aj
6

∞∑
j=1

(1− δ)jM log 1
(1− δ)j = O(M).

We are done if t = 0, so assume t > 1. By convexity, s log s 6 s1 log s1+s2 log s2+s log 2.
Hence, recalling that a1 = . . . = at = s1/t, we have

s log s 6 s1 log
s1

t
+ s1 log t+ s2 log s2 +O(M)

6
∑
j∈J1

aj logaj + t(1− δ)tM log t+
∑
j∈J2

aj logaj +O(M)

=

m∑
j=1

aj logaj +O(M),

as claimed.

We are now ready to prove the ‘�ngerprint theorem’, and thus complete the proof
of Theorem 2.1.1.

Proof of Theorem 2.4.2. Let k > 2 and ε > 0 be arbitrary, let δ = δ(ε,k) > 0 be given
by Corollary 2.2.3, choose a large constant K = K(ε,k, δ), and let n ∈ N be su�ciently
large. For a given I ∈ I(Gk), we will apply Corollary 2.2.3 a certain number of times,
which we will denote by m = m(I), to construct two sequences of sets C1, . . . ,Cm+1

and T1, . . . , Tm. The construction will inductively maintain the following properties:

1. I ⊂ Ci+1 ∪ T1 ∪ · · · ∪ Ti,

2. The sets Ci+1, T1, . . . , Ti are pairwise disjoint,

3. Ci+1 only depends on Ci and Ti,

4. |Ci+1| 6 (1− δ)|Ci|.

To do this, �rst set C1 := P(n). As long as |Ci| > (k− 1+ ε)
(
n
n/2

)
, let Ti ⊂ I ∩ Ci and fi

be given by Corollary 2.2.3, and set Ci+1 := fi(Ti) \ Ti ⊂ Ci \ Ti. We stop when we can
no longer apply Corollary 2.2.3, that is, when |Cm+1| < (k− 1+ ε)

(
n
n/2

)
.

We de�ne our �ngerprint (S, T ,C) of Gk by setting

T(I) := (T1, . . . , Tm) and C(T(I)) := Cm+1 ∪ T1 ∪ · · · ∪ Tm,
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and letting S := {T(I) : I ∈ I(Gk)}. Note that Property 3 implies C is well-de�ned, while
Property 1 guarantees that it is a container function.

In order to check that the constructed �ngerprint satis�es the conditions of the the-
orem, we �rst bound the sizes of the �ngerprints and the number of iterations of the
above procedure. To do so, let 2 6 m0 6 m be minimal such that |Cm0 | 6 3k

(
n
n/2

)
, and

observe that, by Property 4 and the de�nition (2.2) of τ(A),

τ(Ci)|Ci| 6

n−3 · 2n if i < m0,

n−1 · (1− δ)i−m0 · 3k
(
n
n/2

)
otherwise.

(2.6)

The geometric decay of |Ci|moreover immediately implies thatm = O(logn). We thus
obtain

m0−1∑
i=1

τ(Ci)|Ci| 6
m · 2n
n3 � 1

n2

(
n

n/2

)
and

m∑
i=m0

τ(Ci)|Ci| =
O(1)
n

(
n

n/2

)
.

(2.7)
Since |T(I)| =

∑m
i=1 |Ti| 6

∑m
i=1 kτ(Ci)|Ci|, adding the two bounds immediately proves

(a). Also, since n is su�ciently large,

|C(T(I))| = |Cm+1|+ |T1 ∪ · · · ∪ Tm| 6 (k− 1+ 2ε)
(
n

n/2

)
,

which proves (c), since ε > 0 was arbitrary.
It only remains to prove (b), which follows using Lemma 2.4.3. The �rst step is to

partition the collection of s-sets in S into subfamilies S(m̂0, t), where for given m̂0 ∈ N
and t = (t1, . . . , tm̂) ∈ Nm̂, we de�ne S(m̂0, t) to be set of all (T1, . . . , Tm̂) ∈ S such that
m̂0 is the smallest integer for which |Cm̂0 | 6 3k

(
n
n/2

)
and moreover |Ti| = ti for each

i ∈ [m̂].
In order to bound the number of elements of S(m̂0, t) of size s, set s1 =

∑m̂
i=m̂0

ti,
and observe that

m̂∑
i=m̂0

ti log
1
ti

6 s1 log
1
s1

+
O(1)
n

(
n

n/2

)
, (2.8)

by Lemma 2.4.3 and the second bound in (2.6). Since each Ti is a subset of the corre-
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sponding Ci, we can use the trivial bound |Ci| 6 2n and the de�nition of m̂0 to write

∣∣S(m̂0, t)
∣∣ 6 m̂0−1∏

i=1

(
2n
ti

) m̂∏
i=m̂0

(
3k
(
n
n/2

)
ti

)

6

(
m̂0−1∏
i=1

2tin
)([

3ek ·
(
n

n/2

)]s1 m̂∏
i=m̂0

(
1
ti

)ti)

6

(
K
(
n
n/2

)
s1

)s1
exp

(
K

n

(
n

n/2

))
where the �nal step follows from the �rst sum in (2.7) and from applying the expo-
nential function to (2.8). Finally, note that the right-hand side is monotone in s1 on the
interval

(
0,K

(
n
n/2

)
/e
)
, and we can therefore replace s1 by s. Summing over the (at most

nO(n)) choices of t, m̂0 and m̂, the claimed bound follows.



the sharp threshold for maximum-size sum-free subsets in
even-order abelian groups

The work in this chapter is joint with Neal Bushaw, Robert Morris and Paul Smith. It is
adapted from an article [20] which will appear in Combinatorics, Probability & Comput-
ing.

3.1 introduction

In this chapterwewill determine the sharp threshold for themaximumsum-free subset
problem in an arbitrary even-order abelian group. Our main theorem improves some
recent results of Balogh, Morris and Samotij [13], who resolved the case G = Z2n, and
obtained weaker bounds in the general setting.

We consider the following question: How large is a maximum-size sum-free set in
a p-random subset of an abelian group? For the group Z2n, this problem was resolved
(asymptotically) by Conlon and Gowers [24] and Schacht [82], who determined the
following threshold:

max
{
|B| : B ⊂ A = (Z2n)p is sum-free

}
=


(
1+ o(1)

)
· 2pn if p� 1/

√
n(

1/2+ o(1)
)
· 2pn if p� 1/

√
n

(3.1)
with high probability as n → ∞. More precisely, one can show using the methods
of [24, 82] (see [13, 78]), and also using those of [8, 81], that (with high probability) the
maximum-size sum-free subsets of A contain only o(pn) even numbers. Moreover, a
corresponding result holds for any even-order abelian group. This fact will be a key
tool in the proof below.

Wewill be interested in the followingmore precise question, whichwas �rst studied
by Balogh, Morris and Samotij [13]. Given an even-order abelian groupG, note that the
maximum-size sum-free subsets of G are exactly the odd cosets of subgroups of index
2, and that a p-random subset A ⊂ G has a sum-free subset of (expected) size

max
{
|A ∩ O| : O is the odd coset of a subgroup of index 2

}
>

(
1
2 + o(1)

)
p|G|.

(3.2)
For which functions p = p(n) is it true that, with high probability, the size of the largest
sum-free subset of A is equal to the left-hand side of (3.2)? In other words, for which
densities does the exact extremal result in G transfer to the sparse random setting? It

37
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was shown in [13] that the threshold for this property is
( logn
n

)1/2 for every even-order1
abelian group, and moreover that there is a sharp threshold at

( logn
3n

)1/2 in the group
Z2n. In otherwords, writing SF(A) for the collection ofmaximum-size sum-free subsets
of A, and O2n for the set of odd numbers in Z2n, they proved that for every ε > 0,

P
(
SF
(
(Z2n)p

)
=
{
(Z2n)p ∩ O2n

})
→


0 if p 6

(
1− ε

)√ logn
3n

1 if p >
(
1+ ε

)√ logn
3n

as n → ∞. For more on the general theory of the existence of (sharp) thresholds, we
refer the reader to [15, 44, 51], and to [45] for an example involving monochromatic
triangles.

Since Balogh, Morris and Samotij [13] were able to prove such a sharp threshold for
the group Z2n, but only a weaker threshold result for other even-order abelian groups,
it is natural to ask whether one can also obtain a more precise result in the general
setting. In this chapter we answer this question in the a�rmative, by determining the
sharp threshold for every even-order abelian group. In order to state our main theo-
rem, we shall need the following function, which determines the location of the sharp
threshold.

De�nition 3.1.1. Given an abelian group G with |G| = 2n, let r(G) denote the number
of elements x ∈ G such that x = −x, and set

α(G) :=
log r(G)
logn and β(G) :=

r(G)

n
.

Now, given δ > 0, de�ne λ(δ)(G) as follows:

λ(δ)(G) :=


1/3 if α(G) 6 5/6

α(G) − 1/2 if α(G) > 5/6 and β(G) < δ

2/
(
4− β(G)

)
if β(G) > δ.

We encourage the reader to think of δ as a function going to zero slowly, and n as a
function going to in�nity much faster. The following theorem is our main result.

Theorem 3.1.2. For every ε > 0, and every su�ciently small 0 < δ < δ0(ε), there exists
n0(ε, δ) ∈ N such that the following holds for every n > n0(ε, δ). Let G be an abelian group of

1In fact Theorem 1.1 of [13] is more general: it determines the threshold for any abelian groupwhose
order has a (�xed) prime factor q with q ≡ 2 (mod 3). Here, as before, we set |G| = qn.
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order 2n, and let p ∈ (0, 1) with p > (logn)2/n. If A is a p-random subset of G, then

P
(
A∩O ∈ SF(A) for some O ∈ SF(G)

)
=


o(1) if p 6

(
1− ε

)√
λ(δ)(G)

logn
n

1+ o(1) if p >
(
1+ ε

)√
λ(δ)(G)

logn
n

.

Here, as usual, o(1) denotes a function that tends to zero as n→∞. We shall refer
to the two bounds as the 0- and 1-statements respectively.

The proof of Theorem 3.1.2 uses the method of [13], but we will require several
substantial new ideas in order to overcome various obstacles which do not occur in
the case G = Z2n. Many of these arise from the fact that SF(G) can be quite large
(as big as |G| in the case of the hypercube), which means that we must obtain much
stronger bounds than in [13] if we wish to apply the union bound. For the 0-statement
we shall do this using a recent concentration inequality of Warnke [92], which allows
us to deduce for almost all O ∈ SF(G) that, with very high probability, the set A ∩ O

is not a maximal sum-free set. For the 1-statement, however, such a straightforward
strategy is not feasible, since the threshold for the event thatA∩O is maximal for every
odd coset O ∈ SF(G) is not given by λ(δ)(G).

In order to avoid this problem, we need to show thatA∩O is amaximal sum-free set
for eachO ∈ SF(G) such that |A∩O| is maximal. Unfortunately, conditioning on the size
of A∩O introduces signi�cant dependence between odd cosets, and our �rst attempts
to prove the 1-statement failed as a consequence. We resolve this issue by �xing the
number of elements of A (i.e., coupling with the hypergeometric distribution), which
essentially eliminates the positive correlation between the quantities |A∩O| for di�erent
cosets.

A third issue involves the analysis of the Cayley graphs GS for each S ⊂ E, where E
is a subgroup of index 2, V(GS) = O (the corresponding odd coset) and xy ∈ E(GS) if
either x+ y ∈ S or x− y ∈ S. Although counting the edges in these graphs precisely is
not entirely trivial, we are fortunate that we can absorb most of the resulting mess into
an error term. However, we still need to do some rather careful (and delicate) counting
of the number of sets S that contain a given number of edges ofHW , the Cayley graph
of the setW = {a+ a : a ∈ O}, since this controls the size of e(GS), see Section 3.3.

The remainder of the chapter is organised as follows. In Section 3.2, we collect some
probabilistic tools and simple group-theoretic facts that will be needed later. In Sec-
tion 3.3 we analyse the Cayley graph GS for each set S ⊂ E, where E is a subgroup
of index 2, and count the number of such sets S whose Cayley graph has fewer edges
than expected. In Section 3.4 we deduce the 0-statement from Warnke’s concentration
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inequality (see Section 3.2), together with some of the more straightforward bounds
from Section 3.3. Finally, in Section 3.5 we prove the 1-statement of Theorem 3.1.2 us-
ing the method of [13], combined with the coupling argument and careful counting
described above. We end the chapter with a short Appendix, which contains a some-
what technical calculation involving the hypergeometric distribution.

We will also recall the FKG inequality and the concentration inequalities of Warnke
and Janson, and state some simple facts about abelian groups that will be useful in the
proof.

3.2 preliminaries

In this section, we will recall the FKG inequality and the concentration inequalities
of Warnke and Janson, and state some simple facts about abelian groups that will be
useful later on.

Probabilistic tools

Recently, Warnke [92] showed a powerful concentration inequality which improves
martingale concentration methods. The main advantage of his method is that it re-
laxes the Lipschitz condition by allowing us to specify an event Γ for which we know
the Lipschitz constant is smaller than theworst-case bound. Inmany combinatorial ap-
plications (see the article ofWarnke [92] for examples), this improvement is substantial.

Here, we state a simpler version of this inequality which will be our main tool for
the 0-statement in Section 3.4.

Warnke’s inequality. Given N ∈ N, let Γ ⊂ {0, 1}N be an event and f : {0, 1}N → R be a
function. Let p > 0 and X = (X1, . . . ,XN), where Xk ∈ {0, 1} and P(Xk = 1) = p for each
k ∈ [N], all independently, and set µ = E

[
f(X)

]
. Suppose that, for some c,d > 0,

|f(x) − f(y)| 6

 c if x ∈ Γ ,

d otherwise

whenever x,y ∈ {0, 1}N with |x− y| = 1, and let γ ∈ (0, 1).
There exists an event B = B(Γ ,γ) ⊂ {0, 1}N, with ¬B ⊂ Γ , such that

P
(
X ∈ B

)
6
N

γ
· P
(
X 6∈ Γ

)
,
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and moreover, setting C = c+ γ
(
d− c

)
, we have

P
(
f(X) 6 µ− t and ¬B

)
6 exp

(
−

t2

2C2pN+ Ct

)
for any t > 0.

We also recall two well-known probabilistic inequalities: Janson’s inequality and
the FKG inequality. We refer the reader to [5] for various more general statements and
their proofs.

Janson’s inequality. Suppose that {Bi}i∈I is a family of subsets of a �nite set X and let p ∈
[0, 1]. Let

µ =
∑
i∈I

p|Bi|, and ∆ =
∑
i∼j

p|Bi∪Bj|,

where i ∼ j denotes the fact that i 6= j and Bi ∩ Bj 6= ∅. Then,

P
(
Bi 6⊂ Xp for all i ∈ I

)
6 e−µ+∆.

Furthermore, if 2cµ 6 ∆ with c 6 1/4, then

P
(
Bi 6⊂ Xp for all i ∈ I

)
6 e−cµ

2/∆.

The FKG inequality. Suppose that {Bi}i∈I is a family of subsets of a �nite set X and let
p ∈ [0, 1]. Then

P
(
Bi 6⊂ Xp for all i ∈ I

)
>
∏
i∈I

P
(
Bi 6⊂ Xp

)
.

Another key probabilistic component, which will be of great importance in the
proof of the 1-statement, is the asymptotic stability theorem for even-order groups
proved by Balogh, Morris and Samotij, which already appeared as Theorem 1.5.8 in
the introduction.

Group-theoretic facts

In order to avoid repetition, we shall assume throughout the chapter that G is a �nite
abelian group of order 2n. Given a subset X ⊂ G, we write

• R(X) for the collection of elements x ∈ X for which x = −x, and r(X) = |R(X)|.

• m(X) for number of two-element subsets of X that are of the form {x,−x}.
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Wewill need a few basic facts about �nite abelian groups. The �rst one is well-known.

Fact 3.2.1. There exist integers 1 6 a1 6 . . . 6 ak and an odd-order group J such that

G ∼= Z2a1 ⊕ · · · ⊕ Z2ak ⊕ J.

The second fact we need is a characterisation of the index 2 subgroups of G.

Fact 3.2.2. Let I ⊂ {1, . . . ,k}. Writing x ∈ G as (x1, . . . , xk,y) via the isomorphism of
Fact 3.2.1, the subgroup HI =

{
x ∈ G :

∑
i∈I xi ≡ 0 (mod 2)

}
is isomorphic to

Z2a1 ⊕ · · · ⊕ Z2ai−1 ⊕ · · · ⊕ Z2ak ⊕ J,

where i = min I. Moreover, every subgroup of G of index 2 is equal to HI for some I 6= ∅.

Proof. Without loss of generality, assume that J = {0} (and thus omit the last coordinate
of elements of G) and I = {1, . . . ,k}. Then the image of the (injective) homomorphism

f : HI → Z2a1 ⊕ · · · ⊕ Z2ak

(x1, . . . , xk) 7→ (x1 + · · ·+ xk, x2, . . . , xk)

consists of the elements of Gwhose �rst coordinate is even. Observe that the addition
above is well-de�ned because there is a natural projection from Z2ai to Z2a1 for any
1 6 i 6 k.

Conversely, given a subgroup H of index 2, observe that 1Hc is a homomorphism
onto Z2, which implies that 1Hc(x1, . . . , xk) ≡

∑k
i=1 xi1Hc(ei) ≡

∑
i:ei/∈H xi (mod 2),

and thus H =
{
x ∈ G :

∑
i:ei/∈H xi ≡ 0 (mod 2)

}
.

Note that Fact 3.2.2 implies that G has exactly r(G) − 1 index 2 subgroups. Finally,
we make a simple but useful observation.

Fact 3.2.3. For any subgroup H of G of index 2, either r(H) = r(G) or r(H) = r(G \H).

Proof. For any x ∈ R(G \H), y 7→ y+ x is a bijection between R(H) and R(G \H).

3.3 edge counts in cayley graphs

In order to bound the probability of the event “A∩O ∈ SF(A)” for some�xedmaximum-
size sum-free set O ∈ SF(G) and its corresponding set of evens E = G \O, we will need
to consider events of the form

“
(
(A ∩ O) ∪ S

)
\ T is sum-free"



3.3. Edge counts in Cayley graphs 43

where S ⊂ A ∩ E, T ⊂ A ∩ O and |S| > |T |. This event is contained in the event that
(A∩O)\T is an independent set in the Cayley graph GS, de�ned below, and to bound its
probability we will need to analyse carefully the number of edges in this Cayley graph
for each such set S of evens. In particular, there may be an exceptional collection of sets
S with too few edges for our purposes (that is, for our application of the union bound
over all sets S), and we will need to bound the size of this collection.

Let us begin by stating precisely the main results we will prove in this section. We
�x throughout an arbitrary ε > 0, a su�ciently small δ > 0 and a su�ciently large
n ∈ N.2 We also �x an abelian group G of order 2n, an odd coset O ∈ SF(G), and its
corresponding set of evens E = G \ O, which is a subgroup of G of index 2. For each
set S ⊂ E, we de�ne the Cayley graph GS of S to have vertex set O and edge set

E(GS) =

{
{y, z} ∈

(
O

2

)
: y+ z ∈ S or y− z ∈ S

}
,

where (for simplicity) we do not permit GS to have loops. Recall that we write r(X) for
the number of order 2 elements inX ⊂ G, andm(X) for the number of pairs {x,−x} ⊂ X.

We will prove the following propositions.

Proposition 3.3.1. Let k ∈ N. For every 0 6∈ S ⊂ E with |S| = k andm(S) = 0, we have(
3k− r(S)

2

)
n−O

(
r(G) · k2

)
6 e(GS) 6

(
3k− r(S)

2

)
n.

Moreover, if r(G) 6 δn and 4δ 6 a 6 1, then there are at most
(
6/δ2

)k(
n/k

)k−(a/2−δ)k sets
0 6∈ S ⊂ E with

e(GS) 6

(
3k− r(S)

2 − ak

)
n

such that |S| = k andm(S) = 0.

When r(G) > δn the edge counts are slightly di�erent.

Proposition 3.3.2. If r(G) > δn, then, for every k ∈ N and 0 6 s 6 k, there are at most(
12/δ

)k(
n/k

)s sets 0 6∈ S ⊂ E with

e(GS) <
(
s+ 1

)(
n−

r(O)

2

)
(3.3)

such that |S| = k andm(S) = 0.
2We think of δ as a function of nwhich tends to zero su�ciently slowly as n→∞.



44 The sharp threshold for sum-free sets in even-order abelian groups

In order to prove Propositions 3.3.1 and 3.3.2, we will �rst count edges in Gx = G{x}

for each x ∈ E, and then study the intersections between these graphs. These will
depend on the parameter r(S), as the reader can see from the statement. However,
they will also depend on the intersection of Swith the set

W = {a+ a : a ∈ O},

and with its Cayley graph. We will use several times the fact that |W| = n/r(E).

Edge counts in Gx

We begin with the relatively simple task of counting the edges in the Cayley graph of
a single vertex x. To be precise, we will prove the following lemma.

Lemma 3.3.3. For every 0 6= x ∈ E,

e(Gx) = n−
r(O)

2 −
r(E)

2 1
[
x ∈W

]
+

(
n− r(O)

2

)
1
[
x /∈ R(G)

]
,

and ∆(Gx) 6 3.

Proof. Let us denote by G+
x the edges of the form x = y + z, and by G−

x the edges of
the form x = y − z, so Gx = G+

x ∪ G−
x . Note �rst that the graph G−

x has a very simple
structure, since every vertex has degree either one or two. More precisely, if x 6∈ R(G)
then it is a union of cycles, and so e(G−

x ) = n; if x ∈ R(G) then it is a matching, and so
e(G−

x ) = n/2.
In order to count the edges of G+

x \ G−
x , let us partition the vertex set O into (up to)

four parts, as follows:

(a) Set O1 = {a ∈ O : a + a = x}. If |O1| 6= 0, then x ∈ W, and moreover |O1| = r(E),
since the property a ∈ O1 is invariant under the addition of an order 2 element.
Moreover O1 contains no edges of G+

x , and O1 ∩ R(O) = ∅, since x 6= 0.

(b) SetO2 = R(O), the collection of order 2 elements inO. If x ∈ R(G) thenO2 induces
a matching in G+

x , since a ∈ R(O) if and only if b = x− a ∈ R(O).

(c) SetO3 = {b ∈ O\O2 : x−b ∈ R(O)}, and observe that if x ∈ R(G) then |O3| = 0 (as
above), whereas if x 6∈ R(G) then |O3| = |O2|, since if a ∈ R(O) then b = x − a 6∈
R(O). Moreover G+

x contains one edge for each element of O3.

(d) Set O4 = O \
(
O1 ∪O2 ∪O3

)
, and note that G+

x induces a perfect matching on O4.
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Now, observe that an edge of G+
x is also contained in G−

x if and only if it has an endpoint
in R(G), since if a+ b = x then b ∈ R(G) if and only if a− b = x. Therefore

e(Gx) =
(
1+ 1

[
x 6∈ R(G)

])n
2 +

|O4|

2

and
|O4| = n− 1

[
x ∈W

]
r(E) −

(
1+ 1

[
x 6∈ R(G)

])
r(O),

and so the lemma follows.

Lemma 3.3.3 has the following simple consequence, which we shall use several
times.

Observation 3.3.4. For every 0 6= x ∈ E, we have e(Gx) > max{n − r(G),n/2}. Moreover,
if 0 /∈ S ⊂ E satis�esm(S) = 0, then e(GS) >

∑
x∈S e(Gx)/2.

Proof. If x 6= 0, Lemma 3.3.3 implies that

e(Gx) > n−
r(O)

2 −
r(E)

2 1[x ∈W]

and, in particular, e(Gx) > n − r(G). In addition, either r(O) 6 r(E) 6 n/2 or |W| =

n/r(E) = 1, and so e(Gx) > n/2. Further, whenm(S) = 0, the set {x ∈ S : {a,b} ∈ E(Gx)}
contains at most two elements for any edge {a,b}.

Before continuing to the proof of Proposition 3.3.1, let us note how to obtain (heuris-
tically) the function λ(δ)(G) from Lemma 3.3.3. We call an element 0 6= x ∈ E safe if
(A∩O)∪ {x} is sum-free, and let SE(A) denote the collection of safe elements in E. Note
that an element x ∈ E is safe if3 and only if A ∩ O is an independent set in Gx.

We need one more de�nition, whose slightly odd appearance will be motivated by
the lemmas below.

De�nition 3.3.5. A subgroup E ⊂ G is nice if either r(G) 6 δn or r(O) = r(E).

The next lemma says that almost all index 2 subgroups are nice.

Lemma 3.3.6. G has at most 2/δ index 2 subgroups that are not nice.
3This is only true if we ignore sums of the form x = y + y. However, such sums will never play a

signi�cant role in any of the calculations below.
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Proof. Clearly if r(G) 6 δn then all subgroups are nice, so let us assume r(G) > δn. By
Fact 3.2.1, we canwriteG ∼= Zk2⊕H, whereH = Z2a1⊕· · ·⊕Z2a`⊕Jwith 2 6 a1 6 · · · 6 a`
and |J| odd. Since r(G) = 2k+` and |G| > 2k+2`, Fact 3.2.2 implies that there are at most
2` 6 2/δ subgroups E ⊂ G of index 2 that are not isomorphic to Zk−1

2 ⊕ H. But if
E ∼= Zk−1

2 ⊕H, then r(O) = r(E), as required.

We nowprove the following bound on the expected number of safe elements, which
we will use in the proof of the 0-statement of Theorem 3.1.2.

Lemma 3.3.7. If logn
n
� p 6

(
1− ε

)√
λ(δ)(G)

logn
n

and E is nice, then

E
[
|SE(A)|

]
� logn

p
.

Proof. Suppose �rst that r(G) 6 δn, and to simplify the notation let us write δ = o(1)
(as noted above, we may assume that this holds as n → ∞), and thus r(G) = o(n). It
follows from Lemma 3.3.3 that

e(Gx) =

 n+ o(n) if x ∈ R(G)

3n/2+ o(n) if x 6∈ R(G).
(3.4)

Now, by the FKG inequality, the expected number of safe elements x ∈ E is at least

E[|SE(A)|] >
∑
x∈E

(
1−p2

)e(Gx) > r(E)e−p
2(n+o(n))+

(
n−r(E)

)
e−p

2(3n/2+o(n)) � logn
p

.

To see the �nal step, it su�ces to check that the claimed inequality holds at the end-
points of the claimed range of p, since xe−cx2 is unimodal. At the lower end this is
immediate; at the upper end, note that e−p2n > n(1−ε)2λ(δ)(G) and r(E) = nα(G)+o(1),
and that

max
{
α(G) − λ(δ)(G), 1− 3λ(δ)(G)

2

}
=

1
2,

since λ(δ)(G) = max
{
1/3,α(G) − 1/2

}
.

When r(G) > δn, the (asymptotic) number of edges of Gx depends on both whether
x ∈ R(G) and whether x ∈ W. Indeed, the following table summarises the content of
Lemma 3.3.3.
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x ∈ R(G) x /∈ R(G)

x ∈W n−
r(O)

2 −
r(E)

2
3n
2 − r(O) −

r(E)

2

x 6∈W n−
r(O)

2
3n
2 − r(O)

Table 3.1: Summary of Lemma 3.3.3

Fortunately, however, |W| = n/r(E) = O(1/δ). We can therefore easily deduce a lower
bound on E[|SE(A)|] for nice subgroups. Indeed, since r(O) = r(E) = β(G)n/2, and
again using the unimodality of xe−cx2 , it follows from Table 3.1 above that

E
[
|SE(A)|

]
>
∑
x∈R(E)

(
1− p2

)e(Gx)
= Ω

(
r(E)e−p

2(n−r(O)/2)
)
� logn

p
, (3.5)

as required, where the last step follows since 1−
(
1− β(G)/4

)
λ(δ)(G) = 1/2.

Intersections between the graphs Gx and edge counts in GS

Wenow return to the proof of Proposition 3.3.1. In order to deduce the claimed bounds
on e(GS), we will need to control the size of the intersections between di�erent graphs
Gx. Recall that we have �xed an odd coset O ∈ SF(G), and thatW = {a + a : a ∈ O}.
The following observation is key.

Observation 3.3.8. Let x,y ∈ E with x 6∈ {y,−y}. If E(Gx) ∩ E(Gy) 6= ∅, then x+ y ∈W.

Proof. Suppose the edge {a,b} lies in both Gx and Gy. Then, without loss of generality,
we have a+ b = x and a− b = y, and so x+ y = a+ a, as claimed.

Moreover, we can bound the size of each intersection.

Observation 3.3.9.
∣∣E(Gx) ∩ E(Gy)∣∣ 6 2 · r(E) for every x,y ∈ E with x 6∈ {y,−y}.

Proof. Consider {a,b}, {c,d} ∈ E(Gx) ∩ E(Gy). Since x 6∈ {y,−y}, we may assume that
{a + b,a − b} = {x,y} = {c + d, c − d}. It follows that a + a = x + y = c + c, and thus
c− a ∈ R(E). Moreover d ∈ {x− c,y− c}, and therefore, given {a,b}, there are at most
2 · r(E) choices for {c,d}, as claimed.
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Let us denote by HW the graph on vertex set E with edge set {xy : x + y ∈ W},
and note that we have ∆

(
HW

)
6 d, where d := |W| = n/r(E). By Observations 3.3.8

and 3.3.9, we have ∑
x,y∈S,x 6=y

∣∣E(Gx) ∩ E(Gy)∣∣ 6 2 · r(E) · e(HW [S]) (3.6)

for every S ⊂ E with m(S) = 0. Since, by Lemma 3.3.3, we have good bounds on the
sum of e(Gx) over x ∈ S, the following lemma is all we need to complete the proof of
Proposition 3.3.1.

Lemma 3.3.10. For every δ 6 a 6 1/2, there are at most
(
6/δ2

)k(
n/k

)k−(1−δ)ak sets S ⊂ E

with |S| = k and

e
(
HW [S]

)
>
akn

r(E)
. (3.7)

Proof. We shall �rst bound the number of sequences (v1, . . . , vk) ∈ Ek such that the
set S = {v1, . . . , vk} satis�es |S| = k and (3.7). Given such a sequence, let us say (for
each j ∈ [k]) that the vertex vj is of ‘low degree’ if it is connected (by edges of HW) to
fewer than δad = δan/r(E) vertices of the set {v1, . . . , vj−1}, and say it is of high degree
otherwise.

Since ∆(HW) 6 d, it follows from (3.7) that in each such sequence there must be
at least (1 − δ)ak high-degree vertices, since the low-degree vertices contribute fewer
than δakd edges. Moreover, since there are at most (j− 1)d < kd edges ofHW leaving
the set {v1, . . . , vj−1}, there are at most k/δa choices for a high-degree vertex, given the
collection of vertices which have already been chosen.

Now, given a set J ⊂ [k] of size at least (1− δ)ak, corresponding to the positions of
vertices which are required to have high degree, there are at most(

k

δa

)|J|

nk−|J|

possible sequences, and this value is maximised when |J| is minimised. Therefore, con-
sidering all possible choices for J, it follows that there are at most

2k
(
k

δa

)(1−δ)ak

nk−(1−δ)ak

sequences with the desired properties.
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Finally, note that each set appears exactly k! times as a sequence, and therefore the
number of sets S ⊂ Ewith |S| = k satisfying (3.7) is at most(

2e
k

)k(
k

δa

)(1−δ)ak

nk−(1−δ)ak 6

(
2e
δ2

)k(
n

k

)k−(1−δ)ak

,

since a > δ, as required.

We are now ready to prove the two propositions.

Proof of Proposition 3.3.1. Let 0 6∈ S ⊂ E with |S| = k and m(S) = 0. By Lemma 3.3.3
and (3.6), and noting that |W| = n/r(E), we have

e(GS) >
∑
x∈S

(
n−

r(O)

2 −
r(E)

2 1
[
x ∈W

]
+

(
n− r(O)

2

)
1
[
x /∈ R(G)

])
− 2 · r(E)e(HW [S])

> k
(
n− r(G)

)
+

(
n− r(O)

2

)(
k− r(S)

)
− 2 · r(E)e(HW [S])

>

(
3k− r(S)

2

)
n−O

(
r(G) · k2

)
,

as required, and the upper bound follows similarly. Moreover, the same calculation
implies that if e(GS) 6

(3k−r(S)
2 − ak

)
n and r(G) 6 δn, then

e
(
HW [S]

)
>

(a− 3δ/4)kn
2 · r(E) ,

and by Lemma 3.3.10 there are at most
(
6/δ2

)(
n/k

)k−(a/2−δ)k such sets S ⊂ E with
|S| = k.

Proof of Proposition 3.3.2. The proof is similar to that of Lemma 3.3.10, but for complete-
ness we give the details. We will count sequences (v1, . . . , vk) ∈ Ek such that the set
S = {v1, . . . , vk} satis�es |S| = k and (3.3). Let Sj = {v1, . . . , vj}, and observe that, since
m(S) = 0, each 0 6= x 6∈ W that sends no edges of HW into Sj adds at least n − r(O)/2
edges to GS, by Lemma 3.3.3 (see Table 3.1) and Observation 3.3.8. There are therefore
at most s such ‘bad’ vertices, since e(Gs) < (s+ 1)(n− r(O)/2).

Now, since ∆(HW) 6 |W| = n/r(E) 6 2/δ and |Sj| = j < k, it follows that there are
at most 2k/δ vertices in W ∪ NHW

(Sj), and hence at most this many choices for each
‘good’ vertex. Note that there are at most 2k choices for the indices j such that vj is bad,
and each set S is counted k! times as a sequence. Thus, the number of sets 0 6∈ S ⊂ E

with |S| = k satisfying (3.3) is at most

2k
k! ·

(
2k
δ

)k−s
ns 6

(
4e
δ

)k(
n

k

)s
,

as claimed.



50 The sharp threshold for sum-free sets in even-order abelian groups

3.4 proof of the 0-statement

In this section we will prove that if A ⊂ G is a p-random set and

logn
n
� p 6

(
1− ε

)√
λ(δ)(G)

logn
n

, (3.8)

then A ∩ O 6∈ SF(A) for every O ∈ SF(G) with high probability as n → ∞. The main
step will be proving the following proposition.4

Proposition 3.4.1. For every ε > 0, the following holds for every su�ciently large n ∈ N. Let
G be an abelian group of order 2n, let O ∈ SF(G) and suppose that E = G \ O is nice and that
p ∈ (0, 1) satis�es (3.8). If A is a p-random subset of G, then

P
(
A ∩ O ∈ SF(A)

)
6

1
n2 .

Recall also that at most O(1/δ) of the index 2 subgroups of G are not nice. We will
use the following simple-sounding lemma to deal with these subgroups.

Lemma3.4.2. LetM denote the collection of odd cosetsO ∈ SF(G) such that |A∩O| is maximal.
Then with high probability there is an O ∈M such that E = G \ O is nice.

The proof of Lemma 3.4.2, although not di�cult, is surprisingly technical, and sowe
shall postpone it to the appendix. Note that the 0-statement in Theorem 3.1.2 follows
from Proposition 3.4.1 and Lemma 3.4.2 by taking a union bound over nice subgroups.

Recall that an element x ∈ E is called safe if (A∩O)∪ {x} is sum-free, and that SE(A)
denotes the collection of safe elements in E. We will bound the probability of the event
A ∩O ∈ SF(A) by the probability that there exists no safe element x ∈ A ∩ E. Since the
random variable SE(A) is independent of the set A ∩ E, it follows that

P
((
A ∩ O ∈ SF(A)

)
∩
(
|SE(A)| >

3 logn
p

))
6
(
1− p

)(3 logn)/p
6

1
n3 , (3.9)

and so it is enough to consider the event that |SE(A)| 6 (3 logn)/p.
We will bound the probability of this event using Warnke’s concentration inequal-

ity, which was stated in Section 3.2. The �rst step – showing that |SE(A)| has large
expected value – was already carried out in the previous section. Indeed, we have

E
[
|SE(A)|

]
� logn

p
(3.10)

4We remark that the bound 1/n2 could easily be replaced by 1/nC for any C > 0.
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whenever p ∈ (0, 1) satis�es (3.8), by Lemma 3.3.7. Our main task will be to prove the
following lemma, which shows that |SE(A)| is concentrated around its expected value.

Lemma 3.4.3. If p ∈ (0, 1) satis�es (3.8), then

P
(
|SE(A)| 6

E
[
|SE(A)|

]
2

)
6

1
n3 .

We will prove Lemma 3.4.3 by applying Warnke’s inequality to the function A 7→
|SE(A)|. In order to do so, we need to de�ne an event Γ ⊂ P(O), and prove the ‘typical
Lipschitz condition’

∣∣|SE(A)|− |SE(B)|
∣∣ 6 { c(E,p) := n−(1/4+δ) · E

[
SE(A)

]
if A ∈ Γ ,

n otherwise
(3.11)

for every A,B ⊂ O with |A4B| = 1 (note that c(E,p) � 1, by (3.10)). We de�ne the
event Γ so that (3.11) holds by de�nition:

Γ :=
{
A ⊂ O : max

{∣∣|SE(A)|− |SE(B)|
∣∣ : |A4B| = 1

}
6 c(E,p)

}
. (3.12)

We would like to show that P
(
A 6∈ Γ

)
6 n−5, since this will imply the desired upper

bound on the probability of the event B given by Warnke’s inequality.
The main technical step in the proof of Lemma 3.4.3 is proving such a bound on the

probability that A 6∈ Γ . To do so, note �rst that if A /∈ Γ then there exists u ∈ O such
that

∣∣|SE(A)|− |SE(A∆{u})|
∣∣ > c(E,p). Let Γc(u) be the set of choices ofA for which this

property holds, so that Γc =
⋃
u∈O Γ

c(u), and note that, by symmetry,5

P
(
A ∈ Γc(u)

∣∣u ∈ A) = P
(
A ∈ Γc(u)

∣∣u 6∈ A). (3.13)

We will bound P
(
A ∈ Γc(u)

)
for each �xed u ∈ O, and then sum over u.

Motivated by (3.13), let us �x u ∈ O, assume that u 6∈ A, and write

YE
u(A) = SE(A) \ SE(A ∪ {u}).

Observe that A ∈ Γc(u) if and only if |YE
u(A)| > c(E,p). We will prove the following

lemma.

Lemma 3.4.4. For every k satisfying 25 < k 6
√

1/δ,

P
(
A 6∈ Γ

)
6 c(E,p)−k

∑
u∈O

E
[∣∣YE

u(A)
∣∣k]� 1

n5

as n→∞.
5Indeed, if B = A∆{u} then A ∈ Γc(u)⇔ B ∈ Γc(u)⇔

∣∣|SE(A)|− |SE(B)|
∣∣ > c(E,p).
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Note that the �rst inequality follows from the comments above and Markov’s in-
equality. The intuition behind the second inequality is based on our expectation that
|YE
u(A)| = Θ(p

∣∣SE(A)|), and that the events
{
z ∈ YE

u(A) : z ∈ E
}
are more or less in-

dependent of one another. We expect |YE
u(A)| to take roughly this value since YE

u(A) ⊂
SE(A), and moreover for each z ∈ YE

u(A) there is a v ∈ O with uv ∈ E(Gz) such that
v ∈ A.

In order to make this argument precise, the following notion will be crucial. Fix
u ∈ O, and say that a set 0 6= Z ⊂ E is covered by Y ⊂ O if for each z ∈ Z there is a
y ∈ Y such that uy ∈ E(Gz). Say that Z is cover-maximal if |Y| > |Z| for every set Y that
covers Z, and for each Z ⊂ E choose a maximum-size cover-maximal subset g(Z) ⊂ Z.
Note that since any singleton in Z is cover-maximal, g(Z) is non-empty. The following
lemma is key.

Lemma 3.4.5. For each Z ⊂ E, there are at most 12|Z| sets Z ′ ⊂ E such that g(Z ′) = Z.

Proof. Consider a set Z ′ ⊂ E such that g(Z ′) = Z. Then for any z ∈ Z ′ \ Z, there must
exist some set Y ⊂ O of size |Z| that covers Z ∪ {z} (and hence also covers Z), otherwise
the set Z ∪ {z} contradicts the maximality in the de�nition of g(Z ′).

We claim that there are at most 3|Z| sets Y ⊂ O of size |Z| covering Z. Indeed, since
Z is cover-maximal, Y must contain exactly one element of NGz(u) for each z ∈ Z, and
these neighbourhoods must be disjoint. Since ∆(Gz) 6 3, it follows that we have at
most 3|Y| = 3|Z| choices for Y. But each such set Y covers at most 3|Z| elements (since
each is in (Y ± u) ∪ (u − Y)), and each z ∈ Z ′ \ Zmust be covered by some such Y, by
the comments above. We therefore have at most 3|Z| · 22|Z| = 12|Z| possible pre-images
of Z, as claimed.

We also need the following simple observation, which follows easily from the de�-
nition.

Observation 3.4.6. If Z is cover-maximal and {a,−a} ⊂ Z, then a = −a.

Proof. The element u+ a ∈ O covers both a and −a, and so if {a,−a} ⊂ Z and a 6= −a

then there exists a set Y with |Y| 6 |Z|− 1 which covers Z.

We are ready to prove Lemma 3.4.4.

Proof of Lemma 3.4.4. Consider the family Mk of non-empty cover-maximal sets Z ⊂ E

with |Z| = k, and note that if Z ′ ⊂ Z, then trivially

P
(
Z ′ ⊂ YE

u(A)
)
> P

(
Z ⊂ YE

u(A)
)
.
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Thus, by Lemma 3.4.5, we have

∑
Z6|k|

P
(
Z ⊂ YE

u(A)
)
6 12k

k∑
`=1

∑
Z∈M`

P
((

|A ∩NGZ(u)| > |Z|
)
∩
(
Z ⊂ SE(A)

))
,

since each set Z contains a non-empty cover-maximal set g(Z), and each such set is
counted at most 12k times. Now, since |NGZ(u)| 6 3|Z|, the right-hand side is at most

12k
k∑
`=1

∑
Z∈M`

23`p` · P
(
Z ⊂ SE(A)

)
, (3.14)

by the FKG inequality, since
{
Z ⊂ SE(A)

}
is decreasing inA, whereas

{
|A∩NGZ(u)| >

|Z|
}
is clearly increasing.
We will apply Janson’s inequality to bound P

(
Z ⊂ SE(A)

)
for each Z ∈ M`. Note

that m(Z) = 0, by Observation 3.4.6, and that Z ⊂ SE(A) implies that A ∩ O is an
independent set in GZ, and suppose �rst that r(G) 6 δn. Then,

µ := p2e(GZ) >

(
p2
∑
z∈Z

e(Gz)

)
−O
(
δ`2p2n

)
and ∆ := p3

∑
v∈O

(
dGZ(v)

2

)
= O

(
`2p3n

)
,

since
∣∣E(Gy) ∩ E(Gz)∣∣ 6 2 · r(E) = O(δn) for every y, z ∈ Z by Observation 3.3.9.

Therefore, since e(Gz) > n/2 for every 0 6= z ∈ E by Observation 3.3.4, and ` 6 k 6

1/
√
δ, it follows by Janson’s inequality and (3.8) that

P
(
Z ⊂ SE(A)

)
6 nO(δ`2) exp

(
− p2

∑
z∈Z

e(Gz)

)
= nO(δ`2)

∏
z∈Z

(
1− p2

)e(Gz),
since 1− p2 > e−p2−p4 when p is su�ciently small, and p4e(Gz) = o(1). Thus∑

Z∈M`

P
(
Z ⊂ SE(A)

)
6 nO(δ`2)

∑
Z∈M`

∏
z∈Z

(
1− p2

)e(Gz)
6 nO(δ`2)

(∑
z∈E

(
1− p2

)e(Gz))` 6 nO(δ`2) · E
[
|SE(A)|

]`, (3.15)

where the �nal inequality follows by the FKG inequality.
On the other hand, if r(G) > δn then, by Proposition 3.3.2, there are at most ns+o(1)

sets Z ⊂ Ewith |Z| = `,m(Z) = 0 and

s

(
n−

r(O)

2

)
6 e(GZ) < (s+ 1)

(
n−

r(O)

2

)
.
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Thus, applying Janson’s inequality as before, we obtain6

∑
Z∈M`

P
(
Z ⊂ SE(A)

)
6 no(1)

∑̀
s=1

(
n
(
1− p2

)n−r(O)/2
)s

= no(1)
(
1+ n

(
1− p2

)n−r(O)/2
)`

6 no(1) · E
[
|SE(A)|

]`, (3.16)

by (3.5). Combining (3.14), (3.15) and (3.16), it follows that

E
[∣∣YE

u(A)
∣∣k] 6 no(1) ·

k∑
`=1

∑
Z∈M`

p` · P
(
Z ⊂ SE(A)

)
6 nO(δk2)

(
p · E

[
|SE(A)|

])k
,

and the lemma follows, since c(E,p)−1 · p · E
[
|SE(A)|

]
� n−1/5−ε.

It is now straightforward to deduce Lemma 3.4.3, and hence Proposition 3.4.1.

Proof of Lemma 3.4.3. We apply Warnke’s inequality to the function A 7→ |SE(A)| and
the event Γ de�ned in (3.12), with

c = c(E,p)� 1, d = n, γ =
c(E,p)
n

and t =
E
[
|SE(A)|

]
2 .

We obtain an event B such that

P
(
A ∈ B

)
6

n2

c(E,p) · P
(
A 6∈ Γ

)
� 1

n3 ,

where the last inequality follows by Lemma 3.4.4, such that

P
(
|SE(A)| 6

E
[
|SE(A)|

]
2

)
6 P

(
A ∈ B

)
+ exp

(
−

t2

4c(E,p)2pn+ 2c(E,p)t

)
6
o(1)
n3 + exp

(
− nδ

)
6

1
n3 ,

as required.

Proof of Proposition 3.4.1. We split the event A ∩ O ∈ SF(A) into two parts, depending
on whether or not |SE(A)| 6 (3 logn)/p. By Lemmas 3.3.7 and 3.4.3, the probability
that |SE(A)| 6 (3 logn)/p is at most 1/n3. On the other hand, by (3.9), the probability
that A ∩ O ∈ SF(A) and |SE(A)| > (3 logn)/p is at most 1/n3. Therefore

P
(
A ∩ O ∈ SF(A)

)
6 P

(
|SE(A)| 6

3 logn
p

)
+

1
n3 6

1
n2 ,

as required.
6When s = `, we trivially bound the number of sets Z such that e(GZ) > `

(
n− r(O)

2

)
by n`.
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The 0-statement now follows immediately.

Proof of the 0-statement in Theorem 3.1.2. Recall that an abelian group G has at most |G|
index 2 subgroups. Thus, by Proposition 3.4.1 and the union bound, it follows thatwith
high probabilityA∩O 6∈ SF(A)whenever E = G \O is nice. However, by Lemma 3.4.2,
with high probability there is an odd coset O ∈ SF(G) such that |A∩O| is maximal and
E = G \ O is nice. Hence with high probability A ∩ O 6∈ SF(A) for every O ∈ SF(G), as
required.

3.5 proof of the 1-statement

In this section we will prove that if A ⊂ G is a p-random set and

p >
(
1+ ε

)√
λ(δ)(G)

logn
n

,

then everyB ∈ SF(A) is equal toA∩O for someO ∈ SF(G), with high probability asn→∞. The proof has three steps: an application of Theorem 1.5.8 to obtain an asymptotic
version, an argument for a given odd coset O ∈ SF(G), using the method of [13] (see
Lemma 3.5.1), and a comparison with the hypergeometric distribution, which allows
us to a partition the odd cosets depending on the size ofA∩O (see Lemma 3.5.2). Recall
throughout that we have already �xed an arbitrary ε > 0, a su�ciently small δ > 0 and
a su�ciently large n ∈ N.

We begin by proving the statement we will require for a given odd cosetO ∈ SF(G).
For each k ∈ N, letBO

k (A) denote the event that there exist sets S ⊂ A∩E and T ⊂ A∩O,
with |S| = k > |T |, such that

(
(A ∩ O) ∪ S

)
\ T is sum-free.

Lemma 3.5.1. Let G be an abelian group of order 2n, and let O ∈ SF(G). Suppose that

p >
(
1+ ε

)√
λ(δ)(G)

logn
n

,

and let p1 = (1 − δ)p and p2 = (1 + δ)p. Set A = A1 ∪A2, where A1 is a p1-random subset
of O and A2 is a p2-random subset of E = G \ O. Then

P
(
BO
k (A)

)
6 max

{
n−δk, e−

√
n
}

for every 1 6 k 6 δpn.

Let us denote by Pp± = PO
p± the probability distribution in Lemma 3.5.1, in which

each element ofO is chosen (independently) with probability (1−δ)p and each element
of E is chosenwith probability (1+δ)p. Note that the eventBO

k (A) is increasing inA∩E
and decreasing in A ∩ O, so Pp

(
BO
k (A)

)
6 Pp±

(
BO
k (A)

)
for every δ > 0.
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Proof of Lemma 3.5.1. The proof of the lemma follows closely the method of Balogh,
Morris and Samotij [13, Section 5], and so we shall skip some of the details. We will
bound the expected number of good triples (S, T ,U) with the following properties:

(i) S ⊂ A ∩ Ewith |S| = k,

(ii) T ,U ⊂ A ∩ O are disjoint sets with |U| 6 |T | 6 k,

(iii) (A ∩ O) \ T is an independent set in GS,

(iv) T ⊂ NGS(U).

It was shown in [13, Claim 2] that ifBO
k (A) holds, then there exists such a triple. Indeed,

this follows by �rst taking T minimal, and then taking a maximal matchingM from T

to A \ T in GS. We set U equal to the set of vertices in A \ T that are incident toM.
Let Z(k, `, j,m, r) denote the number of such triples (S, T ,U) with |S| = k, |T | = `,

|U| = j,m(S) = m and r(S) = r. We note that by de�nition 2m+ r 6 k, and de�ne

Zk :=

k∑
`=0

∑̀
j=0

k/2∑
m=0

k−2m∑
r=0

Z(k, `, j,m, r).

By the discussion above,

P
(
BO
k (A)

)
6 E

[
Zk
]
=

k∑
`=0

∑̀
j=0

k/2∑
m=0

k−2m∑
r=0

E
[
Z(k, `, j,m, r)

]
, (3.17)

and therefore it will su�ce to bound E[Z(k, `, j,m, r)] for each k, `, j, m and r. Let
p2n = C logn, where C > (1+ ε)λ(δ)(G). We will prove that

E[Z(k, `, j,m, r)] 6

 n−δk if k 6 δ/p

e−
√
n otherwise.

(3.18)

Let us �x k, `, j,m and r, and count the triples (S, T ,U) that contribute toZ(k, `, j,m, r).
First, for each S ⊂ E and `, j ∈ N, letW(S, `, j) denote the number of disjoint pairs (T ,U)
such that T ,U ⊂ A ∩ O and T ⊂ NGS(U), with |T | = ` and |U| = j. It was proved in [13]
that if |S| = k and 0 6 j 6 ` 6 k 6 δpn, then

E
[
W(S, `, j)

]
6 (3e2p2n)k �

(
C logn

)2k
= no(k)
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assuming that C = no(1), as we may since the case C � 1 was already dealt with
in [13].7

Let §(k,m, r)denote the collection of sets S ⊂ Ewith |S| = k,m(S) = m and r(S) = r.
If (S, T ,U) is good, then no edge of the graph

GS,T ,U := GS
[
O \ (T ∪U)

]
has both its endpoints in A. Since the vertex set of GS,T ,U is disjoint from S ∪ T ∪ U, it
follows that the events e(GS,T ,U[A]) = 0 and S∪ T ∪U ⊂ A are independent. Therefore,

E
[
Z(k, `, j,m, r)

]
6

∑
S∈§(k,m,r)

P(S ⊂ A) · E
[
W(S, `, j)

]
·max
T ,U

{
P
(
e
(
GS,T ,U[A]

)
= 0
)}

6 pk · no(k)
∑

S∈§(k,m,r)

max
T ,U

{
P
(
e
(
GS,T ,U[A]

)
= 0
)}

, (3.19)

where the maximum is taken over all pairs (T ,U) as in the de�nition ofW(S, `, j). We
will bound the probability thatA is an independent set inGS,T ,U using Janson’s inequal-
ity. Indeed, let

µ := p2e
(
GS,T ,U

)
and ∆ :=

∑
v∈O\(T∪U)

p3
(
d(v)

2

)
,

where d(v) denotes the degree of v in GS,T ,U.
We break into two cases, depending on the number of elements of order 2 in G.

Case 1: r(G) 6 δn.

For each S ∈ §(k,m, r) let us choose a subset Ŝ ⊂ S with |Ŝ| = k −m, r(Ŝ) = r and
m(Ŝ) = 0. Applying Proposition 3.3.1 to Ŝ, it follows that

e(GS,T ,U) > e(GŜ) −O(k
2) >

(
3(k−m) − r

2

)
n−O

(
r(G) · k2

)
, (3.20)

and that, for every 4δ 6 a 6 1, the number of sets Ŝ ∈ §(k−m, 0, r) with

e(GŜ) 6

(
3(k−m) − r

2 − ak

)
n (3.21)

is at most
(
6/δ2

)k(
n/k

)k−(a/2−δ)k. Moreover, for each such set Ŝ there are at most 2k

corresponding sets S ∈ §(k,m, r). There are three sub-cases to consider:
7Alternatively, we may simply carry this factor of C2k through the proof, and perform an easy but

tedious calculation later on.
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(a) Suppose �rst that k 6 min
{√
δ/p, δn/r(G)

}
. Then, by (3.20),

µ >

(
3(k−m) − r

2 −O
(
δk
))
p2n and ∆ = O

(
k2p3n

)
= O

(√
δkp2n

)
,

since d(v) 6 3k for every v ∈ V(GS,T ,U). Thus, by Janson’s inequality, it follows that

P
(
e
(
GS,T ,U[A]

)
= 0
)

6 exp
(
−

(
3(k−m) − r

2 −O
(√
δk
))
p2n

)
,

and hence, by (3.19),

E
[
Z(k, `, j,m, r)

]
6 pk ·r(E)r ·nk−m−r+o(k) ·exp

(
−

(
3(k−m) − r

2 −O
(√
δk
))
p2n

)
.

Since p = n−1/2+o(1), r(G) = nα(G)+o(1) and p2n = C logn, it follows that

logE
[
Z(k, `, j,m, r)

]
logn 6

k

2 −m−
(
1−α(G)

)
r−C

(
3(k−m) − r

2 −O
(√
δk
))

+ o(k)

6

(
1− 3C

2

)
k −

(
2− 3C

2

)
m +

(
α(G) −

2− C
2

)
r + O

(
C
√
δk
)
6 −

εk

4 .

Indeed, the second term is decreasing inm for all C 6 2/3,8 and we have (considering
the cases r = 0 and r = k separately) 1−3C

2 6 −ε/2 and 1−3C
2 + α(G) − 2−C

2 6 −ε/3,
since (by assumption) we have C > (1+ ε)max

{
1/3,α(G) − 1/2

}
.

(b)Next, suppose that k > δn/r(G) but k 6
√
δ/p. We partition the space according

to the size of e(GŜ): to be precise, we de�ne i = i
(
Ŝ
)
by the inequalities

e(GŜ) ∈
(
3(k−m) − r

2 − δ
(
2i± 1

)(
k−m

))
n.

Since (1− δ)(k−m)n/2 6 e(GŜ) 6 (3(k−m)n− r)/2 by Observation 3.3.4 and Propo-
sition 3.3.1, we have 0 6 2δi(k −m) 6 (1 + δ)(k −m) − r/2 for every set Ŝ. Summing
over i9, applying Janson’s inequality as in case (a), and using (3.21), we obtain

E
[
Z(k, `, j,m, r)

]
6 nO(

√
δk)
∑
i>3

pk
(n
k

)k−m−ai/2
exp

(
−

(
3(k−m) − r

2 − ai

)
p2n

)
,

where ai = 2δi(k −m). Substituting p = n−1/2+o(1) and p2n = C logn, and using the
bound k > n1−α(G)+o(1), it follows that

logE
[
Z(k, `, j,m, r)

]
logn 6 max

a

{
−
k

2 +α(G)

(
k−m−

a

2

)
−C

(
3(k−m) − r

2 −a

)}
+O

(√
δk
)
.

8IfC > 2/3 then simply note that the previous line is decreasing inC, since 3(k−m)−r > 2k−m > k.
9The case i = O(1) was already covered by the proof in part (a).
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To bound the right-hand side, it su�ces to check the extremal points. When a = 0,
we note that r 6 k−m and α(G) − C 6 1/2− ε/3 to obtain a bound of

−k+ 2(α(G) − C)(k−m) +O
(√
δk
)
6 −

εk

4 .

At the other extreme, when a = (1+ δ)(k−m) − r/2, we obtain analogously that

−k+ (α(G) − C)(k−m) +
α(G)k

2 +O
(√
δk
)
6 −

εk

4 .

(c) Finally, suppose that k >
√
δ/p. Note �rst that e(GS,T ,U) > e(GŜ) − O(k

2) =

Ω(kn). The inequality here is as in (3.20), whereas the equality is by Observation 3.3.4.
We thus have
µ

∆
= O

(
n

p · e(GS,T ,U)

)
= O

(
1√
δ

)
and µ2

∆
= Ω

(
p · e(GS,T ,U)

2

k2n

)
= Ω(pn).

This follows because ∆ = O(k2p3n), since d(v) 6 3k for every v ∈ V(GS,T ,U), and
∆ = Ω

(
p3e(GS,T ,U)

2/n
)
, by convexity. Janson’s inequality then implies that

P
(
e
(
GS,T ,U[A]

)
= 0
)

= e−Ω(pn
√
δ),

from which it follows immediately that

E
[
Z(k, `, j,m, r)

]
6 pk+`+j

(
n

k

)(
n

`

)(
n

j

)
e−Ω(pn

√
δ)

6 p3k
(
n

k

)3

e−Ω(pn
√
δ) 6 e−Ω(pn

√
δ) 6 e−2

√
n,

since k 6 δpn. This completes the proof of (3.18) in the case r(G) 6 δn.

Case 2: r(G) > δn.

We now repeat the calculation above, replacing the bounds of Proposition 3.3.1with
those of Proposition 3.3.2. Suppose �rst that k 6

√
δ/p, and partition the space accord-

ing to the maximum s ∈ {0, . . . ,k} such that

e
(
GŜ
)
> s

(
n−

r(O)

2

)
.

By Proposition 3.3.2, there are at most (12/δ)k(n/k)s = O
(
ns+

√
δk
)
such sets S with

|S| = k. Applying Janson’s inequality, we obtain10

E
[
Z(k, `, j,m, r)

]
6 nO(

√
δk)

k∑
s=0

pk · ns · exp
(
− p2s

(
n−

r(O)

2

))
,

10When s = k, we trivially bound the number of sets Z such that e(GŜ) > k
(
n− r(O)

2

)
by nk.
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and hence

logE
[
Z(k, `, j,m, r)

]
logn 6 max

s

{
s− Cs

(
4− β(G)

4

)}
−
k

2 +O
(√
δk
)
6 −

εk

4

since C > (1 + ε) · 2/
(
4 − β(G)

)
. The case k >

√
δ/p is exactly the same as case (c),

above.
Having boundedE

[
Z(k, `, j,m, r)

]
in all cases, the result now follows easily by sum-

ming over `, j,m and r. Indeed, by (3.17), we have

P
(
BO
k (A)

)
6

k∑
`=0

∑̀
j=0

k/2∑
m=0

k−2m∑
r=0

E
[
Z(k, `, j,m, r)

]
6 max

{
n−δk, e−

√
n
}

as claimed. This completes the proof of the lemma.

In order to deduce the 1-statement in Theorem 3.1.2 from Lemma 3.5.1, we cannot
simply apply the union bound over odd cosets O ∈ SF(G), since an even-order abelian
group G can have as many as |G| distinct maximum-size sum-free subsets. On the
other hand, Lemma 3.5.1 (together with Theorem 1.5.8) does imply that the maximum-
size sum-free subset of A contains (with high probability) only O(1) even elements,
and moreover that any given collection of no(1) odd cosets are all likely to be ‘locally’
maximal.

Motivated by these observations, it is natural to attempt to partition the odd cosets
into two classes, depending on whether or not |A∩O| is withinO(1) of maxO ′ |A∩O ′|.
However, the random variables {|A ∩ O ′| : O ′ ∈ SF(G)} are highly correlated with one
another, due to the large (size n/2) overlap between di�erent odd cosets, and for this
reason the maximum is not easy to control.11

Weresolve this problemby couplingwith the hypergeometric distribution, forwhich
the positive correlation between the variables |A ∩ O| is greatly diminished. (In fact,
these variables are roughly pairwise independent of one another.) For each 0 6 m 6

2n, let Pm denote the probability measure on subsets of G obtained by choosing each
subset of size m with equal probability. Note that, since any pair of distinct sub-
groups E,E ′ ⊂ G of index 2 intersect in a subgroup of index 4, the information that
|A ∩ O| > a (and therefore |A ∩ E| 6 m− a) has very little in�uence on the probability
that |A ∩ O ′| > a.

11The behaviour of the randomvariablemaxO′ |A∩O ′| is in fact somewhatmysterious, andwe believe
that it merits further investigation.
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This crucial property of the hypergeometric distribution is captured by the follow-
ing lemma. Given k ∈ N and an odd coset O ∈ SF(G), de�neMO

k (A) to be the event
that |A ∩ O| > k, and let

Xk(A) :=
∑

O∈SF(G)

1
[
MO
k (A)

]
denote the number of odd cosets O ∈ SF(G) for which |A ∩ O| > k.

Lemma 3.5.2. Fix γ > 0 and h ∈ N, and let 1� m 6 2n. There exists b = b(G,m) ∈ [m]

such that the following holds. If A is chosen according to Pm, then

(a) E
[
Xb(A)

]
6 nγ and

(b) Xb+h(A) > 1 with high probability.

The proof of Lemma 3.5.2 involves some straightforward but technical approxima-
tions of binomial coe�cients, and so we defer it to an Appendix.

Let us denote by CO
k (A) the event that |A ∩ O ′| < |A ∩ O| + k for every O ′ ∈ SF(G).

We are now ready to complete the proof of our main theorem.

Proof of the 1-statement in Theorem 3.1.2. Let ε > 0 be arbitrary, and let 0 < δ < δ0(ε) be
su�ciently small and n > n0(ε, δ) be su�ciently large. LetG be an abelian group with
2n elements, let C > (1+ ε)λ(δ)(G), set

p =

√
C logn
n

,

and let A be a p-random subset of G. We shall prove that, with high probability as
n→∞, we have A ∩ O ∈ SF(A) for some O ∈ SF(G).

Indeed, let B ∈ SF(A) be a maximum-size sum-free subset of A, and note that, by
Cherno�’s inequality, and since A ∩ O is sum-free for every O ∈ SF(G), we have

|B| >

(
1
2 − δ

)
p|G| (3.22)

with high probability as n→∞. Therefore, applying Theorem 1.5.8, we deduce12 that,

12Note that p > C/
√
n since n > n0(ε, δ) is su�ciently large.
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with high probability, we have |B \ O| 6 δpn for some O ∈ SF(G). Therefore,

Pp
( ⋂

O∈SF(G)

{
A ∩ O 6∈ SF(A)

})
6 Pp

( ⋃
O∈SF(G)

δpn⋃
k=1

(
BO
k (A) ∩ CO

k (A)
))

+ o(1)

6
(1+δ2)2pn∑

m=(1−δ2)2pn

Pm
( ⋃

O∈SF(G)

δpn⋃
k=1

(
BO
k (A) ∩ CO

k (A)
))
· Pp

(
|A| = m

)
+ o(1),

(3.23)

wherewe again usedCherno�’s inequality. Letb = b(G,m) ∈ [m] be given byLemma3.5.2
(with h = 1/δ2) so, with high probability, we have |A ∩ O ′| > b + 1/δ2 for some
O ′ ∈ SF(G). Note that if such an O ′ exists, then CO

k (A) implies that either |A ∩ O| > b

or k > 1/δ2.
Let us �rst bound the probability when k > 1/δ2. Indeed, byHoe�ding’s inequality

(see, e.g., [22]), we have

Pm
(
BO
k (A)

)
=

m/2+δ2m∑
i=m/2−δ2m

Pm
(
BO
k (A)

∣∣ |A∩E| = i)Pm (|A∩E| = i)+ o( 1
n3

)
. (3.24)

Moreover the eventBO
k (A) is increasing inA∩E and decreasing inA∩O, and therefore

(recalling from Lemma 3.5.1 the de�nition of Pp±), we have

Pm
(
BO
k (A)

∣∣ |A ∩ E| = i
)

6 Pp±
(
BO
k (A)

∣∣∣ (|A ∩ E| > i
)
∩
(
|A ∩ O| 6 m− i

))
6 2 · Pp±

(
BO
k (A)

)
6 2 · n−1/δ � 1

n3 (3.25)

for every k > 1/δ2, by Lemma 3.5.1. Indeed, the �rst inequality follows since p±

chooses setsA uniformly given |A∩E| and |A∩O|. To see the second inequality, simply
note that Pp±

(
(|A ∩ E| > i) ∩ (|A ∩ O| 6 m − i)

)
> 1/2 for every i 6 m/2 + δ2m 6

pn+ 3δ2pn.
Next, let us bound the probability when |A ∩ O| > b. Similarly to above, we have

Pm
(
BO
k (A) ∩

(
|A ∩ O| > b

))
=

m−b∑
i=0

Pm
(
BO
k (A)

∣∣ |A ∩ E| = i
)
· Pm

(
|A ∩ E| = i

)
,

and moreover

Pm
(
BO
k (A)

∣∣ |A ∩ E| = i
)

6 2 · Pp±
(
BO
k (A)

)
6 2 · n−δ,

for every k > 1, by (3.25) and Lemma 3.5.1, and

Em
[
Xb(A)

]
=

∑
O∈SF(G)

m−b∑
i=0

Pm
(
|A ∩ E| = i

)
6 nδ/2,
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by Lemma 3.5.2(a). Therefore∑
O∈SF(G)

Pm
(
BO
k (A) ∩

(
|A ∩ O| > b

))
6 2 · n−δ/2 (3.26)

for every k > 1. Combining (3.24), (3.25) and (3.26), it follows that

Pm
( ⋃

O∈SF(G)

δpn⋃
k=1

(
BO
k (A) ∩ CO

k (A)
))

6 2 ·
1/δ2∑
k=1

n−δ/2 +

δpn∑
k=1/δ2

∑
O∈SF(G)

1
n3 6 n−δ/3

for everym ∈ (1± δ2)2pn, and every su�ciently large n. Hence, by (3.23), we have

Pp
( ⋂

O∈SF(G)

{
A ∩ O 6∈ SF(A)

})
= o(1),

as required.

3.a appendix: lemmas on the hypergeometric distribution

In this Appendix we will prove Lemmas 3.4.2 and 3.5.2. We begin with the latter.

Proof of Lemma 3.5.2

We are required to prove that there exists b = b(G,m) ∈ [m] with the following prop-
erties: at most no(1) odd cosets are expected to contain at least b elements of A, but
with high probability some odd coset contains at least b + ω elements of A, where
ω → ∞ as n → ∞. For the proof, it will be convenient to shift the notation bym/2 as
follows: For each k ∈ N and each O ∈ SF(G), let us denote byMO

k (A) the event that
|A ∩ O| > m/2+ k, and by

Xk(A) =
∑

O∈SF(G)

1
[
MO
k (A)

]
the number of odd cosets O ∈ SF(G) for which |A ∩ O| > m/2+ k.

Themain step in the proof of Lemma 3.5.2 is the following bound on the correlation
between the eventsMO

k (A). Here, and throughout this Appendix, we write x ∼ y to
mean that x/y→ 1 under the given asymptotics.

Lemma 3.A.1. Let O,O ′ ∈ SF(G) be distinct odd cosets, and let k,m ∈ N be such that
1� k� m� k2. Then

Pm
(
MO
k (A) ∩MO ′

k (A)
)
∼ Pm

(
MO
k (A)

)2
as n→∞.
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We begin by calculating Pm
(
MO
k (A)

)
asymptotically, using the following simple

bounds.

Lemma 3.A.2. Let a,b,N ∈ N with b3/2 � a� N. Then(
N
a+b

)(
N
a−b

)(2N
2a

) ∼
1√
πa

exp
(
−
b2

a

)
as a,N→∞.

Proof. This is nothing more than an application of Stirling’s formula

n! ∼
√
2πn

(n
e

)n
,

and the partial Taylor series∣∣∣∣log(1+ x) − x+ x2

2

∣∣∣∣ 6 O(|x|3),
which is valid for all su�ciently small |x|.

Let us denote by M̂O
x (A) the event that |A∩O| = m/2+ x, soMO

k (A) =
⋃
x>k

M̂O
x (A).

Lemma 3.A.3. For every O ∈ SF(G),

Pm
(
MO
k (A)

)
∼

√
2
πm

∑
x>k

exp
(
−
2x2
m

)
.

Proof. Observe that

Pm
(
MO
k (A)

)
=
∑
x>k

Pm
(
M̂O
x (A)

)
=
∑
x>k

(
n

m/2+x

)(
n

m/2−x

)(2n
m

) .

The result now follows by applying Lemma 3.A.2 withN = n, a = m/2 and b = x.

The following bounds now follow easily.

Lemma 3.A.4. For every O ∈ SF(G),

Pm
(
MO
k (A)

)
= Θ

(√
m

k
exp

(
−
2k2
m

))
.
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Proof. By Lemma 3.A.3, we have

Pm
(
MO
k (A)

)
= Θ

(
1√
m

exp
(
−
2k2
m

)∑
x>0

exp
(
−
4kx
m

−
2x2
m

))
.

Now, the asymptotics k� m� k2 imply that∑
x>0

exp
(
−
4kx
m

−
2x2
m

)
= Θ

(
m

k

)
,

and the lemma follows immediately.

When bounding the probability ofMO
k (A)∩MO ′

k (A), the following notation will be
useful. Set

Λ :=
{
(x,y, z) ∈ Z3 : x+ y > k, x+ z > k

}
,

and given O,O ′ ∈ SF(G) and x,y, z ∈ Z, denote by M̂O,O ′
x,y,z(A) the event that

|A ∩ O ∩ O ′| =
m

4 + x, |A ∩ O ∩ E ′| =
m

4 + y, and |A ∩ O ′ ∩ E| =
m

4 + z,

where as usual E = G \ O and E ′ = G \ O ′.

Lemma 3.A.5. Let O,O ′ ∈ SF(G) be distinct odd cosets. Then

Pm
(
MO
k (A)∩MO ′

k (A)
)
∼

4
√
2

(πm)3/2

∑
(x,y,z)∈Λ

exp
(
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2
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Proof. Note �rst that
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)
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)(
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By Lemma 3.A.2, this is asymptotically equal to√
2
πm
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(
−
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m

)√
4
πm

exp
(
−
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m
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and this expression is equal to

4
√
2

(πm)3/2
exp

(
−

2
m

(
(x+ y)2 + (x+ z)2 + (y+ z)2

))
.

Thus,

Pm
(
MO
k (A) ∩MO ′

k (A)
)
=
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Pm
(
M̂O,O ′
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4
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(πm)3/2

∑
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exp
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2
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,

as claimed.
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We are almost ready to prove Lemma 3.A.1; we need one more well-known fact.

Fact 3.A.6. ∑
x∈Z

exp
(
−
2x2
m

)
∼

√
πm

2
asm→∞.

Proof of Lemma 3.A.1. Observe that (a,b, c) is equal to (x+y, x+z,y+z) for some triple
(x,y, z) if and only if a+ b+ c is even and

(x,y, z) =
(
a+ b− c

2 , c+ a− b

2 , b+ c− a2

)
.

Letting
Λ ′ :=

{
(a,b, c) ∈ Z3 : a > k, b > k, a+ b+ c even

}
,

it follows that∑
(x,y,z)∈Λ

exp
(
−

2
m

(
(x+ y)2 + (x+ z)2 + (y+ z)2

))
=

∑
(a,b,c)∈Λ ′

exp
(
−

2
m

(
a2 + b2 + c2

))
.

Wemay split up the right-hand side into separate sums according to the parity of a+b,
and hence of c. Doing this, we may rewrite the sum as∑

a>k,b>k,
a+b even

exp
(
−
2(a2 + b2)

m

)∑
c even

exp
(
−
2c2
m

)

+
∑

a>k,b>k,
a+b odd

exp
(
−
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m

)∑
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exp
(
−
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)
.

Sincem is large, we have∑
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exp
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−
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m

)
∼
∑
c even

exp
(
−
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m

)
∼
1
2
∑
c

exp
(
−
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m

)
∼
1
2

√
πm

2 ,

where we have used Fact 3.A.6 for the �nal estimate. We also have

∑
a>k,b>k

exp
(
−
2(a2 + b2)

m

)
=

(∑
a>k

exp
(
−
2a2

m

))2

∼
πm

2 · Pm
(
MO
k (A)

)2
for an arbitrary odd coset O ∈ SF(G), by Lemma 3.A.3. Putting all this together, we
conclude that∑

(x,y,z)∈Λ

exp
(
−

2
m

(
(x+ y)2 + (x+ z)2 + (y+ z)2
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∼
(πm)3/2

4
√
2
·Pm

(
MO
k (A)

)2. (3.27)
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Wemay now use our estimate for Pm
(
MO
k (A)∩MO ′

k (A)
)
from Lemma 3.A.5. Together

with (3.27), this implies that

Pm
(
MO
k (A) ∩MO ′

k (A)
)
∼ Pm

(
MO
k (A)

)2,
as required.

Lemma 3.5.2 now follows by a straightforward application of the second moment
method. For completeness we give the details.

Lemma 3.A.7. If E
[
Xk
]
� 1, then Xk > 1 with high probability.

Proof. We have
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(
Xk
)
= E

[
X2
k

]
− E

[
Xk
]2

=
∑

O,O ′∈SF(G)
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1+ o(1)
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(
MO
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)2
− E
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by Lemma 3.A.1. Therefore,
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(
Xk
)
6 E

[
Xk
]
+
(
1+ o(1)

)
E
[
Xk
]2

− E
[
Xk
]2

= o
(
E
[
Xk
]2).

Hence, byChebyshev’s inequality, we haveXk > 1with high probability asn→∞.

It only remains to show that E
[
Xk
]
does not decay too quickly.

Lemma 3.A.8. For every constant h > 0, we have∣∣E [Xk]− E
[
Xk+h

]∣∣ = o
(
E
[
Xk
])
.

Proof. By Lemma 3.A.4, we have

EXk = Ω

(
r(G)
√
m

k
exp

(
−
2k2
m

))
.

whereas, by Lemma 3.A.3, we have

E
[
Xk
]
− E

[
Xk+h

]
= O

(
r(G)√
m

k+h∑
x=k

exp
(
−
2x2
m

))
= O

(
r(G)√
m

exp
(
−
2k2
m

))
.

Since we assumed that k� m, the lemma follows.

Proof of Lemma 3.5.2. If r(G) 6 nγ then the lemma is trivial (set b = 0), so assume that
r(G) > nγ and let b = b(G,m) be minimal such that E

[
Xb(A)

]
6 nγ. It follows that

E
[
Xb+h(A)

]
� 1, by Lemma 3.A.8, and hence that Xb+h(A) > 1 with high probability,

by Lemma 3.A.7, as required.
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Proof of Lemma 3.4.2

Let G be an even-order abelian group, and note that the lemma is trivial if r(G) 6

δn. Recall that M denotes the collection of odd cosets O ∈ SF(G) such that |A ∩ O| is
maximal. We are required to prove that with high probability there is an O ∈ M such
that E = G\O is nice. This is an immediate consequence of the following lemma. Recall
thatω = ω(n) is a function such thatω→∞ slowly as n→∞.

Lemma 3.A.9. With high probability, the following hold:

(a) |A ∩ O| 6 pn+ω
√
pn for every subgroup E = G \ O which is not nice.

(b) There exists a nice subgroup E = G \ O such that |A ∩ O| > pn+ω
√
pn.

Proof. Part (a) follows from Cherno�’s inequality and the union bound, since there
are at most O(1/δ) subgroups that are not nice. To prove part (b), we again couple
with the hypergeometric distribution, and apply Lemma 3.5.2. Indeed, we have |A| >

2pn − ω
√
pn with high probability, and for each m > 2pn − ω

√
pn there exists a

b = b(G,m) such that E
[
Xb(A)

]
6
√
n and Xb(A) > 1 with high probability in Pm.

But, by Lemma 3.A.4, we have E
[
Xb(A)

]
= n1+o(1) for b = pn+ω

√
pn, and so we are

done.



the typical structure of graphs with no large cliques

The work in this chapter is joint with József Balogh, Neal Bushaw, Hong Liu, Robert
Morris and Maryam Sharifzadeh. It is adapted from a preprint version [7].

4.1 introduction

In this chapter we extend the result of Kolaitis, Prömel and Rothschild to Kr+1-free
graphs, where r = r(n) is a function which is allowed to grow with n. More precisely,
we prove the following theorem.

Theorem 4.1.1. Let r = r(n) ∈ N0 be a function satisfying r 6 (logn)1/4 for every n ∈ N.
Then almost all Kr+1-free graphs on n vertices are r-partite.

Note that if r > 2 log2 n then almost all graphs are Kr+1-free (and almost none are
r-partite if r� n/ logn), so the bound on r in Theorem 4.1.1 is not far from being best
possible. It would be extremely interesting (and likely very di�cult) to determine the
largest α ∈ [1/4, 1] such that the theorem holds for some function r = (logn)α+o(1). It
may well be the case that this supremum is equal to 1, though we are not prepared to
state this as a conjecture.

Theorem 4.1.1 improves a recent result of Mousset, Nenadov and Steger [70], who
showed that, for the same1 family of functions r = r(n), the number of n-vertex Kr+1-
free graphs is

2tr(n)+o(n2/r), (4.1)

where tr(n) = ex(n,Kr+1) denotes the number of edges of the Turán graph, the r-
partite graph on n vertices with the maximum possible number of edges. The problem
for H-free graphs with v(H) → ∞ as n → ∞ was �rst studied by Bollobás and Niki-
forov [18], who proved bounds corresponding to (4.1) whenever v(H) = o(logn) and
χ(Hn) = r+1 is �xed. For more precise bounds for a �xed forbidden graphH, see [10],
and for similar bounds in the hereditary (i.e., induced-H-free) setting, see [2, 12, 19]
and the references therein.

The proof of Theorem 4.1.1 has three main ingredients. The �rst is the so-called
‘hypergraph container method’, which was recently developed by Balogh, Morris and
Samotij [8], and independently by Saxton andThomason [81]. Thismethodwas used by

1In fact, a very slightly weaker theorem was stated in [70], but a little additional case analysis easily
gives the result for all r 6 (logn)1/4.
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Mousset, Nenadov and Steger to prove Theorem 4.3.2, below, fromwhich they deduced
the bound (4.1) using a supersaturation theorem of Lovász and Simonovits [64].

In order to obtain the muchmore precise result stated in Theorem 4.1.1, we will use
the method of Balogh, Bollobás and Simonovits [10, 11], who determined the structure
of almost all H-free graphs for every �xed graph H. This powerful technique (see Sec-
tions 4.4 and 4.5) allows one to compare the number of Kr+1-free graphs that are ‘close’
to being r-partite, with the total number of Kr+1-free graphs.

The missing ingredient is the main new contribution of this work. In order to de-
duce from Theorem 4.3.2 a bound on the number of Kr+1-free graphs that are ‘far’
from being r-partite, we will need an analogue of the Lovász–Simonovits supersat-
uration result, mentioned above, for the well-known stability theorem of Erdős and
Simonovits [38]. Although a weak such analogue can easily be obtained via the regu-
larity lemma, this gives bounds which are far from su�cient for our purposes. Instead
we will adapt a recent argument due to Füredi [46] in order to prove the following
close-to-best-possible such result. We say that a graph G is t-far from being r-partite2 if
χ(G ′) > r for every subgraph G ′ ⊂ Gwith e(G ′) > e(G) − t.

Theorem 4.1.2. For every n, r, t ∈ N, the following holds. Every graphG on n vertices which
is t-far from being r-partite contains at least

nr−1

e2r · r!

(
e(G) + t−

(
1− 1

r

)
n2

2

)
copies of Kr+1.

Note that the graph obtained by adding t edges to the Turán graph Tr(n) is t-far
from being r-partite and has roughly t · (n/r)r−1 copies of Kr+1, so Theorem 4.1.2 is
sharp to within a factor of roughly er. We prove this supersaturated stability the-
orem in Section 4.2, and use it in Section 4.3 to count the Kr+1-free graphs that are
n2−1/r2-far from being r-partite. We prove various simple properties of almost all Kr+1-
free graphs in Section 4.4, and �nally, in Section 4.5, we use the Balogh–Bollobás–
Simonovits method to deduce Theorem 4.1.1.

4.2 a supersaturated erdős-simonovits stability theorem

In this section, we prove our ‘supersaturated stability theorem’ for Kr+1-free graphs.
As noted in the Introduction, we do so by adapting a proof of Füredi [46].

2Similarly, we say that G is t-close to being r-partite if it is not t-far from being r-partite.
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Given a graphG, a vertex v ∈ V(G) and an integerm ∈ N, let us writeKm(G) for the
number ofm-cliques in G, and Km(v) for the number of suchm-cliques containing v.

Proof of Theorem 4.1.2. We will prove by induction on r that

Kr+1(G) >
nr−1

c(r)

(
e(G) + t−

(
1− 1

r

)
n2

2

)
, (4.2)

where c(r) := 2(r + 1)r−1rr−1/r!, for every graph G on n vertices which is t-far from
being r-partite. Since c(r) 6 e2rr!, the theorem follows from (4.2).

Note �rst that the theorem holds in the case r = 1, since a graph is t-far from being
1-partite if and only if e(G) > t, and hence G has more than e(G)+t

2 copies of K2, as
required. So let r > 2 and assume that the result holds for r− 1. Let n, t ∈ N, and let G
be a graph that is t-far from being r-partite.

First, for each v ∈ V(G), set Bv = N(v) (the set of neighbours of v in G) and Av =

V(G) \ Bv, and observe that∑
u∈Av

d(u) = e(G) + e(Av) − e(Bv), (4.3)

where e(X) denotes the number of edges in the graph G[X]. Now, the graph G[Bv] is(
t− e(Av)

)
-far from being (r− 1)-partite, and so, by the induction hypothesis,

Kr+1(v) >
|Bv|

r−2

c(r− 1)

(
e(Bv) + t− e(Av) −

(
1− 1

r− 1

)
|Bv|

2

2

)
, (4.4)

since each copy of Kr in G[Bv] corresponds to a copy of Kr+1 in G that contains v.
Combining (4.3) and (4.4), noting that |Bv| = d(v), and summing over v, it follows

that

(r+ 1) · Kr+1(G) >
∑

v∈V(G)

d(v)r−2

c(r− 1)

(
e(G) + t−

∑
u∈Av

d(u) −

(
1− 1

r− 1

)
d(v)2

2

)
.

We claim that∑
v∈V(G)

∑
u∈Av

d(u)d(v)r−2 6
∑

v∈V(G)

∑
u∈Av

d(v)r−1 =
∑

v∈V(G)

d(v)r−1(n− d(v)
)
. (4.5)

Indeed, let X =
{
(v,u) : v ∈ V(G), u ∈ Av

}
denote the set of ordered pairs in the

sum above, and note that (v,u) ∈ X if and only if uv 6∈ E(G). Since X is symmetric,
the inequality in (4.5) now follows immediately for r = 2, and by the Cauchy-Schwarz
inequality ∑

(v,u)∈X

d(u)d(v) 6

( ∑
(v,u)∈X

d(u)2
)1/2( ∑

(v,u)∈X

d(v)2
)1/2
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for r = 3. For r > 4, applying Hölder’s inequality with p = r−2 and q = (r−2)/(r−3)
gives ∑

(v,u)∈X

d(u)d(v)r−2 6

( ∑
(v,u)∈X

d(u)r−2d(v)

)1/p( ∑
(v,u)∈X

d(v)r−1
)1/q

,

since
(
r − 2 − 1

r−2

)
r−2
r−3 = r2−4r+3

r−3 = r − 1. Once again using the symmetry of X, and
noting that 1− 1/p = 1/q, the claimed inequality (4.5) follows.

Combining the inequalities above, we obtain

(r+ 1) · Kr+1(G) >
∑

v∈V(G)

d(v)r−2

c(r− 1)

(
e(G) + t− d(v)n+

(
1+ 1

r− 1

)
d(v)2

2

)
.

Since the factor in parentheses is minimised when d(v) = r−1
r
· n, it follows that

(r+ 1) · Kr+1(G) >
∑

v∈V(G)

d(v)r−2

c(r− 1)

(
e(G) + t−

(
1− 1

r

)
n2

2

)
.

Finally, note that every graph G is
(
e(G)/r

)
-close to being r-partite (take a random

partition), and hence wemay assume that
(
1+ 1

r

)
e(G) >

(
1− 1

r

)
n2

2 , since otherwise the
theorem is trivial. Thus, by the convexity of xr−2,∑

v∈V(G)

d(v)r−2 > n ·
(
2e(G)
n

)r−2

>

(
r− 1
r+ 1

)r−2

nr−1,

and so, since c(r− 1) · (r+ 1)r−1 = c(r) · (r− 1)r−2, it follows that

Kr+1(G) >
nr−1

c(r)

(
e(G) + t−

(
1− 1

r

)
n2

2

)
,

as claimed.

4.3 an approximate structural result

In this section we will prove the following approximate version of Theorem 4.1.1.

Theorem 4.3.1. Let r = r(n) ∈ N be a function satisfying r 6 (logn)1/4 for each n ∈ N.
Then almost all Kr+1-free graphs on n vertices are n2−1/r2-close to being r-partite.

Theorem 4.3.1 is a straightforward consequence of Theorem 4.1.2 and the following
theorem, which was proved by Mousset, Nenadov and Steger [70] using the hyper-
graph container method of Balogh, Morris and Samotij [8] and Saxton and Thoma-
son [81]. The following theorem is slightly stronger than the result stated in [70], but
follows easily from essentially the same proof.
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Theorem 4.3.2. Let r = r(n) ∈ N be a function satisfying r 6 (logn)1/4 for each su�ciently
large n ∈ N. There exists a collection C of graphs such that the following hold:

(a) every Kr+1-free graph on n vertices is a subgraph of some G ∈ Cn,

(b) Kr+1(G) 6 nr+1−2/r2 for every G ∈ Cn, and

(c) |Cn| 6 exp
(
n2−2/r2),

where Cn =
{
G ∈ C : v(G) = n

}
.

Deducing Theorem 4.3.1 from Theorems 4.1.2 and 4.3.2 is straightforward.

Proof of Theorem 4.3.1. For each t ∈ N, set

Ft =

{
G : e(G) >

(
1− 1

r

)
|G|2

2 −
t

2 and G is t-far from being r-partite
}
,

and observe that if G ∈ Ft, then

Kr+1(G) >
|G|r−1 · t
e2r+1 · r! ,

by Theorem4.1.2. Therefore, lettingC be the collection of graphs given byTheorem4.3.2,
and setting t = n2−1/r2 , it follows from property (b) and the bound r 6 (logn)1/4 that
Cn ∩ Ft = ∅.

Now, for eachKr+1-free graphG onn vertices that isn2−1/r2-far frombeing r-partite,
we have G ∈ C for some C ∈ Cn, and by the observations above and the de�nition of
Ft, it follows that

e(C) 6

(
1− 1

r

)
n2

2 −
t

2.

Therefore, summing over all such containers, the number of such graphs is at most

exp
(
n2−2/r2) · 2tr(n)−t/2 � 2tr(n)−t/4,

which is clearly smaller than the number of Kr+1-free graphs on n vertices, as required.

4.4 some properties of a typical Kr+1-free graph

In this section we will prove some useful structural properties of almost all Kr+1-free
graphs. These structural properties will allow us (in Section 4.5) to count the Kr+1-
free graphs that are close to being r-partite, and hence to complete the proof of Theo-
rem 4.1.1. We emphasise that the lemmas in this section were all proved for �xed r ∈ N
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in [10], and no extra ideas are required in order to extend their proofs to our more
general setting.

Let us �x throughout this section a function 2 6 r = r(n) 6 (logn)1/4, and let us
denote by G the collection of Kr+1-free graphs on n vertices that are n2−1/r2-close to
being r-partite. We begin with two simple de�nitions.

De�nition 4.4.1 (Optimal partitions). An r-partition (U1, . . . ,Ur) of the vertex set of a
graph G is called optimal if the number of interior edges,

∑r
i=1 e(Ui), is minimised.

De�nition 4.4.2 (Uniformly dense graphs). We say that a graph G is uniformly dense if
for every optimal r-partition (U1, . . . ,Ur) and every pair {i, j} ⊂ [r], we have

e(A,B) > |A||B|

32 (4.6)

for every A ⊂ Ui and B ⊂ Uj with |A| = |B| > 2−8rn.

Lemma 4.4.3. The number of graphs in G that are not uniformly dense is at most

2tr(n)−2−17rn2 ,

and therefore almost all Kr+1-free graphs are uniformly dense.

Proof. In order to count such graphs, we�rst choose the optimal partitionU = (U1, . . . ,Ur),
the pair {i, j} ⊂ [r], and the setsA ⊂ Ui and B ⊂ Uj for which (4.6) fails. We then choose
the edges betweenA and B, and �nally the remaining edges. Note �rst that we have at
most rn choices for U, at most r2 choices for {i, j}, and at most 22n choices for the pair
(A,B).

Now, the number of choices for the edges between A and B is at most
|A||B|/32∑
k=0

(
|A||B|

k

)
6 n2(32e)|A||B|/32 6 2|A||B|/4,

and the number of choices for the remaining edges is at most

2tr(n)−|A||B|

(
n2

n2−1/r2

)
6 2tr(n)−|A||B| exp

(
n2−1/r2 logn

)
6 2tr(n)−|A||B|/2,

since U is optimal, |A||B| > 2−16rn2, and each G ∈ G is n2−1/r2-close to being r-partite.
It follows that the number of graphs in G that are not uniformly dense is at most

rn+2 · 22n · 2tr(n)−|A||B|/4 6 2tr(n)−2−17rn2 ,

as claimed.
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Our next de�nition controls the maximum degree inside the parts of an optimal
partition.

De�nition 4.4.4 (Internally sparse graphs). A graph G is said to be internally sparse if,
for every optimal partition U = (U1, . . . ,Ur) of G, we have

∆
(
G[Ui]

)
6 2−3rn. (4.7)

for every 1 6 i 6 r. Otherwise we say that G is internally dense.

Lemma 4.4.5. If G ∈ G is internally dense then it is not uniformly dense.

We will prove Lemma 4.4.5 using the following embedding lemma3 from [3].

Lemma 4.4.6. Let 0 < α < 1, G be a graph, and W1, . . . ,Wr ⊂ V(G) be disjoint sets of
vertices. Suppose that for every pair {i, j} ⊂ [r] and every pair of sets A ⊂ Wi and B ⊂ Wj

with |A| > αr|Wi| and |B| > αr|Wj|, we have e(A,B) > α|A||B|.
Then G contains a copy of Kr with one vertex in each setWj.

Proof of Lemma 4.4.5. Suppose for a contradiction that G ∈ G is both internally dense
and uniformly dense. Let U = (U1, . . . ,Ur) be the optimal partition given by De�ni-
tion 4.4.4, and suppose that v ∈ U1 has degree at least 2−3rn in G[U1]. For each i ∈ [r],
letWi = N(v) ∩Ui, and observe that |Wi| > 2−3rn, since U is optimal.

Observe thatW1, . . . ,Wr satisfy the conditions of Lemma 4.4.6 with α = 1/32, since
G is uniformly dense, so e(A,B) > |A||B|/32 for every pair {i, j} ⊂ [r], and everyA ⊂ Ui
and B ⊂ Uj with |A| = |B| > 2−8rn. Thus, by Lemma 4.4.6, there exists a copy of Kr
in the neighbourhood of v, which (including v) gives a copy of Kr+1 in G. But this is a
contradiction, since our graph is Kr+1-free, and so every internally dense graph G ∈ G

is not uniformly dense, as claimed.

Our �nal de�nition controls the sizes of the parts in an optimal partition.

De�nition 4.4.7 (Balanced graphs). AgraphG is said to be balanced if, for every optimal
partition U = (U1, . . . ,Ur) of G, we have

n

r
− 2−3rn 6 |Ui| 6

n

r
+ 2−3rn (4.8)

for every 1 6 i 6 r. Otherwise we say that G is unbalanced.
3In fact, the version stated here is slightlymore general than [3, Lemma 3.1], but follows from exactly

the same proof.
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Lemma 4.4.8. The number of unbalanced graphs in G is at most

2tr(n)−2−8rn2 ,

and therefore almost all Kr+1-free graphs are balanced.

Proof. Let G ∈ G be an unbalanced graph, and let U = (U1, . . . ,Ur) be an optimal
partition of G for which (4.8) fails. Note that

r−1∑
i=1

r∑
j=i+1

|Ui||Uj| 6 tr(n) − 2−7rn2,

since moving a vertex from a set of size at least n/r+a to one of size n/r−b creates at
least a+b new potential cross edges. The number of such graphs G ∈ G is therefore at
most

rn · 2tr(n)−2−7rn2 ·
(

n2

n2−1/r2

)
6 2tr(n)−2−8rn2 ,

as claimed.

4.5 the proof of theorem 4.1.1

In this section we will deduce Theorem 4.1.1 from Theorem 4.3.1, using the method of
Balogh, Bollobás and Simonovits [10, 11]. Recall from the previous section that almost
all Kr+1-free graphs are uniformly dense, internally sparse and balanced.

Let us �x throughout this section a function 2 6 r = r(n) 6 (logn)1/4.

De�nition 4.5.1. Let Q(n, r) denote the collection of Kr+1-free graphs on n vertices that
are not r-partite, but are n2−1/r2-close to being r-partite, and are moreover uniformly
dense, internally sparse and balanced.

Let K(n, r) denote the collection of Kr+1-free graphs on n vertices. We will prove
the following proposition, which completes the proof of Theorem 4.1.1.

Proposition 4.5.2. For every su�ciently large n ∈ N,

|Q(n, r)| 6 2−2−10rn · |K(n, r)|.

The idea of the proof is as follows. Wewill de�ne a collection of bipartite graphs Fm
(see De�nition 4.5.8) with parts Q(n, r,m) and K(n, r), where the sets Q(n, r,m) form
a partition of Q(n, r) (see De�nitions 4.5.4 and 4.5.5). These bipartite graphs will have
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the following property: the degree in Fm of each G ∈ Q(n, r,m) will be signi�cantly
larger than the degree of each G ∈ K(n, r) (see Lemmas 4.5.10 and 4.5.12). The result
will then follow by double counting the edges of each Fm and summing overm.

In order to de�ne Q(n, r,m) and Fm, we will need the following simple concept.

De�nition 4.5.3 (Bad sets). Let G be a graph and let U ⊂ V(G). A set of r vertices
R ⊂ V(G) \U is said to be bad towards U if it has no common neighbour in U.

In the following de�nition we may choose the partition U and the sets X(1), . . . ,X(r)

arbitrarily, subject to the given conditions.

De�nition 4.5.4. For each G ∈ Q(n, r), �x an optimal partition U = (U1, . . . ,Ur) of
V(G), and for each j ∈ [r] choose a maximal collection of vertex-disjoint sets X(j) ={
R
(j)
1 , . . . ,R(j)

`(j)

}
such that R(j)

i is bad towards Uj for each i ∈ [`(j)]. We de�ne

m(G) := max
{
`(j) : j ∈ [r]

}
,

let j(G) denote the smallest j for which this maximum is attained, and set

X(G) := R
(j(G))
1 ∪ · · · ∪ R(j(G))

`(j(G)).

With this de�nition in place, it is natural to partition Q(n, r) by the size ofm(G).

De�nition 4.5.5. For eachm ∈ N, we de�ne

Q(n, r,m) =
{
G ∈ Q(n, r) : m(G) = m

}
.

Before continuing, let us note a simple but key fact.

Lemma 4.5.6. m(G) > 1 for every G ∈ Q(n, r).

Proof. This follows from the fact thatG is not r-partite. Indeed, suppose thatm(G) = 0
and let x0x1 ∈ E(G[U1]) be an ‘interior’ edge of G with respect to U. Since there are no
bad r-sets towards Uj for any j ∈ [r], we can recursively choose vertices xj ∈ Uj such
that {x0, . . . , xj} forms a clique. But this is a contradiction, since G is Kr+1-free.

In order to establish an upper bound on those m which we need to consider, we
count those graphs in Q(n, r) for whichm(G) is large.

Lemma 4.5.7. Ifm > 2−6rn, then

|Q(n, r,m)| 6 2tr(n)−mn/23r .
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Proof. Let m > 2−6rn, and consider the number of ways of constructing a graph G ∈
Q(n, r,m). We have at most rn choices for the partition U, at most

(
n
r

)m choices for the
set X(G), and r choices for j = j(G). Moreover, we have at most

2tr(n)−|Uj||X(G)|
(
2r − 1

)|Uj||X(G)|/r
6 2tr(n)−mn/22r

choices for the edges between di�erent parts ofU, since X(G) is composed of r-sets that
are bad towards Uj, and G is balanced. Finally, we have at most nO(n2−1/r2) choices for
the edges inside parts of U, since G is n2−1/r2-close to being r-partite.

It follows that

|Q(n, r,m)| 6 rn ·
(
n

r

)m
· r · nO(n2−1/r2) · 2tr(n)−mn/22r 6 2tr(n)−mn/23r

as required, sincem > 2−6rn, so n2−1/r2 logn� 2−3rmn.

From now on, let us �x a function 1 6 m = m(n) 6 2−6rn. We are ready to de�ne
the bipartite graph Fm.

De�nition 4.5.8. De�ne a mapΦm : Q(n, r,m)→ 2K(n,r) by placing H ∈ Φm(G) if and
only if H can be constructed from G by �rst removing all edges of G that are incident
to X(G), and then adding an arbitrary subset of the edges between X(G) and V(G) \(
X(G) ∪Uj(G)

)
.

Let Fm be the bipartite graph with edge set {(G,H) : H ∈ Φm(G)}.

We �rst observe that the map Φm is well-de�ned.

Lemma 4.5.9. If G ∈ Q(n, r,m) and H ∈ Φm(G), then H is Kr+1-free.

Proof. This follows easily from the fact thatG is Kr+1-free, and the maximality of X(G).
Indeed, if there exists a copy of Kr+1 in H, then it must contain a vertex of X(G), and
therefore it must contain no other vertices of X(G) ∪Uj(G). Hence it contains exactly r
vertices of V(G) \

(
X(G)∪Uj(G)

)
, and by the maximality of X(G) these have a common

neighbour inUj(G). But this contradicts our assumption thatG isKr+1-free, as required.

We are now ready to prove our �rst bound on the degrees in Fm.

Lemma 4.5.10. For every G ∈ Q(n, r,m),

log2 |Φm(G)| >

(
1− 1

r
−

1
23r −

mr

n

)
mnr.
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Proof. This follows immediately from the fact that G is balanced. Indeed, we have two
choices for each of the

|X(G)| ·
∣∣V(G) \ (X(G) ∪Uj(G)

)∣∣ > mr ·
(
1− 1

r
−

1
23r −

mr

n

)
n (4.9)

potential edges between X(G) and V(G) \
(
X(G) ∪Uj(G)

)
.

In order to bound the degrees in Fm of vertices inK(n, r), wewill need the following
lemma, which counts the optimal partitions in the neighbourhood of such a vertex. We
note that here, the upper bound onm from Lemma 4.5.7 is crucial.

Lemma 4.5.11. For each H ∈ K(n, r), there are at most 2n/24r distinct partitions U of V(H)
such that U is an optimal partition of some graph G ∈ Φ−1

m (H).

Proof. We will use the fact that each G ∈ Φ−1
m (H) is uniformly dense and n2−1/r2-close

to being r-partite to show that the optimal partitions in question must be ‘close’ to one
another.

To be precise, let G1,G2 ∈ Φ−1
m (H), and let U = (U1, . . . ,Ur) be an optimal partition

of G1 and V = (V1, . . . ,Vr) be an optimal partition of G2. We claim that∣∣{j ∈ [r] : |Ui ∩ Vj| > 2−6rn+ 2mr
}∣∣ 6 1

for every i ∈ [r]. Indeed, suppose that∣∣Ui ∩ Vj∣∣ > 2−6rn+ 2mr and
∣∣Ui ∩ Vj ′∣∣ > 2−6rn+ 2mr,

set A =
(
Ui ∩ Vj

)
\
(
X(G1) ∪ X(G2)

)
and B = (Ui ∩ Vj ′) \

(
X(G1) ∪ X(G2)

)
, and note

that, since G2 is uniformly dense, we have eG2(A,B) > |A||B|/32 > 2−12r−5n2. But these
edges are all contained inUi, so this contradicts the fact thatG1 isn2−1/r2-close to being
r-partite, as required.

It follows that (by renumbering the parts if necessary) we have∣∣Ui \ Vi∣∣ 6 r ·
(
2−6rn+ 2mr

)
6 2−5rn

for every i ∈ [r], where second inequality follows since m 6 2−6rn. Set Di = Ui \ Vi,
and observe that the partition U and the collection (D1, . . . ,Dr) together determine V.
It follows that the number of optimal partitions is at most( 2−5rn∑

k=0

(
n

k

))r
6 nr ·

(
n

2−5rn

)r
6 2r logn ·

(
e25r

)r2−5rn
6 2n/24r ,

as required.
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We can now bound the degrees on the right. Recall than in De�nition 4.5.4 we chose
a ‘canonical’ optimal partition for each graph G ∈ Q(n, r).

Lemma 4.5.12. We have

log2

∣∣Φ−1
m (H)

∣∣ 6 (
1− 1

r
−

1
22r

)
mnr

for every H ∈ K(n, r).

Proof. First let us �x a partition U = (U1, . . . ,Ur), and count the number of graphs
G ∈ Q(n, r,m) with Φm(G) = H whose optimal partition is U. To do so, �rst note that
we have

(
n
r

)m choices for X(G), and at most r choices for j = j(G). Now, since G is
internally sparse and balanced, each vertex v ∈ X(G) has at most 2−3rn neighbours in
its own part of U, and

∣∣|Ui|− n/r∣∣ 6 n/23r for each i ∈ [r]. Thus we have at most(
n

2−3rn

)
· 2(1−2/r+1/23r)n 6 2(1−2/r+1/22r)n

choices for the edges between each vertex v ∈ X(G) and V(G) \ Uj. Finally, by the
de�nition of bad sets, and since G is balanced, we have at most

(2r − 1)(1/r+1/23r)mn 6 2(1/r−3/22r)mnr

choices for the edges between X(G) and Uj.
Since, by Lemma 4.5.11, we have at most 2n/24r choices for the partition U, it follows

that

log2

∣∣Φ−1
m (H)

∣∣ 6 mr logn+ log r+
(
1− 2

r
+

1
22r +

1
r
−

3
22r +

1
24r

)
mnr

6

(
1− 1

r
−

1
22r

)
mnr,

as claimed.

Finally we put the pieces together and prove Proposition 4.5.2.

Proof of Proposition 4.5.2. We claim �rst that

|Q(n, r,m)| 6 2−2−9rmnr · |K(n, r)| (4.10)

for every m 6 2−6rn. To prove this, we simply double count the edges of Fm, using
Lemmas 4.5.10 and 4.5.12. Indeed, we have

log2

(
|Q(n, r,m)|

|K(n, r)|

)
6

(
1− 1

r
−

1
22r

)
mnr−

(
1− 1

r
−

1
23r −

mr

n

)
mnr,
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which implies (4.10) sincem 6 2−6rn.
Summing (4.10) over m, and recalling that G is n2−1/r2-close to being r-partite, we

obtain

|Q (n, r)| 6
2−6rn∑
m=1

2−2−9rmnr · |K(n, r)| +
n∑

m=2−6rn

2tr(n)−mn/23r 6 2−2−10rn · |K(n, r)|,

by Lemmas 4.5.6 and 4.5.7, as required.

Finally, let us deduce Theorem 4.1.1.

Proof of Theorem 4.1.1. By Theorem 4.3.1, almost all Kr+1-free graphs on n vertices are
n2−1/r2-close to r-partite. We further showed in Lemmas 4.4.3, 4.4.5, and 4.4.8 that al-
most all of these graphs are either r-partite, or in Q(n, r). Since by Proposition 4.5.2,
for su�ciently large n, the size of Q(n, r) is (almost) exponentially small compared to
K(n, r), it follows that almost all Kr+1-free graphs are r-partite, as required.
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