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“Meaningless! Meaning-
less!” says the Teacher.
“Everything is meaning-
less!” Not only was the
Teacher wise, but he also
imparted knowledge to the
people. He pondered and
searched out and set in or-
der many proverbs. The
Teacher searched to find
just the right words, and
what he wrote was upright
and true. The words of the
wise are like goads, their
collected sayings like firmly
embedded nails given by
one shepherd. Be warned,
my son, of anything in ad-
dition to them. Of mak-
ing many books there is
no end, and much study
wearies the body. Now
all has been heard; here is
the conclusion of the mat-
ter: Fear God and keep his
commandments, for this is
the duty of all mankind.
For God will bring every
deed into judgment, in-
cluding every hidden thing,
whether it is good or evil.

Ecclesiastes 12: 8-14.
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Introduction

This thesis is about compactified Jacobians of reducible nodal curves, and
addresses mainly three issues: the existence of an autoduality theorem for
reducible curves, the construction of degree-1 and degree-0 Abel maps in a
natural way and the existence of a theory of translations for compactified
Jacobians.

Concerning the first issue, let L be an invertible sheaf of degree 1 on a
projective, connected, reduced curve C. The classical Autoduality Theorem
says that: If C is smooth, the Abel map A : C → J0

C , given by P 7→
L ⊗IP , where IP is the sheaf of ideals of P , is well-defined and induces an
isomorphism A∗ : Pic0(J0

C) → J0
C which is independent of the choice of L ;

see [Mu65], Prop. 6.9, p. 118. We say that J0
C , the Jacobian of C, is autodual.

In a more general setting, when C has singularities, the Autoduality
Theorem was first proved in [EGK] for irreducible curves with at most double
points, where J0

C was replaced by its natural compactification J̄0
C , the moduli

space of degree-0 torsion-free rank-1 sheaves on C, constructed by D’Souza
[D’S] and Altman and Kleiman [AK80]. Later, Arinkin extended the theorem
to irreducible curves with at most planar singularities; see [A07], Thm. 1.3,
p. 1217. (Also, the autoduality isomorphism extends to compactifications,
as proved in [EK] and [A10].)

Facing the existence of these autoduality theorems for irreducible curves,
and given the importance of certain reducible curves, like the stable ones, it is
natural to wonder if autoduality also holds for reducible curves. In this thesis
we show autoduality when C has at most planar singularities and is treelike,
that is, its irreducible components meet transversely at disconnecting points
of C.

Compactified Jacobians of reducible curves are less understood and more
complex. For instance, they may contain more than one copy of J0

C . Never-
theless, Abel maps A : C → J̄0

C have been constructed when C is Gorenstein;
see [CCE], which extends [CE]. The map A and the compactified Jacobians
J̄0
C are easier to describe when C is treelike

Assume from now on until a new order that C is treelike, and let C1, ..., Cn
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be its irreducible components. For each n-tuple d = (d1, ..., dn) ∈ Zn, let
J̄dC be the scheme parameterizing simple torsion-free rank-1 sheaves on C of
multidegree d, and J̄diCi the scheme parameterizing torsion-free rank-1 sheaves

on Ci of degree di, for each i = 1, . . . , n. Let JdC ⊆ J̄dC and JdiCi ⊆ J̄diCi be
the open subschemes parameterizing invertible sheaves. Since C is treelike,
restricting to components of C, we have a natural isomorphism (see [E09],
Prop. 3.2, p. 172):

π̄d = (π̄d1 , . . . , π̄
d
n) : J̄dC −→ J̄d1

C1
× · · · × J̄dnCn .

As for Abel maps, they come in all sorts, but there is a common property
of those constructed so far that we explore. We say that a map A : C → J̄dC
is a decomposable Abel map if π̄djA|Ci is constant for i 6= j and Ai := π̄diA|Ci
is an Abel map for each integer i = 1, . . . , n, that is, there is a line bundle Li

over Ci such that Ai associates P to Li ⊗IP |Ci . We say that (L1, . . . ,Ln)
defines A.

Finally, we prove the Autoduality Theorem: If C is a treelike curve with
planar singularities, and A : C → J̄dC is a decomposable Abel map, the pull-

back A∗ : Pic0(J̄dC) → J0
C is an isomorphism which is independent of the

n-tuple (L1, . . . ,Ln) defining A.
The proof relies on the fact that the various pullbacks constitute a com-

mutative diagram

Pic0(J̄dC)
A∗−−−→ J0

Cy π0

y
Pic0(J̄d1

C1
)× · · · × Pic0(J̄dnCn)

(A∗1,...,A
∗
n)

−−−−−−→ J0
C1
× · · · × J0

Cn

where π0 is the restriction of π̄0 to J0
C , and the left vertical map is induced

by the isomorphism π̄d; see Proposition 50. Both vertical maps are isomor-
phisms. By Arinkin’s Autoduality Theorem, so is the bottom map. Hence,
the commutativity of the diagram yields that A∗ is also an isomorphism.

A generalization of the result obtained in this note has been recently made
available at [MRV] by Melo, Rapagnetta and Viviani, with an appendix by
López-Mart́ın. They state autoduality for any curve with planar singular-
ities. Their methods are technically more involved, following the approach
laid out by Arinkin, and their proof of autoduality is rather long, whereas
our methods and proof are quite simple. Given the interest in the subject
from people with different backgrounds, we believe that a simple approach
as ours, albeit for a special case, may be useful.
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The second issue is that of the construction of Abel maps in a natural
way. Let us be more precise. Let C be a projective, reduced, connected
curve. For each integer d ≥ 1, let C(d) be the d-th symmetric product of C,
that is, the quotient of Cd by the action of the d-th symmetric group, and
JdC its Jacobian, parameterizing isomorphism classes of invertible sheaves of
degree d on C.

If C is smooth, for each integer d ≥ 1 there is a natural map

AdC : Cd → JdC , (P1, ..., Pd) 7→ [m∗P1
⊗ · · · ⊗m∗Pd ], (1)

where m∗Pi denotes the dual sheaf of the ideal sheaf of Pi in C, which factors
through a map

A
(d)
C : C(d) → JdC ,

called the degree-d Abel map of C.
Abel maps of smooth curves are important because they encode much of

the geometry of C, since their fibers are the projectivized complete linear sys-

tems of C: For each invertible sheaf L of degree d on C, the fiber A
(d)
C

−1
(L )

is identified with P(H0(C,L )). Therefore, in order to study linear systems
of C, and thus the projective geometry of C, we may study the fibers of Abel
maps.

Given the importance of Abel maps of smooth curves, there is a reasonable
interest in constructing Abel maps for singular curves. But if C is singular,
the Abel map (1) is not defined at all points of C(d). More precisely, if Q ∈ C
is not a smooth point, the sheaf A(d)(Q,P2, ..., Pn) is not invertible, that is,
it is not in JdC . So, we face the question of how to construct Abel maps of C
in a natural way.

First, we need to find a “good target” for the Abel map, which leads us
to the problem of how to find a good compactification for the Jacobian. This
problem goes back at least to the work of Igusa’s [Igu56] and the notes by
Mumford and Mayer [Mu64], [May70].

In his thesis [D’S], D’Souza worked as well on the compactification prob-
lem, however, Altman and Kleiman [AK80] were who gave a good solution
for the case of families of geometrically integral curves. Their relative com-
pactification parametrizes torsion-free rank-1 sheaves on the fibers, and it
admits a universal sheaf after an étale base change.

Once they obtained a good compactification for Jacobians of integral
curves, Altman and Kleiman constructed Abel maps for these curves as fol-
lows: For each d ≥ 1, they constructed a well-defined map

AC(d) : Hilbd(C)→ J̄dC , [Y ] 7→ [I∗Y |C ],
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where Hilbd(C) is the Hilbert scheme of C parameterizing length-d sub-
schemes of C, and J̄dC is the compactified Jacobian parameterizing torsion-
free rank-1 sheaves of degree d on C. Also, for each [Y ] ∈ Hilbd(C), IY |C
denotes the ideal sheaf of Y on C. We notice that if C is smooth, Hilbd(C) =

C(d) and AC(d) = A
(d)
C .

Now, notice that all these compactifications were only carried out for in-
tegral curves. For reducible nodal curves defined over an algebraically closed
field, Oda–Seshadri [OS] and Seshadri [Ses82] produced some compactifi-
cations. However, these compactifications are not applicable to families of
reduced curves.

In her Ph.D. thesis [Ca94], Caporaso constructed a compactification for
the relative generalized Jacobians of families of stable curves. One year later,
also in his Ph.D. thesis, Pandharipande [Pan] produced an equivalent con-
struction, valid for higher ranks as well. At nearly the same time, Simpson
[Sim] constructed moduli spaces of coherent sheaves over any family of pro-
jective varieties, in particular for families of curves.

Later, given a family of curves f : C → T , Esteves considered the space
constructed by Altman and Kleiman J̄C/T in [AK80], parameterizing torsion-
free rank-1 simple sheaves on the fibers of f : C → T . He showed that
J̄C/T is universally closed over T , and consequently one can regard it as a
compactification of the relative Jacobian of f : C → T ; see [E01]. Esteves’s
compactification admits a universal sheaf, in contrast to Caporaso’s, Pand-
haripande’s and Simpson’s compactifications.

However, even with all these compactifications, it is still not easy to
choose a good target for Abel maps of reducible curves. Indeed, assume C is
reducible. Then, depending on the singularities of C , the Abel map

AC : C → J̄1
C , P 7→ [m∗P ],

where J̄1
C is Esteves’ compactified Jacobian parameterizing torsion-free rank-

1 simple sheaves of degree 1 on C, may not be well defined at all points of
C. To be precise, if P ∈ C is a separating node, AC(P ) = m∗P is not a simple

sheaf. If C is a stable curve with separating nodes and P 1
C is Caporaso’s

compactification, [Ca94], p. 638, one can show that it is not possible either
to define the Abel map as

AC : C → P 1
C , P 7→ [m∗P ]

in a natural way.
So, Caporaso and Esteves [CE] constructed twisted degree-1 Abel map for

reducible curves, where the obstruction is overcome by using a special type
of invertible sheaves, named twisters. In this thesis, in contrast to Caporaso
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and Esteves, we show that by putting Simpson’s compactified Jacobians as
the target of Abel maps target, it is possible to define degree-1 and degree-0
Abel maps by simple formulas, like that for AC above, avoiding the use of
twisters.

More precisely, let L be a very ample invertible sheaf on a stable curve
C. Simpson’s compactified Jacobian J̄L,d(C) parametrizes torsion-free rank-1
slope-semistable sheaves of degree d with respect to L on C. More precisely, it
coarsely represents the k-functor J̄L,d(C) which associates to each k-scheme
S, the set of torsion-free rank-1 slope-semistable sheaves on C ′ := C×S → S
with respect to L⊗OC′ . Then, if C is stable and Q ∈ C is a smooth point of
C, we construct natural very ample invertible sheaves M and N on C such
that both maps

A1 : C → J̄M,1, P 7→ [m∗P ]

and
A0 : C → J̄N,0, P 7→ [mP ⊗ OC(P )]

are well defined. Furthermore we show that these very ample invertible
sheaves M and N are so natural that they may be defined on families of
stable curves, so that we are able to define degree-1 and degree-0 Abel maps
for such families.

Classically, Abel maps should satisfy two properties. The first is their
modular meaning. More plainly, for a smooth curve C the d-th Abel map
A

(d)
C is the moduli map of an invertible sheaf on Cd × C. For example, our

degree-1 Abel map A1 : C → J̄M,1, P 7→ [m∗P ], has the following modular
meaning: consider a projection C × C → C as a family of curves, let I be
the ideal sheaf of the diagonal ∆ ⊂ C × C and let I∗ be its dual sheaf. The
sheaf I∗ on C × C defines A1.

The second is the continuous variation in families. For example, given
a one-parameter family of smooth curves degenerating to a singular one, it
is expected that the d-th Abel maps of the smooth fibers specialize to the
d-th Abel map of the singular fiber. We also show that our Abel maps varies
continuously in families of stable curves, as we have already said, those very
ample invertible sheaves M and N may be defined on such families of curves.

For our Abel maps, showing the continuous variation in families is the
difficult part, whereas the modular meaning is easier.

Furthermore, we construct as well a special type of very ample invertible
sheaves on C such that, if F is one of them, then the Abel map

A : C → J̄F,1, P 7→ [m∗P ]

is well defined, and it does not depend of the choice of F as if G is another
special one, then J̄F,1 ∼= J̄G,1. These compactified Jacobians are called de-
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generated. However, we do not know to answer if these special very ample
invertible sheaves may be defined on families of stable curves.

The last issue which we deal with, it is that of translations in Esteves’
compactifications. Let us be more precise. If C is an integral curve, for each
invertible sheaf L on C, the translation

TL : J̄C → J̄C , I 7→ I ⊗L

is well-defined. Here, J̄C is Altman–Kleiman’s compactified Jacobian param-
eterizing torsion-free rank-1 sheaves on C [AK80]. On the other hand, if C
is reducible, Esteves’ compactification J̄C is a nonseparated and not of finite
type space. So, in order to investigate it better, Esteves used continuous
polarizations to divide it in smaller pieces. Given a smooth point P ∈ C and
a polarization E on C, one of these pieces is J̄PE , the compactified Jacobian
parameterizing P −quasistable sheaves with respect to E; see [E01], Thm. A
(3), p. 3047. These spaces are projective schemes.

In this thesis we study two curves for which it is possible to put, in a
non trivial way, an “action” of JC on J̄PE such that given any smooth point

Q ∈ C and any polarization F on C, for each L ∈ J |F |−|E|C , we have

L · J̄PE ∼= J̄QF ,

that is, the “action” of JC takes one of these special pieces of J̄C to the other.
This desirable behavior does not hold in general.

Actually, this “action” of JC which we put over J̄PE is adjusted by the
special class of invertible sheaves formed by twisters. As the reader will
note, the difficulty of finding such actions is linked to the fact that J̄C is
not a separated space, and thus degenerations of sheaves in J̄C may have
different limits. On the other hand it is this pathology that allows us to
produce such “actions”. These two examples will hopefully be enticing for
those that would like to think about a possible theory of translations for
compactified Jacobians.
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Chapter 1

Compactified Jacobians

A curve is a projective, connected and reduced scheme of pure dimension 1
over a fixed algebraically closed field k.

A family of curves is a flat, projective morphism of schemes f : C → T
whose fibers are curves. By a sheaf on f : C → T we mean a T -flat coherent
sheaf on C.

Let C be a curve and JC its Jacobian, that is, the scheme parameterizing
isomorphism classes of invertible sheaves on C. More precisely, JC represents
the contravariant Jacobian functor JC from the category of k-schemes to sets,
defined on a k-scheme T by

JC(T ) = {invertible sheaves on C × T/T}/ ∼

where we say that two invertible sheaves L1 and L2 on C×T are equivalent,
that is, L1 ∼ L2, if there is an invertible sheaf M on T such that L1

∼=
L2 ⊗ p∗M , where p : X × T → T is the projection.

The connected components of JC are projective over k if C is smooth,
but otherwise there may be components that are only quasi-projective over k,
that is, there may exist families of invertible sheaves that do not degenerate
to invertible sheaves. For example, suppose that C is irreducible with a
unique singularity, a node P . For each Q ∈ C, let mQ be the ideal sheaf
of Q on C. So, for each point Q ∈ C − P , the sheaf mQ is invertible while
mP is not. Thus, when Q tends to P , the invertible sheaf mQ tends to the
non-invertible sheaf mP .

In the case of a family of curves f : C → T , we have the relative Jacobian
functor, the contravariant functor JC/T from the category of T -schemes to
sets, defined on a T -scheme S by

JC/T (S) = {invertible sheaves on C ×T S/S}/∼

12



where we say that two invertible sheaves L1 and L2 on C×T S are equivalent,
that is, L1 ∼ L2, if there is an invertible sheaf M on S such that L1

∼=
L2 ⊗ p∗M , where p : C ×T S → S is the projection. It is known that
Mumford showed that if the irreducible components of each fiber of f : C → T
are geometrically irreducible, then JC/T is represented by a T -scheme JC/T ,
called the relative Jacobian of f : C → T ; see [FGAE], Thm. 9.4.8, p. 263,
for a sketch of a proof of this fact given by Kleiman. However, the connected
components of JC/T may fail to be proper over T if some curves of the family
f : C → T are not smooth.

So, a problem arises: How to find a good compactification for JC? Fur-
thermore, how to find a good relative compactification for the relative Jaco-
bian over a family of curves?

In this chapter we introduce the solutions given by Altman–Kleiman, Ca-
poraso and Simpson to this problem. Before this, let us introduce some basic
notions and facts about algebraic spaces and Geometric Invariant Theory.

1.1 Preliminary subjects

1.1.1 Algebraic spaces

We recommend [SP] for more details about algebraic spaces.

Definition 1. A family of morphisms with fixed target in a category C is
composed of the following data:

1. an object U ∈ Ob(C ),

2. a set I,

3. for each i ∈ I, a morphism Ui → U of C with target U .

We use the notation {Ui → U}i∈I to indicate such a family.

Definition 2. A site consists of the following data: a category C and a
set Cov(C ) of families of morphisms with fixed target {Ui → U}i∈I , called
coverings of C , satisfying the following axioms:
1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).

2) If {Ui → U}i∈I ∈ Cov(C ) and for each i ∈ I we have {Vij → Ui}j∈Ji ∈
Cov(C ), then {Vij → U}i∈I,j∈Ji ∈ Cov(C ).

3) If {Ui → U}i∈I ∈ Cov(C ) and V → U is a morphism of C , then Ui ×U V
exists for every i ∈ I and {Ui ×U V → V }i∈I ∈ Cov(C ).
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Definition 3. Let C be a category. A presheaf on C is a contravariant
functor F : C → Sets.

Let Cov(C ) be a set of families of morphisms with fixed target satisfying
the above axioms. We say that a presheaf F on the site (C ,Cov(C )) is a
sheaf if for each covering {Ui → U}i∈I ∈ Cov(C ) the diagram

F(U) //
∏

i∈I F(Ui)
//
//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1) (1.1)

is exact.
Loosely speaking, this means that given sections si ∈ F(Ui) such that

si|Ui×UUj = sj|Ui×UUj

in F(Ui ×U Uj) for each pair (i, j) ∈ I × I, there exists a unique s ∈ F(U)
such that si = s|Ui .

Definition 4. An étale covering of a scheme U is a family of morphisms of
schemes with fixed target {Ui → U}i∈I where each Ui → U is étale and such
that U =

⋃
Im(Ui → U).

Let Sch denote the category of schemes. Let Schet denote the site con-
stituted by the category Sch and by the set Cov(Sch) of coverings of Sch
such that each {Ui → U}i∈I ∈ Cov(Sch) is an étale covering of U .

Theorem 5 (Grothendieck). For every scheme X, the functor of points of
X, hX := Mor(−, X), is a sheaf on the site Schet.

Proof. See [Vis], Thm. 2.55, p. 36.

This theorem and Yoneda’s Lemma show that the category Sch is a full
subcategory of the sheaves over Schet. Thus, for each scheme X, we let X
denote as well the sheaf hX on Schet.

Definition 6. We say a sheaf F on Schet is representable if there is a scheme
X and an isomorphism of functors F(−) ∼= Mor(−, X).

Definition 7. Let G be a presheaf on Schet. We call the sheafification of G
on Schet its associated sheaf in the étale topology.

The process of sheafification of G on Schet is similar to that of a presheaf
on a scheme and will not be described here. To finish this section we present
the definition of an algebraic space.

Definition 8. An algebraic space A is a sheaf on Schet such that

14



1. For each two schemes X and Y and each two morphisms of sheaves
x : X → A and y : Y → A, the sheaf X ×A Y is represented by a
scheme.

2. There are a scheme A and a surjective étale morphism a : A→ A (that
is, for each morphism z : Z → A, where Z is a scheme, the projection
A×A Z → Z is a surjective étale morphism of schemes).

1.1.2 Geometric Invariant Theory

Let Z be a projective scheme over an algebraically closed field k endowed
with an action of a reductive algebraic group G, that is, an algebraic group
G over the same field such that the unipotent radical of G is trivial.

Consider an embedding of Z in some projective space P(V ). Then Z =
Proj(R), where R is a graded ring, finitely generated over k. If the action of
G on Z can be lifted to a linear action on V , we say that G acts linearly
with respect to the embedding.

If G acts linearly, of course, G will act on R. In this case, let RG denote
the subring of elements of R which are invariant under the action of G. From
a foundational theorem of Geometric Invariant Theory, since G is reductive,
RG is a finitely generated graded algebra over k.

Now, consider the inclusion RG ⊆ R and the associated rational map

π : Proj(R) = Z 99K Proj(RG).

Let ZSS
R := {z ∈ Z : ∃ a homogeneous nonconstant f ∈ RG with f(z) 6= 0},

that is, ZSS
R is precisely the locus where π is regular, and

ZS
R := {z ∈ ZSS

R : OG(z) ∩ ZSS
R = OG(z) and dim(OG(z)) is maximum

among the dimension of all G-orbits in ZSS
R },

where OG(z) denotes the orbit of z. The points on ZSS
R are called (GIT -

)semistable whereas those on ZS
R are called (GIT -)stable.

Definition 9. We say that a morphism f : Z → W is G-invariant if f(g·z) =
f(z) for each g ∈ G and z ∈ Z.

Definition 10. We say that a morphism π : Z → W is a categorical quotient
of Z by G if:

1. π is invariant, and

2. π satisfies the universal property: every G-invariant morphism ρ : Z →
Y factors uniquely through π.
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Theorem 11 (Fundamental Theorem of GIT). Let G be a reductive group
acting linearly on a projective scheme Z = Proj(R). Then Q := Proj(RG) is
a projective scheme and the natural morphism

π : ZSS
R → Q

satisfies the following properties:

1. (Universality) If there is a scheme Q′ with a G-invariant morphism
π′ : ZSS

R → Q′, then there is an unique morphism ρ : Q→ Q′ such that
π′ = ρ ◦ π.

2. For each x, y ∈ ZSS
R , π(x) = π(y) if and only if OG(x)∩OG(y)∩ZSS

R 6=
∅.

Notice that, from property 2 above, for each x, y ∈ ZS
R, π(x) = π(y) if

and only if OG(x) = OG(y).

1.2 Altman–Kleiman’s compactification

Let C be a curve. Let C1, ..., Cn be the irreducible components of C and
ηi the generic points of the Ci. We say that a coherent sheaf L on C is
torsion-free if the map

L −→
∏
i

Lηi ,

where Lηi is the skyscraper sheaf of L on ηi, has trivial kernel.
We say that L is rank-1 if L has generic rank 1 on each irreducible com-
ponent of C.
We say that L is simple if Hom(L ,L ) = k. We notice that an invertible
sheaf on C is torsion free, rank-1 and simple.

Let f : C → T be a family of curves. We say that a sheaf L on f : C → T
is torsion-free (resp. rank-1, resp. simple) on f : C → T if for each geometric
point t ∈ T the restriction of L to Ct, denoted by Lt, is a torsion-free (resp.
rank-1, resp. simple) on Ct.

The relative compactified Jacobian functor for the family f : C → T
is the contravariant functor J̄C/T from the category of T -schemes to sets,
defined on a T -scheme S by

J̄C/T (S) = {torsion-free rank-1 simple sheaves on C ×T S/S}/∼
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where L1 ∼ L2 if there is an invertible sheaf M on S such that L1
∼=

L2 ⊗ p∗M , where p : X ×T S → S is the projection.
As we can see, the relative Jacobian functor defined before, JC/T , is an

open subfunctor of J̄C/T . Therefore, if J̄C/T were representable by a uni-
versally closed scheme over T , this would “solve the problem”, because this
would tell us that invertible sheaves degenerate to torsion-free rank-1 simple
sheaves. But, in general, J̄C/T is not a representable functor.

However, Altman and Kleiman showed that its associated sheaf in the
étale topology, which we also denote by J̄C/T , is always representable, say by
J̄C/T , in a larger category, the category of algebraic spaces; see Theorem 12
below. Furthermore, they showed that if the curves of the family f : C → T
are geometrically integral, then the connected components J̄C/T are proper
over T , “thus solving the problem”. Later Esteves extended this compact-
ification to any family f : C → T by showing that J̄C/T “contains enough
degenerations” over T , that is, J̄C/T meets the existence condition of the
valuative criterion of properness, without necessarily meeting the uniqueness
condition; see [E01], Thm. 32, p. 3068. In another words, J̄C/T is universally
closed over T .

Theorem 12 ( [AK80], Thm. 7.4, p. 99). Let f : C → T be a family of
curves. Then, J̄C/T is represented by an algebraic space.

As we have already observed, Theorem 5, p. 14, showed by Grothendieck,
and Yoneda’s Lemma tell us that the category of schemes is a subcategory
of the category of sheaves over Schet, so that we may view, any scheme as
an algebraic space. However, since the converse is not true, it makes sense to
inquire whether there are conditions on the family f : C → T for which J̄C/T
is a scheme. In [AK80], Thm. 3, p. 948, Altman and Kleiman showed that
if every geometric fiber of the family f : C → T is integral, each connected
component of J̄C/T is a proper scheme over T , and consequently J̄C/T is a
scheme.

On the other hand, Esteves showed in [E01], Thm. B, p. 3048, that if there
are sections σ1, ..., σn through the smooth locus of f : C → T , such that for
each geometric point t ∈ T , each irreducible component of the fiber Ct is
geometrically integral and contains σi(t) for some i, then J̄C/T is a scheme.
Moreover, in the same paper [E01], Lemma 18, p. 3061, Esteves showed
that it is always possible, after a suitable étale base change, to obtain such
sections, that is, Esteves shows that after a suitable base change J̄C/T becomes
a scheme.

But although the representability of J̄C/T by an algebraic space (or a
scheme) J̄C/T solves the problem of compactification, in the sense that invert-
ible sheaves degenerate to torsion-free rank-1 simple sheaves, the algebraic
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space is “too big”. On one hand this is good, because this allows a family
of torsion-free rank-1 simple sheaves to have a limit, but on the other hand,
the limit may not be unique.

Definition 13. Let L be a torsion-free rank-1 sheaf on C. We define the
degree of L to be

deg(L ) := χ(L )− χ(OC),

where χ(−) is the Euler characteristic.
Let Y be a subcurve of C, that is, Y is the reduced union of irreducible

components of C. Let LY := L |Y /torsion, where L |Y is the restriction of
L to Y . We let

degY (L ) := χ(LY )− χ(OY ),

and call it the degree of L on Y .

Let h : C → T be a family of curves where T is the spectrum of a discrete
valuation ring with special point ϑ and generic point η. Let Cη (resp. Cϑ) be
the generic (resp. special) fiber of the family h : C → T and Iη a sheaf on
Cη.

The next example illustrates a situation where there are infinitely many
different limits of the trivial sheaf OCη .

Definition 14. We say that a sheaf I on C is an extension of Iη if I |Cη =
Iη; in this case, we say that Iϑ := I |Cϑ is the limit of Iη on Cϑ.

Example 15. Suppose Cη is smooth and Cϑ is the union of two irreducible
curves C1 and C2 such that they intersect transversely at a unique point
P . It is plain that OC is a extension of OCη . Assume C is regular. Then
each integral subscheme of codimention 1 of C is a Cartier divisor of C, in
particular so are C1 and C2. Thus, OC(nC1) is an invertible sheaf on C for
each n ∈ Z. Furthermore,

OC(nC1)|Cη = OC|Cη = OCη

for each n ∈ Z, that is, OC(nC1) is an extension of OCη .
But on the other hand, we claim that OC(mC1)|Cϑ 6= OC(nC1)|Cϑ if m 6= n.

Indeed, for each n ∈ N, we have

deg(OC(nC1)|Cϑ) = deg(OC2(nP )) = n.

Then if m and n are different integers, we have

OC(mC1)|Cη = OC(nC1)|Cη = OC|Cη = OCη ,
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but
OC(mC1)|Cϑ 6= OC(nC1)|Cϑ ,

because
m = deg(OC(mC1)|Cϑ) 6= deg(OC(nC1)|Cϑ) = n,

showing our claim.
Thus, we showed that there is an infinity of different limits of the trivial

sheaf OCη .

Due to its large “size”, J̄C/T was studied through smaller and simpler
pieces. In order to obtain such pieces of J̄C/T , Esteves used the “continuous”
polarizations, that is, polarizations given by vector bundles on C. Let us be
more precise.

Let C be a curve and E a vector bundle over C. Let rk(E) denote its
rank and deg(E) its degree. We call the ratio µ(E) := deg(E)/r the slope of
E.

We say that E is a polarization on C if µ(E) ∈ Z. Let L be a torsion-free
rank-1 simple sheaf on C and assume that E is a polarization on C.

Definition 16. We say that L is semistable (resp. stable) with respect to
E if χ(L ) = −µ(E) and

χ(L Y ) ≥ −degY (E)/r (resp. χ(L Y ) > −degY (E)/r)

for each subcurve Y of C.
Let P ∈ C be a smooth point. We say that L is P -quasistable with

respect to E if L is semistable with respect to E and

χ(L Y ) > −degY (E)/rk(E)

for each subcurve Y of C containing P .

A polarization on a family of curves f : C → T is a vector bundle E on
f : C → T which is a relative polarization. In other words, for each geometric
point t ∈ T , Et is a vector bundle over Ct such that its slope µ(Et) ∈ Z, where
Et is the restriction of E to the fiber Ct of f : C → T over t.

Let L be a torsion-free rank-1 simple sheaf on f : C → T and E a
polarization on f : C → T .

Definition 17. We say that L is semistable (resp. stable) with respect to E
if for each geometric point t ∈ T , Lt is semistable (resp. stable) with respect
to Et.

Let σ : T → C be a section through the smooth locus of f : C → T .
We say that L is σ-quasistable with respect to E if for each geometric point
t ∈ T , Lt is semistable with respect to Et and χ(LtY ) > −degY (Et)/rk(Et)
for each proper subcurve Y of Ct containing σ(t).
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In [E01] Prop. 34, p. 3071, Esteves shows that the subspace

J̄ssE (resp. J̄sE , resp. J̄σE ) ⊆ J̄C/T

parameterizing semistable (resp. stable, resp. σ-quasistable) sheaves on
f : C → T with respect to E is open. Furthermore, J̄ssE is of finite type
and universally closed, J̄sE is separated and J̄σE is proper over T ; see [E01],
Thm. A, p. 3047.

1.3 Caporaso’s compactification

In this section we talk about the solution given by Caporaso to the problem of
compactifying the relative Jacobian over a family of curves. Caporaso solved
this problem for families of stable curves. More precisely, let f : C → T be a
family of stable curves of genus g ≥ 3 and let J0

C/T denote the corresponding

family of generalized Jacobians. In her Ph.D. thesis [Ca94], Caporaso shows
that there is a “compactification” of J0

C/T . Before going into details, let us
fix some notations and definitions.

Let C be a curve and g := 1−χ(OC) its (arithmetic) genus. We say that
a subcurve Y of C is proper if C − Y 6= ∅.

For each proper subcurve Y of C, let Y c := C − Y , δY := #Y ∩ Y c and
assume throughout this section g ≥ 3.

Definition 18. We say that C is a nodal curve if all its singularities are
nodes.

We say that C is a stable curve in the sense of Deligne–Mumford if C
is nodal, reduced, connected and each rational component of C meets the
remaining components in at least three points.

Definition 19. Let T be a scheme and let SchT denote the category of
schemes over T . Let F : SchT → Sets be a contravariant functor. We say
that a T -scheme F coarsely represents F if there exists a functor transfor-
mation

Φ : F(−) −→ Mor(−, F )

such that if N is an T -scheme and Ψ : F(−) → MorT (−, N) is a functor
transformation, then there is a unique morphism π : F → N over T such that
the corresponding functor transformation Π : MorT (−, F ) → MorT (−, N)
satisfies Ψ = Π ◦ Φ.

Let Mg be the moduli space of smooth curves of genus g and M g its
compactification by stable curves. More precisely, M g coarsely represents
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the contravariant functor M g, which associates to each scheme T the set

M g(T ) = {C → T family of stable curves of genus g}/∼T ,

where [C → T ] ∼T [C ′ → T ] if there is a T -isomorphism between C and C ′;
see [Ge82].

For each stable curve C of genus g, let [C] denote the point of M g corre-
sponding to its isomorphism class.

Let M0
g be the locus of Mg parameterizing smooth curves of genus g

without nontrivial automorphisms. For each integer d, there are a scheme
Pd,g over M0

g and a flat morphism fd,g : Pd,g → M0
g such that for each point

[C] ∈ M0
g , the fiber over [C] is identified with the variety of isomorphism

classes of invertible sheaves of degree d on the curve C, that is, the fiber is
identified with JdC ; see [HM98], p. 41. The scheme Pg,d is called the “universal
Picard variety” or the “universal Jacobian” of degree d.

Definition 20. The generalized Jacobian of C, J0
C , is a smooth, commuta-

tive, algebraic group, whose points are identified with isomorphism classes of
line bundles having degree 0 on each component of C.

In order to solve the compactification problem for generalized Jacobians,
Caporaso used Geometric Invariant Theory, GIT, to construct a projective
scheme Pd,g over Mg with a surjection to Mg

φd : Pd,g →Mg

such that the preimage of M0
g is isomorphic to Pd,g.

Caporaso describes the fiber of φd over any curve [C] ∈ Mg (denoted by

P d
C := φ−1

d ([C])) as a compactification of the generalized Jacobian of C. For
the family of curves f : C → T , Caporaso describes

J̄0
C/T := Pd,g ×Mg

T → T

as one compactification of the family of generalized Jacobians of f : C → T .
To be honest, the term “compactification” is misleading for Caporaso’s

and Simpson’s compactifications. For instance, in Caporaso’s compactifi-
cation, one can not expect that the compactified Jacobian P d

C contains an
open dense subset isomorphic to J0

C . This in general is not true, unless C

is irreducible. What actually occurs is that P d
C has finitely many irreducible

components, each one containing a dense subset isomorphic to J0
C . A similar

phenomenon occurs in Simpson’s compactification.
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However, as the reader can already see, Caporaso’s compactification is
a projective scheme, while Altman–Kleiman’s one may not be a scheme.
Furthermore, Pd,g is a scheme very well behaved, as we may gather from the
following theorem.

Theorem 21. Let d ≥ 20(g − 1) and g ≥ 3. Then:

(1) The projective scheme Pd,g is reduced, irreducible and Cohen–Macaulay.

(2) The proper and surjective morphism

φd : Pd,g →Mg

is also flat over the locus of stable curves with trivial automorphism group.
The preimage of M0

g under φd is isomorphic to Pd,g.

See [Ca94], p. 592. It is important to say that if d and d′ are integers for
which there is a integer n such that d± d′ = n(2g− 2), then Pd,g ∼= Pd′,g, see
[Ca94], Lemma 8.1, p. 655, and thus, the same properties hold for Pd,g for
any integer d.

Although Caporaso’s compactification is a projective scheme with good
properties, due to the way it is constructed, it suffers from a disadvantage in
relation to Altman–Kleiman’s one as it is only a coarse moduli space, that
is, it coarsely represents the functor Pd,g, which we present below, while
Altman–Kleiman’s one is a fine moduli space.

Now we introduce some preliminaries to define the functor Pd,g.

Definition 22. We say that a curve C is a quasistable curve if:

1. C is connected and nodal;

2. each rational component of C meets the remaining components in at
least two points;

3. two exceptional components never intersect.

An exceptional component is a rational component E such that #E ∩
C − E = 2. We denote by Cexc the union of the exceptional components of
C.

Definition 23. Let C be a quasistable curve. Let ω be the dualizing sheaf
of C and d an integer. We say that an invertible sheaf L of degree d on C
is balanced if the following two properties hold:

1. For each exceptional component E ⊆ C, we have degE(L ) = 1.

22



2. For each proper subcurve Y ⊆ C, we have∣∣∣degY (L )− ddegY (ω)

2g − 2

∣∣∣ ≤ δY
2
. (1.2)

Definition 24. Let f : C → T be a family of quasistable curves over T . We
say that an invertible sheaf L on C is relatively very ample (resp. relatively
balanced) of degree d, if for each geometric point t ∈ T , the fiber Lt is a very
ample (resp. balanced) invertible sheaf of degree d on Ct.

Definition 25. Let Pd,g be the contravariant functor from schemes to sets,
defined on a scheme T by

Pd,g(T ) := {(f : C → T,L)}/∼,

where f : C → T is a family of quasistable curves of genus g over T , and L
is a relatively very ample and relatively balanced invertible sheaf of degree d
on f : C → T .

We write (f : C → T,L1) ∼T (f ′ : C ′ → T,L2) if there are a T -
isomorphism

α : C → C ′

and an invertible sheaf M on T such that

α∗L2
∼= L1 ⊗ f ∗M.

If h : T → T ′ is a morphism of schemes, then

Pd,g(h) : Pd,g(T
′)→Pd,g(T )

is given by using h to pull back to T ′ the families over T .

Remark 26. Notice that if L is balanced, so is L ⊗ ω. Also, if L is
balanced and d >> 0, then L is very ample.

From this remark, it follows that there is a natural isomorphism of func-
tors

Pd,g →Pd+m(2g−2),g,

given by tensoring with the mth power of the relative dualizing sheaf. Com-
posing with such an isomorphisms of functors, we may assume that d is high
enough so that each balanced sheaf on a quasistable curve of genus g is very
ample. Thus, with respect to coarse representability of Pd,g, the condition
“very ample” in the definition of Pd,g may be ignored.

In [Ca94], Prop. 8.1, (1), p. 653 and [Ca94], Rmk. p. 654, Caporaso shows
that Pd,g coarsely represents Pd,g.
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1.3.1 The compactified Jacobian P d
C

For any integer d and for any stable curve C of genus g ≥ 3, Caporaso
constructed the compactified Jacobian P d

C as a GIT-quotient

VC → VC/G =: P d
C

parameterizing closed (and GIT-semistable) orbits of G on VC ; see [Ca94],
Cor. 5.1, p. 638, where VC is a subscheme of a certain Hilbert scheme en-
dowed with an action of an algebraic group G. Furthermore, she showed that
P d
C coarsely represents the strictly balanced Picard functor associated to the

stable curve C, which we define below.

Definition 27. Let C be a nodal curve. Let Csing be the set of singularities
of C. Let S ⊂ Csing. We denote by νS : Cν

S → C the normalization of C

along S, and by ĈS the quasistable curve obtained by “blowing up” all the
nodes in S. More precisely, assume S = {P1, ..., Pn} and for each i = 1, ..., n,
let Ei be a rational component connecting the points of ν−1

S (Pi). Then,

ĈS :=
n⋃
i=1

Ei ∪ Cν
S

and there is a natural surjective map ν̂S : ĈS → C restricting to νS on Cν
S and

contracting all the exceptional components Ei of ĈS, called the stabilization
of ĈS. The curve ĈS is called a quasistable model of C.

Definition 28. Let C be a quasistable curve and ω its dualizing sheaf. Let
d be an integer and L an invertible sheaf of degree d on C. We say that L
is strictly balanced if it is balanced and the inequality∣∣∣degY (L )− ddegY (ω)

2g − 2

∣∣∣ ≤ δY
2

(1.3)

is strict for each proper subcurve Y ( C such that Y ∩ Y c 6⊆ Cexc.

Definition 29. Let C be a quasistable curve and C1, ..., Cn its irreducible
components. We say that d := (d1, ..., dn) ∈ Zn, with |d| :=

∑n
i=1 = d, is bal-

anced (resp. strictly balanced) if there is an invertible sheaf L balanced (resp.
strictly balanced) of degree d on C such that d = (degC1

(L ), ..., degCn(L )).
We let

Bd(C) := {d ∈ Zn : |d| = d and d is balanced on C}
and

SBd(C) := {d ∈ Zn : |d| = d and d is strictly balanced on C}.

24



Definition 30. The strictly balanced Picard functor associated to a stable
curve C is the contravariant functor PdC from the category of schemes to the
category of sets, defined on a scheme T by

PdC(T ) = {(f : C → T,L)}/∼

where f : C → T is a family of quasistable models of C and L ∈ Pic(C) is a
strictly balanced invertible sheaf of relative degree d on f : C → T .

Furthermore, (f : C → T,L1) ∼ (f ′ : C ′ → T,L2) if the following two
facts hold:

1. The stabilizations of f and f ′ coincide.

2. Let X → T be the stabilization of f and f ’. Let σ : C → X and
σ′ : C ′ → X be the stabilization maps of f and f ’. There are an
isomorphism α : C → C ′ commuting with σ and σ′ (i.e. α is an X -
isomorphism) and a invertible sheaf M on T such that α∗L2

∼= L1 ⊗
f ∗M .

To conclude this section, we present the following theorem on the com-
pactified Jacobian P d

C .

Theorem 31. Let C be a stable curve of genus g ≥ 3 and d an integer.
Then:

1. The compactified Jacobian P d
C of C is a reduced, connected, projective

scheme of pure dimension g.

2. There is a canonical stratification,

P d
C =

∐
(S,d)∈IdS

Jd
ν

CνS
,

where IdS := {(S, d) : S ⊆ Csing and d ∈ SBd(ĈS)} and dν is the

restriction of d ∈ SBd(ĈS) to Cν
S.

Proof. See [Ca94], Thm. 6.1, p. 641 for (1) and [Ca10], Cor. 2.3, p. 6 for
(2).

1.4 Simpson’s compactification

In this section we present the solution “given” by Simpson to the problem of
compactifying the relative Jacobian over families of curves. More precisely,
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this compactification is a consequence of a result much more general proven
by Simpson; see [Sim], Thm. 1.21, p. 71. We avoid to state this result in its
complete generality as we would need to introduce some preliminaries which
are unnecessary for our purpose.

In this section all schemes will be defined, by convention, over Spec(C).
Let C be a nodal curve. We say that a coherent sheaf L on C is pure if

for every nonzero subsheaf M of L , we have

dim(L ) = dim(M ),

where for each coherent sheaf F on C, dim(F ) denotes the dimension of the
support of F .

Let L be a very ample invertible sheaf on C.

Definition 32. For each coherent sheaf L on C, we call the ratio

µL(L ) =
a

r

the slope of L with respect to L, where a and r are the coefficients of the
Hilbert polynomial PL(L , z) = r · z + a of L with respect to L.

Definition 33. Let L be a coherent sheaf on C. We say that L is slope-
semistable (resp. slope-stable) if it is pure and satisfies

µL(L ) ≤ µL(M ) (resp. µL(L ) < µL(M ))

for each pure quotient L �M .

With this definition of slope-semistability (resp. slope-stability) it may
seem hard to say when a torsion-free rank-1 sheaf is slope-semistable (resp.
slope-stable). However, the following lemma shows that, if C is a nodal
curve, this can be done easily.

Lemma 34. Let L be a torsion-free rank-1 sheaf on a nodal curve C. If
q : L �M is a quotient map such that the quotient M is a pure sheaf with
1-dimensional support Y := Supp(M ), then q factors as

L → i∗(LY )
q̄→M ,

where i : Y ↪→ C is the inclusion and q̄ : i∗(LY )→M is an isomorphism.

Proof. See [MKV], Lemma 2.2, p. 10.
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Let L be a torsion-free rank-1 sheaf on C. By Lemma 34, p. 26, L is
slope-semistable (resp. slope-stable) with respect to L if and only if

µL(L ) ≤ (<)µL(i∗(LY ))

for every proper subcurve Y of C, where i : Y ↪→ C is the inclusion map.
However, both slopes can be computed explicitly. Indeed, let g be the genus
of C and ω its dualizing sheaf. On one hand, the Hilbert polynomial of L is

PL(L , z) = deg(L) · z + χ(L )

= deg(L) · z + deg(L ) + 1− g

= deg(L) · z + deg(L )− deg(ω)

2
.

Here we used deg(L ) = χ(L )− χ(OC) = χ(L ) + deg(ω)/2.
On the other hand, let Y be a proper subcurve of C and ωY its dualizing

sheaf. A similar reasoning shows that the Hilbert polynomial of i∗(LY ) is

PL(i∗LY , z) = PLY (LY , z)

= degY (L) · z + degY (L )− deg(ωY )

2

= degY (L) · z + degY (L )− degY (ω)

2
+
δY
2
,

where we use the equality degY (ω) = deg(ωY ) + δY ; see Lemma 60, p. 46.
Thus, we have

µL(L ) =
deg(L )− 1/2 · deg(ω)

deg(L)

and

µL(i∗(LY )) =
degY (L )− 1/2 · degY (ω) + 1/2 · δY

degY (L)
.

So, µL(L ) ≤ (<)µL(i∗(LY )) if and only if

deg(L )− 1/2 · deg(ω)

deg(L)
≤ (<)

degY (L )− 1/2 · degY (ω) + 1/2 · δY
degY (L)

,

or equivalently

degY (L ) ≥ (>)
degY (L)

deg(L)

(
deg(L )− deg(ω)

2

)
+

degY (ω)

2
− δY

2
. (1.4)
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Thus, L is slope-semistable (resp. slope-stable) with respect to L if and
only if (1.4) holds for each proper subcurve Y of C.

Let f : C → T be a family of nodal curves of genus g and L an invertible
relatively ample sheaf on f : C → T .

Definition 35. A relative torsion-free rank-1 sheaf F on f : C → T is called
slope-semistable (resp. slope-stable) with respect to L if so is its restriction
with respect to Lt to the fiber Ct, for each geometric point t of T .

Assume that L has constant relative degree, that is, t 7→ deg(Lt) is con-
stant. Let d be an integer and t0 ∈ T a geometric point. Now, let

Pd(z) := deg(Lt0) · z + d+ 1− g ∈ Q[z].

Consider the T -functor J̄L,d(C/T ), which associates to each T -scheme S the
set of slope-semistable sheaves on p2 : C ′ = C ×T S → S with respect to
L ⊗ OC′ , such that for each geometric point s ∈ S, their restrictions to the
fiber of p2 : C ′ → S over s have fixed Hilbert polynomial Pd(z).

Casalaina-Martin, Kass and Viviani [MKV], Lemma 2.3, p. 11, used
[Sim94], Thm. 1.21, p. 71, in order to show that there is a projective scheme
J̄L,d(C/T )→ T , which is called the relative Simpson’s compactified Jacobian
of degree d, which coarsely represents J̄L,d(C/T ). Let us be more precise
about the construction of J̄L,d(C/T ).

The relative quot scheme. Let f : X → T be a projective morphism
of algebraic schemes, and let OX(1) be a relative very ample invertible sheaf
on X with respect to f . Fix a coherent sheaf E on X and a numerical
polynomial p(z) ∈ Q[z].

Definition 36. For each T -scheme S, a family of quotients of E parametrized
by S is a pair (F , q) consisting of a S-flat coherent quotient q : ES → F ,
where ES is the pullback of E under the projection XS → X, such that on
each fiber the Hilbert polynomial of F with respect to OX(1) is p(z).

We say that two such families (F , q) and (F ′, q′) parametrized by S are
equivalent if ker(q) = ker(q′), and we let 〈F , q〉 denote the equivalence class
of (F , q).

Since properness and flatness are preserved by base-change, and as tensor
product is right exact, the pullback of 〈F , q〉 under a T -morphism S ′ → S is

well-defined, which gives a set-valued contravariant functor Quot
X/T
E ,p(z) defined

on each T -scheme S by

S 7→ {〈F , q〉 parametrized by S}.
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Grothendieck showed that this functor is represented by a projective T -
scheme denoted by Quot

X/T
E ,p(z).

Now, let E := OX(b)⊕r, for some r and b. Then the scheme Quot
X/T
E ,p(z) is

endowed with a natural action of SLr given by changing coordinates on O⊕rX .

In addition, one can embed Quot
X/T
E ,p(z) in a certain Grassmannian, which in

turn embeds into a certain projective space via the Plücker coordinates, in
such way that the following properties are satisfied:
(i) SLr acts linearly with respect to the embedding;

(ii) each point 〈F , q〉 ∈ Quot
X/T
E ,p(z) is GIT-semistable (resp. GIT-stable) if

and only if F is slope-semistable (resp. slope-stable); see [Sim], Thm. 1.19,
p. 69.

In order to construct the relative compactified Jacobian J̄L,d(C/T )→ T ,
Casalaina-Martin, Kass and Viviani followed this strategy: Set OC(1) := L.

Given b >> 0, let r := Pd(b) and consider Quot
C/T
OC(−b)⊕r,Pd(z) endowed with

an embedding into a certain projective space satisfying properties (i) and (ii)
above. By [Sim], p. 66, there is a closed and open subscheme

Z ⊆ Quot
C/T
OC(−b)⊕r,Pd(z)

parameterizing quotient maps

q : OC(−b)⊕r → F

satisfying the following additional conditions: For each geometric point t ∈ T ,
(1) H1(Ct,Ft(b)) = 0;
(2) qt : H0(Ct,O⊕rCt )→ H0(Ct,Ft(b)) is an isomorphism;
(3) F is a slope-semistable sheaf on f : C → T .

Then the natural action of SLr restricts to an action on Z and, by the
Fundamental GIT Theorem, there is a quotient

π : Z → Z/SLr.

Now let R ⊆ Z be the locus parameterizing quotients q : OC(−b)⊕r → F
such that F is a torsion-free rank-1 sheaf on C. From [Pan], Lemma 8.1.1, R
is a SLr-invariant subset that is closed and open in Z, and hence its image
must be closed and open in Z/SLr; see [Sim], Lemma 1.10, p. 61. Then they
set

J̄L,d(C/T ) := π(R).

Finally, by universality, J̄L,d(C/T ) is a categorical quotient of R by SLr
and an inspection of the proof of [Sim], Thm. 1.21, p. 71 shows that this
scheme coarsely represents the functor J̄L,d(C/T ).
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Chapter 2

Autoduality for treelike curves

Let C be a connected projective reduced curve defined over an algebraically
closed field k.

We recall that for each integer d, we denote by JdC the scheme parame-
terizing isomorphism classes of invertible sheaves of degree d on C, and for
each point P ∈ C, we let mP be the sheaf of ideals of P on C. Let L be
a line bundle of degree 1 on C. The classical Autoduality Theorem says the
following:

Theorem 37 (Autoduality Theorem). If C is smooth, the Abel map

A : C → J0
C , P 7→ L ⊗mP

is well defined and induces an isomorphism

A∗ : Pic0(J0
C)→ J0

C

which is independent of the choice of L .

See [Mu65], Prop. 6.9, p. 118. We say that J0
C , the Jacobian of C, is

autodual.
Case C has singularities, the Autoduality Theorem was first proved by

Esteves, Gagné and Kleiman in [EGK] for irreducible curves with at most
double points, with J0

C being replaced by its natural compactification J̄0
C ,

the moduli space of degree-0 torsion-free rank-1 sheaves over C, constructed
by Altman and Kleiman [AK]. More precisely, Esteves, Gagné and Kleiman
showed the following:

Theorem 38 (EGK). Assume C is irreducible and has at most double points.
Then, the Abel map

AL : C → J̄0
C , P 7→ L ⊗mP
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is well defined and induces an isomorphism

A∗ : Pic0(J̄0
C)→ J0

C

which is independent of the choice of L .

Later, Arinkin [A07] extended the validity of the above theorem, also as-
suming C irreducible, by allowing planar singularities, in other words, asking
only that the tangent space to C at any point be at most two-dimensional.
In this chapter we show autoduality for treelike curves whose singularities
are all planar.

As we have already said in the introduction of this thesis, a generalization
of the result obtained in this note has been recently made available at [MRV]
by Melo, Rapagnetta and Viviani, with an appendix by López-Mart́ın. They
state autoduality for any curve with planar singularities.

For each subcurve Y of C recall that Y c = C − Y and δY = #Y ∩ Y c.
We say that a subcurve Y of C is a tail of C if #Y ∩ Y c = 1.

Definition 39. We say that a point P ∈ C is a separating node if P is an
ordinary node of C and C − P is not connected.

We say that the singularities of C are planar if the tangent space to C at
any point is at most two-dimensional.

A point P ∈ C is called a crossing if it lies on two irreducible components
of C.

Definition 40. We say that C is treelike if all its crossing points are sepa-
rating nodes.

Definition 41. A subcurve of C is a reduced union of irreducible components
of C. A subcurve is not necessarily connected. We say that a connected
subcurve Y of C is a spine if each point in Y ∩Y c is a separating node. Notice
that, if Y is spine, each connected component Z of Y c is a tail intersecting
Y transversally at a unique point on the smooth locus of Y and Z.

A n-tuple (Z1, ..., Zn) of spines Zi covering C with finite pairwise inter-
section is called a spine decomposition of C.

Example 42. Let C be a treelike curve with irreducible components C1, ..., Cn.
Then (C1, ..., Cn) is a spine decomposition of C.

Let L be a coherent sheaf on C. Let C1, ..., Cn be its irreducible compo-
nents and η1, ..., ηn their generic points. We recall that L is torsion-free if
the map

L −→
∏
i

Lηi ,
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where Lηi is the skyscraper sheaf of L at ηi, has trivial kernel. It is rank-1
if it has generic rank 1 on each irreducible component of C. It is simple if
Hom(L ,L ) = k.

The degree of a torsion-free, rank-1 sheaf L is deg(L ) := χ(L )−χ(OC).
It follows from [E01], Prop. 1 p. 3049 that a torsion-free rank-1 sheaf on C is
simple only if it is invertible at separating nodes. The converse is true if C
is treelike, in which case the restriction of a simple torsion-free rank-1 sheaf
to any connected subcurve of C is also simple torsion-free rank-1.

Now, for each connected subcurve Y of C, let J̄Y be the compactification
of the Picard scheme of Y , that is, the scheme parameterizing torsion-free,
rank-1 and simple sheaves on Y .

Proposition 43. Let C be a curve and (Z1, ..., Zn) a spine decomposition of
C. Then there is an isomorphism

u : J̄C → J̄Z1 × · · · × J̄Zn , L 7→ ([LZ1 ], ..., [LZn ]).

Proof. See [E09], Prop. 3.2.

Assume C is treelike and let C1, C2, ..., Cn be the irreducible components
of C. For each d := (d1, d2, ..., dn) ∈ Zn, let J̄dC be the connected compo-
nent of J̄C , parameterizing torsion-free, rank-1 simple sheaves L on C such
that degCi(L ) = di. For each i = 1, ..., n, and each e ∈ Z, let J̄eCi be the
corresponding scheme for Ci.

Corollary 44. Let C be a treelike curve whose irreducible components are
C1, ..., Cn. Then for each d = (d1, ..., dn) ∈ Zn we have an isomorphism

π̄d : J̄dC → J̄d1
C1
× · · · × J̄dnCn , I 7→ (IC1 , ...,ICn).

For each d = (d1, ..., dn) ∈ Zn, let JdC ⊆ J̄dC be the open subscheme
parameterizing invertible sheaves. Likewise, for each i = 1, . . . , n and each
integer e, let JeCi ⊆ J̄eCi be the open subscheme parameterizing invertible
sheaves. Then π̄d, as defined in the Corollary 43, restricts to an isomorphism

πd = (πd1 , . . . , π
d
n) : JdC −→ Jd1

C1
× · · · × JdnCn .

Remark 45. Suppose C is treelike and all its singularities are planar. Then,
for each i = 1, ..., n, the singularities of Ci are also planar. So, it follows from
[AIK], (9), p. 8, that the scheme J̄eCi is integral for each e. Thus, by [G2],
Thm. 3.1, p. 232-06, there is a scheme parameterizing line bundles on J̄eCi ,
named Pic(J̄eCi), whose connected component of the identity we denote by

Pic0(J̄eCi). Let d := (d1, ..., dn) ∈ Zn and π̄d : J̄dC → J̄d1
C1
× · · · × J̄dnCn be the
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isomorphism given by Corollary 43. Then, since π̄d is an isomorphism, we
have that J̄dC is integral, and there is a corresponding Picard scheme for J̄dC ,

whose connected component of the identity we denote by Pic0(J̄dC).

Definition 46. Let C be an integral curve and d ∈ Z an integer. Let
A : C → J̄dC be a map. We say that A is an Abel map if there is an invertible
sheaf L on C such that A sends P to L ⊗mP for each P ∈ C.

In order to prove our next lemma, we need to use a special type of in-
vertible sheaves called determinants of cohomology. For more details about
the theory of determinants, see [KM].

Let f : C → T be a flat, projective morphism whose geometric fibers
are curves. Let F be a T -flat coherent sheaf on C. The determinant of
cohomology of F with respect to f is defined to be the invertible sheaf Df (F)
on T constructed as follows: Locally on T there is a complex

0→ G 0 λ→ G 1 → 0

of free sheaves of finite rank such that, for every coherent sheaf M on T , the
cohomology groups of G • ⊗M are equal to the higher direct images of F ⊗
f ∗M under f . The complex G • is unique up to unique quasi-isomorphism.
Hence, its determinant,

det(G •) := (
rank G 1∧

G 1)⊗ (
rank G 0∧

G 0)−1,

is unique up to canonical isomorphism. The uniqueness allows us to glue
together the local determinants to obtain the invertible sheaf Df (F) on T .

The determinant of cohomology has the following properties:

1. Functorial property : We can functorially associate to each isomor-
phism, φ : F1

∼= F2, of T -flat coherent sheaves on C an isomorphism:

Df (φ) : Df (F1) ∼= Df (F2).

2. Additive property : We can functorially associate to each short exact
sequence,

α : 0→ F1 → F2 → F3 → 0,

of T -flat coherent sheaves on C an isomorphism:

Df (α) : Df (F2) ∼= Df (F1)⊗Df (F3).
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3. Projection property: We can functorially associate to each T -flat co-
herent sheaf F on C of relative Euler characteristic d over T , and each
invertible sheaf M on T , an isomorphism:

Df (F ⊗M ) ∼= Df (F)⊗ f ∗M⊗d.

4. Base-change property: We can functorially associate to each T -flat
coherent sheaf F on C, and each Cartesian diagram of the form:

C1
h1−−−→ C

f1

y f

y
T1

h−−−→ T,

a base-change isomorphism:

h∗Df (F) ∼= Df1(h∗1F).

Lemma 47. Let C be an integral curve whose singularities are planar and
L an invertible sheaf of degree 1 on C. Let AL : C → J̄0

C , P 7→ L ⊗mP be
the corresponding Abel map. Then there is a natural map

β : Pic0(C)→ Pic0(J̄0
C),

such that A∗L ◦ β = 1Pic0(C), where A∗L : Pic0(J̄0
C) → Pic0(C) is the pullback

of AL : C → J̄0
C.

Proof. The proof is in [EGK], Prop. 2.2, p. 595. We reproduce it here for
sake of completeness. Let I be a universal sheaf on C × J̄0

C and M be one
on C × J0

C . Form C × J̄0
C × J0

C , and let pij be the projection of C × J̄0
C × J0

C ,
onto the product of the indicated factors. Set

M � := (Dp23(p∗12I ⊗ p∗13M ))−1 ⊗Dp23(p∗12I ) on J̄0
C × J0

C (2.1)

where Dp23 denotes the determinant of cohomology. Then M � is an invertible
sheaf and we claim that it defines the desired map β. Indeed, the sheaf I is
determined up to tensor product with the pullback of an invertible sheaf N
on J̄0

C . The projection formula for the determinant of cohomology gives us

Dp23(p∗12I ⊗ p∗2N ⊗ p∗1M ) = Dp23(p∗12I ⊗ p∗13M )⊗ p∗1N ⊗m

and
Dp23(p∗12I ⊗ p∗2N ) = Dp23(p∗12I )⊗ p∗1N ⊗n,
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where the pij are the indicated projections and where m and n are the Euler
characteristics of p∗12I ⊗ p∗13M and p∗12I on the fibers of p23 (hence m and
n are locally constant functions on J̄0

C × J0
C). However, since the fibers of

p∗13M have degree 0, we have m = n. Therefore, from its definition, (2.1),
M � does not depend on the choice of I .

Similarly, the sheaf M is determined up to tensor product with the pull-
back of an invertible sheaf P on J0

C . As before, if M is replaced by its tensor
product with the pullback of P, then M � is replaced by its tensor product
with the pullback of P⊗m.

Therefore M � defines a map β : J0
C → Pic(J̄0

C). Now we claim that
the image of β lies in Pic0(J̄0

C). Indeed, since the fiber MOC is OC and
forming the determinant commutes with passing to the fiber, it follows that
M �(0) = OJ̄0

C
. Thus β(OC) = OJ̄0

C
implying that β(J0

C) ⊂ Pic0(J̄0
C).

Finally we show AL ◦ β = 1J0
C

. Indeed, consider the map

1C × AL : C × C → C × J̄0
C

and notice that AL is defined by (1C ×AL )∗I , as well as I∆⊗ q∗1L , where
I∆ is the ideal sheaf of the diagonal ∆ ⊂ C×C and qij indicate the respective
projection of C × C × J0

C . Hence these two sheaves differ by tensor product
with the pullback, along the projection q2, of an invertible sheaf on C. But on
the other hand, it follows from the base-change property of the determinant
of cohomology applied to

C × C × J0
C

(1C×AL×1
J0
C

)
//

q23

��

C × J̄0
C × J0

C

p23

��
C × J0

C

(AL×1
J0
C

)
// J̄0
C × J0

C

that

(AL×1J0
C

)∗M � = (Dq23(q∗12I∆⊗q∗1L⊗q∗13M ))−1⊗Dq23(q∗12I∆⊗q∗1L ) (2.2)

on C × J0
C . Hence both sides of this equation define the same map J0

C →∐
n J

n
C .

In order to evaluate the right-hand side of (2.2), consider the natural
sequence

0→ I∆ → OC×C → O∆ → 0.

Pull it back to C × C × J0
C ; then tensor with q∗1L ⊗ q∗13M and q∗1L . The

property of the additivity of the determinant of cohomology now yields

Dq23(q∗12I∆ ⊗ q∗1L ⊗ q∗13M ) = Dq23(q∗1L ⊗ q∗13M )⊗ (q∗1L ⊗M )−1
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and
Dq23(q∗12I∆ ⊗ q∗1L ) = Dq23(q∗1L )⊗ (q∗1L )−1.

Now consider the Cartesian square below

C × C × J0
C

q13 //

q23

��

C × J0
C

q2
��

C × J0
C

q2 // J0
C

.

Since forming the determinant of cohomology commutes with changing the
base, we have

Dq23(q∗1L ⊗ q∗13M ) = q∗2Dq2(q∗1L ⊗M )

and
Dq23(q∗1L ) = q∗2Dq2(q∗1L )

on C × J0
C . Hence the right-hand side of (2.2) differs from M by tensor

product with the pullback of an invertible sheaf on J0
C . Therefore A∗L ◦ β =

1J0
C

, and the proof is complete.

Definition 48. Let C be a curve. Let r and s be arbitrary integers. For
each invertible sheaf M of degree s on C, we define the translation by: M

τM : J̄rC → J̄r+sC , I 7→ I ⊗M .

Lemma 49. Let C be an integral curve whose singularities are all planar.
Let M be an invertible sheaf on C, and r and s integers with s = deg(M ).
Then the translation τM induces an isomorphism

τ ∗M : Pic0(J̄r+sC )
∼→ Pic0(J̄rC)

which is independent of M . In particular, if s = 0, then τ ∗M is equal to the
identity.

Proof. Since for each invertible sheaf N on C, we have

τM ◦ τN = τM⊗N ,

then τM is an isomorphism whose inverse is τM−1 . So, τ ∗M is an isomorphism.
Now, in order to prove that the isomorphism τ ∗M is independent of M ,

we may assume s = 0, as if also N is an invertible sheaf of degree s on C,
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then M ⊗N −1 has degree 0 and it is enough to prove that τ ∗M⊗N −1 = 1.
We may assume r = 0 too, as for each invertible sheaf L of degree 1 on C,

τM = τL⊗r ◦ τM ◦ τL⊗−r .

So, fix an invertible sheaf L of degree 1 on C and consider the corre-
sponding Abel maps A1, A2 : C → J̄0

C , the first defined by P 7→ L ⊗ mP ,
the second by P 7→M ⊗L ⊗mP . Plainly we have A2 = τMA1. By [EGK],
Prop. 3.7, p. 605, the pullback maps A∗1, A

∗
2 : Pic0(J̄0

C)→ J0
C are equal. Thus

A∗1 = A∗1τ
∗
M .

Finally, it follows from [A07], Thm. C, that a certain map ρ : J0
C →

Pic0(J̄0
C) is an isomorphism. This map is the one called β in Lemma 47,

where it is proved that A∗1β = 1. So A∗1 is an isomorphism as well. Since
A∗1 = A∗1τ

∗
M , it follows that τ ∗M is the identity.

Theorem 50 (Theorem of the Cube ). Let X1 and X2 be complete varieties,
X3 a connected scheme, and L an invertible sheaf on X1 ×X2 ×X3 whose
restrictions to

{P1} ×X2 ×X3, X1 × {P2} ×X3 and X1 ×X2 × {P3}

are trivial for some P1 ∈ X1, P2 ∈ X2 and P3 ∈ X3. Then L is trivial.

Proof. See [Mu74], p. 55.

Proposition 51. Let C be a treelike curve whose irreducible components are
C1, ..., Cn. Let d ∈ Zn and suppose C has only planar singularities. For each
j = 1, . . . , n, let Ij be a degree-dj torsion-free rank-1 sheaf on Cj, and let

ιj : J̄
dj
Cj
−→ J̄dC

be the composition of the inverse of π̄d with the map given by

I 7→ (I1, . . . ,Ij−1,I ,Ij+1, . . . ,In).

Then the induced map

ι∗ := (ι∗1, . . . , ι
∗
n) : Pic0(J̄dC) −→ Pic0(J̄d1

C1
)× · · · × Pic0(J̄dnCn)

is an isomorphism. Furthermore, if Lj is a degree-0 invertible sheaf on Cj
for j = 1, . . . , n, then replacing each Ij by Ij ⊗Lj does not change ι∗.
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Proof. Since π̄d is an isomorphism, and since the J̄
dj
Cj

are complete varieties,
the proof of the first statement is a simple application of the Theorem of
the Cube, in an extended version: Let X1, . . . , Xn be complete varieties and
P1, . . . , Pn points on each of them. Set X := X1 × · · · × Xn. For each j =
1, . . . , n, let φj : Xj → X be the map taking P to (P1, . . . , Pj−1, P, Pj+1, . . . , Pn).
Then

φ∗ := (φ∗1, . . . , φ
∗
n) : Pic0(X) −→ Pic0(X1)× · · · × Pic0(Xn)

is an isomorphism.
Indeed, consider the map

β : Pic0(X1)×· · ·×Pic0(Xn)→ Pic0(X), (I1, ...,In) 7→ β∗1I1⊗· · ·⊗β∗nIn,

where for each i = 1, ..., n,
βi : X → Xi

is the projection map. Notice that φ∗β = 1 trivially, so we need to proof
βφ∗ = 1 as well.

Let L be the universal invertible sheaf on X × Pic0(X) rigidified along
P × Pic0(X), where P := (P1, ..., Pn). Thus, L |P×Pic0(X) and L |X×OX are
trivial. For each i = 1, ..., n, let

λi := (φi, 1OX ) : Xi × Pic0(X)→ X × Pic0(X)

and
ρi : X × Pic0(X)→ Xi × Pic0(X)

the projection map. Then, βφ∗ is induced by

ρ∗1λ
∗
1L ⊗ · · · ⊗ ρ∗nλ∗nL .

Let
M := ρ∗1λ

∗
1L ⊗ · · · ⊗ ρ∗nλ∗nL ⊗L −1.

Then M is an invertible sheaf on X × Pic0(X) such that

λ∗iM = M |{P1}×···×{Pi−1}×Xi×{Pi+1}×···×{Pn}×Pic0(X)

= λ∗i (ρ
∗
1λ
∗
1L ⊗ · · · ⊗ ρ∗nλ∗nL ⊗L −1)

= λ∗i (ρ
∗
iλ
∗
iL ⊗L −1)

= λ∗i (ρ
∗
iλ
∗
iL )⊗ λ∗iL −1

= λ∗iL ⊗ λ∗iL −1

= OXi×Pic0(X)
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is trivial for each i = 1, ..., n, and M |X×{OX} is trivial. In order to prove
βφ∗ = 1, it is enough to prove that M is trivial.

In case n = 1, there is nothing to prove. In case n = 2, it follows from
the Theorem of the Cube that M is trivial. For the general case, we may
assume by induction that the restriction of M to X1× · · · ×Xn−1× {Pn} ×
Pic0(X) is trivial. Then, applying the Theorem of the Cube to the varieties
X1 × · · · ×Xn−1, Xn and Pic0(X) we finish the proof of our statement.

As for the second statement, for each j = 1, . . . , n consider the translation
τLj

: J̄
dj
j → J̄

dj
j , sending I to I ⊗Lj. It is enough to prove that the induced

map τ ∗Lj
on Pic0(J̄

dj
j ) is the identity. But this follows from Lemma 49.

Definition 52. Let C be a treelike curve whose irreducible components are
C1, ..., Cn. Let d := (d1, ..., dn) ∈ Z and

π̄d = (πd1 , ..., π
d
n) : J̄dC → J̄d1

C1
× · · · × J̄dnCn

be the isomorphism given by Corollary 43. Let A : C → J̄dC be a map.

We say that A is a decomposable Abel map if π̄djA|Ci is constant for i 6= j

and Ai := π̄diA|Ci is an Abel map for each integer i = 1, . . . , n, that is, there
is an invertible sheaf Li over Ci such that Ai sends P to Li ⊗ mP for each
P ∈ Ci. We say that (L1, . . . ,Ln) defines A.

Indeed, for i 6= j let Yi,j be the connected component of C − Cj containing

Ci. Since C is treelike, Yi,j meets Cj at a unique point Ni,j. Then π̄djA|Ci has
constant image Lj ⊗ OCj(−Ni,j).

Conversely, given invertible sheaves L1, . . . ,Ln on C1, . . . , Cn of degrees
d1 + 1, . . . , dn + 1, there is a decomposable Abel map A : C → J̄d defined
by (L1, . . . ,Ln): For each P ∈ C and each j = 1, . . . , n, the map π̄djA sends
P to Lj ⊗ OCj(−P ) if P ∈ Cj, and to Lj ⊗ OCj(−N) if P 6∈ Cj, where N

is the point of intersection with Cj of the connected component of C − Cj
containing P .

The Abel maps constructed in [CCE] are decomposable, as it follows from
[CCE], Lemma 3, p. 46.

Theorem 53. Let C be a treelike curve with irreducible components C1, ..., Cn.
Suppose all singularities of C are planar and let d := (d1, ..., dn) ∈ Zn. Let
A : C → J̄dC be the decomposable Abel map defined by (L1, . . . ,Ln), where
the Li are invertible sheaves of degree di + 1 on Ci. Then the induced map

A∗ : Pic0(J̄dC) −→ Pic0(C)

is an isomorphism which is independent of the choice of (L1, . . . ,Ln).
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Proof. For i 6= j, let Ni,j be the point of intersection of Cj with the connected

component of C − Cj containing Ci. For each i = 1, . . . , n, let Ai := πdiA|Ci
and define ιi : J̄diCi → J̄dC as the composition of the inverse of π̄d with the map
given by

I 7→ (L1(−Ni,1), . . . ,Li−1(−Ni,i−1),I ,Li+1(−Ni,i+1), . . . ,Ln(−Ni,n)),

where Lj(−Ni,j) := Lj ⊗ OCj(−Ni,j) for j 6= i. Then, for each i = 1, ..., n,

ιiAi = A|Ci ,

that is, we have the following commutative diagram

C A // J̄dC

Ci

li

OO

Ai // J̄diCi

ιi

OO
,

where li : Ci → C is the inclusion map. Now, by taking the pullback of each
map in this diagram, for each i = 1, ..., n we have the diagram below

Pic0(J̄dC)

ι∗i
��

A∗ // Pic0(C)

l∗i
��

Pic0(J̄diCi)
A∗i // Pic0(Ci)

where A∗i : Pic0(J̄diCi)→ Pic0(Ci) is an isomorphism, by [A07], Thm. C, which
is independent of the choice of Li, by [EGK], Prop. 3.7, p. 605. By combining
these diagrams, we obtain the following commutative diagram of maps

Pic0(J̄dC)
A∗−−−→ Pic0(C)

ι∗

y π0

y
Pic0(J̄d1

C1
)× · · · × Pic0(J̄dnCn)

(A∗1,...,A
∗
n)

−−−−−−→ Pic0(C1)× · · · × Pic0(Cn),

where ι∗ := (ι∗1, . . . , ι
∗
n) and π0 = (l∗1, ..., l

∗
n).

It follows from Corollary 43 that π0 is an isomorphism because C is tree-
like. Furthermore, also (A∗1, ..., A

∗
n) is an isomorphism, which is independent

of the choice of (L1, ...,Ln), because each A∗i is an isomorphism which is
independent of the choice of Li. Finally, that ι∗ is an isomorphism which is
independent of the choice of (L1, ...,Ln), it follows from Proposition 51.

Then the commutativity of the diagram above yields that A∗ is an iso-
morphism which is independent of the choice of (L1, ...,Ln).
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Chapter 3

Abel maps

As we have already said in the introduction to this thesis, one of our goals
is to construct two Abel maps for stable curves: a degree-1 Abel map and
a degree-0 Abel map with smooth base point; both maps having geometric
meaning and having Simpson’s compactification as target. Moreover, we
show that our Abel maps vary continually along families of stable curves.

The construction of the degree-1 Abel map is the positive answer to a
question posed by Viviani to Esteves. More precisely, Viviani asked Esteves
whether it would be possible to define degree-1 Abel maps on stable curves,
in a natural way, by removing the twisters of the twisted degree-1 Abel map
constructed by Caporaso and Esteves; see [CE].

It is not difficult to give a geometric meaning to the maps, we construct
here. The hard part is to ensure that our Abel maps vary continuously in
families of stable curves. To do this we use continuous polarizations, that is,
vector bundles on families of stable curves with constant slope. This chapter
is dedicated to construct our Abel maps, at first, only for single stable curves,
not for families of stable curves. We consider extending the construction of
the Abel maps to families in the next chapter.

Before we begin the construction of our Abel maps, we define the Caporaso–
Esteves twisted degree-1 Abel map and we would like to explain why, in our
view, one can not define, in a natural way, degree-1 Abel map without twisters

having as target Esteves’ J̄1
C or Caporaso’s P

1

C .
Let C be a nodal curve of genus g and ω its dualizing sheaf. For each

point P ∈ C, let mP be the ideal sheaf of P on C.
For each proper subcurve Y of C, we let

g
Y

:= 1− χ(OY )

be the (arithmetic) genus of Y .
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Recall that for each proper subcurve Y of C, δY = #Y ∩ Y c, where
Y c = C − Y , and that a subcurve Y ⊆ C is called a tail of C if δY = 1.

Let X be a tail of C. As X is a tail of C, of course so is Xc, and if
{N} = X ∩Xc, then N is a separating node connecting X and Xc. In this
case we say that X and Xc are the tails attached to N , or N generates X
and Xc.

By Proposition 43, p. 38, for each tail X of C there is a unique invertible
sheaf on C, up to isomorphism, such that its restrictions to X and Xc are
OX(−N) and OXc(N), where {N} = X ∩Xc. We call this invertible sheaf a
twister, and we let OC(X) denote it. Moreover, for each sum

∑
aXX with

integers coefficients aX and tails X, we let

OC(
∑

aXX) :=
⊗

OC(X)⊗aX .

Now we define the set of small tails of C. Let N ∈ C be a separating
node and X and Xc the tails generated by N . Thus, we have g = g

X
+ g

Xc
:

Indeed, let
νN : CN → C

be the normalization map of C at N . Let

OC ↪→ OCN

be the associated map of structure sheaves and

0→ H0(C,OC)→ H0(CN ,OCN )→ k → H1(C,OC)→ H1(CN ,OCN )→ 0

the cohomology sequence associated to it. Let X ′ ⊂ CN (resp. Xc′ ⊂ CN) be
the subcurve which is mapped onto X (resp. Xc) by νN . From this sequence,
we have

g = h1(C,OC)

= h1(CN ,OCN )

= h1(X ′,OX′) + h1(Xc′,OXc′)

= g
X′

+ g
Xc′

= g
X

+ g
Xc
.

If g
X
< g/2 (resp. g

Xc
< g/2) we say that X (resp. Xc ) is the small tail

generated by N and denote it by XN . On the oder hand, if g
X

= g
Xc

= g/2,
we choose any one between X and Xc and denote it by XN . Let S T (C)
denote the set of small tails of C.

For each Q ∈ C, let NQ be a sheaf on C defined as follows: If Q is not a
separating node, let NQ be the ideal sheaf of Q on C. If Q is a separating
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node, let X and Xc be the tails generated by Q. Then, it follows from
Proposition 43, p. 38, that there is a unique, up to isomorphism, invertible
sheaf I on C such that

I |X ∼= OX(−Q) and I |Xc ∼= OXc .

So, let NQ := I .
Finally we define the Caporaso–Esteves twisted degree-1 Abel map of C:

Definition 54. Let C be a stable curve of genus g ≥ 3. We call the map

A : C → P 1
C , Q 7→ N ∗

Q ⊗ OC(
∑

X∈S T (C):X3Q

X), (3.1)

the twisted degree-1 Abel map of C.

Later, Caporaso, Coelho and Esteves extended the definition of the twisted
degree-1 Abel map to Gorenstein curves [CCE], p. 50, obtaining as well the
degree-0 Abel map for such curves, [CCE], p. 46.

Now we return to the issues which we would like to clarify: Why, in our
view, one can not define, in a natural way, a degree-1 Abel map without
twisters having as target Esteves’ compactified Jacobian J̄1

C or Caporaso’s

P
1

C? Regarding Esteves’ compactification, the answer is easier, it follows
from the following three lemmas.

Recall that we say a point P ∈ C is a separating node if P is an ordinary
node of C and C − {P} is not connected, or equivalently, there is subcurve
C1 ⊆ C such that {P} = C1 ∩ Cc

1.

Definition 55. Let C be a curve and L a torsion-free rank-1 sheaf on C.
We say that L is decomposable if there are proper subcurves C1, C2 ⊆ C
such that L ∼= LC1 ⊕LC2 .

Lemma 56. Let C be a curve and L a torsion-free rank-1 sheaf on C. Then
L is simple if and only if L is not decomposable.

Proof. See [E01] Prop. 1, p. 3049.

Lemma 57 ([JC], p. 22). Let C be a curve. For each point P ∈ C, mP is
a torsion-free rank-1 simple sheaf on C if and only if P is not a separating
node.

Proof. Indeed, let P ∈ C be a point. Suppose P is a separating node. In
this case, let C1 and C2 be subcurves of C such that {P} = C1 ∩ C2. Now,
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consider the following commutative diagram:

0 // mP
//

α
��

OC
//

β

��

OP
//

γ

��

0

0 // (mP )C1 ⊕ (mP )C2
// OC1 ⊕ OC2

// OP ⊕ OP
// 0,

where α, β, γ are restriction maps modulo torsion. Its horizontal sequences
are exact. Since {P} = C1 ∩C2, we have Coker(β) ∼= OP

∼= Coker(γ). Then,
by the Snake Lemma, Coker(α) must be 0, and therefore mP

∼= (mP )C1 ⊕
(mP )C2 , that is, mP is not simple.

On the other hand, suppose mP is not simple. From Lemma 56, p. 43,
there are subcurves C ′1 and C ′2 of C such that C ′1 ∪ C ′2 = C and mP

∼=
(mP )C′1 ⊕ (mP )C′2 . Therefore we have the following commutative diagram

0 // mP
//

α′

��

OC
//

β′

��

OP
//

γ′

��

0

0 // (mP )C′1 ⊕ (mP )C′2
// OC′1

⊕ OC′2
// OP∩C′1 ⊕ OP∩C′2

// 0,

where α′ is an isomorphism, and OP∩C′1 and OP∩C′2 are either OP or 0, de-
pending on whether P is contained in the subcurve in question or not. We
claim P = C ′1∩C ′2 scheme-theoretically. In fact, from the diagram above, we
have

χ(OC′1∩C′2) = χ(Coker(β′))

= χ(Coker(γ′))

= χ(OP∩C′1 ⊕ OP∩C′2)− χ(OP )

= χ(OP∩C′1) + χ(OP∩C′2)− χ(OP ).

Now, χ(OP ) = 1, and χ(OP∩C′1) and χ(OP∩C′2) are either 0 or 1. How-
ever, since C is connected, we have χ(OC′1∩C′2) ≥ 1, forcing χ(OP∩C′1) =
χ(OP∩C′2) = 1. But this implies that P ∈ C ′1 ∩ C ′2 and χ(OC′1∩C′2) = 1, hence
P = C ′1 ∩ C ′2.

Lemma 58. Let C be a curve and P a point of C. Then mP is a torsion-free
rank-1 sheaf of degree -1 on C. Moreover, mP is invertible if and only if P
is a smooth point.

Proof. In fact, since mP ⊂ OC and mP |C−{P} ∼= OC |C−{P}, we have that mP

is torsion-free and rank-1.
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On the other hand, from the natural exact sequence

0→ mP → OC → OP → 0,

we have
χ(mP )− χ(OC) = −χ(OP ) = −1.

So degC(mP ) = χ(mP )− χ(OC) = −1.
For the second statement, we recall that mP/m

2
P is isomorphic to the

cotangent space of C at P , so it has dimension 1 if and only if P is a smooth
point of C.

Let λ : J̄−1
C → J̄1

C , [I ] 7→ [I ∗], be the isomorphism given by duality.
By this isomorphism and by Lemma 57, p. 43, m∗P is a torsion-free rank-1
simple sheaf on C if and only if P is not a separating node of C. Thus, since
J̄1
C parametrizes torsion-free rank-1 simple sheaves on C, the map

AC : C → J̄1
C , P 7→ m∗P

is well defined if and only if C has no separating nodes. This explains because
one can not define, in a natural way, the degree-1 Abel map having as target
Esteves’ compactified Jacobian J̄1

C .
As for Caporaso’s compactified Jacobian, we have the following explana-

tion. Suppose that C is a stable curve of genus g ≥ 3. As we have seen in
Chapter 1, Caporaso’s compactification parametrizes pairs of objects [Y,M ]
where Y is a quasistable model of C and M is a strictly balanced sheaf on
Y . Now, consider the following setup.

Let f : C → B be a regular smoothing of C, that is, a flat projective
morphism between connected and regular schemes such that: B = Spec(R),
where R is a discrete valuation ring, each geometric fiber of f is a curve, f
is smooth over the generic point of B, and C is the closed fiber of f .

Let p : C ×B C → C be one of the two projections. Let π : Y → C ×B C
be the blowup along the diagonal ∆ ⊂ C ×B C. Let ∆̂ ⊂ Y be the proper
transform of ∆, which is a Cartier divisor on Y . Then, we have a a family
of quasistable curves

ρ : Y π // C ×B C
p // C ,

having stabilization p : C ×B C → C, by [CE], p. 22, and an invertible sheaf

OY(∆̂) on Y , by [CE], p. 25, satisfying the following properties.

1. π∗OY(∆̂) = I∗∆, where I∆ is the ideal sheaf of the diagonal ∆.
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2. if P ∈ C is a smooth point, then YP = C and OC(P ) ∼= OY(∆̂)|YP ,
where YP is the fiber of ρ over P .

3. if P ∈ C is a singular point, then YP = ĈP and OĈP
(r) ∼= OY(∆̂)|YP ,

where r is a smooth point of ĈP on the exceptional component passing
through the two points of ν−1

P (P ), and where νP : CP → C is the
normalization of C at P .

This would be the degree-1 Abel map of C, defined in a natural way, having
by target Caporaso’s compactification

A : C → P 1
C , P 7→ [YP ,OY(∆̂)|YP ]. (3.2)

If C has no separating nodes, it is not hard to prove that it is well defined.
However, if C has separating nodes, it follows from [CE], Lemma 4.9 (i),
p. 19, that if P ∈ C is a smooth point, the invertible sheaf OC(P ) is strictly
balanced on C if and only if P does not belong to any small tail of C.
Therefore, the Abel map (3.2) is well defined if and only if C has no separating
nodes.

3.1 Degree-1 Abel map

In this section we construct degree-1 Abel map for stable curves whose target
is Simpson’s coarse compactified Jacobian.

Let C be a nodal curve of genus g and ω its dualizing sheaf. Let E be a
vector bundle over C. We recall from Chapter 1 that µ(E) = deg(E)/rk(E)
is the slope of E, where rk(E) denotes the rank of E and deg(E) its degree.
We say that E is a polarization of degree d on C if

µ(E) = g − d− 1.

For each subcurve Y of C let

eY :=
degY (ω)

2
− degY (E)

rk(E)
.

Let L be a torsion-free rank-1 sheaf of degree d on C.

Definition 59. We say that L is semistable with respect to E if χ(L ) =
−µ(E) and for each proper connected subcurve Y of C,

degY (L ) ≥ eY −
δY
2
.
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Lemma 60 ([Ca82], Lemma 1.12, p. 61). Let C be a nodal curve. Let Y be
a connected proper subcurve of genus g

Y
of C. Then

degY (ω) = 2g
Y
− 2 + δY .

Proof. Consider the following exact sequence

0 // K // ω // ω|Y c // 0 . (3.3)

Claim: K is the dualizing sheaf of Y . In fact, since ω is the dualizing sheaf
of C, there is a trace morphism t : H1(C, ω) → k. Composing t with the
induced morphism H1(Y,K) → H1(C, ω), we have a trace morphism tY :
H1(Y,K)→ k for K.

Let F be a coherent sheaf on Y . In order to prove our Claim, we must
show that the composition of the natural pairing

Hom(F ,K)× H1(Y,F)→ H1(Y,K)

with t
Y

gives an isomorphism

Hom(F ,K)→ H1(Y,F)∗.

Indeed, let i : Y → C be the inclusion map and consider the coherent sheaf
i∗F on C. Since ω is a dualizing sheaf for C, we have an isomorphism

Hom(i∗F , ω)→ H1(C, i∗F)∗ = H1(Y,F)∗

induced by t.
From Exact Sequence (3.3), we have the following exact sequence:

0 // Hom(F ,K) // Hom(i∗F , ω) // Hom(i∗F , ω|Y c) .

We claim Hom(i∗F , ω|Y c) = 0. Indeed, let f : i∗F → ω|Y c be a morphism.
We notice that f has support on Y ∩ Y c because i∗F has support on Y
and ω|Y c has support on Y c. Thus, the image of f is a torsion subsheaf of
ω|Y c . But since ω is an invertible sheaf, ω|Y c is a torsion-free sheaf. Then
Hom(i∗F , ω|Y c) = 0. Hence we have an isomorphism

Hom(F ,K)→ H1(Y,F)∗

induced by tY , showing our claim.
Thus, since K is the dualizing sheaf of Y , we have deg(K) = 2g

Y
− 2.

Now, consider the following commutative natural diagram

0 // K //

α

��

ω //

β
��

ω|Y c // 0

0 // ω|Y // ω|Y ⊕ ω|Y c // ω|Y c // 0
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where the horizontal sequences are exact. By the Snake Lemma, the cokernel
of α is equal that of β. However, the cokernel of β is ω|Y ∩Y c , so

χ(Coker(α)) = χ(ω|Y ∩Y c).

Since α is an injection,

χ(Coker(α)) = χ(ω|Y )− χ(K) = degY (ω)− deg(K).

On the other hand, since ω is invertible and #Y ∩ Y c is finite, we have

χ(ω|Y ∩Y c) = χ(OY ∩Y c) = δY .

But, deg(K) = 2g
Y
− 2, so

degY (ω)− 2g
Y

+ 2 = χ(Coker(α)) = δY .

Lemma 61. Let C be a nodal curve of genus g ≥ 2 and ω its dualizing sheaf.
Then C is semistable if and only if ω has nonnegative multidegree, that is,
degY (ω) ≥ 0 for each subcurve Y of C.

Proof. It follows from Lemma 60.

Remark 62. Since C is a nodal curve, it follows from Lemma 60, p. 47,
that Esteves’ semistability notion is equal to the one defined above. In fact,
let Y be a connected proper subcurve of C. Then

degY (L ) + χ(OY ) = χ(LY )

≥ −degY (E)

rk(E)

⇔ degY (L )

≥ −χ(OY )− degY (E)

rk(E)

= g
Y
− 1− degY (E)

rk(E)

=
degY (ω)

2
− degY (E)

rk(E)
− δY

2
,

where we use degY (ω) = 2g
Y
− 2 + δY .
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Lemma 63. Let C be a nodal curve of genus g ≥ 2 and ω its dualizing sheaf.
Then there is a vector bundle E over C of the form

O⊕aC ⊕ ω
⊗b ⊕ OC(

∑
X∈S T (C)

n
X
X)⊗c

such that E is a polarization of degree 1 on C and eZ = 1/2 for each tail Z
of C.

Proof. We separate the proof in two cases:
Case 1) C has no tails;
Case 2) C has tails.
Proof in Case (1). Suppose C has no tails. In this case, let

E := O⊕2g−3
C ⊕ ω⊗g−2

and observe that

µ(E) =
deg(E)

rk(E)
= (g − 2)

2g − 2

2g − 2
= g − 2,

that is, E is a polarization of degree 1 on C.

Proof in Case (2). Say that C has tails. Let

E = O⊕aC ⊕ ω
⊗b ⊕ OC(

∑
X∈S T (C)

n
X
X)⊗c

be a bundle on C where we will choose the integers a, b, c and n
X

.
So that E be a polarization of degree 1 on C, we need

µ(E) =
deg(E)

rk(E)
= b

2g − 2

a+ 2
= g − 2⇔ b = (a+ 2)

g − 2

2g − 2
.

So we let a = 2g − 4 and b = g − 2.
Now we choose the n

X
for each small tail X of C, and c such that

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

n
X
X)⊗c

satisfies eZ = 1/2 for each tail Z of C. Indeed, let Z be a tail of C. Suppose
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first that Z is small. Then,

eZ =
degZ(ω)

2
+ c

n
Z

2g − 2
− (g − 2)

degZ(ω)

2g − 2

= c
n
Z

2g − 2
+

degZ(ω)

2g − 2

=
1

2
⇔ cn

Z
+ degZ(ω) = g − 1

⇔ cn
Z

+ 2gZ − 1 = g − 1

⇔ cn
Z

= g − 2g
Z
,

where we use Lemma 60, p. 47, for the equality degZ(ω) = 2g
Z
− 1. Then,

we may take c = 1 and n
Z

= g − 2g
Z
. Notice that if Z is not small, then Zc

is small and furthermore, eZ + eZc = 1. So eZ = 1/2 ⇔ eZc = 1/2. Thus
eZ = 1/2 for every tail Z of C.

To summarize, we let

E := O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

(g − 2g
X

)X).

Theorem 64. Let C be a semistable curve of genus g ≥ 2, ω its dualizing
sheaf and

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

(g − 2g
X

)X)

a vector bundle over C. Then for each Q ∈ C, the sheaf m∗Q is semistable
with respect to E.

Proof. Let Q be a point of C. Since degY (m∗Q) ≥ 0 for each subcurve Y of
C, in order to show that m∗Q is semistable with respect to E, it is enough to
show that

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
+

degY (ω)

2(g − 1)
− δY

2
≤ 0 (3.4)

for each connected proper subcurve Y of C. So, let Y be a connected sub-
curve of C. The proof that Inequality (3.4) holds for Y is divided in two
cases:
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1) C contains no tails.
2) C contains tails.

Proof in Case 1) Assume that C contains no tails. In this case, we have

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC

= O⊕2g−3
C ⊕ ω⊗g−2,

that by Lemma 63, p.49, is a polarization of degree 1 on C. So, we need to
prove

eY − δY /2 =
degY (ω)

2(g − 1)
− δY

2
≤ 0.

Indeed, on one hand, since C contains no tails, we have δY ≥ 2. But on
the other hand, since C is semistable, we have from Lemma 61, p. 48, that
degY (ω) ≤ 2(g − 1). Hence, degY (ω) ≤ 2(g − 1) ≤ δY (g − 1), which implies

degY (ω)

2(g − 1)
− δY

2
≤ 0.

Thus, we have the proof in Case 1.

Proof in Case 2) We divide the proof of this case in the following subcases:

1. There is no tail among the connected components of Y c.

2. Y is a tail.

3. There are at least 2 tails among the connected components of Y c.

4. There is a unique small tail among the connected components of Y c

and δY ≥ 2.

5. There is a unique large tail among the connected components of Y c

and δY ≥ 2.

Proof in Subcase 1) Say there is no tail among the connected components of
Y c. So, δY ≥ 2 and

degY (OC(
∑

X∈S T (C)(g − 2g
X

)X))

2(g − 1)
= 0.

Since C is semistable, we have degY (ω) ≤ 2(g−1), and therefore, degY (ω) ≤
δY (g − 1), that is,

degY (ω)

2(g − 1)
− δY

2
≤ 0.
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Proof in Subcase 2) Say that Y is a tail. Then δY = 1 and by Lemma
63, p. 49,

eY = −
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
+

degY (ω)

2(g − 1)
= 1/2.

Therefore,

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2r(g − 1)
+

degY (ω)

2(g − 1)
− δY

2
= 0.

Proof in Subcase 3) Let X1, X2, ..., Xm be the connected components of Y c

that are tails. Then m ≥ 2. Suppose first that they are small. Then,

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
=

2g
X1
− g + · · ·+ 2g

Xm
− g

2(g − 1)

=
2(g

X1
+ g

X2
· · ·+g

Xm
)−mg

2(g − 1)
≤ 0.

On the other hand, since δY ≥ 2 and C is semistable, degY (ω)/2(g − 1) −
δY /2 ≤ 0. Therefore,

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
+

degY (ω)

2(g − 1)
− δY

2
≤ 0.

Now, if one of the tails Xi is not small, the reasoning is similar. For
example, suppose that X1 is large. Then Xc

1 is small. Furthermore,

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
=

2g
X1
−g︷ ︸︸ ︷

g − 2g
Xc1

+2g
X2
− g + · · ·2g

Xm
− g

2(g − 1)

=
2(g

X1
+ g

X2
· · ·+g

Xm
)−mg

2(g − 1)
≤ 0.

Proof in Subcase 4) We have δY ≥ 2. Let Z be the connected component of
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Y c that is a tail. Then Z is small. It follows that

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
=

2g
Z
− g

2(g − 1)
≤ 0 and

degY (ω)

2(g − 1)
− δY

2
≤ 0.

Proof in Subcase 5) We have δY ≥ 2. Let Z be the connected component of
Y c that is a tail. Then it is large. Notice that in this case,

−
degY (OC(

∑
X∈S T (C)(g − 2gX)X))

2(g − 1)
=
g − 2g

Zc

2(g − 1)
=

2g
Z
− g

2(g − 1)
≥ 0,

what prevents us from using the same reasoning as before. So, in order to
prove that

−
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
+

degY (ω)

2(g − 1)
− δY

2
≤ 0,

we proceed in the following way:

eY − δY /2 = −
degY (OC(

∑
X∈S T (C)(g − 2g

X
)X))

2(g − 1)
+

degY (ω)

2(g − 1)
− δY

2

=
2g

Z
− g

2(g − 1)
+

2gY − 2 + δY
2(g − 1)

− δY
2

=
(

≤2g︷ ︸︸ ︷
2(gZ + gY )−g − 1) + δY − 1

2(g − 1)
− δY

2

≤ g − 1

2(g − 1)
+

δY − 1

2(g − 1)
− δY

2

=
1

2
+
δY − 1− δY (g − 1)

2(g − 1)
≤ 0

⇔ δY − 1− δY (g − 1)

2(g − 1)
≤ −1

2

⇔ δY − 1− δY (g − 1) ≤ −(g − 1)

⇔ δY − 1 ≤ (δY − 1)(g − 1)

⇔ 1 ≤ g − 1

⇔ 2 ≤ g

where we used δY ≥ 2.
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Let L be an ample invertible sheaf on C. Recall that a torsion-free rank-1
sheaf L on C is slope-semistable with respect to L if and only

degY (L ) ≥ degY (L)

deg(L)

(
deg(L )− deg(ω)

2

)
+

deg(ω|Y )

2
− δY

2

for each connected proper subcurve Y of C.
Now, let f : C → T be a family of stable curves of genus g ≥ 2, ωC/T its

relative dualizing sheaf and E a relative polarization of degree d on f : C → T .
Let

J̄dE(C/T ) : (T -schemes)o → Sets

be the contravariant T -functor which associates to each T -scheme S the set
of torsion-free rank-1 sheaves on p2 : C×T S → S such that for each geometric
point s ∈ S, their fibers over s are semistable with respect to Es. Let det(E)
be the determinant of E .

Let L be a relative very ample invertible sheaf on f : C → T and assume
that t 7→ deg(Lt) is constant. Recall the relative Simpson compactified
Jacobian functor of f : C → T is the T -functor J̄L,d(C/T ) which associates to
each T -scheme S the set of relative slope-semistable sheaves on p2 : C×T S →
S such that for each geometric point s ∈ S, their fibers over s have relative
Hilbert polynomial Pd(z) := deg(Ls) · z + d+ 1− g.

In case T = Spec(C), we set J̄dE(C) := J̄dE(C/T ) and J̄L,d(C) := J̄L,d(C/T ).

Lemma 65. Let f : C → T be a family if stable curves. For each integer m
sufficiently large, the map

Ψm : J̄dE(C/T )→ J̄det(E⊗ω⊗mC/T ),d−mrk(E)(C/T )

defined by
(p2 : C ′ → S,N ) 7→ (p2 : C ′ → S,N ⊗ ω⊗−mC′/S ),

where p2 : C ′ = C ×T S → S is the second projection, is an isomorphism of
functors.

Proof. Let (p2 : C ×T S → S,N ) be an element of J̄dE(C/T )(S). Since f :
C → T is a family of stable curves, ω⊗mC/T is relatively very ample for m ≥ 3;

see [DM69], Thm. 1.2, p. 77. Thus by taking m >> 0, we have also that the

invertible sheaf det(E ⊗ ω⊗mC/T ) = det(E) ⊗ ω⊗mrk(E)
C/T is relatively very ample.

Now let s ∈ S be a geometric point, and put N := Ns, E := Es and ω := ωCs
the restrictions to the fiber over s. Then N is semistable with respect to E
if and only if

degY (N) ≥ degY (ω)

2
− degY (E)

rk(E)
− δY

2
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for each subcurve proper Y of Cs, or equivalently,

degY (N ⊗ ω⊗−m) ≥ −degY (E ⊗ ω⊗m)

rk(E)
+

degY (ω)

2
− δY

2

= −degY (E ⊗ ω⊗m)

rk(E)
· deg(E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)

+
degY (ω)

2
− δY

2

= −degY (E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)
· deg(E ⊗ ω⊗m)

rk(E)
+

degY (ω)

2

−δY
2

=
degY (E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)

(
− deg(E)

rk(E)
−m(2g − 2)

)
+

degY (ω)

2
− δY

2

=
degY (E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)

(
χ(N)−m(2g − 2)

)
+

degY (ω)

2
− δY

2

=
degY (E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)

(
deg(N)−m(2g − 2) + 1− g

)
+

degY (ω)

2
− δY

2

=
degY (E ⊗ ω⊗m)

deg(E ⊗ ω⊗m)

(
deg(N ⊗ ω⊗−m) +

deg(ω)

2

)
+

degY (ω)

2
− δY

2

for each connected proper subcurve Y of Cs. Since

degY (E ⊗ ω⊗m) = degY (det(E ⊗ ω⊗m))

for each subcurve Y of Cs, including Y = Cs, we have that N is semistable
with respect to E if and only if N ⊗ ω⊗−m is slope-semistable with respect
to det(E ⊗ ω⊗m). Therefore, we have the result.

Remark 66. Up to taking m >> 0 we may assume that det(E) is a relatively
very ample invertible sheaf on C/T and, consequently, that Ψ0 : J̄dE(C) →
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J̄det(E),d(C/T ) is an isomorphism. This implies J̄dE(C/T ) to be coarsely repre-
sented by the relative Simpson’s compactified Jacobian J̄det(E),d(C/T ), if the
scheme T is defined over Spec(C); see Chapter 1, Subsection 1.4.

Definition 67. Let C be a stable curve of genus g ≥ 2 over Spec(C). View
the second projection p2 : C × C → C as a family of stable curves. Let
I := I∆ be the ideal sheaf of the diagonal ∆ ⊂ C × C and I∗ its dual sheaf
on C × C.

For each point P ∈ C, the fiber IP = m∗P is semistable with respect to

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

(g − 2g
X

)X)

by Theorem 64, p. 50. Therefore by Remark 66, the pair (C × C/C, I∗)
defines a map

A : C → J̄det(E),1(C), P 7→ m∗P .

We call A the degree-1 Abel map of C.

This degree-1 Abel map “improves” the one by Caporaso and Esteves
because we do not need to use twisters to define it.

3.2 Degree-0 Abel map

Let C be a stable curve of genus g ≥ 2 over Spec(C). In the last section,
given the polarization of degree 1 on C

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

(g − 2g
X

)X),

we constructed degree-1 Abel map of C

A : C → J̄det(E),1(C), P 7→ m∗P .

Now, let P be a smooth point of C. In this section we construct a
polarization FP of degree 0 on C and degree-0 Abel map of C with base
point P

A0 : C → J̄deg(FP ),0(C), Q 7→ mQ ⊗m∗P .

Lemma 68. Let C be a nodal curve of genus g ≥ 2. Let P ∈ C be a smooth
point. Then there is a bundle F of the form

O⊕aC ⊕ ω
⊗b ⊕ OC(

∑
X∈S T (C)

n
X
X)⊗c,
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where

n
X

=

{
1 if P ∈ X
−1 if P 6∈ X

for each small tail X of C, such that F is a polarization of degree 0 on C
with

fZ =

{
1
2

if P ∈ Z
−1

2
if P 6∈ Z

for each tail Z of C.

Proof. We separate the proof in two cases:
Case 1) C contains no tails.
Case 2) C contains tails.

Proof in Case 1). Suppose that C contains no tails. In this case, let

F := OC ⊕ ω

and notice that µ(F ) = deg(F )
rk(F )

= 2g−2
2

= g − 1, that is, F is a polarization of
degree 0 on C.

Proof in Case 2). Say that C contains tails. Let

F := O⊕aC ⊕ ω
⊗b ⊕ OC(

∑
X∈S T (C)

n
X
X)⊗c,

where a, b, c, and n
X

will be chosen integers.
In order that F be a polarization of degree 0 on C, we need µ(F ) = g−1.

Now

µ(F ) =
deg(F )

rk(F)
= b

2g − 2

a+ 2
= g − 1⇔ b =

a+ 2

2
.

So, we let a = 0 and b = 1. Thus, with these choices for a and b, for each
subcurve Y of C, we have

fY =
degY (ω)

2
− degY (F )

rk(F )

=
degY (ω)

2
− c

degY (OC(
∑

X∈S T (C) nXX))

a+ 2
− bdegY (ω)

a+ 2

= −c
degY (OC(

∑
X∈S T (C) nXX))

a+ 2
+ (a+ 2− 2b)

degY (ω)

2(a+ 2)

= −c
degY (OC(

∑
X∈S T (C) nXX))

2
.
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Now, let Z be a tail of C. Suppose first that Z is small. Then

fZ = −c
degZ(OC(

∑
X∈S T (C) nXX))

2
= c

n
Z

2
.

So, in order that

fZ =

{
1
2

if P ∈ Z
−1

2
if P 6∈ Z ,

we let c = 1 and

n
Z

=

{
1 if P ∈ Z
−1 if P 6∈ Z .

Now if Z is not a small tail, Zc is a small one. Therefore, since fZ = −fZc ,
we have that

fZ =

{
1
2

if P ∈ Z
−1

2
if P 6∈ Z and n

Z
=

{
1 if P ∈ Z
−1 if P 6∈ Z .

So in any case we let

F = ω ⊕ (OC(
∑

X∈S T (C)

n
X
X))

where, for each small tail X of C, n
X

=1 if P ∈ X and n
X

= −1 otherwise.

Theorem 69. Let C be a stable curve of genus g ≥ 2 and P ∈ C a fixed
smooth point. Let

F := ω ⊕ OC(
∑

X∈S T (C)

n
X
X)

be a polarization of degree 0 on C, where for each small tail X of C, n
X

= 1
if P ∈ X and n

X
= −1 if P 6∈ X. Then the sheaf mQ ⊗OC(P ) is semistable

with respect to F for each point Q ∈ C.

Proof. Let Q be a point of C. In order to show that mQ⊗OC(P ) is semistable
with respect to F , we need to show

degY (mQ ⊗ OC(P )) ≥ −
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
(3.5)

for each connected proper subcurve Y ⊆ C.
However, since

degY (mQ ⊗ OC(P )) ≥
{

0 if P ∈ Y
−1 if P 6∈ Y
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for each proper subcurve Y of C, in order to show (3.5) it is enough to show
that

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
≤
{

0 if P ∈ Y
−1 if P 6∈ Y (3.6)

for each connected proper subcurve Y of C. So, let Y be a connected proper
subcurve of C. The proof that Inequality (3.6) holds for Y will be divided
in two cases:
1) C contains no tails;
2) C contains tails.

Proof in Case 1) Assume that C contains no tails. In this case, we have

F = ω ⊕ OC(
∑

X∈S T (C)

n
X
X)

= ω ⊕ OC ,

which by Lemma 68, p. 56, is a polarization of degree 0 on C. Thus it is
enough to prove that

fY − δY /2 = −δY
2
≤ −1.

Indeed, since C contains no tails, we have δY ≥ 2.

Proof in Case 2) Assume that C contains tails. We divide the proof of
this case in two Subcases:

1. There are no tails among the connected components of Y c.

2. There are tails among the connected components of Y c.

Proof in Subcase 1) In this situation, we have

degY ((OC(
∑

X∈S T (C) nXX)))

2g − 2
=

degY (OC)

2
= 0 and δY ≥ 2.

Then,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
≤ −1.
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Proof in Subcase 2). Let X1, ..., Xm be the tails among the connected com-
ponents of Y c. Suppose first that all of them are small. Then,

−
degY (OC(

∑
X∈S T (C) nXX))

2
=
−n

X1
− n

X2
− · · · − n

Xm

2
.

Now, in order to finish the proof, we need to analyze some cases with respect
to the position of the point P .

i) P ∈ Y : In this case, it follows from the hypothesis that n
Xi

=−1 for
each i = 1, ..., n, and consequently,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=
−n

X1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− δY

2
≤ 0

because δY ≥ m.

ii) P ∈ Xi for some i: Without loss of generality we may suppose i = 1.
Then, n

X1
= 1 and n

Xi
= −1 for each i = 2, ...,m, and thus,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=
−n

X1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− 2

2
− δY

2

= −1 +
m− δY

2
≤ −1

iii) P 6∈ Y and P 6∈ Xi for i = 1, ...,m: In this case, we notice that δY ≥ m+2.
Indeed, if δY = m, P 6∈ C, a contradiction. And if δY = m + 1, there would
be an extra tail Xm+1 among the connected components of Y c, again a con-
tradiction. Hence δY ≥ m+ 2. Since n

Xi
=−1 for each i = 1, ...,m, it follows:

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=
−n

X1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− δY

2

≤ m−m− 2

2
≤ −1.
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Now, suppose there are large tails among X1, ..., Xm. Since the curve C is
stable, there can be at most one large tail among them. Supposing this tail
to be X1, without loss of generality, we have that Xc

1 is a small tail. Then,

−
degY (OC(

∑
X∈S T (C) nXX))

2
=
n
Xc1
− n

X2
− · · · − n

Xm

2
.

Again we need to analyze different cases with respect to the position of the
point P :

i) P ∈ Y : In this situation, P ∈ Xc
1 and P 6∈ Xi for each i = 2, ...,m.

Hence, from the hypothesis, n
Xc1

= 1 and n
Xi

= −1 for each i = 2, ...,m.

Then,
n
Xc1
− n

X2
− · · · − n

Xm

2
− δY

2
=
m− δY

2
≤ 0.

ii) P ∈ Xi for certain i = 2, ...,m: Say P ∈ X2. In this case, we have
n
Xc1

= 1, n
X2

= 1 and n
Xi

= −1 for each i = 2, ..., n. Hence,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=

n
Xc1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− 2− δY

2

= −1 +
m− δY

2
≤ −1.

iii) P ∈ X1. In this case, n
Xc1

= −1 and n
Xi

= −1 for each i = 2, ...,m.

Therefore,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=

n
Xc1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− 2− δY

2

= −1 +
m− δY

2
≤ −1.
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iv) P 6∈ Y and P 6∈ Xi for any i = 1, ...,m: In this case, n
Xc1

= 1 and

n
Xi

= −1 for each i = 2, ...,m. Furthermore, as in Case (iii), we have
δY ≥ m+ 2. Thus,

−
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
=

n
Xc1
− n

X2
− · · · − n

Xm

2
− δY

2

=
m− δY

2

≤ m−m− 2

2
= −1.

To conclude, we have

degY (mQ ⊗ OC(P )) ≥ −
degY (OC(

∑
X∈S T (C) nXX))

2
− δY

2
.

So, as the point Q ∈ C and the proper subcurve Y ⊆ C are arbitrary, the
result follows.

Definition 70. Let C be a stable curve of genus g ≥ 2 over Spec(C). Let ω
be its dualizing sheaf and P a fixed smooth point of C. Let

FP := ω ⊕ OC(
∑

X∈S T (C)

n
X
X)

be a polarization of degree 0 on C, where for each small tail X of C, n
X

= 1
if P ∈ X and n

X
= −1 if P 6∈ X.

Let I∆ be the ideal sheaf of the diagonal ∆ ⊂ C × C, and put

I := I∆ ⊗ p∗1OC(P ),

where p1 : C × C → C is the first projection. Since for each point Q ∈ C,
the fiber

IQ = mQ ⊗ OC(P )

is semistable with respect to the polarization FP by Theorem 69, it follows
from Remark 66, p. 55, that the pair (p1 : C × C → C, I) defines a map

AP : C → J̄det(FP ),0(C), Q 7→ mQ ⊗ OC(P ).

We call AP the degree-0 Abel map of C with base point P .
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Chapter 4

Abel maps and the theta
divisor

From now until second order, assume C is smooth. Let d > 0 and r ≥ 0 be
integers. The set

W r
d (C) := {L ∈ JdC : h0(C,L ) ≥ r + 1}

has an algebraic structure and is called aBrill–Noether variety. This variety
is closely related to the Abel map in degree d of C, that is, to the map

Ad : Cd → JdC , (P1, ..., Pd) 7→ m∗P1
⊗ · · · ⊗m∗Pd .

This is due to the fact that W 0
d is precisely the image of Ad and, if r > 0,

W r
d (C) is exactly the locus in W 0

d (C) where the fiber dimension of the Abel
map Ad is at least r, by [ACGH], Chap. IV, p. 153.

In this section, we focus on a special Brill–Noether variety. Indeed, as-
sume g ≥ 2. We call the Brill–Noether variety W 0

g−1(C) the theta divisor of
the curve C, and denote it by Θ(C).

In fact, Θ(C) is a divisor as dimW 0
g−1(C) = g− 1, by [Ca08], Rmk. 1.2.3,

p. 1389, and Jg−1
C is smooth with dimension g.

Many properties of the curve C are encoded in the geometry of Θ(C), by
example, if g ≥ 4, C is hyperelliptic if and only if

dimΘ(C)sing = g − 3,

where Θ(C)sing is the singular locus of Θ(C), and nonhyperelliptic if and only
if dimΘ(C)sing = g − 4; see [ACGH], p. 250.

On the other hand, dimΘ(C)sing is precisely described in terms of special
invertible sheaves on C (an invertible sheaf is called “special” if its space
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of global sections has dimension higher that expected). The Riemann Sin-
gularity Theorem, [ACGH], p. 226, states that for each L ∈ Θ(C), the
multiplicity of Θ(C) at L is equal to h0(C,L ). In particular, we have

Θ(C)sing = W 1
g−1(C) = {L ∈ Jg−1

C : h0(C,L ) ≥ 2}.

Another important property of the theta divisor, perhaps the most im-
portant, is that the isomorphism class of the polarized Abelian variety

(Jg−1
C ,Θ(C))

uniquely determines the isomorphism class of C. It is described by the fol-
lowing theorem.

Theorem 71 (Torelli Theorem, [ACGH], p. 245). Let C and C ′ be two
smooth connected curves of genus g ≥ 1. Then (Jg−1

C ,Θ(C)) ∼= (Jg−1
C′ ,Θ(C ′))

if and only if C ∼= C ′.

So, due to the importance of the theta divisor for smooth curves, the
notion was extended to nodal curves as we will see in Definition 80, for
which we need some preliminaries.

Let C be a nodal curve, not necessarily connected, of genus g := 1 −
χ(OC), and C1, ..., Cn its irreducible components. Let δ denote the number
of nodes of C. Let

ν : Cν → C

be the normalization map of C. Let

OC ↪→ OCν

be the associated map of structural sheaves and

0→ H0(C,OC)→ H0(Cν ,OCν )→ kδ → H1(C,OC)→ H1(Cν ,OCν )→ 0

the cohomology sequence associated to it. From this sequence, we obtain a
formula for the genus g = 1 + h1(OC)− h0(OC) of C, to know,

g =
n∑
i=1

g̃
Ci

+ δ − n+ 1,

where g̃
Ci

= h1(Cν
i ,OCνi

) is the genus of Cν
i , the normalization of Ci, for

i = 1, ..., n.
For each subcurve Y of C, let n

Y
be the number of components of Y and

δint
Y the number of nodes of Y . Similarly, we have the following formula for

the genus of Y :

g
Y

=
∑
Ci⊆Y

g̃
Ci

+ δint
Y − nY + 1.
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Proposition 72. Let C be a connected nodal curve over Spec(C) and L a
very ample invertible sheaf on C. Then the compactified Jacobian J̄L ,g−1(C)
does not depend on the choice of L .

Proof. Indeed, a torsion-free rank-1 sheaf N ∈ J̄L ,g−1 if and only if deg(N ) =
g − 1 and

degY (N ) ≥ degY (L )

deg(L )
(deg(N )− g + 1) +

degY (ω)

2
− δY

2

=
degY (ω)

2
− δY

2
= g

Y
− 1

for each proper subcurve Y of C.

Corollary 73. Let T be a scheme over Spec(C) and f : C → T a family of
connected nodal curves of genus g. Let L be a relatively very ample invertible
sheaf on f : C → T . Then the relative compactified Jacobian J̄L,g−1(C/T )
does not depend on the choice of L.

Due to Corollary 73, given a family f : C → T of nodal curves of genus g
and any relatively very ample invertible sheaf L, we let J̄g−1(C/T ) denote the
relative compactified Jacobian parameterizing torsion-free rank-1 sheaves of
degree g− 1 which are relatively slope-semistable on f : C → T with respect
to L. If T = Spec(C), we set J̄g−1(C) := J̄g−1(C/T ).

Proposition 74. Let C be a nodal curve. A coherent sheaf L of rank-1
on C is torsion-free if and only if it has the form L = ν∗L ′, where L ′ =
ν∗L /torsion is an invertible sheaf on a partial normalization ν : C ′ → C.
The sheaf L is not invertible precisely at the nodes P ∈ C over which ν is
not an isomorphism, and for them LP

∼= mP , the ideal sheaf of P .

Proof. See [Ses82].

Example 75. let C be a nodal curve and P ∈ C a node. Let νP : CP → C
be the partial normalization at P and ν−1(P ) =: {P1, P2}. Then, we have

νP ∗(OCP ) = m∗P and ν∗Pm
∗
P = OCP ⊕ kP1 ⊕ kP2 .

Furthermore,

νP ∗(mP1 ⊗mP2) = mP and ν∗PmP = (mP1 ⊗mP2)⊕ kP1 ⊕ kP2 ,

where kP1 and kP2 are the skyscraper sheaves of P1 and P2. In addition, it
follows from the projection formula that m∗P

∼= mP ⊗M , when M is any
invertible sheaf on C such that ν∗PM = mP1 ⊗mP2 .
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Proposition 76. Let C be a nodal curve and L a torsion-free rank-1 sheaf
on C. Let P1, ..., Pm be the points where L is not invertible. Then L can
be written in the form

mP1 ⊗ · · · ⊗mPm ⊗M1 or m∗P1
⊗ · · · ⊗m∗Pm ⊗M2,

for invertible sheaves M1 and M2 on C.

Proof. Let us reason by induction on m. Assume that m = 1 and let ν :
CP1 → C be the normalization at P1. By Proposition 74, p. 65, L = ν∗L ′,
where L ′ = ν∗L /torsion is an invertible sheaf on CP1 . Let ν−1(P1) =:
{P+

1 , P
−
1 }. Let NP1 be an invertible sheaf on C such that mP+

1
⊗ mP−1

⊗
ν∗(NP1) ∼= L ′. Then,

L = ν∗L
′ ∼= ν∗(mP+

1
⊗mP−1

⊗ ν∗(NP1)) = mP1 ⊗NP1 .

Now assume that the result holds for all l < m and let γ : Cγ → C be the
normalization at Pm. Then γ∗L /torsion is a torsion-free rank-1 sheaf on Cγ
which is not invertible at P1, ..., Pm−1. Hence, by induction, γ∗L /torsion can
be written in the form

mP1 ⊗ · · · ⊗mPm−1 ⊗N

for some invertible sheaf N on Cγ. Now, let γ−1(Pm) =: {P+
m , P

−
m} and let

M be an invertible sheaf on C such that mP+
m
⊗mP−m

⊗ γ∗M ∼= N . Then,

L = γ∗(γ
∗L /torsion)

= γ∗(mP1 ⊗ · · · ⊗mPm−1 ⊗N )
∼= γ∗(mP1 ⊗ · · · ⊗mPm−1 ⊗mP+

m
⊗mP−m

⊗ γ∗M )
∼= mP1 ⊗ · · · ⊗mPm−1 ⊗mPm ⊗M .

Finally, to prove that L can be written as well in the form m∗P1
⊗ · · · ⊗

m∗Pm ⊗M , it is enough to write L in the form mP1 ⊗ · · · ⊗mPm ⊗M , and
to notice that for each i = 1, ...,m, there is an invertible sheaf Mi on C such
that mPi

∼= m∗Pi ⊗Mi.

By Proposition 74, p. 65, to each torsion-free rank-1 sheaf L on C, we
can associate a unique partial normalization ν : C ′ → C of C and an unique
invertible sheaf L ′ on C ′ such that ν∗L ′ = L . Due to this uniqueness, we
define the generalized multidegree of L to be the multidegree deg(L ′) of L ′

on C ′. We let deg(L ) denote the generalized multidegree of L on C. Notice
that it follows from Proposition 76 that

deg(L ) = deg(L ′) + #DL ,
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where DL := {P ∈ C : ν is not an isomorphism over P}. Indeed, if L is
invertible, there is nothing to prove. On the other hand, if L is not invertible,
by Proposition 76, p. 66, there are an invertible sheaf M on C and nodes
P1, ..., Pn such that

L = mP1 ⊗ · · · ⊗mPn ⊗M .

Let ν : Cν → C be the normalization at P1, ..., Pn, and for each i = 1, ..., n,
let ν−1(Pi) =: {P+

i , P
−
i }. Then

L ′ = mP+
1
⊗mP−1

⊗ · · · ⊗mP+
n
⊗mP−n

⊗ ν∗M ,

from which follows that

deg(L ′) =
n∑
i=1

deg(mP+
i

) +
n∑
i=1

deg(mP−i
) + deg(M )

= −2n+ deg(M )

= −n+ deg(L ).

Lemma 77. Let L be a torsion-free rank-1 sheaf on C. Let ν : C ′ → C
be the normalization along DL . Let L ′=ν∗L /torsion. If deg(L ) = g − 1,
then deg(L ′) = g′ − 1, where g′ is the genus of C ′.

Proof. Indeed,

deg(L ′) = deg(L )−#DL

= g − 1−#DL

= (
n∑
i=1

g̃
Ci

+ (δ −#DL )− n+ 1)︸ ︷︷ ︸
g′

−1

= g′ − 1.

Let d = (d1, ..., dn) ∈ Zn such that |d| :=
∑n

i=1 di = g − 1. For each
subcurve Y of C, set d

Y
:=
∑

Ci⊂Y di.

Definition 78. We say that d is semistable if for each proper subcurve Y of
C, we have

d
Y
≥ g

Y
− 1.

Lemma 79. Let C be a connected nodal curve and L a torsion-free rank-1
sheaf on C. Then L is slope-semistable if and only if deg(L ′) is semistable
on C ′.
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Proof. Let Y be a subcurve of C and Y ′ ⊂ C ′ the subcurve such that ν(Y ′) =
Y . Let W := (C − Y c) ∩DL . From Proposition 72, p. 65, we have:

degY (L ) ≥ g
Y
− 1 ⇔ degY (L )−#W ≥ g

Y
−#W − 1

⇔ degY (L )−#W ≥
∑
Ci⊂Y

g̃
Ci

+ δint
Y −#W︸ ︷︷ ︸

δint
Y ′

−n
Y

⇔ degY (L )−#W ≥
( ∑
Ci⊂Y

g̃
Ci

+ δint
Y ′ − nY ′ + 1

)
− 1

⇔ degY ′(L
′) ≥ g

Y ′
− 1.

Definition 80. Let C be a connected nodal curve over Spec(C) of genus
g ≥ 2. The theta divisor of C is defined to be

Θ(C) := {L ∈ J̄g−1(C) : h0(C,L ) > 0}.

This definition is motived, mainly, by the following theorem by Beauville.

Theorem 81. Let d ∈ Zn be a n-tuple such that
∑n

i=1 di = g − 1. Let JdC
be the Jacobian parameterizing invertible sheaves on C with multidegree d.
Then the subset

{L ∈ JdC : h0(C,L ) > 0} ⊂ JdC

is a divisor if and only if d is semistable.

Proof. See [Bea77], Thm. 2.1.

Recall that Csing denotes the set of singularities of C. For each S ⊂ Csing

let νS : CS → C be the partial normalization of C along S. Let Σss(CS) be
the set of semistable n-tuples on CS and JdCS the Jacobian parameterizing
invertible sheaves on CS with multidegree d. Then, by Proposition 74, p. 65,
and Lemma 79, p. 67, Θ(C) has the following description

Θ(C) =
⋃

∅⊆S⊆Csing

d∈Σss(CS)

{L ∈ JdCS : h0(CS,L ) > 0}.

Given a family of connected nodal curves f : C → T , let Θ(C/T ) be the
relative theta divisor of the relative compactified Jacobian J̄g−1(C/T ).

Theorem 82. Let T be a scheme over Spec(C) and C → T a family of
connected nodal curves of genus g ≥ 2. Then the relative Cartier divisor

Θ(C/T ) ⊂ J̄g−1(C/T )

is relatively ample.
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Proof. See [Ale], Thm. 5.3, p. 13.

From now until the end of this chapter we show how our degree-1 Abel
map relates to the theta divisor.

Definition 83. Let C be a nodal curve. We say that C is a curve of compact
type if all its nodes are separating nodes.

Proposition 84. Let C be a stable curve of compact type over Spec(C)
of genus g ≥ 2 and ω its dualizing sheaf. Let C1, ..., Cn be the irreducible
components of C. Let L be a line bundle on C with multidegree

(g
C1
− 2 + δC1 , ..., gCn − 2 + δCn).

Then the map
B : C → J̄g−1(C), Q 7→ m∗Q ⊗L

is well defined. Furthermore if L is effective, B factors through Θ(C).

Proof. Let Q ∈ C be a point. Before we prove that m∗Q ⊗ L is slope-
semistable, of course we need to prove that deg(m∗Q ⊗L ) = g − 1, that is,
deg(L ) = g − 2 . Indeed,

deg(L ) =
∑
i

(g
Ci
− 2 + δCi)

=
∑
i

g
Ci
−2n+ 2δ + 2︸ ︷︷ ︸

= 0 because C is
of compact type

−2

= g − 2.

Now, we prove that mQ ⊗L is slope-semistable, that is,

degY (m∗Q ⊗L ) ≥ g
Y
− 1

for each connected subcurve Y of C. Indeed, let Y ⊆ C be a connected proper
subcurve of C. From Theorem 64, p. 50, we have that m∗Q is semistable with
respect to the polarization

E = O⊕2g−4
C ⊕ ω⊗g−2

C ⊕ OC(
∑

X∈S T (C)

(g − 2g
X

)X),

that is,

degY (m∗Q) ≥ (2g
Y1
− g + · · ·

· · ·+ 2g
Yn
− g)/(2g − 2) + deg(ω|Y )/(2g − 2)− δY /2

= (2g
Y1
− g + · · ·+ 2g

Ym
− g + 2g

Y
− 2 + δY )/(2g − 2)− δY /2,
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where Y1, ..., Yn are the tails among the connected components of Y c. How-
ever, since Y is of compact type, we have m = δY and g

Y1
+ · · ·+g

Ym
+g

Y
= g.

So,

degY (m∗Q) ≥ (2g
Y1
− g + · · ·+ 2g

YδY
− g + 2g

Y
− 2 + δY )/(2g − 2)− δY /2

= (2g − 2− δY g + δY )/(2g − 2)− δY /2
= 1− δY .

Now, since deg(L ) = (g
C1
− 2 + δC1 , ..., gCn − 2 + δCn) and Y is of compact

type, we have

degY (L ) =
∑
Ci⊆Y

(g
Ci
− 2 + δCi)

=
∑
Ci⊆Y

(g
Ci
− 2) +

∑
Ci⊆Y

δCi

=
∑
Ci⊆Y

g
Ci
− 2n

Y
+ 2δint

Y + δY

=
∑
Ci⊆Y

g
Ci

+2δint
Y − 2n

Y
+ 2︸ ︷︷ ︸

= 0 because Y is
of compact type

−2 + δY

= g
Y
− 2 + δY .

Thus, we have

degY (m∗Q) ≥ 1− δY ⇔ degY (m∗Q ⊗L ) ≥ 1− δY + g
Y
− 2 + δY = g

Y
− 1,

that is, m∗Q ⊗L is slope-semistable.
Finally, we show that the map

B : C → J̄g−1(C), Q 7→ m∗Q ⊗L

is well defined. Indeed, consider the first projection p1 : C × C → C as a
family of curves. Let I be the ideal sheaf of the diagonal ∆ ⊂ C × C and
I∗ its dual sheaf. Consider the sheaf I∗ ⊗ p∗1L on C × C and notice that
the fiber I ⊗ p∗1L |P = m∗P ⊗L is slope-semistable over each point P ∈ C.
Therefore, the pair (p2 : C × C → C, I∗ ⊗ p∗1L ) defines B : C → J̄g−1(C).

Now, if L is effective, in order to see that B factors through Θ(C), it is
enough to notice that for each point Q ∈ C, m∗Q has sections, what implies
m∗Q ⊗L has sections too. It is important to notice that since C is a stable
curve, the multidegree of L

deg(L ) = (g
C1
− 2 + δC1 , ..., gCn − 2 + δCn)

supports an effective invertible sheaf, as g
Ci
− 1 + δCi ≥ 0 for i = 1, ..., n.
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Definition 85. Let C be a curve and E be a polarization on C. We say
that E is a degenerate polarization if eY − δY /2 ∈ Z for each irreducible
component Y of C, where eY = degY (ω)/2− degY (E)/rk(E).

The next example is one of a degenerate polarization of degree 1 for curves
of compact type.

Example 86. Let C be a curve of compact type whose irreducible compo-
nents are C1, ..., Cn. Let

E = O⊕2g−4
C ⊕ ω⊗g−2 ⊕ OC(

∑
X∈S T (C)

(g − 2g
X

)X)

be a polarization of degree 1 on C. Then E is degenerate. In fact, for each
i = 1, ..., n, we have

eCi = −
deg(OC(

∑
X∈S T (C)(g − 2g

X
)X)|Ci)

2(g − 1)
+

degCi(ω)

2(g − 1)

= (2g
Y1
− g + · · ·+ 2g

Yn
− g + 2g

Ci
− 2 + δCi)/(2g − 2)

where Y1, ..., Ym are the tails among the connected components of Cc
i . But

since C is a curve of compact type, we have m = δCi and g
Y1

+···+g
Ym

+g
Ci

=
g. Thus,

eCi = (2g
Y1
− g + · · ·+ 2g

YδCi

− g + 2g
Ci
− 2 + δCi)/(2g − 2)

= [2(g
Y1

+ · · ·+ g
YδCi

+ g
Ci

)− δCig − 2 + δCi ]/(2g − 2)

= (2g − 2 + δCi − δCig)/(2g − 2)

= 1− δCi/2.

Hence,
eCi − δCi/2 = 1− δCi/2− δCi/2 = 1− δCi ∈ Z

for each i = 1, ..., n, that is, E is degenerate.

Proposition 87. Let C be a nodal curve. Then there is at least one degen-
erate polarization of degree 1 on C, such that m∗Q is semistable with respect
to it for each point Q ∈ C.

Proof. Let C1, ..., Cn be the irreducible components of C. For each i =
1, ..., n, let

qi := 1− δCi/2 + fi,
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where the fi will be chosen integers.
For each subcurve Y of C, let f

Y
:=
∑

Ci⊆Y fi and

q
Y

:=
∑
Ci⊆Y

qi

=
∑
Ci⊆Y

(1− δCi/2 + fi)

= n
Y
− (δY + 2δint

Y )/2 + f
Y

= n
Y
− δY /2− δint

Y + f
Y

So, suppose the fi were chosen. Suppose that we constructed a bundle E
over C satisfying the following conditions:

1. deg(E)/rk(E) = g − 2.

2. eY = q
Y

for each subcurve Y of C.

3. eY − δY /2 ≤ 0, or equivalently 1 − δY /2 ≤ eY for each connected
subcurve Y of C.

Then E would be a degenerate polarization of degree 1 on C, as eCi −
δCi/2 ∈ Z for each i = 1, ..., n. Moreover, for each point Q ∈ C, m∗Q would
be semistable with respect to E, because by (iii),

degY (m∗Q) ≥ 0 ≥ eY − δY /2

for each connected proper subcurve Y of C.
In order to construct such a degenerate polarization E, first we obtain

the fi. Indeed, let F be a vector bundle over C such that degCi(F )/rk(F ) =
g̃
Ci
− 1/n for each i = 1, ..., n, and notice that

µ(F ) := deg(F )/rk(F ) =
n∑
i=1

(g̃
Ci
− 1/n)

=
n∑
i=1

g̃
Ci
− 1

=
n∑
i=1

g̃
Ci

+ δ − n+ 1− (δ − n+ 1)− 1

= g − 1− (δ − n+ 1),

that is, F is a polarization of degree δ−n+ 1 on C. Let N be an invertible
sheaf of degree δ− n+ 1 on C such that N is semistable with respect to F ,
that is,

degY (N ) ≥ g
Y
− 1− degY (F )/rk(F )
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for each connected subcurve Y of C. Let Y be a connected proper subcurve
of C. Then

degY (N ) ≥ g
Y
− 1− degY (F )/rk(F )

= g
Y
− 1−

∑
Ci⊆Y

g̃
Ci

+ n
Y
/n

= g
Y
− (

∑
Ci⊆Y

g̃
Ci

+ δint
Y − nY + 1)︸ ︷︷ ︸
g
Y

+δint
Y − nY + n

Y
/n

= δint
Y − nY + n

Y
/n.

However, since degY (N ) ∈ Z and 0 < n
Y
/n < 1, in fact we have

degY (N ) ≥ δint
Y − nY + 1.

Then, for each i = 1, ..., n, let fi := degCi(N ), and let E be a vector
bundle on C such that e

Ci
= q

Ci
for all i. Thus, we have

f
Y
≥ δint

Y − nY + 1, or equivalently, 1− δY /2 ≤ eY

for each connected proper subcurve Y of C, that is, E is a degenerate polar-
ization of degree 1 on C such that for each point Q ∈ C, m∗Q is semistable
with respect to E.

Proposition 87 has the following importance: Let E be a degenerate
polarization of degree 1 on a nodal curve C of genus g ≥ 2 such that for each
point Q ∈ C, m∗Q is semistable with respect to E. Let L be an invertible
sheaf on C such that

deg(L ) = (g̃
C1
− 1− e

C1
+ δC1/2, ..., g̃Cn − 1− e

Cn
+ δCn/2)

and notice that

deg(L ) =
n∑
i=1

(g̃
Ci
− 1− eCi + δCi/2)

=
n∑
i=1

(g̃
Ci

+ δCi/2− 1)−
n∑
i=1

eCi

=
n∑
i=1

g̃
Ci

+ δ − n+ deg(E)/rk(E)− deg(ω)/2

= g − 1 + g − 2− (g − 1) = g − 2.

73



Let Q be a point of C and Y a connected proper subcurve of C. By
hypothesis, m∗Q is semistable with respect to E. Then, degY (m∗Q) ≥ eY −δY /2
or equivalently,

degY (m∗Q ⊗L ) ≥ eY − δY /2 +
∑
Ci⊆Y

(g̃
Ci
− 1− eCi + δCi/2)

= eY − δY /2 +
∑
Ci⊆Y

g̃
Ci
− n

Y
− eY + δint

Y + δY /2

=
∑
Ci⊆Y

g̃
Ci

+ δint
Y − nY + 1− 1 = g

Y
− 1.

Therefore if C is defined over Spec(C), the map

B : C → J̄g−1(C), Q 7→ m∗Q ⊗L ,

is well defined, and factors through the theta divisor of C if L is effective.

Corollary 88. Let C be a stable curve over Spec(C) of genus g ≥ 2. Let
E and F be degenerate polarizations of degree 1 on C such that for each
point P ∈ C, m∗P is semistable with respect to each one of them. Then,
J̄det(E),1(C) ∼= J̄det(F ),1(C).

Proof. Let L and M be invertible sheaves on C such that

deg(L ) = (g̃
C1
− 1− e

C1
+ δC1/2, ..., g̃Cn − 1− e

Cn
+ δCn/2)

and

deg(L ) = (g̃
C1
− 1− f

C1
+ δC1/2, ..., g̃Cn − 1− f

Cn
+ δCn/2).

In order to prove that J̄det(E),1(C) ∼= J̄det(F ),1(C), it is enough to notice
that the translations

TL : J̄det(E),1(C)→ J̄g−1(C), N 7→ N ⊗L

and
TM : J̄det(F ),1(C)→ J̄g−1(C), N 7→ N ⊗M

are isomorphisms.

It follows from Corollary 88, that it matters little the choice of degenerate
polarization E with respect which m∗P is semistable for every Q ∈ C.
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Chapter 5

Abel maps for families of curves

The first purpose of this chapter is to describe a construction of a family of
stable curves v : V → V called a versal family of stable curves. It is versal in
the following sense: Given any family of stable curves f : C → T , there is a
cover ∪i∈ITi by open sets of T such that for each i ∈ I, we have a Cartesian
diagram

C //

��

V

��
Ti // V.

(5.1)

In [HM98], p. 102 there is a construction of such a family, which will be
sketched here.

Our second purpose is to extend our Abel maps to this versal family, and
our last is to try to extend our Abel maps to any family of stable curves.

Let X be a projective scheme, with very ample invertible sheaf OX(1),
and F a coherent sheaf on X. The Hilbert polynomial of F with respect to
OX(1) is defined to be the function

χ(F (·)) : Z→ Z, n 7→ χ(F (n)),

where χ(F (n)) is the Euler characteristic of F (n). When F = OX , it is
also called the Hilbert polynomial of X. This terminology is justified by the
following proposition:

Proposition 89. Let X be a projective scheme, with very ample invertible
sheaf OX(1), and F a coherent sheaf on X. Then the Hilbert polynomial of
F with respect to OX(1) is a polynomial on n, of degree equal to dimSuppF .
It can be expressed as an integer combination of binomial polynomials

(
n
r

)
.

Finally, for n >> 0, we have χ(F (n)) = h0(F (n)).
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Proof. The first and second statements follow from [Har], p. 230, Exer. 5.2.
The last equality follows from Serre’s theorem on vanishing of higher coho-
mology. Finally, the expression in terms of binomials is a general fact about
polynomials taking integer values; see [Har], Prop. 7.3, p. 49.

Let C be a stable curve of genus g ≥ 2, ω its dualizing sheaf and n ≥ 3
an integer. Under these conditions the sheaf ω⊗n is very ample; see [DM69],
Thm. 1.2, p. 77. Hence we may use ω⊗n to embed C in Pr for some r. Indeed,
since

degCi(ω
⊗1−n) = (1− n)(2g

Ci
− 2 + δCi) < 0,

then ω⊗1−n has no sections, that is, H0(C, ω⊗1−n) = 0. Then by the Riemann–
Roch Theorem, h0(C, ω⊗n) = (2n− 1)(g − 1). So, let

r := (2n− 1)(g − 1)− 1 and d := 2n(g − 1),

and choose a basis for H0(C, ω⊗n). Let ϕω⊗n : C → Pr be the map given by
this basis. We call ϕω⊗n a n-canonical embedding of C.

Let X denote the image of ϕ := ϕω⊗n and IX|Pr its sheaf of ideals in Pr.
Then we have a natural exact sequence:

0→ IX|Pr → OPr → OX → 0,

and therefore the Hilbert polynomial P (z) of X satisfies

P (m) = h0(OX(m)) = h0(ω⊗mn) = 2mn(g − 1) + 1− g

for m >> 0. That is, P (z) = dz + 1 − g, depending only on n and g.
So, X can be represented by a point in the Hilbert scheme parameterizing
subschemes of Pr with Hilbert polynomial P (z) = dz + 1− g.

As we have already said, our aim is to construct a versal family of stable
curves. But we do more than this, we construct such a versal family where
each fiber is a stable curve of genus g, n-canonically embedded in Pr and
with Hilbert polynomial P (z) = dz + 1− g.

Before this, we introduce the last preliminary. Let H be the Hilbert
scheme parameterizing closed subschemes of Pr with Hilbert polynomial
P (z) = dz + 1− g.

Let Y ⊂ Pr × H be the universal subscheme. For each point b ∈ H, let
Yb be the fiber of p2 : Y → H over b, where p2 : Pr ×H → H is the second
projection.

For each curve Z ⊂ Pr, let IZ|Pr be the ideal sheaf of Z in Pr and NZ|Pr :=
Hom(IZ|Pr/I2

Z|Pr ,OZ) its normal sheaf.
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Lemma 90. Let H ′′ ⊂ H be an open subset. Assume that for each point
b ∈ H ′′ the fiber Yb of p2 : Y → H ′′ is a stable curve. Then H ′′ is smooth.

Proof. See [Ca94], Lemma 2.2, p. 609.

Finally we are ready to describe the construction of the versal family of
stable curves given in [HM98]. Indeed, by [HM98], Lemma 3.4, p. 102, there
is an open subscheme H ′ ⊆ H parameterizing the points b ∈ H whose fiber
Yb of p2 : Y → H is a nodal curve.

Let Y ′ := Y ∩ Pr × H ′ and let ωY ′/H′ be the relative dualizing sheaf of
p2 : Y ′ → H ′. Since ampleness is an open property, it follows from semicon-
tinuity that there is an open subscheme H ′′ ⊆ H ′ parameterizing the points
b ∈ H ′′ such that ωY ′/H′′ restricts to an ample sheaf on the fiber Yb.

Let Y ′′ := Y ∩ Pr × H ′′. Then, since the relative dualizing sheaf of
p2 : Y ′′ → H ′′ is ample, we have that p2 : Y ′′ → H ′′ is a family of stable
curves. Furthermore by Lemma 90, H ′′ is smooth.

Now, notice that p2 : Y ′′ → H ′′ is a family embedded in Pr×H ′′, but not
all its fibers are n-canonically embedded. Due to this, we pass to a subscheme
of H ′′. Indeed, let ωY ′′/H′′ be the relative dualizing sheaf of p2 : Y ′′ → H ′′.
Let OY ′′(1) be the very ample sheaf given by the embedding in Pr×H ′′. The
invertible sheaves ω⊗nY ′′/H′′ and OY ′′(1) induce a map

H ′′ → PicdY ′′/H′′ ×H′′ PicdY ′′/H′′ ,

where PicdY ′′/H′′ is the algebraic space parameterizing invertible sheaves of
degree d on the fibers of p2 : Y ′′ → H ′′. Let V ⊆ H ′′ be the inverse image
of the diagonal under the above mapping. Notice that V is not necessarily
a closed subscheme of H ′′ because PicdY ′′/H′′ may not be separated over H ′′.
Let V := Y ∩ Pr × V , and denote the projection p2 by v : V → V .

Thus, each n-canonically embedded stable curve of genus g is a fiber of
v. Reciprocally, for each b ∈ V , we have OYb(1) ∼= ω⊗nYb , where Yb := v−1(b)
and ωYb is the dualizing sheaf of Yb. So, the inclusion Yb ↪→ Pr may be seen
as given by r + 1 global sections of ω⊗nYb . These r + 1 sections are linearly
independent, because h1(Pr, IYb|Pr(1)) = 0, and they span H0(Yb, ω

⊗n
Yb

) since
this vector space has dimension r + 1. So Yb is a n-canonically embedded
stable curve of genus g.

Now we state that V is nonsingular. Indeed, to show this we apply the
infinitesimal criterion for smoothness, [GD] IV4-17.5.4, p. 69. Let A be a
local Artinian k-algebra with residue field k, and I ⊆ A an ideal isomorphic
to k. Let B := A/I and SA := Spec(A). Denote by SB ⊆ SA the subscheme
given by I. Fix a map SB → V , and let b ∈ V denote the point in the image.
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According to the infinitesimal criterion for smoothness, to show V is smooth,
it is enough to show that SB → V extends to a map SA → V .

Indeed, since V ⊆ H ′′ and H ′′ are nonsingular, there is an extension to a
map SA → H ′′. So, there is a closed subscheme

YA ⊆ Pr × SA (5.2)

whose intersection with Pr × SB is the subscheme YB given by the map
SB → V . Let ωA be the relative dualizing sheaf of p2 : YA → SA and ωB its
restriction to YB.

Let σ0, ..., σr be the pullbacks to YB of a basis of the space of global
sections of OPr(1). Since YB is given by SB → V , we have that ω⊗nB

∼= OYB(1).
So we may regard σ0, ..., σr as global sections of ω⊗nB giving the embedding
of YB in Pr × SB. Now, since the formation of H0(YA, ω

⊗n
A ) commutes with

base change, the sections σi lift to global sections σi of ω⊗nA . And since the
σi’s give an embedding of YB in Pr × SB, the σi’s give as well an embedding
of YA in Pr × SA.

The embedding given by the σi’s may not be that given by the inclusion
(5.2), so that it may correspond to a different map SA → H ′′. This does not
matter because this map lifts the given SB → V , and it is plain from the
construction that it factors through V . Then, V is nonsingular, as we stated.

Finally, v : V → V is a versal family of stable curves. Indeed, let f :
C → S be a family of stable curves, and denote by ωC/S its relative dualizing
sheaf. Then ω⊗nC/S gives a closed embedding of C into

PS(f∗(ω
⊗n
C/S)) := Proj(Sym(f∗(ω

⊗n
C/S))),

where
Sym(f∗(ω

⊗n
C/S)) =

⊕
m≥0

Symm(f∗(ω
⊗n
C/S)),

with Symm(f∗(ω
⊗n
C/S)) denoting the m-th symmetric product of f∗(ω

⊗n
C/S), for

each m ≥ 0.
Now, picking an open covering Si of S such that for each i, f∗(ω

⊗n
C/S)|Si is

free, after choosing a basis, we may embed each Ci := f−1(Si) in Pr×Si, and
hence we get an induced map Si → H. By construction, this map factors
through V . Then, p2 : Ci → Si is the base extension of C → V under a map
Si → V .

Moreover, it is important to notice that the family v : V → V is a family
of stable curves of genus g ≥ 2.
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5.1 Degree-1 Abel map for the versal family

Let v : V → V be the versal family of stable curves constructed above and
consider the following setup due to Esteves. Let Σ ⊂ V be the scheme of
singularities of v, given by the Fitting ideal of Ω1

V/V . Since v : V → V is
a family of nodal curves, Σ intersects each fiber in a reduced scheme. Let
Σ1, ...,Σl be the irreducible components of Σ. If two of them intersected ,
say over b ∈ V , then Σ would not intersect transversely Vb. Actually, from
[DM69], p. 82, one can see that Σ is nonsingular and of codimension 2 in V .
Thus the Σi are also the connected components of Σ.

For each i = 1, ..., l, let Bi = v(Σi). Since v is proper, Bi is an irreducible
closed subscheme of V . Consider the restriction

vi := v|Σi : Σi → Bi.

Then vi is a proper surjection with finite fibers, whence a finite map. Also
it follows from the analysis on [DM69], p. 82, that vi is an immersion. Also,
Bi is a Cartier divisor of V , because V is smooth.

Now, reorder the Σi in such way that Σ1, ...,Σm are the ones that intersect
each fiber in a separating node. For each i = 1, ...,m, let Zi and W i denote
the irreducible components of v−1(Bi). They intersect transversely at Σi.
Indeed, for each b ∈ Bi, we have that Bi

b and W i
b are the two tails of Vb

attached to the node in Σi
b. For each i = 1, ...m,, we choose Zi and W i such

that Zi has relative genus smaller than g/2 over Bi. If both Zi and W i have
relative genus g/2, just remove Σi from the list.

For each i = 1, ...,m, let OV(Zi) denote the divisor associated to the Zi.
Let OV and ωV be the structure sheaf and the canonical sheaf of v : V → V .
Now consider the vector bundle

E := O⊕2g−4
V ⊕ ω⊗g−2

V ⊕ OV(Z1)⊗g−2g1 ⊗ · · · ⊗ OV(Zm)⊗g−2gm

on V .
Regard the second projection p2 : V ×V V → V as a family of curves. Let

I := I∆ be the ideal sheaf of the diagonal ∆ ⊂ V ×V V and I∗ its dual sheaf
on V ×V V . Let y be a geometric point of V . Then, we have

Ey = O⊕2g−4
Vy ⊕ ω⊗g−2

Vy ⊕ OVy(
∑

Z∈S T (Vy)

(g − 2g
Z
)Z),

and furthermore, for each point P ∈ Vy, I∗P = m∗P is semistable with respect
to Ey by Theorem 64, p. 50. So, I∗ is a (relative) torsion-free rank-1 sheaf
of degree 1 on p2 : V ×V V → V which is semistable with respect to E , or
equivalently, slope-semistable with respect to det(E); see Remark 66, p. 55.
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Hence if V defined over Spec(C), the pair (p2 : V ×V V → V , I∗) defines
a map

A : V → J̄det(E),1(V/V ), (5.3)

where J̄det(E),1(V/V ) is the Simpson’s relative compactified Jacobian, param-
eterizing torsion free rank-1 sheaves of degree 1 on v : V → V which are
relatively slope-semistable with respect to det(E). We call A the degree-1
Abel map of v : V → V .

This construction of the degree-1 Abel map of v : V → V is a particular
one. At first we do not see how to use it to construct degree-1 and degree-0
Abel maps for any family of stable curves of genus g ≥ 2. In the next section
we consider to construct them for any family of stable curves of genus g ≥ 2
using other techniques.

5.2 Degree-1 and degree-0 Abel maps for fam-

ilies of stable curves

Let f : C → T be a family of stable curves of genus g ≥ 2. By the versal
property of v : V → V , there is an open cover ∪j∈JTj of T and the Cartesian
diagrams below

Cj
gj //

��

V

��
Tj // V.

(5.4)

The easiest way to construct, by example, the degree-1 Abel of f : C → T
is to glue the pullbacks, through the gj, of the invertible sheaves OV(Zi) and
to get sheaves OC(Zi) on C for each i = 1, 2, ..., n. Done this, we can construct
the relative bundle

E = O⊕2g−4
C ⊕ ω⊗g−2

C ⊕ OC(Z
1)⊗g−2g1 ⊗ · · · ⊗ OC(Z

m)⊗g−2gm

on f : C → T and consequently, the degree-1 Abel map A : C → J̄det(E),1(C/T )
of f : C → T .

However, we do not know how to do this gluing. Thus, in order to over-
come this difficulty to get the sheaves OC(Zi) on C, we use divisors on stacks
which will be introduced in the next subsection.

5.2.1 Stacks

In this subsection we present a simple introduction to the stacks. The reader
who is more interested on this subject may see details in [ACG].
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Let T be a scheme and consider the category Sch/T of schemes over T .
In what follows we will mostly consider the case T = Spec(C).

Definition 91. A groupoid over T is a pair M = (CM, pM), where CM
is a category, and pM : CM → Sch/T is a functor such that the following
conditions hold:

1) Let f : S ′ → S be a morphism in Sch/T , and let η be an object in
CM such that pM(η) = S. Then there are an object ξ ∈ CM and a morphism
ϕ : ξ → η in CM with pM(ϕ) = f .

2) Each morphism ϕ : ξ → η in CM is Cartesian in the following sense.
Given any other morphism ϕ′ : ξ′ → η and a morphism h : pM(ξ)→ pM(ξ′)
such that pM(ϕ′)h = pM(ϕ), there is a unique morphism ψ : ξ → ξ′ such
that pM(ψ) = h and ϕ′ψ = ϕ.

For notational simplicity, we refer to the objects of CM as the objects of
the groupoid M.

Definition 92. A n-pointed smooth curve of genus g is a smooth curve C
of genus g together with an ordered collection P1, ..., Pn of distinct smooth
points of C.

A n-pointed stable curve of genus g is a curve C together with an ordered
collection P1, ..., Pn of distinct smooth points of C such that for each rational
component E of C, #E ∩ C − E + #{Pi : Pi ∈ E} ≥ 3.

If C is a n-pointed smooth (resp. stable) curve of genus g with ordered
smooth points P1, ..., Pn, we let (C,P1, .., Pn) denote it.

Example 93. Let C be the category where the objects are families ξ : C → T
of smooth (resp. stable, n-pointed) curves of genus g so that a morphism
ϕ : ξ′ → ξ between a family ξ′ : C ′ → T ′ and a family ξ : C → T is a
commutative diagram

C ′

ξ′

��

// C
ξ
��

T ′
f // T

which induces an isomorphism C ′ ∼= T ′ ×T C. Define, the functor p, which
associates to each family ξ : C → T its parameter space T , that is, p(ξ) = T ,
and to each morphism ϕ, p(ϕ) = f . It is not hard to see that the pair (C , p)
satisfies properties 1) and 2).

The groupoid of n-pointed smooth (resp. stable) curves of genus g is
denoted by Mg,n (resp. Mg,n).
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A morphism α : M → M′ of groupoids over Sch/T is a functor, which
we also denote by α, α : CM → CM′ such that, pM′ = αpM.

Lemma 94. A morphism F : M → M′ of groupoids over Sch/T is an
isomorphism if, and only if, for each S in Sch/T , the induced functor on the
fibers FS :M(S)→M′(S) is an equivalence of categories.

Proof. See [ACG], Lemma 5.1, p. 282.

Lemma 95. Every contravariant functor F : Sch → Sets can be considered
as a groupoid.

Proof. See [ACG], p. 285.

Example 96. Every scheme can be considered as a groupoid. Indeed, by
Yoneda’s lemma and by Lemma 95, given a scheme X, we can identify X
with Hom(−, X), and then consider X as a groupoid.

Let M be a groupoid over Sch. Given an object ξ in M(T ), we think of
T as a groupoid, and we define an induced morphism of groupoids

mξ : T →M,

by associating to each object in T (S), that is, to each morphism f : S → T ,
a pullback f ∗(ξ) in M(S). In particular, given a family of n-pointed stable
curves τ := (C → T ) of genus g, it induces a morphism

T →Mg,n,

so that for each morphism f : S → T , we have f ∗(τ) = (C ×T S → S) ∈
M(S).

Definition 97. LetM = (C , p), with p : C → Sch be a groupoid. Let ξ be
an object ofM(U), T a scheme and f : U → T an étale surjective morphism.
Consider the respective projections

pi : U ×T U → U, pij : U ×T U ×T U → U ×T U and qi : U ×T U ×T U → U,

so that p1p12 = q1 = p1p13, p2p12 = q2 = p1p23, and p2p13 = q3 = p2p23.
A descent datum for ξ relative to f : U → T is an isomorphism ϕ : p∗1ξ →

p∗2ξ such that p∗23ϕ ◦ p∗12ϕ = p∗13ϕ : q∗1ξ → q∗3ξ.
We say that a descent datum for ξ relative to f is effective if there are

an object η ∈ M(T ) and an isomorphism ψ : f ∗(η) → ξ such that ϕ =
(p∗2ψ) ◦ (p∗1ψ)−1.
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Definition 98. A stack is a groupoid M = (C , p) having the following
properties.
1) Every (étale) descent datum is effective.
2) Given a scheme T and objects ξ and η in M(T ), the functor

IsomT (ξ, η) : SchT −→ Sets

S
f→ T 7−→ {f ∗ξ ∼= f ∗η}

is a sheaf in the étale topology.

Theorem 99. The groupoid Mg,n and Mg,n are stacks.

Proof. See [ACG], Thm. 7.6, p. 296.

We say that a morphism of stacks f : M → N is representable, if for
each scheme S and each morphism S → N , the fiber product M×N S is a
scheme. (Notice that we are identifying S with Hom(−, S).)

Definition 100. A stackM is called a Deligne–Mumford stack if it has the
following properties.

1. The diagonal ∆ :M→M×M is representable, quasi-compact, and
separated.

2. There are a scheme X and a representable étale surjective morphism
X →M.

Theorem 101. Mg,n and Mg,n are Deligne–Mumford stacks.

Proof. See [ACG], Thm. 8.3, p. 300.

For the sake of notational simplicity, if ξ and η are objects of a groupoid
M, and H is a morphism from ξ to η, then we designate the corresponding
morphism p(ξ)→ p(η) by h.

Definition 102. A quasi-coherent sheaf F on a stack M consists of the
following data:

1. A quasi-coherent sheaf Fα on S for any morphism α : S →M, where
S is a scheme,

2. An isomorphism

ρH : h∗(Fβ)
∼=−→ Fα

for each morphism H : α→ β of schemes overM, satisfying the cocycle
condition:

83



3) For each pair of morphisms H1 : α1 → α2 and H2 : α2 → α3, where
αi : Si →M, i = 1, 2, 3, is a scheme over M, the diagram

h∗1(h∗2(Fα3))

h∗1(ρH2
)

��

(h2 ◦ h1)∗(Fα3)

ρH2◦H1

��
h∗1(Fα2)

ρH1 //Fα1

of isomorphisms of sheaves over S1 commutes.

We say that a sheaf F on M is locally free of rank-r if all the Fα are
locally free of rank-r.

We say that F is an invertible sheaf on M if it is locally free of rank-1.
WhenM is a Deligne–Mumford stack, the isomorphism classes of invertible
sheaves form a group under the tensor product operation called the Picard
group of the stack and it is denoted by Pic(M).

Given a family of n-pointed stable curves f : C → T and an extra section
σ : T → C of f , there is a way to get one family of n + 1-pointed stable
curves from it, called stabilization; see [ACG], p. 129. We are interested in a
particular case. Indeed, let f : C → T be a family of stable curves. Consider
a projection p : C ×T C → C as a family of 0-pointed stable curves and the
diagonal ∆ : C → C ×T C as a section of p. As ∆ is not a section through the
smooth locus of p, we do the following. Let Q be a node of a fiber of f , say
over t0 ∈ T . Close to the node Q, C can be analytically represented as the
locus with equation xy = g, where g is a function on an open neighborhood
V of t0 which vanishes at t0, and thus C ×T C can be locally realized as the
locus

W = {((x, y, x′, y′), s) ∈ U × V : xy = g = x′y′},

where U is a neighborhood of the origin in C4, and ∆ the locus with equations
x = x′, y = y′.

Now, replace W with

W ′ = {((x, y, x′, y′), s, [λ : µ]) ∈ U×V×P1 : xy = g = x′y′, λx′ = µx, λy = µy′}

and ∆ with the section ∆’ corresponding to the locus λ=µ. Thus, the net
effect on the fiber at x′ = y′ = 0, s = s0 = 0, is to replace the node P with a
P1, meeting once each of the two branches of the former node, and crossed
by ∆′ at a smooth point. Notice that we can do this local constructions for
each node of each fiber over T .

Stabilization process shows that all this local constructions that we can
do fit together and that the result is algebraic. For our particular case, the
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final result of the process is a family h : Y → C of 1-pointed stable curves
with a section ∆′ : C → Y such that for each smooth point Q ∈ C, the fiber
YQ is the 1-pointed stable curve

(Cf(Q), Q),

whereas if Q is singular, YQ is the one

(Ĉf(Q), RQ),

with Ĉf(Q) = E ∪ CQf(Q), where CQf(Q) is the normalization of Cf(Q) at Q, E is
the exceptional component joining the points of the inverse image of Q by
this normalization, and RQ is a smooth point of Ĉp(Q) on E.

Definition 103. LetX := (C,P1, ..., Pn) be a n-pointed stable curve of genus
g. Let P ∈ X be a separating node. Let νP : XP → X be the normalization
of X at P . Let C1 and C2 be the two connected components of XP of genus
a and b, respectively. Let A and B be the disjoint subsets of {P1, ..., Pn}
indexing, respectively, marked points on C1 and on C2. We say that P is a
separating node of type P , where P = {(a,A), (b, B)}. We shall sometimes
refer to such a P as a bipartition of (g, {P1, ..., Pn}).

Definition 104. A graph Γ consists of the following data

1. a finite nonempty set V = V (Γ) ( the set of vertices);

2. a finite set L = L(Γ) (the set of half-edges);

3. an involution ι of L;

4. a partition of L indexed by V , that is, the assignment to each v ∈ V of a,
possibly empty, subset Lv of L such that L = ∪v∈VLv and Lv∩Lw = ∅
if v 6= w.

We call an edge of the graph to a pair of distinct elements of L inter-
changed by the involution ι.

A fixed point of the involution is called a leg of the graph. The set of
edges of Γ is denoted by E(Γ).

A dual graph is the datum of a graph together with the assignment of a
nonnegative integer weight gv to each vertex v.

The genus of a dual graph Γ is defined to be

g =
∑

v∈V (Γ)

gv + 1− χ(Γ).
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A graph (or a dual graph) endowed with a one-to-one correspondence
between a finite set P and the set of its legs will be said to be P -marked or
n-marked, where n is its number of legs.

Definition 105. Given a nodal curve C and D a finite set of smooth points
of C, we can associate a dual graph Γ(C,D) to (C,D), given by a 4-tuple
(V,E, L, h), where V is the set of vertices, E the set of edges, L the set of
legs and h a function on the set V with non-negative integer values. We
define this 4-tuple as follows

1. to each irreducible component Cr corresponds a vertex vCr ;

2. to each node intersecting the components Cr and Cs (where Cr and Cs
can coincide) corresponds an edge connecting the vertices vCr and vCs ;

3. to each marked point P on a component Cr, a leg LP,Cr ;

4. we define h : V → Z≥0 to be the function that associates to each vertex
v the geometric genus of the corresponding component of C.

Fix a n-pointed stable curve C and let Γ be its dual graph. Let DΓC ⊂
Mg,n be the Deligne–Mumford stack where for each scheme T , an object in
DΓ(T ) is the datum of a family f : C → T of n-pointed stable curves whose
fibers have dual graph which are specializations of Γ. The codimension of
DΓ in Mg,n is equal to the number of edges of Γ; see [ACG], p. 312.

For each dual graph Γ of a n-pointed stable curve, we call DΓ(T ) a bound-
ary strata ofMg,n. The simplest boundary strata are those of codimension 1,
which correspond to the dual graph of n-pointed stable curves with a single
node and a single component, which we denote by Γirr, or to the dual graph of
n-pointed stable curves with two components and a single node. The latter,
are graphs denoted by ΓP attached to stable bipartitions P = {(a,A), (b, B)}
of (g, {1, ..., n}). These have two vertices, one of genus a and #A legs, the
other of genus b = g − a ands #B legs, where #A + #B = n. We set
Dirr := DΓirr and DP := DΓP .

Fact 106 ( [ACG], p. 339). Let Mg,n be a Deligne–Mumford stack. For
each boundary strata Dirr and DP , where P = {(a,A), (g − a,B)}, we can
associate a class of invertible sheaves O(Dirr) and O(DP) =: O(P(a,A)) in
Pic(Mg,n), respectively.

Theorem 107. Let f : C → T be a family of stable curves of genus g ≥ 2.
Consider a projection p : C ×T C → C as a family of stable curves, let ∆ :
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C → C ×T C be the diagonal map and consider ∆ as a section of p. For each
i = 1, ..., bg/2c, where bg/2c is the largest integer less or equal to g/2, let

OC(P(i,∅)) := h∗O(P(i,∅)).

Let ωC be the dualizing sheaf of C and consider the vector bundle

E = O2g−4
C ⊕ ω⊗g−2

C ⊕ OC(P(1,∅))
⊗(g−2) ⊗ · · · ⊗ OC(P(bg/2c,∅))

⊗(g−2bg/2c)

over C. Then for each geometric point t ∈ T , the restriction of E to the fiber
Ct is the vector bundle

Et = O⊕2g−4
Ct ⊕ ω⊗g−2

Ct ⊕ OCt(
∑

X∈S T (Ct)

(g − 2g
X

)X).

Proof. By the stabilization process, we get a family h : Y → C of 1-pointed
stable of genus g and a commutative diagram

C h∗ //

f

��

Mg,1

Pr
��

T //M g

(5.5)

where Pr is the 1th projection; see [ACG], p. 125.
Then, by commutativity of the diagram (5.5), given a geometric point

t ∈ T , the restriction of E to the fiber Ct is the vector bundle

Et = O⊕2g−4
Ct ⊕ ω⊗g−2

Ct ⊕ OCt(
∑

X∈S T (Ct)

(g − 2g
X

)X).

Definition 108. Let f : C → T and E be as in Theorem 107. Regard the
second projection p2 : C ×T C → C as a family of curves, let I := I∆ be the
ideal sheaf of the diagonal ∆ ⊂ C ×T C and I∗ its dual sheaf on C ×T C.

Then, for each point P ∈ Ct, the sheaf I∗P = m∗P on Ct is semistable with
respect to Et by Theorem 64 p. 50. Therefore, I∗ is a (relative) torsion-free
rank-1 sheaf of degree 1 on p2 : C ×T C → C which is semistable with respect
to E , or equivalently, slope-semistable with respect to det(E) by Remark 66,
p. 55. Hence the pair (p2 : C ×T C → C, I∗) defines a map

A : C → J̄det(E),1(C/T ), (5.6)

where J̄det(E,1(C/T ) is the Simpson’s relative compactified Jacobian, param-
eterizing slope-semistable sheaves of degree 1 on f : C → T with respect to
det(E). We call A the degree-1 Abel map of f : C → T .
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Theorem 109. Let f : C → T be a family of stable curves of genus g ≥ 2
such that there is a section σ : T → C through the smooth locus of C and let
OC(Σ) be the relative invertible sheaf associated to Σ := σ(T ).

Let
FΣ := ωC ⊕ OC(P(1,∅))

⊗n1 ⊗ · · · ⊗ OC(P(bg/2c,∅))
⊗nbg/2c

be a relative vector bundle on f : C → T , where for each i = 1, ..., bg/2c, we
have ni = 1 if Supp(OC(Σ)) ∩ Supp(OC(P(i,∅))) 6= ∅ and ni = −1 otherwise.

Let I∆ be the ideal sheaf of the diagonal in the product C ×T C and put

I := I∆ ⊗ OC(Σ).

Extend (f : C → T, σ) over f : C → T and obtain a family of curves
p2 : C ×T C → C with base section σC : C → C ×T C. Then the sheaf I is
a torsion-free rank-1 sheaf of degree 0 on p2 : C ×T C → C which is slope-
semistable with respect to det(FΣ).

Proof. Indeed, let t be a geometric point of T and let P := σ(t). Now notice
that for each point Q ∈ Ct, we have that IQ = mQ ⊗ O(P ) is a torsion-free
rank-1 sheaf of degree 0 on Ct which is semistable with respect to FΣ

t , where

FΣ
t = ωCt ⊕ OCt(

∑
Z∈S T (Ct)

n
Z
Z),

with n
Z

= 1 if P ∈ Z and n
Z

= −1 otherwise; see Theorem 68, p. 58.
Therefore I is semistable with respect to FΣ, or equivalently, slope-

semistable with respect to det(FΣ); see Remark 66, p. 55.

Definition 110. Let f : C → T , σ : T → C, FΣ and I be as in Theorem
109. Extend (f : C → T, σ) over f : C → T and obtain a family of curves
p2 : C ×T C → C with base section σC : C → C ×T C.

According Theorem 109, the sheaf I is slope-semistable with respect to
det(FΣ) and therefore, the pair (p2 : C ×T C → C, I) defines a map

Aσ : C → J̄det(FΣ),0(C/T ), (5.7)

where J̄det(FΣ),0(V/V ) is the relative compactified Simpson Jacobian param-
eterizing torsion-free rank-1 sheaves of degree 0 on f : C → T which are
relatively slope-semistable with respect to det(FΣ).

We call Aσ the degree-0 Abel map of f : C → T with base σ.

Remark 111. It is important to notice that the existence of the degree-
0 Abel map Aσ of f : C → T is conditioned to the existence of a section
σ : T → C through the smooth locus of C.
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Chapter 6

Translations for the
compactified Jacobian

Let C be a curve and C1, ..., Cn its irreducible components. Let

q = (q1, ..., qn) ∈ Qn.

If |q| :=
∑n

i=1 qi ∈ Z, we say that q is a numerical polarization of degree |q|
on C. For each subcurve Y of C, we denote q

Y
:=
∑

Ci⊆Y qi.

Definition 112. Let q be a polarization on C and i ∈ {1, ..., n}. We say

that L ∈ J̄ |q|C is q-i-quasistable if

degY (L ) ≥ q
Y
− δY /2

for each connected proper subcurve Y of C, with strict inequality if Y con-
tains Ci.

Lemma 113. Let q be a polarization on C, i ∈ {1, ..., n} and P ∈ Ci a
smooth point of C. Then there is a polarization E of degree |q| on C such
that each torsion-free rank-1 simple sheaf L on C is q-i-quasistable if and
only if it is P -quasistable with respect to E.

Proof. For each j = 1, ..., n, let aj, bj ∈ Z such that qj = aj/bj. For each
j = 1, ..., n, let Pj ∈ Cj be a smooth point of C. Put m := b1b2...bn.

Let

E := O⊕2m−1
C ⊕ OC

( n∑
j=1

(mdeg(ω|Cj)− 2mqj)Pj

)
,

where ω is the dualizing sheaf of C. Notice that

µ(E) =
deg(E)

rk(E)
=

n∑
j=1

mdeg(ω|Cj)− 2mqj

2m
= g − |q| − 1,
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where g is the genus of C. So E is a polarization of degree |q| on C. Moreover,
for each proper subcurve Y of C, notice that

eY =
degY (ω)

2
− deg(E|Y )

rk(E)
= q

Y
.

So, from Definition 17, p. 19, Definition 59, p. 46, and Remark 62, p.
48, it follows that L is q-i-quasistable if and only if L is P -quasistable with
respect to E.

Remark 114. Let q, i, P and E be as in Lemma 113. Let

J̄
q,i

C := {L ∈ J̄C : L is q-i -quasistable}.

At the end of Chapter 1, we saw that there is a scheme, denoted by J̄PE , pa-
rameterizing torsion-free rank-1 simple sheaves on C which are P -quasistable
with respect E. Then, by Lemma 113 we have

J̄
q,i

C = J̄PE ,

that is, J̄
q,i

C is a scheme. We say that J̄
q,i

C is the scheme parameterizing
torsion-free rank-1 simple q-i-quasistable sheaves on C and we denote by

J
q,i

C ⊆ J̄
q,i

C its open subscheme parameterizing invertible sheaves.

Definition 115. Let q be a polarization on C. Let d := (d1, ..., dn) ∈
Zn such that |d| :=

∑n
i=1 di = |q|. We say that d is q-i-quasistable if

there is a q-i-quasistable invertible sheaf L such that d = deg(L ) :=
(degC1

(L ), ..., degCn(L )).

For each d ∈ Zn, we let JdC be the scheme parameterizing invertible
sheaves on C whose multidegree is d.

Definition 116. We call a regular smoothing of C a proper and flat mor-
phism f : C → Spec(B), where B is a discrete valuation ring having residue
field k and quotient field K, such that:

1. C is the closed fiber.

2. The total space C is regular.

3. The generic fiber of f , denoted by CK , is a smooth projective curve
over K.
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Let f : C → Spec(B) be a regular smoothing of C. Let

D(C) :=
{∑

niCi : ni ∈ Z
}
,

the group of formal sums. If Z is a subcurve of C, we also denote by Z the
sum

∑
Ci⊆Z Ci ∈ D(C).

Since C is regular, Ci is a Cartier divisor for each i = 1, ..., n, and therefore
we have an associated invertible sheaf OC(D) on C for each D ∈ D(C).

For each regular smoothing f : C → Spec(B) of C, let

TfC := {OC(D)|C : D ∈ D(C)}

and
T (C) := {T ∈ TfC : f is a regular smoothing of C}.

The elements of T (C) are called twisters.
For each i, j ∈ {1, 2, ..., n}, let

ki,j := #(Ci ∩ Cj) if i 6= j

and
ki,j := −#(Ci ∩ C − Cj) if i = j.

Then, for each i, j ∈ {1, ..., n} and each regular smoothing f : C → Spec(B)
of C, we have

degCj(OC(Ci)) = ki,j.

Notice that ki,j = kj,i and
∑n

j ki,j = 0 for each i. Thus, we have for each
twister T on C, deg(T ) = 0. Moreover,

deg(T ) ∈ Z(k1,1, ..., kn,1) + Z(k1,2, ..., kn,2) + · · ·+ Z(k1,n, ..., kn,n).

For each i ∈ {1, ..., n}, let

λ(q, i) := {e = (e1, ..., en) ∈ Zn| e is q-i -quasistable}.

Proposition 117. Let i ∈ {1, ..., n} and q be a polarization on C. Then, for
each e ∈ Zn such that |e| = |q|, there is a unique twister multidegree te such
that e+ te ∈ λ(q, i).

Proof. See [CEP], p. 10.

Corollary 118. Let q and q′ be polarizations on C and i, j ∈ {1, ..., n}. Let
L be an invertible sheaf on C such that deg(L ) + |q| = |q′|. Then we have
a bijection

λ(q, i)→ λ(q′, j), e 7→ e+ deg(L ) + te(L ),

where te(L ) is the unique twister multidegree such that e+deg(L )+te(L ) ∈
λ(q′, j).
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Let q and q′ be polarizations on C. Let L ∈ JC such that

deg(L ) + |q| = |q′|.

Let i, j ∈ {1, .., n} and let e ∈ λ(q, i). Let I ∈ JeC . Since

deg(I ⊗L ) = deg(I ) + deg(L ) = deg(I ) + |q| = |q′|,

it follows from Proposition 117 that there is a twister Te such that

ϕL (e) := deg(I ⊗L ⊗Te) ∈ λ(q′, j).

By Corollary 118, we have a bijection

ϕL : λ(q, i)→ λ(q′, j), e 7→ ϕL (e),

and by Proposition 117 a well defined map, in fact an isomorphism,

Be
L : JeC → J

ϕL (e)
C , I 7→ I ⊗L ⊗Te.

Since
J
q,i

C =
⋃

e∈λ(q,i)

Je and J
q′,j

C =
⋃

e∈λ(q,i)

JϕL (e),

where the unions are disjoints, the Be
L induce a well-defined isomorphism

AL : Jq,iC → Jq
′,j
C , I 7→ Be

L (I ) if I ∈ JeC ,

called a L -twister-isomorphism.
It is thus natural to ask: Does AL extend to an isomorphism

ĀL : J̄q,iC → J̄q
′,j
C ?

In general, no! Indeed, Viviani and Melo discovered a curve with four compo-
nents which admits two distinct polarizations q and q′ such that J̄q,iC 6∼= J̄q

′,j
C

for all i, j ∈ {1, 2, 3, 4}.
So, since the question we made has a negative answer, we propose the

next more natural question: For which curves C such extensions are pos-
sible? Of course if L = OC , q = q′ and i = j, the answer is plain. So
we search for nontrivial cases. This chapter is dedicated to constructing two
nontrivial examples of curves for which AL extend. Before this we need some
preliminaries.

Lemma 119. Let C be a nodal curve. Let L and M be torsion-free rank-1
sheaves on C. Suppose that M is invertible where L is not. Then L ⊗M
is a torsion-free rank-1 sheaf and

deg(L ⊗M ) = deg(L ) + deg(M ).
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Proof. By Proposition 76, p. 66, there are P1, ..., Pm, Pm+1, ...Pn nodes of C
such that

L = mP1 ⊗ · · · ⊗mPm ⊗N1

and
M = mPm+1 ⊗ · · ·mPn ⊗N2,

where N1 and N2 are invertible sheaves on C. First assume that L = mP1 ,
and consider the natural sequence

0→ mP1 → OC → OP1 → 0.

Since M is invertible at P1, by tensoring this sequence by M , we get another
exact sequence

0→ mP1 ⊗M →M → OP1 → 0,

whence we obtain
χ(M ) = χ(mP1 ⊗M ) + 1.

Thus,

deg(mP1 ⊗M ) = χ(mP1 ⊗M )− χ(OC)

= χ(M )− χ(OC)− 1 =

= deg(mP1) + deg(M ).

Then, reasoning by induction, we have

deg(L ⊗M ) = Σm
i=1deg(mPi) + Σn

j=m+1deg(mPj) + deg(N ) + deg(M )

= deg(L ) + deg(M ).

Recall that by Proposition 74 p. 65, to each torsion-free rank-1 sheaf L
on C we can associate an unique partial normalization ν : C ′ → C of C and
an unique invertible sheaf L ′ on C ′ such that ν∗L ′ = L . Furthermore, the
generalized multidegree of L is, by definition, the multidegree deg(L ′) of
L ′ on C ′. We also use deg(L ) to denote the generalized multidegree of L
on C. Recall also that

deg(L ) = deg(L ′) + #{P ∈ C : ν is not an isomorphism over P}.

Example 120. Let C be a nodal curve with only two components C1 and
C2 such that C1 ∩C2 = {P,Q}. Let ν : C ′ → C be the partial normalization
at P and Q, and let ν−1(P ) =: {P1, P2} and ν−1(Q) =: {Q1, Q2}. For each
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i = 1, 2, let C ′i be the subcurve of C ′ mapped onto Ci through ν and assume
that Pi, Qi ∈ C ′i. Let

L = mP ⊗mQ ⊗M ,

where M is an invertible sheaf on C.
From Proposition 74, p. 65, we have that L ′ = mP1⊗mP2⊗mQ1⊗mQ2⊗

ν∗M , whence

deg(L ′) = deg(mP1) + deg(mP2) + deg(mQ1) + deg(mQ2) + deg(ν∗M )

= (degC′1(ν∗M )− 2, degC′2(ν∗M )− 2)

= (degC1
(M )− 2, degC2

(M )− 2),

where the equality degC′i(ν
∗M ) = degCi(M ) follows from the fact that M

is invertible on C.

6.1 First example

Lemma 121. Let C = C1∪C2 be a nodal curve such that {N1, N2}=C1∩C2.

Let q = (q1, q2) be a polarization on C. Let L ∈ J̄q,1C be a non invertible sheaf.
Then L = mNj ⊗M for some j = 1, 2 and some invertible sheaf M on C.

Proof. Indeed, since L is not invertible, it follows from Proposition 76, p.
66, that we need to consider only the following cases

1. L = mN1 ⊗mN2 ⊗M ,

2. L = mNi ⊗M for some i = 1, 2,

where M is an invertible sheaf on C. Then it is enough to discard the
possibility (1). Indeed, set d := |q| and suppose by contradiction that L =
mN1 ⊗mN2 ⊗M . In this case, since

deg(mN1) = deg(mN2) = −1 and deg(L ) = d,

we have deg(M ) = d+ 2.
Since

deg(L ) = deg(mN1) + deg(mN2) + deg(M ),

where deg(mN1) = deg(mN2) = (−1,−1) and deg(M ) = (x, d + 2 − x) for
some x ∈ Z, we have

deg(L ) = (x− 2, d− x).

Since L ∈ J̄q,1C , we have

degCi(L )− qi ≥ −δCi/2 = −1
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for each i = 1, 2, and moreover, degC1
(L ) − q1 > −1. Now, since degL =

(x− 2, d− x),
x− 2− q1 = degC1

(L )− q1 > −1

gives us x > q1 + 1, whereas

−x+ q1 = degC2
(L )− q2 ≥ −1,

give us x ≤ q1 +1, an absurd. Hence, L can not be of the form mN1⊗mN2⊗
M .

Definition 122. For each real number a, let bac (resp. dae) denote the
largest integer less or equal to a (resp. the smallest integer greater or equal
to a).

Lemma 123. Let C be a nodal curve with only two irreducible components
C1 and C2 such that #C1 ∩ C2 = 2. Let q = (q1, q2) be a polarization of
degree d on C. Then

λ(q, 1) = {(bq1c, d− bq1c), (bq1c+ 1, d− 1− bq1c)}.

Proof. Let (p1, p2) ∈ λ(q, 1). Then,

p1 − q1 > −1 and q1 − p1 = p2 − q2 ≥ −1⇔ 1 ≥ p1 − q1.

Since p1 ∈ Z and 0 ≥ bq1c − q1 > −1, inevitably we have that

p1 ∈ {bq1c, bq1c+ 1}.

So, since p1 + p2 = d, if p1 = bq1c, we get p2 = d− bq1c. On the other hand,
if p1 = bq1c+ 1, we get p2 = d− 1− bq1c. Hence,

λ(q, 1) = {(bq1c, d− bq1c), (bq1c+ 1, d− 1− bq1c)}.

Proposition 124. Let C = C1∪C2 be a curve in P2 where C1 is a conic and
C2 is a line such that C1 ∩ C2 = {N1, N2}. Let p = (p1, p2) and q = (q1, q2)
be polarizations on C. Let L ∈ JC such that |p| + deg(L ) = |q|. Let

i, j ∈ {1, 2}. Then any L -twister-isomorphism AL : J
p,1

C → J
q,j

C extends to
an isomorphism

ĀL : J̄
p,i

C → J̄
q,j

C .
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Proof. For the sake of notational simplicity we assume that p, q ∈ Z2 and we
show our statement only for i=j=1, as for any other i, j ∈ {1, 2} the proof
is similar.

By Lemma 123 we have

λ(p, 1) = {(p1, p2), (p1 + 1, p2 − 1)} and λ(q, 1) = {(q1, q2), (q1 + 1, q2 − 1)}.

By Proposition 117, p. 91, for each e ∈ λ(p, 1), there is a unique twister
multidegree te such that e+ deg(L ) + te ∈ λ(q, 1). Thus we have two cases
to consider.

1.
(p1, p2) + deg(L ) + t(p1,p2) = (q1 + 1, q2 − 1) (6.1)

and
(p1 + 1, p2 − 1) + deg(L ) + t(p1+1,p2−1) = (q1, q2), (6.2)

2.
(p1, p2) + deg(L ) + t(p1,p2) = (q1, q2)

and

(p1 + 1, p2 − 1) + deg(L ) + t(p1+1,p2−1) = (q1 + 1, q2 − 1).

We give the proof only in Case 1) as the proof in Case 2) is similar.
Proof in Case 1). Let T1 and T2 be twisters such that

deg(T1) = t(p1,p2) and deg(T2) = t(p1+1,p2−1).

Now consider the following maps

B1
L : J

(p1,p2)
C → J

(q1+1,q2−1)
C , I 7→ I ⊗L ⊗T1,

B2
L : J

(p1+1,p2−1)
C → J

(q1,q2)
C , I 7→ I ⊗L ⊗T2,

and the L -twister-isomorphism

AL : J
p,1

C → J
q,1

C

induced by B1
L and B2

L .

We claim that AL : J
p,1

C → J
q,1

C extends to an isomorphism ĀL : J̄
p,1

C →
J̄
q,1

C .
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Indeed, let R ∈ J̄p,1C . Due to the symmetry of the curve C, without loss
of generality, we may suppose R = mN1 ⊗M for some invertible sheaf M
on C with multidegree (p1 + 1, p2). Let

{Pt}t∈N ⊆ C1 − {N1} and {Qt}t∈N ⊆ C2 − {N1}

be sequences of smooth points such that

lim
t→∞

Pt = N1 = lim
t→∞

Qt.

Now, notice that for each t ∈ N,

deg(mPt ⊗M ) = (p1, p2), that is, mPt ⊗M ∈ J (p1,p2)
C ,

deg(mQt ⊗M ) = (p1 + 1, p2 − 1), that is, mQt ⊗M ∈ J (p1+1,p2−1)
C ,

and

lim
t→∞

mPt ⊗M = mN1 ⊗M = R = mN1 ⊗M = lim
t→∞

mQt ⊗M .

In addition, since C has genus 1, notice that these are the only ways to
approach R through the components J

(p1,p2)
C and J

(p1+1,p2−1)
C . So, in order to

show that AL : J
p,1

C → J
q,1

C extends, we need to prove that the limits

lim
t→∞

B1
L (mPt ⊗M ) = lim

t→∞
mPt ⊗L ⊗M ⊗T1

and
lim
t→0

B2
L (mQt ⊗M ) = lim

t→∞
mQt ⊗L ⊗M ⊗T2

are isomorphic.
Claim 1: The natural limits

lim
t→∞

B1
L (mPt ⊗M ) = mN1 ⊗L ⊗M ⊗T1

and
lim
t→∞

B2
L (mQt ⊗M ) = mN1 ⊗L ⊗M ⊗T2

do not belong to J̄
q,1

C . Indeed, from (6.1) we have

deg(L ⊗T1) = (q1 + 1, q2 − 1)− (p1, p2).

So, since

deg(mN1 ⊗L ⊗M ⊗T1) = deg(mN1) + deg(M ) + deg(L ⊗T1)

= (−1,−1) + (p1 + 1, p2) + (q1 + 1, q2 − 1)−
−(p1, p2)

= (q1 + 1, q2 − 2),
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we have that mN1 ⊗L ⊗M ⊗T1 6∈ J̄
q,1

C , as

−2 = degC2
(mN1 ⊗L ⊗M ⊗T1)− q2 6≥ −1.

Similarly, from (6.2), we have

deg(L ⊗T2) = (q1, q2)− (p1 + 1, p2 − 1).

Then

deg(mN1 ⊗L ⊗M ⊗T2) = deg(mN1) + deg(M ) + deg(L ⊗T2)

= (−1,−1) + (p1 + 1, p2) + (q1, q2)−
−(p1 + 1, p2 − 1)

= (q1 − 1, q2).

Hence mN1 ⊗L ⊗M ⊗T2 6∈ J̄
q,1

C because

−1 = degC1
(mN1 ⊗L ⊗M ⊗T1)− q1 6> −1.

Therefore we have proved Claim 1.

Claim 2: There are torsion-free rank-1 sheaves L ′ and L ′′ on C such
that

lim
t→0

B1
L (mPt ⊗M ) ∼= L ′ ∈ J̄q,1C , lim

t→0
B2

L (mQt ⊗M ) = L ′′ ∈ J̄q,1C

and L ′ ∼= L ′′.

Figure 6.1:

Indeed, first we find the sheaf L ′. Fix D ∈ C2 a smooth point. For
each t ∈ N, let rt be the line passing through D and Pt. Since C ⊆ P2, it
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follows from Bezout Theorem that rt intersects C2 at another smooth, which
we denote by Mt; see Figure 6.1.

Now, fix another smooth point B ∈ C1, and let st be the line passing
through Mt and B. Again since C ⊆ P2, st intersect C2 at another smooth
point P ′t ; see Figure 6.2.

Since for each t ∈ N the divisor associated to the rational function rt/st
on C is D + Pt + Mt − B − P ′t −Mt, we have that the divisors D + Pt and
B + P ′t are equivalent, that is, D + Pt ≡ B + P ′t . Hence, for each t ∈ N, we
have

mPt
∼= m∗D ⊗mB ⊗mP ′t

.

Figure 6.2:

Thus,

lim
t→∞

B1
L (mPt ⊗M ) = lim

t→∞
mPt ⊗L ⊗M ⊗T1

= lim
t→∞

m∗D ⊗mB ⊗mP ′t
⊗L ⊗M ⊗T1

= m∗D ⊗mB ⊗mN2 ⊗L ⊗M ⊗T1.

Let L ′ := m∗D ⊗mB ⊗mN2 ⊗M ⊗T1. We claim that L ′ ∈ J̄q,1C . In fact,
it is enough to find the multidegree of L ′.

deg(L ′) = deg(m∗D) + deg(mB) + deg(mN2) + deg(M ) + deg(L ⊗T1)

= (0, 1) + (−1, 0) + (−1,−1) + (p1 + 1, p2) + (q1 + 1, q2 − 1)

−(p1, p2)

= (q1, q2 − 1).

Hence, since deg(L ′) = (q1, q2 − 1), it is easy to see that L ′ ∈ J̄q,1C .
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Figure 6.3:

Now we find the sheaf L ′′ on C such that

lim
t→∞

B2
L (mQt ⊗M ) = L ′′ ∈ J̄q,1C .

Fix a smooth point B′ ∈ C1. For each t ∈ N, let r′t be the line passing
through B′ and Qt. Since C ⊆ P2, r′t intercept C1 at a point M ′

t ; see Figure
6.3.

Fix a smooth point D′ ∈ C2 and let s′t be the line passing through D′

and M ′
t . Since C ⊆ P2, s′t intercept C1 at a point Q′t; see Figure 6.4. Hence,

for each t ∈ N, the divisors Qt + B′ and Q′t + D′ are congruent because the
divisor associated to the rational function r′t/s

′
t is Qt +B′ −Q′t −D′.

Thus, since Qt +B′ ≡ Q′t +D′, we have

mQt
∼= m∗B′ ⊗mD′ ⊗mQ′t

,

and therefore

lim
t→∞

mQt ⊗M ⊗T2 = lim
t→∞

m∗B′ ⊗mD′ ⊗mQ′t
⊗M ⊗T2

= m∗B′ ⊗mD′ ⊗mN2 ⊗M ⊗T2.

Let L ′′ := m∗B′ ⊗ mD′ ⊗ mN2 ⊗M ⊗ T2. Then L ′′ ∈ J̄q,1C . Indeed, we
have

deg(L ′′) = deg(m∗B′) + deg(mD′) + deg(mN2) + deg(M ) + deg(L ⊗T2)

= (1, 0) + (0,−1) + (−1,−1) + (p1 + 1, p2) + (q1, q2)

−(p1 + 1, p2 − 1)

= (q1, q2 − 1).
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Figure 6.4:

Hence L ′′ ∈ J̄q,1C .
To finish the proof of our claim, we need to prove that L ′ ∼= L ′′. Indeed,

let ν : C ′ → C be the normalization of C at N2 and let {N2,1, N2,2} :=
ν−1(N2). Let

I ′ := mN2,1 ⊗mN2,2 ⊗ ν∗(m∗D ⊗mB ⊗M ⊗T1) = ν∗(L ′)/torsion

and

I ′′ := mN2,1 ⊗mN2,2 ⊗ ν∗(m∗B′ ⊗mD′ ⊗M ⊗T2) = ν∗(L ′′)/torsion.

By Proposition 74, p. 65, we have

ν∗I
′ = L ′ and ν∗I

′′ = L ′′.

Since C ′ is a curve of compact type, it follows that I ′ and I ′′ are uniquely
determined, up to isomorphism, by their restrictions to the irreducible com-
ponents of C ′; see Proposition 43, p. 32. However, since

deg(I ′) = deg(L ′) = (q1, q2 − 1) = deg(L ′′) = deg(I ′′),

and the irreducible components of C ′ are P1, it follows that the restrictions
of I ′ and I ′ are isomorphic, implying I ′ ∼= I ′′. Hence

L ′ = ν∗I
′ ∼= ν∗I

′′ = L ′′,

and we have proved our Claim 2. Therefore, AL extends to an isomorphism

ĀL : J̄
p,1

C → J̄
q,1

C .
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6.2 Second example

Proposition 125. Let C ⊆ P2 be a curve given by the union of three P1’s.
Let e = (e1, e2, e3) and f = (f1, f2, f3) be polarizations on C. Let L ∈ JC
such that

|e|+ deg(L ) = |f |.

Fix i, j ∈ {1, 2, 3}. Then any L -twister-isomorphism AL : Je,iC → J
f,j

C

extends to an isomorphism ĀL : J̄e,iC → J̄
f,j

C .

Proof. To study this second example, we use the following strategy: Let

q := (|e|, 0, 0) be a polarization on C and AL : Je,iC → J
f,j

C a L -twister-
isomorphism. By Proposition 117, p. 91, we know that for each h ∈ λ(q, 1)
there are unique twisters multidegree t1 and t2 such that h + t1 ∈ λ(e, i)
and h + deg(L ) + t2 ∈ λ(f, j). Thus we are able to construct the following
commutative diagram

J
q,1

C

A′OC
��

A′L // J
f,j

C

Je,iC

AL

>>

where A′OC and A′L are twister-isomorphisms. Therefore it is enough to show
that

A′OC : J
q,1

C → Je,iC and A′L : J
q,1

C → J
f,j

C

extend to isomorphisms

Ā′OC : J̄
q,1

C → J̄e,iC and Ā′L : J̄
q,1

C → J̄
f,j

C ,

respectively, as in this case, as AL = A′L ◦ (A′OC )−1, this implies that

AL : Je,iC → J
f,j

C

extends to the isomorphism

ĀL = Ā′L ◦ (Ā′OC )−1 : J̄e,iC → J̄
f,j

C .

The construction that we will give extensions is based on the following
four lemmas, whose proof finish that of the proposition.
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Lemma 126. Let C be a curve and C1, C2, C3 its irreducible components.
Suppose that Ci is smooth for each i = 1, 2, 3, and {N1} = C1 ∩ C3, {N2} =
C1 ∩ C2 and {N3} = C2 ∩ C3. Let d be an integer and q = (d, 0, 0). Let

L ∈ J̄q,1C − J
q,1

C . Then L = mNi ⊗M for some i ∈ {1, 2, 3}, where M is an
invertible sheaf on C.

Proof. Since L is a torsion-free rank-1 sheaf on C, by Proposition 76, p. 66,
we need to consider only the following cases:

1. L = mN1 ⊗mN2 ⊗mN3 ⊗M ,

2. L = mNi ⊗mNj ⊗M ,

3. L = mNi ⊗M ,

where M is an invertible sheaf on C.
Thus, in order to prove the lemma, it is enough to exclude Case 1) and

Case 2).
Case 1) Suppose by contradiction that L = mN1 ⊗ mN2 ⊗ mN3 ⊗M . Since
deg(mNi) = −1 for each i = 1, 2, 3 and

deg(L ) = deg(mN1) + deg(mN2) + deg(mN3) + deg(M ),

we have deg(M ) = d+ 3.
Let x, y ∈ Z such that deg(M ) = (x, y, d+ 3− x− y). Since deg(mN1) =

(−1, 0,−1), deg(mN2) = (−1,−1, 0), deg(mN3) = (0,−1− 1) and

deg(L ) = deg(mN1) + deg(mN2) + deg(mN3) + deg(M ),

we have
deg(L ) = (x− 2, y − 2, d+ 1− x− y).

Since L ∈ J̄q,1C , we have

x− 2− d = degC1
(L )− d > −1 and d− x = degC2∪C3

(L ) ≥ −1,

that is, x > d+ 1 and x ≤ d+ 1, which is impossible.

Case 2) Suppose by contradiction that L = mN1⊗mN3⊗M . Since deg(mNi) =
−1 for i = 1, 3, we have deg(M ) = d+ 2. Let x, y ∈ Z such that

deg(M ) = (x, y, d+ 2− x− y).

Since deg(mN1) = (−1, 0,−1) and deg(mN3) = (0,−1− 1), we have

deg(L ) = (x− 1, y − 1, d− x− y).
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Since L ∈ J̄q,1C , we have

degC1
(L )− d > −1 and degC2∪C3

(L ) ≥ −1,

that is, x = d+ 1. On the other hand, we have

y − 1 = degC2
(L ) ≥ −1 and − y = degC1∪C3

(L )− d > −1,

that is, y = 0. Hence, we have

deg(L ) = (d,−1,−1).

But we would need as well that −1 = degC1∪C2
(L ) − d > −1, absurd. Due

to symmetry of the curve, mN2 ⊗mN3 ⊗M 6∈ J̄q,1C , for any M as well.

Suppose by contradiction that L = mN1 ⊗ mN2 ⊗M . Then deg(M ) =
d + 2. Let x, y ∈ Z such that deg(M ) = (x, y, d + 2 − x − y). Since
deg(mN1) = (−1, 0,−1) and deg(mN2) = (−1,−1, 0), we have

deg(L ) = (x− 2, y − 1, d+ 1− x− y).

Since L ∈ J̄q,1C , we have

x− 2− d = degC1
(L )− d > −1 and d− x = degC2∪C3

(L ) ≥ −1,

that is, x > d+ 1 and x ≤ d+ 1, absurd.

In the next lemma we describe exactly what are the elements of J̄
q,1

C −J
q,1

C .

Lemma 127. Let C and q be as in Lemma 126. Then,

J̄
q,1

C − J
q,1

C = {mNi ⊗M : i = 1, 2, 3 and M ∈ JaC with a = (d+ 1, 0, 0)}.

Proof. Let L ∈ J̄q,1C − Jq,1C . By Lemma 126, we have L = mNi ⊗M for
some i ∈ {1, 2, 3}, where M is an invertible sheaf on C. We show that all
the followings three cases are possible, with deg(M ) = (d+ 1, 0, 0):

1. L = mN1 ⊗M ,

2. L = mN2 ⊗M ,

3. L = mN3 ⊗M .
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Case 1) Suppose L = mN1 ⊗M . Since deg(mN1) = −1 and deg(L ) = d, we
have deg(M ) = d+ 1. Let x, y ∈ Z such that deg(M ) = (x, y, d+ 1−x− y).
Since deg(mN1) = (−1, 0,−1) and

deg(L ) = deg(mN1) + deg(M ),

we have
deg(L ) = (x− 1, y, d− x− y).

In order we have L ∈ J̄q,1C , we need

x− 1− d = degC1
(L )− d > −1 and d− x = degC2∪C3

(L ) ≥ −1,

that is, x = d+ 1. But, with x = d+ 1, we also need

−1− y = degC3
(L ) ≥ −1 and y = degC1∪C2

(L )− d > −1,

that is, y = 0. Therefore, deg(M ) = (d + 1, 0, 0) and deg(L ) = (d, 0,−1).

Finally to see that L ∈ J̄q,1C it is enough to notice that

0 = degC2
(L ) ≥ −1 and 0 = degC1∪C3

(L )− d > −1.

Case 2) Suppose L = mN2 ⊗M . By analogy with Case 1), it follows from

the symmetry of the curve C that L ∈ J̄q,1C , with deg(L ) = (d,−1, 0) and
deg(M ) = (d+ 1, 0, 0).

Case 3) Assume L = mN3 ⊗M . Then we have deg(M ) = d + 1 and
deg(M ) = (x, y, d+1−x−y) for some x, y ∈ Z. Since deg(mN3) = (0,−1,−1)
and

deg(L ) = deg(mN3) + deg(M3),

we have deg(L ) = (x, y− 1, d− x− y). In order we have L ∈ J̄q,1C , we need
to have

y − 1 = degC2
(L ) ≥ −1 and − y = degC1∪C3

(L )− d > −1,

that is, y = 0. Then, with y = 0, we also need

d− x = degC3
(L ) ≥ −1 and x− 1− d = degC1∪C2

(L )− d > −1,

that is, x = d + 1. Therefore deg(M ) = (d + 1, 0, 0) and deg(L ) = (d +

1,−1,−1). Finally to see that L ∈ J̄q,1C , it is enough to notice that

1 = degC1
(L )− d > −1 and − 1 = degC2∪C3

(L ) ≥ −1.
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Lemma 128. Let C be a curve and C1, C2, C3 its irreducible components.
Suppose δY = 2 for each subcurve Y of C. Let p = (p1, p2, p3) be a polariza-
tion of degree d on C. Then we have

λ(p, 1) = {(bp1c, dp2e, d− bp1c − dp2e), (bp1c+ 1, dp2e − 1, d− bp1c − dp2e),
(bp1c+ 1, dp2e, d− bp1c − dp2e − 1)}

or

λ(p, 1) = {(bp1c, dp2e, d− bp1c − dp2e), (bp1c+ 1, dp2e − 1, d− bp1c − dp2e),
(bp1c, dp2e − 1, d− bp1c − dp2e+ 1)}.

Proof. We claim that
j) q′ := (bp1c, dp2e, d− bp1c − dp2e) ∈ λ(p, 1),

jj) q′′ := (bp1c+ 1, dp2e − 1, d− bp1c − dp2e) ∈ λ(p, 1).

Proof item (j): We need to prove q′
Y
− p

Y
≥ −1 for each proper subcurve

Y of C, with strict inequality is strict when Y contains C1. Indeed, on one
hand we have q′

C1
− p

C1
= bp1c − p1 > −1, q′

C2
− p

C2
= dp2e − p2 ≥ 0 and

q′
C3
− p

C3
= d− bp1c − dp2e − p3

= d− bp1c − dp2e − d+ p1 + p2

= p1 − bp1c︸ ︷︷ ︸
≥0

+ p2 − dp2e︸ ︷︷ ︸
>−1

> −1.

On the other hand, we have

q′
C1∪C2

− p
C1∪C2

= bp1c+ dp2e − p1 − p2

= bp1c − p1︸ ︷︷ ︸
>−1

+ dp2e − p2︸ ︷︷ ︸
≥0

> −1,

q′
C1∪C3

− p
C1∪C3

= bp1c+ d− bp1c − dp2e − p1 − p3

= d− dp2e − d+ p2 = p2 − dp2e > −1

and

q′
C2∪C3

− p
C2∪C3

= dp2e+ d− bp1c − dp2e − p2 − p3

= d− bp1c − d+ p1 = p1 − bp1c ≥ 0.
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Hence we have item (j).

Proof item (jj): As in item (j), we need to prove q′′
Y
− p

Y
≥ −1 for each

proper subcurve Y of C, with q′
Y
− p

Y
> −1 if Y contains C1. Indeed, first

we have q′′
C1
− p

C1
= bp1c+ 1− p1 > 0, q′′

C2
− p

C2
= dp2e − 1− p2 ≥ −1 and

q′′
C3
− p

C3
= d− bp1c − dp2e − p3

= d− bp1c − dp2e − d+ p1 + p2

= p1 − bp1c︸ ︷︷ ︸
≥0

+ p2 − dp2e︸ ︷︷ ︸
>−1

> −1

and second we have,

q′′
C1∪C2

− p
C1∪C2

= bp1c+ 1 + dp2e − 1− p1 − p2

= bp1c+ dp2e − p1 − p2 > −1,

q′′
C1∪C3

− p
C1∪C3

= bp1c+ 1 + d− bp1c − dp2e − p1 − p3

= d− dp2e − d+ p2

= p2 − dp2e > 0

and

q′′
C2∪C3

− p
C2∪C3

= dp2e − 1 + d− bp1c − dp2e − p2 − p3

= d− bp1c − d+ p1 − 1

= p1 − bp1c − 1 ≥ −1.

Therefore we have item (jj), what finish the proof of our claim.
Now, if q ∈ Z3 is a polarization on C, it is not hard to see that

λ(q, 1) = {(q1, q2, q2), (q1 + 1, q2 − 1, q3), (q1 + 1, q2, q3 − 1)},

that is, we have #λ(q, 1)=3. Then, by Corollary 118, p. 91, we get that for
any polarization q on C, #λ(q, 1)=3. In particular for the polarization p.
So, let p′ := (p′1, p

′
2, p
′
3) ∈ λ(p, 1)− {q′, q′′}. We claim that

p′1 ∈ {bp1c, bp1c+ 1}, p′2 ∈ {dp2e − 1, dp2e, dp2e+ 1} and

p′3 ∈ {d− bp1c − dp2e − 1, d− bp1c − dp2e, d− bp1c − dp2e+ 1}.
Indeed, since p′ = (p′1, p

′
2, p
′
3) ∈ λ(p, 1), we have

−1 < p′1 − p1 ≤ 1, −1 ≤ p′2 − p2 ≤ 1 and − 1 ≤ p′3 − p3 ≤ 1.
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Since p′1, p
′
2 ∈ Z, inevitably we have

p′1 ∈ {bp1c, bp1c+ 1} and p′2 ∈ {dp2e − 1, dp2e, dp2e+ 1}.

On the other hand, since p′3 = d− p′1 − p′2, we have

p′3 ∈ {d− bp1c − dp2e − 1, d− bp1c − dp2e, d− bp1c − dp2e+ 1}.

Perhaps the reader may be wondering why

p′3 ∈ {d− bp1c − dp2e − 1, d− bp1c − dp2e, d− bp1c − dp2e+ 1}

instead of

p′3 ∈ {d−bp1c−dp2e−1, d−bp1c−dp2e, d−bp1c−dp2e+1, d−bp1c−dp2e−2}?

Indeed, p′3 6= d− bp1c − dp2e − 2, otherwise,

p′3 − p3 = d− bp1c − dp2e − 2− p3

= d− bp1c − dp2e − 2− p3 − d+ p1 + p2

= p1 − bp1c︸ ︷︷ ︸
<1

+ p2 − dp2e︸ ︷︷ ︸
≤0

−2 < −1, contradiction.

Now, since p′ ∈ λ(p, 1) − {q′, q′′} and #λ(p, 1) = 3, due to the possible
choices of p′1, p

′
2 and p′3, we have that the only possibilities for p′ are:

i’) p′ = (bp1c, dp2e+ 1, d− bp1c − dp2e − 1), or

ii’) p′ = (bp1c, dp2e − 1, d− bp1c − dp2e+ 1), or

iii’) p′ = (bp1c+ 1, dp2e, d− bp1c − dp2e − 1).

However, we can not have (i’). Indeed, suppose p′ = (bp1c, dp2e + 1, d −
bp1c − dp2e − 1) ∈ λ(p, 1). Since p1 + p2 + p3 = d,

p′
C1∪C3

− p
C1∪C3

= bp1c+ d− bp1c − dp2e − 1− p1 − p3

= d− dp2e − 1− d+ p2

= −dp2e − 1 + p2 > −1

⇔ p2 > dp2e,

contradiction. So, p′ = (bp1c, dp2e+ 1, d− bp1c − dp2e − 1) 6∈ λ(p, 1)
But on the other hand, (ii’) and (iii’) may occur. Indeed, suppose that d

is even. Suppose p = (d/2 + 1/10, d/2 + 1/10,−2/10). In this case we have

p′ = (bd/2 + 1/10c, dd/2 + 1/10e − 1, d− bd/2 + 1/10c − dd/2 + 1/10e+ 1)

= (d/2, d/2, 0)
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or

p′ = (bd/2 + 1/10c+ 1, dd/2 + 1/10e, d− bd/2 + 1/10c − dd/2 + 1/10e − 1)

= (d/2 + 1, d/2 + 1,−2).

However if p′ = (d/2 + 1, d/2 + 1,−2), then p′
C3
− p

C3
= −2 + 2/10 < −1;

contradiction. So, in this case, (iii’) is excluded, and thus ii′ holds.
On the other hand, suppose p = (d/2 + 6/10, d/2− 4/10,−2/10). Then,

we have

p′ = (bd/2 + 6/10c, dd/2− 4/10e − 1, d− bd/2 + 6/10c − dd/2− 4/10e+ 1)

= (d/2, d/2− 1, 1)

or

p′ = (bd/2 + 6/10c+ 1, dd/2− 4/10e, d− bd/2 + 6/10c − dd/2− 4/10e − 1)

= (d/2 + 1, d/2,−1).

However, if p′ = (d/2, d/2− 1, 1), then p′
C1∪C2

− p
C1∪C2

= d− 1− d− 2/10 =

−12/10 < −1; contradiction. In this case, (ii’) is excluded, and thus (iii’)
holds.

To conclude, we have

λ(p, 1) = {(bp1c, dp2e, d− bp1c − dp2e), (bp1c+ 1, dp2e − 1, d− bp1c − dp2e),
(bp1c+ 1, dp2e, d− bp1c − dp2e − 1)}

or

λ(p, 1) = {(bp1c, dp2e, d− bp1c − dp2e), (bp1c+ 1, dp2e − 1, d− bp1c − dp2e),
(bp1c, dp2e − 1, d− bp1c − dp2e+ 1)}

Lemma 129. Let C as in Lemma 119. Assume the components of C are
P1. Let d be an integer. Let q = (d, 0, 0) and p = (p1, p2, p3) be polarizations
on C. Let L ∈ JC such that

d+ deg(L ) = |p|.

Then for each i ∈ {1, 2, 3}, any L -twister-isomorphism AL : J
q,1

C → J
p,i

C

extends to an isomorphism ĀL : J̄
q,1

C → J̄
p,i

C .
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Proof. We give the proof only for i=1 and

λ(p, 1) = {(bp1c, dp2e, d− bp1c − dp2e), (bp1c+ 1, dp2e − 1, d− bp1c − dp2e),
(bp1c+ 1, dp2e, d− bp1c − dp2e − 1)}

as for any other situation the proof is similar. For notational simplicity, we
assume without loss of generality that p = (p1, p2, p3) ∈ Z3. By Lemma 128,
p. 106, we have

λ(q, 1) = {(d, 0, 0), (d+ 1,−1, 0), (d+ 1, 0,−1)}

and

λ(p, 1) = {(p1, p2, p3), (p1 + 1, p2 − 1, p3), (p1 + 1, p2, p3 − 1)}.

By Proposition 117, p. 91, for each e ∈ λ(q, 1) there is a unique twister
multidegree te such that e + deg(L ) + te ∈ λ(p, 1). Then we have six cases
to consider:

Case 1)

(d, 0, 0) + deg(L ) + t(d,0,0) = (p1, p2, p3), (6.3)

(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1 + 1, p2 − 1, p3)

and

(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1 + 1, p2, p3 − 1). (6.4)

Case 2)
(d, 0, 0) + deg(L ) + t(d,0,0) = (p1, p2, p3),

(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1 + 1, p2, p3 − 1)

and
(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1 + 1, p2 − 1, p3)

Case 3)
(d, 0, 0) + deg(L ) + t(d,0,0) = (p1 + 1, p2 − 1, p3),

(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1, p2, p3)

and
(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1 + 1, p2, p3 − 1).

Case 4)
(d, 0, 0) + deg(L ) + t(d,0,0) = (p1 + 1, p2 − 1, p3),
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(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1 + 1, p2, p3 − 1)

and
(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1, p2, p3).

Case 5)

(d, 0, 0) + deg(L ) + t(d,0,0) = (p1 + 1, p2, p3 − 1), (6.5)

(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1, p2, p3)

and

(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1 + 1, p2 − 1, p3). (6.6)

Case 6)
(d, 0, 0) + deg(L ) + t(d,0,0) = (p1 + 1, p2, p3 − 1),

(d+ 1,−1, 0) + deg(L ) + t(d+1,−1,0) = (p1 + 1, p2 − 1, p3)

and
(d+ 1, 0,−1) + deg(L ) + t(d+1,0,−1) = (p1, p2, p3).

However, since the set of twister multidegree on C is

T := Z(−2, 1, 1) + Z(1,−2, 1) + Z(1, 1,−2),

we have that some of these cases can not occur.

Case 1) This case is possible because t(d,0,0)−t(d+1,−1,0) = t(d,0,0)−t(d+1,0,−1) =
(0, 0, 0) ∈ T .

Case 2) In this case we have t(d,0,0) − t(d+1,−1,0) = (0,−1, 1) 6∈ T . So this
case is not possible.

Case 3) We have t(d,0,0)−t(d+1,−1,0) = (2,−2, 0) 6∈ T . This case is not possible.

Case 4) We have t(d,0,0)−t(d+1,−1,0) = (2,−2, 0) 6∈ T . This case is not possible.

Case 5) We have t(d,0,0) − t(d+1,−1,0) = (2,−1,−1), t(d,0,0) − t(d+1,0,−1) =
(1, 1,−2) and t(d+1,−1,0) − t(d+1,0,−1) = (−1, 2,−1) ∈ T . This case is pos-
sible.

Case 6) We have t(d,0,0) − t(d+1,−1,0) = (1, 0,−1) 6∈ T . So this case is not
possible.
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Therefore, we need to consider only Cases (1) and (5).

Proof in Case 1) Let T1, T2 and T3 be twisters on C such that deg(T1) =
t(d,0,0), deg(T2) = t(d+1,−1,0) and deg(T3) = t(d+1,0,−1). Let

B1
L : J

(d,0,0)
C → J

(p1,p2,p3)
C , I 7→ I ⊗L ⊗T1,

B2
L : J

(d+1,−1,0)
C → J

(p1+1,p2−1,p3)
C , I 7→ I ⊗L ⊗T2,

B3
L : J

(d+1,0,−1)
C → J

(p1+1,p2,p3−1)
C , I 7→ I ⊗L ⊗T3,

and let AL : J
q,1

C → J
p,1

C be the L -twister-isomorphism induced by B1
L , B2

L

and B3
L .

Claim: AL extends to an isomorphism ĀL : J̄
q,1

C → J̄
p,1

C . Indeed, let L :=

mN1⊗M1 ∈ J̄
q,1

C −J
q,1

C , where M1 is an invertible sheaf on C with deg(M1) =
(d+ 1, 0, 0). Let

{Pt}t∈N ⊆ C1 − {N1} and {Qt}t∈N ⊆ C3 − {N1}

be sequences of smooth points of C such that

lim
t→∞

Pt = N1 = lim
t→∞

Qt.

Now, notice that for each t ∈ N, we have

deg(mPt ⊗M1) = (d, 0, 0), that is, mPt ⊗M1 ∈ J (d,0,0)
C

and

deg(mQt ⊗M1) = (d+ 1, 0,−1)), that is, mQt ⊗M1 ∈ J (d+1,0,−1)
C .

Furthermore,

lim
t→∞

mPt ⊗M1 = mN1 ⊗M1 = lim
t→∞

mQt ⊗M1.

Since the connected components of J
q,1

C are

J
(d,0,0)
C , J

(d+1,−1,0)
C and J

(d+1,0,−1)
C ,

and C has genus 1, we have that L can be approximated only through the
components J

(d,0,0)
C and J

(d+1,0,−1)
C ; and only in the way described above.
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So, in order to show that AL extends, we must show

lim
t→∞

B1
L (mPt ⊗M1) = mN1 ⊗M1 ⊗L ⊗T1

∼= mN1 ⊗M1 ⊗L ⊗T3

= lim
t→∞

B3
L (mQt ⊗M1),

and for this we give a proof only for this L , since the other cases of L ∈
J̄
q,1

C − J
q,1

C the proof is similar. Indeed, let

L1 := mN1 ⊗M1 ⊗L ⊗T1 and L2 := mN1 ⊗M1 ⊗L ⊗T3.

From (6.3) and (6.4), we have

deg(L ⊗T1) = (p1 − d, p2, p3) = deg(L ⊗T3).

Since deg(mN1 ⊗M1) = (d, 0,−1), we have

deg(L1) = deg(mN1 ⊗M1 ⊗L ⊗T1)

= deg(mN1 ⊗M1) + deg(L ⊗T1)

= (p1, p2, p3 − 1)

= deg(mN1 ⊗M1) + deg(L ⊗T3)

= deg(mN1 ⊗M1 ⊗L ⊗T3)

= deg(L2).

Now, we claim that L1, L2 ∈ J̄
p,1

C . Indeed, notice that for each i = 1, 2,
we have

0 = degC1
(Li)− p1, 0 = degC2

(Li)− p2 and − 1 = deg(Li)− p3.

On the other hand, since

0 = degC1∪C2
(Li)− p1 − p2, 0 = degC1∪C3

(Li)− p1 − p3

and
−1 = degC2∪C3

(Li)− p2 − p3,

we have that for each i, Li satisfies the conditions of p-1-quasistability, which
shows our claim.

Finally we prove that L1
∼= L2, that is,

lim
t→∞

B1
L (mPt ⊗M1) ∼= lim

t→∞
B3

L (mQt ⊗M1).
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Indeed, let νN1 : C ′ → C be the normalization of C at N1. Let {N1,1, N1,3} :=
ν−1
N1

(N1). Let

L1,1 := mN1,1 ⊗mN1,3 ⊗ ν∗N1
(M1 ⊗L ⊗T1) = ν∗N1

(L1)/torsion

and

L1,2 := mN1,1 ⊗mN1,3 ⊗ ν∗N1
(M1 ⊗L ⊗T3) = ν∗N1

(L2)/torsion.

By Proposition 74, p. 65, we have

νN1∗(L1,1) = L1 and νN1∗(L1,2) = L2.

Since C ′ is a curve of compact type, by Proposition 43, p. 32, the sheaves
L1,1 and L1,2 are uniquely determined, up to isomorphism, by their restric-
tions to the irreducible components of C ′. However, since

deg(L1,1) = deg(L1)

= (p1, p2, p3 − 1)

= deg(L2)

= deg(L1,2),

and since the components of C ′ are P1, we have that the restrictions of L1,1

and L1,2 are isomorphic, implying L1,1
∼= L1,2.

Hence,

L1 = νN1∗(L1,1) ∼= νN1∗(L1,2) = L2,

that shows our Claim, proving consequently Case 1).

Proof in Case 5) We keep the same notation as in Case 1). Let

B1
L : J

(d,0,0)
C → J

(p1+1,p2,p3−1)
C , I 7→ I ⊗L ⊗T1,

B2
L : J

(d+1,−1,0)
C → J

(p1,p2,p3)
C , I 7→ I ⊗L ⊗T2,

B3
L : J

(d+1,0,−1)
C → J (p1+1,p2−1,p3), I 7→ I ⊗L ⊗T3,

and let AL : J
q,1

C → J
p,1

C be the L -twister-isomorphism induced by B1
L , B2

L

and B3
L .

Claim: AL extends to an isomorphism ĀL : J̄
q,1

C → J̄
p,1

C .
Indeed, let

L , {Pt}t∈N ⊆ C1 − {N1} and {Qt}t∈N ⊆ C3 − {N1}
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be exactly as in the proof of Case 1). As before, to prove that AL extends,
it is enough to show

lim
t→∞

B1
L (mPt ⊗M1) ∼= lim

t→∞
B3

L (mQt ⊗M1).

However, in contrast with the Case 1), showing this isomorphism is a
little trickier, since the natural limits

lim
t→∞

B1
L (mPt ⊗M1) = mN1 ⊗M1 ⊗L ⊗T1

and
lim
t→∞

B3
L (mQt ⊗M1) = mN1 ⊗M1 ⊗L ⊗T3

do not belong to J̄
p,1

C . Indeed, from (6.5) e (6.6) we have

deg(L ⊗T1) = (p1 + 1− d, p2, p3 − 1)

and
deg(L ⊗T3) = (p1 − d, p2 − 1, p3 + 1).

Since deg(mN1 ⊗M1) = (d, 0,−1), we have

deg(mN1 ⊗M1 ⊗L ⊗T1) = (p1 + 1, p2, p3 − 2) and

deg(mN1 ⊗M1 ⊗L ⊗T3) = (p1, p2 − 1, p3).

Then, since degC3
(mN1 ⊗M1 ⊗L ⊗T1)− p3 = −2, it follows that

mN1 ⊗M1 ⊗L ⊗T1 6∈ J̄
p,1

C .

On the other hand, since

deg(mN1 ⊗M1 ⊗L ⊗T3) = (p1, p2 − 1, p3),

we have that degC1∪C2
(L ) − p1 − p2 = −1 which implies that mN1 ⊗M1 ⊗

L ⊗T3 6∈ J̄
p,1

C .
So, in order to solve this problem, we look for two sheaves N1 and N2

such that

lim
t→∞

B1
L (mPt ⊗M ) ∼= N1

∼= N2
∼= lim

t→∞
B3

L (mQt ⊗M ).

First we find the sheaf N1. Fix a smooth point B ∈ C3. For each t ∈ N, let
rt be the line passing trough B and Pt. Since C ⊆ P2, rt intersects C2 at a
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smooth point P ′t . Fix a smooth point A ∈ C1 and let s be the line passing
through A and B. Then s intersects C2 at a smooth point D; see Figure 6.5.

Hence, since for each t ∈ N the divisor associated to the rational function
rt/s on C is Pt + P ′t − A−D, we have

mPt
∼= m∗P ′t ⊗mA ⊗mD.

Therefore,

lim
t→∞

B1
L (mPt ⊗M1) = lim

t→∞
mPt ⊗M1 ⊗L ⊗T1

∼= lim
t→∞

m∗P ′t ⊗mA ⊗mD ⊗M1 ⊗L ⊗T1

= m∗N3
⊗mA ⊗mD ⊗M1 ⊗L ⊗T1.

Figure 6.5:

Let N1 := m∗N3
⊗mA ⊗mD ⊗M1 ⊗L ⊗T1. Then

deg(N1) = deg(m∗N3
⊗mA ⊗mD ⊗M1 ⊗L ⊗T1)

= deg(m∗N3
) + deg(mA) + deg(mD) + deg(M1 ⊗L ⊗T1)

= (0, 0, 0) + (−1, 0, 0) + (0,−1, 0) + (p1 + 2, p2, p3 − 1)

= (p1 + 1, p2 − 1, p3 − 1)

which implies that N1 ∈ J̄
p,1

C . Indeed, first we have

1 = degC1
(N1)− p1, −1 = degC2

(N2)− p2 and − 1 = degC3
(N1)− p3,

and second,

0 = degC1∪C2
(N1)− p1 − p2, 0 = degC1∪C3

(N1)− p1 − p3

and −1 = degC2∪C3
(N1) − p2 − p3. That is, N1 satisfies the conditions of

p-1-quasistability.
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Now we find the sheaf N2: Fix a smooth point B′ ∈ C2. For each t ∈ N,
let r′t be the line passing through B′ and Qt. Since C ⊆ P2, r′t intersects C1

at a smooth point Ct. Fix a smooth point D′ ∈ C3, and for each t ∈ N, let s′t
be the line passing through Ct and D′. So s′t intersects C2 at a smooth point
Q′t; see Figure 6.6.

Then for each t ∈ N, we have

−Qt ≡ −Q′t +B′ −D′

because Qt −Q′t + B′ −D′ is the divisor associated to the rational function
r′t/s

′
t on C. Thus, for each t,

mQt
∼= mQ′t

⊗m∗B′ ⊗mD′ .

Figure 6.6:

Hence, we have

lim
t→∞

B3
L (mQt ⊗M1) = lim

t→∞
mQt ⊗M1 ⊗L ⊗T3

∼= lim
t→∞

mQ′t
⊗m∗B′ ⊗mD′ ⊗M1 ⊗L ⊗T3

= mN3 ⊗m∗B′ ⊗mD′ ⊗M1 ⊗L ⊗T3.

Let N2 := mN3 ⊗m∗B′ ⊗mD′ ⊗M1 ⊗L ⊗T3. Then

deg(N2) = deg(mN3 ⊗m∗B′ ⊗mD′ ⊗M1 ⊗L ⊗T3)

= deg(mN3) + deg(m∗B′) + deg(mD′) + deg(M1 ⊗L ⊗T3)

= (0,−1,−1) + (0, 1, 0) + (0, 0,−1) + (p1 + 1, p2 − 1, p3 + 1)

= (p1 + 1, p2 − 1, p3 − 1).

Then, since deg(N2) = (p1 + 1, p2 − 1, p3 − 1) = deg(N1), we also have

N2 ∈ J̄
p,1

C .

117



Finally we claim that N1
∼= N2. Indeed, let νN3 : C ′ → C be the

normalization of C at N3. Let {N3,2, N3,3} := (νN3)−1(N3). Let

L ′
1 := ν∗N3

(mA ⊗mD ⊗M ⊗L ⊗T1) = ν∗N3
(N1)/torsion and

L ′
2 := mN3,2 ⊗mN3,3 ⊗ ν∗N3

(m∗B′ ⊗mC′ ⊗M1 ⊗L ⊗T3) = ν∗N3(N2)/torsion.

By Proposition 74, p. 65, we have

νN3∗(L
′
1) = N1, and νN3∗(L

′
2) = N2.

Since C ′ is a curve of compact type, L ′
1 and L ′

2 are uniquely determined by
their restrictions to the irreducible components of C ′. Since

deg(L ′
1) = deg(N1)

= (p1 + 1, p2 − 1, p3 − 1)

= deg(N2)

= deg(L ′
2)

and the irreducible components of C ′ are P1, it follows that the restrictions
of L ′

1 and L ′
2 to the irreducible components of C ′ are isomorphic, implying

L ′
1
∼= L ′

2. Therefore,

N1 = νN3∗(L
′
1) ∼= νN3∗(L

′
2) = N2,

that is,

lim
t→∞

B1
L (mPt ⊗M ) ∼= N1

∼= N2
∼= lim

t→∞
B3

L (mQt ⊗M ).

Therefore AL extends to an isomorphism ĀL : J̄
q,1

C → J̄
p,1

C , finishing the
proof of the claim and hence, the proof of the Case (5).
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Publ. Math. IHES, OIII, Vol. 11, 1961; III2, Vol. 17, 1963; IV3,
Vol. 28, 1966; and IV4, Vol. 32, 1967.

[HM98] J. Harris, I. Morrison, Moduli of Curves. Graduate Texts in Math-
ematics, vol. 187, Springer-Verlag, New York, 1998.

[Har] R. Hartshorne, Algebraic Geometry. Graduate texts in Math.,
Springer- Verlag, 1977.

[H] N. Hitchin, Stable bundles and integrable systems, Duke Math. J.
54 (1987) 91–114.

[Igu56] J. Igusa, Fiber systems of Jacobian varieties, Amer. J. Math. 78
(1956), 171- 199.

[LS] S. Lichtenbaum, M. Schlessinger, The cotangent complex of a mor-
phism, Trans. Amer. Math. Soc. 128 (1967), 41-70.

[KM] F. Knudsen, D. Mumford, The projectivity of the moduli space of
stable curves I: Preliminaries on “det” and “Div”, Math. Scand. 39
(1976), 19-55.

121



[May70] A.L. Mayer, Compactification of the variety of moduli of curves,
lectures 2 and 3, Seminar on degeneration of algebraic varieties,
Institute for Advanced Study, Princeton (1969/70), (mimeographed
notes).

[Mu64] D. Mumford, Further comments on boundary points, AMS Summer
School at Woods Hole (1964), (mimeographed notes).

[MG] D. Mumford, D. Gieseker, Stability of projective varieties Enseign.
Math. (2) 23 (1977), 39-110.

[MF] D. Mumford, J. Fogarty, Geometric invariant theory. Second edi-
tion. Ergebnisse der Mathematik und ihrer Grenzgebiete, 34.
Springer-Verlag, Berlin, 1982.

[MRV] M. Melo, A. Rapagnetta, F. Viviani, Fourier–Mukai and autoduality
for compactified Jacobians. I, At http://arxiv.org/abs/1207.7233,
with an appendix by A. C. López-Mart́ın.

[Mu65] D. Mumford, Geometric invariant theory, Ergebnisse der Mathe-
matik 34, Springer, Berlin, 1965.

[Mu74] D. Mumford, Abelian varieties, Oxford University Press, 1974.

[SP] Stacks Project, http://stacks.math.columbia.edu/, current main-
tainer: Aise Johan de Jong, Columbia University, 2005.

[Pan] Rahul Pandharipande, A compactification over M g of the universal
moduli space of slope-semistable vector bun- dles, J. Amer. Math.
Soc. 9 (1996), no. 2, 425-471. MR 1308406 (96f:14014).

[Ses82] C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques,
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