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Introduction

The aim of these lectures is to introduce graduate students working on algebraic
geometry and related fields to the main ideas of the so called Minimal Model Program,
giving an overview of the subject. We have chosen to keep the lectures as elementary
as possible, and hope that it is accessible to students who have completed a one-year
basic course on algebraic geometry. In particular, we expect the students to be familiar
with [7], whose notation we will follow throughout the text.

Given the limitted time, we will not be able to go into the details of the amazing
techniques developed in the context of the Minimal Model Program. Great part of
these notes are devoted to reviewing the classification of surfaces, and translating it
into modern language, while introducing some of the concepts that are key to the
Minimal Model Program. We will spend very little time discussing the more recent
and very exciting advances in the subject (specially those in [3]). We hope with these

Date: July 04, 2012.
1991 Mathematics Subject Classification. 14E30.
The author was partially supported by CNPq and Faperj Research Fellowships.

1



2 CAROLINA ARAUJO

lectures to motivate the beginners to venture into more advanced material on the
subject. We will suggest some further reading at the end of the notes.

Throughout these lectures all varieties are assumed to be irreducible, reduced and
defined over the field C of complex numbers.

Curves and surfaces are always assumed to be irreducible, reduced and projective.

Recall that the Picard group of a projective variety X is the group Pic(X) of in-
vertible sheaves on X modulo isomorphism. Equivalently, Pic(X) is the quotient of
the group of Cartier divisors on X modulo linear equivalence. By abuse of notaion, we
often identify a cartier divisor D on X with its class [D] in Pic(X).

We denote by Ω1
X the sheaf of Kähler differentials of X, and by ωX = ∧dimXΩ1

X

its canonical sheaf. We denote by KX ∈ Div(X) any divisor on X such that ωX ∼=
OX(KX), and call it a canonical divisor or the canonical class of X.

1. The classification problem in Algebraic Geometry

We are interested in the following classical problem.

To classify projective varieties up to birational equivalence.

What do we mean by this? Here are some of our goals.

• We want to distinguish vareties by means of invariants.
• We want to pick distinguished representatives on each birrational class. In some

sense, these representatives should be the “simplest” varieties in their class.
• Given a projective variety, we want to understand the birational transformations

needed to bring it to a distinguished representative of it class.

First of all, we recall the Hironaka’s famous Resolution of Singularities Theorem: any
projective variety X admits a resolution of singularities, i.e., there exists a smooth
projective variety X̃ and a birational morphism f : X̃ → X. So we can always assume
we start with a smooth variety, even though, as we shall see, it is unavoidable to work
with (mildly) singular varieties in order to achieve our classification goals.

1.1 (Classification of curves). A smooth projective curve is nothing but a compact
Riemann surface. Two smooth projective curves are birationally equivalent if and only
if they are isomorphic. So there is a unique smooth projective model in each birational
class of projective curves. We define genus g(X) of a smooth projective curve X as

g(X) = h0(X,ωX).

This numerical invariant allows us to completely solve the classification problem for
curves.

• g(X) = 0 if and only if X ∼= P1.
• g(X) = 1 if and only if X is an elliptic curve, and there is a 1-dimensional

family of those, parametrized by C (via the j-invariant).
• For each g ≥ 2, there is an algebraic variety Mg of dimension 3g−3 parametriz-

ing smooth projective curves of genus g.

For surfaces the situation is not as simple. Given a smooth projective surface S,
we can consider the blowup S̃ of S at a point P ∈ S. This is a smooth projective
surface birationally equivalent but not isomorphic to S. It is easy to argue that S is
“simpler” than S̃. It turns out that any smooth projective surface can be obtained from
a distinguished representative of its class by a sequence of blowups. Such distinguished
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representatives are classically called minimal surfaces. We will revise and summarize
this theory in Section 2, explaining how the 3 goals pointed out in the beginning of the
section are achieved in this case.

While the classification of surfaces was established by the Italian school by the
beginning of the 20th century, the first developments on the classification problem in
higher dimensions started to take place in the beginning of the 1980’s with important
ideas from Mori and Reid, among others. With the contributions of many algebraic
geometers, such as Kawamata, Kollár, Shokurov, just to mention a few, a powerful
theory of classification of projective varieties was then developed. This is called the
Minimal Model Program (MMP for short). The program was fully established for 3-
folds by Mori in [11], yielding him the Fields Medal in 1990. We will give an overview
of this program in Section 3.

Only part of the 3-fold theory could be carried out to higher dimensions, and new
ideas and techniques were required. A major achievement was obtained recently by
Birkar, Cascini, Hacon, and McKernan in [3]. We will address this briefly in Section 4.

2. Classification of projective surfaces

In this section we review the birational classification of complex projective surfaces.
We start by recalling the intersection theory on surfaces. Then we state some of the
classical results of Castelnuovo and Enriques. We refer to [7, Chapter V] and [2] for
details and proofs.

At the end of the section, we rephrase these results from a modern perspective. This
reinterpretation suggests generalizations to higher dimensions, which will be explored
in the forthcoming sections.

2.1. Intersection theory on surfaces. Let S be a smooth surface.

Theorem 2.1 (Intersection form on surfaces). There exists a unique symmetric bilinear
form

· : Div(S)×Div(S) → Z
satisfying the following conditions.

(1) Given D,D′ ∈ Div(S), the intersection number D·D′ depends only on the linear
equilalence classes of D and D′.

(2) If C and D are curves on S meeting transversely, then C ·D = ](C ∩D).

Definition 2.2. Two divisors D,D′ ∈ Div(S) are said to be numerically equivalent
if D · C = D′ · C for every curve C ⊂ S. In this case we write D ≡ D′. We write
Num(S) for the quotient group Div(S)/ ≡. By the Theorem of the base of Néron-
Severi, Num(S) is a finitely gernerated abelian group. Its rank is called the Picard
number of S, and is denoted by ρ(S).

Later on it will be important to consider also the ρ(S)-dimensional R-vector space
N1(S) := Num(S)⊗ZR. The intersection form on S induces a nondegenerate symmetric
bilinear form · : N1(S)×N1(S)→ R.

Example 2.3. S = P2. In this case Pic(S) = Z · [H], where H ⊂ P2 is a hyperplane
section. The intersection form on S is given by H2 = 1.

Example 2.4 (Hirzebruch surfaces). Let n ∈ Z be a non-negative integer, and consider
the Hirzebruch surface Fn = P(OP1 ⊕OP1(n)), with structure morphism π : Fn → P1.
There is a section σ ⊂ Fn of π such that σ2 = −n. If n ≥ 1, then such section is unique.
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Moreover, if σ′ ⊂ Fn is a section of π different from σ, then σ′2 ≥ n. We denote by
F ∼= P1 a fiber of π. We have

Pic(Fn) = Z · [F ]⊕ Z · [σ],

and the intersection form on Fn is given by

• F 2 = 0;
• F · σ = 1; and
• σ2 = −n.

For n = 0, F0
∼= P1 × P1. For n = 1, F1 is isomorphic to the blowup of P2 at one

point, and under this isomorphism σ corresponds to the exceptional divisor. For n ≥ 2,
Fn admits the following geometric realization. Let νn : P1 → Pn be the nth Veronese
embedding of P1, given by (s : t) 7→ (sn : sn−1t : · · · stn−1 : tn). Let Z ⊂ Pn+1 be the
cone over νn(P1) with vertex P . Then Fn is isomorphic to the blowup of Z at the point
P , and under this isomorphism σ corresponds to the exceptional divisor.

Example 2.5 (Blowups). Let S be a smooth surface and P ∈ S a point. Let π : S̃ → S
be the blowup of S at P . We denote by E = π−1(P ) ∼= P1 the exceptional divisor of π.

We have
Pic(S̃) = π∗ Pic(S)⊕ Z · [E],

and the intersection form on S̃ is given by

• π∗D · π∗D′ = D ·D′ for every D,D′ ∈ Div(S);
• π∗D · E = 0 for every D ∈ Div(S); and
• E2 = −1.

Similarly, N1(S̃) = π∗N1(S) ⊕ R · [E], and thus ρ(S̃) = ρ(S) + 1. In this sense S
is simpler than S̃.

The following concept is very important.

Definition 2.6. Let S be a smooth surface. We say that a divisor D ∈ Div(S) is nef
if D · C ≥ 0 for every curve C ⊂ S.

Examples 2.7.

(1) Ample divisors are nef. We will see in Theorem 3.4 that nef divisors can be
characterized as limits of ample divisors.

(2) Let π : S → X be a morphism into a projective variety X, and let H be an
ample Cartier divisor on X. Then π∗H is a nef divisor on S. It is ample if and
only if π is finite onto its image.

2.2. Birational geometry of surfaces. We now come the problem of determining
the “simplest model” in each birrational class of surfaces.

Definition 2.8. A smooth surface S is called a minimal surface if the following condi-
tion holds. If π : S → S ′ be a birational morphism onto another smooth surface, then
π is an isomorphism.

Given a smooth surface S, how to determine whether it is a minimal surface? We
recall that the structure of birational morphisms between smooth projective surfaces
is well understood.

Theorem 2.9 (Factorization of birational morphisms of surfaces). Let π : S → S ′ be
a birational morphism between smooth surfaces. Then π is the composition of a finite
number of blowups.
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So, to show that S is a minimal surface, one must show that S is not the blowup of
any smooth surface. How do we check this condition?

Definition 2.10. A curve C on a smooth surface S is said to be a −1-curve if C ∼= P1

and C2 = −1.

As we saw in Example 2.5, if S is the blowup of a smooth surface, then it contains a
−1-curve, namely the exceptional divisor of the blowup. The next theorem says that
the converse is true.

Theorem 2.11 (Castelnuovo’s contractibility theorem). Let S be a smooth surface,
and C ⊂ S a −1-curve. Then there exists a smooth projective surface S ′ and a point
P ∈ S ′ such that S is isomorphic to the blowup of S ′ at P , and under this isomorphism
C corresponds to the exceptional divisor.

In the situation of Theorem 2.11, we say that S ′ is obtained from S by contracting
the −1-curve C. Now we can state the classical MMP for surfaces.

2.12 (MMP for surfaces - classical version).

(1) Start with a smooth projective surface S.
(2) Ask: Does S contain a −1-curve? If not, stop! S is a minimal surface. If yes,

pick one such curve C and go to (3).
(3) By Castelnuovo’s contractibility theorem, there is a blowup f : S → S ′ for

which C is the exceptional divisor. Go back to (1) with S replaced with S ′.

This process must stop after a finite number of steps because the Picard number, which
is a positive integer, drops by one every time we contract a −1-curve.

The MMP for surfaces provides a first step in the classification of surfaces: it tells
us how to obtain a minimal surface in the birational class of any given surface. Then
we ask the following natural questions:

(1) Is the minimal surface in a given birational class unique?
(2) Can we classify minimal surfaces in terms of some numerical invariants?

These questions were also classically answered by the Italian school. We will give
the answers by the end of this section. At this point, we antecipate that the answer
to question (1) depends on the birational class of the given surface S. More precisely,
it depends on the behavour of the canonical class KS. In fact, as we shall see shortly,
the whole MMP for surfaces may be reformulated in terms of numerical properties of
the canonical class.

2.3. The role of the canonical class. As described in 2.12, it is not at all clear
how to generalize the MMP for surfaces to higher dimensions. More precisely, how to
generalize the question “Does S contain a −1-curve?” to higher dimensions? Our next
goal is to rephrase the MMP for surfaces in such a way that it makes sense in arbitrary
dimension. The key role will be played by the canonical class KS of a smooth surface
S and its numerical properties.

We start by recalling a very useful result.

Theorem 2.13 (Adjunction formula for surfaces). Let C ⊂ S be a curve, and pa(C) =
h1(C,OC) the arithmetic genus of C. Then

2pa(C)− 2 = (KS + C) · C.

Remark 2.14. Let C ⊂ S be a curve. Then pa(C) = 0 if and only if C ∼= P1.
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Examples 2.15.

(1) S = P2. (Notation as in Example 2.3.) The canonical divisor is KP2 = −3H.
(2) S = Fn. (Notation as in Example 2.4.) The adjuntion formula applied to F

and σ yields:
KFn = −2E − (2 + n) · F.

(3) Let π : S̃ → S be the blowup of a smooth surface. (Notation as in Example 2.5.)
The canonical divisor of S̃ is given by KS̃ = π∗KS + E.

Now we start rephrasing the classical MMP for surfaces in terms of numerical prop-
erties of the canonical class. The first step is to give a numerical characterization of
−1-curves.

Exercise 2.16. Let S be a smooth surface, and C ⊂ S a curve. Show that

C is a −1-curve ⇐⇒ KS · C < 0 and C2 < 0.

It follows from Exercise 2.16, that if KS is nef (see Definition 2.6), then S is neces-
sarily a minimal surface. The converse is not true, as we shall see in Exercise 2.18.

Definition 2.17. A smooth surface is said to be a scroll if there exists a surjective
morphism π : S → B onto a smooth curve B whose fibers are all isomorphic to P1. In
this case, it can be shown that there exists a rank 2 vector bundle E on B such that
S ∼= P(E). Moreover, if E ′ is another rank 2 vector bundle on B, then P(E) ∼= P(E ′)
if and only if there is a line bundle L on B such that E ′ ∼= E ⊗ L. In particular, since
every vector bundle on P1 decomposes as a direct sum of line bundles, rational scrolls
are precisely the Hirzebruch surfaces.

A surface birationally equivalent to a scroll is called a ruled surface. A surface
birationally equivalent to P2 is called a rational surface.

Exercise 2.18.

(1) Show that P2 and scrolls are minimal surfaces, except for F1.
(2) Verify that if S ∼= P2 or S is a scroll, then KS is not nef.
(3) Let π : S → B and π′ : S ′ → B′ be scrolls. Show that S and S ′ are birationally

equivalent if and only if B ∼= B′.

Conversely, it can be shown that the only minimal surfaces whose canonical classes
are not nef are P2 and scrolls. (See Theorem 2.26 for a more precise statement.)

To distinguish between minimal surfaces with KS nef and not nef, we introduce the
following concept, which will generalize to higher dimensions.

Definition 2.19. We say that a surface S is a minimal model if KS is nef.

Exercise 2.20. Let S and S ′ be birationally equivalent surfaces. Suppose that S and
S ′ are minimal models. Show that S ∼= S ′.

(Hint: use the following structure theorem for birational maps between smooth sur-
faces: If ϕ : S 99K S ′ is a birational map between smooth surfaces, then there exist
compositions of blowups f : S̃ → S and g : S̃ ′ → S, and isomorphism ψ : S̃ → S̃ ′ such
that ϕ = g ◦ ψ ◦ f−1.)

Remark 2.21. At this point one may ask whether a minimal model may be birational
equivalent to a scroll. The answer is no. At the end of this section we will introduce
birational invariants that can be used to distinguish between these two types of surfaces.

Next we introduce the Mori cone of a surface.
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Definition 2.22. Let S be a smooth surface. The Mori cone of S is the closed convex
cone NE(S) ⊂ N1(S) generated by classes of curves C ⊂ S.

Definition 2.23. An extremal face F of a cone N ⊂ Rn is a subcone of N satisfying:

u, v ∈ N and u+ v ∈ F ⇒ u, v ∈ F.
A 1-dimensional extremal face of N is called an extremal ray.

Let D : Rn → R be a linear function. We write ND≥0 for {z ∈ N | D(z) ≥ 0}, and
similarly for ND=0, ND≤0, etc. An extremal face F ⊂ N such that F \ {0} ⊂ ND<0 is
called a D-negative extremal face. If F ⊂ ND=0, then we say that F is supported on
D.

Exercise 2.24.

(1) Let S be a smooth surface and P ∈ S a point. Let π : S̃ → S be the blowup
of S at P . We denote by E = π−1(P ) ∼= P1 the exceptional divisor of π. Show
that [E] ∈ N1(S̃) generates an extremal ray of NE(S̃).

(2) Let n ∈ Z be a non-negative integer, and consider the Hirzebruch surface Fn =
P(OP1 ⊕OP1(n)), with structure morphism π : Fn → P1. Denote by σ a section
of π such that σ2 = −n, and by F a fiber of π. Recall that {[σ], [F ]} is a
basis for N1(S). Since NE(S) is a closed convex cone in a 2-dimensional vector
space, it must have exactly 2 extremal rays. Show that these are generated by
[σ] and [F ].
(Hint: for n ≥ 1, consider the structure morphism π : Fn → P1 and the blowup
f : Fn → Z onto the cone over νn(P1) described in Example 2.4.)

In general, the cone NE(S) may be “round”, and an extremal ray R ⊂ NE(S) may
not be generated by the class of a curve. (See [9, Example 1.23].)

We observe that in Exercise 2.24 every extremal ray R ⊂ NE(S) is generated by the
class of a curve, and moreover there exists a morphism ϕ : S → Y with the following
property. For any curve C ⊂ S, ϕ(C) is a point if and only if [C] ∈ R. This motivates
the following definition.

Definition 2.25. Let S be a smooth surface, and F an extremal face of the Mori cone
NE(S). A contraction of F is a morphism with connected fibers ϕF : S → Y onto a
normal projective variety Y satisfying following property. For any curve C ⊂ S, ϕF (C)
is a point if and only if [C] ∈ F .

If the contraction of an extremal face of NE(S) exists, then it is unique by Stein fac-
torization. The next theorem asserts that if R is a KS-negative extremal ray, then the
contraction of R always exists. It also gives a complete description of the contraction
in this case.

Theorem 2.26. Let S be a smooth surface, and R a KS-negative extremal ray of the
cone NE(S). Then R = R≥0[C] for some rational curve C ⊂ S (with KS · C < 0).
Moreover, the contraction ϕR of R exists, and is one of the following:

(1) If C2 < 0, then ϕR : S → S ′ is the blowup of a smooth surface S ′ at one point,
and C is the exceptional divisor.

(2) If C2 = 0, then ϕR : S → B realizes S as a scroll over a smooth curve B, and
C is a fiber of ϕR.

(3) If C2 > 0, then S ∼= P2, and ϕR : P2 → pt.

Definition 2.27. We call the morphisms of type (2) and (3) above Mori fiber spaces.
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We are now ready to rephrase the classical MMP described in 2.12 in modern lan-
guage.

2.28 (MMP for surfaces - modern version).

(1) Start with a smooth projective surface S.
(2) Ask: Is KS nef? If yes, stop! S is a minimal model. If not, pick a KS-negative

extremal ray R of the cone NE(S) and go to (3).
(3) Let ϕR : S → Y be the contraction of R. Ask: Is dimY < 2? If yes, stop!

ϕR : S → Y is a Mori fiber space. If not, ϕR is the blowup of a smooth surface.
Go back to (1) with S replaced with Y .

2.4. Birational invariants. We introduce some birational invariants for surfaces.

Definition 2.29. Let S be a smooth surface.

(1) The genus of S is pg(S) := h0(S, ωS).
(2) More generally the plurigenera of S are Pn(S) := h0(S, ω⊗nS ), where n is a

positive integer.
(3) The irregularity of S is q(S) := h0(S,Ω1

S) = h1(S,OS). (The last equality
follows from Hodge duality.)

Theorem 2.30. The quantities pg, Pn and q are birational invariants for smooth sur-
faces.

Proof. Let S and S ′ be smooth surfaces, and ϕ : S 99K S ′ a birational map. Then
there is a finite subset ∆ ⊂ S such that ϕ|S\∆ : S \ ∆ → S ′ is a morphism. Given a
2-form ω ∈ H0(S ′, ωS′), we get a form ϕ∗ω ∈ H0(S \∆, ωS\∆). We may view ϕ∗ω as a
meromorphic form on S with poles along ∆. Since ∆ has codimension ≥ 2 in S, ϕ∗ω
extends to a 2-form ϕ∗ω ∈ H0(S, ωS). This yields an inclusion H0(S ′, ωS′) ⊂ H0(S, ωS).
The same argument gives the reverse inclusion. Hence pg(S) = pg(S

′).
The proof of birational invariance of Pn and q is analogous. �

Exercise 2.31. Compute the birational invariants pg, Pn and q for rational and ruled
surfaces. (Hint: choose a suitable birational model.)

It turns out that the birational invariants pg, Pn and q may be used to characterize
rational and ruled surfaces. This is the content of the next result.

Theorem 2.32 (Numerical characterization of rational and ruled surfaces). Let S be
a smooth surface.

(1) (Castelnuovo) S is rational ⇐⇒ q(S) = 0 and Pn(S) = 0 ∀n ≥ 1 ⇐⇒
q(S) = 0 and P2(S) = 0.

(2) (Enriques) S is ruled ⇐⇒ Pn(S) = 0 ∀n ≥ 1 ⇐⇒ P12(S) = 0.

Next we define Kodaira dimension. We give the definition for arbitrary smooth
projective varieties, and then we especialize to the surface case.

2.5. Kodaira dimension. Let X be a smooth projective variety of dimension n ≥ 1.
Let D ∈ Div(X) be a divisor and suppose that H0(X,OX(D)) 6= 0. Pick a basis
{s0, · · · , sk} for H0(X,OX(D)) ∼= Ck+1, and consider the rational map ϕ|D| : X 99K Pk
that sends a point x at which not all the si’s vanish to the point

(
s0(x) : · · · : sk(x)

)
∈

Pk. We have 0 ≤ dim
(
ϕ|D|(X)

)
≤ n.
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Definition 2.33. Let X be a smooth projective variety of dimension n ≥ 1, and D ∈
Div(X). Define the semigroup of D to be N(D) =

{
m ≥ 0

∣∣ H0(X,OX(mD)) 6= 0
}

.
The Iitaka dimension of D is defined to be

κ(D) =

{ −∞, if N(D) = {0}

max
{

dim
(
ϕ|mD|(X)

) ∣∣∣ m ∈ N(D)
}
, if N(D) 6= {0}

Note that κ(D) ∈ {−∞, 0, 1, · · · , n}. It can be shown that there exist positive
constants c1 and c2, depending on D, such that, for m ∈ N(D) sufficiently large, we
have

c1 ·mκ(D) ≤ h0(X,OX(mD)) ≤ c2 ·mκ(D).

We say that the divisor D is big if κ(D) = n.
The Kodaira dimension of X is defined to be κ(X) := κ(KX).

Exercise 2.34. Show that the Kodaira dimension is a birational invariant for smooth
projective varieties.

Examples 2.35.

(1) Curves. If dim(X) = 1, then κ(X) ∈ {−∞, 0, 1}.
• g(X) = 0 ⇐⇒ X ∼= P1 ⇐⇒ −KX is ample ⇐⇒ κ(X) = −∞.
• g(X) = 1 ⇐⇒ −KX = 0 ⇐⇒ κ(X) = 0.
• g(X) ≥ 2 ⇐⇒ KX is ample ⇐⇒ κ(X) = 1.

(2) Hypersurfaces. Let X = Xd ⊂ Pn+1 be a smooth hypersurface of degree d. It
follows from the adjunction formula that KX = (−n − 2 + d) ·H, where H is
the class of a hyperplane in Pn.
• d < n+ 2 ⇐⇒ −KX is ample ⇐⇒ κ(X) = −∞.
• d = n+ 2 ⇐⇒ KX = 0 ⇐⇒ κ(X) = 0.
• d > n+ 2 ⇐⇒ KX is ample ⇐⇒ κ(X) = n.

Exercise 2.36. Let X and Y be smooth projective varieties, and suppose that κ(X) =
0. Show that κ(X × Y ) = κ(Y ).

Conclude that, for each positive integer n, and each κ ∈ {−∞, 0, 1, · · · , n}, there
exists a smooth projective variety X of dimension n and Kodaira dimension κ(X) = κ.

Definition 2.37. We say that a smooth projective variety X is of general type if
κ(X) = dim(X).

2.38 (Enriques’ classification of minimal surfaces). Let S be a smooth surface. Then
κ(S) ∈ {−∞, 0, 1, 2}. It follows from Theorem 2.32(2) that κ(S) = −∞ if and only if
S is a ruled surface.

On the other hand, if κ(S) ≥ 0, then the MMP for S as described in 2.28 ends
necessarily with a minimal model Smin. Moreover, by Exercise 2.20, Smin is unique up
to isomorphism.

Minimal models S of surfaces can be divided into the following classes, according to
the values of their birational invariants pg, Pn, q and κ:

(1) κ(S) = 0. There are 4 classes.
(a) pg(S) = q(S) = 0. These are called Enriques’ surfaces.
(b) pg(S) = 0 and q(S) = 1. These are called bielliptic surfaces.
(c) pg(S) = 1 and q(S) = 0. These are called K3 surfaces.
(d) pg(S) = 1 and q(S) = 2. These are abelian surfaces.

(2) κ(S) = 1. Such surfaces admit a fibration f : S → B onto a smooth curve
whose generic fiber is an elliptic curve.
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(3) κ(S) = 2. Most surfaces lie in this class. These are called surfaces of general
type.

3. The MMP in higher dimensions

Now we want to extend the MMP for surfaces, as described in 2.28, to higher di-
mensions. Our first task is to introduce the intersection product, spaces of curves and
divisors, which are different spaces in dimension bigger than 2, and special cones on
them. The reference for most of this section is [9].

3.1. Intersection product and spaces of curves and divisors. Throughout this
subsection let X be a smooth projective variety.

Definition 3.1. Consider the free abelian group Z1(X) generated by curves on X. We
have an intersection product:

· : Pic(X)× Z1(X) → Z
with the property that, if D ∈ Pic(X) and C ⊂ X is a curve, with normalization
n : C̃ → C, then D · C equals the degree of the invertible sheaf n∗

(
OX(D)|C

)
.

Two elements D,D′ ∈ Pic(X) are said to be numerically equivalent if D ·α = D′ ·α
for every α ∈ Z1(X). In this case we write D ≡ D′. We write Num(X) for the quotient
group Pic(X)/ ≡. By the Theorem of the base of Néron-Severi, Num(X) is a finitely
gernerated abelian group. Its rank is called the Picard number of X, and is denoted
by ρ(X). We define the ρ(X)-dimensional R-vector space N1(X) := Num(X)⊗Z R.

Similarly, two cycles α, α′ ∈ Z1(X) are said to be numerically equivalent if D · α =
D · α′ for every D ∈ Pic(X). In this case we write α ≡ α′. We define the ρ(X)-
dimensional R-vector space N1(X) :=

(
Z1(X)⊗Z R

)
/ ≡.

The intersection product on X induces a perfect pairing · : N1(X) × N1(X) → R,
making N1(X) and N1(X) dual vector spaces.

Next we introduce the Mori cone and the cone of nef divisors.

Definition 3.2. The Mori cone of X is the closed convex cone NE(X) ⊂ N1(X)
generated by classes of curves C ⊂ X.

We say that a divisor D ∈ Div(X) is nef if D ·C > 0 for every curve C ⊂ X. This is
equivalent to saying that D ·α ≥ 0 for every α ∈ NE(X). So the dual cone of NE(X)
under the intersection product is the closed convex cone Nef(X) ⊂ N1(X) generated
by nef divisors. We call it the nef cone of X.

Remark 3.3. Similarly, one can define the cone of pseudo-effective divisors of X as the
closed convex cone Pseff(X) ⊂ N1(X) generated by classes of effective divisors. It was
proved in [4] that the dual cone of Pseff(X) ⊂ N1(X) under the intersection product is
the closed convex cone in N1(X) generated by classes of the so called strongly movable
curves. Strongly movable curves are images in X of curves obtained as complete
intersections of suitable very ample divisors on birational modifications of X.

It is a formidable fact that many geometric properties of divisors depend only on their
numerical class. The following are two important manifestations of this phenomenon.

Theorem 3.4. Let D ∈ Div(X) be a divisor.

(1) ( Kleiman’s ampleness criterion.) D is ample ⇐⇒ D · ` > 0 ∀` ∈ NE(X) \
{0}. This is equivalent to saying that the class of D lies in the interior of
Nef(X).
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(2) ( Kodaira’s lemma.) D is big ⇐⇒ the class of D lies in the interior of
Pseff(X).

3.2. The first theorems of the MMP. We want to run the program described in
2.28 starting with a smooth projective variety X of arbitrary dimension. We start by
asking whether KX is nef. If KX is nef, then we stop and say that X is a minimal
model. If KX is not nef, then we may pick a KX-negative extremal ray R of the Mori
cone NE(X). As we shall see in Theorem 3.11 below, R = R≥0[C] for some rational
curve C ⊂ X, and the contraction of R (as in Definition 2.25) exists. Let us denote it
by ϕR : X → Y . If dimY < dimX, then, as before, we stop and call ϕR : X → Y a
Mori fiber space. If dimY = dimX, then ϕR is a birational morphism, and we would
like to replace X with Y and go back to the original question. Here we face a problem
that did not appear in the surface case: the variety Y may be singular. This situation
is illustrated in Example 3.6 below.

Exercise 3.5. Let Y ⊂ PN be a smooth projective variety, and C(Y ) ⊂ PN+1 the cone
over Y with vertex P . Let X be the blowup of C(Y ) at the point P . Show that X is
a smooth projective variety.

Example 3.6. Let Y ⊂ P5 be the Veronese embedding of P2, and C(Y ) ⊂ P6 the cone
over Y with vertex P . One can check that the canonical divisor KC(Y ) is not Cartier,
while 2KC(Y ) is Cartier. Let π : X → C(Y ) be the blowup of C(Y ) at the point P , and
denote by E ∼= P2 the exceptional divisor. By Exercise 3.5, X is a smooth projective
3-fold. One can check that OX(E)|E ∼= OP2(−2). There is a morphism p : X → P2,
with fibers ismomorphic to P1, which resolves the indeterminacy of the projection
C(Y ) 99K Y ∼= P2 from the point P . One can show that Pic(X) = Z·[p∗OP2(1)]⊕Z·[E],
and in Pic(X) we have

2KX = π∗2KY + E.

In Pic(X)⊗Z Q we have

KX = π∗KY +
1

2
E.

As for the space of 1-cycles, N1(X) = R ·f⊕R ·`, where f denotes the class of a fiber
of p, and ` denotes the class of a curve on E corresponding to a line in P2 under the
isomorphism E ∼= P2. Note that f and ` are classes of curves contained on the fibers of
the morphisms p and π, respectively. Hence f and ` generate extremal rays of the mori
cone NE(X) ⊂ N1(X). The intersection product of curves and divisors on X gives:
KX · f = −1 and KX · ` = −2. Hence both f and ` generate KX-negative extremal
rays of NE(X). The contraction of the ray R≥0f is the morphism p : X → P2, while
the contraction of the ray R≥0` is the blowup π : X → C(Y ). The latter is a birational
morphism onto a singular variety.

This simple example brings a point that was understood since the beginning of the
development of the MMP for higher dimensional varieties: singularieties are unavoid-
able, and we must learn how to deal with them. A whole theory of singularieties was
developed in the context of the MMP. In these lectures we will only consider a small
portion of it. Namely, we will define the smallest class of singularieties S that unavoid-
ably appear when running the MMP starting with smooth projective varieties, and
such that the steps of the MMP are still valid for projective varieties with singularities
in the class S.

Recall that we start the MMP by asking if KX is nef. For this question to make
sense, it is necessary that the divisor KX is at Q−Cartier, i.e., some nonzero multiple
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of it is Cartier. In these lectures we will require something stronger, namely, that X is
Q-factorial.

Definition 3.7. Let X be an arbitrary projective variety. A Q-divisor on X is a
Q-linear combination of prime Weil divisors on X. A Q-divisor D on X is said to be
Q-Cartier if some nonzero multiple of D is a Cartier divisor. Two Q-divisors D and
D′ on X are said to be Q-linearly equivalent if there exists an integer m > 0 such that
both mD and mD′ are Cartier and mD ∼ mD′. In this case we write D ∼Q D

′.
We say that X is Q-factorial if every Q-divisor on X is Q-Cartier.

Remark 3.8. The vector spaces N1(X) and N1(X), their intersection product, the
cones of curves and divisors introduced in the begining of this section, and the Kodaira
dimension may all be defined more generally for Q-factorial projective varieties. We
leave this easy task to the reader.

If we start with a Q-factorial projective variety X, then we can ask whether KX is
nef. If the answer is no, then we pick a KX-negative extremal ray R of the Mori cone
NE(X), and we wish to consider the contraction of R. Now we encounter another
problem. The Contraction Theorem that we need here is not valid for arbitrary Q-
factorial projective varieties. So we must consider a more restrictive class of possibly
singular varieties. The following definition is not intuitive, but it is the right one in
our context.

Definition 3.9. Let X be a normal projective variety, and suppose that KX is Q-
Cartier. Let f : X̃ → X be a log resolution of X. This means that X̃ is a smooth
projective variety, f is a birational morphism whose exceptional locus is the union of
prime divisors Ei’s, and the divisor

∑
Ei has simple normal crossing support. There

are uniquely defined rational numbers a(Ei)’s such that

KX̃ ∼Q f
∗KX +

∑
Ei

a(Ei)Ei.

The a(Ei)’s do not depend on the log resolution, but only on the valuations associated
to the Ei’s.

We say that X is terminal if, for some log resolution f : X̃ → X, a(Ei) > 1 for
every f -exceptional prime divisor Ei. If this condition holds for some log resolution of
X, then it holds for every log resolution of X.

Now we can state the first theorems of the MMP, which hold for the class of Q-
factorial terminal projective varieties.

Theorem 3.10 (Cone Theorem). Let X be a Q-factorial terminal projective variety.
There is a countable set Γ ⊂ NE1(X) of classes of rational curves C ⊂ X with
0 < −KX · C ≤ 2 dim(X) such that

(1) for any ample divisor A on X, there are finitely many classes [C1], . . . , [Cr] in
Γ such that

NE1(X) = NE1(X)(KX+A)≥0 +
r∑
i=1

R≥0[Ci], and

(2) NE1(X) = NE1(X)KX≥0 +
∑

[C]∈Γ R≥0[C].

Theorem 3.11 (Contraction Theorem). Let X be a Q-factorial terminal projective
variety. Let F be a KX-negative extremal face of the Mori cone NE(X). Then there
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exists a unique morphism ϕF : X → Y onto a normal projective variety such that
(ϕF )∗OX = OY , and, for any curve C ⊂ X, ϕF (C) is a point if and only if [C] ∈ F .

Definition 3.12. Under the assumptions and notation of Theorem 3.11, we say that
ϕF : X → Y is the contraction of F .

3.13 (Properties of contractions of KX-negative extremal rays). Let X be a Q-factorial
terminal projective variety. Let R be a KX-negative extremal ray of the cone NE(X),
and ϕR : X → Y the contraction of R. There is an exact sequence

(3.1) 0→ Pic(Y )
f∗−→ Pic(X)→ Z,

where the last map is given by intersection with a curve C ⊂ X such that R = R≥0[C].
In particular, ρ(X) = ρ(Y )+1. The exceptional locus of ϕR is the locus of X consisting
of points at which ϕR fails to be a local isomorphism. One of the following situations
occurs.

(1) dim(Y ) < dim(X). We call such ϕR a Mori fiber space.
(2) The morphism ϕR is birational and the exceptional locus of ϕR consists of a

prime divisor on X. In this case, Y is a Q-factorial terminal projective variety.
We call such ϕR a divisorial contraction.

(3) The morphism ϕR is birational and the exceptional locus of ϕR has codimension
at least 2 in X. We call such ϕR a small contraction.

Definition 3.14. A Q-factorial terminal projective variety X is called a minimal model
if KX is nef.

Let us resume our description of the MMP. We start with a smooth (or more, gen-
erally Q-factorial terminal) projective variety X, and ask whether KX is nef. If KX

is nef, then X is a minimal model and we stop. If KX is not nef, then we pick a
KX-negative extremal ray R of the Mori cone NE(X), and consider its contraction
ϕR : X → Y . According to the description given in 3.13, there are 3 possibilities.

(1) If ϕR : X → Y a Mori fiber space, then we stop.
(2) If ϕR : X → Y is a divisorial contraction, then Y is Q-factorial and terminal,

and we go back to the original question with X replaced with Y . In this case
ρ(Y ) = ρ(X)− 1.

(3) If ϕR : X → Y is a small contraction, then we are in trouble for the following
reason.

Claim 3.1. Under the assumptions of 3.13(3), KY is not Q-Cartier.

Proof. Let C ⊂ X be a rational curve such that R = R≥0[C]. Suppose that KY is
Q-Cartier, and consider the Q-divisor ϕ∗RKY on X. Since ϕR(C) is a point, we have
ϕ∗RKY · C = 0.

On the other hand, ϕ∗RKY coincides with KX in the open subset of X where ϕR is
an isomorphism. Since the exceptional locus of ϕR has codimension at least 2 in X, we
must have ϕ∗RKY = KX on X. However, by assumption, R is a KX-negative extremal
ray, and thus KX · C < 0, yielding a contradiction. �

Since KY is not Q-Cartier, in case (3) we cannot hope to continue running the
MMP with X replaced with Y . The idea then is to do something different. Instead of
contracting the ray R and replacing X with Y , we will perform a flip ψ : X 99K X+,
and go back to the original question with X replaced with X+. We will explain the
notion of flip in the next subsection.
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3.3. Flips. We now come to a fundamental concept from the MMP.

Definition 3.15 (Flip). Let X be a Q-factorial terminal projective variety, and f =
ϕR : X → Y a small contraction associated to a KX-negative extremal ray R ⊂
NE(X).

A flip of f is a commutative diagram

X

f ��?
??

??
??

?
ψ // X+,

f+}}{{
{{

{{
{{

Y

where ψ : X 99K X+ is a birational map and f+ : X+ → Y is a birational morphism
satisfying the following conditions.

(1) KX+ is Q-Cartier.
(2) The exceptional locus of f+ has codimension at least 2 in X+.
(3) KX+ · C > 0 for every curve C ⊂ X+ contracted by f+.

We refer to [9, Example 2.7] for an example of flip.
It is a difficult task to prove the existence of flips. In dimension 3, it was proved

by Mori in [11]. In dimension 4, it was proved by Shokurov in [13]. In [6], Hacon and
McKernan proved that flips exist in dimension n provided the existence of minimal
models in dimension n − 1. Using this inductive scheme, existence of flips in any
dimension was finally proved in [3]. Given the existence of flips, it is not so difficult to
prove that it satisfies the following properties.

3.16 (Properties of flips). Let the notation be as in Definition 3.15.

(1) The flip of f is unique up to isomorphism. In fact, the existence of f+ : X+ → Y
is equivalent to the finite generation of the OY -algebra ⊕m∈Z≥0

f∗OX
(
bmKXc

)
.

Moreover, f+ : X+ → Y is precisely ProjY

(
⊕m∈Z≥0

f∗OX
(
bmKXc

))
→ Y .

(2) X+ is a Q-factorial terminal projective variety.

Notice moreover that ψ : X 99K X+ is an isomorphism in codimension 1. Hence, since
both X and X+ are Q-factorial, we have ρ(X+) = ρ(X).

Now we can finally describe the MMP in arbitrary dimension.

3.17 (MMP in arbitrary dimension).

(1) Start with a Q-factorial terminal projective variety X.
(2) Ask: Is KX nef? If yes, stop! X is a minimal model. If not, pick a KX-negative

extremal ray R of the cone NE(X) and go to (3).
(3) Let ϕR : S → Y be the contraction of R. There are 3 possibilities.

(a) If ϕR : X → Y a Mori fiber space, then we stop.
(b) If ϕR : X → Y is a divisorial contraction, then Y is Q-factorial and

terminal. Go back to (1) with X replaced with Y .
(c) If ϕR : X → Y is a small contraction, then consider the flip ψ : X 99K X+

of ϕR. Then X+ is Q-factorial and terminal. Go back to (1) with X
replaced with X+.

In order to conclude the program, one must show that this process eventually stops.
Every time we perform a divisorical contraction X → Y , the Picard number drops by
one, ρ(Y ) = ρ(X)−1. However, in the case of a flip X 99K X+, we have ρ(X+) = ρ(X).
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Therefore this process can only admit a finite number of divisorial contraction, while
we have the following question:

Does there exist an infinite sequence of flips?

Termination of flips in dimension 3 was proved in [12]. However, to this date the
answer to the question above is not known in arbitrary dimension. So the MMP as
described in 3.17 has not been established in higher dimensions. However, in certain
cases, a special instance of the MMP, called MMP with scaling was proved to terminate
in any dimension in [3]. This is the subject of the next section.

4. MMP with scaling

As we mentioned at the end of the previous section, if we start with a Q-factorial
terminal projective variety X, and run the MMP as decribed in 3.17, it is not clear that
the process terminates. There is however a variation of this program, called the MMP
with scaling, in which we start with an ample divisor H on X and, instead of choosing
an arbitrary extremal ray at each step of the MMP, we use the divisor H to narrow
(and sometimes decide) our choice of extremal ray. Here is how it works. At the first
step, if KX is not nef, then, instead of choosing an arbitrary KX-negative extremal ray
of NE(X), we proceed as follows. Since H is ample, NE(X) \ {0} is contained in the
half-space {H > 0}. We move the hyperplane {KX = 0} in N1(X) toward {H = 0}
until it supports an extremal face F of NE(X), and then we choose an extremal ray
contained in this face. More precisely, we define

λ = inf
{
t ≥ 0

∣∣∣ [KX + tH
]
∈ Nef(X)

}
,

and choose an extremal ray of NE(X) supported on KX + λH. (We invite the reader
to draw a picture.) This is necessarily a KX-negative extremal ray. Then we continue
as in the ordinary MMP. If ψ : X 99K Y is a birational step in the MMP (i.e., either
a divisorical contraction or a flip), then we replace X with Y and H with ψ∗H. The
divisor ψ∗H is no longer ample. Nevertheless, the procedure just described can be
repeated for Y and ψ∗H.

Definition 4.1. Let X be a Q-factorial terminal projective variety, and H a Q-divisor
on X. Suppose that KX + λH is nef for some λ ≥ 0. (This holds for instance if H is
ample.) We define the nef threshold of H by

λ(X,H) = inf
{
λ ≥ 0

∣∣∣ [KX + λH
]
∈ Nef(X)

}
.

The Rationality Theorem asserts that λ(X,H) ∈ Q.
Now we describe the MMP with scaling in more detail. We start with a Q-factorial

terminal projective variety X, and an ample divisor H on X. We will define inductively
(possibly finite) sequences of Q-factorial terminal projective varieties Xi’s, together
with Q-divisors Hi’s on them such that KXi

+ λHi is nef for some λ ≥ 0. For each
i, ψi : Xi 99K Xi+1 will be either a divisorial contraction or a flip from the ordinary
MMP, and Hi+1 = (ψi)∗Hi.

Step 0. We set X0 = X, and H0 = H. We move to Step 1 with n = 0.

Step 1. Suppose we have constructed Xn and Hn. Set λn = inf
{
λ ≥ 0

∣∣∣ [KXn +

λHn

]
∈ Nef(Xn)

}
. We move to Step 2.

Step 2. We ask whether KXn is nef (or, equivalently, if λn = 0).
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If KXn is nef, then we stop and the sequence
{
Xi

}
ends with the minimal model Xn.

If KXn is not nef, then there exists at least one KXn-negative extremal ray R ⊂
NE(Xn) such that (KXn + λnHn) · R = 0. We choose one such extremal ray Rn, and
let ϕn : Xn → Y be the contraction of Rn. We move to Step 3.

Step 3. We check which of the three possibilities described in 3.13 occurs.

(1) If ϕn : Xn → Y is a Mori fiber space, then we stop and the sequence
{
Xi

}
ends

with Xn.

(2) If ϕn : Xn → Y is a divisorial contraction, then we set Xn+1 = Y and Hn+1 =
(ϕn)∗Hn. Since (KXn + λnHn) ·Rn = 0, by (3.1),

KXn + λnHn ∼Q (ϕn)∗
(
KXn+1 + λnHn+1

)
.

Since KXn + λnHn is nef, this implies that KXn+1 + λnHn+1 is also nef. We go back to
Step 1 replacing n with n+ 1.

(3) If f = ϕn : Xn → Y is a small contraction, and ψ : Xn 99K X+
n is the associated

flip, then we set Xn+1 = X+
n , and Hn+1 = ψ∗Hn. Consider the flip diagram:

Xn

f   A
AA

AA
AA

A

ψ // Xn+1

f+||zz
zz

zz
zz

Y

Since (KXn + λnHn) · Rn = 0, by (3.1), there exists a Q-Cartier Q-divisor DY on Y
such that KXn + λnHn ∼Q f

∗DY . Then KXn+1 + λnHn+1 ∼Q (f+)∗DY . By hypothesis
KXn + λnHn is nef. Thus DY is nef and so is KXn+1 + λnHn+1. We go back to Step 1
replacing n with n+ 1.

In [3], the MMP with scaling was proved to terminate in the following two important
cases:

(1) X is of general type (this is equivalent to saying that KX is big, i.e., KX lies
in the interior of Pseff(X)). In this case, the MMP with scaling ends with a
minimal model.

(2) X is uniruled (by [4] this is equivalent to saying that KX 6∈ Pseff(X)). In this
case, the MMP with scaling ends with a Mori fiber space.

Suggested reading

The reader interested in a more detailed and rigorous introduction to the MMP and
its techniques is referred to [9]. The texts [8] and [10] also provide a good introduction.
All of these cover the “classical” MMP.

There are many notes available in the web discussing the more recent results from [3],
including the MMP with scaling. In addition to [3] itself, the reader may consult the
expository paper [5]. Those interested in the MMP with scaling for uniruled varieties
exclusively may also look at [1].
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