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ABSTRACT

This thesis is concerned with the extremal properties and typical structure of sparse
random combinatorial objects.

The first chapter, which is joint work with Morris, deals with a sparse random vari-
ant of a generalisation of Sperner’s theorem. Denoting by P(n, p) the p-random subset
of the power set of {1,...,n}, we show that, if pn — oo, the largest subset of P(n, p)
containing no k-chain has size (k — 1 + o(1))p(n1}2) with high probability. The case
k = 2 confirms a conjecture of Osthus.

The second chapter, which is joint work with Bushaw, Morris and Smith, focuses
on a probabilistic result in additive combinatorics. We determine, for any even-order
abelian group G, a sharp threshold for the following property: Each maximum-size
sum-free subset of a p-random subset of G is contained in a maximum-size sum-free
subset of the whole of G. This strengthens a result of Balogh, Morris and Samotij.

The third chapter, which is joint work with Balogh, Bushaw, Liu, Morris and Shar-
ifzadeh, contains a result on the typical structure of graphs in a certain family. We prove

that, forr < (logn)'/4

, almost every K, 1-free graph on n vertices is r-partite. This gen-
eralizes a result of Kolaitis, Promel and Rothschild, who obtained the same result for
fixed r, and strengthens a result of Mousset, Nenadov and Steger, who computed the
number of K, 1-free graphs for the same range of r.

Keywords: sparse random problems, probabilistic combinatorics, hypergraph con-

tainer method, thresholds.
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RESUMO

Esta tese lida com propriedades extremais e com a estrutura tipica de objetos combi-
natoriais esparsos aleatorios.

O primeiro capitulo, relativo a trabalho conjunto com Morris, trata de uma versao
esparsa aleatéria de uma generalizagdo do teorema de Sperner. Denotando por P(n, p)
o conjunto p-aleatério da familia de todos os subconjuntos de {1, ...,n}, mostramos
que, se pn — 0o, 0 maior subconjunto de P(n, p) sem k-cadeias tem tamanho (k —1 +
o(1))p (nT;Z) com alta probabilidade. O caso k = 2 confirma uma conjectura de Osthus.

O segundo capitulo, relativo a trabalho conjunto com Bushaw, Morris e Smith, foca
num resultado probabilistico em combinatdria aditiva. Determinamos, para qualquer
grupo abeliano G de ordem par, um limiar sharp para a seguinte propriedade: Todo
subconjunto sem somas de tamanho méximo de um subconjunto p-aleatério de G esta
contido num subconjunto sem somas de tamanho maximo relativo a todo o G. Tal
teorema melhora um resultado de Balogh, Morris e Samotij.

O terceiro capitulo, relativo a trabalho conjunto com Balogh, Bushaw, Liu, Morris
e Sharifzadeh, contém um resultado sobre a estrutura tipica dos grafos de uma certa

familia. Provamos que, para r < (logn)'/4

, quase todo grafo (com n vértices) sem
K,;1 é r-partido. Isso generaliza um resultado de Kolaitis, Promel e Rothschild, que
mostraram o mesmo resultado no caso em que 1 € fixo, e melhora um resultado de
Mousset, Nenadov e Steger, que computaram o ntimero de grafos sem K., com as
mesmas restrigdes sobre T que usamos no nosso teorema.

Palavras-chave: problemas esparsos aleatérios, combinatéria probabilistica, método

dos containers em hipergrafos, limiares.
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INTRODUCTION

A vibrant area of research in combinatorics, especially in the last 20 years, concerns the
formulation and proof of probabilistic and counting analogues of classical extremal
results such as Turdn’s theorem and Szemerédi’s theorem. More concretely, we are
interested in problems such as “what is the typical structure of a subset of [n] containing
no solution to a given equation?” and “what is the largest H-free subgraph of G, ,?”.

A representative example of a “typical structure” result in the context of graphs is
a theorem of Erdés, Kleitman and Rothschild, which states that almost all triangle-free
graphs are bipartite. Usually, a first step towards determining the precise structure of
objects avoiding some forbidden structure is to prove a counting result, i.e. to try to
determine asymptotic bounds on the total number of such objects with and without
the relevant structure. The famous conjecture of Cameron and Erdés [21], which states
that there aren’t many more subsets of [n] with no solution to the equationx +y =z
than the obvious ones, provides an example of this.

The study of such questions gave rise to the so-called “sparse random problems”,
which deal with proving extremal and Ramsey-type results on a sparse random ground
set. For example, suppose a particular property holds for the largest H-free subgraph of
K. For what values of p can we prove that it also holds for the largest H-free subgraph
of Gn p?

We will now describe some relevant problems in more detail. In order to do so, we

must go back and begin at the beginning.

1.1 EXTREMAL PROBLEMS

The first example of an extremal result in combinatorics is provided by a century-old
result known as Mantel’s theorem [67].

Theorem 1.1.1 (Mantel, 1907). Any n-vertex graph G with more than |n/2|[n/2] edges

contains a triangle.

Although the above theorem is elementary, it is a starting point for several gener-
alisations of great importance in the field. For example, the following famous result
of Turan [88] replaces “triangle” in the above theorem by larger complete graphs. It is
considered by many (e.g. [16]) to be the founding theorem of extremal graph theory]T]

'Erd6s almost initiated this area five years earlier when he, in the course of proving a number-
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2 Introduction

Theorem 1.1.2 (Turan, 1941). A K,.1-free graph G on n vertices has at most e(T, ) vertices,
where T,, , is the r-partite complete graph with parts of size as equal as possible.

Turdn’s theorem is the first step towards asymptotically determining the extremal
numbers ex(n, H), which are defined to be the maximum number of edges in a n-vertex
graph containing no copy of H. In 1946, Erdés and Stone made major progress in this

task by computing the extremal number of any graph in terms of its chromatic number.

Theorem 1.1.3 (Erd§s-Stone, 1946). Let H be a graph with x(H) > 2. Then

1 n
o) = (1= = +o) ()

This completely determines the asymptotic order of growth of ex(n, H) for every
graph with x(H) > 3. Determining the asymptotic order of growth of ex(n, H) in the
bipartite case is a major open problem, currently solved only in a few particular cases.

Between the formulation of Mantel’s theorem and the founding of extremal graph
theory, another important area of extremal combinatorics was born through the proof,
by Sperner, of a Mantel-like result. A k-chain is simply a k-tuple of nested sets A; C

-+ C Ay, and we say a family A of sets is an antichain if it contains no 2-chain.

Theorem 1.1.4 (Sperner, 1928). Let A C P([nl) be an antichain. Then |A| < (LTLT;Z J)'

Much in the same way Mantel’s theorem extends to larger cliques, this admits a
generalisation to larger chains, as was shown by Erdds [29]. In order to state it, note
that P([n]) can be decomposed into n + 1 subfamilies of equally-sized subsets, and call
the largest k such subfamilie the k middle layers of P([n]).

Theorem 1.1.5 (Erdés, 1945). Any family of sets A C P([n]) containing more elements than
the k — 1 middle layers of P([nl]) contains a k-chain. In particular,

Al < (k—1) (;}2).

Although it is slightly out of the scope of this thesis to discuss many of the determin-
istic results from the beautiful area of Ramsey theory, we must mention the following

cornerstone of combinatorics. This result, along with further developments by Erdés

theoretical result, showed that a n-vertex C4-free graph can have at most O (n%?) edges. Here’s how he
tells the story in [32]: “Being struck by a curious blindness and lack of imagination, I did not at the time
extend the problem from C4 to other graphs and thus missed founding an interesting and fruitful new
branch of graph theory”.

2Some subfamilies will have equal cardinality. An ordering of those can be chosen arbitrarily.
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and Székeres [39], is responsible for kickstarting some of the most interesting branches
of modern combinatorics.

Theorem 1.1.6 (Ramsey, 1930). For any s,t € N, there exists an R such that any red-blue
colouring of the edges of the complete graph Ky contains either a red K or a blue K.

Ramsey-type theorems (which guarantee the existence of a monochromatic struc-
ture no matter the way an object is coloured) are often studied in parallel to density-
type theorems (which guarantee the existence of a structure in any sufficiently dense
object), and as such they will feature prominently below, when we describe the origins

of sparse random problems.
Extremal and Ramsey-type problems in arithmetic combinatorics

Combinatorial problems are of great importance in number theory, and this was true
long before the term “arithmetic combinatorics” was coined. One of the first problems
in the area was studied by Schur [83], who proved the following theorem and used it
as a tool to show that, for every n € N, the equation a™ + b™ = ¢™ (mod q) has a

non-trivial solution for infinitely many primes q.

Theorem 1.1.7 (Schur, 1917). Any finite colouring of N contains a monochromatic solution
to the equation x +y = z.

The above result does not follow from a density-type result, in the sense that it is
not enough to look at the largest colour class to find a monochromatic solution to the
equation. Indeed, the odds have density 1/2 and are sum-free, that is, admit no solution
to the equation x +y = z.

A related Ramsey-type result was conjectured by Baudet and proved by van der
Waerden [90] with the help of Artin and Schreie Unlike Schur’s theorem, this result
admits a non-trivial density version, as is now well-known (see Theorem [I.1.9below).

Theorem 1.1.8 (van der Waerden, 1927). Any finite colouring of N contains a k-term monochro-
matic arithmetic progression for any k € N.

A system of linear equations Ax = 0 is partition-reqular if every finite colouring of
N contains a monochromatic solution of Ax = 0. In 1933, Rado [72] generalised both
theorems by providing a linear-algebraic condition for a system of linear equations to

be partition-regular.

3See [91], reprinted in [85], for a fascinating account of the discovery of this proof.
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Arguably the most famous problem in the area is the density version of van der
Waerden's result, conjectured by Erdés and Turdn [40] in 1936 and now known as Sze-
merédi’s theorem. Roth [77] first proved it for k = 3 using Fourier analysis, and Sze-
merédi [87] gave a fully combinatorial proof of the general case using his Regularity

Lemma.
Theorem 1.1.9 (Szemerédi, 1975). Any set A € N satisfying

AN
n

lim sup >0

n—oo

contains a kK-term arithmetic progression for any k € N.

Frankl, Graham and R6dl1 [42] noticed that Szemerédi’s theorem implies that an irre-
ducible partition-regular system admits a monochromatic solution in sets of arbitrarily
small density if and only if the columns of A sum up to the zero vector.

It is difficult to pass up the opportunity to mention that Erdés [31]] conjectured the
following generalisation of Szemerédi’s theorem, as a possible way of proving that the
primes contain arbitrarily long arithmetic progressions. The general conjecture, stated

below, is one of the main open problems in combinatorics.

Conjecture 1.1.10 (Erdds). Any set A C N satisfying

1
IEE

acA

contains a k-term arithmetic progression for any k € N.

A major result of Green and Tao [50] showed that this conjecture is true if A is the
set of prime numbers (the original motivation for the conjecture). They did so by show-
ing so-called “transference principles”, inspiring a major development in the study of

sparse random problems we will discuss in Section
1.2 STABILITY RESULTS AND TYPICAL-STRUCTURE PROBLEMS

A different direction in which to take extremal results such as that of Turén is to prove
a stability theorem, that is, to show that an object almost as big as the extremal example
must possess some additional structure. For example, Erdds and Simonovits (see [84])
showed the example of Turdn has the stability property: Any n-vertex K, -free graph
whose density is sufficiently close to maximum looks like T, ..
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Theorem 1.2.1 (Erd§s-Simonovits, 1968). For every v € N and ¢ > 0, there exists a & > 0
such that every K, _1-free n-vertex graph G with

1 n
o (-1-5) (3

can be turned into Ty, » by adding and removing at most en? edges.

The above theorem of Erdés and Simonovits just provides a characterisation of
all close-to-extremal K. i-free graphs, mainly because there is very little we can say
structure-wise for all K. -free graphs, especially ones with few edges. Surprisingly,
however, Erdés, Kleitman and Rothschild [36] showed that it is possible to provide
a finer characterisation if we discard an asymptotically negligible proportion of such

graphs.

Theorem 1.2.2 (Erd6s—Kleitman—Rothschild, 1976). Almost all n-vertex triangle-free graphs
are bipartite.

As we remarked eatrlier, the first step towards showing that a result holds for almost
all graphs is to prove a counting result. For example, Erdés, Kleitman and Rothschild

showed, in the same paper, the following result for r > 2.
Theorem 1.2.3 (Erdés—Kleitman—Rothschild, 1976). For r > 2, let F,;1(n) be the number
of n-vertex graphs containing no K,1. Then

fog, Froa(n) = (1 1) (3 ) + o) (1)

T

In particular, if M..(n) denotes the number of n-vertex r-partite graphs, then

n—eco log, My (1)
This result is, as expected, weaker than an “almost all”’-type result. Kolaitis, Prémel
and Rothschild [60] announced in 1985 the stronger typical-structure result (see [61] for

their proof).

Theorem 1.2.4 (Kolaitis—-Promel-Rothschild, 1987). Let r > 3 be fixed. Then almost all
Ki41-free graphs on n vertices are r-partite. That is, F,1(n) = (1 4+ 0o(1)) - M, (n).

The history of this problem goes on, and it again exemplifies the interplay between
stability, counting and typical-structure problems. In 1986, Erdés, Frankl, and Rod1 [33]]
asked if forbidding a graph H with x(H) = r has the same effect as forbidding a copy
of K,. They first showed a stability theorem under such conditions (cf. Theorem [1.2.1).
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Theorem 1.2.5 (Erd§s—Frankl-Rodl, 1986). Let H be a graph with x(H) =+ 1 > 3. For
every € > 0, there exists a & > 0 such that every H-free n-vertex graph G with

1 n
o (1-1-9) ()

can be made v-partite by the deletion of at most en? edges.

Using this stability result, they showed the following counting result, which gener-
alises Theorem

Theorem 1.2.6 (Erdds—Frankl-Rodl, 1986). Let H be a fixed graph with x(H) > 3. The

number of H-free n-vertex graphs is

p(1+o(1))ex(nH) _ 2(17ﬁ)(2)+0(n2).

This result was improved by Balogh, Bollobas and Simonovits [10], who showed
that, for any graph H with x(H) > 3, there exists o« > 0 such that one may replace the
o(n?) term in the exponent of the above theorem by an O(n* *logn) term. They also
conjectured that this result is sharp, which they later proved in [11] by establishing a
strong Erd§s-Simonovits-type result.

In a 2013 preprint, Mousset, Nenadov and Steger [70] generalised the counting re-
sult of Erdds, Kleitman and Rothschild, Theorem by allowing the clique size to
grow. Note that, in order to get a non-trivial statement in the case where the clique size
goes to infinity, the error term must not overshadow the 1(7) term in equation (L.1).
Mousset, Nenadov and Steger proved the result below, which has this property.

Theorem 1.2.7 (Mousset-Nenadov-Steger, 2013+). Let v = r(n) < (logn)¥*. Then,

denoting by F,1(n) the number of K. 1-free graphs on n vertices, we have

2
log, Fri1(n) = <1 — %) <T21> +o (%) .

In Chapter 4, which is joint work with Jézsef Balogh, Neal Bushaw, Hong Liu,
Robert Morris and Maryam Sharifzadeh, we strengthen this result by extending the
typical-structure result of Kolaitis, Promel and Rothschild, Theorem(1.2.4} to non-constant
values of r in a similar manner. This is the content of Theorem which we repro-

duce below.
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Theorem 1.2.8 (Balogh-Bushaw-CN-Liu-Morris-Sharifzadeh, 2014+). Let r = r(n) €
N be a function satisfying v < (logn)* for every n. € N. Then almost all X, 1-free graphs on
n vertices are r-partite. Formally,

111’1’1 Fr+1 (T'L)
n—oo Mr (T‘L)

—1,

where F,1(n) denotes the number of K. 1-free graphs and M..(n) denotes the number of -

partite graphs on n vertices.

Our result uses the method of Balogh, Bollobas and Simonovits together with hy-
pergraph container methods. We also prove and use a new supersaturation result,
Theorem [4.1.2] (reproduced below), which is a generalisation of Theorem It al-
lows us to find many copies of K, in any graph G which cannot be made r-partite by
the deletion of few edges. It is optimal up to a factor of e'.

Theorem 1.2.9 (Balogh—Bushaw-CN-Liu-Morris-Sharifzadeh, 2014+). For everyn,r,t €
N, the following holds. Every graph G on n vertices which cannot be made r-partite by the dele-
tion of t edges contains at least

nrfl 1 TLZ
T (e(G”t— (“?) 7)
copies of Ky 1.

Typical-structure problems in arithmetic combinatorics

Problems about typical structure also play a central role in many other areas. For ex-
ample, one of the most famous problems in arithmetic combinatorics is the Cameron-
Erdds conjecture [21], which states that the number of sum-free subsets of [n] is O(2"/2).
The conjecture is optimal up to a constant factor, as all subsets of {1,3, ...} N [n] and of
{In/2]+1,...,n}are sum-free. It was proven by Sapozhenko [79] (see also [80]) and in-
dependently by Green [48]. More precisely, they proved the following typical-structure
resul{?

Theorem 1.2.10 (Sapozhenko, 2003 and Green, 2004). Almost all sum-free subsets of [n|
either consist entirely of odd numbers or are contained in {[(n +1)/3],...,n}

“We note that Alon, Balogh, Morris and Samotij [4] recently proved a stronger result, characterising
the typical structure of a sum-free m-subset of [n].
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Since Cameron and Erdés had previously shown that the number of sum-free ele-
ments of {[(n +1)/3],...,n}is exactly cn2™2, where (c2,,)%_; and (co,,1)®_; are con-
vergent sequences, the typical-structure result of Sapozhenko and Green implies the
Cameron-Erdds conjecture.

A related counting result for finite groups was first shown by Alon [1]]. He proved
that the size of SF(G), the family of all sum-free sets of a n-element abelian group G,

1/240(1

is at most 2! J)n " A sharper bound was proven in the abelian case by Lev, Luczak

and Schoen [63].

Theorem 1.2.11 (Lev-Luczak-Schoen, 2001). There exists & > 0 with the following prop-
erty. Let G be an n-element abelian group with canonical decomposition

G = ZZ“l @...@Zzak@],
where 1 < a1 < -+ < ay and | is an odd-order group. Then
SF(G)| = (2% — 1) 22 4 O (2(1/2-8nY |

While proving the above result, they showed the following stability theorem for
sum-free subsets (see also [49]). We say a triple (x,y, z) is a Schur triple if x +y = z.

Theorem 1.2.12 (Lev—Luczak-Schoen, 2001). Let G be an n-element abelian group. Any
set A C G with size |A| > (1/3 + e)n and at most £3n? /27 Schur triples contains a sum-free
subset S with |A\ S| < en.

It turns out that sum-free subsets in a particular type of group satisfy an even
stronger stability property, shown by Green and Ruzsa [49]: Unlike in Theorem [1.2.1}
we don’t need to delete any elements to turn close-to-extremal sets into extremal ones.
We say a group G is of type 1 if |G| is divisible by a prime q =2 (mod 3), and we say G
is of type 1(q) if q is the smallest such prime.

Theorem 1.2.13 (Green—Ruzsa, 2005). Let G be an n-element abelian group of type 1(q). If
A C G is a sum-free set satisfying

1 1
> (4=
'A'/(3+3(q+1))“'

then A is contained in a maximum-size sum-free subset of G.

In order to clarify the size condition on the above theorem, we note that an older
result of Diananda and Yap [28] shows that maximum sum-free subsets of an abelian
group G of type I(q) have size <% + i) G|.
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1.3 SPARSE RANDOM PROBLEMS

In a nutshell, sparse random problems consist of generalising classic extremal and
Ramsey-type results to a probabilistic set-up. The story of such problems, however,

begins with an entirely deterministic folklore fact from graph theory.
Fact 1.3.1. Any graph G contains a bipartite subgraph H with e(H) > e(G)/2.

In 1983, Erdés and Nesettil (see [30]) asked whether this result could be strength-
ened if we forbid copies of K.

Question 1.3.2 (Erd&s—Nesettil, 1983). Does every Ky-free graph G contain a bipartite sub-
graph H with e(G) > C - e(H), for some constant C > 1/2?

Frankl and Ro6dl [43] answered this in the negative by taking G, ) for p(n) =
n~1/2"¢ and, in their words, showing that “random graphs behave as complete graphs,
i.e. they are like sparse complete graphs”. More technically, they proved the following.

Theorem 1.3.3 (Frankl-Rodl, 1986). For any small € > 0, let p(n) = n~V2*¢. Then the
largest triangle-free subgraph of Gy p(n) has density 1 + o(1) with high probability.

Since replacing G, , () in the above by K, leads to an asymptotic version of Mantel’s
theorem, we will call this a sparse random analogue of Mantel’s result. In fact, for this
value of p(n), the largest K4-free subgraph of G, , () satisfies the same property, which
implies that Question has a negative answer.

Two key aspects of the above theorem warrant more investigation. We will take a
more careful look at them in the next two subsections.

Thresholds

A property of graphs is merely a subfamily of the family of all graphs. A function f(n)
is a threshold function for a property A if

lim P(Gn,p(n) eA) =

n—oo

0 if p(n)/f(n)—0
1 if pn)/f(n) — oo.
Moreover, we say a property A is non-trivial if some but not all graphs satisfy it.

The word sparse in the context of sparse random problems refers to the fact that, in
this area, most interesting thresholds are functions p(n) that go to zero as n goes to
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infinity. In fact, the case where p is constant is so uncommon that the parameter n is
often omitted, and so p(n) is usually just denoted by p. We will follow this practice
from now on.

In 1987, Bollobas and Thomason [15] proved a general and important result about
thresholds. They showed that every non-trivial monotone increasing®| property has a
threshold. In fact, they showed that f(n) = sup{p : P(Gn, € A) < 1/2}is always a
threshold function.

Many of the global problems in combinatorics, such as the connectivity problem
studied by Erdds and Rényi [37] in their seminal paper on random graphs, admit a
stronger notion of threshold: a so-called sharp threshold. Formally, a threshold f(n) is
sharp if, for every ¢ > 0,

lim P(Gy,p € A) = P

However, other properties, such as that of containing a fixed subgraph H, only admit
coarse (i.e., not sharp) thresholds, as was first shown by Bollobés [17]. In a spectacular
breakthrough, Friedgut [44] characterised the graph properties (families) that do not
admit sharp thresholds. In his words, his theorem essentially means that “a family
with a coarse threshold can be approximated by a family whose minimal graphs are
all small”. Thus, all properties with coarse thresholds are essentially local ones.

Obviously, properties also make sense in contexts other than graph theory. It is
trivial to generalise all of the above definitions to those contexts.

Asymptotic and precise problems

The theorem proved by Frankl and R6dl is a sparse random version of Mantel’s theo-
rem, but only asymptotically. Indeed, the latter says the largest triangle-free subgraph
and the largest bipartite subgraph of K, have precisely the same size, with no error term.

Babai, Simonovits and Spencer [6] were the first to show a precise version of Theo-
rem We state a slightly weaker version of their result for simplicity.

Theorem 1.3.4 (Babai-Simonovits-Spencer, 1990). Forp > 1/2, any maximum-size triangle-
free subgraph of G, ,, is bipartite with high probability.

>We say a property A is monotone increasing if G € A and G C H imply H € A.
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Precise versions of sparse random results generally use the asymptotic version as
a starting point, and they are usually much harder to prove, involving technical esti-
mates of an ad-hoc nature and using only standard probabilistic tools (such as Janson’s
inequality). In fact, the threshold for the above theorem was only determined (up to a
constant factor) in 2014 by DeMarco and Kahn [27].

Ramsey problems

In the field of Ramsey theory, sparse random problems also play a significant role. In

stating several results, we will use the following standard notation.

Definition 1.3.5. Let F and G be two graphs and r € N. The statement “any r-colouring
of the edges of F contains a monochromatic copy of G” will be denoted by F — (G)...

The same statement for vertex colourings will be denoted by F % (G),.
In 1967, Erd6s and Hajnal [34] (see also [35]) proposed the following question.

Question 1.3.6 (Erd6s—-Hajnal, 1967). For every k > 3andr > 2, does there exist a Ky..1-free
graph G satisfying G — (Ky),?

Folkman [41] proved the vertex-colouring version of the above result, and used this
to provide an affirmative answer to the question of Erd§s and Hajnal for the case r = 2.
The given proof was a complicated inductive construction. This, in the words of Rédl
and Rucinski, “made everyone believe that such graphs are very rare”.

Although the method of proof of Theorem also showed that G(n,p) — (K3)»

1/2+¢

holds with high probability for p = n~ , the first paper focusing solely on sparse
random Ramsey properties was published by Luczak, Ruciriski and Voigt [66].

In it, they showed that, for the property G,, ~ (G),, the change of behaviour
happens when a typical vertex of G, is contained in a constant number of copies of

G. To be more precise, define

S — e(H)
™S S ER ) -1
[H|>1

so that, for any given subgraph H C G, the expected number of copies of H containing

a vertex v is Q(petnv(H-1) = 0 (pm*(G)n)v(H]_l. They showed the following.



12 Introduction

Theorem 1.3.7 (Luczak-Ruciniski-Voigt, 1992). For any non-trivial graph G and r > 2,
there exist positive constants c and C such that

lim P(Gnp — (G)y) =

The above is one of the first results that fully represents the spirit of sparse random
questions. They also showed that the result of Frankl and Rédl, Theorem is es-
sentially sharp by computing the actual threshold for the property G(n,p) — (K3)».

O Z:f p < Cn_l/m*(G)
Z

Cn/m'(G),

This was then extended to an arbitrary number of colours by R6dl and Ruciniski [74] in
1994, and to arbitrary graphs (in place of K3) by the same authors [75] in 1995. This last

general version is as follows, where, analogously to the vertex case,

B e(H) —1
m2(G) = max T
[H|>2

is such that, for any subgraph H C G, a typical edge of G, is contained in at least

Q(peii-lpv(h-2) = o (me(G)n)v(H)*2 copies of H.

Theorem 1.3.8 (R6d1-Ruciniski, 1995). For any graph G which is not a star foresf®|and any
T > 2, there exist positive constants ¢ and C such that

lim P(Gnp — (G)r) =
n—oo 1 lf P 2 Cnfl/mz(G)'
In the same paper, they also showed a sparse random version of van der Waerden’s
theorem. Generalising the arrow notation, the statement “any r-colouring of F contains

a monochromatic k-term arithmetic progression” by F — (APy),.

Theorem 1.3.9 (Rodl-Rucinski, 1995). For any k > 3 and v > 2, there exist positive con-
stants ¢ and C such that

0 if p<cen Vil
lim P([nl, — (APy),) =
P

n—so0 1 if Cn—1/0—1).

<
>
The sparse Turdn problem

In 1995, Haxell, Kohayawaka and Luczak [52] conjectured a sparse random version of
the Erd6s—Stone theorem, which they then proved for all cycles in two papers [52} 53].

®That is, a disjoint union of graphs of the form Ky 1 for some t € N.
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The statement of the conjecture, now known as the sparse Turan problem, is as follows’}
We denote by ex(G, p, H) the number of edges of the largest H-free subgraph of G, ;.

Conjecture 1.3.10 (Haxell—Kohayakawa—Luczak, 1995). Let H be a non-trivial graph, and
let 0 < p < 1 be such that pn!/™ ") — oo, Then, with high probability,

1
npH)=1— ——— 1 np)-
ex(Gn,p, H) ( () =1 +of )) e(Gnp)
In 1997, Kohayakawa, Luczak and Rodl [58] proved Conjecture [1.3.10| for H = K4
(the H = K3 case was essentially shown by Frankl and Rédl). In the same paper, they
also conjectured the following sparse random version of Erdés-Simonovits stability

theorem, and proved it for H = K.

Conjecture 1.3.11 (Kohayakawa-tuczak-Rodl, 1997). Let H be a non-trivial graph, and
let 0 < p < 1 be such that pn'/™ M) — oo, For every ¢ > 0 there exists a & > 0 such that,
with high probability, any H-free subgraph | C Gy, with

e(]) > _ 6) e(Grp)

1
1— -
( x(H) —1
can be made (x(H) — 1)-partite by the deletion of at most ee(Gn, ,,) edges.

A common thread among all of the mentioned partial solutions for the above con-
jectures is a sparse version of the Szemerédi Regularity Lemma, independently dis-
covered by Kohayakawa and Rodl [55]. With this technique, Kohayakawa, FLuczak and
Rodl1 [59] were able to prove another major result: a sparse random version of Roth’s
theorem (cf. Theorem[1.3.9).

Theorem 1.3.12 (Kohayakawa-tuczak-Rodl, 1996). For any « > 0, there exists C > 0
such that, for p > > Cn 12, any subset A C [n], of size |A| > o - |[n],| contains a 3-term
arithmetic progression with high probability.

The KER results brought renewed interest to the area, effectively starting the sys-
tematic study of sparse random problems. The result is a vibrant and fruitful research
area, which is going strong to this day. For readers interested in knowing more about
sparse random problems in the context of graph theory, we recommend the excellent
survey of Rodl and Schacht [76].

"Below the conjectured threshold, the O-statements for these results are easy: As explained before,
there are fewer copies of H than edges in G, , when pn!/m2(H) — 0, meaning that all copies of H can be
deleted without affecting the asymptotic number of edges. Therefore the result, if true, would be best
possible.
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A sparse random Sperner theorem

Recall that Sperner’s theorem, Theorem says that no antichain of P([n]) is larger
than its middle layer. In 2000, Osthus [71] proved the following sparse analogue of
Sperner’s result. We denote by P(n, p) the p-random subset of P([n]).

Theorem 1.3.13 (Osthus, 2000). Let 0 < p = p(n) < 1 be such that pn/logn — oo. The

largest subset A C P(n,p) containing no 2-chains has size

Al = (1 + o(l))p<n7/‘2).

with high probability.

He also observed that, forpn — C, a second moment calculation tells us that P(n, p)

contains an antichain of size

(1+e “4+0(1)p (nr/12>

with high probability. The gap between the two restrictions on the probability function
led Osthus to conjecture that the conclusion of Theorem is also true whenever
pn — oo. By his observation, the conjecture is equivalent to saying that f(n) = 1/n is
a (coarse) threshold function for the sparse random version of Sperner’s theorem.

In Chapter 2, which is joint work with Robert Morris, we generalise Osthus’ con-
jecture to the k-chains case and prove the 1/n threshold for every k € N, effectively
showing a sparse random analogue of Theorem Our result, Theorem is
reproduced below.

Theorem 1.3.14 (CN-Morris, 2014+). Let 2 < k € N, and let p = p(n) be such that
pn — oo. Then the largest subset A C P(n,p) containing no k-chain has size

n
= (k=1+ol)p( )
with high probability.

In the following sections, we will look at fundamental advances in the area of sparse
random problems in the last five years.
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1.4 INDEPENDENT SETS IN HYPERGRAPHS

Recall that an independent set for a hypergraph H isaset A C V() for which e(H[A]) =
0, that is, a set A which contains no edge e € E(H).

Many of the combinatorial problems we saw can be restated as problems about
independent sets in hypergraph families. The advantage of doing so might not be ob-
vious at first, but we will study general theorems in the next few sections which allow
us to deduce sparse random versions of problems about independent sets in hyper-
graphs. In fact, since all of the discussed combinatorial results are asymptotic and deal
with increasingly large ground sets, the natural object to study for this purpose is a
hypergraph family (J(,,)°_, instead of a single hypergraph.

In order to show that such restatements are possible, we will focus on two repre-

sentative examples, the sparse Szemerédi and sparse Turan problems.

* The case of k-term arithmetic progressions (k-APs) is the simplest to model as an
independent set problem. We first construct a family of k-uniform hypergraphs
as follows:

V(H,) =]
E(H,.) ={{ai, ar,...,ax}: (ay,...,ax) is a k-AP}

Notice that Szemerédi’s theorem (Theorem says that for every & > 0 there
exists ng € N such that, for n > ny, any set X C V() with [X] > ov(I(,) is
not independent. In other words, any sequence of independent sets I, C V(J(,)
satisfies |I,| = o(n).

* The case of H-free graphs just has slightly more complicated terminology. Re-
member that we choose edges at random in the G,, , model, and for this reason,
the vertices of our constructed hypergraph will be pairs of vertices representing
possible edges of G, .

Also, since we want to talk about independent sets, the edges of our hypergraph
must encode the restrictions of our problem, which are forbidden copies of H.
Thus, we will let m = e(H) and construct a m-uniform hypergraph in which the
edges of H represent copies of H in K.

E(J,) ={{e1,..., em} forming a copy of H}
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Notice that the theorem of Erdés and Stone (Theorem [1.1.3) states that for every
& > 0 there exists ny € N such that, for n > ng, any set X C V() with [X] >

<1 — m + 6) v(%,,) is not independent.

The sparse random version of both problems can be restated as follows: For appro-
priate p and large enough n, the corresponding statement about independent sets still
holds with high probability if we replace J(,, by the hypergraph induced by a p-random
subset of V(H,).

1.5 TRANSFERENCE THEOREMS

In 2009 and 2010, Schacht [82] and Conlon and Gowers [24] independently obtained
powerful theorems which allow robust (in a sense we will clarify later) extremal re-

sults to be transferred to the sparse setting, therefore resolving a large number of open
questions in the field. For example, they provedf| Conjecture[1.3.10

Theorem 1.5.1 (Schacht, 2009+, Conlon—-Gowers, 2010+). Let H be a non-empty graph and
¢ > 0. Then there exist positive constants ¢ and C such that

. 1 '
T}l_l’gop (ex(Gn,p,H) < (1 — m + 8) e(Gn,p)) = . Zf .

Both methods require robust versions of the dense combinatorial result (also called
“supersaturation results”), that is, a version that guarantees the existence of not just one
but many copies of the desired structure whenever the ground set is a bit bigger than
the extremal example. Such theorems usually follow by simple averaging arguments.
For example, a robust version of Szemerédi’s theorem may be obtained by applying
the averaging argument of Varnavides [89]. It looks like this.

Theorem 1.5.2 (Szemerédi, 1974). For every ¢ > 0 and k € N, there exists & > 0 such that,
for large n, any set A C [n] with |A| > en has dn® k-term arithmetic progressions.

Despite this commonality, the methods of Conlon-Gowers and Schacht use very
different techniques, each one having its own strengths and weaknesses. We will briefly
discuss the two methods below.

8To be precise, Conlon and Gowers [24] proved their density and stability results for strictly balanced
graphs, those graphs G for which m,(G) > m,(H) for any H C G. According to their paper, it is possible
to adapt their idea to obtain the general result when p > n=/™(H) . (Jogn)c, for some ¢ > 0. The
method of Schacht fully proves the stated results.
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The work of Conlon and Gowers [24] is based on a functional transference prin-
cipleﬂ This requires restating the relevant combinatorial theorem in terms of [0, 1]-
valued functions (instead of {0, 1}-valued functions, i.e. sets) in discrete spaces. As an
example, here is the functional version of Szemerédi’s theorem. For convenience, we

state the result in Z,, instead of in [n].

Theorem 1.5.3 (Szemerédi, 1974). For every ¢ > 0and k € N, there exists & > 0 such that
any function g: Z,, — [0,1] with + ZX o0 9(x) > € satisfies the inequality

—1n-1
5> 900ght ) gt (k1)) > 8
0 0

;:
3

o
Il

X

Given a function supported on a sparse random set, their principle proceeds by
associating to it a function corresponding to a dense object. The dense function has
global and local properties which are close to the sparse one, meaning that dense results
lead to proofs for the sparse case under some technical probability conditions. For

example, the above functional restatement gives rise to the following theorem.

Theorem 1.5.4 (Schacht, 2009+, Conlon-Gowers, 2010+). For any ¢ > 0 and k > 2, there
exists C > 0 such that, for p > Cn~V 1 any subset A C [nl, of size |A| > ¢ - [[n],]

contains a K-term arithmetic progression with high probability.

In the language of hypergraph families (see Section[1.4), Schacht quantified the con-
cept of robustness by saying a property is robust if, for some «, any vertex set of density
larger than « contains a positive proportion of the edges of J{(,,. Formally, this is his

definition.

Definition 1.5.5 (Schacht, 2009+). For « > 0, a k-uniform hypergraph family (3, )5_,
is a-dense if for every ¢ > 0 there exists 6 > 0 with the following property: Any set
U C V(H,) with [U] > (x + ¢)v(I(,,) satisfies e(F{, [U]) > de(F(,,) for large enough n.

In the case of arithmetic progressions, for example, Szemerédi’s theorem says pre-
cisely that the corresponding hypergraph family is 0O-dense.

In order to relate overlaps among edges of the hypergraph family to probabilistic
restrictions for the 1-statement of a sparse random analogue, Schacht introduced the
concept of (K, p)-boundedness. We note that, as usual, the probabilities p and q are
functions of n (see Section [1.3).

9Transference principles have their roots in the previously mentioned work of Green and Tao [50].
A good introduction to the subject is the paper of Gowers [47].



18 Introduction

Definition 1.5.6 (Schacht, 2009+). For 0 < p < 1 and K > 1, a k-uniform hypergraph
family is (K, p)-bounded if for every 1 < i < k and every q >

e(H,))?

veV (H

holds for sufficiently large n, where V(J(,,) is a g-random subset of V(J(,,) and
deg.(v,U) =[{e € E(H,) :[en (U\{v})| >iand v € e}l.

Having those definitions, we can summarize Schacht’s theorem in the following
manner: The 1-statement of a sparse random analogue of a combinatorial result is true
for p > C(K, ) - p’ whenever the corresponding hypergraph family is x-dense and
(K, p’)-bounded for some K and «.

For many problems, the definition of (K, p)-boundedness leads to thresholds which
are optimal up to a constant. For example, a standard calculation shows that the hy-
pergraph family for the sparse Szemerédi problem is (K, n~'/*~1)-bounded for large
enough K. Also, the family for the sparse Turdn problem is (K, n~/m2("))-bounded for
large enough K.

Schacht’s proof gives exponential bounds on the probability of failure, whereas the
functional approach of Conlon and Gowers provides only polynomial bounds. On the
other hand, the functional transference theorem of Conlon and Gowers also reflects
local properties, and is thus strong enough to prove asymptotic counting results. In
fact, some two-sided counting results can only hold with polynomially-decaying fail-
ure probabilities: Theorem 1.6 (ii) of [25], proved via the method of Conlon and Gow-
ers, is one such result.

Having mentioned this, we take an opportunistic pause to marvel at one of their
stability results, which we stated before as Conjecture Since Samotij [78]] refined
the method of Schacht to allow for obtaining stability results, we attribute the result to

both approaches.

Theorem 1.5.7 (Schacht, 2009+, Conlon-Gowers, 2010+ and Samotij, 2014). Let H be a
graph with maximum degree at least two, and let ¢ > 0. Then there exist positive constants C
and & such that, for p > Cnl/™2(") every H-free subgraph of G, with more than

(1 X =1 5) e(Gns)

edges can be made (x(H) — 1)-partite by the removal of at most ee(G) edges.
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A sparse stability theorem for sum-free subsets

With the above techniques, the stability theorem for sum-free subsets in abelian groups,
Theorem|1.2.13} can also be naturally transferred to a sparse random context. This was
first shown by Balogh, Morris and Samotij in [13] (see also [78])).

Theorem 1.5.8 (Balogh—-Morris-Samotij, 2014). For any small & > 0 and prime number
q = 2 (mod 3), there exist constants C > 0 and ¢ > 0 with the following property. Let G be
any n-element abelian group of type 1(q). If

p>Cn /2

then, with high probability, for every sum-free subset B C G, with

1 1
Bl>(=4+—— G
|BJ (3+3q e)pl |

there exists a maximum-size sum-free subset O of G with [B \ O] < épn.

Motivated by the above result, we say a subset A of a group G is sum-free good if some
maximum-size sum-free subset of A is contained in a maximum-size sum-free subset
of G. Roughly speaking, this precise property (in the sense of Section means that
A “inherits” its sum-free subset structure from G.

In Chapter 3, which is joint work with Neal Bushaw, Robert Morris and Paul Smith,
we deal with even-order abelian groups. For such a group G, we extend the above by
calculating the sharp threshold for the property of a p-random subset of G being sum-
free good with high probability. The location of the sharp threshold depends on the
number of order 2 elements of G (see Fact[3.2.2).

Itis arguably easier to introduce the results of Chapter[3|by talking about a sequence
of groups G = (G,,)

n=1s

and we will do so in this Introduction, although our result is
slightly more general. We start with this definition, which provides the constant used
in our sharp threshold. For an abelian group G’, let r(G’) be the number of elements x
of G’ satisfying x = —x.

Definition 1.5.9 (Bushaw—CN-Morris-Smith, 2013+). A group sequence G = (G ),

n

is well-behaved if the two limits below exist.

. logr(Gy)
©(G) = i e Gal/2)
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For a well-behaved sequence G, define moreover

1/3 if «(G)<5/6
AG) = x(G)—1/2 if «(G)>5/6and f(G)=0
2/(4 — B(G)) if B(G)>0.

In this context, our result is the following.

Theorem 1.5.10 (Bushaw—CN-Morris-Smith, 2013+). Let G = (G, )_, be a well-behaved
sequence of even-order abelian groups, let p € (0,1) with p > (logn)?/n and let A,, be a p-
random subset of G,. Then, for every € > 0,

0 if p<(MG)—e)y/=E"
_>

1 if p>(AMG)+e)y/8n

n

P(A., is sum-free good)

This answers a natural question arising from the previous work of Balogh, Morris
and Samotij [13], who established the existence of a threshold for any sequence of even-
order abelian groupq™|but showed a sharp threshold only for the particular case G,, =
Lo

1.6 HYPERGRAPH CONTAINERS

In 2012, a different approach to the above problems was found by Balogh, Morris and
Samotij [8] and independently by Saxton and Thomason [81], who provided a simple
but powerful characterisation of the independent sets in a hypergraph. They showed
that, if the edges of a hypergraph H are “well-distributed” (in a sense made precise
below), then the independent sets of J{ are “clustered”, in the sense that there exists
a small family € C P(V(H)) of containers, each significantly smaller than V(J), such
that every independent set of J{ is contained in some C € C.

We will state the main lemma in the notation of Balogh, Morris and Samotij [8,
Proposition 3.1]. The version of Saxton and Thomason [81, Theorem 2.5] replaces the
maximum degree conditions by a more elaborate version of uniformity expressed in

terms of co-degree functiond]

0The result they proved was slightly more general and worked for all sequences of groups of type
I(q), for any fixed prime q = 2 (mod 3). We focused on the even-order case because we thought it
contained most of the essential difficulties of the problem.

1130 far, there are no known applications for which only one of the versions work.
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The Hypergraph Container Lemma. For every k € N and ¢ > 0, there exists a & > 0
such that the following holds. Let T € (0,1) and suppose that 3 is a nonempty k-uniform
hypergraph on N vertices such that

(1.2)
forevery 1 < € < k, where

A¢(H) :=maxl{e € E(H): T C e}.

IT|=¢
Then there exist a family C of subsets of V(H), and a function f: P(V(H)) — C such that:

(a) For every independent set 1 there exists T C I with [T| < k-tNand I C f(T),

(b) ICI < (1 —98)N forevery C € C.

The power of this method comes from the fact that the Hypergraph Container
Lemma can be iterated. That is, if we have any supersaturation result and we let J
denote the family of hypergraphs for which this result holds, we can repeatedly apply
the lemma to ensure none of the containers are in F. Once this happens, the containers
will typically either be small enough to easily count, or have a very special structure
which we can exploit.

There are several differences between this result and the transference theorems
discussed in the previous section. Although containers are frequently used to prove
asymptotic results, its non-asymptotic nature provides a great deal of flexibility. For
example, all of the constants in the theorem can be explicitly estimated, which allows
for results in which the size of the hypergraph is not fixed. All of these advantages will
be used to our favor in Chapter [4|

Moreover, this statement provides a meaningful deterministic counting assertion
and not just a probabilistic one. Thus, it should come as no surprise that it is also
significantly easier to obtain counting results for several of the problems we discussed.
In fact, once the counting is done, a sparse random result often follows from a simple
application of a concentration inequality such as Chernoff’s (or even Markov’s).

1.7 ORGANISATION OF THIS THESIS

The rest of this thesis is organised as follows. A simple description of each of the main

results proved can be found in the sections above, near the corresponding theorem
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statement. A more detailed introduction to problem can be found in the corresponding
chapter.

In Chapter 2, which is joint work with Robert Morris, we prove Theorem
which determines the threshold for the sparse random Sperner theorem, verifying a
conjecture of Osthus, and generalises it to k-chains.

In Chapter 3, which is joint work with Neal Bushaw, Robert Morris and Paul Smith,
we prove a slightly more general version of Theorem which determines the
sharp threshold for a problem related to sum-free sets of abelian groups.

In Chapter 4, which is joint work with Jézsef Balogh, Neal Bushaw, Hong Liu,
Robert Morris and Maryam Sharifzadeh, we prove Theorem which shows that
asymptotically almost all K, ;-free graphs are r-partite even in the case of unbounded
r = r(n). Along with this, we prove a new supersaturation result, Theorem(1.2.9) which
guarantees the existence of many copies of K, in graphs which cannot be made r-partite
by the deletion of few edges.



MAXIMUM-SIZE ANTICHAINS IN RANDOM SETS

The work in this chapter is joint with Robert Morris. It is adapted from a preprint [23].

2.1 INTRODUCTION

One of the cornerstones of extremal set theory is the famous theorem of Sperner [86],
who proved in 1928 that the largest antichain in P(n), the family of all subsets of
{1,...,m}, has size (nr;z). In 1945, Erdés [29] generalised this result by showing that
any family of sets larger than the k — 1 middle layers of P(n) contains a k-chain.

The study of the random set-system P(n,p) was initiated in 1961 by Rényi [73],
who determined the threshold for the event that P(n,p) is an antichain. More re-
cently, Kreuter [62] and Kohayakawa, Kreuter and Osthus [57] studied the length of
the longest chain in P(n, p), and Kohayakawa and Kreuter [56] and Osthus [71] stud-
ied the size of the largest antichain. In particular, Osthus [71] proved that holds in
the case k = 2if pn >> logn, and conjectured that pn > 1is sufficient. We note that this
conjecture has also been proved independently by Balogh, Mycroft and Treglown [9],
who moreover obtained a corresponding result for sparser random set systems, though
again only in the case k = 2.

In this chapter we will prove a sparse random analogue of Erdés’ theorem. More
precisely, for every function p > 1/n we will determine, with high probability, the
(asymptotic) size of the largest subset of P(n,p), the p-random subse of P(n), con-
taining no k-chain. In the case k = 2, this confirms a conjecture of Osthus [71].

Theorem 2.1.1. Let 2 < k € N, let p = p(n) be such that pn — oo. Then the largest subset
A C P(n,p) containing no k-chain has size

Al = (k—1+0(1))p (nT/‘Z) @.1)

with high probability as n — oo.

We remark that the bound on p is best possible, since the result fails to hold when-
ever pn — C. Indeed, in this case Osthus [71] showed that, with high probability, the
two middle layers of P(n, p) contain an antichain A of size (1 +e 2 4 o(l))p(
adding k—2 further layers to A gives a set of size (k—1+e~“/2+0(1))p(

no k-chains.

n?Z) ’

") containing

n/2

!That is, P(n,p) is a random variable such that P(A € P(n,p)) = p for each A € P(n), and such
events are independent for different values of A.

23
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In order to effectively apply the hypergraph container method (see Section[2.2), one
requires a so-called ‘balanced supersaturation theorem’, and the proof of such a re-
sult (see Theorem below) is the main innovation of this work. An “unbalanced’
supersaturation theorem (giving a lower bound on the number of k-chains, but not
controlling the distribution of these chains) was proved by Kleitman [54] in the case
k = 2, and by Das, Gan and Sudakov [26] in general. More precisely, the authors of [26]
used the permutation method pioneered by Katona and LYMB?in order to show that
a family with t more elements than the extremal example above contains Q (tn*~!) k-
chains. One of the key ideas from [26]] will also play an important role in our proof, see
Lemma below.

In order to state our balanced supersaturation theorem, we will need a couple of
simple definitions. For each k > 2 and n € N, let G = Gi(n) denote the k-uniform
hypergraph on vertex set P(n) whose edges encode k-chains, i.e., {Fy, ..., F} € E(Gy) if
and only if F; D - -- D Fy for some ordering of the elements. Given J C P(n), we write
H C Gk[J] to denote that H is a k-uniform hypergraph with vertex set  whose edges
are all members of E(Gy). For each { € [k], we write A¢(J{) for the maximum degree of

an {-set in H, that is
Ag(H) =max {dgc(L) : L C V(H), LI =},

where dgc(L) = [{A € E(H) : L C A}|. We also write J(H) for the collection of
independent sets of 3, and () for the size of the largest member of J(H).

We can now state the key new tool that we will use to prove Theorem It says
thata family with slightly more than «(Gx) = (k—1+0(1))(,,,) elements not only con-
tains many k-chains, but that these chains can be chosen to be fairly ‘evenly distributed”
over P(n).

Theorem 2.1.2. For every k > 2 and « > 0, there exists & = d(e, k) > 0 such that the
following holds. Let n € Nand § C P(n) satisfy [F| > (k — 1 + «) (nT;z), and suppose that

5t <m < (|g) forevery ¥, G € Fwith F 2 G. Then there exists H C Gy [F) satisfying

(@) e(30) =8 m*1("),

(b) Ae(H) < (dm)*t  forevery1 <L <k

We remark that the bounds in Theorem are all close to best possible. To see
this set m = n/3 and consider the k — 1 middle layers of the hypercube, together

2The acronym LYMB refers to Lubell [65], Yamamoto [93], Megalkin [68] and Bollobas [14]. It often
causes spelling confusion due to the silent B.
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with «(,,) elements from the next layer up. Then Gy [J] has O(n*"'(,,)) edges and

A¢(SklF]) = Q(n*Y forevery 1 < £ < k. The technical assumption m < (Ilgll) for every
F,G € Fwith F O G will be useful because it will allow us to deduce sufficiently strong
bounds both when [F] is close to x(Sx), and when it is much larger, see Section
The rest of this chapter is organised as follows. In Section 2.2| we apply the hyper-
graph container method together with Theorem to obtain a collection of contain-
ers tuned to our needs (see Corollary [2.2.3). In Section 2.3l we prove Theorem [2.1.2}
and in Section 2.4/ we perform the necessary technical computations in order to deduce

Theorem

2.2 HYPERGRAPH CONTAINERS

In this section, we will apply the powerful method of hypergraph containers described
in Section We will use the Hypergraph Container Lemma together with Theo-
rem 2.1.2)to deduce that there exists a relatively small family of “containers”, each not
too large, which cover the family J(J() of independent sets of a k-uniform hypergraph
H C Gk

In more detail, we first apply the Hypergraph Container Lemma to the hypergraph
G, to obtain a large family C; of containers, each of size at most (1 — 5)2™. We then
apply the lemma again, for each I € €, with |[F] > (k — 1+ «)(,[},) (for some small
o > 0), to the hypergraph H C G[J] given by Theorem We repeat this process
until all containers have size at most (k — 1 + «) (n%). The conditions (a) and (b) in
Theorem [2.1.2| allow us to check that holds for a suitable value of T, and hence
to count the containers in our final collection. See [69] for a similar application of the
container lemma in the context of C,i-free graphs.

In order to further motivate the statement of Theorem (and the technical con-

IF|
|G|

following two lemmas, which we will use to check the condition from the Hyper-

dition m < (/) for every F,G € F with F 2 G), we will next deduce from it the
graph Container Lemma. The first shows that we can take T = 1/n when J is slightly
larger than o(Gy).

Lemma 2.2.1. For every k > 2 and o« > 0, there exists ¢ = c(«, k) > 0 such that the following

holds. Let 1. € N be sufficiently large and I C P(n) satisfy (k—1+a)(,},) <19 < 3k(,),)-

Then there exists a nonempty H C Gi[F] satisfying
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forevery 1 < € < k.

Proof. First, observe that (by adjusting « slightly) we may assume that [F| > n/3 for
every F € J, since the number of sets smaller than this is much smaller than (,",).
Thus, applying Theorem with m = n/3, it follows that there exists a hypergraph
H C G¢[F] and a constant § = 5(, k) > 0 with e(H) > d*n* (] /2) and A¢(H) <

(36m)*—* for every 1 < £ < k. It follows that

3k—t+ly dfnk 1(n/z) c e(H)

Ao(H) < (Bdn)k ¢ = : < : ,
() < (3m) ST 3K ( nt1 g

n/Z)

where ¢ = 3%k - (1/8)¥, as required. O
The next lemma shows that if |J] is larger, then we can in fact take T much smaller.

Lemma 2.2.2. For every k > 2, there exists c = c(k) > 0 such that the following holds. Let
n € N be sufficiently large and F C P(n) satisfy |F| > Sk(nT}z). Then there exists a nonempty
H C G [T] satisfying

c e(H)

A(H) < .
e(30) n3t-3 |7

forevery1 <€ < k.

Proof. First, Choose an arbitrary partition = FyUJF; U- - - UJ; such that |F;| = Sk(nT}z)
for every i € [t] and |Fo| < 3k(" /2) Fix i € [t], and observe that, by the pigeonhole
principle, there are atleast k(" /2) elements of F; whose sizes have the same remainder
modulo 3. Let JF{ be a collection of ( — 0(1)) ( /2) such elements, all of size at least
n/3, and note that (|¢|) > ("}°) for every F,G € F with F 2 G. Thus, applying
Theorem with m = (“/ 3) it follows that there exists a hypergraph H; C Gi[F7]

and a constant § = 5(k) > 0 such that e(3;) = §* 33 /2) and
ko MR e e(a)
A g_ci < 5 3yk—¢ — . n/ < . 1
o(H) < (on7) 533 k(%) a3 T

for some ¢’ = c¢’(k) and every 1 < { < k. Let H{ = J{; U - - - U Iy, and observe that

c e(H)
A(H) < 1121a<xt {Ae )} S WW

as claimed, since e(H) =t - e(7;) and |F| = O(t - |F]|) for every i € [t]. O
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Motivated by the above bounds, fix T: P(n) — R to be the function defined by

n! if|[A| <3k(™
T(A) == A (:)2) (2.2)
n—3 otherwise.

We can now specialise the Hypergraph Container Lemma to our application by com-
bining it with Lemma and Lemma The following corollary will be used in
Section [2.4| to count the containers of a given size produced by repeated applications
of the Hypergraph Container Lemma, see Theorem 2.4.2]

Corollary 2.2.3. For every 2 < k € Nand o« > 0, there exists & = 8(«, k) > 0 such that the
following holds. Let n. € N be sufficiently large and C C P(n) with [C| > (k — 1+ «)(,,)-
Then there exists a collection C C P(C) and a function f: P(C) — C such that

(a) Forevery I € J(G«[C]), there exists T with |T| < k- t(C)[Cland T C I C (T).

(b) IC'] < (1—3)IC| for every C’ € C.

Proof. Apply the Hypergraph Container Lemma to the hypergraph H C G [C] given
by Lemma [2.2.1|(if |C| < 3k(nr;2)), or by Lemma 2.2.2(otherwise), and observe that (for
a suitable choice of the constant c) the inequality holds with T = t(C) for every
1 < € < k. It follows immediately that there exist a family € of subsets of C, and a
function f: P(C) — € such that (a) and (b) hold, as required. ]

2.3 BALANCED SUPERSATURATION

In this section, we will prove Theorem by constructing H one edge at a time. More
precisely, starting with H = (), we will repeatedly apply the following lemma, adding
new edges to J{ until the conditions of Theorem are satisfied.

Lemma 2.3.1. For every k > 2 and « > 0, there exists & = d(o, k) > 0 such that the
following holds. Let n € Nand F C P(n) satisfy |F] > (k— 1+ «) (nr;z), and suppose that

57t <m < ([§)) forevery ¥, G € Fwith F 2 G. If H C Gi[F] is a hypergraph satisfying

(a) e(30) < S*m<(7,),
(b) Ae(H) < (dm)*t  forevery { € [K].

then there exists an edge f € Gy [F] \ H for which A({f} U H) < (dm)*~* for every € € [KI.



28 Maximum-size antichains in random sets

The rest of this section will be dedicated to proving the above lemma, so from now
on let us fix x > 0 and k > 2, and choose > 0 sufficiently small and m > 5L
Moreover, let us fixn € N, a set F C P(n) and a hypergraph 3 C G [F] satisfying the
conditions of the lemma. The degree function of J will simply be denoted by d, for
simplicity.

We say that a non-empty set A C P(n) is saturated if d(A) = [(dm)* M|, that is, if
no edge of J containing this set can be added to the hypergraph H without violating
condition (b). Aset A C P(n)is bad if it contains a saturated set, and it is good otherwise.
With this terminology, the conclusion of Lemma is that Gy [F] contains a good
edge. Indeed, since a good edge f € Gi[JF] is not saturated, then d(f) < 1,and so f & K.

The following easy lemma will be a crucial tool in the proof of Lemma It says

that there are not too many ways to turn a good family bad.

Lemma 2.3.2. For any good A C P(n), there are at most 2" . 28km sets F € P(n) for which
{F} U A is bad and {F} is not saturated.

Proof. The result follows from a simple double-counting argument, which we spell out
below. Since A is good, any saturated subset of {F} U A must contain F. In other words,
any F such that {F} U A is bad belongs to

S(B) ={Fe€Pn):d{FrUB) = [(dm)* ®I71]}

for some B C A. Moreover, if {F} is not saturated, then B cannot be empty. Therefore,
it is enough to bound the size of S(B) when B is non-empty. We do so by noting that

S(BIL(Em) T = Y d{F}UB) < kd(B) < k(sm)* P,
FES(B)
where the first inequality is true because each edge of J{ containing B contributes at
most k to the sum. Since m > 5!, we obtain |S(B)| < 26km. The claimed bound now

follows by summing over all choices of B. O

Similarly, writing S = S(0) for the family of saturated sets, we have |S|| (dm)* 1] <
k - e(H). By condition (a) and the bound m > 571, it follows that |S| < 26k(n‘}2). Thus,
by adjusting « slightly if necessary, we can remove the elements of S from J. Therefore,
from now on we will assume that J contains no saturated vertices.

We will next sketch the proof of Lemma The key idea is that if we choose
F; to be of minimal cardinality such that the “density” of k-chains below F; (see Defini-
tion[2.3.3) is bigger than «/k (see Lemma[2.3.6), then only few of those k-chains will be
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bad, and hence at least one of them will be good. In order to bound the density of bad
k-chains below Fy, let us definea chain F; O --- D F, to be critical if {Fy,...,F¢_1}is good
but {Fy, ..., F;} is not. We will use Lemma to show that the density of critical ¢-
chains is small (see Lemma[2.3.7). We will then use the minimality of F; to deduce that
the operation of extending critical {-chains to bad k-chains only increases the density
by a bounded factor.

In order to make the above sketch more precise, let us next formalise the notion
of density that we will use. This definition is inspired by the work of Das, Gan and
Sudakov [26], see Lemma below. We remark that, despite its name, the {-chain
density of a set is not bounded above by 1, and in fact can be as large as Q(n*1).

Definition 2.3.3. The {-chain density of a set F; € J, denoted by c¢;(F,), is given by

B F\ 7 (Feal !
Ce(Fl) = 2 Z (|F2|> < |Fe| >

In particular, ¢;(F) =1 forall F € J.

The following lemma is essentially due to Das, Gan and Sudakov [26]. Since it was
not explicitly stated in their paper, we will give the proof for completeness.

Lemma 2.3.4 (Das, Gan and Sudakov). For any fixed 1 < i < j <k, we have
S () - ¢(F) < max (S) - (S)
= (R el AL )

Proof. Following the permutation method, say a permutation 7 of [n] contains a set F if
F={n(1),...,7(|F])}. Moreover, say it contains a chain if it contains all sets of the chain.
Note that the number of permutations containing a given chain F; 2 --- 2 Fy is

(n—[Fa))t [Fr\ Fall - [P \Felt - [Felt =t - RN (T
1) - 1k \ P2l e—1 \ Fel! - |Fg/! ! 7| Pl IR ,

and so, denoting by X, (7t) the number of {-chains contained in 7, the expected value of
X¢ with respect to the uniform probability measure on the set of permutations is

Bx) - Y <n)1<IF1I)1 (IFe—1|)1:ZC(F)/(n>
YA R R TR = R

.....
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On the other hand, since sets contained in a single permutation always form a chain,

X¢(7t) equals (z), where s is the number of elements of F contained in 7t. We deduce

that
xim =X (m) < max () - (3),
seN \1 )
and the conclusion follows by taking the expected value of both sides. O

A very useful feature of Lemma is that the upper bound it provides does not
depend on n. We will next use this to show that {-chain densities cannot decrease
too quickly as a function of {, and hence that it is enough to upper bound the k-chain
density of a set whenever we want an upper bound for all of its lower densities.

Lemma 2.3.5. Forevery F € Fand 1 < € < k, we have ¢, (F) < cx(F) + 4.

Proof. The result is trivial for { =1, as c¢;(F) = 1. For { > 2, we can use the identity

_ Y~ (rFQr)‘l_._(w“!)‘l_ /(m)
CZ(F)‘%QM) 2\ ) T2, ™

.....

FOF Fr2---DF
together with Lemma (applied to the hypercube of subsets of F) to obtain
1 S S
cf)—a(F)= > iy (ce-1(F2) — 1 (F2)) < max — :

FOF,eF (\le) seN \l—1 k—1

Since the function being maximised is negative for all s > 2k — 1, the right side is at

27") < 4%, which proves the result. O

most ( 01

Lemma also allows us to deduce that at least one element of our family has
large k-chain density, as we show in the following pigeonhole-like observation.

Lemma2.3.6. [f0 < a<land |F] > (k—1+ «) (HT;Z), then maxr cx (F) > a/k.

Proof. By Lemma withi=1andj =k, and since c¢;(F) = 1, we have

1
2 m(l —ck(F)) < max G) — (Z) =k—1.

Feg \IF|

However, if the desired conclusion were not true, we would have

1 1 o k— o
— (1 —cx(F)) > —(1=-=)2(k—-1+«a)- >k—1,
Lyt Lo (-5) Rl

where, for the last step, note that equality holds when o« € {0, 1}. O
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Finally, we will need the following lemma, which bounds the density of critical {-

chains. It is a simple consequence of Lemma [2.3.2/and our assumption that m < (“Q‘)
forevery F,G € FwithF D G.

Lemma 2.3.7. Forevery F; € Fand1 <l <Xk,

1 1
2

[Feq1l
F12---DFqqq critical

Proof. Recall thatif F; 2 --- D Fy is critical, then {Fy, ..., F¢} is good but {Fy, ..., Fei1}
is not. By Lemma it follows that the left-hand side of is at most

|F1|>1 (m_n)l . (|Fz|>1
.2 28km - max .
ZZ (|F2| |Fel FeQFed |F€+1|

The result then follows from our upper bound on m and the definition of c¢(F;). O
We are now ready to carry out the plan outlined above, and prove Lemma

Proof of Lemma We may assume, without loss of generality, that 0 < o < 1. Let Ty
be of minimal cardinality such that ci(F;) > o/k (note that at least one such F; exists,
by Lemma 2.3.6). We claim that

FN T IRl clF)
2 (|F2|) "'(lm) STo @4

which immediately implies that the total k-chain density of good chains is positive, and

therefore that atleast one good chain exists. In order to prove (2.4), notice that every bad
k-chain F; D - - D Fy is associated with a unique 1 < { < ksuchthatF 2 --- D Foiq is
critical. As such, we can write the left side of (2.4) as

= B Fol \
Z Z Bl R Cx—¢(Fey1) |-
=1 Fa,..,Fos1 €F 2 t+1

.....

F1 -+ DFg4q critical

We will proceed by bounding each term of the outer sum separately, so fix1 < £ < k. By
Lemma and the minimality of F;, we have cx_¢(Foy1) < o (Foy1) +4% < o/k+45 <
5%. Using this bound and Lemma we obtain

i\ Fl \ . K
2 Bl ) oedfe) s 2 2ealh) 5 (29)
+

F1 2+ DFg4q critical
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Using Lemma [2.3.5) once again for the bound c,(F;) < cx(F1) + 4% and summing
over 1 < { < k, we conclude that

4 -1
2 ('FJ) ..-<|Fk_1|) 5200 (g (F) 449 = 22 (R,

|Fal [Fxl (06

since cx(F1) > «/k. The right side can be made less than ¢ (F;)/2 by choosing 6 to be

small (only as a function of « and k), and so the proof is complete. O
2.4 prOOF OF THEOREM 2. 1.1]

In this section we will deduce Theorem from the results of the previous two sec-
tions. More precisely, we will use Corollary[2.2.3|to prove a ‘fingerprint theorem’ (The-
orem2.4.2} below), which easily implies Theorem[2.1.1] A coloured vertex set is simply
a set A C P(n) together with a function c: A — N. We will need the following defini-

tion.

Definition 2.4.1. A fingerprint of Gy is a family § of coloured vertex sets, together with:
(a) A fingerprint function T: J(Gx) — 8§ with T(I) C I for every I € J(Gy).
(b) A container function C: § — P(V(Gx)) such that I ¢ C(T(I)) for every I € J(Gy).

Each S € 8 should be thought of as a sequence of sets given by repeated application
of the Hypergraph Container Lemma. The container function is obtained by applying
the sequence of functions f given by these repeated applications. We will prove the

following theorem.

Theorem 2.4.2. For every k > 2 and ¢ > 0, there exist a constant K = K(e, k) > 0 and a
fingerprint (8, T, C) of Gk such that the following hold:
(a) Every S € 8 satisfies |S| < 1 (,7,);

(b) The number of sets of size s in & is at most

() 0 (3(2))

(¢) IC(TM)I < (k=14 ¢)(,[7,) for every T € I(H).

Before proving Theorem let us see how it implies Theorem 2.1.1]
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Proof of Theorem 2. 1.1, Let k > 2 and ¢ > 0 be arbitrary, and let K = K(¢, k) > 0 and
(8, T, C) be the constant and fingerprint given by Theorem Let n € N be suffi-
ciently large, and note that pn > Ke™, since pn — oo. If I C P(n, p) is an independent
set of Gy of size at least (k — 1 + 3¢)p (n/z), then it follows that T(I) C P(n,p) and

IC(T(D) NP, p)| > (k—1+3¢)p (T:;z).

Let X be the number of elements of § for which these two properties hold. Then

X)< Y P(ACPmnp)-P (}(C(A) \A)NP(m,p)| > (k—1+2¢)p <nr;2)> ’

AES

where we used that |A| < ep(,"},) by the lower bound on pn and Theorem [2.4.2| (a).

/2
Hence, by the properties of (8, T, C) guaranteed by Theorem and Chernoff’s in-
equality,

% (nT}Z)

K nn s K
w0 3 (M02) ee (K(n)) v oe (on())
K/ n Klog(pn) [ n K/ n n
Sh (n/z> P ( n (n/z) T (n/Z) B (n/2>) ’

since the summand is increasing in s on the interval ( 0, (Kp/e) (nT;z)), and K/n <

Kp/e. Therefore, by Markov’s inequality, and since pn > log(pn) > 1, we have

P(oc(?(n,p)) > (k—1+3£)p(nr/12>) <exp (—%p (32)) =0

as . — 0o, as required. O

It only remains to prove Theorem We will use a straightforward but technical
lemma.

Lemma 2.4.3. Let M > 0, s > 0and 0 < & < 1. For any finite sequence (s, ..., am) of real
numbers summing to s such that 1 < a; < (1 — 6)5Mfor each j € [m], we have

slogs < Za) log a; + O(M).
j=1

Proof. Fix m € N and note that, by compactness, we can assume that the sequence
(ai,...,am) achieves the minimum of 3 [, x;logx; subject to the given conditions.
Let

Ji={eml:a <(1-8M}
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and J, = [m]\ J;; define also s; = Z]-e 1 9 for i € {1,2}. The convexity of x log x implies
that all of the elements of the subsequence (a;)jcj, are equal and that J; = [t] for some
t€{0,...,m}, sothat s; < t(1—8)*M. Note that s = Z]. a; = O(M) and

(o¢]

szlogM—Zajloga] Zajlog— Zl—éJMlog( 16)):0(1\/1).

j€)2 j€)2 j=1

Wearedoneift = 0,soassumet > 1. By convexity, slog s < s;logsi+s;log s, +slog?2.
Hence, recalling that a; = ... = a; = s1/t, we have
slogs < s log L+ 5logt + sylogs, + O(M)
< Z a; log a; +t(1—5)*Mlogt+ Z a;jloga; + O(M)

j€h ji€J2

= ajloga;+0(M),

j=1
as claimed. O

We are now ready to prove the ‘fingerprint theorem’, and thus complete the proof
of Theorem

Proof of Theorem[2.4.2 Let k > 2 and ¢ > 0 be arbitrary, let 5 = 5(¢, k) > 0 be given
by Corollary[2.2.3] choose a large constant K = K(¢, k, 8), and let n € N be sufficiently
large. For a given I € J(Sy), we will apply Corollary a certain number of times,
which we will denote by m = m(I), to construct two sequences of sets C,..., Cini1

and Ty, ..., Tyy. The construction will inductively maintain the following properties:
1.IcCGpUTiu---UT,
2. The sets Ci41, Ty, ..., Ti are pairwise disjoint,
3. Ciyq only depends on C; and Tj,
4. |Cipq] < (1 =0)[C4l.

To do this, first set C; :== P(n). Aslongas [Ci| > (k—1+¢) (nT;z), letT; c INC;and f;
be given by Corollary and set Ciyq :=fi(Ti) \ Ty C C;i \ T;. We stop when we can
no longer apply Corollary 2.2.3| that is, when |Cpi1] < (k— 14 ¢)(] /2)

We define our fingerprint (8, T, C) of Gy by setting

T :=(T,..., Tw) and C(TM)=CrpUThU---UTy,
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and letting 8 := {T(I) : I € J(Gx)}. Note that Property 3 implies C is well-defined, while
Property 1 guarantees that it is a container function.

In order to check that the constructed fingerprint satisfies the conditions of the the-
orem, we first bound the sizes of the fingerprints and the number of iterations of the
above procedure. To do so, let 2 < my < m be minimal such that |C,,,| < 3k(nr;2), and
observe that, by Property 4 and the definition of T(A),

n—3.2n ifi< my,
T(CIG < (2.6)

nl.(1—5)tmo ~3k(nT;2) otherwise.

The geometric decay of |C;| moreover immediately implies that m = O(logn). We thus
obtain

mo—1 n m

> (cred - (VA I 3 wcci= ()
2.7)

Since [T(I)| = X%, ITil < X%, kt(Cy)ICil, adding the two bounds immediately proves

(a). Also, since n is sufficiently large,

CT(D)] = [Coa + U+ U Tl < (k—1 +2s)(n’;2),

which proves (c), since ¢ > 0 was arbitrary.

It only remains to prove (b), which follows using Lemma The first step is to
partition the collection of s-sets in 8 into subfamilies §(1hy, t), where for given 1hy € N
and t = (t1,...,ts) € N™, we define 8(1hy, t) to be set of all (Ty, ..., Tn) € 8 such that

n

My is the smallest integer for which |Cy, | < 3k(n P

i€ [m].

) and moreover |T;| = t; for each

In order to bound the number of elements of §(1hy, t) of size s, set s; = Zl“: 1o s
and observe that

o 1 1 O/ n
Z tilog; < sllogs—l—l—%(n/z), (2.8)

i=1y

by Lemma and the second bound in (2.6). Since each T; is a subset of the corre-
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sponding C;, we can use the trivial bound |C;| < 2™ and the definition of 1h, to write

s < 31 () F1(4)

= i= TTl

(nio_[lztl (3ek n’;z ﬁ (%)t>

1=y

<(%57) e (i)

where the final step follows from the first sum in and from applying the expo-
nential function to (2.8). Finally, note that the right-hand side is monotone in s; on the
interval (0, K(",)/e), and we can therefore replace s, by s. Summing over the (at most

O(J) choices of t, 1y and 1, the claimed bound follows. O



THE SHARP THRESHOLD FOR MAXIMUM-SIZE SUM-FREE SUBSETS IN

EVEN-ORDER ABELIAN GROUPS

The work in this chapter is joint with Neal Bushaw, Robert Morris and Paul Smith. It is
adapted from an article [20] which will appear in Combinatorics, Probability & Comput-

ing.

3.1 INTRODUCTION

In this chapter we will determine the sharp threshold for the maximum sum-free subset
problem in an arbitrary even-order abelian group. Our main theorem improves some
recent results of Balogh, Morris and Samotij [13]], who resolved the case G = Z,,, and
obtained weaker bounds in the general setting.

We consider the following question: How large is a maximum-size sum-free set in
a p-random subset of an abelian group? For the group Z,,, this problem was resolved
(asymptotically) by Conlon and Gowers [24] and Schacht [82], who determined the
following threshold:

(1+0(1))-2pn  if p<1l/yn
(1/240(1)) -2pn if p>1/yn
(3.1)
with high probability as n — oco. More precisely, one can show using the methods
of [24, 82| (see [13,78]), and also using those of [8,[81], that (with high probability) the

maximum-size sum-free subsets of A contain only o(pn) even numbers. Moreover, a

max {|B| : B C A = (Zon), is sum-free} = {

corresponding result holds for any even-order abelian group. This fact will be a key
tool in the proof below.

We will be interested in the following more precise question, which was first studied
by Balogh, Morris and Samotij [13]. Given an even-order abelian group G, note that the
maximum-size sum-free subsets of G are exactly the odd cosets of subgroups of index
2, and that a p-random subset A C G has a sum-free subset of (expected) size

max {!A N O] : O is the odd coset of a subgroup of index 2} > <% + 0(1)) pIG|.
(3.2)
For which functions p = p(n) is it true that, with high probability, the size of the largest
sum-free subset of A is equal to the left-hand side of (3.2)? In other words, for which
densities does the exact extremal result in G transfer to the sparse random setting? It

37
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was shown in [13] that the threshold for this property is (lo%) 2 for every even—orde
logn
3n

Zon . In other words, writing SF(A) for the collection of maximum-size sum-free subsets

abelian group, and moreover that there is a sharp threshold at ( )1/ ? in the group
of A, and O, for the set of odd numbers in Z,,,, they proved that for every ¢ > 0,

0 if p<(l1—¢) logn

3n

P (SF (Zan)p) = {(Zan)p N Ozn}) .

1 if p>(14e)y/ B2

3n

as n — oo. For more on the general theory of the existence of (sharp) thresholds, we
refer the reader to [15| 44, [51]], and to [45] for an example involving monochromatic
triangles.

Since Balogh, Morris and Samotij [13] were able to prove such a sharp threshold for
the group Z,,, but only a weaker threshold result for other even-order abelian groups,
it is natural to ask whether one can also obtain a more precise result in the general
setting. In this chapter we answer this question in the affirmative, by determining the
sharp threshold for every even-order abelian group. In order to state our main theo-
rem, we shall need the following function, which determines the location of the sharp
threshold.

Definition 3.1.1. Given an abelian group G with |G| = 2n, let r(G) denote the number

of elements x € G such that x = —x, and set
1
x(G) = 0gr(G) and B(G) := 1‘(_G)
logn n
Now, given § > 0, define A(®)(G) as follows:
1/3 if «x(G)<5/6
A®(G) = «x(G)—1/2 if «(G)>5/6and B(G) <5

2/(4-B(G) if P(G)>s.

We encourage the reader to think of § as a function going to zero slowly, and n as a
function going to infinity much faster. The following theorem is our main result.

Theorem 3.1.2. For every ¢ > 0, and every sufficiently small 0 < & < 8¢(¢), there exists
No(e, 8) € Nsuch that the following holds for every n > ny(¢,d). Let G be an abelian group of

!In fact Theorem 1.1 of [13] is more general: it determines the threshold for any abelian group whose
order has a (fixed) prime factor q with q =2 (mod 3). Here, as before, we set |G| = qn.
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order 2n, and let p € (0,1) with p > (logn)?/n. If A is a p-random subset of G, then

o(1) if p<(1—eg)y/A0)(G)kE"

n

P (Aﬂ O € SF(A) for some O € SF(G)) =
1+0o(1) if p>(1+¢€)y/A)(G) =,

n

Here, as usual, o(1) denotes a function that tends to zero as n — oo. We shall refer
to the two bounds as the 0- and 1-statements respectively.

The proof of Theorem uses the method of [13], but we will require several
substantial new ideas in order to overcome various obstacles which do not occur in
the case G = Z,,. Many of these arise from the fact that SF(G) can be quite large
(as big as |G| in the case of the hypercube), which means that we must obtain much
stronger bounds than in [13] if we wish to apply the union bound. For the 0-statement
we shall do this using a recent concentration inequality of Warnke [92], which allows
us to deduce for almost all O € SF(G) that, with very high probability, the set AN O
is not a maximal sum-free set. For the 1-statement, however, such a straightforward
strategy is not feasible, since the threshold for the event that AN O is maximal for every
odd coset O € SF(G) is not given by A®)(G).

In order to avoid this problem, we need to show that ANO is a maximal sum-free set
for each O € SF(G) such that |[ANO|is maximal. Unfortunately, conditioning on the size
of AN O introduces significant dependence between odd cosets, and our first attempts
to prove the 1-statement failed as a consequence. We resolve this issue by fixing the
number of elements of A (i.e., coupling with the hypergeometric distribution), which
essentially eliminates the positive correlation between the quantities [ANO| for different
cosets.

A third issue involves the analysis of the Cayley graphs Gs for each S C &, where &
is a subgroup of index 2, V(9s) = O (the corresponding odd coset) and xy € E(Gs) if
either x +y € S or x —y € S. Although counting the edges in these graphs precisely is
not entirely trivial, we are fortunate that we can absorb most of the resulting mess into
an error term. However, we still need to do some rather careful (and delicate) counting
of the number of sets S that contain a given number of edges of H(yy, the Cayley graph
of the set W ={a + a : a € O}, since this controls the size of e(Gs), see Section

The remainder of the chapter is organised as follows. In Section[3.2 we collect some
probabilistic tools and simple group-theoretic facts that will be needed later. In Sec-
tion [3.3| we analyse the Cayley graph Gs for each set S C &, where € is a subgroup
of index 2, and count the number of such sets S whose Cayley graph has fewer edges
than expected. In Section 3.4) we deduce the O-statement from Warnke’s concentration
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inequality (see Section [3.2), together with some of the more straightforward bounds
from Section [3.3] Finally, in Section 3.5 we prove the 1-statement of Theorem us-
ing the method of [13], combined with the coupling argument and careful counting
described above. We end the chapter with a short Appendix, which contains a some-
what technical calculation involving the hypergeometric distribution.

We will also recall the FKG inequality and the concentration inequalities of Warnke
and Janson, and state some simple facts about abelian groups that will be useful in the

proof.

3.2 PRELIMINARIES

In this section, we will recall the FKG inequality and the concentration inequalities
of Warnke and Janson, and state some simple facts about abelian groups that will be

useful later on.

Probabilistic tools

Recently, Warnke [92] showed a powerful concentration inequality which improves
martingale concentration methods. The main advantage of his method is that it re-
laxes the Lipschitz condition by allowing us to specify an event I' for which we know
the Lipschitz constant is smaller than the worst-case bound. In many combinatorial ap-
plications (see the article of Warnke [92] for examples), this improvement is substantial.

Here, we state a simpler version of this inequality which will be our main tool for
the O-statement in Section

Warnke’s inequality. Given N € N, let T C {0, 1} be an event and f: {0,1}N — R be a
function. Let p > 0and X = (Xy,...,XN), where X, € {0,1} and P(Xy = 1) = p for each
k € [N], all independently, and set n = E [f (X)}. Suppose that, for some c,d > 0,

c ifxerT,
If(x) —f(y)l <
d otherwise

whenever x,y € {0, 1}N with [x —y| =1, and let v € (0,1).
There exists an event B = B(T,y) C {0, 1}, with =B C T, such that

N

P(XeB) < = -P(X¢D),
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and moreover, setting C = ¢ + y(d — c), we have

2
<pH-— —B) < . S—
P (f(X) < p—tand =B) < exp ( 2N T Ct>
forany t > 0.
We also recall two well-known probabilistic inequalities: Janson’s inequality and

the FKG inequality. We refer the reader to [5] for various more general statements and
their proofs.

Janson’s inequality. Suppose that {Bi}ic1 is a family of subsets of a finite set X and let p €

[0,1]. Let
o= mei\, and A = Zp|BiUBj\,

iel i~

where i ~ j denotes the fact that i # j and B; N B; # 0. Then,

P (Bi & Xp forallieI) <e ™2,
Furthermore, if 2cu < A with ¢ < 1/4, then

P(B; ¢ X, foralliel) < e CH/A

The FKG inequality. Suppose that {Bi}ic1 is a family of subsets of a finite set X and let
p € [0,1]. Then

P(B:i ¢ XpforalliceI) > [[P(B:i ¢ Xp).

i€l

Another key probabilistic component, which will be of great importance in the
proof of the 1-statement, is the asymptotic stability theorem for even-order groups
proved by Balogh, Morris and Samotij, which already appeared as Theorem in
the introduction.

Group-theoretic facts

In order to avoid repetition, we shall assume throughout the chapter that G is a finite
abelian group of order 2n. Given a subset X C G, we write

e R(X) for the collection of elements x € X for which x = —x, and r(X) = [R(X)|.

e m(X) for number of two-element subsets of X that are of the form {x, —x}.
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We will need a few basic facts about finite abelian groups. The first one is well-known.
Fact 3.2.1. There exist integers 1 < ay < ... < ay and an odd-order group | such that
G = Zpa @ @ Zpa @ J.
The second fact we need is a characterisation of the index 2 subgroups of G.

Fact 3.2.2. Let I C {1,...,k}. Writingx € G as (xi,...,%x,Y) via the isomorphism of
Fact{3.2.1} the subgroup Hy = {x € G : }_;c;xi =0 (mod 2)} is isomorphic to

Loy @ D Loyas 1 D -+ ® Lpar @,
where i = min I. Moreover, every subgroup of G of index 2 is equal to Hy for some 1 # ().

Proof. Without loss of generality, assume that ] = {0} (and thus omit the last coordinate

of elements of G) and I ={1, ..., k}. Then the image of the (injective) homomorphism
f: Hy = Zyai @ - - - @ Zpax
(Xl,...,Xk) — (Xl + - +Xk,X2,...,Xk)
consists of the elements of G whose first coordinate is even. Observe that the addition
above is well-defined because there is a natural projection from Za; to Zy« for any
1<i<k
Conversely, given a subgroup H of index 2, observe that 1} is a homomorphism

onto Z,, which implies that Lye(x1,...,xx) = Zlle Xilpe(ey) = Zi:eieHXi (mod 2),
andthusH={xe€ G : } ; . xi =0 (mod2)}. O

Note that Fact implies that G has exactly r(G) — 1 index 2 subgroups. Finally,
we make a simple but useful observation.

Fact 3.2.3. For any subgroup H of G of index 2, either r(H) = v(G) or r(H) = 7(G \ H).

Proof. For any x € R(G \ H), y — y + x is a bijection between R(H) and R(G\ H). O
3.3 EDGE COUNTS IN CAYLEY GRAPHS

In order to bound the probability of the event “ANO € SF(A)” for some fixed maximum-
size sum-free set O € SF(G) and its corresponding set of evens £ = G\ O, we will need
to consider events of the form

“((AN0O)US)\ T is sum-free"
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where S C ANE, T C ANOand |S| > |T|. This event is contained in the event that
(ANO)\Tis anindependent set in the Cayley graph Gs, defined below, and to bound its
probability we will need to analyse carefully the number of edges in this Cayley graph
for each such set S of evens. In particular, there may be an exceptional collection of sets
S with too few edges for our purposes (that is, for our application of the union bound
over all sets S), and we will need to bound the size of this collection.

Let us begin by stating precisely the main results we will prove in this section. We
fix throughout an arbitrary ¢ > 0, a sufficiently small 6 > 0 and a sufficiently large
n € NJ2| We also fix an abelian group G of order 2n, an odd coset O € SF(G), and its
corresponding set of evens € = G \ O, which is a subgroup of G of index 2. For each
set S C &, we define the Cayley graph Gs of S to have vertex set O and edge set

E(9s) — {{y,z}e (O

2) :y+z€50ry—z€$},

where (for simplicity) we do not permit Gs to have loops. Recall that we write r(X) for
the number of order 2 elements in X C G, and m(X) for the number of pairs {x, —x} C X.

We will prove the following propositions.

Proposition 3.3.1. Let k € N. For every 0 € S C € with |S| = k and m(S) = 0, we have

(Sk—r(S) 3k—r(8)> 0

S n-006) 1) < etss) < (25

Moreover, if r(G) < dnand 48 < a < 1, then there are at most (6/62)k(n/k) kla/amo)k

0¢S C & with
e(Gs) < (—3k —21‘(3) — ak) n

sets

such that |S| = k and m(S) = 0.
When r(G) > on the edge counts are slightly different.

Proposition 3.3.2. If r(G) > on, then, for every k € Nand 0 < s < k, there are at most
(12/8)" (n/k)° sets 0 & S C € with

e(9s) < (s+1) (n— r(;?)) (3.3)

such that |S| = k and m(S) = 0.

2We think of 6 as a function of n which tends to zero sufficiently slowly as n — oo.
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In order to prove Propositions(3.3.1/and 3.3.2}, we will first count edges in G = G,y

for each x € &, and then study the intersections between these graphs. These will
depend on the parameter 7(S), as the reader can see from the statement. However,
they will also depend on the intersection of S with the set

W={a+a:aec0}

and with its Cayley graph. We will use several times the fact that [W| =n/r(E).
Edge counts in Gy

We begin with the relatively simple task of counting the edges in the Cayley graph of
a single vertex x. To be precise, we will prove the following lemma.

Lemma 3.3.3. For every 0 # x € €,

e(Gy) = n—@—%&l[XGW] + (—

and A(Gy) < 3.

Proof. Let us denote by G the edges of the form x = y + z, and by G the edges of
the form x =y — z, so §x = G} U G, . Note first that the graph G, has a very simple
structure, since every vertex has degree either one or two. More precisely, if x ¢ R(G)
then it is a union of cycles, and so e(9;) = n; if x € R(G) then it is a matching, and so
e(Gy) =n/2.

In order to count the edges of G \ G, let us partition the vertex set O into (up to)

four parts, as follows:

(a) Set O1 ={a € O:a+ a=x} If |0y #0, then x € W, and moreover |0 = r(&),
since the property a € O; is invariant under the addition of an order 2 element.
Moreover O; contains no edges of G}, and O; N R(O) = 0, since x # 0.

(b) Set O, = R(0O), the collection of order 2 elements in O. If x € R(G) then O, induces
a matching in G, since a € R(O) if and only if b = x — a € R(O).

(c) SetO3 ={b € O\ O, :x—b € R(O)}, and observe that if x € R(G) then |O3| = 0 (as
above), whereas if x € R(G) then |O3| = |O,|, since if a € R(O) thenb =x —a ¢

R(0O). Moreover G contains one edge for each element of Os.

(d) Set Oy = O\ (07 U0, U O3), and note that G induces a perfect matching on O,.
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Now, observe that an edge of G is also contained in G if and only if it has an endpoint
in R(G), since if a + b = x then b € R(G) if and only if a — b = x. Therefore

(6 = (L 1[x g RG)) S+ 120
and
04 = n—1[x e W|r(&) — (1+ 1[x € R(G)])r(0),
and so the lemma follows. O

Lemma has the following simple consequence, which we shall use several
times.

Observation 3.3.4. For every 0 # x € &, we have e(Gx) > max{n — r(G), n/2}. Moreover,
if0 ¢S C & satisfies m(S) =0, then e(Gs) > ) s e(9x)/2.

Proof. If x # 0, Lemma implies that

r(0)  r(€)

and, in particular, e(9x) > n — r(G). In addition, either r(0) < r(€) < n/2 or [W]
n/r(€) =1,andsoe(Gy) > n/2. Further, when m(S) = 0, theset{x € S:{a,b} € E(G4)}
contains at most two elements for any edge {a, b}.

O

Before continuing to the proof of Proposition[3.3.1} let us note how to obtain (heuris-
tically) the function A®)(G) from Lemma We call an element 0 # x € & safe if
(ANO)U{x}is sum-free, and let S¢ (A) denote the collection of safe elements in &. Note
that an element x € € is safe iffand only if A N O is an independent set in G,.

We need one more definition, whose slightly odd appearance will be motivated by
the lemmas below.

Definition 3.3.5. A subgroup € C G is nice if either r1(G) < dn or r(0) = r(&).
The next lemma says that almost all index 2 subgroups are nice.

Lemma 3.3.6. G has at most 2/ index 2 subgroups that are not nice.

3This is only true if we ignore sums of the form x = y +y. However, such sums will never play a
significant role in any of the calculations below.
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Proof. Clearly if r(G) < dn then all subgroups are nice, so let us assume r(G) > én. By
Fact we canwrite G = Z¥®H, where H = Zoa; ®- - -®Zoa BJ with2 < a; < -+ < @
and |J| odd. Since 1(G) = 2*** and |G| > 2+ *2¢, Factimplies that there are at most
2¢ < 2/8 subgroups & C G of index 2 that are not isomorphic to Z5 ' @ H. But if
& =75 '@oH,thent(0) =r(€), as required. O

We now prove the following bound on the expected number of safe elements, which
we will use in the proof of the 0-statement of Theorem [3.1.2]

Lemma 3.3.7. Iflo% <p < (1—¢)y/A0) (G)™8™ and & is nice, then

n

E[ISE(A)] > logn'

Proof. Suppose first that r(G) < don, and to simplify the notation let us write 6 = o(1)
(as noted above, we may assume that this holds as n — o0), and thus r(G) = o(n). It
follows from Lemma [3.3.3|that

n+o(n) if x € R(G)

3n/2+o(n) if x & R(G).

Now, by the FKG inequality, the expected number of safe elements x € € is at least

E[S*(A)] > Z (1—p2)e(9") > T(E)e*pz(““(“”_y(n_r(g))efp2(3n/2+o(n)) S logn.

xe&

To see the final step, it suffices to check that the claimed inequality holds at the end-
points of the claimed range of p, since xe ¥ is unimodal. At the lower end this is
immediate; at the upper end, note that e P > n(1-¢*A(G) gnd (&) = nx(G)+o1),
and that

since A®)(G) = max {1/3, «(G) —1/2}.
When r(G) > 6n, the (asymptotic) number of edges of G depends on both whether

x € R(G) and whether x € W. Indeed, the following table summarises the content of
Lemma
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x € R(G) x ¢ R(G)

r(0) (&) 3n (&)
xeW  n-—me 5 o rOm
x €W n_r(z_(‘)) 37“—1'(0)

Table 3.1: Summary of Lemma 3.3.3]

Fortunately, however, [W| =n/r(€) = O(1/8). We can therefore easily deduce a lower
bound on E[|S¢(A)[] for nice subgroups. Indeed, since r(0) = r(&) = B(G)n/2, and
again using the unimodality of xe=*’, it follows from Table 3.1|above that

E[sSA)] > Y (1-p2)"% = o(r(@)e ? 02 5 1"% (3.5)
xER(E)

as required, where the last step follows since 1 — (1 — B(G) /4)7\(5) (G) =1/2. O

Intersections between the graphs Gy and edge counts in Gs

We now return to the proof of Proposition In order to deduce the claimed bounds
on e(Ys), we will need to control the size of the intersections between different graphs
G«. Recall that we have fixed an odd coset O € SF(G), and that W ={a+a:a € O}

The following observation is key.
Observation 3.3.8. Let x,y € E withx ¢ {y, —y}. I E(9x) NE(Gy) #0, then x +y € W.

Proof. Suppose the edge {a, b} lies in both G, and G,. Then, without loss of generality,

we have a+ b =xand a—b =y,and so x +y = a + qa, as claimed. O

Moreover, we can bound the size of each intersection.
Observation 3.3.9. [E(Sx) NE(Gy)| < 2-1(&) for every x,y € € withx & {y, —y}.

Proof. Consider {a, b},{c,d} € E(Gx) N E(Gy). Since x ¢ {y,—y}, we may assume that
{a+b,a—b}={x,y} ={c+d,c— d}. It follows that a + a = x +y = ¢ + ¢, and thus
¢ —a € R(&). Moreover d € {x — ¢,y — c}, and therefore, given {q, b}, there are at most
2 - r(&) choices for {c, d}, as claimed. O
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Let us denote by H the graph on vertex set £ with edge set {xy : x +y € Wj},
and note that we have A(Hw) < d, where d := [W| = n/r(€). By Observations m

and we have

> [E(S) NE(Gy)] < 2-7(E) - e(HwlS]) (3.6)

X,Y€E€S,x#Y

for every S C € with m(S) = 0. Since, by Lemma we have good bounds on the
sum of e(Gy) over x € S, the following lemma is all we need to complete the proof of
Proposition [3.3.1]

Lemma 3.3.10. For every § < a < 1/2, there are at most (6/62)k(n/k) itk s s c g
with |S| = k and
akn
> —. .
e(HwlS]) > ) (3.7)

Proof. We shall first bound the number of sequences (vy,..., Vi) € &¥ such that the
set S = {vy,..., v} satisfies |S| = k and (3.7). Given such a sequence, let us say (for
each j € [k]) that the vertex vj is of ‘low degree’ if it is connected (by edges of H) to
fewer than dad = dan/r(€) vertices of the set {v;, ..., v;_1}, and say it is of high degree
otherwise.

Since A(Hyw) < d, it follows from that in each such sequence there must be
at least (1 — 8)ak high-degree vertices, since the low-degree vertices contribute fewer
than dakd edges. Moreover, since there are at most (j —1)d < kd edges of H, leaving
the set {vy,...,v;j_1}, there are at most k/da choices for a high-degree vertex, given the
collection of vertices which have already been chosen.

Now, given a set ] C [k] of size at least (1 — 6)ak, corresponding to the positions of

vertices which are required to have high degree, there are at most

( k )I e
-_— n
da

possible sequences, and this value is maximised when |]| is minimised. Therefore, con-

sidering all possible choices for J, it follows that there are at most

1\ (1-8)ak
ok (_) pk—(1=8)ak
da

sequences with the desired properties.
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Finally, note that each set appears exactly k! times as a sequence, and therefore the
number of sets S C € with [S| = k satisfying (3.7) is at most

k (1—8)ak k k—(1—8)ak
Ze\" (& k—(-s)ak ~ (2€)(n
k Sa S8 k ’

since a > 9, as required. Il
We are now ready to prove the two propositions.

Proof of Proposition Let0 ¢ S C € with |[S| = k and m(S) = 0. By Lemma 3.3.3]
and (3.6), and noting that [W| = n/r(&), we have

e(9s) > ers (n— @ — %g)ﬂ[x e W]+ (“_TT(O)> 1[x ¢ R(G)}) —2-1(&)e(HwlS])

> k(n—1(G)) + (n——r(O)

2
> <3k_TT(S)>n —0(r(G)-12),
as required, and the upper bound follows similarly. Moreover, the same calculation
implies that if e(Gs) < (w — ak)nand r(G) < &n, then
(a —35/4)kn
2-r&) 7
—(a/2—6
) k

) (k= 115) =2 v{ENestis])

and by Lemma [3.3.10 there are at most (6/5%) (n/k ' such sets S ¢ & with
IS| = k. O

Proof of Proposition The proof is similar to that of Lemma([3.3.10} but for complete-
ness we give the details. We will count sequences (vy,...,vi) € &* such that the set
S ={v1,..., v} satisfies |S| = k and (3.3). Let S; = {vy,...,v;}, and observe that, since
m(S) =0, each 0 # x ¢ W that sends no edges of Hyy into S; adds at least n —r(0)/2
edges to Gs, by Lemma (see Table [3.T) and Observation[3.3.8] There are therefore
at most s such ‘bad’ vertices, since e(95) < (s +1)(n —r(0)/2).

Now, since A(Hw) < [W| =n/r(€) <2/6and [S;| =j <k, it follows that there are
at most 2k/d vertices in W U Ny, (S;), and hence at most this many choices for each
‘good’ vertex. Note that there are at most 2* choices for the indices j such that v; is bad,
and each set S is counted k! times as a sequence. Thus, the number of sets 0 ¢ S C €
with [S] = k satisfying is at most

z %k—sns<4_ekzs
k! ) S8 k)’

as claimed. 0
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3.4 PROOF OF THE (-STATEMENT

In this section we will prove that if A C G is a p-random set and

OB o < (1-¢)y/A0(6) BT, 68)

n

then AN O & SF(A) for every O € SF(G) with high probability as n — oco. The main
step will be proving the following proposition [

Proposition 3.4.1. For every € > 0, the following holds for every sufficiently large n. € N. Let
G be an abelian group of order 2n, let O € SF(G) and suppose that € = G \ O is nice and that
p € (0,1) satisfies (3.8). If A is a p-random subset of G, then

1

P(ANO eSFA)) < —.
n

Recall also that at most O(1/9) of the index 2 subgroups of G are not nice. We will

use the following simple-sounding lemma to deal with these subgroups.

Lemma 3.4.2. Let M denote the collection of odd cosets O € SF(G) such that |ANO|is maximal.
Then with high probability there is an O € M such that € = G \ O is nice.

The proof of Lemma|3.4.2} although not difficult, is surprisingly technical, and so we
shall postpone it to the appendix. Note that the O-statement in Theorem follows
from Proposition and Lemma 3.4.2]by taking a union bound over nice subgroups.

Recall that an element x € € is called safe if (AN O) U{x} is sum-free, and that S¢(A)
denotes the collection of safe elements in €. We will bound the probability of the event
A NO € SE(A) by the probability that there exists no safe element x € AN €. Since the
random variable S¢(A) is independent of the set A N &, it follows that

P ((Am 0 € SF(A)) N <ys€(A)| > 31‘?“)) <(1-p)Er o L 3

n3’

and so it is enough to consider the event that [S¢(A)| < (3logn)/p.

We will bound the probability of this event using Warnke’s concentration inequal-
ity, which was stated in Section The first step — showing that IS¢(A)| has large
expected value — was already carried out in the previous section. Indeed, we have

logn

E[IS¢(A)] > (3.10)

*We remark that the bound 1/n? could easily be replaced by 1/n¢ for any C > 0.
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whenever p € (0,1) satisfies (3.8), by Lemma Our main task will be to prove the

following lemma, which shows that [S®(A)] is concentrated around its expected value.

Lemma 3.4.3. If p € (0, 1) satisfies (3.8), then

P(IS‘S(AJI < M) < i

2 ns3
We will prove Lemma by applying Warnke’s inequality to the function A

IS¢ (A)]. In order to do so, we need to define an event I' C P(0O), and prove the ‘typical

Lipschitz condition’

& p)=n"W43 EISEA)] fAeT,
IISE(A)] — ISE(B)I] < { clép)=n- ST ifAer (3.11)
n otherwise

for every A,B C O with [AAB| = 1 (note that c(€,p) > 1, by (3.10)). We define the
event I so that (3.11) holds by definition:

M= {A O max{||s*(A) —Is°(B)]| : IAABI =1} < c(,p) }. (3.12)

We would like to show that P (A ¢ I') < n~5, since this will imply the desired upper
bound on the probability of the event B given by Warnke’s inequality.

The main technical step in the proof of Lemma [3.4.3is proving such a bound on the
probability that A ¢ TI'. To do so, note first that if A ¢ I then there exists u € O such
that ||S¢(A)|—[SE(AA{u})]| > c(&,p). Let I (u) be the set of choices of A for which this
property holds, so that ' = [ J,,, (1), and note that, by symmetry}|

PAeT(w)|uecA) =P(AecT(uW|ugA). (3.13)

We will bound P (A erle (u)) for each fixed u € O, and then sum over u.
Motivated by (3.13), let us fix u € O, assume that u ¢ A, and write

Yi(A) = SE(A)\SE(A U {u)).

Observe that A € T°(u) if and only if [Y{(A)] > ¢(&,p). We will prove the following

lemma.

Lemma 3.4.4. For every k satisfying 25 < k < 1/1/9,

P(AZT) < cle,p) Y E|VEA)] < iS
ue

asmn — oQ.

SIndeed, if B = AA{u} then A € T¢(u) < B € ' (u HSg ) — IS ( )\| > c(&,p).
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Note that the first inequality follows from the comments above and Markov’s in-
equality. The intuition behind the second inequality is based on our expectation that
IYS(A)l = O(p|S¢(A)]), and that the events {z € Y§(A) : z € £} are more or less in-
dependent of one another. We expect |[Y&(A)| to take roughly this value since Y& (A) C
S¢(A), and moreover for each z € Y¢(A) thereisav € O with uv € E(S,) such that
veEA.

In order to make this argument precise, the following notion will be crucial. Fix
u € O, and say thataset 0 # Z C € is covered by Y C O if for each z € Z there is a
y € Y such that uy € E(G,). Say that Z is cover-maximal if |Y| > |Z] for every set Y that
covers Z, and for each Z C € choose a maximum-size cover-maximal subset g(Z) C Z.
Note that since any singleton in Z is cover-maximal, g(Z) is non-empty. The following

lemma is key.
Lemma 3.4.5. For each Z C &, there are at most 12'%! sets Z' C € such that g(Z') = Z.

Proof. Consider aset Z' C € such that g(Z’) = Z. Then for any z € Z’ \ Z, there must
exist some set Y C O of size |Z| that covers Z U{z} (and hence also covers Z), otherwise
the set Z U {z} contradicts the maximality in the definition of g(Z’).

We claim that there are at most 3!4/ sets Y ¢ O of size |Z| covering Z. Indeed, since
Z is cover-maximal, Y must contain exactly one element of Ng_(u) for each z € Z, and
these neighbourhoods must be disjoint. Since A(G,) < 3, it follows that we have at
most 3/Y! = 34l choices for Y. But each such set Y covers at most 3|Z| elements (since
eachisin (Y £u)U (u—Y)), and each z € Z’ \ Z must be covered by some such Y, by
the comments above. We therefore have at most 314! - 2214/ = 1214/ possible pre-images
of Z, as claimed. O

We also need the following simple observation, which follows easily from the defi-

nition.
Observation 3.4.6. If Z is cover-maximal and {a, —a} C Z, then a = —a.

Proof. The element u+ a € O covers both a and —a, and so if {a, —a} C Zand a # —a
then there exists a set Y with |Y| < |Z| — 1 which covers Z. n

We are ready to prove Lemma3.4.4]

Proof of Lemma Consider the family My of non-empty cover-maximal sets Z C &€
with |Z| = k, and note that if Z' C Z, then trivially

P(Z' CY(A) = P(ZCY(A).
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Thus, by Lemma we have

k
> P(zcYim) <12°) Y P((ANNg, W) > Z) N (Z c $5(A)),

Z<|K| =1 ZeM,

since each set Z contains a non-empty cover-maximal set g(Z), and each such set is
counted at most 12* times. Now, since [Ng, (u)| < 3/Z], the right-hand side is at most

k
123 3 2P (ZcCSHA)), (3.14)
0=1 ZeM,

by the FKG inequality, since {Z C S¥(A)} is decreasing in A, whereas {|A N Ng, (u)| >
|Z|} is clearly increasing.

We will apply Janson’s inequality to bound P (Z c §¢ (A)) for each Z € M,. Note
that m(Z) = 0, by Observation and that Z C S®(A) implies that A N O is an
independent set in §7, and suppose first that r(G) < on. Then,

u = pZe(Gz) > ( Ze ) (8¢*p*n) and A:=p Z (dgzz( )> = O(¢*p°n),

zeZ veO

since ‘E(SU) N E(SZ)| < 2-1(€) = O(on) for every y,z € Z by Observationm
Therefore, since e(5G,) > n/2 for every 0 # z € € by Observation and ¢ < k <
1//3, it follows by Janson’s inequality and (3.8) that

P(Z c S¢(A)) < nCl% exp ( 2 Z e(S,) > —no H (1 _pz)e(SzJ’

ze”Z zeZ

since 1 — p? > e P’ ~?" when p is sufficiently small, and p*e(S.) = o(1). Thus

> P(ZcSsH(A) o(5e%) " [[a-9%

ZeM, ZeMy zeZ

¢
< not (Z (1-9?) e“””) < nOELE[SEA)),  (315)
z€&
where the final inequality follows by the FKG inequality.
On the other hand, if r(G) > 6n then, by Proposition there are at most ns+°)
sets Z C Ewith|Z| ={ m(Z) =0and

s(n—r(f)) <e(Gz) < (s+1)(n—@>.
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Thus, applying Janson’s inequality as before, we obtain[f]

¢
Y P(zcsHA) <neW ) (n(l _pz)nfr(m/z>s

ZeM, s=1

4
=neW(14n(1-p)" ") <M E[SEA)], (316)

by (3.5). Combining (3.14), (3.15) and (3.16), it follows that

k
E[VEA)] < ne- 3 Y ptP(zesHA) <) (p-E s AN])

=1 ZeM,

and the lemma follows, since ¢(&,p) ™! - p - E [IS¢(A)[] < n1/57¢, O
It is now straightforward to deduce Lemma and hence Proposition 3.4.1}

Proof of Lemma We apply Warnke’s inequality to the function A — [S®(A)| and
the event I" defined in (3.12)), with

and t = M

—c(€, 1, d=n, — —
c=c(&p)> n Y o >

We obtain an event B such that

PAgT) < i,

P(AeB) < 3

c(&p)
where the last inequality follows by Lemma such that

E [IS¢(A)] v
P (ISS(A)I < #> < P(A€B)+exp (_4C(8,p)2pn+2c(8,p)t)
o(1)

< R +exp(—n’) <

nd’
as required. O

Proof of Proposition We split the event A N O € SF(A) into two parts, depending
on whether or not [S¢(A)] < (3logn)/p. By Lemmas [3.3.7/and [3.4.3, the probability
that |S¢(A)| < (3 logn)/p is at most 1/n®. On the other hand, by (3.9), the probability
that A N O € SF(A) and |S¢(A)| > (3logn)/p is at most 1/n®. Therefore

P(ANOeSFA)) < P (|s€(A)| < 31(]’;‘5“) IR

as required. O

®When s = {, we trivially bound the number of sets Z such that e(5z) > ¢ (n — 2 )) by nt.
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The 0-statement now follows immediately.

Proof of the 0-statement in Theorem Recall that an abelian group G has at most |G|
index 2 subgroups. Thus, by Propositionand the union bound, it follows that with
high probability AN O ¢ SF(A) whenever & = G\ O is nice. However, by Lemma[3.4.2}
with high probability there is an odd coset O € SF(G) such that [A N O is maximal and
€ = G\ O is nice. Hence with high probability A N O ¢ SF(A) for every O € SF(G), as
required. O

3.5 PROOF OF THE 1-STATEMENT

In this section we will prove that if A C G is a p-random set and

logn

> (8)

p = (1+¢)\[AD(G)——,

thenevery B € SF(A)isequal to ANO for some O € SF(G), with high probabilityasn —

oo. The proof has three steps: an application of Theorem to obtain an asymptotic

version, an argument for a given odd coset O € SF(G), using the method of [13] (see
Lemma 3.5.1), and a comparison with the hypergeometric distribution, which allows
us to a partition the odd cosets depending on the size of ANO (see Lemma([3.5.2). Recall
throughout that we have already fixed an arbitrary e > 0, a sufficiently small 6 > 0 and
a sufficiently large n € N.

We begin by proving the statement we will require for a given odd coset O € SF(G).
Foreach k € N, let BY (A) denote the event that there exist sets S C ANEand T C ANO,
with |S| = k > [T|, such that ((A N O)US) \ T is sum-free.

Lemma 3.5.1. Let G be an abelian group of order 2n, and let O € SF(G). Suppose that

p> (1+e)\/x<5J(G)loﬁn,

and let p1 = (1 —8)p and p, = (1 + 8)p. Set A = A1 U A,, where A is a pi-random subset
of O and A, is a po-random subset of € = G \ O. Then

P(BY(A)) < max{n % e V"]
forevery 1 < k < dpn.
Let us denote by P+ = IPSi the probability distribution in Lemma in which
each element of O is chosen (independently) with probability (1—8)p and each element

of € is chosen with probability (1+8)p. Note that the event BY (A) is increasing in AN &
and decreasing in AN O, so P, (BY(A)) < Pp= (BY(A)) for every § > 0.



56 The sharp threshold for sum-free sets in even-order abelian groups

Proof of Lemma The proof of the lemma follows closely the method of Balogh,
Morris and Samotij [13| Section 5], and so we shall skip some of the details. We will
bound the expected number of good triples (S, T, U) with the following properties:

(i) SCANEwith|S| =
(ii) T,U C AN O are disjoint sets with [U| < [T| <k,
(ii1) (AN O)\Tis an independent set in G,

(iv) T C Ng,(U).

It was shown in [13} Claim 2] that if BY (A) holds, then there exists such a triple. Indeed,
this follows by first taking T minimal, and then taking a maximal matching M from T
to A\ Tin Gs. We set U equal to the set of vertices in A \ T that are incident to M.

Let Z(k,£,j, m, r) denote the number of such triples (S, T, U) with [S| =k, [T| = ¢,
Ul =j, m(S) = mand r(S) = r. We note that by definition 2m + r < k, and define

By the discussion above,

k (L
P(BY(A) < E ZZ Z > E[Z(kj,m71)], (3.17)

and therefore it will suffice to bound E[Z(k,{,j, m, )] for each k, £, j, m and r. Let
).

p’n = Clogn, where C > (1 + ¢)A®)(G). We will prove that

ElZ(k,£,j, m,1)] < (3.18)

e V"  otherwise.

{nék if k<d/p

Letus fixk, {,j, mand r, and count the triples (S, T, U) that contribute to Z(k, {,j, m, ).
First, foreach S C £and {,j € N, let W(S, {,j) denote the number of disjoint pairs (T, U)
suchthat T, U C ANOand T C Ng (U), with [T| = £ and [U| = j. It was proved in [13]
thatif [S|=kand 0 <j < { < k < dpn, then

E [W(S,¢,j)] < (3e’p™n)* <« (Clogn)2k = nok
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assuming that C = ne@® as we may since the case C > 1 was already dealt with
in [13]]]

Let §(k, m, r) denote the collection of sets S C € with S| =k, m(S) = mandr(S) = .
If (S, T, U) is good, then no edge of the graph

9sru == Gs[O\ (TuU)]

has both its endpoints in A. Since the vertex set of Gs 1y is disjoint from SU T U U, it
follows that the events e(Gs 1,u[A]) =0and SUTUU C A are independent. Therefore,

E[Z(ktjmn] < 3 PSCA)E[WSE))] -max{P (e(9srulAl) =0)}

Se§(k,m,r)

< pkono® max {P (e(9srulAl) =0) |, (3.19)

where the maximum is taken over all pairs (T, U) as in the definition of W(S,{,j). We
will bound the probability that A is an independent set in Gs T, using Janson’s inequal-
ity. Indeed, let

d
= p’e(9stu) and A= Z )P3< (2\))>,

veO\(Tulu

where d(v) denotes the degree of vin Gs 1 u.

We break into two cases, depending on the number of elements of order 2 in G.
Case 1: 7(G) < 6n.

For each S € §(k, m, ) let us choose a subset S ¢ S with |S| = k —m, 7(S) = r and

m(S) = 0. Applying Propositionm to S, it follows that

3(k—m)—r

d%ud>d%%0wﬂ>( !

) n—O0(r(G) - k%), (3.20)
and that, for every 45 < a < 1, the number of sets S € §(k—m,0,r) with

e(9s) < <m - ak) n (3.21)

a/2—5%

is at most (6/ 62)k (n/k) b '®Moreover, for each such set $ there are at most 2%

corresponding sets S € §(k, m, ). There are three sub-cases to consider:

7 Alternatively, we may simply carry this factor of C?* through the proof, and perform an easy but
tedious calculation later on.
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(a) Suppose first that k < min {v/5/p, én/r(G)}. Then, by (3.20),

wo> (w — O(ék)) p’n and A = O(K*p®n) = O(Vskpn),

since d(v) < 3k for every v € V(Gs 1,u). Thus, by Janson’s inequality, it follows that

P <e(9s,T,u[A]) = 0) < exp (— (w — O(\/Ek)) p2n>,
and hence, by (3.19),

E [Z(k, ¢,j,m, 1,):| < pk_r(g)r'nkfmfrJro(k) -exp (_ <3(k+ﬂ1)—1‘ _ O(\/gk)) pZn) )

x(G)+o(1)

Since p =n~ Y2l 1(G) =n and p’n = Clogn, it follows that

logE [Z(k,¢j,m,1)] 3(k—m)—
o8k | logn] mr)] S - —(1—a(G))r—C($—o(\/ﬁk)) +o(k)
ek

< (1_23C)k — (2_23C>m + (a(G)—2;C>r + 0(CV8K) < -

Indeed, the second term is decreasing in m for all C < 2/3)8|and we have (considering

the cases r = 0 and r = k separately) :2¢ < —¢/2 and 1€ + «(G) — & < —¢/3,

since (by assumption) we have C > (1 + ¢) max {1/3, x(G) — 1/2}.
(b) Next, suppose thatk > on/r(G) butk < < Vo/p. We partition the space according

to the size of e(Gs): to be precise, we define i = i(S) by the inequalities

e(Ss) € (3(‘<_2$ —S(Ziil)(k—m)) n

Since (1—19)(k—m)n/2 < e(Gg) < (3(k—m)n —1)/2 by Observation and Propo-
sition we have 0 < 26i(k —m) < (14 8)(k —m) — /2 for every set S. Summing
over i} applying Janson’s inequality as in case (a), and using (3.21), we obtain

E (206 L m )] < O 3k (1) exp (- (M i),

i>3

—1/240(1)

where a; = 25i(k — m). Substituting p =n and p?n = Clogn, and using the

bound k > nl~«(G)+e() it follows that
logE |Z(k,£,j, m, — —
°8 [ ( ) m T” < max {—E + x(G) (k—m—g> — C(M—a) } + O(\/gk).
logn a 2 2 2

8If C > 2/3 then simply note that the previous line is decreasing in C, since 3(k—m)—r > 2k—m > k.
The case 1 = O(1) was already covered by the proof in part (a).




3.5. Proof of the 1-statement 59

To bound the right-hand side, it suffices to check the extremal points. When a =0,
we note that r < k —mand «(G) — C < 1/2 — ¢/3 to obtain a bound of

K
—k +2(«(G) — C)(k —m) + O(Vok) < _%,
At the other extreme, when a = (1 + §)(k — m) — /2, we obtain analogously that
ot (odG) - Ok —m) + X2 o (vK) < 5

(c) Finally, suppose that k > V/5/p. Note first that e(Gs 1) > e(9s) — O(k?) =
Q(kn). The inequality here is as in (3.20), whereas the equality is by Observation[3.3.4]
We thus have

o n B 1 n? e(9stu)\
370 Gamm) 0(G8) e Eoo(e ) oo

This follows because A = O(k*p°n), since d(v) < 3k for every v € V(Gs1u), and
A = Q(p®e(Gs,7,u)?/n), by convexity. Janson’s inequality then implies that

P (6(95,T,u [Al) = 0> — e 0(pmve)

from which it follows immediately that

E [Z(k,0,j,m,1)] < pkre (z) (2) (T]l) o0 (pn)

3
< p3k <TL) e—Q(pn\/g) < e*Q(pn\/g) < 672\/5

7

k
since k < dpn. This completes the proof of (3.18) in the case r(G) < on.
Case 2: 7(G) > on.

We now repeat the calculation above, replacing the bounds of Proposition with
those of Proposition Suppose first that k < v/5/p, and partition the space accord-
ing to the maximum s € {0, ..., k} such that

e(Gs) > s(n—r(z(g)).

By Proposition there are at most (12/8)%(n/k)® = O(n”*/gk) such sets S with
S| = k. Applying Janson’s inequality, we obtain|

k
E [Z(k,¢,j,m,7)] < nOVEY > pkenteexp <_p23 <n_ r(z(f))))’
s=0

YWhen s = k, we trivially bound the number of sets Z such that e(G5) > k (n -5 ) by n*.
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and hence

logE |Z(k,¢,j, m,1) 4—-3(G k k
& [ Togn } < rnsax{s—Cs(#)}—z—l—O(\/gk) < —EZ

since C > (1+¢) - 2/(4 — B(G)). The case k > V/3/p is exactly the same as case (c),
above.

Having bounded E [Z(k, €,j, m, r)} in all cases, the result now follows easily by sum-
ming over {, j, m and r. Indeed, by (3.17), we have

k k

P(BR(A)) < Zi

(=0 j=0

~

2 k—2m
Z E[Z(k,¢j,m,1)] < max {n‘ék, e_ﬁ}
0 r=0

3
I

as claimed. This completes the proof of the lemma. O

In order to deduce the 1-statement in Theorem from Lemma [3.5.1, we cannot
simply apply the union bound over odd cosets O € SF(G), since an even-order abelian
group G can have as many as |G| distinct maximum-size sum-free subsets. On the
other hand, Lemma (together with Theorem[1.5.8) does imply that the maximum-
size sum-free subset of A contains (with high probability) only O(1) even elements,
and moreover that any given collection of n°") odd cosets are all likely to be ‘locally’
maximal.

Motivated by these observations, it is natural to attempt to partition the odd cosets
into two classes, depending on whether or not |A N Ol is within O(1) of maxe/ [ANO].
However, the random variables {|[A N O'| : O’ € SF(G)} are highly correlated with one
another, due to the large (size n/2) overlap between different odd cosets, and for this
reason the maximum is not easy to control

We resolve this problem by coupling with the hypergeometric distribution, for which
the positive correlation between the variables |[A N O] is greatly diminished. (In fact,
these variables are roughly pairwise independent of one another.) For each 0 < m <
2n, let P,,, denote the probability measure on subsets of G obtained by choosing each
subset of size m with equal probability. Note that, since any pair of distinct sub-
groups &,&’ C G of index 2 intersect in a subgroup of index 4, the information that
IANO| > a (and therefore |A N €| < m — a) has very little influence on the probability
that [ ANO'[ > a.

1 The behaviour of the random variable maxg/ |ANO’|is in fact somewhat mysterious, and we believe
that it merits further investigation.
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This crucial property of the hypergeometric distribution is captured by the follow-
ing lemma. Given k € N and an odd coset O € SF(G), define M (A) to be the event
that |A N O| > k, and let

Xe(A) = ) 1[MP(A)]

O€eSF(G)

denote the number of odd cosets O € SF(G) for which |[A N O] > k.

Lemma 3.5.2. Fixy > 0and h € N, and let 1 < m < 2n. There exists b = b(G, m) € [m]
such that the following holds. If A is chosen according to IP,,, then

(a) E [Xp(A)] <Y and
(b) Xo+n(A) > 1 with high probability.

The proof of Lemma involves some straightforward but technical approxima-
tions of binomial coefficients, and so we defer it to an Appendix.

Let us denote by CY (A) the event that [A N 0’| < |A N O| + k for every O’ € SF(G).
We are now ready to complete the proof of our main theorem.

Proof of the 1-statement in Theorem Let ¢ > 0 be arbitrary, and let 0 < & < d(¢) be
sufficiently small and n > ny(¢, 8) be sufficiently large. Let G be an abelian group with
2n elements, let C > (1 + ¢)A®)(G), set

_ /Clogn
P=\ "7

and let A be a p-random subset of G. We shall prove that, with high probability as
n — oo, we have AN O € SF(A) for some O € SF(G).

Indeed, let B € SF(A) be a maximum-size sum-free subset of A, and note that, by

Chernoff’s inequality, and since A N O is sum-free for every O € SF(G), we have

Bl > (% _ 6) PG (3.22)

with high probability as n — oo. Therefore, applying Theorem we deducd™|that,

2Note that p > C/y/n since n > ny(¢, 8) is sufficiently large.
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with high probability, we have |B \ O| < dpn for some O € SF(G). Therefore,

opn

Pp( N {Aﬂ(‘)gZSF(A)}) < pp( U U (BO ) NEY(A ))) + o(1)
OESF(G) OESF(G
(1+8%)2pn Spn
< Y Pm( g U (BO meg(A))) P, (Al =m) + o(1),
m=(1-582)2pn O€eSF(G
(3.23)
where we again used Chernoff’s inequality. Let b = b(G, m) € [m]be givenby Lemma[3.5.2)

(with h = 1/8%) so, with high probability, we have |A N 0’| > b + 1/5% for some
O’ € SF(G). Note that if such an O’ exists, then €2 (A) implies that either |[A N O] >
ork >1/8%.

Let us first bound the probability when k > 1/6%. Indeed, by Hoeffding’s inequality
(see, e.g., [22]), we have

m/2+8*m

Po (B(A) = Y IPm(BS(A)||Aﬂ8|=i)IP’m(|Aﬂ8|=i)+o<%>.(3.24)

i=m/2—82m
Moreover the event BY (A) is increasing in AN € and decreasing in AN O, and therefore
(recalling from Lemma the definition of IP,,+), we have

P, (BE(A) AN =i) < Ppe (BS(A) ‘ (Ane& =i)n(ANOl< m—i))

1
<2-Pp: (BR(A) €2 n? « = (3.25)

for every k > 1/8% by Lemma Indeed, the first inequality follows since p*
chooses sets A uniformly given |[A N E| and [ANO|. To see the second inequality, simply
note that P+ (IANEl > 1) N(JANOl < m—1)) > 1/2 for every i < m/2+ &m <
pn + 38%pn.

Next, let us bound the probability when |A N O| > b. Similarly to above, we have

P (BLA)N (ANOI>b)) = Z Pr (BY(A)[IANEI =) P (IANE=1),
i—0
and moreover
P, (BS(A) [ANE| :i) < 2P, (BO(A)) < 2-n3,
for every k > 1, by (3.25) and Lemmam 3.5.1 and

Enm = ) ZIP’ (ANEl=1) < n®?,

O€eSF(G) 1=0
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by Lemma [3.5.2(a). Therefore
Y Pn (BS(A) N(ANO| > b)) <2.n %2 (3.26)
OESF(G)

for every k > 1. Combining (3.24), (3.25) and (3.26), it follows that

1/62 Spn

23wt Y Y en

k=1/82 OESF(G

Spn

(U U(BO Anesia) ) <

O€eSF(G

for every m € (1 4 6%)2pn, and every sufficiently large n. Hence, by (3.23), we have

Pp( (N {Ano gZSF(A)}) = o(1),

O€eSF(G)

as required. O

3.A APPENDIX: LEMMAS ON THE HYPERGEOMETRIC DISTRIBUTION

In this Appendix we will prove Lemmas 3.4.2land [3.5.2] We begin with the latter.

Proof of Lemma[3.5.2]

We are required to prove that there exists b = b(G, m) € [m] with the following prop-
erties: at most n°!) odd cosets are expected to contain at least b elements of A, but
with high probability some odd coset contains at least b + w elements of A, where
w — oo as N — oo. For the proof, it will be convenient to shift the notation by m/2 as
follows: For each k € N and each O € SF(G), let us denote by M (A) the event that
IAN O] > m/2 +k, and by
Xe(A) = ) 1[MP(A)]
OESE(G)

the number of odd cosets O € SF(G) for which AN O| > m/2 + k.
The main step in the proof of Lemma is the following bound on the correlation
between the events M (A). Here, and throughout this Appendix, we write x ~ y to

mean that x/y — 1 under the given asymptotics.

Lemma 3.A.1. Let 0,0’ € SFE(G) be distinct odd cosets, and let k, m € N be such that
1< k< m< k% Then

P (M2(A) MY (A)) ~ Py (MO(A))?

asmn — oQ.
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We begin by calculating P,, (M{ (A)) asymptotically, using the following simple
bounds.

Lemma 3.A.2. Let a,b, N € N with b%/? < a < N. Then

(() é;ﬁb) N jt—a exp (_%)

as a, N — oo.

Proof. This is nothing more than an application of Stirling’s formula

n n
n! ~+v2mn (—) ,
e

and the partial Taylor series
2

log(1+x)—x+%

< O(IxP),
which is valid for all sufficiently small |x|. O

Let us denote by M9 (A) the event that |A N O] = m/2 +x,s0 MY (A) = U MO(A).

x>k
Lemma 3.A.3. For every O € SF(G),
2 2x?
R
P (ME(A)) ~ ) —— éexp <_F> :

Proof. Observe that

P (MY(A) = P (UE(A) = 3 (el

x>k m

The result now follows by applying Lemma withN=n,a=m/2andb=x. [
The following bounds now follow easily.

Lemma 3.A.4. For every O € SF(G),

P (MP(A)) = © <@ exp <—%k2)> .
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Proof. By Lemma we have

2 2
P (MP(A)) = (%n exp (—%) Xp (—4% — 2%)) :
x>0

4kx 2> m
2 ee|— )=o)

x>0

and the lemma follows immediately. O

When bounding the probability of M (A) NMY'(A), the following notation will be
useful. Set
AN={(xy,z) €2’ : x+y =k x+z>k},

and given 0,0’ € SF(G) and x, y, z € Z, denote by M?:°. (A) the event that

XY,z

+vy, and !AﬂO’ﬂE!:m+z,

ANONO =4y Anone|=" ;

4 4
whereasusual E =G\ Oand &' =G\ O.

Lemma 3.A.5. Let 0,0’ € SF(G) be distinct odd cosets. Then

/ 42 2
P (MY (A)NMY (A)) ~ # > exp <_n_1((x+y)2+ (x+2)*+ (y+z)2)>.
(x,y,z)EN
Proof. Note first that
~ OO o (m/ZIX—O—y) (m/ZT—IX—y) (m?i—zl—x) (mr/lij—y) (mT;i—zi—z) (m/4j>{iy—z)
]Pm (MX&J,Z(A)) - 2n n n
(m) (m/2+x+y) (m/fofy)

By Lemma this is asymptotically equal to

2 ( 2(x+y)2> 4 ( (x—y)2> 4 ( (x+y +2z)2>
\/—exp | — exp [ — exp | ——————— ),
m m m m m m

and this expression is equal to

%exp (—%((x+y)2 + (x+2)* + (y +z)2>) :

Thus,
P (MYA) MY A) = 3 P (2021)
(xy,z)EA
4+/2 2
N # 2 e (_E((X+9)2+(X+Z)2+(y +Z)2)>,
(x,y,z)EA

as claimed. 0
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We are almost ready to prove Lemma 3.A.1} we need one more well-known fact.

Fact 3.A.6.

as m — oQ.

Proof of Lemma Observe that (a, b, c) is equal to (x+y, x+z,y +z) for some triple
(x,y,z) if and only if a + b + ¢ is even and

(x ) = a+b—cc+a—b b+c—a
U; - 2 7 2 7 2 .

Letting
A'={(a,bc)eZ’:a>k b=k a+b+ceven},

it follows that

§ exp <—£ ((X+U)2+ (x +2)*+ (U+Z)z>) = E exp (—E(az+b2+c2)) .
m m

(x,y,z)EN (a,b,c)eA’

We may split up the right-hand side into separate sums according to the parity of a+b,

and hence of c. Doing this, we may rewrite the sum as

2(a% + b2 2¢?
R P (_%)

a>k,b>k,
a+b even

Since m is large, we have
Z ox 2¢? Z ox 2¢? 1 ox 2¢? 1 [mm
= P\ = P\ 2 & P\ 2V 27

where we have used Fact for the final estimate. We also have

2
2
Z exp (——2( ) ) (Zexp (——)) ~7T7m P.. (ME(A))2
azk, b=k a>k

for an arbitrary odd coset O € SF(G), by Lemma Putting all this together, we
conclude that

3/2
D exp (—% (2 + (x+27+ y +z)2>) ~ (T/)E P (ME(A)). (3.27)
eN

(xy,2)
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We may now use our estimate for P, (ME (A)NMY’ (A)) from Lemma Together
with (3.27), this implies that

Prn (MP(A) N MY (A)) ~ P (MP(A))’,
as required. O

Lemma now follows by a straightforward application of the second moment
method. For completeness we give the details.

Lemma 3.A.7. IfE [Xy| > 1, then Xy > 1 with high probability.
Proof. We have

Var (X)) = EX]-EX]" = Y Pu (M2(A)NMY(A)) —E [Xi]’
0,0'eSF(G
EXJ+ ) Pn ﬂMO (A)) —E [X:]?
O£/
—EXd + (140(1) Y Pu( ) —E [X]?,
0#£0’

by Lemma Therefore,
Var (Xi) < E[X] + (1+0(1)E [X]* —E [X]* = o(E [Xi]?).
Hence, by Chebyshev’s inequality, we have X > 1 with high probabilityasn — co. [
It only remains to show that E [Xy] does not decay too quickly.
Lemma 3.A.8. For every constant h > 0, we have
|E [Xu] —E [Xiin]| = o(E [Xi]).
Proof. By Lemma we have
EXy = Q (%exp (—2—k2>) .

whereas, by Lemma we have

-0 (19 Fron(2)) -0 (Sgen(2))

Since we assumed that k < m, the lemma follows. O

Proof of Lemma[3.5.2} 1f r(G) < nY then the lemma is trivial (set b = 0), so assume that
r(G) > nY and let b = b(G, m) be minimal such that E [X,(A)] < n”. It follows that
E [Xb+h(A)} > 1, by Lemma and hence that Xy 1 (A) > 1 with high probability,
by Lemma 3.A.7] as required. O
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Proof of Lemma[3.4.2)

Let G be an even-order abelian group, and note that the lemma is trivial if r(G) <
on. Recall that M denotes the collection of odd cosets O € SF(G) such that |[A N O is
maximal. We are required to prove that with high probability there is an O € M such
that £ = G\ O is nice. This is an immediate consequence of the following lemma. Recall
that w = w(n) is a function such that w — oo slowly as n — oo.

Lemma 3.A.9. With high probability, the following hold:
(a) [ANO| < pn+ wy/pn for every subgroup € = G \ O which is not nice.
(b) There exists a nice subgroup € = G\ O such that [A N O[] > pn + w,/pn.

Proof. Part (a) follows from Chernoff’s inequality and the union bound, since there
are at most O(1/8) subgroups that are not nice. To prove part (b), we again couple
with the hypergeometric distribution, and apply Lemma Indeed, we have |A| >
2pn — w,/pn with high probability, and for each m > 2pn — w,/pn there exists a
b = b(G, m) such that E [X,(A)] < /n and Xp(A) > 1 with high probability in Py,.
But, by Lemma we have E [Xy(A)] =n!™°W for b = pn + w,/pn, and so we are
done. O



THE TYPICAL STRUCTURE OF GRAPHS WITH NO LARGE CLIQUES

The work in this chapter is joint with J6zsef Balogh, Neal Bushaw, Hong Liu, Robert
Morris and Maryam Sharifzadeh. It is adapted from a preprint version [7].

4.1 INTRODUCTION

In this chapter we extend the result of Kolaitis, Promel and Rothschild to K, -free
graphs, where r = r(n) is a function which is allowed to grow with n. More precisely,
we prove the following theorem.

Theorem 4.1.1. Let v = r(n) € Ny be a function satisfying v < (logn)/* for every n € N,
Then almost all K, 1-free graphs on n vertices are r-partite.

Note that if r > 2log, n then almost all graphs are K, -free (and almost none are
r-partite if r < n/logn), so the bound on r in Theorem is not far from being best
possible. It would be extremely interesting (and likely very difficult) to determine the
largest o € [1/4,1] such that the theorem holds for some function r = (logn)**°®). It
may well be the case that this supremum is equal to 1, though we are not prepared to
state this as a conjecture.

Theorem improves a recent result of Mousset, Nenadov and Steger [70], who
showed that, for the sam family of functions r = r(n), the number of n-vertex K, ;-
free graphs is

ptr(n)+o(n?/r) 4.1)

where t.(n) = ex(n,K,1) denotes the number of edges of the Turdn graph, the r-
partite graph on n vertices with the maximum possible number of edges. The problem
for H-free graphs with v(H) — co as n — oo was first studied by Bollobds and Niki-
forov [18], who proved bounds corresponding to whenever v(H) = o(logn) and
X(Hyn) = r+1is fixed. For more precise bounds for a fixed forbidden graph H, see [10],
and for similar bounds in the hereditary (i.e., induced-H-free) setting, see [2, 12, 19]
and the references therein.

The proof of Theorem has three main ingredients. The first is the so-called
‘hypergraph container method’, which was recently developed by Balogh, Morris and
Samotij [8], and independently by Saxton and Thomason [81]. This method was used by

!In fact, a very slightly weaker theorem was stated in [70], but a little additional case analysis easily
gives the result for all r < (logn)/%.

69
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Mousset, Nenadov and Steger to prove Theorem[4.3.2} below, from which they deduced
the bound using a supersaturation theorem of Lovasz and Simonovits [64].

In order to obtain the much more precise result stated in Theorem[4.1.1} we will use
the method of Balogh, Bollobas and Simonovits [10, 11], who determined the structure
of almost all H-free graphs for every fixed graph H. This powerful technique (see Sec-
tions[4.4/and allows one to compare the number of K, -free graphs that are ‘close’
to being r-partite, with the total number of K, _;-free graphs.

The missing ingredient is the main new contribution of this work. In order to de-
duce from Theorem a bound on the number of K, -free graphs that are ‘far’
from being r-partite, we will need an analogue of the Lovasz-Simonovits supersat-
uration result, mentioned above, for the well-known stability theorem of Erdés and
Simonovits [38]. Although a weak such analogue can easily be obtained via the regu-
larity lemma, this gives bounds which are far from sufficient for our purposes. Instead
we will adapt a recent argument due to Fiiredi [46] in order to prove the following
close-to-best-possible such result. We say that a graph G is t-far from being r-partite? if
X(G’) > r for every subgraph G’ C G with e(G’) > e(G) —t.

Theorem 4.1.2. For every n,v,t € N, the following holds. Every graph G on n vertices which
is t-far from being r-partite contains at least

nrt 1\ n?

Note that the graph obtained by adding t edges to the Turan graph T,(n) is t-far
from being r-partite and has roughly t - (n/r)""! copies of K,,1, so Theorem is
sharp to within a factor of roughly e”. We prove this supersaturated stability the-
orem in Section and use it in Section to count the K, -free graphs that are
n2~/"_far from being r-partite. We prove various simple properties of almost all K, -
free graphs in Section and finally, in Section we use the Balogh-Bollobéas—
Simonovits method to deduce Theorem

copies of Ky 1.

4.2 A SUPERSATURATED ERDG3S-SIMONOVITS STABILITY THEOREM

In this section, we prove our ‘supersaturated stability theorem” for K, ;-free graphs.
As noted in the Introduction, we do so by adapting a proof of Fiiredi [46].

2Gimilarly, we say that G is t-close to being r-partite if it is not t-far from being r-partite.
Y y gTp g Tp
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Givena graph G, a vertexv € V(G) and an integer m € N, let us write K, (G) for the

number of m-cliques in G, and K., (v) for the number of such m-cliques containing v.

Proof of Theorem We will prove by induction on r that

r—1 2
Keal6) > T (e(@) Lt (1—}) “7), (42)

where ¢(r) := 2(r + 1)"'r""1 /7!, for every graph G on n vertices which is t-far from

being r-partite. Since ¢(r) < €*'1!, the theorem follows from (4.2).

Note first that the theorem holds in the case r = 1, since a graph is t-far from being
e(G)+t
2

required. So let r > 2 and assume that the result holds for r — 1. Let n,t € N, and let G

1-partite if and only if e(G) > t, and hence G has more than copies of K, as

be a graph that is t-far from being r-partite.
First, for each v € V(G), set B, = N(v) (the set of neighbours of vin G) and A, =
V(G) \ B,, and observe that
Y d(u) =e(G) +e(A,) —e(By), (4.3)
'LLGAV

where e(X) denotes the number of edges in the graph G[X]. Now, the graph G[B,] is
(t — e(A,))-far from being (r — 1)-partite, and so, by the induction hypothesis,

B 1Y B
Keal) > o (e e—etan - (1-27) BE), s

since each copy of K, in G[B,] corresponds to a copy of K, in G that contains v.

Combining and (4.4), noting that |B,| = d(v), and summing over v, it follows
that

T—2 i
(r+1)Kea(G) = Y f((:)—l) ("'(G”t— 2 dlu) - (1_:1) 5 )

veV(G) ueA,
We claim that
> ) d) < > ) Ay Zd”n d(v)). (45)
veEV(G)ueA, veV(G)ueA, veVv(G

Indeed, let X = {(v,u) : v € V(G), u € A,} denote the set of ordered pairs in the
sum above, and note that (v,u) € X if and only if uv ¢ E(G). Since X is symmetric,
the inequality in (4.5) now follows immediately for r = 2, and by the Cauchy-Schwarz
inequality

5 s 3 o) (2 o)

(vu)eX (vu)eX (vu)eX



72 The typical structure of graphs with no large cliques

for r = 3. For r > 4, applying Holder’s inequality withp =r—2and q = (r—2)/(r—3)

gives

> du ( > du Tzd(v)) ( > d )1/q,

(vu)eX (vyu)eXx (vu)ex

_ rz:g+3 = 1 — 1. Once again using the symmetry of X, and

noting that 1 —1/p = 1/4, the claimed inequality follows.

since (r—2— -L)I=

Combining the inequalities above, we obtain

(r+1) - Ki1(G) > Z ((:1((:):12) (e(G)+t—d(V)n+ <1+ri1> d(;)2),

veV(G)

Since the factor in parentheses is minimised when d(v) =

T2 2
(1) Keal(G) > Y f((:)_l)<e(e)+t— (1-%) “7)

veV(G)

Finally, note that every graph G is (e(G)/r)-close to being r-partite (take a random
partition), and hence we may assume that (1+1)e(G) > (1—1)%’, since otherwise the

theorem is trivial. Thus, by the convexity of x" 2,

2¢(G)\"*_ [r—1\""
Z dlv ( n ) 2(1‘—#1) n",

veVv(G
and so, sincec(r—1) - (r+1)" ! =c(r) - (r — 1)"?2, it follows that
nr—l 1 nZ
> _ N
Kea(©) > 2 (eler 4= (1-7) ),
as claimed. m

4.3 AN APPROXIMATE STRUCTURAL RESULT

In this section we will prove the following approximate version of Theorem

Theorem 4.3.1. Let v = r(n) € N be a function satisfying v < (logn)/* for each n € N.

2—1/72

Then almost all K, 1-free graphs on m vertices are n -close to being r-partite.

Theorem[4.3.1]is a straightforward consequence of Theorem [4.1.2]and the following
theorem, which was proved by Mousset, Nenadov and Steger [70] using the hyper-
graph container method of Balogh, Morris and Samotij [8] and Saxton and Thoma-
son [81]. The following theorem is slightly stronger than the result stated in [70], but
follows easily from essentially the same proof.
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Theorem 4.3.2. Let v = r(n) € N be a function satisfying v < (logmn)"* for each sufficiently
large . € N. There exists a collection C of graphs such that the following hold:

(a) every K, 1-free graph on m vertices is a subgraph of some G € C,,,
(b) Kpp1(G) < "2 for every G € €y, and
(c) |Cnl < exp (n272/7%),

where C, = {G € €:v(G) =n}.

Deducing Theorem from Theorems 4.1.2land [4.3.2]is straightforward.

Proof of Theorem For each t € N, set

2
I = {G ce(G) = (1 — %) |GT| — % and G is t-far from being r-partite},

and observe that if G € F, then

|G|T—1 -t
KT‘+1(G) 2 ezT.Jrl 'T‘!’

by Theorem[.1.2] Therefore, letting Cbe the collection of graphs given by Theorem[4.3.2]

2-1/v2

and setting t = n , it follows from property (b) and the bound r < (logn)/* that

(‘3n N ?t - 0
Now, for each K, 1-free graph G on n vertices that is n2-1/"_far from being r-partite,
we have G € C for some C € C,,, and by the observations above and the definition of

F,, it follows that )
I\ n t
<(1-2) = -2
e(C) ( r)Z 2

Therefore, summing over all such containers, the number of such graphs is at most
exp (n2—2/r2) . 2tr(n)—t/2 < 2tr(n)—t/4l

which is clearly smaller than the number of K, -free graphs on n vertices, as required.
O

4.4 SOME PROPERTIES OF A TYPICAL KT_H-FREE GRAPH

In this section we will prove some useful structural properties of almost all K, {-free
graphs. These structural properties will allow us (in Section to count the K, -
free graphs that are close to being r-partite, and hence to complete the proof of Theo-
rem[4.1.1, We emphasise that the lemmas in this section were all proved for fixed r € N
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in [10], and no extra ideas are required in order to extend their proofs to our more
general setting.

1/4

Let us fix throughout this section a function 2 < r = r(n) < (logn)*/*, and let us

2—-1/7?

denote by G the collection of K, -free graphs on n vertices that are n -close to

being r-partite. We begin with two simple definitions.

Definition 4.4.1 (Optimal partitions). An r-partition (U, ..., U,) of the vertex set of a

graph G is called optimal if the number of interior edges, > |, e(U;), is minimised.

Definition 4.4.2 (Uniformly dense graphs). We say that a graph G is uniformly dense if
for every optimal r-partition (Uy, ..., U,) and every pair {i,j} C [r], we have
|AllB

32
for every A C U; and B C U; with [A] = [B] > 27%™n.

e(A,B) > (4.6)

Lemma 4.4.3. The number of graphs in G that are not uniformly dense is at most

t.(n _27171‘“2
2 T( ) ,

and therefore almost all K. 1-free graphs are uniformly dense.

Proof. Inorder to count such graphs, we first choose the optimal partition U = (U, ..., U,),
the pair {i,j} C [r],and thesets A C U; and B C Uj for which fails. We then choose
the edges between A and B, and finally the remaining edges. Note first that we have at
most ™ choices for U, at most * choices for {i,j}, and at most 2>™ choices for the pair
(A,B).

Now, the number of choices for the edges between A and B is at most

|AlIB]/32
k) h '
k=0

and the number of choices for the remaining edges is at most

2
2tr(n)AB|( n 2) < 2t (MI=IAIB gy (le—l/r2 10gn> < ptr(M)-IAlBI/2
n271/r ’

since U is optimal, |A|[B| > 27*"'n?, and each G € G is n>~/"-close to being r-partite.
It follows that the number of graphs in G that are not uniformly dense is at most

1.n+2 . 22n . 2tr(n)f|A||B\/4 < ztr(n),z—wrnz

7

as claimed. 0
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Our next definition controls the maximum degree inside the parts of an optimal

partition.

Definition 4.4.4 (Internally sparse graphs). A graph G is said to be internally sparse if,
for every optimal partition U = (U;, ..., U,) of G, we have

A(G[Uy)) < 27 (4.7)
for every 1 < i < 1. Otherwise we say that G is internally dense.
Lemma 4.4.5. If G € § is internally dense then it is not uniformly dense.
We will prove Lemma using the following embedding lemmaP| from [3]].

Lemma 4.4.6. Let 0 < o« < 1, G be a graph, and W, ..., W, C V(G) be disjoint sets of
vertices. Suppose that for every pair {i,j} C [r] and every pair of sets A C Wy and B C W,
with |A| > «"|Wi|and [B| > «"|Wj|, we have e(A, B) > «|A||B|.

Then G contains a copy of K, with one vertex in each set W;.

Proof of Lemma Suppose for a contradiction that G € G is both internally dense
and uniformly dense. Let U = (Uj, ..., U,) be the optimal partition given by Defini-
tion[4.4.4] and suppose that v € U; has degree at least 2-°"n in G[U;]. For each i € [1],
let W; = N(v) N'U;, and observe that [W;| > 27°"n, since U is optimal.

Observe that Wj, ..., W, satisfy the conditions of Lemmawith x =1/32, since
G is uniformly dense, so e(A, B) > |A[|B|/32 for every pair {i,j} C [r], and every A C U;
and B C U; with |A| = [B] > 27%n. Thus, by Lemma there exists a copy of K,
in the neighbourhood of v, which (including v) gives a copy of K, in G. But this is a
contradiction, since our graph is K, -free, and so every internally dense graph G € G

is not uniformly dense, as claimed. O
Our final definition controls the sizes of the parts in an optimal partition.

Definition 4.4.7 (Balanced graphs). A graph G is said to be balanced if, for every optimal
partition U = (U, ..., U,) of G, we have

%— 279 < Uyl < ;+ 273 (4.8)

for every 1 < i < r. Otherwise we say that G is unbalanced.

3In fact, the version stated here is slightly more general than [3, Lemma 3.1], but follows from exactly
the same proof.



76 The typical structure of graphs with no large cliques

Lemma 4.4.8. The number of unbalanced graphs in G is at most

ty(n)—2"8"n2
2 r( ) ,

and therefore almost all K. 1-free graphs are balanced.

Proof. Let G € G be an unbalanced graph, and let U = (Uj,...,U,) be an optimal
partition of G for which fails. Note that

r—1 T
Z Z U [[Uj] < te(n) —277"n?,

i=1 j=i+1

since moving a vertex from a set of size at least n/r + a to one of size n/r — b creates at
least a + b new potential cross edges. The number of such graphs G € § is therefore at

most
2

r _ztr(n)72*7fn2 . ( 2n1/r2) < ztr(n)*ngrnzl
n2—

as claimed. m
45 THE PROOF OF THEOREM

In this section we will deduce Theorem from Theorem using the method of
Balogh, Bollobés and Simonovits [10}|11]. Recall from the previous section that almost
all K, i-free graphs are uniformly dense, internally sparse and balanced.

Let us fix throughout this section a function 2 < r = r(n) < (logn)/*.

Definition 4.5.1. Let Q(n, r) denote the collection of K, 1-free graphs on n vertices that

2—1/12

are not r-partite, but are n -close to being r-partite, and are moreover uniformly

dense, internally sparse and balanced.

Let X(n, ) denote the collection of K, -free graphs on n vertices. We will prove
the following proposition, which completes the proof of Theorem#.1.1]

Proposition 4.5.2. For every sufficiently largem € N,

72710r

Q) < 277 - [K(n, 7).

The idea of the proof is as follows. We will define a collection of bipartite graphs F,;,
(see Definition |4.5.8) with parts Q(n,r, m) and X(n, r), where the sets Q(n, r, m) form
a partition of Q(n, r) (see Definitions 4.5.4|and 4.5.5). These bipartite graphs will have
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the following property: the degree in F,, of each G € Q(n,r, m) will be significantly
larger than the degree of each G € K(n, ) (see Lemmas4.5.10]and |4.5.12). The result
will then follow by double counting the edges of each F,,, and summing over m.

In order to define Q(n, r, m) and F,,, we will need the following simple concept.

Definition 4.5.3 (Bad sets). Let G be a graph and let U C V(G). A set of r vertices
R C V(G) \ U is said to be bad towards U if it has no common neighbour in U.

In the following definition we may choose the partition U and the sets X(*), ..., X(™)

arbitrarily, subject to the given conditions.

Definition 4.5.4. For each G € Q(n, 1), fix an optimal partition U = (U,,...,U,) of
V(G), and for each j € [r] choose a maximal collection of vertex-disjoint sets XU) =
{Rf), e, Rél(i)} such that RV’ is bad towards U; for each i € [£(j)]. We define

m(G) := max {£(j) : j € 1]},
let j(G) denote the smallest j for which this maximum is attained, and set

. pl(G)) (G(G))
X(G) =R U URy;06))-
With this definition in place, it is natural to partition Q(n, r) by the size of m(G).

Definition 4.5.5. For each m € N, we define
Q(n,r,m) = {G €Q(n, 1) : m(G) =m}.
Before continuing, let us note a simple but key fact.
Lemma 4.5.6. m(G) > 1 for every G € Q(n, ).

Proof. This follows from the fact that G is not r-partite. Indeed, suppose that m(G) =0
and let xox; € E(G[U4]) be an “interior” edge of G with respect to U. Since there are no
bad r-sets towards U; for any j € [r], we can recursively choose vertices x; € U; such
that {xo, ..., x;} forms a clique. But this is a contradiction, since G is K, i-free. O

In order to establish an upper bound on those m which we need to consider, we
count those graphs in Q(n, r) for which m(G) is large.

Lemma 4.5.7. If m > 27°™n, then

Q(n, v, m)| < 24 (MTmn/2T,
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Proof. Let m > 27%"n, and consider the number of ways of constructing a graph G €
Q(n, r, m). We have at most r™ choices for the partition U, at most (TTL) ™ choices for the

set X(G), and r choices for j = j(G). Moreover, we have at most

ot (M= IX(G)] (gr 1) WIXIGN/T ot () —mn 22

choices for the edges between different parts of U, since X(G) is composed of r-sets that
12

are bad towards Uj;, and G is balanced. Finally, we have at most nO* ™) choices for

the edges inside parts of U, since G is n2/"’

It follows that

-close to being r-partite.

m

n —1/+2 r -

|Q(TL,T,m)| < T‘n . ( > .T - no(nz Y ) . 2tT(n)7mn/22 < 2tr(n)7mn/23
T

. . _ _ 2 _
as required, since m > 27°n, son*> " logn < 27°"mn. m

From now on, let us fix a function 1 < m = m(n) < 27°n. We are ready to define

the bipartite graph F,,.

Definition 4.5.8. Define a map @,,: Q(n,r, m) — 2X("") by placing H € ®,,(G) if and
only if H can be constructed from G by first removing all edges of G that are incident
to X(G), and then adding an arbitrary subset of the edges between X(G) and V(G) \
(X(G) UUjq)).

Let F,,, be the bipartite graph with edge set {(G,H) : H € ©,,,(G)}.

We first observe that the map @, is well-defined.
Lemma 4.59. If G € Q(n,r,m) and H € ®,,(G), then H is K,_1-free.

Proof. This follows easily from the fact that G is K, -free, and the maximality of X(G).
Indeed, if there exists a copy of K, in H, then it must contain a vertex of X(G), and
therefore it must contain no other vertices of X(G) U U;(g). Hence it contains exactly r
vertices of V(G)\ (X( G)UUjg )), and by the maximality of X(G) these have a common
neighbour in Uj ). But this contradicts our assumption that G is K, -free, as required.

Il

We are now ready to prove our first bound on the degrees in F,,,.

Lemma 4.5.10. For every G € Q(n,r, m),
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Proof. This follows immediately from the fact that G is balanced. Indeed, we have two
choices for each of the

IX(G)]- [V(G)\ (X(G) UlUjg))| = mr- <1 — % — - —)n (4.9)

potential edges between X(G) and V(G) \ (X(G) U Uj(g)). O

In order to bound the degrees in F,,, of vertices in K(n, 1), we will need the following
lemma, which counts the optimal partitions in the neighbourhood of such a vertex. We
note that here, the upper bound on m from Lemma is crucial.

Lemma 4.5.11. For each H € K(n, ), there are at most 2™/*" distinct partitions U of V(H)
such that U is an optimal partition of some graph G € ®1(H).

Proof. We will use the fact that each G € ®;;!(H) is uniformly dense and n>~/"~close
to being r-partite to show that the optimal partitions in question must be ‘close’ to one
another.

To be precise, let G;, G, € @} (H), and let U = (Uj, ..., U,) be an optimal partition
of Gy and V = (V;,...,V;) be an optimal partition of G,. We claim that

!{] e[r]: UyNVl >2*6rn+2mr}| <1
for every i € [r]. Indeed, suppose that
Ui NV >2n+2mr and Ui NV | >27"n+2mr,

set A = (U;NVj)\ (X(G1) UX(Gz)) and B = (U; N'Vj/) \ (X(G1) UX(G,)), and note
that, since G, is uniformly dense, we have eg, (A, B) > |A||B|/32 > 2712""°n?. But these

edges are all contained in U;, so this contradicts the fact that G; is n2-1/r

-close to being
r-partite, as required.

It follows that (by renumbering the parts if necessary) we have
Ui\ Vi| <7 (27 n+2mr) <277™n

for every i € [r], where second inequality follows since m < 27%"n. Set D; = U; \ V;,
and observe that the partition U and the collection (Dy, ..., D) together determine V.

It follows that the number of optimal partitions is at most

275rn T T
(EQ) < () exve e

k=0

as required. O
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We can now bound the degrees on the right. Recall than in Definition we chose
a ‘canonical” optimal partition for each graph G € Q(n, ).

Lemma 4.5.12. We have
1 1
log, | @,/ (H)| < (1 —=— —) mnr
for every H € K(n, 1).

Proof. First let us fix a partition U = (Uy,...,U,), and count the number of graphs
G € 9(n, r,m) with @,,,(G) = H whose optimal partition is U. To do so, first note that
we have (Tr‘)m choices for X(G), and at most r choices for j = j(G). Now, since G is
internally sparse and balanced, each vertex v € X(G) has at most 2-°"n neighbours in
its own part of U, and Uuiy —n/ r| < n/2% for each i € [r]. Thus we have at most

n 3r 2r
n(1-2/r+1/2°")n (1-2/r+1/2")n
<23fn) 2 S 2

choices for the edges between each vertex v € X(G) and V(G) \ U;. Finally, by the

definition of bad sets, and since G is balanced, we have at most

(21' o 1)(1/T+1/23r)mn < 2(1/1'73/22T)mnr

choices for the edges between X(G) and U;.
Since, by Lemma(4.5.11, we have at most 21/2" choices for the partition U, it follows
that

2 1 1 3 1
log, ‘(1);11(H)‘ < mrlogn +logr + (1— R +——+ ~ = o + —)mnr

< (1 — 1 — L)mnr,
ro 2%
as claimed. n
Finally we put the pieces together and prove Proposition
Proof of Proposition We claim first that
Q(n,T,m)l < 272K (n, )| (4.10)

for every m < 27%'n. To prove this, we simply double count the edges of F,,, using
Lemmas|4.5.10and 4.5.12| Indeed, we have

lo [, 7, m)| < 1—1—L mnr — 1—1—i—lr mnr
B\ km ) S roo22r ro 2" '
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which implies (4.10) since m < 27 %"n.
Summing (&.10) over m, and recalling that G is n>~'/"*-close to being r-partite, we

obtain
276 n
Q)< Y 27T K(n )+ Y 2v AT K, 7)),
m=1 m=2-6rn
by Lemmas 4.5.6|and [4.5.7} as required. O

Finally, let us deduce Theorem 4.1.1}

Proof of Theorem By Theorem almost all K, ;-free graphs on n vertices are
n>/"_close to r-partite. We further showed in Lemmas and that al-
most all of these graphs are either r-partite, or in Q(n, ). Since by Proposition
for sufficiently large n, the size of Q(n, r) is (almost) exponentially small compared to

K(n, 1), it follows that almost all K, ;-free graphs are r-partite, as required. O






BIBLIOGRAPHY

[1] N.Alon. “Independent sets in regular graphs and sum-free subsets of finite groups”.
Israel |. Math. 73.2 (1991), pp. 247-256.

[2] N. Alon, J. Balogh, B. Bollobas, and R. Morris. “The structure of almost all graphs
in a hereditary property”. |. Combin. Theory Ser. B 101.2 (2011), pp. 85-110.

[3] N. Alon, J. Balogh, P. Keevash, and B. Sudakov. “The number of edge colorings
with no monochromatic cliques”. J. London Math. Soc. (2) 70.2 (2004), pp. 273-288.

[4] N. Alon, J. Balogh, R. Morris, and W. Samotij. “A refinement of the Cameron-
Erdés conjecture”. Proc. Lond. Math. Soc. (3) 108.1 (2014), pp. 44-72.

[5] N. Alon and ]J. H. Spencer. The probabilistic method. 3rd ed. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. John Wiley & Sons, New Jersey,
2008, pp. xviii+352.

[6] L.Babai, M.Simonovits,and J. Spencer. “Extremal subgraphs of random graphs”.
J. Graph Theory 14.5 (1990), pp. 599-622.

[7] ]. Balogh, N. Bushaw, M. Collares Neto, H. Liu, R. Morris, and M. Sharifzadeh.
“The typical structure of graphs with no large cliques”. Preprint (2014). arXiv:
1406.6961 [math.CO].

[8] J.Balogh, R. Morris, and W. Samotij. “Independent sets in hypergraphs”. Preprint
(2012). arXiv:|1204.6530 [math.CO].

[9] J. Balogh, R. Mycroft, and A. Treglown. “A random version of Sperner’s theo-
rem”. Preprint (2014). arXiv:|1404.5079 [math.CO].

[10] J. Balogh, B. Bollobés, and M. Simonovits. “The number of graphs without for-
bidden subgraphs”. J. Combin. Theory Ser. B 91.1 (2004), pp. 1-24.

[11] ].Balogh, B. Bollobas, and M. Simonovits. “The typical structure of graphs with-
out given excluded subgraphs”. Random Structures Algorithms 34.3 (2009), pp. 305—
318.

[12] J.Balogh and]. Butterfield. “Excluding induced subgraphs: critical graphs”. Ran-
dom Structures Algorithms 38.1-2 (2011), pp. 100-120.

[13] J.Balogh, R. Morris, and W. Samotij. “Random sum-free subsets of abelian groups”.
Israel |. Math. 199.2 (2014), pp. 651-685.

83


http://arxiv.org/abs/1406.6961
http://arxiv.org/abs/1204.6530
http://arxiv.org/abs/1404.5079

84 Bibliography

[14] B. Bollobas. “On generalized graphs”. Acta Math. Acad. Sci. Hungar 16 (1965),
pp- 447-452.

[15] B. Bollobas and A. Thomason. “Threshold functions”. Combinatorica 7.1 (1987),
pp. 35-38.

[16] B. Bollobéas. Extremal graph theory. Reprint of the 1978 original. Dover Publica-
tions, Inc., Mineola, 2004, pp. xx+488.

[17] B. Bollobés. “Threshold functions for small subgraphs”. Math. Proc. Cambridge
Philos. Soc. 90.2 (1981), pp. 197-206.

[18] B. Bollobés and V. Nikiforov. “The number of graphs with large forbidden sub-
graphs”. European ]. Combin. 31.8 (2010), pp. 1964-1968.

[19] B. Bollobas and A. Thomason. “Projections of bodies and hereditary properties
of hypergraphs”. Bull. London Math. Soc. 27.5 (1995), pp. 417-424.

[20] N. Bushaw, M. Collares Neto, R. Morris, and P. Smith. “The sharp threshold for
maximum-size sum-free subsets in even-order abelian groups”. Preprint (2013).
arXiv: 1310.3236 [math.CO].

[21] P.J. Cameron and P. Erdés. “On the number of sets of integers with various prop-
erties”. Number theory (Banff, AB, 1988). de Gruyter, Berlin, 1990, pp. 61-79.

[22] V.Chvatal. “The tail of the hypergeometric distribution”. Discrete Math. 25.3 (1979),
pp- 285-287.

[23] M. Collares Neto and R. Morris. “Maximums-size antichains in random sets”.
Preprint (2014). arXiv: 1404.5258 [math.CO].

[24] D. Conlon and W. T. Gowers. “Combinatorial theorems in sparse random sets”.
Preprint (2010). arXiv: 1011.4310 [math.CO].

[25] D. Conlon, W. T. Gowers, W. Samotij, and M. Schacht. “On the KER conjecture in
random graphs”. Israel |. Math. 203.1 (2014), pp. 535-580.

[26] S. Das, W. Gan, and B. Sudakov. “Sperner’s Theorem and a Problem of Erdés-
Katona-Kleitman”. Preprint (2013). arXiv:|1302.5210 [math.CO].

[27] B. DeMarco and J. Kahn. “Mantel’s theorem for random graphs”. Random Struc-
tures Algorithms (2014). To appear.

[28] P.H.Dianandaand H. P. Yap. “Maximal sum-free sets of elements of finite groups”.
Proc. Japan Acad. 45 (1969), pp. 1-5.


http://arxiv.org/abs/1310.3236
http://arxiv.org/abs/1404.5258
http://arxiv.org/abs/1011.4310
http://arxiv.org/abs/1302.5210

Bibliography 85

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. Erdés. “On a lemma of Littlewood and Offord”. Bull. Amer. Math. Soc. 51 (1945),
pp- 898-902.

P. Erdés. “On some of my conjectures in number theory and combinatorics”. Pro-
ceedings of the fourteenth Southeastern conference on combinatorics, graph theory and
computing (Boca Raton, Fla., 1983). Vol. 39. 1983, pp. 3-19.

P. Erdés. “Problems and results on combinatorial number theory. I1”. |. Indian
Math. Soc. (N.S.) 40.1-4 (1976), 285-298 (1977).

P. Erdds. “Some recent progress on extremal problems in graph theory”. Proceed-
ings of the Sixth Southeastern Conference on Combinatorics, Graph Theory and Comput-
ing (Florida Atlantic Univ., Boca Raton, Fla., 1975). Utilitas Math., Winnipeg, Man.,
1975, 3-14. Congressus Numerantium, No. XIV.

P. Erdés, P. Frankl, and V. Rodl. “The asymptotic number of graphs not containing
a fixed subgraph and a problem for hypergraphs having no exponent”. Graphs
Combin. 2.2 (1986), pp. 113-121.

P. Erdés and A. Hajnal. “On decomposition of graphs”. Acta Math. Acad. Sci. Hun-
gar. 18 (1967), pp. 359-377.

P. ErdSs and A. Hajnal. “Problems and results in finite and infinite combinatorial
analysis.” Ann. New York Acad. Sci. 175 (1970), pp. 115-124.

P. Erdés, D. J. Kleitman, and B. L. Rothschild. “Asymptotic enumeration of K-
free graphs”. Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo
II. Accad. Naz. Lincei, Rome, 1976, 19-27. Atti dei Convegni Lincei, No. 17.

P. Erdés and A. Rényi. “On random graphs. 1”. Publ. Math. Debrecen 6 (1959),
pp- 290-297.

P. Erd6s and M. Simonovits. “A limit theorem in graph theory”. Studia Sci. Math.
Hungar 1 (1966), pp. 51-57.

P. Erdés and G. Szekeres. “A combinatorial problem in geometry”. Compositio
Math. 2 (1935), pp. 463—470.

P. Erd6s and P. Turdn. “On Some Sequences of Integers”. |. London Math. Soc. S1-
11.4 (1936), p. 261.

J. Folkman. “Graphs with monochromatic complete subgraphs in every edge col-
oring.” SIAM ]. Appl. Math. 18 (1970), pp. 19-24.



86 Bibliography

[42] P.Frankl, R. L. Graham, and V. R6dl. “Quantitative theorems for regular systems
of equations”. J. Combin. Theory Ser. A 47.2 (1988), pp. 246-261.

[43] P. Frankl and V. Rodl. “Large triangle-free subgraphs in graphs without K,”.
Graphs Combin. 2.2 (1986), pp. 135-144.

[44] E. Friedgut. “Sharp thresholds of graph properties, and the k-sat problem”. J.
Amer. Math. Soc. 12.4 (1999). With an appendix by Jean Bourgain, pp. 1017-1054.

[45] E. Friedgut, V. Rodl, A. Ruciriski, and P. Tetali. “A sharp threshold for random
graphs with a monochromatic triangle in every edge coloring”. Mem. Amer. Math.
Soc. 179.845 (2006), pp. vi+66.

[46] Z. Furedi. A proof of the stability of extremal graphs: Simonovits’ stability from Sze-
merédi’s regularity. 2010. UrL: http : / /www . renyi . hu/ conferences / sze70 /
Talks/furedi.pdf.

[47] W. T. Gowers. “Decompositions, approximate structure, transference, and the
Hahn-Banach theorem”. Bull. Lond. Math. Soc. 42.4 (2010), pp. 573-606.

[48] B. Green. “The Cameron-Erdés conjecture”. Bull. London Math. Soc. 36.6 (2004),
pp. 769-778.

[49] B. Green and I. Z. Ruzsa. “Sum-free sets in abelian groups”. Israel |. Math. 147
(2005), pp. 157-188.

[50] B. Green and T. Tao. “The primes contain arbitrarily long arithmetic progres-
sions”. Ann. of Math. (2) 167.2 (2008), pp. 481-547.

[51] H. Hatami. “A structure theorem for Boolean functions with small total influ-
ences”. Ann. of Math. (2) 176.1 (2012), pp. 509-533.

[52] P.E.Haxell, Y. Kohayakawa, and T. Luczak. “Turan’s extremal problem in random
graphs: forbidding even cycles”. ]. Combin. Theory Ser. B 64.2 (1995), pp. 273-287.

[53] P.E.Haxell, Y. Kohayakawa, and T. Luczak. “Turdn’s extremal problem in random
graphs: forbidding odd cycles”. Combinatorica 16.1 (1996), pp. 107-122.

[54] D. Kleitman. “A conjecture of Erdds-Katona on commensurable pairs among
subsets of an n-set”. Theory of Graphs (Proc. Collog., Tihany, 1966). Academic Press,
New York, 1968, pp. 215-218.

[55] Y. Kohayakawa. “Szemerédi’s regularity lemma for sparse graphs”. Foundations

of computational mathematics (Rio de Janeiro, 1997). Springer, Berlin, 1997, pp. 216—
230.


http://www.renyi.hu/conferences/sze70/Talks/furedi.pdf
http://www.renyi.hu/conferences/sze70/Talks/furedi.pdf

Bibliography 87

[56]

[571]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

Y. Kohayakawa and B. Kreuter. “The width of random subsets of Boolean lat-
tices”. J. Combin. Theory Ser. A 100.2 (2002), pp. 376-386.

Y. Kohayakawa, B. Kreuter, and D. Osthus. “The length of random subsets of
Boolean lattices”. Random Structures Algorithms 16.2 (2000), pp. 177-194.

Y. Kohayakawa, T. Luczak, and V. Rédl. “On K*-free subgraphs of random graphs”.
Combinatorica 17.2 (1997), pp. 173-213.

Y. Kohayakawa, T. Luczak, and V. Rodl. “Arithmetic progressions of length three
in subsets of a random set”. Acta Arith. 75.2 (1996), pp. 133-163.

P. G. Kolaitis, H. J. Promel, and B. L. Rothschild. “Asymptotic enumeration and a
0-1law for m-clique free graphs”. Bull. Amer. Math. Soc. (N.S.) 13.2 (1985), pp. 160—
162.

P. G. Kolaitis, H. J. Prémel, and B. L. Rothschild. “K;;-free graphs: asymptotic
structure and a 0-1 law”. Trans. Amer. Math. Soc. 303.2 (1987), pp. 637-671.

B. Kreuter. “Small sublattices in random subsets of Boolean lattices”. Proceedings
of the Eighth International Conference “Random Structures and Algorithms” (Poznan,
1997). Vol. 13. 3-4. 1998, pp. 383-407.

V. E. Lev, T. Luczak, and T. Schoen. “Sum-free sets in abelian groups”. Israel .
Math. 125 (2001), pp. 347-367.

L. Lovasz and M. Simonovits. “On the number of complete subgraphs of a graph.
I1”. Studies in pure mathematics. Birkhduser, Basel, 1983, pp. 459-495.

D. Lubell. “A short proof of Sperner’s lemma”. . Combinatorial Theory 1 (1966),
p- 299.

T. Luczak, A. Ruciniski, and B. Voigt. “Ramsey properties of random graphs”. J.
Combin. Theory Ser. B 56.1 (1992), pp. 55-68.

W. Mantel. “Problem 28”. Wiskundige Opgaven 10 (1907), pp. 60-61.

L. D. Mesalkin. “A generalization of Sperner’s theorem on the number of subsets
of a finite set”. Teor. Verojatnost. i Primenen 8 (1963), pp. 219-220.

R. Morris and D. Saxton. “The number of Cy-free graphs”. Preprint (2013). arXiv:
1309.2927 [math.CO].

F. Mousset, R. Nenadov, and A. Steger. “On the number of graphs without large
cliques”. Preprint (2013). arXiv: 1312.1143 [math.CO].


http://arxiv.org/abs/1309.2927
http://arxiv.org/abs/1312.1143

88 Bibliography

[71] D. Osthus. “Maximum antichains in random subsets of a finite set”. |. Combin.
Theory Ser. A 90.2 (2000), pp. 336-346.

[72] R.Rado. “Studien zur Kombinatorik”. Math. Z. 36.1 (1933), pp. 424-470.

[73] A.Rényi. “Onrandom subsets of a finite set”. Mathematica (Cluj) 3 (1961), pp. 355
362.

[74] V.Rodland A. Rucinski. “Random graphs with monochromatic triangles in every
edge coloring”. Random Structures Algorithms 5.2 (1994), pp. 253-270.

[75] V.Rodl and A. Ruciniski. “Threshold functions for Ramsey properties”. J. Amer.
Math. Soc. 8.4 (1995), pp. 917-942.

[76] V. Rodl and M. Schacht. “Extremal results in random graphs”. Erdds centennial.
Vol. 25. Bolyai Soc. Math. Stud. Janos Bolyai Math. Soc., Budapest, 2013, pp. 535-
583.

[77] K. F. Roth. “On certain sets of integers”. |. London Math. Soc. 28 (1953), pp. 104-
109.

[78] W. Samotij. “Stability results for random discrete structures”. Random Structures
Algorithms 44.3 (2014), pp. 269-289.

[79] A.A.Sapozhenko. “The Cameron-Erdds conjecture”. Dokl. Akad. Nauk 393.6 (2003),
pp. 749-752.

[80] A.A.Sapozhenko.“The Cameron-Erdds conjecture”. Discrete Math. 308.19 (2008),
pp- 4361-4369.

[81] D. Saxton and A. Thomason. “Hypergraph containers”. Preprint (2012). arXiv:
1204.6595 [math.CO].

[82] M. Schacht. “Extremal results for random discrete structures” (2009). Submitted.

[83] L Schur. “Uber die Kongruenz x™ + y™ = z™ (mod. p)”. Jahresber. Dtsch. Math.-
Ver. 25 (1917), pp. 114-117.

[84] M. Simonovits. “A method for solving extremal problems in graph theory, stabil-
ity problems”. Theory of Graphs (Proc. Collog., Tihany, 1966). Academic Press, New
York, 1968, pp. 279-319.

[85] A.Soifer. The mathematical coloring book. Mathematics of coloring and the colorful

lite of its creators, With forewords by Branko Griinbaum, Peter D. Johnson, Jr. and
Cecil Rousseau. Springer, New York, 2009, pp. xxx+607.


http://arxiv.org/abs/1204.6595

Bibliography 89

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

E. Sperner. “Ein Satz {iber Untermengen einer endlichen Menge”. Math. Z. 27.1
(1928), pp. 544-548.

E. Szemerédi. “On sets of integers containing no k elements in arithmetic pro-
gression”. Acta Arith. 27 (1975). Collection of articles in memory of Jurii Vladimirovi¢
Linnik, pp. 199-245.

P. Turdn. “Egy grafelméleti szélsGérték feladatrol”. Mat. Fiz. Lapok 48 (1941), pp. 436—
452.

P. Varnavides. “On certain sets of positive density”. J. London Math. Soc. 34 (1959),
pp- 358-360.

B. L. van der Waerden. “Beweis einer Baudetschen Vermutung”. Nieuw Arch.
Wisk. 15 (1927), pp. 212-216.

B. L. van der Waerden. “How the proof of Baudet’s conjecture was found”. Studies
in Pure Mathematics (Presented to Richard Rado). Academic Press, London, 1971,
pp. 251-260.

L. Warnke. “On the method of typical bounded differences”. Preprint (2012).
arXiv:|1212.5796 [math.CO].

K. Yamamoto. “Logarithmic order of free distributive lattice”. J. Math. Soc. Japan
6 (1954), pp. 343-353.


http://arxiv.org/abs/1212.5796

	Contents
	Agradecimentos
	Abstract
	Resumo
	Introduction
	Extremal problems
	Extremal and Ramsey-type problems in arithmetic combinatorics

	Stability results and typical-structure problems
	Typical-structure problems in arithmetic combinatorics

	Sparse random problems
	Thresholds
	Asymptotic and precise problems
	Ramsey problems
	The sparse Turán problem
	A sparse random Sperner theorem

	Independent sets in hypergraphs
	Transference theorems
	A sparse stability theorem for sum-free subsets

	Hypergraph containers
	Organisation of this thesis

	Maximum-size antichains in random sets
	Introduction
	Hypergraph containers
	Balanced supersaturation
	Proof of Theorem 2.1.1

	The sharp threshold for sum-free sets in even-order abelian groups
	Introduction
	Preliminaries
	Probabilistic tools
	Group-theoretic facts

	Edge counts in Cayley graphs
	Edge counts in 
數琠Gx
數琠
	Intersections between the graphs 
數琠Gx
數琠 and edge counts in 
數琠GS
數琠

	Proof of the 
數琠0
數琠-statement
	Proof of the 1-statement
	Appendix: Lemmas on the hypergeometric distribution
	Proof of Lemma 3.5.2
	Proof of Lemma 3.4.2


	The typical structure of graphs with no large cliques
	Introduction
	A supersaturated Erdős-Simonovits stability theorem
	An approximate structural result
	Some properties of a typical K_{r+1}-free graph
	The proof of Theorem 4.1.1

	Bibliography

