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Resumo

Para uma curva X de tipo compacto com duas componentes suaves Y e Z que se intersectam

transversalmente em um único nó P, definimos o functor de series lineares limites estáveis. Pro-

vamos é grosseiramente representado por um espaço moduli de mapas estáveis invariantes pela

ação do toro no sentido de Kontsevich: mapas de curvas de gênero 0 ao espaço de series lineares

limites generalizados sobre X y que satisfazem certas condições esperadas em homoloǵıa.

Também provamos que o espaço de series lineares limites estáveis sobre X possui uma cober-

tura natural por certos abertos de series lineares limites de ńıvel delta sobre X, denominados

series lineares limites exatos de ńıvel delta, o qual é um conceito introduzido neste trabalho e que

generaliza alguns conceitos introduzidos por Osserman e, por sua vez, por Eisenbud e Harris.

A partir da relação entre series lineares limites exatos de ńıvel delta e as fibras do mapa de

Abel, generalizando os resultados obtidos por Osserman e Esteves, provamos que o espaço de

series lineares limites estáveis é o candidato natural que resolve o mapa determinado por enviar

series lineares limites exatos à la Osserman a subesquemas bem comportados ao respeito de

deformações de curvas suaves a curva X na fibra do mapa de Abel.

Palavras chaves: Series lineares limites, series lineares limites exatas de ńıvel delta, series

lineares limites estáveis, mapas de Abel.

vi



Abstract

Abel Theorem on a smooth curve C, in modern terms, is the isomorphism

P : Grd(C) −→ Hilb
(r+tr )
Ad

.

Esteves and Osserman ([18]) produced a rational map

P : Grd(X) 99K Hilb
(r+t+sr )
Ad

defined on Gr,exactd (X), the exact locus of Osserman’s variety. The goal of this thesis is to

resolve this map. Moreover, we produce a meaningful resolution by adding to the boundary of

Gr,exactd (X) what we call “stable limit linear series”.

The search for this resolution produced as collateral results the construction of varieties of

what we term level-δ limit linear series. The integer δ > 0 is the singularity degree of the total

space of the smoothing at the node P , the only point where the total space fails to be regular. In

a nutshell, whereas Grd(X) is the appropriate space to describe limits of linear series on smooth

curves degenerating to X along regular (one-parameter) smoothings, the space of level-δ limit

linear series, Grd,δ(X), is the appropriate space to describe limits along nonregular smoothings.

Keywords: Limit linear series, exact level-δ limit linear series, stable limit linear series, Abel

maps.

vii



1 Introduction

1.1 Goal

The aim of this thesis is to present two new ideas for dealing with limit linear series on curves

of compact type:

• Level-δ limit linear series.

• Stable limit linear series.

These new ideas can be viewed as developments of the theory started by Osserman [37], [38],

who in turn developed on ideas by Eisenbud and Harris [8], [9], and pursued by Esteves and

Osserman [18].

As in [37], to avoid combinatorics, we work with the “toy case” of a nodal curve X with only

two components Y and Z, which are smooth and meet transversally a unique point P .

Osserman [37] constructed a variety Grd(X) parametrizing what he called limit linear series

of degree d and rank r. It behaves functorially better than the similar variety constructed by

Eisenbud and Harris [9]. It contains as an open subset the locus of refined limit linear series, the

better-behaved type of limits used in the approach of Eisenbud and Harris. Furthermore, the

refined limit linear series are instances of what Osserman calls exact limit linear series, which

are parameterized by a larger open subset Gr,exactd (X) ⊆ Grd(X).

Again, the locus of exact limit linear series is better behaved than the whole Grd(X). For

instance, ifX is general, Gr,exactd (X) is smooth. Moreover, it was shown by Esteves and Osserman

[18] that exact limit linear series correspond to fibers of Abel maps.

Indeed, a modern interpretation of the celebrated Abel Theorem is that it establishes an

isomorphism between the variety of linear series of degree d and rank r on a smooth curve C

and the relative Hilbert scheme of subschemes of fibers of the degree-d Abel map Ad with Hilbert

polynomial P (t) =
(
r+t
r

)
. Esteves and Osserman produced a rational map

α : Grd(X) 99K Hilb
(r+s+tr )
Ad

defined on Gr,exactd (X). It is the goal of this thesis to resolve this map. Not only do we attain

this goal, but also we produce a meaningful resolution, by adding to the boundary of Gr,exactd (X)

what we term stable limit linear series.

Nevertheless, the search for this resolution produced as collateral results the construction of
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1 Introduction

varieties of what we term level-δ limit linear series. In a nutshell, whereas Grd(X) is the appro-

priate space to describe limits of linear series on smooth curves degenerating to X along regular

(one-parameter) smoothings, the space of level-δ limit linear series, Grd,δ(X), is the appropriate

space to describe limits along nonregular smoothings. The integer δ > 0 is the singularity degree

of the total space of the smoothing at the node P , the only point where the total space fails to

be regular. Limits of linear series along regular smoothings give rise to exact limit linear series;

limits of linear series along smoothings with singularity degree δ give rise to exact level-δ limit

linear series.

The construction of the Grd,δ(X) and the notion of exactness is very similar to that given by

Osserman to Grd(X). Also, we show in this thesis that there is a rational map

αδ : Grd,δ(X) 99K Hilb
(r+s+tr )
Ad

,

similar to α, defined on the open locus Gr,exactd,δ (X) ⊆ Grd,δ(X) parameterizing exact level-δ limit

linear series. Moreover, for each δ there are forgetful maps ρδ : Grd,δ(X) → Grd(X), which are

isomorphisms over the locus of exact limit linear series. More precisely,

ρ−1δ (Gr,exactd (X)) ⊆ Gr,exactd,δ (X), and ρδ : ρ−1δ (Gr,exactd (X))→ Gr,exactd (X)

is a bijection. Moreover, αδ = αρδ.

Besides, the maps ρδ are surjective and, strikingly,

ρδ(G
r,exact
d,2 (X)) = Grd(X).

It might seem natural to expect that for a high enough δ, the map αδ would be a resolution of α.

However, αδ fails to be defined everywhere by the very same reason that α is not. Furthermore,

though αδ is defined on the larger Gr,exactd,δ (X), it looks like, as seen in simple examples, that

this space gets larger and larger with δ, meaning that the number of its connected components

grows to infinity with δ.

It was clear that we needed a way of establishing an equivalence relation on the variousGr,exactd,δ (X)

to cut down their sizes. This is exactly what the notation of stable limit linear series gives. The

idea is as simple as it is beautiful. It came with the realization that the notion of exactness

imposed by Osserman is exactly the condition necessary for the coincidence of limits of two con-

secutive linear series in the data encoded by Osserman’s limit linear series. So, we may gather

the discrete data defining exact limit linear series in a single continuous data, a family of linear

series parameterized by a chain of rational smooth curves!.

In the case of Osserman’s exact limit linear series of degree d and rank r, the chain consists of

d+ 1 rational curves. In the case of a level-δ limit linear series of the same degree and rank, the

same observation can be made, and the chain consists now of dδ+1 rational curves. Clearly, the

growth of Gr,exactd,δ (X) was associated to the number of these curves. It was here that the concept

2



1 Introduction

of stabilization came about. Families of linear series over chains in the same or in different levels

would be identified by requiring that their stabilizations would be the same! Here is the origin

of the notion of stable limit linear series.

In this thesis we define a moduli functor for stable limit linear series, and show that this func-

tor is coarsely represented by a Kontsevich moduli space of stable maps from genus-0 curves,

which we denote by Grd(X)st. We show that Grd(X)st contains Osserman’s Gr,exactd (X) as an

open subset, and we construct a map

Pst : Grd(X)st −→ Hilb
(r+s+tr )
Ad

which is a resolution of α, our goal.

1.2 More details...

The classical theory of linear series on smooth curves is a useful tool for our understanding

of properties and invariants of the curve itself. Specifically, two of the main applications of

linear series on smooth curves are the study of morphisms to projective spaces and the study of

invariants of divisors such as Weierstrass points.

On the other hand, the theory of linear series is completly determined by the Abel maps and

their fibers, due to the remarkable Abel-Jacobi Theorem. Actually, the Abel-Jacobi Theorem

can be interpreted as an isomorphism between Grd(X) the projective space of linear series on

a smooth curve X and the relative Hilbert scheme Hilb
P (t),H
Ad

of subschemes in the fiber of the

degree d Abel-Jacobi map

Ad : Sd(X) −→ JX∑d
i=1 qi 7→ [OX(

∑d
i=1 qi − dp)].

Here Sd(X) is the symmetric product of X, P (t) =
(
r+t
r

)
is the Hilbert polynomial of (flat

degenerations) the projective space Pr, H := P + Sd−1(X) ⊂ Sd(X) is the relative ample divisor

parametrizing families of effective divisors whose support contains the fix (any) point p and JX

is the Jacobian variety parametrizing isomorphic classes of line bundles of degree 0 on X.

Motivated by the premise “most the problems of interest about curves are, or can be, formu-

lated in terms of (families of) linear series” (see, [9] pag. 339) Eisenbud and Harris introduced in

eighties (see [9]) the theory of limit linear series as a powerful tool for handling degenerations of

linear series on smooth curves to singular curves of compact type. The remarkable applications

of this theory to understanding smooth curves, such as new and simplified arguments for the

proofs of Brill–Noether and Gieseker–Petri Theorems, results related to Weierstrass points and

to the moduli space of curves, poses find a satisfactory compactification of the spaces of limit

linear series on singular curves, at least those of compact type.

However, the Eisenbud–Harris approach to answer this question is partial, in the following

3



1 Introduction

sense. Eisenbud and Harris make a distinction between refined and crude their limit linear series

on a singular curve X of compact type, according to compatibility conditions on ramification

conditions at the nodes. Precisely, if X is a curve of compact type then a limit linear series

L = {(LY , VY )} of degree d and rank r is a collection of linear series of degree d and rank r on

each smooth irreducible component Y of X satisfying: if Y and Z are components of X meeting

at the node p, then for each i = 0, . . . , r we have that

εLYi (p) + εLZr−i(p) ≥ d, (1.1)

where {εLYi } is the vanishing sequence of LY at p of the linear series on the component Y .

A refined limit series is a limit linear series such that all the inequalities above are equalities.

Otherwise, the limit linear series is called crude. Thus, for any X → B a smoothing of X the

scheme Gr,EHd (X/B; (q1, ε
1), . . . , (qs, ε

s)) parametrizing linear series on the general fiber Xη and

refined limit linear series on the special fiber X, under certain ramifications sequences conditions

on smooth sections qi, is quasi-projective on B. This lack of properness caused by disregarding

crude limit linear series can be interpreted as saying that there exist degenerations of linear

series whose limit linear series is crude on X.

Attempts to generalize the Eisenbud–Harris theory to curves not of compact type are sparse

in the literature. See for instance [14] and [17] on nodal reducible curves and limit canonical

system on stables curves with two components, respectively.

In the spirit of Eisenbud and Harris Theory, “but more functorial in nature, and involving a

substantially new approach which appears better suited to generalization to higher-dimensional

varieties and higher-rank bundles” ([37], p. 1165) Osserman constructed a moduli space ([37])

parametrizing a new concept of limit linear series on a curve X of compact type with (only)

two components. Roughly speaking, Osserman’s moduli space parameterizes limit linear series

considering “all posible degrees”.

More precisely, given a regular smoothing X/B of X, where B = Spec(C[[t]]), let (Lη, Vη)
be a linear series on the general smooth fiber Xη. If L is an extension of Lη to X , then

L(iY ) ∼= L(−iZ) are extensions too, for any i ∈ Z, where Y and Z are the irreducible compo-

nents of X. Fixing the degree d of L, there exists a unique extension of Lη to X such that L has

degree d when restricted to Y and degree 0 when restricted to Z. In this case, the extensions

L(−iZ) for i = 0, . . . , d has degree d− i on Y and degree i on Z. Eisenbud and Harris approach

is that, for many of its applications, it suffices to consider the “extreme” degrees extensions

L0 := L and Ld := L(−dZ) having degree d and 0 on Y (resp., 0 and d on Z). Thus they

defined the limit linear series on X as the pairs (L, V ) := {(LY , VY ), (LZ , VZ)} satisfying (1.1),

with LY := L0|Y and LZ := Ld|Z .

The main insight of Osserman’s approach (see [37]) is to consider all the extensions Li :=

L(−iZ) for i = 0, . . . , d linked by the natural morphisms ϕi : Li → Li+1 and the reverse direc-

tion ϕi : Li+1 → Li, satisfying ϕiϕ
i = ϕiϕi = tId with t a uniformizer of B. This construction

4



1 Introduction

is compatible with base change, therefore allows to define a moduli space Gr,Oss
d (X/B), which is

proper over B and parametrizes linear series on each smooth general fiber Xη and a new notion

of limit linear series over X. In fact, on the (singular) curve X we have a projective scheme

Gr,Oss
d (X) parametrizing d+ 2−tuples (L, V0, . . . , Vd), where Vi ⊂ H0(X,Li), L is an invertible

sheaf on X of degree d on Y and degree 0 on Z so that we obtain the collection of invertible

sheaves on X with Li|Y ∼= L(−ip) and Li|Z ∼= L(ip). Furthermore, this data satifies the linked

conditions ϕi(Vi) ⊆ Vi+1, ϕi(Vi+1) ⊆ Vi and ϕiϕ
i = ϕiϕi = 0, with ϕi and ϕi the induced maps

over the spaces of sections.

The projection from Gr,Oss
d (X) to Grd(Y ) × Grd(Z) has image the Eisenbud–Harris scheme

Gr,EHd (X) of Eisenbud–Harris limit linear series on X. This surjective map establishes an iso-

morphism between the refined Eisenbud–Harris limit linear series and an open set of Gr,Oss
d (X)

that are called refined, too. The refined Osserman limit linear series are properly contained in

the open subspace of exact limit linear series, i.e., those limit linear series with the following

compatibility conditions on the maps ϕi and ϕi:

Im(ϕi) = Ker(ϕi) and Im(ϕi) = Ker(ϕi) ∀i = 0, . . . , d. (1.2)

The exact limit linear series are closely related to degenerations, in the following sense. Linear

series degenerating along of a regular smoothing to X yields an exact limit linear series. This

last claim is related to the Eisenbud–Harris question of finding a compactification of space of

limit linear series. Osserman’s compactification gives a partial solution this question, since only

when X is a general curve of compact type like above, the smoothable limit linear series are

dense ( [34]).

We might think that we have more chances of compactifying the space of linear series over

Mg looking at degenerations of effective divisors, or more generally, degenerations of Abel maps

motivated by its close relation in the case of the smooth curves. Abel maps of degree 1 on stable

curves were constructed in [33] and recently Coelho and Pacini [4] have constructed Abel maps

of any degrees for curves of compact type. However, when comparing this latter construction

with Eisenbud–Harris theory the relationship between two concepts, via subschemes of the fiber

of Abel map, it seems far from being thoroughly understood. This is due to limitations on both

sides. On one hand, the fibers of the Abel maps are not well behaved, for instance, they are

in general not equidimensional. On the other hand, concepts as complete limit linear series are

not all obvious to define from of a limit linear series.

Esteves and Osserman [18] have been investigating the relationship between limit linear series

a la Osserman and fibers of the Abel maps for curves X of compact type with two smooth

components meeting at a unique node. We can summarize their results as follows. Given a limit

linear series g = (L, V0, . . . , Vd) ∈ Gr,Oss
d (X) where L is an invertible sheaf on X of degree d on

Y and degree 0 on Z, for Y and Z smooth components of X. Denote by gi := (Li, Vi) the pairs

where Li is the unique invertible sheaf on X such that Li|Y ∼= L(−ip) and Li|Z ∼= L(ip) with p

5



1 Introduction

the node on X, and Vi ⊂ Γ(X,Li). Esteves–Osserman define the map

α : Gr,Oss
d (X) −→ HilbAd

g 7→ P(g) =
d⋃
i=0
P(gi) ⊂ A−1d ([L]),

(1.3)

where P(gi) = {div(s)| s ∈ Vi, s|Y 6= 0, s|Z 6= 0} ⊂ Sd(X), and Ad : Sd(X) → Picd(X) is the

degree-d Abel map on X. Now, they prove that on set of exact limit linear series (see (1.2)) the

map α in (1.3) is well behaved, in the following sense: if g is exact then P(g) is Cohen–Macaulay

of pure dimension r and Hilbert polynomial PP(g)(s, t) =
(
r+s+t
r

)
(of the diagonal in Pr × Pr)

(see [18] Theorem 4.3). Furthermore, if g arise from a regular smoothing then P(g) is the flat

limit of the corresponding Pr on nearby fibers (see [18] Theorem 5.2).

In this way, it is natural to ask: can be extended the map α for nonexact limit linear series?

The answer is no. A natural process could resolve the map. How to do it? It is clear that, as is

known in the literature (see, for instance, [27], [17]), we need to understand better nonregular

smoothings. We address this in the third chapter of this Thesis. Before sketching our results,

we comments about the tools needed to reach them.

To study limits of special Weierstrass points, Cumino–Esteves–Gatto [5] use twists as an

important tool for understanding limit linear series along families whose total space is nonregular,

i.e., families of smooth curves degenerating to curve X, with a unique Aδ−1-singularity at the

node p, for some integer δ ≥ 1. Twists are sheaves of rank 1 and torsion-free on X introduced in

[15]. Fixing an invertible sheaf L on X of (total) degree d, we obtain using twist a collection of

dδ+1 rank 1 and torsion-free sheaves (see 3.5, Chapter 3), yields as the admissible extensions of

semi-stable model of X (see, [3] §5). In this way, we regard the “linkage” this collection in the

natural way of “restriction and inclusion” made by Osserman to construct the space Gr,Oss
d (X).

Thus, combining the two approaches above on one side the Cumino–Esteves–Gatto ideas and,

on the other side, Osserman’s construction of moduli space of limit linear series, we introduce a

new definition of limit linear series (briefly, lls) on the curve X, namely, level-δ limit linear series

(see Definition 3.8), understanding them as limit of linear series degenerating along nonregular

smoothings. It follows that there exists a projective space Grd,δ(X) parametrizing level-δ lls,

which is related to Osserman’s space Grd,1(X) = Gr,Oss
d (X) via a surjective proper map ρδ :

Grd,δ → Gr,Oss
d (see Proposition 3.9), such that Osserman’s exact lls are lifting uniquely for any

δ and contained in the open subspace of exact level-δ lls (see Proposition 3.16(1)), the natural

generalization of Osserman’s exact lls. Furthermore, given a nonexact lls g, there exist a δ

and an exact level-δ lifting g̃, i.e., g̃ ∈ Grd,δ(X) is an exact level-δ lls such that ρδ(g̃) = g (see,

Proposition 3.16(2)).

The relation of our space Grd,δ(X) with the map α can be summarized as follows. Given a

level-δ lls g = (L, V0, . . . , Viδ+j , . . . , Vdδ), we can define in a similar fashion to Esteves–Osserman,

the subscheme P(g) ⊂ A−1d ([L]). It follows that P(g) has the “correct” Hilbert polynomial if and

only if is exact level-δ lls. (see Theorem 3.19). Precisely, if g ∈ Gr,Oss
d (X) is a nonexact lls then
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exist δ and an exact lifting g̃ ∈ Gr,exactd,δ (X) such that P(g) ⊂ P(g̃) is contained properly and P(g̃)

has Hilbert polynomial P (s, t) =
(
r+s+t
r

)
.

Considering the results above, and observing that all our results depend on a certain choice

of δ, a natural question is: will be the process of completing the subschemes related to lls stops

for some δ? Do we need all the δ’s? In fact, no. The answer is that above level-r + 2, does

not have more relevant geometric information, i.e., we can always complete the subscheme with

exact level-δ’s below level-r + 2 (see Theorem 3.21).

Although, we have found good candidates to limit linear series as limits of linear series along

to any direction to X in Mg (see [27] p. 146), or better, exacts level-δ lls along to any smoothing

of X, we continue with some limitations. First, the exact level-δ lls form an open subspace(!!),

which do not expect to be a compactification. Second, the dependence of exact points of the

parameter δ and principally the absence of control, i.e., absence of some relation between distinct

levels that allows to control the exact points (see Remark 3.18). Thus,

• We would like to find a more general concept such that embraces all exact points at distinct

levels.

• We would like to find a moduli space parametrizing elements with this concept that allows

to identify exact lls in distinct levels but with the same subscheme in the fiber of Abel

map.

• We would like this moduli space be (coarsely) represented by a projective scheme which

contains all (open) subschemes of exact points of all levels. Roughly speaking, a compac-

tification of the space of all limits.

These are problems that motivate Chapter 4 of this Thesis. Before we give details of our

construction, we begin with a useful observation. We know that, for any invertible sheaf L of

degree d on the curve X satisfies Ext1(Li|Z , Li+1|Y ) ∼= C and Ext1(Li+1|Y , Li|Z) ∼= C, for each

i − 0, . . . , d − 1. Notice that, the trivial extension Li|Z ⊕ Li+1|Y correspond to the sheaves in

the “middle” of our construction of level-δ spaces. A natural question is: what happens with

the spaces of sections in the limit when the extensions Li and Li+1 degenerate to the trivial

extension Li|Z ⊕ Li+1|Y ? The interesting case of the study of limits of these degenerations is

when we consider a limit linear series a la Osserman g, more exactly, an exact lls. In fact, if g

is an exact limit linear series then the limit through degenerations of extensions are equals (see

Lemma 4.16). Notice that the degeneration to zero in Ext1(Li|Z , Li+1|Y ) ∼= C can be interpreted

as degeneration to infinity in Ext1(Li+1|Y , Li|Z) ∼= C. Thus, we obtain a chain of d+1 projective

lines parametrizing an exact Osserman’s lls.

To formalize the last ideas, first we construct a moduli space Hr
d(X) of families of generalized

linear series of degree d and dimension r along a chain the projective lines T (see section 4.1.1).

In short words, the scheme Hr
d(X) parameterizes linear series (I, V ), where I is any torsion-

free, rank-1 sheaf on X of degree d whose restrictions to Y and Z, modulo torsion, have degrees

7
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ranging from −1 to d, and V is any vector subspace of H0(X, I) of dimension r + 1. The

main tool to construct Hr
d(X) is the construction of a sheaf F on X × T/T which is “locally

constant” (see subsection 4.1.1), i.e., F|X×T ∗i ∼= OX(−i, i) ⊗ OT ∗i for each i = 0, . . . , d and

F|X×Ni ∼= OY (−iP )⊕OZ((i−1)P ) for i = 0, . . . , d+ 1. Here, OX(−i, i) is the unique invertible

sheaf on X whose restriction to Y is OY (−ip) and to Z is OZ(ip), and Ni the unique point

where two components Ti ∼= P1 and Ti+1
∼= P1 of T intersecting transversally.

Second, we observe that an exact lls g a la Osserman could be interpreted as a map fg :

T → Hr
d(X) from the chain T to the moduli scheme Hr

d(X) (see Proposition 4.14). More

generally, any g̃ exact level-δ lls corresponds to a map hg̃ : S → Hr
d(X), with the source curve a

chain of projective lines (see Proposition 4.18). This motivates the construction of the moduli

space Gr
d(X) of families of stable limit linear series (see, subsection 4.2.1). Now our problem

of representation becomes equivalent to another problem: find an interpretation of families of

stable limit linear series in terms of a moduli space (coarsely) represented by a projective scheme.

Now the last question leads us to study features of the maps to Hr
d(X). We emphasize that

a map h : S → Hr
d(X) is related to a stable limit linear series if:

• It has the same “type” of a Osserman exact limit linear series. Here “type” means for

us, the source curve S being a chain that contains d + 1 components isomorphism to

the chain T . The “translation” of Osserman “type” is the fundamental (effective) class

fg∗[T ] := β ∈ H2(H
r
d(X),Z) (see Lemma 4.23).

• It has the “locally constant” property. This inherited property of the sheaf F , is related

to certain torus action and its invariants subspaces on the product G×T , where the image

of each map h can be embedding. Here G is the absolute Grassmanian of subspaces of

dimension r+ 1 of H0(L|Y )⊕H0(L|Z(dp)) (see subsections 4.1.2, 4.2.1 and Lemma 4.12).

• It satisfies a stability condition with the main intention avoid any redundancy. For ins-

tance, the stable map defined by an Osserman exact represent the Osserman exact in the

“all levels” (see Proposition 3.16(1)).

According to the conditions above, we regard a suitable moduli space: M0(H
r
d(X), β)C

∗
of stable

maps fixed by a torus action of (arithmetic) genus zero to Hr
d(X) whose images lie in β, with

β ∈ H2(H
r
d(X),Z). Thus the main results of the Chapter 4 of thesis are:

• There exists a projective, coarse moduli space Grd(X)st (see Theorem 4.32).

• The map [f : S → Hr
d(X)] ∈ Grd(X)st, has a representative such that the source curve is

a chain. So, the C∗−action and the class β determines the type of our stable maps (see

Theorem 4.25). Intuitively, as in discussion above, this moduli space is a “good candidate”

for the desired compactification.

• There exists a functorial equivalence between M0(H
r
d(X), β)C

∗
and the functor Gr

d(X)

that define the families of stable limit linear series (see Proposition 4.30).

8
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• For all δ ≥ 1, there exists a map

Ψδ : Gr,exactd,δ (X) −→ Grd(X)st.

whose union over δ is equal to Grd(X)st (see Theorem 4.36).

In particular, our projective scheme Grd(X)st is a “good candidate” for resolving the (set-

theoretically) map (see Corollary 4.38)

α : Gr,Oss
d (X) 99K HilbP,HAd

g 7→ α(g) = P(g),

studied by Esteves–Osserman (see [18]).
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2 Abel maps and limit linear series: An

overview

2.1 Generalities on limit linear series.

2.1.1 Linear series on (families of) smooth projective curves.

Let X be a smooth, connected and complex projective curve of genus g. A linear series on X

of degree d and rank r is a pair g := (L, V ), where L is a line bundle on X with d := deg(L) and

V ⊆ H0(X,L) is a vector subspace of sections of L with r = dim(V )− 1.

It is well known that linear series on a smooth curve X is a useful tool to study maps of X into

projective spaces. Specifically, each non degenerate morphism from X to a projective space Pr

of degree d corresponds, up to automorphism of Pr, to pair (L, V ) as above.

One of the basic applications of linear series is related to the study of invariants of smooth

curves. For this, we need to introduce the theory of ramification points of g on X. Given p ∈ X,

we say that an integer ε is an order of the linear series g = (L, V ) at p if there is a nonzero

section of L in V vanishing at p with order ε. If two sections of L have the same order, a certain

linear combination of them will be zero or have higher order. Thus, there are exactly r + 1

orders of g at p: ε0(p) < ε1(p) < · · · < εr(p). Furthermore, notice that i ≤ εi(p) ≤ d. We call

wt(p) :=
r∑
i=0

(εi(p)− i) the ramification weight of g at p. Observe that, 0 ≤ wt(p) ≤ (r+1)(d−r).

If wt(p) > 0 then we say that p is a ramification point of g. A known and important example of

ramification points happens when r = g − 1 and d = 2g − 2. In this case, the only linear series

g on X is the canonical series g = (ωX , H
0(X,ωX)), whose ramification points are precisely the

Weierstrass points of X. Now, given the ramification cycle of g, [W (g)] :=
∑
p∈X

wt(p)[p], we have

the Plucker Formula, which computes the degree of [W (g)]

deg ([W (g)]) =
∑
p∈X

wt(p) = (r + 1)(d+ r(g − 1)).

As we may see, the theory of linear series is a useful tool that allows us to better understand the

curve X. Indeed, in the words by Eisenbud and Harris “most problems of interest about curves

are, or can be, formulated in terms of linear series.” (see, [9] p. 339). One of these interesting

set of problems is the Brill–Noether Theory, whose most fundamental question is: For which

values of r and d does a general smooth curve of genus g possess a linear system of degree d and

10
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rank r. A rather complete answer is known as the Brill–Noether Theorem:

Theorem 2.1. A general smooth, connected, complex projective curve of genus g ≥ 2 has a

linear system of degree d and rank r if and only if ρ(g, d, r) := (r + 1)(d − r) − gr ≥ 0; and if

so, then ρ(g, d, r) is the (pure) dimension of the projective moduli space Grd(X) of linear series

on X of rank r and degree d.

We make some general remarks concerning the proof of the Brill–Noether Theorem. The “if”

part was proved independently by Kempf (see [29]) and Kleiman-Laksov (see [30] and [31]). The

arguments in their proofs are actually valid for any smooth, connected, projective curve. In this

way, we may re-write the “if” part of the Brill–Noether Theorem: If ρ(g, d, r) ≥ 0, then for all

smooth, connected, projective curves X of genus g, the space Grd(X) is non-empty with every

component of dimension at least ρ(g, d, r).

The arguments in the proof of the “only if” part illustrate our understanding of the interactions

of the Brill–Noether Theory with the moduli theory of curves, in the sense that the analysis of

desired properties of smooth curves relies on the analysis of degenerations to singular curves.

This is the key point of the techniques developed by Eisenbud and Harris. The first complete

proof of the Brill–Noether Theorem was given by Griffiths and Harris (see [26]), based in argu-

ments considered by Severi. Later, Eisenbud and Harris (see [9] Theorem 4.5), following work

by Gieseker ([24]), simplified and generalize the Theorem, introducing the notion of limit linear

series. We will discuss it in the next section.

On the other hand, the proof of the existence of the projective moduli space

Grd(X) := {(L, V )|L ∈ P := Picd(X), V ⊂ H0(X,L), dim(V ) = r + 1}

is not difficult. In fact, we can summarize the construction as follows. It is the zero scheme

of a bundle map ν on the relative Grassmannian G := GrassP(r + 1, p2∗M). Here, M := L ⊗
p∗1OX(np) is the invertible sheaf on X×P, where L a universal bundle on X×P, p1 : X×P → X,

p2 : X × P → P are the canonical projections, and n >> 0. The integer n is chosen such that

R1p2∗M = 0, or equivalently, p2∗M is locally free. It is enough to choose, by the Riemann–Roch

Theorem, n ≥ 2g− 1− d, since n+ d is the relative degree ofM. Now, from the diagram below

X ×G
(Id,π)

��

q2
// G

π
��

X X × Pp1
oo

p2
// P

we conclude that Grd(X) is precisely the vanishing locus of the composition

ν : V ↪→ π∗p2∗M = q2∗(Id, π)∗M−→ q2∗(Id, π)∗M|np×P ,

with the first map being tautological, with V the universal sub-bundle on G, and the second map

11
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is obtained by restriction. For more details, see [2] chapter IV, §3. Finally, since by definition V
is locally free of rank r+1 andM|np×P is locally free of rank n, we obtain that the codimension

of each component of Grd(X) in G is at most (r + 1)n. It follows that Grd(X) is a projective

scheme, such that each component has dimension at least:

dim(G)− (r+1)n = g+(r+1)(n+d+1−g− (r+1))− (r+1)n = (r+1)(d−r)−gr = ρ(g, d, r).

The rest of the section is dedicated to some relevant results about Grd(X), as consequences of

the Brill–Noether Theory. For more details we refer the reader to [2] Chapter V.

Theorem 2.2 (Fulton–Lazarsfeld). Connectedness Theorem. Let X be a smooth projective

and connected curve of genus g and assume that ρ(g, d, r) ≥ 1. Then Grd(X) is connected.

Theorem 2.3 (Gieseker). Smoothness Theorem. Let X be a general smooth projective and

connected curve of genus g. Then Grd(X) is smooth of dimension ρ(g, d, r).

An immediate consequence of combining the results by Gieseker and Fulton–Lazarsfeld, in the

general case, is that: if ρ(g, d, r) ≥ 1 then Grd(X) is irreducible.

2.1.2 The limit linear series Space I: The Einsenbud–Harris approach.

The technique of limit linear series was introduced by Eisenbud and Harris in the eighties. They

were able to obtain remarkable results from their techniques: results about the geometry of

the moduli space of curves (see for instance [7]), about existence of Weierstrass points (see for

instance [10]), generalizations of the Brill–Noether Theorem ([9]), enumeration of linear series

(see for instance [11]), among others. We may describe the technique as the analysis of the

geometric properties via degenerations to reducible curves of limits of linear series, with the goal

of deducing something about the geometry of the linear series on smooth curves, i.e., general

members of the family. Below, we give a brief survey of the principal results of this theory,

avoiding some details.

First, observe that as defined linear series make sense for singular curves. Second, although

this technique treats the more general case of singular curves of compact type, we restrict our

attention to curves X = Y ∪Z, with Y and Z smooth components intersecting at a unique node

P . The reason to this focus is that our main results, whose principal support come from the

Osserman Theory about limit linear series, are restricted to this simple case.

Therefore, let us suppose that X/B, choosing for simplicity B := Spec(C[[t]]), is a flat and

projective family of curves, where the total space X is regular, the generic fiber Xη is smooth,

and the special fiber X is as above. This family of curves is called of regular smoothig of the

curve X. Since X is regular, it holds that:

• Y and Z are Cartier divisors of X, and every Cartier divisor of X supported in X is a

Z−linear combination of Y and Z. Also, since OX ∼= OX (Y +Z), we have that OX (iY ) ∼=

12
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OX (−iZ) for any i ∈ Z, i.e., the each linear combination is reduced to the multiple of one

component.

• For each invertible sheaf Lη on Xη there exists an invertible sheaf L on X , called of the

extension of Lη, such that L|Xη ∼= Lη. This extension is not unique. In fact, it is easy to

check that L(iY ) := L ⊗OX (iY ), with i ∈ Z, are all the extensions of Lη to X .

The existence of distinct extensions to each Lη on X , means the relative Picard scheme Pic(X/B)

is universally closed but not separated. Notice that this does not happen for vector subspaces:

If L is an invertible sheaf on X and Vη ⊂ H0(Xη,L|Xη) is a vector subspace of dimension r + 1,

then there exists a unique extension V ⊂ H0(X ,L), which is V = Vη ∩H0(X ,L).

If we specify the degree of L on Y and Z, it is well known that the Picard scheme is separated,

and hence proper. Consequently, for each linear series (Vη,Lη) of degree d and rank r, there

exists a collection of extensions (Li,Vi) on X , with Li characterized by the conditions that has

degree d− i when restricted to Y and degree i when restricted to Z, or bi-degree (d− i, i).
The main idea behind the Eisenbud–Harris Theory is to consider just the “extremal degree”

linear series, (L0,V0) and (Ld,Vd), i.e., those of bi-degrees (d, 0) and (0, d), respectively. This

is due to the fact that in all of their applications these linear series were enough. In fact, they

considered the restrictions (LY , VY ) := (L0|Y ,V0 ⊗ k(0)) and (LZ , VZ) := (Ld|Z ,Vd ⊗ k(0)).

Notice that, identifying VY and VZ with its image into H0(Y, LY ) and H0(Z,LZ) respectively,

we have a sequence of inclusions

VY ⊆ H0(X,L0|X) ⊆ H0(Y,LY ) and VZ ⊆ H0(X,Ld|X) ⊆ H0(Z,LZ).

In other words, we don’t lose geometric information by restricting to the components. So, given

a linear series (Lη,Vη) on a family of curves X/B we obtain as “limit linear series” a pair

{(LY , VY ), (LZ , VZ)} on the “limit” curve X. We emphasize that is possible to construct pairs

on X as “limits” of linear series (Lη,Vη) on Xη, which aren’t like the last pair above construct

by Eisenbud and Harris (see for instance [14], Theorem 1). One of the first results by Eisenbud

and Harris is the following inequalities

Proposition 2.4 ([9] proposition 2.1). If (LY , VY ) and (LZ , VZ) arise as the limit of the linear

series (Lη, Vη) on Xη, and εYi , εZi are the orders of vanishing at P of (LY , VY ) and (LZ , VZ),

respectively, then holds that, for each i = 0, . . . , r,

εYi + εZr−i ≥ d. (2.1)

Thus, they were motivated to give the definition:

Definition 2.5 ([9] p. 346). Let X the curve with two smooth components Y and Z meeting

at a unique node P . The pair g := {(LY , VY ), (LZ , VZ)} is called a limit linear series (briefly lls)

on X if it satisfies (2.1).
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They call the lls Refined the ramification conditions (2.1) are equalities for all i. Otherwise,

they call the lls Crude. The reason for the distinction is that refined lls on X have a similar

behavior to linear series on smooth curves.

Having made the distinction, their results focus on lls refined, like the proposition below, about

their characterization with respect to specialization of ramification points, as a consequence of

the Plucker formula in this context:

Proposition 2.6 ([9] proposition 2.5). Under the hypotheses of proposition 2.4, g is a refined

lls if and only if no ramifications points of (Lη, Vη) specialize to the node P of X.

Under these circumstances, they prove how from (Lη,Vη) there arises a refined lls on X or

(possibly) on a semi-stable model X ′. X ′ is derived from X by replacing the node P with a

chain of rational smooth curves. So, the new family X ′/B′, with the special fiber X ′ and generic

fiber X ′η = Xη, is obtained from X/B by making a finite base change and resolving the resulting

singularities of the total space X .

Theorem 2.7 ([9] Theorem 2.6). Let (Lη,Vη) be a linear series on Xη. Up to a finite base

change and finitely many blowups of the total space at nodes of the special fiber, the limit of

(Lη,Vη) on X is a refined lls.

To sum up, limits of linear series on smooth curves yield limit linear series on X. A natural

question is: are all limit linear series g on X smoothable? The answer is, in general, no (see for

instance, [9] example 3.2 p. 353). To say that g can be smoothed means that there are a family

X/B as above, and a linear series (Lη,Vη) on Xη whose limit is the given g on X.

Eisenbud and Harris are able to construct a moduli space of refined limit linear series on a

family of curves as above. Since this moduli space just parametrizes refined limit linear series

it is not proper in general, as crude limit linear series are disregarded. We emphasize that the

following theorem is an adapted version to our situation of one main results of Eisenbud and

Harris (cf. [9] Theorem 3.3). Before stating the theorem, we fix some notation. Given two

non negative integers r and d, a ramification sequence of type (r, d) is a sequence of integers

ε = (ε0, . . . , εr) with 0 ≤ ε0 ≤ . . . ≤ εr ≤ d − r. Suppose that q is a smooth point of X and

is contained in the component Z. We say that a limit linear series g = {(LY , VY ), (LZ , VZ)}
on X satisfies the ramification condition (q, ε) if the ramification sequence of g at q, i.e., the

ramification sequence of LZ at q, is termwise ≥ (ε0, . . . , εr).

If ε1, . . . , εs are ramification sequences of type (r, d) we set:

ρ(g, r, d; ε1, . . . , εs) := (r + 1)(d− r)− rg −
∑
i,j

εji .

Following the words of Eisenbud and Harris ([9], p. 354):“this is the “expected dimension” of the

family of limit series on X satisfaying ramification conditions (qi, ε
i) for fixed q1, . . . , qs ∈ X”.
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Theorem 2.8. Let X/B be a regular smoothing of X, with q1, . . . , qs : B → X smooth

sections, and let ε1, . . . , εs be ramification sequences of type (r, d). There exists a scheme

G := Gr,EHd (X/B; (q1, ε
1), . . . , (qs, ε

s)) quasi-projective over B, compatible with base change, pa-

rametrizing linear series on the smooth fiber Xη of X , and refined limit linear series on X, all

of degree d and rank r, satisfying the ramification conditions (q1(b), ε
1), . . . , (qs(b), ε

s), for any

b ∈ B. Every component of G has dimension ≥ ρ+ 1. If

∑
i,j

εji = (r + 1)d+

(
r + 1

2

)
(2g − 2),

or no X has crude limit linear series with the established ramification conditions, then G is

proper over B.

Thus, Eisenbud and Harris obtain the smoothing result below

Corollary 2.9 ([9], corollary 3.5). Under the hypotheses of Theorem 2.8, if Gr,EHd (X) has

dimension exactly ρ, then all refined limit linear series can be smoothed to linear series on

nearby fibers.

Finally, we introduce the Eisenbud–Harris limit linear series scheme on X:

Gr,EHd (X) := {((LY , VY ), (LZ , VZ)) | satisfying (2.1)} (2.2)

is a projective subscheme of the product Grd(Y ) × Grd(Z). In fact, Gr,EHd (X) is the closed

subscheme of the product defined as the union of the schemes defined by pairs of linear series

satisfying at least the imposed vanishing conditions at the node. Clearly, Gr,EHd (X) includes the

crude and refined limit linear series. The set of refined limit linear series is an open subset. We

emphasize that there are degenerations of linear series which are not refined.

2.1.3 The limit linear series Space II: The Osserman approach.

Concerning the construction of the Eisenbud–Harris quasi-projective scheme Gr,EHd (X/B), there

are two problems. The first is the absence of “naturality” of the construction, in the sense that

it does not represent any natural functor. The second is the exclusion in the relative case, of

the crude limit linear series, which prevents the properness of Gr,EHd (X/B).

Observe that, even though Gr,EHd (X) parametrizes the crude and refined limit linear series, it

is not at all obvious that it has a functorial description.

We may say that the Osserman approach is motivated by these two problems. Roughly

speaking, Osserman’s construction of the moduli space of limit linear series, besides considering

the “extremal” degrees as in the Eisenbud–Harris approach, considers attach all possible degrees.

We will discuss below the construction of moduli space of limit linear series à la Osserman,

as well as its limitations. Its limitations in a sense that will be explained in the next sections,

will motivate our new approach.
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Given a regular smoothing of X, π : X → B, we have seen above that for any linear series

(Lη,Vη) on Xη of degree d and rank r, there exists a unique extension to X, (Li,Vi), satisfying

that Li has degree d − i when restricted to Y and degree i when restricted to Z, and Vi =

Vη ∩ H0(X ,Li). Since Li+1 = Li(Y ), we have a natural induced map Li → Li+1. On the

other hand, fixing the choice of an isomorphism OX (Y + Z) ∼= OX , we obtain a map in the

reverse direction Li+1 = Li(Y ) ∼= Li(−Z) → Li. If t is uniformizer of B, we have that the

compositions, Li → Li+1 → Li and Li+1 → Li → Li+1, are equals to multiplication by t. For

the spaces Vi, since Vi ∩H0(X ,L(−(i + 1)Z) = Vi+1, the induced maps on the global sections

H0(X ,Li+1)→ H0(X ,Li) and H0(X ,Li → H0(X ,Li+1), map Vi+1 to Vi and Vi to Vi+1. Denote

by ϕi : Vi+1 → Vi and ϕi : Vi → Vi+1 these maps.

The Osserman moduli space Gr,Oss
d (X/B) parametrizes choices of an invertible sheaf L =: L0

of bi-degree (d, 0), together with (r + 1)−dimensional subspaces Vi of global sections of the

invertible sheaves Li := L0(iY ), respectively, which are linked by the maps ϕi and ϕi above.

Osserman imposes ramification points along smooth sections, similarly to what Eisenbud–Harris

did and proves that

Theorem 2.10 (cf. [37], Theorem 5.3). Given a regular smoothing X/B of X, smooth sections

pi and ramifications sequences {αi(pj)}, the functor Gr
d(X/B) of limit series on X/B having

ramification index at least αi(pj) at each pj is compatible with base change, and representable

by a scheme Gr,Oss
d (X/B) projective over B. Every component of Gr,Oss

d (X/B) has dimension

at least ρ(g, r, d;αi(pj)) + dimB, with ρ(g, r, d;αi(pj)) = (r + 1)(d− r)− rg −
∑
i,j
αi(pj).

If the dimension of a fiber of Gr,Oss
d (X/B) is exactly ρ(g, r, d;αi(pj)), then every limit linear

series on that fiber can be smoothed to linear series on nearby fibers.

We will to describe what Gr,Oss
d (X/B) parametrizes on its fibers over B. If b 6= 0, then Xb is

a smooth curve. Since, as it is easy to check, the maps Li|Xb → Li+1|Xb are all isomorphisms,

each Vi is uniquely determined by V0. Thus, we recover the classical space Grd of Xb.
As for the curve X, we have that each invertible sheaf Li := Li|X on X is determined

by its restrictions to Y and Z. It is clear that Li|Z = L0(iY )|Z ∼= L0|Z(ip) and similarly

Li|Y = L0|Y (−iZ) ∼= L0|Y (−ip). The maps Li → Li+1 are defined as the canonical inclusion on

Z, and the zero map on Y , and viceversa for the maps Li+1 → Li. In this way, denoting by Vi

the image of Vi by the maps H0(X,Li)→ H0(X,Li), the statement that Vi is mapped into Vi+1

(resp. Vi+1 is mapped into Vi) is equivalent to that the spaces Vi|Z (resp. Vi|Y ) can be regarded

as an increasing (resp. decreasing) filtration of VZ := Vd|Z (resp. VY := V0|Y ). However, in the

words by Osserman ([39], p. 12): “Vi includes, in general, strictly more information than Vi|Z
and Vi|Y , as there are choices about how sections on Y and Z can be glued if they both vanish

at p. This additional information will mean in particular that our space is not the same as the

Eisenbud-Harris space”.

From now on, we restrict our attention to the curve X. Given an invertible sheaf L on X,
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2 Abel maps and limit linear series: An overview

there are natural short exact sequences,

0 // L|Y (−p) // L // L|Z // 0

0 // L|Z(−p) // L // L|Y // 0

.

(2.3)

For each integer i, we define Li as the invertible sheaf on X determined by the restrictions

L|Y (−ip) and L|Z(ip). There exist natural maps ϕi : Li → Li+1 and ϕi : Li+1 → Li, defined by

composing

0 // Li+1|Z(−p) // Li+1

ϕi

��

// Li+1|Y // 0

0 Li|Zoo Li

ϕi

OO

oo Li|Y (−p)oo 0oo

(2.4)

Notice that ϕiϕi = ϕiϕ
i = 0 for every i.

Definition 2.11. A limit linear series (briefly, lls) on X of degree d and dimension r, for fixed

integers d and r with r ≤ d, is a collection, denoted (L, V0, . . . , Vd), consisting of an invertible

sheaf L on degree d when restricted on Y and degree 0 when restricted on Z, and vectors

subspaces Vi ⊆ Γ(X,Li) of dimension r + 1, for each i = 0, . . . , d, such that ϕi(Vi) ⊆ Vi+1 and

ϕi(Vi+1) ⊆ Vi for each i.

Its clear that there exists a forgetful morphism

Gr,Oss
d (X) := {g := (L, V0, . . . , Vd)| Vi

ϕi
//
Vi+1

ϕi
oo } −→ Grd(Y )×Grd(Z)

defined by g 7→ ((L0|Y , V0|Y ), (Ld|Z , Vd|Z)). Thus, Osserman is able to obtain the following

comparison to Eisenbud–Harris space (2.2):

Theorem 2.12 ([39], Theorem 3.2.1). The morphism above induces a set-theoretic surjection

Gr,Oss
d (X)

ρ0−→ Gr,EHd (X), which is an isomorphism over the open subscheme corresponding to

refined limit series.

A point of Gr,Oss
d (X) is called refined (resp. crude) if it maps to a refined (resp. crude)

point of Gr,EHd (X) by ρ0. In particular, Osserman recovers the results of specialization and

smoothing obtained by Eisenbud and Harris. Furthermore, a careful analysis of the dimension

of the fibers of the map ρ0 and a classical inductive reasoning over limit linear series, is carried

out by Osserman to prove:

Theorem 2.13 ([37], Proposition 6.6, corollary 6.8 or [40] Theorem 5.3). The natural map

above

ρ0 : Gr,Oss
d (X) −→ Grd(Y )×Grd(Z)

17



2 Abel maps and limit linear series: An overview

has set-theoretic image consisting precisely of Gr,E−Hd (X). This map is an isomorphism when

restricted to the open subscheme of Gr,Oss
d (X) mapping to refined Eisenbud–Harris limit series.

Now, our interest is focused on the intrinsic properties of Gr,Oss
d (X). For this, we need some

definitions.

Given a lls (L, V0, . . . , Vd), associated to each Vi we have the short exact sequences:

0 // V Y,0
i

// Vi // Vi|Y // 0

0 // V Z,0
i

// Vi // Vi|Z // 0

(2.5)

where V Y,0
i denotes the subspace of sections of Vi that vanish on Y and Vi|Y denotes the image in

Γ(Y,Li|Y ) of Vi by restriction. Similar conclusions can be drawn with Y replaced by Z. Besides,

the map ϕi : Vi −→ Vi+1 has kernel V Z,0
i and image contained in V Y,0

i+1 , whereas ϕi : Vi+1 −→ Vi

has kernel V Y,0
i+1 and image contained in V Z,0

i .

Definition 2.14. A lls (L, V0, . . . , Vd) is called exact if, for every i,

Im(ϕi : Vi −→ Vi+1) = V Y,0
i+1 = Ker(ϕi : Vi+1 −→ Vi)

Im(ϕi : Vi+1 −→ Vi) = V Z,0
i = Ker(ϕi : Vi −→ Vi+1).

The exactness condition can be translated in numerical terms: A lls (L, V0, . . . , Vd) is exact if

and only if rank(ϕi)+rank(ϕi) = r for every i. So, since for any lls we have rank(ϕi)+rank(ϕi) ≤
r, the exact points form (by semi-continuity) an open subset of Gr,Oss

d (X).

Examples of exact lls are the refined lls, as it is easy to check. However, the converse does

not hold. An other important property of the set of exact points in the space Gr,Oss
d (X) in the

case of a general curve is

Theorem 2.15 ([34]). If X is a general curve then the exact points are dense in Gr,Oss
d (X).

Let X/B be a regular smoothing of X. Let Lη be an invertible sheaf of degree d on the generic

smooth fiber Xη. We have seen above that there exists an extension L on X such that L := L|X
has degrees d on Y and 0 on Z. Fix this extension L, and set Li := L(iY )|X ∼= L(−iZ)|X , for

each i = 0, . . . , d. Recall that the Li := L(iY ) are all extensions of Lη to X .

Let Vη be a vector subspace of H0(Xη,Lη) of dimension r + 1. Regarding Vη as a subspace

of H0(Xη,L(iY )|Xη) for each i = 0, . . . , d, set Vi := H0(X ,L(iY )) ∩ Vη. We denote by Vi ⊂
H0(X,Li) the image of the restriction of Vi to the special fiber, in other words, the image by

the natural induced map on the global sections Vi ↪→ H0(X ,Li)→ H0(X,Li). It follows that

Proposition 2.16. The collection (L, V0, . . . , Vd) is an exact lls.
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2 Abel maps and limit linear series: An overview

Proof 2.17. First, from of the “product” maps,

Li
⊗Z−→ Li−1 Li−1

⊗Y−→ Li. (2.6)

we have the short exact sequence 0 −→ Li
⊗Z−→ Li−1 −→ Li−1|Z −→ 0 and similarly for Y . So,

from the induced maps of restrictions to X we obtain the short exact sequence 0 → Li|Y →
Li−1 → Li−1|Z → 0 of the diagram below

Li //

����

Li−1 // Li−1|Z // 0

Li|Y
∼= // // Li−1|Y (−p)

?�

OO
.

(2.7)

Second, by the natural induced maps below, and chasing in diagrams,

0 // Vi //
� _

��

Vi−1 //
� _

��

H0(X,Li−1|Z)

0 // H0(X,Li) //

��

H0(X,Li−1) //

��

H0(X,Li−1|Z)

H0(X,Li) // H0(X,Li−1) // H0(X,Li−1|Z)

Vi
?�

OO

� � ϕi−1
// Vi−1
?�

OO

(2.8)

We conclude, if we denote by ϕi−1 and ϕi−1 the induced maps on the global sections by the

products above, then they satisfy by (2.7) and (2.8) that ϕi−1ϕ
i−1 and ϕi−1(Vi) ⊆ Vi−1, respec-

tively. A similar reasoning applies to obtain ϕi−1ϕi−1 = 0 and ϕi−1(Vi−1) ⊂ Vi.
On the other hand, from the two natural sequences below

0→ Vi−1 → Vi → H0(X,Li|Y )

H0(X,Li−1)→ H0(X,Li−1|Z) ↪→ H0(X,Li)

we obtain that

Ker(H0(X,Li−1)→ H0(X,Li−1|Z)) = Ker(H0(X,Li−1)→ H0(X,Li))

and consequently Ker(Vi−1 → H0(X,Li−1|Z)) = Ker(Vi−1
ϕi−1

−→ Vi).
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2 Abel maps and limit linear series: An overview

Thus, by chasing in diagrams again,

0 // Vi //

����

Vi−1 //

����

H0(X,Li−1|Z)

Vi
ϕi−1

//
� _

��

Vi−1� _

��

H0(X,Li) // H0(X,Li−1) // H0(X,Li−1|Z)

we conclude that Im(ϕi−1) = Ker(ϕi−1), which is the desired conclusion.

Finally, one of the key properties of exact limit linear series is the following.

Lemma 2.18 ([37], Lemma A.12). If (L, V0, . . . , Vd) is an exact LLS on X, then there exist

integers 0 ≤ i0 ≤ i1 ≤ · · · ≤ ir ≤ d and sections s0, . . . , sr with sj ∈ Vij such that for each

i = 0, . . . , d, the sj with ij = i form a basis of Vi/V
Y,0
i ⊕ V Z,0

i and the iterated images of all the

sj form a basis for Vi.

In conclusion, we may assert that the exact points are the natural candidates to generalize in

Ossermans moduli space of lls the refined lls a la Eisenbud and Harris. In fact, on one hand every

smoothing of a linear series along regular smoothing correspond to an exact point in Gr,Oss
d (X)

and, on the other hand the lemma 2.18 yields that all relevant information of the ramification

values on the node P ∈ X over the exact points, are completly determined for certain degrees.

More explicitly, a refined lls in Osserman’s space, which by definition is isomorphic to the refined

lls in Eisenbud–Harris space by ρ0 at the Theorem 2.13, is determined for “extremal degree”

vector subspaces V0 and Vd. Thus, the lemma 2.18 asserts that for each exact lls there exist

a “collection of degrees” such that the vector subspaces of sections {Vij} determine completly

the rest of sections in the lls. In addition, since the refined points are included properly in the

set of exact points, we have a structural difference between the compactifications Gr,Oss
d (X) and

Gr,EHd (X) (see, for instance Example 3.1 in the chapter 3).

We emphasize, as it follows from 2.13 and 2.15, there exist points in Gr,Oss
d (X) that can not

be smoothed. In other words, Osserman space of limit linear series does not resolve the question

put by Eisenbud and Harris about smoothing linear series in [12].

2.2 Abel Maps and their relation to limit linear series.

Concerning the classical theory of linear series on smooth curves, there are two relevant concepts,

which are intimately related to the fibers of the Abel(-Jacobi) map: complete linear series and

families of effective divisors. Specifically, given a linear series g := (L, V ), with degree d and rank

r+ 1 on the smooth curve X, we may associate to each s ∈ V \{0} its zero divisor on X, div(s).

This defines an effective divisor on X of degree d, equivalently, a point of the symmetric product
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2 Abel maps and limit linear series: An overview

X(d). Since s ∈ V \ {0} is uniquely determined by div(s) up to scaling, we have that the family

of effective divisors associated to g forms a r-dimensional projective subspace of X(d). Actually,

the inclusion P(V ) ↪→ X(d) factors through P(H0(X,L)), the projective space associated to the

complete linear series on X. We can view the space P(H0(X,L)) as a fiber of the d Abel map

of X. Explicitly, A−1d (L(−dp)) = P(H0(X,L)), where

Ad : X(d) −→ JX∑d
i=1 qi 7→ [OX(

∑d
i=1 qi − dp)],

is the degree d Abel map of X, where JX is the Jacobian of X, parametrizing line bundles of

degree 0 on X, and p ∈ X is any base point. For each g we denote the image at the inclusion

P(V ) ↪→ X(d) by P(g).

The approach above with respect to Ad can be viewed more technically. For this, consider

the Hilbert polynomial p(t) :=
(
r+t
r

)
and the relative ample divisor H := p + X(d−1) ⊂ X(d),

parametrizing families of effective divisors whose support contains the point p. Thus, we obtain

a projective scheme, called the relative Hilbert scheme of the map Ad:

Hilb
(r+tr ),H
Ad

:=
{
Y ⊂ A−1d (L)/PY (t) =

(
r + t

r

)}
,

which parametrizes the r−dimensional projective subspaces of the fibers of the Abel map Ad.

So, the assignment g 7→ P(g) can be translated to the map:

Φ : Grd(X) −→ Hilb
(r+tr ),H
Ad

g 7→ P(g).

The Abel Theorem arising from the study by Abel of sums of integrals along nonrational curves,

can now be interpreted as

Theorem 2.19 (Abel. [19], Chapter 9). The map Φ is an isomorphism.

In particular, the assignment g 7→ P(g) behaves well in families. Moreover, if we have a family

of linear series on a family of smooth curves, we obtain a flat family of closed subschemes of the

fibers of the Abel map Ad.

What about this relation on singular curves? As it was mentioned before, our study focuses on

curves of compact type X, with two smooth components Y and Z meeting at the disconnecting

node p. On one hand, we have seen Osserman’s construction of Gr,Oss
d (X), although there is no

evident concept of complete limit linear series nor of families of effective divisors associated to

a limit linear series. On the other hand, in ([4]) Coelho and Pacini construct the Abel maps

Ad : X(d) −→ Picd(X)∑d
i=1 qi 7→ [OX(

∑d
i=1 qi)],
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where Picd(X) is the Picard scheme of lines bundles over X of bi-degree (d1, d2) such that

d1 + d2 = d. However, the fibers of Ad are not well behaved. For instance, they are in general

not even equidimensional. So fibers of the Abel map Ad do not constitute a flat family, not

even for d >> 0, and cannot be seen as flat limits of fibers of Abel maps of the smooth curves

degenerating to X.

2.2.1 The Esteves–Osserman results

Esteves and Osserman obtain in ([18]), an important result on the relationship between limit

linear series and fibers of Abel maps in the last context. Before going into details, we make some

general remarks about their construction.

First, for their purposes, they consider the Abel map:

Ad : X(d) −→ Picd(X)/ ∼

where Picd(X)/ ∼ parametrizes all line bundles of total degree d up to twisting up and down by

p. Precisely, two lines bundles L1 and L2 on X are said to be equivalent if there exists an integer

j such that L1|Y ∼= L2|Y (−jp) and L1|Z ∼= L2|Z(jp). Recall that Picd(X) ∼= Picd−i(Y )×Pici(Z)

for any integer i. Thus, the map Ad is given as follows: If D = DY +DZ is an effective divisor of

degree d on X, where DY and DZ are effective divisors supported on Y and Z respectively, then

Ad(D) is the class of the line bundle whose restrictions to Y and Z are, respectively, OY (DY )

and OZ(DZ). Observe that the only ambiguity is if DY or DZ contains the node P , resulting

different decompositions of D. But, this is exactly the meaning of the twist. So, Ad(D) does

not depend on how D is decomposed.

Second, observe that if (L, V ) := ((LY , VY ), (LZ , VZ)) is a lls a la Eisenbud–Harris, it is

not immediate how to associate to a section in some vector space V ′s an effective divisor on

X, or better, a subscheme of X(d). A reasonable attempt is as follows: For each i, and each

sY ∈ VY and sZ ∈ VZ , vanishing to order at least i and d− i at p, respectively, we can associate

div(sY )− ip+ div(sZ)− (d− i)p. However, the subscheme of X(d) parametrizing these divisors

is not well behaved. Precisely, if (L, V ) is a lls refined, i.e., we can find basis of VY and VZ in

correspondence to each other such that corresponding to sY and sZ vanish to order exactly i

and d− i at p, respectively, the behavior will be good. Otherwise, in the crude case, we may get

non-equidimensional subschemes.

Now, Esteves-Osserman approach is to associate to a lls g := (L, V0, . . . , Vd) on X a subscheme

of the fiber A−1d (L), which is defined as follows:

P(g) := {div(s|Y ) + div(s|Z)| s ∈ Vi \ V Y,0
i ∪ V Z,0

i , i = 0, . . . , d}.

(Recall that for any Vi we have that the two short exact sequences (2.5), which define V Y,0
i

and V Z,0
i ). They prove that the P(g) are well behaved when g is a exact point of Gr,Oss

d (X).
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Specifically,

Theorem 2.20 ([18], Theorem 4.3). If g = (L, V0, . . . , Vd) is an exact limit linear series on X

of degree d and rank r, then P(g) is reduced, connected and Cohen–Macaulay of pure dimension

r, has bivariate Hilbert polynomial P (s, t) =
(
r+s+t
r

)
and is a flat degeneration of Pr.

They also show that P(g) is a flat limit when g is a degeneration. More precisely, recall that

given a regular smoothing X/B of X, and linear series on the generic fiber, it is possible to

construct an exact lls g = (L, V0, . . . , Vd), which is the limit of the linear series on the generic

fiber.

Theorem 2.21 ([18], Theorem 5.2). Let X/B be a regular smoothing of X and (Lη, Vη) a linear

series of rank r and degree d on the generic fiber. Let g be the limit linear series that is limit

of (Lη, Vη). Then P(Vη), viewed as a subscheme of the fiber of the relative symmetric product

Sd(X/B) over η, has closure intersecting Sd(X) in P(g).
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space

The aim of this section is to bring together two constructions as an attempt to understand limit

linear series on nodal curves with two smooth components meeting at a unique node as limits of

linear series on smooth curves along families of curves whose total space is not regular. The first

of these constructions is Osserman’s space of limit linear series. The second is the “twisting”

used by Cumino, Esteves and Gatto as an important tool for studying degenerations of linear

series on families whose total space is not regular.

Our study is motivated by the relationship between limit linear series and Abel fibers. More

precisely, we generalize the (set-theoretic) assignment g 7→ P(g) found by Esteves and Osserman,

from exact limit linear series g to equidimensional, Cohen–Macaulay subschemes P(g) of fibers

of Abel maps which are flat degenerations of Pr.
In the first subsection we review certain standard facts on smoothings and twists. In the

second subsection, we introduce the notion of level-δ limit linear series and proceed with the

construction of a projective scheme parametrizing level-δ limit linear series. Everything, as in

Osserman’s works, will be done for a nodal curve with two smooth components meeting at a

unique node.

3.1 Smoothings and Twists

Let X be a nodal curve with two irreducible smooth components Y and Z intersecting (trans-

versally) at a single point P . A smoothing of X is a flat, projective map πδ : X → B to

B := Spec(C[[t]]) with smooth generic fiber Xη, and special fiber X0 isomorphic to X. Notice

that Xη is defined over the field of Laurent series C((t)) and is not only smooth, but also geo-

metrically connected, by semicontinuity. We will identify X0 with X.

The total space X is regular except possibly at the node P . However, since the general fiber

is smooth, there are a positive integer δ and a C[[t]]−algebra isomorphism (see, [16] pp. 92–93):

ÔX ,P ∼=
C[[t, y, z]]

(yz − tδ)
. (3.1)

The integer δ is called the singularity degree of πδ at P . (Also, we say that the singularity of X
at P is of type Aδ−1.) It will profoundly affect our constructions, for which reason we decided to

make it stand out as an index of the map. We say that πδ is a regular smoothing if its singularity
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type at P is 1, in other words, if X is regular.

In general, the components Y , Z are Weil divisors, but not necessarily Cartier divisors on

X . However, as will be shown below, there exist natural effective Cartier divisors on X , whose

associated 1-cycles are δ[Y ] and δ[Z], respectively.

Lemma 3.1. Let πδ : X → B be a smoothing of X. The schematic closure of the effective

Cartier divisor on X − P with local equations 1 on X − Y (resp. X − Z) and tδ on X − Z

(resp. X − Y ) is an effective Cartier divisor of X .

Proof 3.2. We need only show that the closure is given by a nonzero divisor at the node P .

We will deal with the first case, the second being completely analogous. Fix an isomorphism of

the form (3.1), and set A := C[[t, y, z]]/(yz − tδ). Let I ⊂ A be the ideal defining the closure

at P . Then Y is given, say, by the ideal (y, t), and thus
√
I = (y, t), i.e., the unique associated

prime of I is (y, t). On the other hand, Iz = tδAz. So, since z 6∈ (y, t), we have I = Iz ∩ A. We

claim that I = (y). Indeed, if g ∈ Iz ∩ A then there are an integer r ≥ 0 and h ∈ A such that

zrg = tδh. If r = 0 then g ∈ (tδ) ⊆ (y). Otherwise, zr−1g = yh. Moreover, since y and z form a

regular sequence in A, it follows that g ∈ (y). Conversely, y = tδ/z ∈ I.

We let δY (resp. δZ) denote the effective Cartier divisor of X whose existence is asserted by

the above lemma.

Proposition 3.3. Let πδ : X → B be a smoothing of X. Then

(a) Y (resp. Z) is a Cartier divisor of X if and only if δ = 1.

(b) (Local intersection multiplicity) δY · Z = δZ · Y = 1.

(c) OX (δY )|X ∼= OX(Y ) and OX (δZ)|X ∼= OX(Z).

Proof 3.4. The first two statements follow from the proof of Lemma 3.1. Indeed, fixing an

isomorphism of the form (3.1), we have that Y (resp. Z) is given at P by, say, (y, t) (resp. (z, t))

and δY (resp. δZ) by y (resp. z). Of course, (y, t) (resp. (z, t)) is principal if and only if δ = 1,

proving (a). Furthermore,

δY · Z = δZ · Y = dimC

(C[[t, y, z]]

(t, y, z)

)
= 1,

proving (b). As for (c), note first that OX (−δY )|Z ∼= OZ(−P ). Indeed, the natural short exact

sequence

0 −→ OX (−δY )|Z −→ OY −→ OδY ∩Z −→ 0

corresponds, by (b), to the short exact sequence:

0 −→ OX (−δY )|Z −→ OZ −→ OP −→ 0.
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From this and the Five Lemma, by the comparing the above exact sequence with the natural

exact sequence

0 −→ OZ(−P ) −→ OZ −→ OP −→ 0,

we obtain the isomorphism. Second, from the flatness of πδ and Lemma 3.1, it follows that

OX ∼= OX (X) ∼= OX (δY + δZ) ∼= OX (δY )⊗OX (δZ).

Thus OX (−δY ) ∼= OX (δZ). Since OX (−δZ)|Y ∼= OY (−P ) by analogy, we get OX (−δY )|Y ∼=
OY (P ). Thus OX (−δY )|X ∼= OX(−Y ), from which follows the first isomorphism in (c). The

second is derived analogously.

Remark 3.5. Let π : X → B be a regular smoothing of X. (There is always one; see [6].) Let

∆ : B −→ B the map given by sending t to tδ. To differentiate source from target, we will

denote the source of ∆ by Bδ. According to [16] pp. 92–93, the fibered product Xδ := X ×B Bδ
has general fiber over Bδ isomorphic to the base extension Xη × k, and special fiber isomorphic

to X. Here, as before, Xη denotes the general fiber of π, and k is a finite field extension of degree

δ of C((t)), the field of Laurent series over which Xη is defined. The projection πδ : Xδ → Bδ is

flat and proper, but Xδ fails to be regular if δ > 1; namely, Xδ fails to be regular at P . In fact,

after base change in the isomorphism

ÔX ,P ∼=
C[[t, y, z]]

(yz − t)
. (3.2)

we obtain an isomorphism as in (3.1).

Let πδ : X → B be a smoothing of X and L an invertible sheaf on X . Set L1 := L(−δZ) :=

L⊗OX (−δZ). If L has degrees k on Y and d− k on Z, then L1 is an invertible sheaf of degrees

k− 1 on Y and d− k+ 1 on Z. Indeed, it is enough to observe from Lemma 3.3 that OX (−δZ)

has degrees −1 on Y and 1 on Z. For each integer i ≥ 0, we may thus generate recursively a

sequence

Li := L(−iδZ) := Li−1 ⊗OX (−δZ)

of invertible sheaves on X , having bidegree (k − i, d − k + i) on X, i.e., degree k − i on Y and

degree d− k + i on Z.

From now on, suppose that L is an invertible sheaf on X with degree d on Y and degree 0 on

Z. From L0 := L, we define a sequence of invertible sheaves on the curve X:

Li := Li|X , where Li := L(−iδZ) for i = 0, 1 . . .

Here each Li has bidegree (d − i, i) on X. More precisely, it follows from Lemma 3.3 that

Li+1|Y = Li|Y (−P ) and Li+1|Z = Li|Z(P ) for each i = 0, 1, . . . .

Our next topic is twists. Twists were introduced by Esteves in ([15], section 3). Nevertheless,

it was only in [5], Section 3, that they were applied, by Cumino, Esteves and Gatto, to the
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study of limit linear series on families whose total space is not regular. Though the theory is

more general, for our purposes we continue considering only the case of nodal curve X with two

smooth components Y and Z meet at a unique node P .

Let πδ : X → B be a smoothing of X of singularity degree δ at P . Set I(0)Z := OX , and for

each integer i > 0, define the i-th twist by Z of OX by:

I(i)Z := ker

(
I(i−1)Z −→

I(i−1)Z |Z
torsion

)
.

Clearly, I(1)Z is simply the sheaf of ideals IZ|X of Z in X . And, in general, I(i)Z is a sheaf of ideals

which is locally principal away from P . More precisely, I(i)Z = IiZ|X on X − P , by [5], p. 13.

In particular, for each i, the sheaf I(i)Z has relative rank 1 and is relatively torsion-free over B.

Furthermore, we have by [5], Prop. 3.1, p. 13, the short exact sequence

0 −→
I(i+1)
Z |Y

torsion
−→ I(i)Z |X −→

I(i)Z |Z
torsion

−→ 0, (3.3)

and the isomorphisms

I(i+1)
Z |Y

torsion
∼= OY (−(q + 1)P ) and

I(i)Z |Z
torsion

∼= OZ(qP ) (3.4)

where q is the quotient of the Euclidean division of i by δ.

Besides, by [5], Section 3.1, pp. 13–15, we have that I(iδ)Z is invertible for each i. Explicitly,

I(iδ)Z
∼= OX (−i(δZ)) for each i. Otherwise,

Lemma 3.6. I(iδ+j)Z |X is not simple for any i and any j with 1 ≤ j ≤ δ − 1,

Proof 3.7. By [5], Subsection 3.1, we have the filtration

I((i+1)δ)
Z ⊂ I(iδ+δ−1)Z ⊂ · · · ⊂ I(iδ+1)

Z ⊂ I(iδ)Z

for each i and, in addition, under the isomorphism (3.1), using that, say, ÎZ|X ,P = (z, t), we

have that Î(iδ+j)Z,P = (zi, zi−1tj) for each i ≥ 0 and j = 1, . . . , δ − 1. In particular, I(iδ+j)Z |X
is not invertible at the node P . Thus, since I(iδ+j)Z |X is torsion-free and has rank 1, it must

decompose, i.e.,

I(iδ+j)Z |X ∼=
(
I(iδ+j)Z |X

)
Y
⊕
(
I(iδ+j)Z |X

)
Z

for each i and j = 1, . . . , δ − 1, where
(
I(iδ+j)Z |X

)
Y

:=

(
I(iδ+j)Z |X

)
|Y

torsion .

Thus, I(iδ+j)Z |X is not simple.

Clearly, we may apply the construction and the reasoning above with Z replaced by Y .

We thus obtain from a given invertible sheaf L on X with bidegree (d, 0) on X, the following

data on the curve X:
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• A collection of d + 1 invertible sheaves on X, namely, Liδ := L(−i(δZ))|X with bidegree

(d− i, i) for i = 0, . . . , d.

• A collection of d(δ − 1) rank-1, torsion-free sheaves on X, namely, Liδ+j := L ⊗ Iiδ+jZ |X
isomorphic to L(i+1)δ|Y ⊕ Liδ|Z for i = 0, . . . , d− 1 and j = 1, . . . , δ − 1.

Using the exact sequences (3.3) and the isomorphisms (3.4), we have short exact sequences

linking the above sheaves as follows:

0 // Liδ+1|Y
(torsion)

// Liδ // Liδ|Z // 0

0 // Liδ+2|Y
(torsion)

// Liδ+1
// Liδ+1|Z
(torsion)

// 0

...
...

...

(3.5)

...
...

...

0 // L(i+1)δ|Y // Liδ+δ−1 // Liδ+δ−1|Z
(torsion)

// 0

0 //
L(i+1)δ+1|Y
(torsion)

// L(i+1)δ
// L(i+1)δ|Z // 0

and isomorphisms

Liδ+j |Y
(torsion)

∼= Liδ|Y (−P ) ∼= L|Y (−(i+ 1)p) ∼= L(i+1)δ|Y for j = 1, . . . , δ,

Liδ+j ∼= L(i+1)δ|Y ⊕ Liδ|Z for j = 1, . . . , δ − 1,

Liδ+j |Z
(torsion)

∼= Liδ|Z ∼= L|Z(iP ) for j = 0, . . . , δ − 1,

(3.6)

where L := L|X .

Now, having in mind the isomorphisms above, we can compose maps coming from distinct

exact sequences to get 2dδ natural maps :

ϕiδ+j : Liδ+j −→ Liδ+j+1 and ϕiδ+j : Liδ+j+1 −→ Liδ+j

for each i = 0, . . . , d − 1 and j = 0, . . . , δ − 1. These maps are described below, where the

diagrams commute:
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• Maps in the “first extreme:”

Liδ+1

Liδ|Z ⊕ L(i+1)δ|Y
ϕiδ

��

(0,1)

((

0 Liδ|Zoo

(1,0)
77

Liδ

ϕiδ

OO

oo L(i+1)δ|Yoo 0,oo

(3.7)

where (1, 0) and (0, 1) represent the natural inclusion and the natural projection, respec-

tively;

• Maps in the “middle,” for j = 1, . . . , δ − 2:

Liδ|Z ⊕ L(i+1)δ|Y ∼= Liδ+j

ϕiδ+j=

 1 0

0 0


��

Liδ|Z ⊕ L(i+1)δ|Y ∼= Liδ+j+1.

 0 0

0 1

=ϕiδ+j OO
(3.8)

• Finally, maps in the “second extreme:”

0 // Liδ|Z // L(i+1)δ

ϕ(i+1)δ−1

��

// L(i+1)δ|Y

(0,1)
vv

// 0

Liδ|Z ⊕ L(i+1)δ|Y

ϕ(i+1)δ−1

OO

(1,0)

gg

Liδ+δ−1.

(3.9)

Notice that ϕkϕk = ϕkϕ
k = 0 for each k = 0, . . . , dδ − 1.

3.2 Level-δ limit linear series and their moduli space

Recall that X is a nodal curve with two smooth irreducible components Y and Z meeting

at a unique node P . Let d be a positive integer. Let Picd(X) denote the Picard scheme of

X, parametrizing invertible sheaves of (total) degree d on X. We know that it decomposes

as the disjoint union of the Picard schemes Picd−i,i(X) parameterizing invertible sheaves of

bidegree (d− i, i) on X. There exist isomorphisms Picd−i,i(X) ∼= Picd−i(Y )× Pici(Z) given by

restriction. In other words, any invertible sheaf L on X is determined by its restrictions L|Y
and L|Z . Furthermore, L sits on short exact sequences like (2.3) and (2.4).

Let d and δ be positive integers and L an invertible sheaf on X. Define the invertible sheaves

Liδ on X for i = 0, . . . , d, whose restrictions to Y and Z are L|Y (−iP ) and L|Z(iP ). In
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particular, since L(i+1)δ|Y = Liδ|Y (−P ) and Liδ|Z = L(i+1)δ|Z(−P ), we have the short exact

sequences below for each i = 0, . . . , d− 1:

0 // L(i+1)δ|Y // Liδ // Liδ|Z // 0,

0 // Liδ|Z // L(i+1)δ
// L(i+1)δ|Y // 0.

(3.10)

For our purposes, and inspired by the constructions in the last subsection, we define as well

the rank-1, torsion-free sheaves on X, for each i = 0, . . . , d − 1 and j = 1, . . . , δ − 1, given by

Liδ+j := Liδ|Z ⊕ L(i+1)δ|Y , whose connection to the sequences in (3.10) is established by the

maps

0 // L(i+1)δ|Y // Liδ

ϕiδ

��

// Liδ|Z // 0

0 L(i+1)δ|Yoo Liδ+1

ϕiδ

OO

(0,1)
oo Liδ|Z

(1,0)
oo 0,oo

(3.11)

Liδ+j = Liδ|Z ⊕ L(i+1)δ|Y

ϕiδ+j=

 1 0

0 0


��

Liδ+j+1 = Liδ|Z ⊕ L(i+1)δ|Y ,

 0 0

0 1

=ϕiδ+j OO (3.12)

0 Liδ|Zoo Liδ+δ−1
OO

ϕ(i+1)δ−1

(1,0)
oo L(i+1)δ|Y

(0,1)
oo 0oo

0 // Liδ|Z // L(i+1)δ

��

ϕ(i+1)δ−1

// L(i+1)δ|Y // 0.

(3.13)

It can be noted again that ϕkϕk = ϕkϕ
k = 0 for each k = 0, . . . , dδ − 1.

We introduce now the notion of level-δ limit linear series on the curve X. By abuse of notation,

we denote by the same ϕk and ϕk the induced linear maps on global sections of the corresponding

invertible sheaves on X.

Definition 3.8. Fix integers d > 0, δ > 0 and r ≥ 0. A level-δ limit linear series on X of

degree d and dimension r is a (dδ + 2)-tuple (L, V0, . . . , Vk, . . . , Vdδ) of data on X, where L is

an invertible sheaf of degree d on Y and degree 0 on Z, and where Vk ⊆ Γ(X,Lk) is a vector

subspace of dimension r+ 1 for each k = 0, . . . , dδ, such that ϕk(Vk) ⊆ Vk+1 and ϕk(Vk+1) ⊆ Vk
for each k = 0, . . . , dδ − 1.

In the same manner as in Osserman’s case, we denote by V Z,0
k (resp. V Y,0

k ) the subspace

of Vk of sections that vanish on Z (resp. on Y ). Analogously, we define Vk|Z (resp. Vk|Y ) as

the subspace of restrictions to Z (resp. Y ) of the sections of Vk. Notice that V Z,0
k = Ker(ϕk)

and Vk|Z = Im(ϕk) for k = 0, . . . , dδ − 1, while V Y,0
k = Ker(ϕk−1) and Vk|Y = Im(ϕk−1)

for k = 1, . . . , dδ. (By degree considerations, V Y,0
0 = 0 and V Z,0

dδ = 0, while V0|Y = V0 and
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Vdδ|Z = Vdδ.) Thus, we have exact sequences,

0 −→ V Y,0
k −→ Vk −→ Vk|Y −→ 0,

0 −→ V Z,0
k −→ Vk −→ Vk|Z −→ 0

for each k = 0, . . . , dδ, and, since ϕkϕk = ϕkϕ
k = 0 for each k = 0, . . . , dδ − 1, inclusions

ϕk(Vk) = Vk|Z ⊆ V Y,0
k+1 ⊆ Vk+1, and ϕk(Vk+1) = Vk+1|Y ⊆ V Z,0

k ⊆ Vk

for each k = 0, . . . , dδ − 1.

In particular, Im(ϕk) ∩ Ker(ϕk+1) = 0 and Im(ϕk+1) ∩ Ker(ϕk) = 0 for k = 0, . . . , dδ − 2,

which implies that we have inclusions:

V0|Z ⊆ V1|Z ⊆ · · · ⊆ Vdδ−1|Z ⊆ Vdδ|Z ,

V0|Y ⊇ V1|Y ⊇ · · · ⊇ Vdδ−1|Y ⊇ Vdδ|Y .
(3.14)

Set J := Pic(d,0)(X). From now on, denote by q1 : X × J → X and q2 : X × J → J the

projections. The following proposition claims the existence of a projective scheme parametrizing

level-δ limit linear series on the curve X.

Proposition 3.9. Fix integers d > 0, r ≥ 0 and δ > 0. Let X be a curve with two smooth

irreducible components Y and Z meeting transversally at a point P . Let g be its (arithmetic)

genus, and L an invertible sheaf on X of degrees d on Y and 0 on Z. Then there exists a

projective scheme

Grd,δ(X) := {(L, V0, . . . , Vdδ) |ϕk(Vk) ⊆ Vk+1 and ϕk(Vk+1) ⊆ Vk for k = 0, . . . , dδ − 1}

parametrizing level-δ limit linear series of degree d and dimension r on X. Furthermore, there

exists a proper and surjective map ρδ : Grd,δ(X) −→ Grd,1(X), where Grd,1(X) is identified with

Osserman’s scheme of limit linear series Gr,Oss
d (X).

Proof 3.10. The proof will be divided in 3 steps. The first two, the construction of Grd,δ(X),

follow the argument given to [37], Thm. 5.3, p. 1178.

First step: Construction of the linked Grassmannian LG.

Let’s remind that, the linked Grassmannian is a closed subscheme of a product of Grass-

mannians, whence a projective variety, parametrizing collections of subbundles of fixed vector

bundles, linked together via maps between the fixed vector bundles; see ( [37], Appendix). In

our case, the Grassmannians are dδ + 1 relative Grassmannians over J .

More precisely, let L be a universal invertible sheaf on X × J . For each k = 0, . . . , dδ, let

Lk := L ⊗ q∗1(OX)k,
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where the (OX)k are the sheaves obtained by applying the construction on sheaves described

above. In particular, there are maps as in (3.11), (3.12) and (3.13), with L replaced by OX ,

that induce maps

ϕk : Lk −→ Lk+1 and ϕk : Lk+1 −→ Lk

for k = 0, . . . , dδ − 1 such that

1. ϕkϕk = ϕkϕ
k = 0 for k = 0, . . . , dδ − 1,

2. Im(ϕk) ∩Ker(ϕk+1) = 0 for k = 0, . . . , dδ − 2,

3. Im(ϕk+1) ∩Ker(ϕk) = 0 for k = 0, . . . , dδ − 2.

Let D be a sufficently ample divisor of X supported away from P , and put D′ := q∗1(D). It is

enough to choose D ample enough that h1(X,Lk|X×Q(D) = 0 for each k = 0, . . . , dδ and each

Q ∈ J . Then Ek := q2∗(Lk(D′)) is a locally free sheaf for each k = 0, . . . , dδ. Define

Gk := GrassJ(r + 1, Ek)

for each k = 0, . . . , dδ. Of course, the ϕk induce maps between the Ek in a natural way; these

will also be denoted by the same ϕk. These satisfy the same properties listed above.

We define LG as the relative linked Grassmannian of subbundles of rank r + 1 of the dδ + 1

locally free sheaves Ek, linked by the ϕk, over J . Thus LG is a closed subscheme of G0×· · ·×Gdδ.
Second step: Construction of Grd,δ(X).

For each k = 0, . . . , dδ, let pk : LG → J be the composition of the projection LG → Gk with

the structure map p′k : Gk → J . Let F ′k ⊆ (p′k)
∗(Ek) be the universal rank (r+ 1)-subbundle and

Fk ⊆ (pk)
∗(Ek) its pullback to LG. Set Hk := q2∗(Lk(D′)|D′); it is a locally free sheaf of rank

deg(D), and there is a natural map vk,D : Ek → Hk. We define Grd,δ(X) as the maximum closed

subscheme of LG where all the compositions

Fk −→ (pk)
∗(Ek) −→ (pk)

∗(Hk).

It follows that Fk ⊆ q̃2∗(r
∗
k(Lk), where q̃2 : X × Grd,δ(X) → Grd,δ(X) is the projection and

rk = (idX , pk|Grd,δ(X)) : X ×Grd,δ(X)→ X × J .

Part three: The map ρδ.

Let’s recall that Osserman’s linking maps in (2.4) are defined in one direction as restriction

to Z composed with extension by 0 over Y , and in the reverse direction as restriction to Y

composed with extension by 0 over Z. Symbolically, in the index ascending direction, we have

the composition ιY ◦ |Z , and in the descending direction, the composition ιZ ◦ |Y . The same

notation can be employed to describe our linking maps ϕk above:

ϕiδ+1 = (1, 0) ◦ |Z ; ϕiδ+2 =

[
1 0

0 0

]
; · · · ;ϕ(i+1)δ−2 =

[
1 0

0 0

]
; ϕ(i+1)δ−1 = ιY ◦ (1, 0).
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ϕiδ+1 = ιZ ◦ (0, 1); ϕiδ+2 =

[
0 0

0 1

]
; · · · ;ϕ(i+1)δ−2 =

[
0 0

0 1

]
; ϕ(i+1)δ−1 = (0, 1) ◦ |Y .

Thus, it is clear that if we define ϕ̂i : Li → Li+1 and ϕ̂i : Li+1 → Li as the compositions

ϕ(i+1)δ−1◦· · ·◦ϕiδ+1 and ϕiδ+1◦· · ·◦ϕ(i+1)δ−1, respectively, then we have the linking maps used by

Osserman. Thus, we have defined a map ρ : LG→ LGOss between our linked Grassmannian LG

and Osserman’s LGOss; this one appearing implicitly in the proof given in [37]. The restriction

to Grd,δ(X) defines a proper map whose image is contained in Gr,Oss
d (X). Set-theoretically, we

have a forgetful map:

ρδ : Grd,δ(X) −→ Gr,Oss
d (X)

(L, V0, . . . , Viδ+j , . . . , Vdδ) 7→ (L, V0, . . . , Viδ, . . . , Vdδ).

The remaining claim to be proved is that ρδ is surjective. For this we need the following lemma,

which is an adapted version to our situation of Lemma A.7 in [37], p. 1196:

Lemma 3.11. Given a level-δ limit linear series (L, V0, . . . , Vk, . . . , Vdδ), for each k = 0, . . . , dδ

there is a direct sum decomposition

Vk = ϕk−1(Vk−1)⊕ C ′k ⊕ V
Z,0
k ⊕ C ′′k , (3.15)

where V Y,0
k = ϕk−1(Vk−1)⊕ C ′k.

The proof of the above lemma is elementary and can be found in [37].

So, let (L, V0, . . . , Vk, . . . , Vdδ) be a level-δ limit linear series, and consider the decompositions

of the Vk given by Lemma 3.11. Notice that the lemma describes a decomposition of Vk only

with respect to ϕk. Analogously, using the maps ϕk we obtain a second decomposition of Vk

that can be described by

Vk = ϕk(Vk+1)⊕D′k ⊕ V
Y,0
k ⊕D′′k (3.16)

where V Z,0
k = ϕk(Vk+1)⊕D′k.

A useful formula compares the dimensions of the C ′k with those of the D′k:

dimC ′k+1 = dimV Y,0
k+1 − rkϕk

= dim Kerϕk − rkϕk

=
(

dim Kerϕk + rkϕk

)
−
(

dim Kerϕk + rkϕk
)

+
(

dim Kerϕk − rkϕk

)
=
(

dim Kerϕk − rkϕk

)
= dimV Z,0

k − rkϕk

= dimD′k.

(3.17)

On the other hand, notice that the subspaces C ′′k of Lemma 3.11 satisfy C ′′k ∩(V Z,0
k ⊕V Y,0

k ) = 0.

Thus ϕk gives an isomorphism between C ′′k and C ′′k,Z := ϕk(C ′′k ) ⊆ Vk+1, and ϕk gives an
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isomorphism between C ′′k+1 and C ′′k+1,Y := ϕk(C
′′
k+1). Likewise for the D′′k . In this sense, we call

the sections of the spaces C ′′k (resp. D′′k) linked.

Now, to the proof of the surjectivity of ρδ. Let g = (L, V0, . . . , Vd) ∈ Gr,Oss
d (X). Let

ϕi : Li+1 → Li and ϕi : Li → Li+1 denote the linking maps. We need to show that there exists g̃ ∈
Grd,δ(X) such that ρδ(g̃) = g. To avoid confusion, we will denote g̃ := (L, V0, . . . , Vi+j/δ, . . . , Vd),

for spaces Vi+j/δ to be constructed below, and let ϕ̃k : Lk+1 → Lk and ϕ̃k : Lk → Lk+1 denote

the linking maps, for each k ∈ (1/δ)Z with 0 ≤ k < d. Notice, as before, that

ϕi =ϕ̃i ◦ ϕ̃i+1/δ ◦ · · · ◦ ϕ̃i+1−1/δ,

ϕi =ϕ̃i+1−1/δ ◦ · · · ◦ ϕ̃i+1/δ ◦ ϕ̃i.
(3.18)

Consider decompositions of the Vi, for i = 0, . . . , d as in (3.15) and (3.16). From (3.17)

we know that dimC ′i+1 = dimD′i for each i = 0, . . . , d − 1. Thus, it suffices to let g̃ :=

(L, V0, . . . , Vi+j/δ, . . . , Vd), where

Vi+j/δ :=
(
V Y,0
i ⊕D′′i,Z ⊕Di

)
⊕
(
Ci+1 ⊕ C ′′i+1,Y ⊕ V

Z,0
i+1

)
⊆ H0(Z,Li|Z)⊕H0(Y,Li+1|Y )

for each i = 0, . . . , d−1 and j = 1, . . . , δ−1. Here we choose subspaces Di ⊆ C ′i+1 and Ci+1 ⊆ D′i
such that

dimDi + dimCi+1 = dimC ′i+1 = dimD′i.

Since D′i ⊇ Ci+1, we have

ϕ̃i(Vi) = V Y,0
i ⊕D′′i,Z ⊆ V

Y,0
i ⊕D′′i,Z ⊕Di = Ker ϕ̃i,

Ker ϕ̃i = Kerϕi = V Z,0
i = D′i ⊕ ϕi(Vi+1) ⊇ Ci+1 ⊕ C ′′i+1,Y ⊕ V

Z,0
i+1 = ϕ̃i(Vi+1/δ).

(3.19)

Analogously, since C ′i+1 ⊇ Di, we have

ϕ̃i+1−1/δ(Vi+1) = C ′′i+1,Y ⊕ V
Z,0
i+1 ⊆ Ci+1 ⊕ C ′′i+1,Y ⊕ V

Z,0
i+1 = Ker ϕ̃i+1−1/δ,

Ker ϕ̃i+1−1/δ = Kerϕi = V Y,0
i+1 = ϕi(Vi)⊕ C ′i+1 ⊇ V

Y,0
i ⊕D′′i,Z ⊕Di = ϕ̃i+1−1/δ(Vi+1).

(3.20)

Finally, all the Vi+j/δ are equal, for fixed i and j = 1, . . . , δ − 1. Thus, it is easy to check that

for each i = 0, . . . , d− 1 and each j = 1, . . . , δ − 2,

ϕ̃i+j/δ(Vi+j/δ) = Ker ϕ̃i+j/δ and ϕ̃i+j/δ(Vi+(j+1)/δ) = Ker ϕ̃i+j/δ.

In conclusion, g̃ ∈ Grd,δ(X) and ρδ(g̃) = g, which completes the proof of the proposition.

Our next goal is to study the behavior of the map ρδ over the open set of Osserman’s exact

limit linear series. As a matter of fact, we have a similar notion for level-δ limit linear series:

Definition 3.12. A level-δ limit linear series g = (L, V0, . . . , Vk, . . . , Vdδ) with linking maps ϕk

and ϕk is called exact if any (and thus all) of the following equivalent conditions holds for each
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k = 0, . . . , dδ − 1:

1. Vk|Z = V Y,0
k+1 and Vk+1|Y = V Z,0

k .

2. ϕk(Vk) = Kerϕk|Vk+1
and ϕk(Vk+1) = Kerϕk|Vk

3. The induced complex

Vk
ϕk−−−−→ Vk+1

ϕk−−−−→ Vk
ϕk−−−−→ Vk+1

is an exact sequence.

Define the subspace of exact level-δ limit linear series of Grd,δ(X):

Gr,exactd,δ (X) :=
{

(L, V0, . . . , Vdδ) |Vk|Z = V Y,0
k+1 and Vk+1|Y = V Z,0

k for k = 0, . . . , dδ − 1
}
.

Since exactness is an open condition, Gr,exactd,δ (X) is an open subspace of Grd,δ(X). In fact, it

suffices to observe that rkϕk + rkϕk ≤ r + 1 for each k = 0, . . . , dδ − 1, with equality for every

k = 0, . . . , dδ − 1 if and only if the limit linear series is exact. Thus, exactness is an open

condition by semicontinuity (see [28], Chapter 3, §12, p. 281).

We continue with some elementary properties of exact level-δ limit linear series. By Lemma

3.11, if g = (L, V0, . . . , Vk, . . . , Vdδ) is a level-δ limit linear series, then there exists V L
k ⊂ Vk

(possibly V L
k = 0) such that Vk = V L

k ⊕ V
Y,0
k ⊕ V Z,0

k for each k = 0, . . . , dδ. The subspaces of

sections V L
k are called linked. Thus, we obtain sequences of nonnegative integers

{Pk} := {dim(V Y,0
k )}, {Qk} := {dim(V Z,0

k )}, {Mk} := {dim(V L
k )}

satisfying:

Pk ≤ Pk +Mk ≤ Pk+1;

Qk+1 ≤ Qk+1 +Mk+1 ≤ Qk;

Pk +Qk +Mk = r + 1

(3.21)

for each k = 0, . . . , dδ.

Furthermore,

Lemma 3.13. Let g := (L, V0, . . . , Vk, . . . , Vdδ) ∈ Grd,δ(X) be a level-δ limit linear series. Then

g is exact if and only if any (and thus all) of the following equivalent conditions holds:

1. Pk+1 = Pk +Mk ∀k.

2. Qk−1 = Qk +Mk ∀k.

3.
dδ∑
k=0

Mk = r + 1.
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3 The level-δ limit linear series and its moduli space

Proof 3.14. First we show the equivalence between (1), (2) and (3).

(1)⇔ (2): It is an easy consequence of the equalities:

Pk +Qk +Mk = r + 1 ∀k.

(1)⇔ (3): Clearly,

dδ∑
k=0

Mk = Mdδ +

dδ−1∑
k=0

Mk ≤Mdδ +

dδ−1∑
k=0

(Pk+1 − Pk) = Mdδ + Pdδ − P0.

Now, since the restriction maps V0 → V0|Y and Vdδ → Vdδ|Z are isomorphisms, it follows that

P0 = Qdδ = 0 and thus Q0 +M0 = r + 1 = Pdδ +Mdδ. We obtain an inequality

dδ∑
k=0

Mk ≤ r + 1,

which is strict if and only if Pk+1 − Pk > Mk for some k.

Now, we will show that exactness is equivalent to Pk+1 = Pk +Mk ∀k. g is exact if and only

if rk(ϕk) + rk(ϕk) = r + 1 ∀k, equivalently, if and only if Pk+1 + Qk = r + 1 ∀k. However,

from (3.21) we have Pk + Qk + Mk = r + 1 ∀k. Thus, Pk+1 + Qk = r + 1 ∀k if and only if

Pk+1 = Pk +Mk ∀k

To each g ∈ Grd,δ(X) we assign the set

Sg := {k |Mk 6= 0} ⊆ {0, . . . , dδ}.

Clearly,
dδ∑
k=0

Mk =
∑
i∈S

Mk. Thus |S| := #S ≤ r + 1. If g is exact, also |S| ≥ 1.

Remark 3.15.

1. We would like to illustrate the conditions of linkage and exactness for the “middle” maps.

For each i = 0, . . . , d− 1 and j = 1, . . . , δ − 2, let k := iδ + j, and put A := H0(Y, Li+1|Y )

and B := H0(Z,Li|Z), and π1 := ϕk and π2 := ϕk. We may view π1 and π2 as projections,

π1 : A⊕B → A, π2 : A⊕B → B. Letting V1 := Vk ⊆ A⊕B and V2 := Vk+1 ⊆ A⊕B we

have:

a) Linkage

i. π1(V2)⊕ 0 ⊆ V1,

ii. 0⊕ π2(V1) ⊆ V2.

b) Exactness

i. π1(V2) = π1(V1 ∩ (A⊕ 0)),

ii. π2(V1) = π2(V2 ∩ (0⊕B)).
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3 The level-δ limit linear series and its moduli space

Actually, exactness is reduced to the inclusions “⊇”, once the reverse inclusions are assu-

med (linkage).

2. Lemma 3.13 implies that g ∈ Grd,δ(X) is exact if and only if for each k = 0, . . . , dδ, the

iterated images of bases of the spaces V L
` for all ` ∈ Sg form a basis of Vk.

3. For eachS ⊂ {0, . . . , dδ}, define

Gr,exactd,δ (X;S) :=

{
g ∈ Gr,exactd,δ (X) |

∑
k∈S

Mk = r + 1

}
.

By Lemma 3.13, the Gr,exactd,δ (X;S) cover Gr,exactd,δ (X). Furthermore,

Gr,exactd,δ (X;S)
⋂
Gr,exactd,δ (X;T ) = ∅ if S 6= T .

As a consequence, we have stratifications:

Gr,exactd,δ (X; `) :=
∐
|S|=`

Gr,exactd,δ (X;S) Gr,exactd,δ (X) =
∐

1≤`≤r+1

Gr,exactd,δ (X; `). (3.22)

For instance, the refined locus in Osserman’s space Gr,Oss
d (X), which is isomorphic to the

refined locus in the corresponding Eisenbud–Harris space, corresponds to Gr,exactd,1 (X; r+1),

since in this case 0 ≤Mk ≤ 1 for each k = 0, . . . , d; see [37], Def. 6.5, p. 1184 and Cor. 6.8,

p. 1189.

The next proposition gives two important properties of the map ρδ defined in Proposition 3.9.

These properties are fundamental for understanding the relation between level-δ limit linear

series and fibers of Abel maps. Roughly speaking, they say that Osserman’s exact points are

uniquely determined in any level-δ space and that, for each Osserman non-exact limit linear

series, there exists a level δ in which it becomes exact. In fact, δ = 2 is enough!

Proposition 3.16. The following properties hold:

1. ρ−1δ (Gr,exactd (X)) ⊆ Gr,exactd,δ (X) and the restricted map

ρδ : ρ−1δ (Gr,exactd (X)) −→ Gr,exactd (X)

is a bijection.

2. The restricted map ρδ : Gr,exactd,2 (X) −→ Gr,Oss
d (X) is surjective.

Proof 3.17. We prove Statement 1. Let g := (L, V0, . . . , Vd) ∈ Gr,exactd,1 (X) be an exact limit

linear series and g̃ := (L, V0, . . . , Vi+j/δ, . . . , Vd) ∈ Grd,δ(X) lifting it. Let ϕi and ϕi denote the
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3 The level-δ limit linear series and its moduli space

linking maps for g, and ϕ̃k and ϕ̃k those of g̃. Since g is exact, we must have rkϕi+rkϕi = r+1

for each i = 0, . . . , d. Now, the linkage conditions for g̃ imply that

ϕ̃i(Vi) ⊆ V Y,0
i+j/δ and ϕ̃i+1−1/δ(Vi+1) ⊆ V Z,0

i+j/δ for each i = 0, . . . , d− 1 and j = 1, . . . , δ − 1.

(3.23)

Since

rk ϕ̃i + rk ϕ̃i+1−1/δ = rkϕi + rkϕi = r + 1,

it follows that we have equalities in (3.23). In particular,

Vi+j/δ = V Y,0
i+j/δ ⊕ V

Z,0
i+j/δ = Vi|Z ⊕ Vi+1|Y

for each i = 0, . . . , d− 1 and j = 1, . . . , δ − 1, determining uniquely the lifting g̃. Furthermore,

having equalities in (3.23), and since the Vi+j/δ do not depend of the choice of j, it follows that

g̃ is exact.

As for the second statement, let now g ∈ Gr,Oss
d (X) be a non-exact limit linear series. We

would like to find g̃ := (L, V0, . . . , Vi+j/2, . . . , Vd) ∈ Grd,2(X) lifting g. As before, let ϕi and ϕi

denote the linking maps for g. If rkϕi + rkϕi = r + 1, we may simply define

Vi+1/2 := Vi|Z ⊕ Vi+1|Y

for each j = 1, . . . , δ−1. The argument used above guarantees the exactness of g̃ at k = i, i+1/2.

So, let i be such that rkϕi + rkϕi < r + 1, or equivalently, dim Kerϕi − rkϕi > 0. Bringing

back the notation used in the proof of Proposition 3.9; instead of finding just any g̃ we have to

find one that is exact. Recall (3.17):

dimD′i = dim Kerϕi − rkϕi = dimC ′i+1 = dim Kerϕk − rkϕi,

where D′i and C ′i+1 subspaces of V Z,0
i and V Y,0

i+1 , respectively, such that

V Z,0
i = D′i ⊕ ϕi(Vi+1) and V Y,0

i+1 = ϕi(Vi)⊕ C ′i+1. (3.24)

Define

Vi+1/2 := ϕi(Vi)⊕DCi,i+1 ⊕ ϕi(Vi+1), (3.25)

where DCi,i+1 is the subspace of D′i⊕C ′i+1 obtained as the graph of any isomorphism D′i
∼= C ′i+1.

In particular, dimDCi,i+1 = dimD′i = dimC ′i+1. Clearly, by definition, g̃ is a limit linear series.

It follows from (3.24) that g̃ is exact at k = i, i+ 1/2.

Remark 3.18.

1. It is clear that the g̃ given in the proof of Proposition 3.16 is neither unique nor canonical,

as it depends on the choice of an isomorphism D′i
∼= C ′i+1.
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3 The level-δ limit linear series and its moduli space

2. Given g ∈ Grd(X) it is possible to find g̃ ∈ Gr,exactd,δ (X) in any level δ ≥ 2 such that

ρδ(g̃) = g. Indeed, simply repeat the space used, letting

Vi+j/δ := ϕi(Vi)⊕DCi,i+1 ⊕ ϕi(Vi+1)

for every j = 1, . . . , δ − 1.

3. The are natural forgetful maps

ρδ1,δ2 : Grd,δ1(X)→ Grd,δ2(X)

for each δ1, δ2 > 0, if δ2|δ1. As in the proof of Proposition 3.16 (1), we can show that

ρ−1δ1,δ2(Gr,exactd,δ2
(X)) ⊆ Gr,exactd,δ1

(X) and that the restricted map

ρδ1,δ2 : ρ−1δ1,δ2(Gr,exactd,δ2
(X)) −→ Gr,exactd,δ2

(X)

is a bijection.

Example 3.1. Let Y := P1 =: Z. Let y be an affine coordinate for Y and z for Z. Let X be the

union of Y and Z meeting transversally at 0. Set d := 2, r := 1. Our principal interest is the

description of the exact limit linear series of degree 2 and rank r in level 2.

In this case, there is a unique invertible sheaf of degree 2 on Y (resp. Z), namely O(2). We

may view its space of sections as the space of meromorphic functions with order of pole at ∞
at most 2. In other words, we write the sections as a polynomial on y (resp. z) of degree at

most 2. The invertible sheaves on X that will interest us are just three: L0 = O(2, 0), L1 =

O(1, 1), L2 = O(0, 2). Their sections will be obtained by identifying polynomials on y with

degree at most 2 with polynomials on z of degree at most 2. Specifically, we will require that

the i-th coefficient of the polynomial on y agrees with the (2− i)-th coefficient of the polynomial

on z. In case of L0 = O(2, 0), its sections will be identified with a pair (a0 + a1y + a2y
2, a0z

2)

consisting of a polynomial on y and a polynomial on z vanishing at 0 with order at least 2 such

that the constant coefficient of the polynomial on y is equal to the degree-2 coefficient of the

polynomial on z. Likewise, the sections of L1 = O(1, 1) have the form (a1y + a2y
2, a1z + b2z

2),

and the sections of L2 = O(0, 2) have the form (a2y
2, a2 + b1z + b2z

2).

We will view a limit linear series (L, V0, . . . , V2δ) as a collection of 2δ + 1 = 5 subspaces of

dimension 2 of H0(Y,L|Y )⊕H0(Z,L|Z(2P )), that is, subspaces of Γ3
Y ⊕Γ3

Z , where Γ3
Y (resp. Γ3

Z)

is the 3-dimensional space of polynomials of degree at most 2 on y (resp. z). In matrix terms,

such spaces will be given as 6-by-2 matrices.
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For instance, and to fix notation, 

0 0

a b

c d

0 0

a b

e f


will denote the subspace of Γ3

Y ⊕ Γ3
Z generated by (ay + cy2, az + ez2) and (by + dy2, by + fz2).

It lies in H0(O(1, 1)).

First, we describe the points on Osserman’s space G1
2(X). It is a 2-dimensional space stratified

as follows:

Exact Points: Form four 2-dimensional strata.

V0 V1 V2 V0 V1 V2

W o
1 :



1 0

0 1

a1 b1

0 0

0 0

1 0





0 0

1 0

b1 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1


W o

2 :



1 0

a2 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

1 0

b2 0

0 1



W o
3 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

1 0

b3 0





0 0

0 0

1 0

1 0

0 1

a3 b3


W o

4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

a4 b4

c4 d4

0 0

a4 b4

e4 f4





0 0

0 0

0 0

0 0

1 0

0 1



where ai, bi, c4, d4, e4, f4 ∈ C, with

∣∣∣∣∣a4 b4

c4 d4

∣∣∣∣∣ 6= 0,

∣∣∣∣∣a4 b4

e4 f4

∣∣∣∣∣ 6= 0.
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Non-Exact Points: Form four 1-dimensional strata and one 0-dimensional stratum.

V0 V1 V2 V0 V1 V2

Lo1,2



1 0

a1 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1


Lo2,3 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

1 0

b2 0

0 1



V0 V1 V2 V0 V1 V2

Lo1,4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

c4 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1


Lo3,4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

1 0

e4 0





0 0

0 0

0 0

0 0

1 0

0 1


and the point 

0 0

1 0

0 1

0 0

0 0

0 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1


.

Let Wi and Li,j denote the closures of W o
i and L0

i,j in G1
2(X). Then Li,j = Wi ∩ Wj for

each i and j. In addition, ∩iWi is the 0-dimensional stratum. Also, W o
1 ∪W o

2 ∪W o
3 is mapped

isomorphically to the locus of refined points in the corresponding Eisenbud–Harris space and

the lines L1,2 and L2,3 to their locus of crude points; see [37] §6, p. 1183 or [39], Example, p.14.

As for G1
2,2(X), we may follow the proof of Proposition 3.16 to obtain that the exact points form

nine 2-dimensional strata:

V0 V1 V2 V3 V4

W̃ o
1 :



1 0

0 1

a1 b1

0 0

0 0

1 0





0 0

1 0

b1 0

0 0

0 0

0 1





0 0

1 0

b1 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1
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W̃ o
2 :



1 0

a2 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

1 0

b2 0

0 1



W̃ o
3 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

1 0

b3 0





0 0

0 0

0 1

0 0

1 0

b3 0





0 0

0 0

1 0

1 0

0 1

a3 b3


V0 V1 V2 V3 V4

W̃ o
4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

0 0

0 0





0 0

a4 b4

c4 d4

0 0

a4 b4

e4 f4





0 0

0 0

0 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1



L̃o1,2



1 0

a1 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

α1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1



L̃o2,3 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

α2 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

1 0

b2 0

0 1
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L̃o1,4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

c4 α3

0 0

0 0

0 1





0 0

1 0

c4 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1



L̃o3,4 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

0 0

0 0





0 0

1 0

0 1

0 0

1 0

e4 0





0 0

0 0

0 1

0 0

1 0

e4 α4





0 0

0 0

0 0

0 0

1 0

0 1



W o
5 :



0 0

1 0

0 1

0 0

0 0

0 0





0 0

α5 0

0 1

0 0

0 0

1 0





0 0

0 0

1 0

0 0

0 0

0 1





0 0

0 0

1 0

0 0

α6 0

0 1





0 0

0 0

0 0

0 0

1 0

0 1


lying over each of the indicated nine strata of G1

2(X), the last one lying over the point.

As we can see, the exact points of G1
2,2(X) live on many more components than those of

G1
2(X). In general, the number of connected components of the locus of exact points of G1

d,δ(X)

grows to infinity as δ grows.

3.3 The Abel maps and level-δ limit linear series.

The main goal in this section is to establish a relation between the spaces Gr,exactd,δ (X) and fibers

of the Abel map Ad of degree d, as defined in [18] §3. Furthermore, it will be shown that

the necessary and sufficient condition for the subscheme P(g) ⊆ A−1d (L) assigned in [18] §4 to

each g = (L, V0, . . . , Vd) ∈ Grd(X) to have the “correct” Hilbert polynomial, i.e., the Hilbert

polynomial of the diagonal of Pr × Pr, is the exactness of g.

The degree-d Abel map Ad : X(d) → J associates to each Weil divisor D of the form D =

D1 + D2, where D1 is supported in Y and D2 in Z, the invertible sheaf OX(D) defined as

that having restrictions OY (D1 + d2P ) and OZ(D2 − d2P ), where d2 := deg(D2). By its very

definition, OX(D) does not depend on the decomposition D = D1 +D2; see [18], §3.

Let r, d, δ be nonnegative integers. Let g = (L, V0, . . . , Vd) ∈ Grd(X). For each i = 0, . . . , d,

set ΓiY := H0(Y,Ld−i|Y ) and ΓiZ := H0(Z,Li|Z). Notice that P(ΓiY ) × P(Γd−iZ ) ⊆ A−1d (L) in a

natural way, by letting the pair (D1, D2) consisting of divisors D1 and D2 on Y and Z such that
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Ld−i|Y ∼= OY (D1) and Li|Z ∼= OZ(D2) going to D1 +D2. Clearly,

A−1d (L) = P(Γ0
Y )× P(ΓdZ) ∪ · · · ∪ P(ΓdY )× P(Γ0

Z).

Also, since

P(Γ0
Y ) ⊆ P(Γ1

Y ) ⊆ · · · ⊆ P(Γd−1Y ) ⊆ P(ΓdY ),

and

P(Γ0
Z) ⊆ P(Γ1

Z) ⊆ · · · ⊆ P(Γd−1Z ) ⊆ P(ΓdZ),

we may view A−1d (L) ⊆ P(ΓdY )× P(ΓdZ) and P(ΓiY )× P(ΓjZ) ⊆ A−1d (L) for any i and j such that

0 ≤ i ≤ i+ j ≤ d.

Recall from [18], §4, that P(g) :=
⋃
i
P(gi), where gi := (Li, Vi) and

P(gi) ⊆ P(Vi|Y )× P(Vi|Z) ⊆ P(Γd−iY )× P(ΓiZ) ⊆ A−1d (L) ⊆ X(d)

is the reduced subscheme given set-theoretically by

P(gi) :=
{

div(s|Y ) + div(s|Z) | s ∈ Vi − (V Y,0
i ∪ V Z,0

i )
}
. (3.26)

The scheme P(gi) is empty if and only if Vi = V Y,0
i ∪ V (Z,0)

i

In a similar fashion, we may define for each δ > 0 and each g = (L, V0, . . . , Vdδ) ∈ Grdδ(X) a

subscheme P(g) ⊆ X(d) by P(g) :=
⋃
k

P(gk), where gk := (Lk, Vk) and

P(gk) ⊆ P(Vk|Y )× P(Vk|Z) ⊆ P(Γd−i−1Y )× P(ΓiZ) ⊆ A−1d (L) ⊆ X(d)

is the reduced subscheme given set-theoretically by

P(gk) :=
{

div(s|Y ) + div(s|Z) | s ∈ Vk − (V Y,0
k ∪ V Z,0

k )
}
. (3.27)

Here, k = iδ + j with 0 ≤ j < δ.

Another way of viewing the P(gk), and consequently P(g), inside of P(ΓdY ) × P(ΓdZ) is to use

the linking maps ϕk and ϕk. In this way,

P(g) ⊆ P(V0|Y )× P(Vd|Z) ⊆ P(ΓdY )× P(ΓdZ)

is given by

P(gk) = {(ϕdδ−1,k(s), ϕ0,k−1(s)) | s ∈ Vk − (Kerϕdδ−1,k ∪Kerϕ0,k−1)}, (3.28)
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where
ϕdδ−1,k :=ϕdδ−1 ◦ · · · ◦ ϕk : Vk → Vd for k = 0, . . . , dδ,

ϕ0,k−1 :=ϕ0 ◦ · · · ◦ ϕk−1 : Vk → V0 for i = 1, . . . , d.
(3.29)

Indeed, on one hand, Ker(ϕdδ−1,k) = Ker(ϕk) = V Z,0
k and Ker(ϕ0,k−1) = Ker(ϕk−1) = V Y,0

k .

On the other hand, Im(ϕk) ⊆ V Y,0
k+1, and the restricted map ϕk|

V Y,0k
: V Y,0

k → V Y,0
k+1 is injective

for every k, since V Y,0
k ∩ V Z,0

k = 0. A similar analysis applies to the ϕk. Thus we conclude that

(3.27) and (3.28) give the same closed subset of P(ΓdY )× P(ΓdZ).

Theorem 3.19. Let r, d, δ be nonnegative integers.

1. For each g ∈ Gr,exactd,δ (X) there is a naturally associated subscheme P(g) ⊆ A−1d (L) defined

like above, which is Cohen-Macaulay, connected of pure dimension r and, as a subscheme

of Pr × Pr, has bivariate Hilbert polynomial P (s, t) =
(
s+t+r
r

)
.

2. If g ∈ Gr,exactd (X) then for any δ > 0 and any g̃ ∈ Gr,exactd,δ (X) such that ρδ(g̃) = g, we have

P(g) = P(g̃).

3. For each g ∈ Gr,Oss
d (X) \ Gr,exactd (X) and each g̃ ∈ Gr,exactd,δ (X) such that ρδ(g̃) = g, we

have P(g) $ P(g̃).

In particular, g ∈ Grd,1(X) = Grd(X) is exact if and only if P(g) ⊂ Pr × Pr has bivariate Hilbert

polynomial P (s, t) =
(
s+t+r
r

)
.

Proof 3.20. For the first part, note that Lemma 2.18 has an analogous version for higher δ,

which can be derived from our Lemma 3.13. Thus the proof of the first statement follows word-

for-word the proof of [18], Thm. 4.3 (our Theorem 2.20), using exactly the same sequence of

results with the notation adapted to our situation. We observe that this is possible since the

sequence of the results used by Esteves–Osserman relies only on the properties of linkage and

exactness of the maps ϕi and ϕi, which are satisfied as well in our case.

For the second statement, notice that a consequence of the proof of Proposition 3.16(1) is

that, if g̃ = (L, V0, . . . , Vi+j/δ, . . . , Vd) ∈ G
r,exact
d,δ (X) lies over an exact g ∈ Gr,exactd (X), then

Vi+j/δ = V Y,0
i+1 ⊕ V

Z,0
i = V Y,0

i+j/δ ⊕ V
Z,0
i+j/δ

for each i = 0, . . . , d − 1 and j = 1, . . . , δ − 1. As it follows from [18], Rmk. 4.9, adapted to

our situation, that P(g̃) is the union of those P(g̃k) for which Vk 6= V Y,0
k ⊕ V Z,0

k , it follows that

P(g̃) =
⋃
i
P(g̃i). Since P(g̃i) = P(gi) for each i, it follows that P(g) = P(g̃).

For the third statement, suppose that g ∈ Grd,1(X) is non-exact. By Proposition 3.16(2) there

exist δ > 0 and g̃ ∈ Gr,exactd,δ (X), such that ρδ(g̃) = g. Keep the notation used above. The above

reasoning gives

P(g̃) =
⋃
i

P(gi)
⋃⋃

i,j

P(g̃i+j/δ) ⊇
⋃
i

P(gi) = P(g). (3.30)
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3 The level-δ limit linear series and its moduli space

We show now that P(g) is a proper closed subscheme of P(g̃). We have already observed that

P(g̃) is the union of those P(g̃k) for which Vk 6= V Y,0
k ⊕ V Z,0

k . In other words,

P(g̃) =
⋃
k∈Sg̃

P(g̃k). (3.31)

Moreover, each P(g̃k) for k ∈ Sg̃ has dimension r by [18], Lemmas 4.4 and 4.8. Finally, though

not explicitly stated in [18], it can be deduced that these P(g̃k) are distinct, that is, (3.31) is the

decomposition of P(g̃) in irreducible components. Now, since g is not exact, we have that there

is k ∈ Sg̃ which is not an integer, and thus accounts for a component P(g̃k) of P(g̃) not entirely

contained in P(g).

Finally, if g ∈ Grd,δ(X) is exact then P(g) ⊂ Pr×Pr has bivariate Hilbert polynomial P (s, t) =(
s+t+r
r

)
, as stated in [18], Thm. 4.3, or by our Statement 1. Conversely, suppose P(g) ⊂ Pr × Pr

has bivariate Hilbert polynomial P (s, t) =
(
s+t+r
r

)
. Let δ > 0 and g̃ ∈ Gr,exactd,δ (X) such that

ρδ(g̃) = g, whose existence is guaranteed by Proposition 3.16. Then P(g) $ P(g̃) by Statements

2 and 3, proved above. Since g̃ is exact, if follows from Statement 1 that P(g̃) ⊂ Pr × Pr has

bivariate Hilbert polynomial P (s, t) =
(
s+t+r
r

)
, the same as P(g). Since P(g) $ P(g̃), it follows

that P(g) = P(g̃), and hence, by Statement 2, that g is exact.

Theorem 3.21. Given any δ′ > r + 2 suppose that ρδ′(g
′) = g, where g is non exact lls in

Grd,1(X) and g′ ∈ Gr,exactd,δ′ (X). Then exist 2 ≤ δ ≤ r+ 2 and g̃ ∈ Gr,exactd,δ (X) such that ρδ(g̃) = g

and P(g′) = P(g̃).

Proof 3.22. Our proof starts with the observation that for any δ > 0, from the Lemma 3.13

and Remark 3.15(3), (3.22) we have a partition of the set the exact points in the level-δ, for

S ⊂ {0, . . . , dδ}:

Gr,exactd,δ (X;S) :=

g|
∑

iδ+j∈S
Miδ+j = r + 1

 .

Also its easy to check Gr,exactd,δ (X;S)
⋂
Gr,exactd,δ (X;T ) = φ for S 6= T and as a consequence the

stratifications:

Gr,exactd,δ (X; l) :=
∐
|S|=l

Gr,exactd,δ (X;S)

Gr,exactd,δ (X) =
∐

1≤l≤r+1

Gr,exactd,δ (X; l).

By assumption, exists a lifting exact g′, i.e., s.t. ρδ′(g
′) = g, in the level-δ′ > r + 2 for g

no exact in the level-1. According to partition above exist S′ ⊂ {0, . . . , dδ′} and l such that

g′ ∈ Gr,exactd,δ′ (X;S′, l). So, a trivial verification shows that l = l0,1+· · ·+ld−1,d+#{{0, . . . , d}∩S′},
where li,i+1 = #{elements ofS′ betweenVi andVi+1} − # {{i, i+ 1} ∩ S′}. Notice that, 0 ≤
li,i+1 ≤ r+ 1. Thus, we define δ := max

i
li,i+1 + 1 and S := {{0, . . . , d} ∩ S′}

⋃
{iδ+ j|Miδ′+kj

6=
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3 The level-δ limit linear series and its moduli space

0} ⊂ {0, . . . , dδ}, where the set is ordered by {k1 < k2 < · · · < kli,i+1
}. Clearly, 2 ≤ δ ≤ r + 2

and |S| = l. It follows that, our construction starts by choose g̃ ∈ Gr,exactd,δ (X;S, l) such that

Viδ+j = Viδ′+kj for all iδ+j ∈ S\{{0, . . . , d} ∩ S′} and without change on D := {{0, . . . , d} ∩ S′}.
Naturally, the linked maps between Viδ+j will be defined by the composed of maps below:

ϕiδ :=ϕiδ
′ ◦ · · · ◦ ϕiδ′+kj−1 : Viδ → Viδ+1

ϕiδ+j−1 :=ϕiδ
′+kj ◦ · · · ◦ ϕiδ′+kj+1−1 : Viδ+j −→ Viδ+j+1

(3.32)

and so on. Similar constructions apply to ϕiδ+j . Clearly, the latter assertions implies that

ρδ(g̃) = g and by assumption and construction we conclude that g̃ is an exact level-δlls.

Our next claim is that P(g′) = P(g̃). In fact, following the ideas in the proof of the theorem

3.19(2) and the construction of g̃, we obtain that

P(g̃) =
⋃

iδ+j∈S
P(giδ+j)

= P(g)
⋃ ⋃

iδ+j∈S\D

P(giδ+j)

= P(g)
⋃ ⋃

iδ+kj∈S′\D

P(giδ+kj )

= P(g′),

which proves the theorem.

Remark 3.23. So, the level-δ are helpful in understanding the relative Hilbert scheme associated

to the fibers of Abel maps. In particular, we have a rational (set-theoretically) map for any

δ ≥ 2:

αδ : Grd,δ(X) 99K HilbP,HAd
g 7→ αδ(g) = P(g).

where, H := n(R1 +X(d−1)) +m(R2 +X(d−1)), R1 ∈ Y − P , R2 ∈ Z − P , with m,n > 0, is the

(relative) ample divisor of Ad and P := P (s, t) =
(
s+t+r
r

)
is the Hilbert polynomial. Naturally,

the map αδ factorizing via ρδ at map α

α : Gr,Oss
d (X) 99K HilbP,HAd

g 7→ α(g) = P(g).

studied by Esteves–Osserman (see [18]). In this sense, we paraphrase the theorem 3.21 as follows:

the δ−levels above to r + 2 not provide relevant geometric information.

Example 3.2. Continuing with the study of G1
2,2(X) of the example 3.1, we explain which

subscheme correspond to g̃ ∈ G1,exact
2,2 (X) into the product P1 × P1. First, study the case of

g̃ ∈ ρ−12 (G1,exact
2,1 (X)) ∼= G1,exact

2 (X). If g̃ ∈ W o
1

⋃
W o

2

⋃
W o

3 , i.e., of refined type then a general

description of P(g̃) = P(g) = P(Vi|Y )×P1
⋃
P0×P(Vj |Z) for some i, j = 0, 1, 2 and P0 ⊂ P(Vj |Z),
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3 The level-δ limit linear series and its moduli space

P1 ⊂ P(Vi|Y ) two points. Explicitly,

• For any g ∈W o
1 we have P(g) = P(V0|Y )× P1

⋃
P0 × P(V1|Z).

• For any g ∈W o
2 we have P(g) = P(V0|Y )× P1

⋃
P0 × P(V2|Z).

• For any g ∈W o
3 we have P(g) = P(V1|Y )× P1

⋃
P0 × P(V2|Z).

Now, for each g ∈W o
4 we have P(g) = ∆ ⊂ P(V1|Y )× P(V1|Z) is the diagonal.

Secondly, for each g̃ ∈ G1,exact
2,2 (X) \ ρ−12 (G1,exact

2,1 (X)) we have, in a similar way of the Osser-

mann refined case,

1. For any g ∈ L̃1,2
o

we have P(g) = P(V0|Y )× P1
⋃
P0 × P(V3/2|Z).

2. For any g ∈ L̃2,3
o

we have P(g) = P(V1/2|Y )× P1
⋃
P0 × P(V2|Z).

3. For any g ∈ L̃1,4
o

we have P(g) = P(V1/2|Y )× P1
⋃
P0 × P(V1|Z).

4. For any g ∈ L̃3,4
o

we have P(g) = P(V1|Y )× P1
⋃
P0 × P(V3/2|Z).

5. For any g ∈W o
5 we have P(g) = P(V1/2|Y )× P1

⋃
P0 × P(V3/2|Z).
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4 Stable limit linear series

4.1 Preliminary notions

Our purpose in this section is to introduce the concept of a generalized linear series and the

projective scheme parametrizing them. As it was stated before, we will consider only the case of a

nodal curve X made up of two smooth irreducible components Y and Z intersecting transversally

at a unique point P . Our principal motivation is to put together the exact limit linear series in

all levels in a single projective parameter space. Of course, identifications must be made, and

they will be made through the notion of stabilization. In short, the moduli space of stable limit

linear series is the fixed locus by a certain torus action on the moduli space of genus zero stable

maps with appropriate homology class to a certain relative Grassmannian. Details will be given

below.

4.1.1 Generalized linear series and their moduli space

Fix integers d and r with r ≥ 0. Recall that X is the curve made up of two smooth irreducible

components Y and Z intersecting transversally at a unique point P .

Definition 4.1. Let H be an algebraic scheme. A family of (generalized) linear series of degree

d and dimension r over X along H consists of the following data:

1. a relatively torsion-free, rank-1, degree-d sheaf F on X ×H/H,

2. a rank-(r + 1) locally free subsheaf V ⊆ p2∗F , where p2 : X × H → H is the second

projection, such that, for every t ∈ H, the induced linear map Vt → H0(X,Ft) is injective.

As we will see below, the relevant case for us is when H is a chain of projective lines, as those

continuous limit linear series will be the ones corresponding to level-δ limit linear series. The

construction below will thus be directed to this case.

First, we need to produce a scheme that parameterizes all the (generalized) linear series (Ft,Vt)
that show up in the continuous limit linear series we are interested in. This is the scheme Hr

d(X)

below. Its construction will follow closely the standard construction of the scheme of linear series

on a smooth curve, as it can be found in [2], §3 Theorem 3.6, p. 184, for instance.

Construction of the scheme Hr
d(X).

Let T be a chain of d + 1 projective lines. More precisely, T has exactly d + 1 irreducible

components T0, . . . , Td which are smooth and can be so ordered that Ti ∩ Tj 6= ∅ if and only if
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4 Stable limit linear series

|i− j| ≤ 1. Furthermore, Ti−1 intersects Ti transversally at a unique point, henceforth denoted

by Ni, for i = 1, . . . , d. In addition, we mark two points on the smooth locus of T , the first on

T0, denoted N0, the second on Td, denoted Nd+1. Set ∆T := {N0, . . . , Nd+1} and T ∗ := T −∆T .

Then T ∗ is the disjoint union of d + 1 connected components T ∗i , where T ∗i := T ∗ ∩ Ti for

i = 0, . . . , d.

We consider a certain coherent sheaf F on X×T whose construction we will give later. Here we

give only its properties. It is a relatively torsion-free, rank-1 sheaf on X×T/T of relative degree

d over T whose fibers over T are as follows: F|X×T ∗i ∼= OX(−i, i) ⊗ OT ∗i for each i = 0, . . . , d

and F|X×Ni ∼= OY (−iP ) ⊕ OZ((i − 1)P ) for i = 0, . . . , d + 1. Here, OX(−i, i) is the unique

invertible sheaf on X whose restriction to Y is OY (−ip) and and to Z is OZ(ip). Notice that

F is “locally constant” over T ∗, but not globally constant. We say that F is the (truncated)

family of twisters of X.

Let L now be a universal sheaf on X × Pic
(d,0)
X , where we recall that Pic

(d,0)
X is the connected

component of the Picard scheme of X parameterizing invertible sheaves on X of degree d on Y

and 0 on Z. Consider the projections

X × Pic
(d,0)
X × T

p

xx

µ
��

q

((

X × T Pic
(d,0)
X × T X × Pic

(d,0)
X .

(4.1)

Define L� F := p∗(F)⊗ q∗(L) and put W := µ∗ (L� F). Then put

Hr
d(X) := Grass

Pic
(d,0)
X ×T (r + 1,W) .

The scheme Hr
d(X) parameterizes linear series (I, V ), where I is any torsion-free, rank-1 sheaf

on X of degree d whose restrictions to Y and Z, modulo torsion, have degrees ranging from −1

to d, and V is any vector subspace of H0(X, I) of dimension r + 1.

The above definition of Hr
d(X) is satisfactory if W is locally free. If not, here is what we do.

Let D be an ample effective divisor of X supported away from P . Let D′ denote its pullback to

X × Pic
(d,0)
X × T under the projection. Then, for each integer n ≥ 0, we have the natural short

exact sequence

0 −→ L� F −→ L� F(nD′) −→ L� F(nD′)|nD′ −→ 0, (4.2)

from which we get an exact sequence on Pic
(d,0)
X × T :

0 −→W −→ µ∗(L� F(nD′)) −→ µ∗(L� F(nD′)|nD′). (4.3)

Set E := µ∗(L�F(nD′)) and E ′ := µ∗(L�F(nD′)|nD′). If n >> 0, the higher direct images of

L � F(nD′) vanish, and thus E is locally free. Furthermore, since nD′ is finite, it follows that
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4 Stable limit linear series

also E ′ is locally free, of rank n deg(D). Let α : E → E ′ denote the map between them.

Let G := Grass
Pic

(d,0)
X ×T (r + 1, E). Denote by ν : G→ Pic

(d,0)
X × T the structural map and by

V ⊆ ν∗(E) the universal subsheaf. Then Hr
d(X) is defined to be the zero scheme of the map of

bundles ν∗α|V : V → ν∗E ′.
Put H := Hr

d(X) and λ := ν|H . Furthermore, form the Cartesian diagram

X ×H λX //

µH

��

X × Pic
(d,0)
X × T

µ
��

H
λ // Pic

(d,0)
X × T.

(4.4)

Since the formation of E and E ′ commutes with base change, it follows that

Ker(λ∗α) = µH∗(λ
∗
X(L� F)).

Thus V|H ⊆ µH∗(λ
∗
X(L � F)). Moreover, by the same reasoning, as the formation of E and E ′

commutes with any base change, (λ∗X(L � F),V|H) is a family of linear series of degree d and

dimension r parameterized by H.

Construction of the sheaf F .

Here we will present two different constructions for the sheaf F .

The first construction is through a degeneration argument. Actually, examples of this type

of construction have already appeared before in this thesis, when we observed that the sheaves

OX(−i, i) are the restrictions to X of the sheaves OX (iY ), where X → B is any regular smo-

othing of X. In fact, the construction below gathers together the constructions of the OX(−i, i)
and their degenerations.

More precisely, let T̂ be the chain obtained from T by adding an extra rational curve at each

end: one, denoted T−1, intersecting T0 transversally at N0, the other, denoted Td+1, intersecting

Td transversally at Nd+1. View T ⊂ T̂ .

Let π : X → B be a regular smoothing of X and τ : T → B a regular smoothing of T̂ . Form

the threefold X ×B T . It can be regarded as a smoothing of the surface X× T̂ . However, it fails

to be regular exactly at the pairs (P,Ni) for i = 0, . . . , d + 1. Following the ideas in [3], with

an obvious adaptation to our case, we resolve the singularities of X ×B T at (P,Ni) by blowing

it up along Y × Ti−1. The effect of this blowup is:

• The inverse image of (P,Ni) is a smooth rational curve, denoted Ei, along which the

blowup is regular.

• The strict transforms of Y × Ti−1 and Z × Ti in the blowup contain Ei, while those of

Y × Ti and Z × Ti−1 intersect Ei transversally at unique and distinct points.
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4 Stable limit linear series

• The composition of the blowup with any of the projections of the fibered product X ×B T
onto its factors is flat.

Blow up X ×B T repeatedly along the (strict transforms of) Y × T−1, Y × T1, . . . , Y × Td.
Let X̃ denote the resulting space and Yi denote the strict transform in X̃ of Y × Ti for each

i = −1, . . . , d + 1. If follows that X̃ is regular and the Yi are Cartier divisors of X̃ . Let

ψ : X̃ → X ×B T denote the blowup map. In the sense of [3], p. 32, the map ψ is a semistable

modification of any of the projections of the fibered product X ×B T onto its factors

Let Ei := ψ−1(P,Ni) for each i = 0, . . . , d + 1. Then the Ei are rational smooth curves.

Furthermore, Yj · Ei = 0 if j 6= i− 1, i, whereas Yi−1 · Ei = −1 and Yi · Ei = 1. Set

G = OX̃ (−Y−1 + Y1 + 2Y2 + · · ·+ (d+ 1)Yd+1) .

Then G|Ei ∼= OEi(1) for each i = 0, . . . , d+ 1. Since G is ψ-admissible, in the sense of [3], p. 32,

it follows from loc. cit., Prop. 5.2, that ψ∗G is relatively torsion-free, rank-1 sheaf of degree 0 on

X ×B T /T , whose formation commutes with base change. Finally, set

F := ψ∗G|X×T .

Since the formation of the direct image ψ∗G commutes with base change, it is not difficult to

see that F is as prescribed in the construction of Hr
d(X). Indeed, since ψ is an isomorphism

over X × T ∗i for each i = 0, . . . , d, it follows that

F|X×T ∗i = OX×BT (iY ×B T )|X×T ∗i ∼= OX (iY )|X ⊗OT ∗i = OX(−i, i)⊗OT ∗i .

On the other hand, for each i = 0, d + 1, the fiber ψ−1(X × Ni) is the curve obtained from

X by splitting apart Y and Z and connecting them by Ei. Let Xi := ψ−1(X × Ni) and put

ψi := ψ|Xi Xi → X, where we identify X × Ni = X. Let Yi and Zi denote the irreducible

subcurve of Xi mapping to Y ×Ni and Z ×Ni, respectively. Since

G|Yi ∼= OYi(−iP ), G|Ei ∼= OEi(1) and G|Zi ∼= OZi((i− 1)P ),

it follows that

F|X×Ni = ψi∗(G|Xi) ∼= OY (−iP )⊕OZ((i− 1)P ).

A second construction of F , useful in our computations, is achieved by patching together

degenerations of extensions. It follows from the observation that

Ext1OX (OZ(iP ),OY (jP )) ∼= C ∼= Ext1OX (OY (lP ),OZ(mP ))

for any integers i, j, l,m. Furthermore, the middle sheaves for the nontrivial extensions ofOZ(iP )

by OY (jP ) are invertible sheaves on X whose restrictions to Y and Z are OY ((j + 1)P ) and
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OZ(iP ), whereas those for the nontrivial extensions of OY (lP ) by OZ(mP ) are invertible sheaves

on X whose restrictions to Y and Z are OY (lP ) and OZ((m+ 1)P ).

Alternatively, fix isomorphisms OY (P )|P ∼= OP and OZ(P )|P ∼= OP , and from these construct

isomorphisms OY (iP )|P ∼= OP and OZ(jP )|P ∼= OP for each integers i and j. For each i =

1, . . . , d, consider the following composition of maps of sheaves on X:

τ i : OY (−iP )⊕OZ(iP ) −−−−→ OY (−iP )|P ⊕OZ(iP )|P
∼=−−−−→ O2

P ,

where the first map is the sum of two restriction maps and the second is the sum of two of

the isomorphisms we mentioned above. Besides, for each i = 1, . . . , d, let Ti := P1, and let

ξi : O2
Ti
→ OTi(1) be the tautological quotient. Let τ iTi be the pullback of τ i to X × Ti. Identify

P × Ti = Ti, and consider the composition ξiτ
i
Ti

. It is a surjection; let Fi denote its kernel.

Then Fi is a relatively torsion-free, rank-1 sheaf of degree 0 on X × Ti/Ti. Over the point

0i ∈ Ti where ξi|OP⊕0 is zero, the fiber of Fi is OY (−iP ) ⊕ OZ((i − 1)P ), whereas over the

point ∞i ∈ Ti where ξi|0⊕OP is zero, the fiber of Fi is OY (−(i + 1)P ) ⊕ OZ(iP ). Elsewhere,

the fiber of Fi is the invertible sheaf OX(−i, i). We may thus patch together the families Fi,
by identifying ∞i with 0i+1 for i = 0, . . . , d − 1. Thus we obtain the chain T of d + 1 rational

curves T0, . . . , Td, as in the construction of Hr
d(X), and a coherent sheaf F on X × T such that

F|X×Ti = Fi. It is clear now that F is as prescribed in the construction of Hr
d(X).

Embedding Hr
d(X) in a trivial Grassmann bundle.

From the second construction of F , using that OY (−iP ) ⊆ OY for each i ≥ 0 and OZ(iP ) ⊆
OZ(dP ) for each i ≤ d, it follows that F ⊆ (OY ⊕ OZ(dP )) ⊗ OT with T -flat cokernel. Thus,

there is a natural embedding

Hr
d(X) ↪→ Grass

Pic
(d,0)
X ×T (r+1,W ′), where W ′ := µ∗q

∗(L|
Y×Pic(d,0)X

⊕L|
Z×Pic(d,0)X

(dP×Pic
(d,0)
X )),

and q and µ are as in the construction of Hr
d(X).

The ambient space need not be a Grassmann bundle, as W ′ need not be a locally free sheaf.

However, W ′ is the pullback of a sheaf on Pic
(d,0)
X , namely

W ′′ := p2∗(L|Y×Pic(d,0)X

⊕ L|
Z×Pic(d,0)X

(dP × Pic
(d,0)
X )),

where p2 : X × Pic
(d,0)
X → Pic

(d,0)
X is the second projection. So

Grass
Pic

(d,0)
X ×T (r + 1,W ′) = Grass

Pic
(d,0)
X

(r + 1,W ′′)× T.

Furthermore, let D be an ample effective divisor of X supported away from P . By the
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Riemann–Roch Theorem, for n >> 0, there are (noncanonical) embeddings

L|
Y×Pic(d,0)X

↪→ O
X×Pic(d,0)X

(D × Pic
(d,0)
X )|

Y×Pic(d,0)X

,

L|
Z×Pic(d,0)X

(dP × Pic
(d,0)
X ) ↪→ O

X×Pic(d,0)X

(D × Pic
(d,0)
X )|

Z×Pic(d,0)X

whose cokernels are flat over Pic
(d,0)
X . Thus, setting W ′′′ := W1⊕W2, where W1 := H0(Y,OY (D∩

Y )) and W2 := H0(Z,OZ(D ∩ Z)), we get a (noncanonical) embedding W ′′ ⊆ W ′′′ ⊗ O
Pic

(d,0)
X

,

and thus a (noncanonical) embedding

Grass
Pic

(d,0)
X

(r + 1,W ′′) ↪→ Grass(r + 1,W1 ⊕W2)× Pic
(d,0)
X .

The bottom line is that we have an embedding

Hr
d(X) ↪→ Grass(r + 1,W1 ⊕W2)× Pic

(d,0)
X × T.

4.1.2 Stable maps, torus actions and Grassmann bundles.

Loosely speaking, a stable limit linear series on X will be represented by a stable map from

a chain S of smooth rational curves to the space Hr
d(X) we constructed in Section 4.1.1. Not

just any such map, but only those fixed by a certain torus action and whose image lives in a

certain homology class in H2 (Hr
d(X),Z). In this section we will explain all the notions involved

in the statements above. Obviously, there exists a wide literature on spaces of stable maps

and fixed spaces of schemes under torus actions, as well as on Grassmann bundles. For a more

general treatments, we refer the reader to [22], [32], [36] for stable maps and torus actions,

and to [21], [23] for Grassmann bundles. For the convenience of the reader, we present without

proofs the relevant material from the above references, adapted to our situation, thus making

our exposition as self-contained as possible.

Before we proceed, we describe the layout of this section. In the first subsection, we present

the moduli space of stable maps of curves of genus zero to any projective scheme. The second

subsection is reserved for the definition, classical results, and relevant examples of torus actions

on moduli spaces of stable maps. Finally, the third subsection is dedicated to the study of the

Chow ring of Grassmann bundles.

Stable maps from nodal curves and their moduli spaces.

A nodal curve is a (projective, reduced and connected) curve C whose irreducible components

intersect each other and self-intersect transversally or, equivalently, whose singularities are or-

dinary double points; nodes, for short. Its (arithmetic) genus is 0 if and only if the components

are rational, smooth, and form a tree, or equivalently, intersect in such a way that the number

of intersection points is smaller (by one) than the number of components.
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4 Stable limit linear series

A family of nodal curves parametrized by a scheme B is a flat, projective map π : C → B such

that Cb is nodal curve for each geometric point b of B. A map from nodal curve C to a scheme

G is a map µ : C → G. A family of maps parametrized by a scheme B from nodal curves to a

scheme G is defined by the tuple of data

(π : C → B,µ : C → G) ,

consisting of a family nodal curves π and a morphism µ. Two families of maps to G parametrized

by the same B,

(π : C → B,µ) and
(
π′ : C′ → B,µ′

)
,

are called isomorphic if m = n and there exists an isomorphism τ : C −→ C′ such that π = π′ ◦ τ
and µ = µ′ ◦ τ , that is, the diagrams below commute:

C
τ
��

π // B

C′
π′

?? C
τ
��

µ
// G

C′
µ′

??

The special points of an irreducible component of a nodal curve (C, p1, . . . , pn) are the nodes

that lie on it. A map µ : C → G from curve C to a scheme G is called stable if each rational,

smooth component of C that is mapped to a point by µ contains at least three special points.

For a given class β ∈ H2(G,Z), the map µ is said to represent β if µ∗[C] = β. When β is

represented, it is called effective. A family (π, µ) of maps from nodal curves to G parameterized

by a scheme B is called stable if the induced map over each geometric point of B is stable.

Let G be a scheme and β ∈ H2(G,Z). Define the contravariant functor:

M0(G, β) : {Schemes} −→ {Sets}
B 7→ M0(G, β)(B),

where M0(G, β)(B) is the set of isomorphism classes of stable families of maps from genus-0

nodal curves to G parameterized by B and representing the class β.

We are now in position to present results on stable maps. As they are not the main focus

of this article, the results will be presented without proofs. Assume from now on that G is a

nonsingular projective variety, and assume that G is convex, that is, H1
(
P1, µ∗(TG)

)
= 0 for

every morphism µ : P1 → G. This is the case, for instance, when TG is generated by global

sections. Examples of convex varieties are thus projective spaces, Grassmannians, flag varieties

and their products. The proof of the following result may be found in [22], Thms. 1 and 2,

p. 11–12.

Theorem 4.2. Let G be a projective scheme and β ∈ H2(G,Z). Then there exists a projective

scheme M0(G, β) coarsely representing M0(G, β). If in addition G is a convex variety then
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4 Stable limit linear series

M0(G, β) is a normal projective variety, which is locally a quotient of a nonsingular variety by

a finite group.

While we will just need the existence of a coarse moduli space, it is appropriate that we say

a few words about the existence of a fine moduli space. It turns out, as it is typical, that the

existence of automorphisms forces us to search for a fine moduli space outside the category of

schemes, in the category of stacks. Though the category of stacks is often the appropriate one in

the study of moduli problems, to introduce and deal with it is beyond the scope of this article.

At any rate, in our case, we have (see [32])

Theorem 4.3. Let G be a convex projective variety and β ∈ H2(G,Z). Then the functor

M0(G, β) is (finely) represented by a complete, nonsingular Deligne–Mumford stack.

In any case, in one language or in the other, the points parametrized by M0(G, β) correspond

to isomorphism classes of stable maps of the same type β.

The following result will be extremely useful in our proof of the existence of a coarse moduli

space for stable limit linear series. It is a natural consequence of [22], Thm. 1, p. 11, and Lemma

8, p. 26.

Proposition 4.4. Let G be a projective scheme and G′ ⊆ G a closed subscheme. Let i : G′ → G

denote the inclusion and β ∈ H2(G
′,Z). Then there exists a natural closed embedding

M0(G
′, β) ↪→M0(G, i∗β).

Torus actions on moduli spaces of stable maps.

In this section we will study certain actions of the one-dimensional torus T := C∗ on spaces of

stable maps from nodal curves to Grassmannians. More precisely, we will study special linear

actions of T on Cm, for any m, the induced actions on Grassmannians G := Grass (r,m), for

any r, and the resulting actions on M0(G, d), the coarse moduli space of stable maps of degree

d from nodal curves to G, for any d and n. Our main goal is to describe the stable maps that

are represented by fixed points under such actions. From the analysis made here we will derive

important consequences for our understanding of stable maps into Hr
d(X), the spaces of linear

series introduced at the beginning of the chapter.

Recall that G is a nonsingular projective variety with Picard group Pic(G) = Z. Thus

H2(G,Z) is free of rank 1. We say that an element of H2(G,Z) has degree d if it can be

expressed as d times the effective generator of H2(G,Z), or equivalently, if its product with the

ample generator of Pic(G) is d. A map µ : P1 → G is said to be of degree d if µ∗[P1] has degree

d, or equivalently, if the pullback of the ample generator of Pic(G) to P1 is OP1(d).

Thus, a map µ : C → G from a genus-0 projective nodal curve C gives a stable map of degree

d if and only if it satisfies the following two conditions:
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4 Stable limit linear series

• For each component Ci of C, the degree of the restriction µ|Ci being denoted by di, we

have
∑

i di = d.

• If µ|Ci is constant, or equivalently, di = 0, then Ci must contain at least three special

points.

Our next step is to present the actions of T on Cm that will be useful for us. The first is very

simple: Write m = m1 +m2 and consider the canonical decomposition Cm = Cm1 ⊕ Cm2 ; then

c ∗1 (v1, v2) := (cv1, v2) for each c ∈ T and vi ∈ Cmi . The second action is also easy to describe:

Given distinct nonnegative integers `1, . . . , `m, put c∗2 (z1, . . . , zm) := (c`1z1, . . . , c
`mzm) for each

c ∈ T and zi ∈ C. Since the actions are linear, given an r-dimensional subspace V ⊆ Cm, it

follows that c ∗i V is an r-dimensional subspace of Cm for i = 1, 2. In other words, there is an

induced action of T on G in both cases.

In terms of matrices, the first action is represented by a matrix of the form

A1
c :=



c 0 · · · · · · 0

0 c · · · · · · 0
...

...
. . . · · ·

...

0 0 · · · 1 0

0 0 · · · · · · 1


, (4.5)

while the second is represented by a matrix of the form

A2
c :=



c`1 0 · · · · · · 0

0 c`2 · · · · · · 0
...

...
. . . · · ·

...

0 0 · · · c`m−1 0

0 0 · · · · · · c`m


. (4.6)

We now focus on the study of the fixed points by these actions on G. Naturally, this question

is related to the study of the invariant subspaces of the matrices Aic.

In the first case, the eigenvalues of the matrix A1
c are c and 1, with arithmetic multiplicity m1

and m2, respectively. Therefore, by [25] Thm. 2.15 , we get that V ∈ G is fixed by T, that is,

c ∗1 V = V for every c ∈ T, if and only if V = V1 ⊕ V2 where V1 ⊆ Cm1 and V2 ⊆ Cm2 . Clearly,

if ri denotes the dimension of Vi for i = 1, 2, then r = r1 + r2.

As for the second case, the eigenvalues of A2
c are c`1 , . . . , c`2 , and they are all distinct if c does

not belong to the finite set of all the (`i − `j)-th roots of unity for i 6= j. In this case, by [25]

Example 2.1.1, we get that V ∈ G is fixed by T, that is, c ∗2 V = V for every c ∈ T, if and only

if V is spanned by a set of r vectors of the canonical basis of Cm.

Given a linear action ∗ of T on Cm, the induced action of T on M0(G, d) is also easy to

define. Just notice that, given a stable map (C, µ), and c ∈ T, the map c ∗ µ assigning Q ∈ C
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4 Stable limit linear series

to {c ∗ v | v ∈ µ(Q)} gives a stable map (C, c ∗ µ). Clearly, isomorphic stable maps give rise

to isomorphic stable maps under this action. Hence, we have a well-defined action of T on

M0(G, d): given a point (C, µ) ∈M0(G, d) and c ∈ T, we have

c ∗ (C, µ) := (C, c ∗ µ).

Our next goal is to describe the points in M0(G, d)T, that is, the torus fixed stable maps in

the first case. A similar conclusion can be drawn in the second case.

First, we make some general remarks on the action of T on G, under the assumption that r ≤
m1 and r ≤ m2. In this case, as a consequence of the study of the direct sum on Grassmanians

in ( [43]), Section 2, the fixed point locus is the union of certain products of Grassmanians:

Gr1,r2 := Gr1×Gr2 where Gr1 := Grass(r1,m1) and Gr2 := Grass(r2,m2), for r1 + r2 = r, where

Gr1,r2 is embedded in G in the natural way.

In particular, the images by a torus fixed map µ : T → G of the nodes and the contracted

components are fixed points in one of the Gr1,r2 .

Clearly, (C, µ) is a fixed map if and only if its restrictions (Ci, µ|Ci) are all fixed. Now, if Ci

is not contracted by µ, then µ(Ci) is either entirely contained in some Gr1,r2 or, otherwise, as

an application of the Localization Theorem (see [36], Lemma 6, p. 12 or [1], Prop. 6, p. 8), is

an invariant curve joining two fixed points lying on distinct Gr1,r2 .

In conclusion, for the first action the image of a torus fixed stable map µ : T → G is an

invariant curve in G, the contracted components and nodes sent to fixed points, and the non-

contracted components sent to curves either entirely contained in some Gr1,r2 or linking two

fixed points lying on distinct Gr1,r2 .

An analogous reasoning applies for the second action. In this case, however, since the `i are

distinct, there are only a finite number of fixed points, and thus the noncontracted components

are sent to curves linking two fixed points lying on distinct Gr1,r2 .

Remark 4.5. Though we are considering only diagonal actions, no generality is lost, as all actions

of T on Cm can be diagonalized; see, for instance, [13], Ch. 6, Prop. 1.6, p. 6. More precisely,

given an action ∗ of T on Cm, there exist a basis v1, . . . , vm of Cm and integers `1, . . . , `m such

that, for each c ∈ T and xi ∈ C,

c ∗ (
∑
i

xivi) =
∑
i

c`ixivi.

The Chow Group of Grassmann Bundles.

In this section, our main goal is to present the fundamental tools to define the class β ∈
H2(H

r
d(X),Z) we are interested in. More precisely, it will be the class of a certain section

λ : T → Hr
d(X) of the composition

Hr
d(X)

ν−−−−→ Pic
(d,0)
X × T q2−−−−→ T
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4 Stable limit linear series

of the structure map ν with the projection q2, a section corresponding to an Osserman exact

limit linear series in a way we will make precise later. We will view λ as a translation from a

discrete to a continuous point of view.

Whatever λ is, notice that the composition q1νλ is constant, as T is a union of rational curves

and Pic
(d,0)
X is an Abelian variety. Thus λ factors through Hr

d(X,L), the fiber of q1λ over a

certain L ∈ Pic
(d,0)
X .

As we have seen in Subsection 4.1.1 that Hr
d(X) can be embedded in a natural (though

not canonical) way in a Grassmann bundle over Pic
(d,0)
X × T , we get a natural embedding of

Hr
d(X,L) in a Grassmann bundle G over T . Since A1(G) ∼= H2(G,Z) in this case, we will focus

on presenting the basic facts on the Chow group A∗(G). We begin by recalling fundamental

facts about Chow rings, Chern classes and Grassmann bundles. Our main references are [21]

Chs. 3, 10 and 14 and [23] Chs. 1 and 2.

The Chow group of a scheme G is

A∗(G) :=
⊕
`≥0

A`(G),

where A`(G) is the group of `-dimensional cycles modulo rational equivalence. In particular,

when G is purely n-dimensional, An(G) is the free Abelian group on the set of irreducible

components of G.

If G is irreducible and nonsingular of dimension n, define the Chow group of cycles of G of

codimension ` as A`(G) := An−`(G), and put A∗(G) := ⊕A`(G). In this case, A∗(G) admits the

structure of a graded ring via the intersection product:

· : A`(G)×Am(G) −→ A`+m(G)

(α, β) 7→ α · β.

It would take us too much astray to give the definition of ·. Let us just say that, justifying the

name, if E and F are subvarieties of G such that their intersect is proper, that is, E ∩ F is of

pure codimension codim(E) + codim(F ), then

[E] · [F ] = [E ∩ F ] =
∑
H

mH [H],

where the sum runs over the irreducible components H of E ∩F , and the mH are the geometric

multiplicities of H in E ∩ F ; see for instance [21] Ex. 8.1.11 or [23], p. 32.

As usual, we may view A∗(G) as a module over A∗(G) if G is nonsingular, that is, the elements

of A∗(G) induce endomorphisms of the group A∗(G). In any case, even if G is singular, certain

endomorphisms arise from vector bundles. More precisely, given a vector bundle E over G of

constant rank r, its Chern classes ci(E), and thus the total Chern class

c(E) = 1 + c1(E) + · · ·+ cr(E),
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4 Stable limit linear series

are endomorphisms of A∗(G), denoted α 7→ ci(E) ∩ α, satisfying the following properties (see

[21] Thm. 3.2):

1. (Vanishing) c0(E) = 1 and ci(E) = 0 for i < 0 or i > r.

2. (Projection formula) For each proper map f : H → G,

f∗ (ci(f
∗E) ∩ α) = ci(E) ∩ f∗α.

3. (Flat pullback) For each flat map f : H → G,

ci(f
∗E) ∩ f∗α = f∗ (ci(E) ∩ α) .

4. If D is a Cartier divisor of G then c1(OG(D)) ∩ [G] = [D].

5. (Whitney sum) For each exact sequence of vector bundles over G

0 −→ E1 −→ E0 −→ E2 −→ 0,

the total Chern class satisfies c(E0) = c(E1)c(E2); equivalently, c`(E0) =
∑

i+j=`

ci(E1)cj(E2)

for each integer `.

When G is nonsingular and irreducible, we identify ci(E) with an element of Ai(G), namely

ci(E) ∩ [G]. In this case, we have an isomorphism Pic(G) ∼= A1(G) defined by L 7→ c1(L).

We are now in a position to give a rough introduction to the intersection theory of Grassmann

bundles. Let E be a vector bundle of rank d over a scheme U , and r an integer such that

0 < r < d. Let G := Grass(r, E) the Grassmann bundle of r-planes in the fibers of E, and

π : G→ U the structure map. From the universal short exact sequence on G:

0 −→ S −→ π∗(E) −→ Q −→ 0,

where S is the universal rank-r subbundle and Q is the universal rank-(d− r) quotient bundle,

define ci := ci(Q− π∗E). More precisely, ci is the degree-i part of the quotient:

c(Q−π∗E) :=
c(Q)

c(π∗(E))
= 1+(c(Q)−c(π∗E))+(c2(Q)−c1(Q)c1(π

∗E)+c21(π
∗E)−c2(π∗E))+· · · .

A partition λ := (λ1, . . . , λr) is a sequence of r integers such that λ1 ≥ · · · ≥ λr ≥ 0. Given

λ, define the Schur polynomial

∆λ := ∆λ(c) := det


cλ1 · · · cλr+r−1
...

...
...

cλ1−r+1 · · · cλr

 = det(cλj+j−i(Q− π
∗E))
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The Schur polynomials have the following properties:

1. (Vanishing, [21] Lemma 14.5.1) If q is an integer such that Ci = 0 for all i > q and λq > 0

then ∆λ = 0.

2. (Pieri’s formula, [21] Prop. 14.6.1) For each partition λ and integer m ≥ 0, we have

∆λ · cm =
∑
µ

∆µ, where µ = (µ1, . . . , µr) runs over all partitions satisfying |µ| = |λ| + m

and µ1 ≥ λ1 ≥ µ2 ≥ · · · ≥ µr ≥ λr.

3. (Product formula, [21] Prop. 14.6.2) For each two partitions λ and µ, it obtains that

∆λ ·∆µ =
∑
η
Nλ,µ,η∆η, where the sum runs over all partitions η with |η| = |µ|+ |λ|, and

the Nλ,µ,η are given by the Littlewood–Richardson rule.

4. (Duality theorem, [21] Prop. 14.6.3) For each two partitions λ and µ such that |λ|+ |µ| ≤
r + 1(d− r), and each α ∈ A∗(U), we have

π∗ (∆λ ·∆µ ∩ π∗α) =

{
α if λi + µr−i+1 = d− r for i = 1, . . . , r

0 otherwise.

The next result will be useful in the description of our class β. For a proof, see [21] Prop. 14.6.5.

Lemma 4.6. (Basis Theorem).

For each ` ≥ 0, there is a canonical isomorphism

A`(G) ∼=
⊕
λ

A`−r(d−r)+|λ|(U),

where λ runs over all partitions λ = (λ1, . . . , λr) with d−r ≥ λ1 ≥ · · · ≥ λr ≥ 0. Moreover, each

element in A`(G) has a unique expression in the form
∑
λ

∆λ∩π∗(αλ) with αλ ∈ A`−r(d−r)+|λ|(U).

In particular, when U is nonsingular, A∗(G) is the algebra over A∗(U) with generators

a1, . . . , ar, b1, . . . , bd−r, where ai = ci(S) and bi = ci(Q), and relations
∑̀
i=0

aib`−i = c`(E) for

` = 1, . . . , d; see [21] Ex. 14.6.6, p. 270.

Our main analysis is made on Grassmannians, that is, Grassman bundles over a point. In

this case, the above formulas make part of what we call the Schubert calculus. Changing the

notation, G := Grass(d+ 1,Cn+1), or, in projective terms, G = Gd(Pn), the Grassmann variety

of d-planes in Pn. It is a smooth and irreducible projective variety of dimension (d+ 1)(n− d).

The universal quotient bundle Q has rank n − d. In this case, the classes σi := ci = ci(Q)

and {λ0, . . . , λd} := ∆λ = ∆λ(σ), for i = 0, . . . , n − d and partitions λ = (λ0, . . . , λd) with

n− d ≥ λ0 ≥ · · · ≥ λd ≥ 0, are called special Schubert classes and Schubert classes, respectively.

(Indeed, σi = {i, 0 . . . , 0}.) It follows from the general theory presented above that the Schubert

classes form a free Z−basis of A∗(G). Their product is determined by the product formula.
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The celebrated Giambelli’s formula in this context is

{λ0, . . . , λd} ∩ [G] = (a0, . . . , ad) = [Ω(A0, . . . , Ad)], (4.7)

where ai := n− d+ i− λi for i = 0, . . . , d, and Ω(A0, . . . , Ad) is an associated Schubert variety,

the
∑

i(ai − i)−dimensional subvariety of G defined by a flag of linear subspaces A0  A1  
· · ·  Ad j Pn with ai = dim(Ai) for i = 0, . . . , d as follows:

Ω(A0, . . . , Ad) := {L ∈ G; dim(L ∩Ai) ≥ i, 0 ≤ i ≤ d}.

The class [Ω(A0, . . . , Ad)] of Ω(A0, . . . , Ad) depends only on the ai.

With this notation, σi = (n− d− i, n− d+ 1, . . . , n) for i = 0, . . . , n− d. In addition, for each

α ∈ A`(G), the expression of α in terms of Schubert classes of dimension ` is

α =
∑

αa0,...,ad(a0, . . . , ad), where αa0,...,ad =

∫
G
α · (n− a0, . . . , n− ad).

Example 4.1. Let T = T0 ∪ · · · ∪ Td be the chain of d + 1 projective lines. In contrast to

the nonsingular case, A0(T ) 6= Pic(T ). Indeed, Pic(T ) = Zd+1, as each line bundle over T is

determined by its restrictions to the Ti, and the restrictions by their degrees. On the other

hand, A0(T ) = Z. Indeed, if Ni is the point of intersection between Ti−1 and Ti, then [Q] = [Ni]

for each Q ∈ Ti−1 ∪ Ti.
Let GrassT (r + 1, V ) = Grass(r + 1, V ) × T =: G × T , for a vector space V of dimension

n+1 ≥ r+1. By the Künneth Formula (see [21], Ex. 1.10.2, p. 25), there is a natural surjection:

× :
⊕

i+j=1
Ai(G)⊗Aj(T ) −→ A1(G× T )

(α, β) 7→ α× β.

Since A1(T ) =
⊕
i
Z · [Ti] and A1(G) ∼= Z · (0, 1, . . . , r, r+1), we conclude that any γ ∈ A1(G×T )

can be expressed as

γ =
∑

ai([pt]× [Ti]) + b((0, 1, . . . , r, r + 1)× [pt]),

for some ai, b ∈ Z.

The integer b can be determined as follows. Considerer the Plücker embedding of G, deter-

mined by the line bundle ∧n−rQ; then σ1 becomes the class of a hyperplane section. Under this

embedding, b = deg(p1∗γ) :=
∫
G(p1∗γ) · σ1, where p1 : G× T → G is the projection. In fact, the

expression for b follows from the equality (see [21] Ex. 14.7.4, p. 272):∫
G

(d− r − 1, d− r + 1, . . . , d, d+ 1) · (0, 1, . . . , r, r + 1) = 1.
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Remark 4.7. Recall that we are interested in describing a certain class β ∈ H2(H
r
d(X)), which

will actually be described in H2(G × T ) for a certain Grassmannian G, where T is the chain

T0, . . . , Td of projective lines. However, A1(G × T ) ∼= H2(G × T ). (Hence, the above example

describes the group we are interested in.) First notice that the cycle map clP1 : A1(P1)→ H2(P1)
is an isomorphism; see [21] Section 19.1. (Actually, P1 is the unique projective curve for which

this holds; see [21] Ex. 19.1.11, p. 378.) Thus, since A1(T ) =
⊕

iA1(Ti), we conclude that

A1(T ) ∼= H2(T ) via the cycle map. Second, by [21], Ex. 19.1.11(d), p. 378, we have that the

cycle map of a Grassmann, or more generally a flag, bundle is an isomorphism if and only if the

cycle map of the base is so, which is precise the case of G× T .

4.2 Stable limit linear series.

In this section we define what stable limit linear series are, and construct their moduli space

as that of torus fixed points in a certain moduli space of genus-0 stable maps to Hr
d(X). After

this, we explain the connection with level-δ limit linear series.

We sketch now briefly the contents of this section. In the first subsection, we introduce the

notion of a stable limit linear series and the construction of its functor. This new definition is

apparently artificial, although will make sense later on.

In the second subsection, we will be concerned with the study the stable maps from genus

zero curves to the scheme Hr
d(X), which parameterizes generalized linear series (briefly, gls) on

X along of a chain T of the its relation to a family of gls. Loosely speaking, this relation is

the translation from the discrete concept: of level-δ exact points, to the continuous concept: of

fixed stable maps by of the torus action.

Here the Ossermann exact points has attached a special homological classes which will deter-

mine, in some sense, the type all level-δ exact. Finally, in the third subsection we present the

equivalence between the two functors and will be proved that the functor the fixed stable maps

is coarsely represented by a projective scheme M0(H
r
d(X), β)C

∗
.

4.2.1 The functor of stable limit linear series.

Follow the notation used in Sections 4.1.2 and 4.1.1. We will define a special type of families of

linear series over X.

Definition 4.8. Let B be an algebraic scheme and T a chain of d+ 1 projective lines. A family

of chain maps to T parametrized by B, denoted (π : S → B,µ : S → T ), consists of:

1. a family of chains (π : S → B, 0,∞), that is, a family of curves π : S → B such that the

fiber Sb over each geometric point b ∈ B is a chain of projective lines.

2. a morphism µ : S → T such that it contracts to T , i.e., for every b ∈ B, we have

µb∗[Sb] = [T ].
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4 Stable limit linear series

Consider the family of twisters F on X × T/T constructed in Remark 4.1.1. Let B be an

algebraic scheme, and C := (π : S → B,µ : S → T ) be a family of chain maps to T parametrized

by B. Let L be an invertible sheaf on X × B of (relative) multidegree (d, 0) over B. From the

diagram

S
π
��

µ
// T

B,

we have the diagram below:

X × S
(id,π)

yy

pS
��

(id,µ)

%%

X ×B S X × T,

(4.8)

where pS is the projection. We will call the sheaf

L(C) := L� F = (id, π)∗L ⊗ (id, µ)∗F

on X × S the family of twists of L along the family of chain maps C.

Definition 4.9. A family of generalized linear series of degree d and dimension r over X consists

of the following data:

1. a family of chain maps C := (π : S → B,µ : S → T );

2. an invertible sheaf L on X ×B of relative multidegree (d, 0) over B;

3. a family V ⊆ pS∗L(C) of linear series of dimension r over X along S of sections of L(C).

Two families (L,V) and (L′,V ′) along the same family of chain maps C are said to be equivalent

if there is an invertible sheaf Q on S and an isomorphism L(C) ∼= L′(C) ⊗ p∗SQ inducing an

isomorphism V ∼= V ′ ⊗Q.

When B is a point, the family becomes a single generalized linear series. And, from the

definition, a family (L,V) along a family of chain maps (π : S → B,µ : S → T ) gives rise to a

generalized linear series (Lb,Vb) along the chain map (Sb, , µb : Sb → T ) for each geometric point

b ∈ B.

A family of generalized linear series (L,V) along a chain map (S, µ : S → T ) is called

everywhere nonconstant if, for every component C of S contracted to a point t ∈ T , the vector

subspaces Vs ⊆ H0(X,L ⊗ Ft) vary as s ∈ C.

There is one extra property we need to address, namely we would like our family of generalized

linear series to be as “locally constant” as the family of twisters F is.

Indeed, recall that for any i and any t ∈ T ∗i , we have that F|X×t ∼= OX(−i, i) and F|X×T ∗i ∼=
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4 Stable limit linear series

F|X×t⊗OT ∗i . Moreover, recall that, choosing coordinates (a : b) for Ti such that Ni corresponds

to (0 : 1) and Ni+1 to (1 : 0), we have that FX×{(a:b)} = Ker(ρ(a, b)), where ρ(a : b) is the

composition below:

OY (−iP )⊕OZ(iP ) //

ρ(a,b)

''

OP ⊕OP
(a,b)

// OP .

Thus, the natural inclusions OY (−iP )⊕OZ(iP ) ⊆ OY ⊕OZ(dP ) for each i = 0, . . . , d give rise

to a natural inclusion of sheaves on X × T :

F ⊆ (OY ⊕OZ(dP ))⊗OT ⊆ OY×T ⊕OZ×T (dP × T ). (4.9)

Consequently, if L is an invertible sheaf on X with degree d on Y and 0 on Z, we have that

L� F := p∗L⊗F ⊆ (LY ⊕ LZ(dp))⊗OT , (4.10)

where p : X×T → T is the projection. More precisely, for each i and t ∈ Ti, we have L⊗F|X×t ⊆
Li|Y ⊕ Li|Z , with Li|Y := L|Y (−iP ) and Li|Z := L|Z(iP ).

Now, there is a natural action of the torus T on each Ti, fixing Ni and Ni+1, namely c ∗ (a :

b) = (ca : b). (As we will be interested in the orbits of lifts of this action to a certain space over

T , the action described above or c ∗ (a : b) = (a : cb) is the same for us.) We wish to lift this

action to one on F and consequently, and most important for us, on the spaces of sections of

families of twists of invertible sheaves over X. The next paragraphs illustrate how the lifting

works. All ideas share the spirit of G-linearizations; see [20], Section 3, p. 30.

The actions of T on each Ti, letting Ni and Ni+1 fixed, can be assembled together in an action

σ : T×T → T . We lift it trivially to the action σX := (idX×σ) on X×T . We claim that there is

an isomorphism σ∗XF ∼= p∗2,XF , where p2,X : T×X×T → X×T is the projection. In other words,

for each t ∈ T and c ∈ T, there is a natural isomorphism Fc∗t ∼= Ft. Indeed, if t = (a : b) ∈ Ti,
then Fc∗t = Ker(ρ(ca, b)), whereas Ft = Ker(ρ(a, b)). Since ρ(ca, b) = ρ(a, b)(c, 1), it follows

that Ft = (c, 1)Fc∗t, where (c, 1) is the endomorphism of OY ⊕OZ(dP ) indicated. Furthermore,

since

Ft = (c1, 1)Fc1∗t = (c1, 1)(c2, 1)Fc2c1∗t = (c1c2, 1)Fc1c2∗t,

the cocycle condition is satisfied; see [20], §3 Def. 1.6.

We are now in a position to furnish the last property the stable limit linear series we are

interested in must satisfy. Let C := (π : S → B,µ : S → T ) be a family of chain maps to T

parametrized by an algebraic scheme B. An automorphism of C is an automorphism g : S → S
such that µ ◦ g = f ◦ µ for an automorphism f : T → T fixing N0 and Nd+1.

Notice that any automorphism f : T → T , fixing N0 and Nd+1, fixes all the nodes Ni, and

restricts to an automorphism of Ti for each i. Thus, for each i there is c ∈ T such that f(t) = c∗t
for each t ∈ Ti.
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4 Stable limit linear series

Definition 4.10. Let (L,V) be a family of continuous limit linear series along a family of

chain maps C = (π : S → B,µ : S → T ). We say that (L,V) is locally constant if for each

automorphism g : S → S of C and each s ∈ S, letting b := π(s) and t := µ(s), and c ∈ T such

that µ(g(s)) = c ∗ t, the following diagram commutes:

Vg(s)
∼=
��

� � // H0(X,Lb ⊗F|c∗t)

∼=
��

� � // H0(X,Lb|Y ⊕ Lb|Z(dp))

(c,1)
��

Vs �
�

// H0(X,Lb ⊗F|t) �
�

// H0(X,Lb|Y ⊕ Lb|Z(dp))

.

Furthermore, (L,V) is called a family of stable limit linear series if it is locally constant but

everywhere nonconstant.

We can finally define the functor we are interested in:

Definition 4.11. Let X be the curve obtained as the union of two smooth curves Y and Z

meeting transversally at a unique point P . Let T be the chain of d+ 1 rational smooth curves

T0, . . . , Td. Let F be the sheaf of twisters on X×T/T . Define the contravariant functor of stable

limit linear series of degree d and dimension r on X:

Gr
d(X) : {Schemes} −→ {Sets}

B 7→ Gr
d(X)(B)

as the functor that associates to each scheme B the set Gr
d(X)(B) of the following data:

1. an invertible sheaf L on X ×B of relative multidegree (d, 0) over B;

2. a family (π : S → B,µ : S → T ) of chain maps to T parametrized by B.

3. a locally free subsheaf V ⊆ L(C) of constant rank r + 1 of the family L(C) = L � F of

twists of L along C,

such that (L,V) is a family of stable limit linear series.

We will see in the next subsections that stable limit linear series can be interpreted as torus

fixed stable maps from genus-0 curves to Hr
d(X) whose images lie on a certain homology class

β. This will give us the representability of Gr
d(X).

4.2.2 Stable Maps to Hr
d(X) and their moduli space.

Our main objective is to define a suitable functor M0(H
r
d(X), β)C

∗
. Specifically, we will define

a certain class β ∈ H2(H
r
d(X),Z) and study the stable maps invariant by a certain torus action

from genus-0 curves to Hr
d(X) whose images lie in β.

Recall that Hr
d(X) = Grass

Pic
(d,0)
X ×T (r + 1, u∗(L� F)), where:
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4 Stable limit linear series

1. Pic
(d,0)
X is the component of the Picard scheme of X parameterizing invertible sheaves of

degree d on Y and 0 on Z;

2. L is the Poincaré sheaf X × Pic
(d,0)
X ;

3. F is the sheaf of twisters on X × T/T ;

4. L�F := q∗L⊗p∗F , where p : X×Pic
(d,0)
X ×T → X×T and q : X×Pic

(d,0)
X ×T → X×Pic

(d,0)
X

are the projections;

5. and u : X × Pic
(d,0)
X × T → Pic

(d,0)
X × T is the projection.

Let π : Hr
d(X)→ Pic

(d,0)
X × T denote the structure map.

Our first results shows that all morphisms from a nodal genus-0 curve to Hr
d(X) factors

through the subscheme Hr
d(X,L) for a certain L ∈ Pic

(d,0)
X , where Hr

d(X,L) := π−1({L} × T ).

Lemma 4.12. Let S be a genus-0 nodal curve and f : S → Hr
d(X) a morphism. Then there

exists L ∈ Pic
(d,0)
X such that f factors thorugh Hr

d(X,L).

Proof 4.13. The statement follows from the fact that any morphism from P1 to an Abelian

variety is constant, by [35], Prop. 3.9, p. 19, for instance.

Our next proposition asserts that each Osserman exact limit linear series g = (L, V0, . . . , Vd)

of degree d and dimension r defines a section of Hr
d(X,L)/T . More generally, we will see that

an exact level-δ limit linear series of degree d and dimension r gives rise to a map from a chain

S of dδ + 1 smooth rational curves to Hr
d(X) whose composition with the map to T contracts

all the components of S but the (iδ + 1)-th, for i = 0, . . . , d. Loosely speaking, the “discrete”

notion of limit linear series that has been the standard so far will be replaced by a “continuous”

one.

Proposition 4.14. To each Osserman exact limit linear series g = (L, V0, . . . , Vd) over X, there

corresponds a section fg : T → Hr
d(X,L) of Hr

d(X,L)/T such that, for every i and t ∈ T ∗i , we

have fg(t) = (Li, Vi), where Li is the invertible sheaf on X whose restrictions to Y and Z are

L|Y (−iP ) and L|Z(iP ).

Proof 4.15. Recall that, from the construction of F , for each i = 0, . . . , d we have

L� F|X×{(a:b)} = Ker (ψi(a, b) : Li|Y ⊕ Li|Z → OP ) ,

where Li is an invertible sheaf on X satisfying Li|Y = L|Y (−iP ) and Li|Z = L|Z(iP ), and

ψ(a, b) is the composition of fixed isomorphisms L|Y (−iP )|P ∼= OP and L|Z(iP )|P ∼= OP with

(a, b) : O2
P → OP . It follows that

L� F|X×T ∗i ∼= Li ⊗OT ∗i , (4.11)
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4 Stable limit linear series

whereas L � F|X×{(0:1)} ∼= Li|Y ⊕ Li−1|Z and L � F|X×{(1:0)} ∼= Li+1|Y ⊕ Li|Z . In particular,

L� F|X×Ti ⊂ (Li|Y ⊕ Li|Z)⊗OTi .
Thus, given g we may construct a locally free subsheaf V∗i of u∗(L�F)|T ∗i of rank r+1, where

u : X × T → T is the projection, as the image of

Vi ⊗OT ∗i ⊆ H
0(X,Li)⊗OT ∗i ∼= u∗(Li ⊗OT )|T ∗i

under the isomorphism induced by (4.11).

Another way of putting this is by viewing Vi as a subspace of H0(Y,Li|Y )⊕H0(Z,Li|Z) and

u∗(L � F)|T ∗i as a subsheaf of (H0(Y,Li|Y ) ⊕H0(Z,Li|Z)) ⊗ OT ∗i . Then V∗i ⊆ (H0(Y, Li|Y ) ⊕
H0(Z,Li|Z))⊗OT ∗i in such a way that V∗i |(a:b) = (b, a)Vi for each (a : b) ∈ T ∗i .

The next lemma describes what happens with the V∗i at the boundary of T ∗i in Ti.

Lemma 4.16.

lim
a→0

(1, a)Vi = Vi|Y ⊕ V Y,0
i (4.12)

and

lim
b→0

(b, 1)Vi = V Z,0
i ⊕ Vi|Z (4.13)

Proof 4.17 (proof Lemma 4.16). Recall that we have the decomposition Vi = V Z,0
i ⊕V Y,0

i ⊕V L
i ,

where V Z,0
i ⊆ Vi|Y and V Y,0

i ⊆ Vi|Z are, respectively, the kernels of restriction maps Vi → Vi|Z
and Vi → Vi|Y , and V L

i ⊂ Vi|Y ⊕Vi|Z ⊆ VY (−ip)⊕VZ(−(d−i)p) is the space of linked vectors, the

sections glued under conditions of vanishing at the node P . Then (b, a)Vi = (b, a)V Z,0
i ⊕ (b, a) ·

V Y,0
i ⊕ (b, a)V L

i . Now, (b, a)V Z,0
i = bV Z,0

i = V Z,0
i and (b, a)V Y,0

i = aV Y,0
i = V Y,0

i for ab 6= 0, and

thus lim
a→0

(1, a)Vi ⊃ V Z,0
i and lim

a→0
(1, a)Vi ⊃ V Y,0

i . On the other hand, lim
a→0

(1, a)V L
i = (1, 0)V L

i .

Since (1, 0)V L
i ⊕ V

Z,0
i = Vi|Y , Equation (4.12) follows. A similar argument establishes (4.13)

We return now to the proof of Proposition 4.14. By hypothesis, g is exact. Thus, it follows

from Lemma 4.16 that

lim
b→0

(b, 1)Vi = lim
a→0

(1, a)Vi+1.

In fact, exactness of g means exactness of

Vi
ϕi−−−−→ Vi+1

ϕi−−−−→ Vi
ϕi−−−−→ Vi+1,

which is equivalent to the equalities V Y,0
i+1 = Vi|Z and V Z,0

i = Vi+1|Y . In other words,

lim
t→Ni+1

V∗i |t = lim
t→Ni+1

V∗i+1|t.

We may thus put together all the extensions Vi of V∗i as subsheaves of (H0(Y, Li|Y ) ⊕
H0(Z,Li|Z))⊗OTi , and hence of u∗(L� F)|Ti to get a locally free subsheaf V of u∗(L� F) in

such a way that (L� F ,V) is a family of linear series parameterized by T .
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4 Stable limit linear series

Finally, it follows from the construction of Hr
d(X) that (L�F ,V) corresponds to a morphism

fg : T → Hr
d(X,L), which, by its very construction, is a section of Hr

d(X,L)/T such that

fg(t) = (Li, Vi) for each t ∈ T ∗i and each i = 0, . . . , d.

Proposition 4.18. To each level-δ exact limit linear series g = (L, V0, . . . , Viδ+j , . . . , Vdδ) there

corresponds a morphism fg : S → Hr
d(X,L), where S is a chain S0, . . . , Siδ+j , . . . , Sdδ of rational

smooth curves, such that

1. (S, µ : S → T ) is a chain map to T , contracting each Siδ+j for j > 0, where µ is the

composition of fg with the natural map Hr
d(X,L)→ T ;

2. For each i and j, and each s ∈ S∗iδ+j, we have fg(s) = (Liδ+j , Viδ+j), where Liδ+j is the

invertible sheaf on X whose restrictions to Y and Z are L|Y (−iP ) and L|Z(iP ) if j = 0

or the sheaf L|Y (−iP )⊕ L|Z((i− 1)P ) if j > 0.

Proof 4.19. The proof is similar to that of Proposition 4.14.

Proposition 4.20. Under the hypotheses of Proposition 4.14 the map fg : T → Hr
d(X,L) cor-

responds to a stable limit linear series (L,V) along the trivial chain map (T, id : T → T ).

Conversely, if (L,V) is a nonconstant, locally constant generalized linear series along the trivial

chain map (T, id : T → T ), then it gives rise to an Osserman exact limit linear series.

Proof 4.21. Indeed, by the proof of Proposition 4.14, the map fg : T → Hr
d(X,L) corresponds

to a generalized linear series (L,V) along the trivial chain map (T, id : T → T ). Since fg is a

section of Hr
d(X,L)→ T , the generalized linear series is everywhere nonconstant. Moreover, it

is locally constant, thus stable.

Conversely, choose ti ∈ T ∗i for each i = 0, . . . , d, and set

Vi := V|ti ⊆ H0(X,L⊗F|ti).

Notice that L ⊗ F|ti) ∼= Li for each i = 0, . . . , d, where Li is the invertible sheaf on X whose

restrictions to Y and Z are L|Y (−iP ) and L|Z(iP ).

Furthermore, since (L,V) is locally constant, putting coordinates on each Ti, for i = 0, . . . , d,

such that Ni, ti and Ni+1 correspond to (0 : 1), (1 : 1) and (1 : 0), respectively, it follows that

V|(a:b) = (b, a)Vi for each a, b ∈ C∗. Thus, since the limit of V|t as t tends to Ni+1 is the same,

whether t ∈ Ti or t ∈ Ti+1, it follows from Lemma 4.16 that

Vi+1|Y ⊕ V Y,0
i+1 = V Z,0

i ⊕ Vi|Z ,

or equivalently, V Z,0
i = Vi+1|Y and V Y,0

i+1 = Vi|Z . Thus g := (L, V0, . . . , Vd) is an Osserman exact

limit linear series.

Remark 4.22. Regarding Proposition 4.18, the map fg : S → Hr
d(X,L) corresponds to a genera-

lized linear series (L,V) along the chain map (S, µ : S → T ), which is also locally constant, but

may fail to be everywhere nonconstant.
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We want now to define β ∈ H2(H
r
d(X)) as the class of the image of a map fg corresponding to

an Osserman exact limit linear series, if one such limit linear series exists. By the very definition

of fg, it is clear that fg ∈M0(H
r
d(X), β)C

∗
.

The aim of the following results is to show that every f ∈ M0(H
r
d(X), β)C

∗
, where the class

β corresponds to the Osserman “type,” and the invariance to the property of being “locally

constant,” corresponds to a stable limit linear series over X.

Our first step is to describe the class β ∈ H2(H
r
d(X),Z).

So, let β := fg∗[T ], where fg : T → Hr
d(X) is the map arising from an Osserman exact limit

linear series g = (L, V0, . . . , Vd). Then fg(T ) ⊆ Hr
d(X,L). Now, fg corresponds to a family of

linear series of the form (L� F ,V). Let u : X × T → T denote the projection. Then

V ⊆ u∗(L� F) ⊆
(
H0(L|Y )⊕H0(L|Z(dP ))

)
⊗OT .

Letting W := H0(L|Y )⊕H0(L|Z(dP )) and G := Grass(r + 1,W ), we get an embedding,

Hr
d(X,L) = GrassT (r + 1, u∗(L� F))

ι
↪→ GrassT (r + 1,W ⊗OT ) = G× T.

By Example 4.1 and Remark 4.7, letting p1 and p2 denote the projections of G × T onto the

indicated factors, we have that p2∗ι∗β =
∑
ai[Ti], and p1∗ι∗β = bγ, where the ai and b are

integers, and γ is the dual class to σ1 on G, that is σ1 · γ = 1.

Lemma 4.23. Let β := fg∗[T ], where g is an Osserman exact limit linear series. Then

1. p2∗ι∗β = [T ].

2. p1∗ι∗β = (r + 1)γ.

Proof 4.24. For the first statement, recall that fg factors through Hr
d(X,L) for a certain L,

and that πLfg = idT , where πL : Hr
d(X,L)→ T is the natural map, thus πL = p2ι. Thus

p2∗ι∗β = p2∗ι∗fg∗[T ] = [T ].

As for the second statement, set fi := fg|Ti and βi := fi∗[Ti]. Writing bi := deg(p1∗ι∗βi), it

remains to show that
∑
bi = r + 1.

Claim: bi = dim(V L
i ) for i = 0, . . . , d

The second statement follows from the claim and Lemma 3.13(3), Chapter 3, as that lemma

says that if g is an exact lls then
∑

i dim(V L
i ) = r + 1.

Proof (Claim): Write g = (L, V0, . . . , Vd). Choose coordinates (a : b) on each Ti such that

Ni corresponds to (0 : 1) and Ni+1 to (1 : 0). Then p1ιfi is the map that sends (a : b), for

ab 6= 0, to (b, a)Vi, where Vi ∈ G under the embedding

Vi ⊂ Vi|Y ⊕ Vi|Z ⊂ VY (−iP )⊕ VZ(−(d− i)P ) ⊂ H0(X,LY )⊕H0(X,LZ(dP )).
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Choose a basis of W := H0(X,LY ) ⊕H0(X,LZ(dP )), respecting the decomposition. For each

subset I of this basis, let nI,Y be the number of vectors in H0(X,L|Y ) and nI,Z the number of

those in H0(X,LZ(dP )). For each I with |I| = r+ 1, let pI be the Plücker coordinate of V and

pI(c) that of (c, 1)V . Then pI(c) = cnI,Y pI .

Now, from our study of invariant curves by our torus action in Subsection 4.1.2, we have two

cases:

• p1ιfi(Ti) consists of torus fixed points

• p1ιfi(Ti) is an invariant curve connecting two torus fixed points.

In the first case, by Lemma 4.16, we conclude that Vi = V Z,0
i ⊕ Vi|Z = V Y,0

i ⊕ Vi|Y , which is

only possible when Vi = V Y,0
i ⊕ V Z,0

i , whence dim(V L
i ) = 0. So (b, a)Vi = bV Y,0

i ⊕ aV Z,0
i = Vi.

It follows that p1ιfi is constant, or equivalently, that bi = 0.

In the second case, let Vi,0 and Vi,∞ be the two fixed points, such that the rational curve

(p1ιfi)(Ti) passes through them. Then (p1ιfi)(Ti) can be identified with the projective fixed

line Γi in G that links Vi,0 and Vi,∞. Clearly, by Lemma 4.16, Vi,0 = V Z,0
i ⊕ Vi|Z and Vi,∞ =

V Y,0
i ⊕ Vi|Y , and these are also the unique branch points of p1ιfi : Ti → Γi. Hence, the degree

of di := (p1ιfi)(Ti) is equal to nI0,Y = nI∞,Y the sum of ramification index on Vi,0 and Vi,∞,

respectively. Hence,

nI0,Y = dim
Vi|Z
V Y,0
i

= dimVi|Z − dimV Y,0
i = dimV L

i = dimVi|Y − dimV Z,0
i = dim

Vi|Y
V Z,0
i

= nI∞,Y ,

where the equalities follow from the exactness of g, since Vi|Z = V Y,0
i+1
∼= V Y,0

i ⊕ V L
i and Vi|Y =

V Z,0
i−1
∼= V Z,0

i ⊕ V L
i .

To follow, it is only necessary to recall from β ∈ H2(H
r
d(X),Z) the equalities in Lemma 4.23,

and the fact that ν∗β = 0, where ν : Hr
d(X)→ Pic

(d,0)
X is the natural map.

Our next goal is to prove that each point in M0,2(H
r
d(X), β)C

∗
is represented by a stable

map f : S → Hr
d(X) where S is necessarily a chain. So, forcing C∗-invariance and the class

β determines strongly the type of our stables maps. Intuitively, by the discussion so far, this

moduli space is a “good candidate” for the moduli space parametrizing stable limit linear series.

Theorem 4.25. Any point of M0(H
r
d(X), β)C

∗
is represented by a map f : S → Hr

d(X) where

S is a chain of smooth rational curves contracting to T under the natural map Hr
d(X)→ T .

Proof 4.26. Let us recall first the various objects and notions involved in the above statement.

According to Lemma 4.12, we may replace Hr
d(X) by H := GrassT (r + 1, q∗(L� F)), where L

is an invertible sheaf of multidegree (d, 0) on X, and q : X × T → T is the projection. Since

L � F ↪→ (LY ⊕ LZ) ⊗ OT , with LY := L|Y and LZ := L(dP )|Z , we have a natural inclusion

ι : H ↪→ G× T , where G := Grass(r + 1,W ), for W := H0(LY )⊕H0(LZ). More precisely,

L� F|X×Ti ↪→ (LY (−iP )⊕ LZ((i− d)P ))⊗OTi ,
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and thus

ι(H) ⊆
d⋃
i=0

Gi × Ti,

where Gi := Grass(r + 1,Wi), for Wi := H0(LY (−iP ))⊕H0(LZ((i− d)P )).

Thus, we may view M0(H,β) as the closed subfunctor of M0(G × T, ι∗β) parameterizing

stable maps factoring through H. By hypothesis,

p1∗ι∗β = (r + 1)γ p2∗ι∗β = [T ], (4.14)

where p1, p2 are the projections of G × T onto the indicated factors, and γ is the positive

generator of H2(G,Z).

Now, the torus action on H can be described as:

C∗ ×H −→ H

(c, (V, t)) 7→ (V c, c ? t),
(4.15)

where, for t ∈ Ti, the space V c is defined as the image of V ⊂Wi under the action:

V

��

� � //Wi

��

H0(LY (−iP ))⊕H0(LZ((i− d)P ))

(c,1)
��

V c := c(V ) �
�

//Wi H0(LY (−iP ))⊕H0(LZ((i− d)P ))

. (4.16)

Since c∗β = β, it induces naturally an action on the space of stable maps:

C∗ ×M0(H,β) −→ M0(H,β)

(c, [f : S → H]) 7→ [f c : S → H
c→ H].

(4.17)

Recall that M0(H,β) parameterizes classes of maps modulo automorphisms of the source.

Therefore, to say that [f : S → H] is inM0(H,β)C
∗

means that there is an automorphism gc of

S such that f = f cgc for each c ∈ C∗.
Let [f : S → H] ∈M0(H,β)C

∗
. Using the inclusion ι : H ↪→ G×T , we can write f = (f1, f2) :

S → G× T .

The proof will be divided in 3 steps.

First Claim: S has d+1 components S0, . . . , Sd isomorphic to T0, . . . , Td under f2. For each

i = 0, . . . , d+ 1, let Ni−1,∞ (resp. Ni,0) be the point on Si−1 (resp. Si) mapped to Ni under f2.

Let ST := S0 ∪ · · · ∪ Sd and put S′T := S − ST . Then S′T consists of at most d + 2 connected

components S−1/2, S1/2, . . . , Sd+1/2, where Si−1/2, if nonempty, is collapsed by f2 and intersects

the rest of S only at Ni−1,∞ and Ni,0. For each i = 1, . . . , d, we have that Si−1/2 is nonempty

if and only if Ni−1,∞ 6= Ni,0, in which case there is a chain S0
i−1/2 ⊂ Si−1/2 of smooth rational

curves connecting Ni−1,∞ with Ni,0. Let S0 be the union of ST and the S0
i−1/2 for i = 1, . . . , d.
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Then S0 is a chain.

Proof 4.27 (proof first claim). By the sake of preciseness, we put S−1 := ∅ and Sd+1 := ∅. Since,

by our choice of β, we have f∗[S] = [T ], we conclude that there exist irreducible components

S0, . . . , Sd of S mapping to T0, . . . , Td via f2 with degree 1, the remaining components being

collapsed. Since [f ] is fixed by the torus action, and the action moves the points on T ∗i for each

i, it follows that each collapsed irreducible component collapses to a point among N0, . . . , Nd+1.

For each i = 0, . . . , d+1, let Si−1/2 ⊆ S′T be the union of the connected components of S′T which

are mapped to Ni under f2. As f2|Si is a map of degree 1 onto Ti for each i = 0, . . . , d, there is a

unique point on ST , lying exclusively on S0 (resp. Sd) mapped by f2 to N0 (resp. Nd+1). Then

S−1/2 and Sd+1/2 are connected, if nonempty. In addition, for each i = 1, . . . , d, there are at

most two points on ST that map to Ni, one on Si−1 and one on Si, and they coincide if and only

if Si−1 intersects Si, in which case the intersection only consists of that point. Clearly, Si−1/2

is empty if and only if Si−1 intersects Si and consists of at most two connected components

otherwise, one intersecting each point of ST mapped to Ni. However, since S is connected, in

this case Si−1/2 is connected.

The remaining statements are clear since, as S is nodal of genus 0, so are the Si−1/2.

Second Claim: Let C be an irreducible component of the chain S0. Let 0 and ∞ denote

its special points. Then f1(0) = V1,0 ⊕ V2,0 and f1(∞) = V1,∞ ⊕ V2,∞, where V1,0 and V1,∞

are subspaces of H0(LY ) and V2,0 and V2,∞ are subspaces of H0(LZ). Furthermore, dimV1,0 −
dimV1,∞ = dimV2,∞ − dimV2,0, and the difference is nonzero if and only f1(C) contains a

nonfixed point of G. In this case, the degree of f1|C : C → G is a nonzero multiple of the

absolute value of the difference.

Proof 4.28 (proof second claim). Since [f ] is fixed by the torus action, it follows that f1(C)

is invariant by the action of C∗ on G and that f1(0) and f1(∞) are fixed points by this action.

Then, as a consequence of our study of torus action in Subsection 4.1.2, the images f1(0) and

f1(∞) are as claimed, and either f1(C) consists of fixed points or is a fixed curve with a nonfixed

point. In the first case, since the fixed points are of the form V1⊕V2, for spaces V1 ⊆ H0(LY ) and

V2 ⊆ H0(LZ), it follows that f1(s) = [V1(s) ⊕ V2(s)] for V1(s) ⊆ H0(LY ) and V2(s) ⊆ H0(LZ)

varying algebraically with s ∈ C. Since Vi(s) depends algebraically on s, for i = 1, 2, it follows

that

dimV1,0 − dimV1,∞ = 0 = dimV2,∞ − dimV2,0.

In the second case, let V ∈ f1(C) be a nonfixed point. Then

f1(C) = {(c, 1)V/ c ∈ C∗}.

In this case, as in the proof of Lemma 4.23, there are two fixed points in f1(C), the limits of

(c, 1)V as c tends to 0 and ∞. Letting V |Y denote the image of the projection V → H0(LY ),

and V Y its kernel, and V |Z the image of the projection V → H0(LZ), and V Z its kernel, the
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limits are V |Y ⊕ V Y and V Z ⊕ V |Z . Of course, V Y $ V |Z and V Z $ V |Y , where the inclusions

are strict because V is nonfixed. Also,

dimV |Z − dimV Y = dimV − dimV Z − dimV Y = dimV |Y − dimV Z ,

is the degree of f1(C) in G under the Plücker embedding.

There are two cases now, either f1(0) = V |Y ⊕ V Y and f1(∞) = V Z ⊕ V |Z , or the other way

around. In any case, the claim is valid.

Claim Three: S0 = S.

Proof 4.29 (proof claim three). Let C1, . . . , Cm be the irreducible components of S0, ordered

in such a way that C1 = S0, Cd = Sd and Ci ∩ Cj 6= ∅ if and only if |i − j| ≤ 1. For each

i = 1, . . . ,m, let Qi,0 and Qi,∞ denote the special points of S0 on Ci, with Qi,0 on Ci−1 if i > 1.

Since f1(Qi,0) and f1(Qi,∞) are fixed points of G for i = 1, . . . ,m, we may write

f1(Qi,0) = V Y
i,0 ⊕ V Z

i,0 and f1(Qi,∞) = V Y
i,∞ ⊕ V Z

i,∞

for certain subspaces V Y
i,0 and V Y

i,∞ of H0(LY ) and V Z
i,0 and V Z

i,∞ of H0(LZ). It follows from

Claim 2 that the degree of f1(S
0) is at least

m∑
i=1

|dimV Y
i,0 − dimV Y

i,∞|.

Now, f1(Q1,0) is a subspace ofH0(LY )⊕H0(LZ(−(d+1)P ). Since LZ has degree d, it follows that

V Y
1,0 has dimension r+ 1. Analogously, we have that V Y

m,∞ has dimension 0. Since V Y
i,∞ = V Y

i+1,0

for i = 1, . . . ,m− 1, it follows that

m∑
i=1

|dimV Y
i,0 − dimV Y

i,∞| ≥ r + 1.

But, by our choice of β, the degree of the map f1 : S → G is exactly r + 1!

A number of consequences follow: First, all the connected components of S − S0 are collapsed

by f1 to points. Since they are also collapsed by f2, and f is stable, they must be stable curves.

But there is no stable 1-pointed genus-0 curve. So S = S0. Furthermore, either f1(Ci) is a

(fixed) point, or f1(Ci) is a curve containing a nonfixed point. The first case can only occur if

Ci is one of the Sj . If the second occurs, then f1 maps Ci isomorphically to f1(Ci) and f1(Ci)

has (nonzero) degree dimV Y
i,0 − dimV Y

i,∞.

4.2.3 Equivalence of functors and coarse representation.

This subsection will be divided in two parts. In the first part, it will be established an iso-

morphism between the functor of stable limit linear series of degree d and dimension r, denoted
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Gr
d(X) and defined in Subsection 4.2.1, and the functor of torus fixed stable maps from genus-0

curves to Hr
d(X) with homology class β, denoted M0 (Hr

d(X), β)C
∗

and defined in the last sub-

section. The second part is devoted to showing that M0 (Hr
d , β)C

∗
is coarsely represented by a

projective scheme.

We begin recalling the definitions of the functors Gr
d(X) andM0 (Hr

d(X), β)C
∗
. The first was

defined as the contravariant functor

Gr
d(X) : {Schemes} −→ {Sets}

B 7→ Gr
d(X)(B),

that associates to each scheme B the set Gr
d(X)(B) the following data:

1. an invertible sheaf L on X ×B of relative multidegree (d, 0) over B;

2. a family C = (π : S → B,µ : S → T ) of chain maps to T parametrized by B.

3. a locally free subsheaf V ⊆ L(C) of constant rank r + 1 of the family L(C) = L � F of

twists of L along C,

such that (L,V) is a family of stable limit linear series.

On the other hand, M0 (Hr
d(X), β)C

∗
was defined as the contravariant functor

M0(H
r
d(X), β)C

∗
: {Schemes} −→ {Sets}

B 7→ M0(H
r
d(X), β)(B),

that associates to each scheme B the setM0(H
r
d(X), β)C

∗
(B) of isomorphism classes of families

over B of stable maps from a family of genus-0 curves S/B to Hr
d(X), whose images represent

the class β, and which are fixed by the torus action; see Subsection 4.1.2. The class β is a

class satisfying the two conditions displayed in Lemma 4.23, plus the fact that ν∗β = 0, where

ν : Hr
d(X)→ Pic

(d,0)
X is the natural map.

Recall that Hr
d(X) := Grass

Pic
(d,0)
X ×T (r + 1,W) is the scheme parameterizing linear series

(I, V ), where I is any torsion-free, rank-1 sheaf on X of degree d whose restrictions to Y and Z,

modulo torsion, have degrees ranging from −1 to d, and V is any vector subspace of H0(X, I)

of dimension r + 1; see Section 4.1.

Proposition 4.30. The functors M0(H
r
d(X), β)C

∗
and Gr

d(X) are isomorphic.

Proof 4.31. In fact, for each scheme B the bijection between the setsM0(H
r
d(X), β)C

∗
(B) and

Gr
d(X)(B) is defined as follows: For each element in the first set, let (π : S → B, f : S → Hr

d(X))

be one of its representatives. By Theorem 4.25, the map π defines a family of chains of rational

smooth curves. Composing µ with the natural map Hr
d(X)→ T , we get a map µ : S → T such

that, by the properties of β, the pair C = (π : S → B,µ : S → T ) is a family of chain maps to T

parametrized by B. Finally, Hr
d(X) comes with a family of linear series on X ×Hr

d(X)/Hr
d(X).
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Pulling it back to X ×S/S, we get a family (L(C),V) of linear series of sections of an invertible

sheaf which is precisely L(C), where L is the pullback to X × S of the universal invertible

sheaf on X × Pic
(d,0)
X under the map induced by the composition of f with the natural map

ν : Hr
d(X) → Pic

(d,0)
X . Finally, the stability of (π : S → B, f : S → Hr

d(X)) is equivalent to the

fact that (L,V) is everywhere nonconstant, and the fact that (π : S → B, f : S → Hr
d(X)) is

torus fixed is equivalent to the fact that (L,V) is locally constant. Thus (L,V) is stable, and

hence defines an element of Gr
d(X)(B).

Conversely, let C = (π : S → B,µ : S → T ) and (L(C),V) be a family of stable limit linear

series. On one hand, by the existence of a family of generalized linear series (L,V) and the

Universal property of Hr
d(X) we obtain that a unique map f : S → Hr

d(X). On the other

hand, the fact that (L(C),V) is locally constant and everywhere nonconstant is equivalent to

the fact of the map f : S → Hr
d(X) is a torus fixed and stable. Thus, the representative of

(π : S → B, f : S → Hr
d(X)) is the searched element of M0(H

r
d(X), β)C

∗
(B).

Theorem 4.32. There exists a projective scheme M0(H
r
d(X), β)C

∗
coarsely representing the

functor M0(H
r
d(X), β)C

∗
.

Proof 4.33. First, since the algebraic scheme Hr
d(X) is projective, by Theorem 4.2, we have

that M0(H
r
d(X), β) is coarsely represented by a projective scheme, Z := M0(H

r
d(X), β). From

the embedding Hr
d(X)

ι
↪→ G× T × Pic

(d,0)
X described in Subsection 4.1.1, where

G := Grass(r + 1,W1 ⊕W2),

we obtain, by Proposition 4.4, a closed embedding

Z ↪→M0(G× T × Pic
(d,0)
X , ι∗β). (4.18)

Now, Lemma 4.12 yields a natural isomorphism

M0(G× T × Pic
(d,0)
X , ι∗β) ∼= M0(G× T, β′)× Pic

(d,0)
X , (4.19)

where β′ is the direct image of ι∗β under the projection, since Pic
(d,0)
X = Pic(d−i)(Y )×Pic(i)(Z)

is an Abelian variety.

On the other hand, we may embed G × T ↪→ G × Pd+1 as a C∗-invariant closed subscheme,

where we define the torus action on G×Pd+1 by c ∗ (V1, V2) := (A1
cV1, A

2
cV2). Here V1 denotes a

(r + 1)-dimensional subspace of W1 ⊕W2 and V2 a one-dimensional subspace of Cd+2. Besides,
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A1
c and A2

c are the C-linear transformations represented by the matrices, respectively:

A1
c :=



c 0 · · · · · · 0

0 c · · · · · · 0
...

...
. . . · · ·

...

0 0 · · · 1 0

0 0 · · · · · · 1


A2
c :=



1 0 · · · · · · 0

0 c · · · · · · 0
...

...
. . . · · ·

...

0 0 · · · cd 0

0 0 · · · · · · cd+1


Finally, T ⊂ Pd+1 is the chain of d + 1 lines T0, . . . , Td, where Ti is the line represented by the

2-dimensional subspace of Cd+2 generated by ei and ei+1, where e0, . . . , ed+1 is the canonical

basis of Cd+2; see Subsection 4.1.2. A consequence of this embedding is the lemma below, which

will be proved later:

Lemma 4.34. Every point z ∈ Z has a torus invariant affine open neighborhood.

Now, for each scheme B, the set F (B) := M0(H
r
d(X), β)C

∗
(B) is identified as the subset of

HomZ(B) of maps f : B → Z such that the following diagram

C∗ × Z
σ // Z

C∗ ×B p2
//

(id,f)

OO

B,

f

OO
(4.20)

is commutative, where σ denotes the action. Thus, to prove that F is coarsely representable,

by [41] Prop. E.18, p. 382, it suffices to show that the functor F satisfies the following two

properties:

1. F is a sheaf (in the Zariski topology).

2. F admits a covering by representable open functors.

The first property is easily checked. In fact, we need to prove that the sequence of sets on top

below is exact, for each open covering B = ∪iBi:

F (B) //
� _

��

ΠiF (Bi)� _

��

//
// Πi,jF (Bi ∩Bj)� _

��

0 // HomZ(B) // ΠiHomZ(Bi)
//
// Πi,jHomZ(Bi ∩Bj)

.

(The commutativity of the above diagram follows from the definition of F .) Now, given (fi : Bi →
Z) ∈ ΠiF (Bi) in the kernel of the second map at the top of the above diagram, since HomZ(·)
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is a sheaf, it follows that there exists a unique f : B → Z such that f |Bi = fi. By assumption,

C∗ × Z
σ // Z

C∗ ×Bi
p2
//

(id,fi)

OO

Bi

fi

OO
,

commutes, that is, f ◦ p2|C∗×Bi = fi ◦ p2 = σ(id, fi) = σ(id, f)|C∗×Bi for each i, which implies

that f ◦ p2 = σ(id, f), i.e., f ∈ F (B).

As for the second property, since F is a sheaf, by [41] Lemma E.19, p. 382 , we may restrict

ourselves to the category of affine schemes. On the other hand, by Lemma 4.34, we may replace

Z by an affine scheme. Thus, it suffices to prove, for a C-algebra A over which there is a co-action

σ : A→ A[t, t−1], that there is a universal quotient h : A→ B:

A

h

��

σ // A[t, t−1]

h′

��

B
ι // B[t, t−1],

(4.21)

where ι is the natural inclusion and h′ is the algebra homomorphism extending h, that is, such

that h′(t) = t. Equivalently, we would like to show that there exists an ideal I ⊂ A such that

A

q

��

σ // A[t, t−1]

q′

��

A/I
ι // A/I[t, t−1],

(4.22)

commutes, and such that for any morphism h : A → B making (4.21) commute, we have that

I ⊂ Ker(h).

In fact, from the commutativity of Diagram (4.22) we must have

a

��

//
∑
i
ait

i

��

a
ι //
∑
i
ait

i

, (4.23)

and since ι is the natural inclusion, the sum
∑
i
ait

i should be equal to a0 = a. Thus, it suffices

to let

I := (ai | i 6= 0, a ∈ A) ⊂ A,

the ideal generated by the nonconstant coefficients of σ(a). It is easy to check that for any h

making (4.21) commute, we have I ⊂ Ker(h). This finishes the proof of the theorem.
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Proof 4.35. (of Lemma 4.34) Using the isomorphism (4.19), and the fact that the C∗-action

on Pic(0,d) is trivial, we may replace Z by M0(G× T, β′). Furthermore, using the embedding of

G× T in G× Pd+1, we may replace the former by the latter. Now, since G× Pd+1 is a convex

variety, M0(G× Pd+1) is normal. Thus the lemma is a consequence of [42], Cor. 2.

4.3 Comparison with Gr,exact
d,δ (X).

From the Theorem 4.32, we have the set bijection

φ(Spec(C)) :M0(H
r
d(X), β)C

∗
(Spec(C)) −→ Hom

(
Spec(C),M0(H

r
d(X), β)C

∗
)
, (4.24)

where φ is a natural transformation of the functors determined by Grd(X)St := M0(H
r
d(X), β)C

∗
.

Our next result, may be paraphrased saying that the projective (coarse) moduli space Z

parametrizes the limit linear series in all levels on the curve X. Precisely,

Theorem 4.36. For all δ ≥ 1, exists a natural map

Ψδ : Gr,exactd,δ (X) −→ Grd(X)St,

whose union run on δ of the left side is equal to (set-theoretically) Grd(X)St.

Proof 4.37. According to Proposition 4.18 and the proof of Theorem 4.25, each g ∈ Gr,Exactd,δ (X)

determines a unique class of [fg] ∈ Grd(X)st, for any δ. More precisely, from Remark 3.15(3) of

(3) we know that Gr,Exactd,δ (X) admits a covering by:

Gr,Exactd,δ (X;U) :=

{
g ∈ Gr,exactd,δ (X)|

∑
k∈U

Mk = r + 1

}
.

According to Proposition 4.18 and the proof of Theorem 4.25, each point in Gr,exactd,δ (X;U) cor-

respond to a unique point of [fg] ∈ Grd(X)st, whose chain source is indexed by U and corresponds

to non-collapsed components by fg2 and fg1 , which are the compositions of fg with the natural

projections to p2 : Hr
d(X)→ T and p1 : Hr

d(X)→ Grass(r + 1,W ).

Conversely, to each point of [f ] ∈ Grd(X)st we associate gf ∈ Gr,Exactd,δ (X) for some δ, by adding

the necessary P1 to get a chain of length dδ + 1. Recall that the class β and the torus action

determines the type of our stable maps.

It follows that, associated to each stable limit linear series [f ] ∈ Grd(X)st we have a subscheme

in the fiber of the degree d Abel map Ad as defined in 3: P(gf ) ∈ A−1d (L). In particular,

Corollary 4.38. For any g = (L, V0, . . . , Vd) ∈ Gr,Oss
d (X) there exist a stable limit linear series

[fg̃] ∈ Grd(X)st such that g̃ ∈ Gr,Exactd,δ (X) and ρ1,δ(g̃) = g for some δ and whose subscheme

associated in the fiber of the Abel map P(g̃f ) ∈ A−1d (L) has “correct” Hilbert polynomial, i.e.,

the Hilbert polynomial P (s, t) =
(
s+t+r
r

)
of the diagonal of Pr × Pr.
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Proof 4.39. In fact, by Proposition 3.16(2) in (3) there exists an exact level-δ lls g̃ ∈ Gr,Exactd,δ (X;U)

for some U 6= φ. By Theorem 4.36 above g̃ corresponds to [fg̃] a unique stable limit linear series

on X, which by the comments above, exactness and Theorem 3.19 in (3) the subscheme P(g̃f )

has Hilbert polynomial P (s, t) =
(
s+t+r
r

)
.

Notice that, since P(gf ) =
⋃
P(gf,k) we have that each class in Grd(X)st determines a unique

subscheme in the fiber of the Abel map Ad. In this sense, the projective scheme Grd(X)st is a

“good candidate” for resolving the (set-theoretically) map

P : Gr,Oss
d (X) 99K Hilb

(r+s+tr )
Ad

g 7→ P(g).

studied by Esteves–Osserman (see [18]).

80



Referências Bibliográficas
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