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Abstract. The purpose of this paper is to show how some results about

codimension one foliations in dimension three can be generalized to dimension

two foliations in dimension n ≥ 4.
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0.1. Notations. We begin by stablishing some notations that we will use along
the text.

1- O(U) := set of holomorphic functions defined on a domain U ⊂ Cn.
O∗(U) := {f ∈ O(U) | f(p) 6= 0 , ∀ p ∈ U}.
On := ring of germs at (Cn, 0) of holomorphic functions, mn = the

maximal ideal of On.
O∗

n := {f ∈ On| f(0) 6= 0}.
Ôn ring of formal power series.
〈f1, ..., fk〉 = ideal of On (or Ôn) generated by f1, ..., fk.

2- D̂iff(Cn, 0) := group of formal biholomorphisms at (Cn, 0) fixing 0.
3- Λk(U) := set of holomorphic k-forms defined on a domain U ⊂ Cn.

Λk
n := set of germs at (Cn, 0) of holomorphic k-forms.

Λ̂k
n := set of formal k-forms at (Cn, 0).

4- X (U) := set of holomorphic vector fields defined on a domain U ⊂ Cn.
Xn := set of germs at (Cn, 0) of holomorphic vector fields.
X̂n := set of formal vector fields at (Cn, 0).

5- Given a formal power series Φ =
∑

j≥0 Φj , Φj homogeneous of degree j,

then jk(Φ) =
∑k

j=0 Φj denotes the k-jet of Φ, j ≥ 0.
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6- iXη := the interior product of the k-form η, k ≥ 1, by the vector field X.
7- LX := the Lie derivative in the direction of the vector field X. When X

and Y are vector fields in the same space then LX Y := [X,Y ], the Lie
bracket.

1. Basic definitions and statement of the results

A singular holomorphic foliation F of codimension k, 1 ≤ k < n, on a polydisc
Q ⊂ Cn can be defined by a holomorphic k-form η ∈ Ωk(Q) (see [Me] and [C-C-F]).
The form η is integrable in the sense that for any p ∈ Q such that η(p) 6= 0 then
there exists a neighborhood Up of p such that:

(I). η|Up
is locally completely decomposable (briefly l.c.d.). This means that

there exist k holomorphic 1-forms α1, ..., αk on Up such that η|Up
= α1 ∧

... ∧ αk.
(II). For all 1 ≤ j ≤ k we have dαj ∧ η = 0.

The singular set of η or F is defined as

sing(η) := {p ∈ Q | η(p) = 0} .

Conditions (I) and (II) are therefore valid in a neighborhood of any non-singular
point of η. The foliation defined by η will be denoted by Fη.

Remark 1.1. Condition (I) implies that for any p /∈ sing(η) the subspace

ker(η(p)) := {v ∈ TpQ | ivη(p) = 0} ⊂ TpQ

has codimension k. Therefore ker(η) defines a holomorphic distribution of codimen-
sion k outside sing(η). Condition (II) implies that this distribution is integrable
and defines a regular foliation Fη outside sing(η). In particular, if we take Up small
enough then there exist a coordinate system w = (w1, ..., wn) : (Up, p) → (Cn, 0)
and f ∈ O∗(Up) such that

(1) η|Up
= f. dw1 ∧ ... ∧ dwk .

This means that in these coordinates the leaves of Fη|Up
are the levels (w1 =

c1, ..., wk = ck).

When the foliation has dimension two then η is a (n−2)-form and its differential
dη is a (n− 1)-form. In particular, if we fix a coordinate system z = (z1, ..., zn) of
Cn then we can write

(2) dη = iX ν ,

where ν = dz1 ∧ ... ∧ dzn and X is a holomorphic vector field on Q. The vector
field X will be called the rotational of η in the coordinate system z. Note that,
if X̃ is the rotational of η in another coordinate system z̃ then X̃ = φ.X, where
φ ∈ O∗(Q). In other words, if dη 6≡ 0 then dη defines a singular one dimensional
foliation on Q. The following basic fact will be proved in § 2:

Proposition 1. Let η be a holomorphic (n− 2)-form on the polydisc Q ⊂ Cn and
X be its rotational. If we assume that η satisfies condition (I) then condition (II)
is equivalent to

(3) iX η = 0 .
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Moreover, if codC(sing(X)) ≥ 3 then there exists a holomorphic vector field Y on
Q such that

(4) η = iY iX ν = iY dη = LY η .

In particular, if p /∈ sing(η) then X(p) ∧ Y (p) 6= 0 and ker(η(p)) = 〈X(p), Y (p)〉.

Remark 1.2. The rotational X can be defined for any holomorphic (n − 2)-form
on Q by (2), but in general the form does not define a foliation. When X 6≡ 0 then
relation (3) implies also condition (I). When X ≡ 0 then η is closed, but does not
satisfy condition (I) in general. For instance η = dz1 ∧ dw1 + dz2 ∧ dw2 on C4 is
closed but not decomposable.

Remark 1.3. In the above situation, if we assume that codC(sing(X)) ≥ 3 then
all irreducible components of sing(η) have dimension ≥ 1. In fact, by proposition
1 this implies that η = iY iX ν, and so

sing(η) = {p ∈ Q |X(p) ∧ Y (p) = 0} .

On the other hand, it is known that a set defined as above has no isolated points.

Next, we state the analogous of the Kupka phenomenon for codimension one
foliations (see [K] and [Me]). Let η be a germ at (Cn, 0) of (n− 2)-form defining a
germ of singular two dimensional holomorphic foliation Fη and X be the rotational
of η: dη = iX dz1 ∧ ... ∧ dzn.

Proposition 2. With the above notations assume that X(0) 6= 0. Then there exists
a coordinate system w = (w1, ..., wn) in which the form η does not depends on the
variable w1, that is, it can be written as:

η = iY dw2 ∧ ... ∧ dwn = iY i∂w1
dw1 ∧ dw2 ∧ ... ∧ dwn

where in the above formula Y is a holomorphic vector field of the form

Y =
∑

j≥2

Yj (w2, ..., wn) ∂wj
.

The proof of proposition 2 in a more general situation can be found in [Me].

Remark 1.4. Another way to state proposition 2 is to say that Fη is equivalent to
the product of two one dimensional foliations: the singular foliation on (Cn−1, 0)
induced by the vector field Y and the fibers of the projection Π: Cn → Cn−1 given
by Π(w1, ..., wn) = (w2, ..., wn). We can say also that Fη = Π∗(G), where G is the
foliation induced by Y . Note also that the curve γ := Π−1(0) is contained in the
singular set of η.

Definition 1. In the situation of proposition 2 and remark 1.4 the curve γ will be
called a singular curve of Kupka type and the holomorphic class of the vector field
Y the normal type of γ.

Definition 2. The singularity 0 ∈ Cn of the (n−2)-form η will be called generalised
Kupka (notation: g.K.) if 0 is an isolated singularity of the rotational X (and so
of dη). A g.K. singularity will be called non-degenerate if the linear part DX(0)
is non-singular. It will be called semi-simple if DX(0) is non-degenerate and has
eigenvalues two by two different (notation: s.s.g.K.). It will be called nilpotent if
the linear part DX(0) is nilpotent (notation: n.g.K.).



4 BY A. LINS NETO

We would like to note that the concepts of definition 2 are independent of the
n-form used to calculate the rotational X of η. In fact, they depend only of the
foliation defined by η, in the sense that:
η is n.g.K. (or s.s.g.K.) ⇐⇒ f. η is n.g.K. (or s.s.g.K.), ∀ f ∈ O∗

n.

Next, we will see examples of the above situations.

Example 1. Semi-simple case. Consider two linear diagonal vector fields on Cn,
n ≥ 3, S =

∑n
j=1 λj xj ∂xj

and T =
∑n

j=1 µj xj ∂xj
. Since [S, T ] = 0 they generate

an action of C2 on Cn. We will assume that

(5) λi. µj − µi. λj 6= 0 , ∀ 1 ≤ i < j ≤ n .

With condition (5) the generic orbit of the action has dimension two and so S and
T generate a singular holomorphic two dimensional foliation on C2. This foliation
is also defined by the (n − 2)-form η = iS iT ν, where ν = dx1 ∧ ... ∧ dxn. It can
be shown that dη = iX ν, where X = tr(S). T − tr(T ). S (tr = trace). Note that
condition (5) implies that X = 0 ⇐⇒ tr(S) = tr(T ) = 0. In this case, the form η
is closed and we say that the foliation can be defined by a holomorphic closed form.

According to our definition, the form η is semi-simple if and only if tr(S). µj −
tr(T ). λj 6= 0 for all j ∈ {1, ..., n}. Let us remark also that f(x) = x1...xn is an

integrating factor of η, in the sense that d
(

1
f
. η
)
= 0. In this case, we say that the

foliation can be defined by a meromorphic closed form.

In the next result we will see a situation in which the germ of foliation is equiva-
lent to one generated by a linear action of C2, as in example 1. Let η be a germ at
0 ∈ Cn of holomorphic integrable (n− 2)-form with rotational X. We will assume
that 0 is a g.K. non-degenerate singularity of η. In particular, if S = DX(0) then
det(S) 6= 0. Moreover, there exists a germ of vector field Y such that η = iY iX ν,
where ν = dz1 ∧ ... ∧ dzn. Let λ1, ..., λn denote the eigenvalues of S and µ1, ..., µn

the eigenvalues of T := DY (0). We will asume that there are 1 ≤ i < j ≤ n such
that λi. µj − λj . µi 6= 0. This is equivalent to iS iT ν 6= 0.

Theorem 1. In the above situation we have tr(S) = 0, tr(T ) = 1 and [S, T ] = 0.
In particular, given τ ∈ C then the eigenvalues of S+τ. T are λj+τ. µj, 1 ≤ j ≤ n.
Moreover:

(a). If there exists τ ∈ C such that the eigenvalues of S+ τ. T satisfy Poincaré’s
non-resonance conditions (cf. [M]) and are two by different then Fη is
formally equivalent to a foliation generated by a linear action of C2.

(b). If there exists τ ∈ C such that X + τ. Y is linearizable and S + τ. T has
eigenvalues two by two different then Fη is holomorphically equivalent to a
foliation generated by a linear action of C2. In particular, if the eigenvalues
of S+τ. T satisfy Brjuno’s condition of small denominators ( see [M]) then
this condition is verified.

Example 2. Nilpotent case. Let S =
∑n

j=1 kj xj ∂xj
, where kj ∈ N, 1 ≤ j ≤ n. We

say that a germ Z at 0 ∈ Cn, of holomorphic vector field, is quasi-homogeneous with
respect to S, with weight ℓ ∈ N ∪ {0}, if [S,Z] = ℓ. Z. In this case, the vector field
Z must be polynomial. In fact, if we write Z =

∑n
j=1 Zj(x). ∂xj

then [S,Z] = ℓ. Z
is equivalent to

(6) S(Zj) = (ℓ+ kj)Zj , 1 ≤ j ≤ n ,



GERMS OF COMPLEX TWO DIMENSIONAL FOLIATIONS 5

which implies that Z1, ..., Zn are polynomials quasi-homogeneous with respect to
S:

Zj (t
k1 .x1, ..., t

kn .xn) = tℓ+kj . Zj (x1, ..., xn) , ∀ 1 ≤ j ≤ n , ∀ t ∈ C .

In this situation, the vector fields S an Z generate an action of the affine group
on Cn and the (n−2)-form η = η(S,Z) := iS iZ ν is integrable (ν = dx1∧ ...∧dxn).
Note that

dη = d (iS iZ ν) = LS (iZ ν)− iS d (iZ ν) = i[S,Z]ν + iZ (LS ν)−∇Z. iS ν ,

where ∇Z =
∑

i
∂Zi

∂xi
. It follows that dη = iX ν, where

X = (ℓ+ tr(S)) . Z −∇Z. S .

Therefore X is the rotational of η and we can say that η is n.g.K. iff 0 ∈ Cn is an
isolated singularity of X. Note that X satisfies [S,X] = ℓ.X and ∇X = 0.

Remark 1.5. In this remark we discuss the existence of an example as above. Let
Σ(S, ℓ) = {Z | [S,Z] = ℓ. Z}, E(S, ℓ) = {X ∈ Σ(S, ℓ) | ∇X = 0} and N (S, ℓ) =
{X ∈ E(S, ℓ) |X has an isolated singularity at 0 ∈ Cn }. As we have seen before,
Σ(S, ℓ) is a finite dimensional vector space. Since E(S, ℓ) is a linear subspace of
Σ(S, ℓ), it is also a finite dimensional vector space. On the other hand, it is not
difficult to see that N (S, ℓ) is a Zariski open subset of E(S, ℓ). In particular, if
N (S, ℓ) 6= ∅ then N (S, ℓ) is a Zariski open and dense subset of E(S, ℓ). It can be
verified that, if N (S, ℓ) 6= ∅ and X ∈ N (S, ℓ) then the form η = iS iX ν is n.g.K.
with rotational (ℓ+ tr(S))X.

Let N(S) := {ℓ ∈ N | N (S, ℓ) 6= ∅}. We would like to observe also that for all S
the set N(S) is infinite. We will not prove this assertion in general, but in the next
example we will see a situation in which N(S) = N.

Example 3. Let us assume that the vector field S of example 2 is the radial vector
field, S =

∑n
j=1 xj ∂xj

. In this case it can be proved that Σ(S, ℓ) = {Z | the
coefficients of Z are homogeneous polynomials of degree ℓ+ 1}. We assert that for
all ℓ ≥ 1 then N (S, ℓ) is Zariski open and dense in E(S, ℓ). In order to prove this
fact, it is enough to exhibit one example X ∈ N (S, ℓ). We then consider the vector
field

Jℓ+1 := xℓ+1
n ∂x1

+ xℓ+1
1 ∂x2

+ ...+ xℓ+1
j−1 ∂xj

+ ...+ xℓ+1
n−1 ∂xn

.

Clearly, ∇Jℓ+1 = 0 and 0 ∈ Cn is an isolated singularity of Jℓ+1. This example is
known as the generalized Jouanolou’s example of degree ℓ+ 1 (cf. [LN-So]).

In the next result we will see that the situation of example 2 is, in some sense,
general.

Theorem 2. Assume that 0 ∈ Cn is a n.g.K. singularity of η. Then there exists a
holomorphic cordinate system w = (w1, ..., wn) around 0 ∈ Cn where η has polyno-
mial coefficients. More precisely, there exist two polynomial vector fields X and Y
in Cn such that

(a). Y = S +N , where S =
∑n

j=1 kj wj ∂wj
is linear semi-simple with eigenval-

ues k1, ..., kn ∈ N, DN(0) is linear nilpotent and [S,N ] = 0.
(b). [N,X] = 0 and [S,X] = k.X, where k ∈ N. In other words, X is quasi-

homogeneous with respect to S with weight k.
(c). In this coordinate system we have η = iY iX dw1 ∧ ... ∧ dwn and LY (η) =

(k + tr(S)) η.
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In particular, Fη can be defined by a local action of the affine group.

Definition 3. In the situation of theorem 2, S =
∑n

j=1 kj wj ∂wj
and LS(X) =

k.X, we say that the n.g.K. singularity is of type (k1, ..., kn; k).

Remark 1.6. We would like to observe that in many cases it can be proved that
vector field N of the statement of theorem 2 vanishes. In order to discuss this
assertion it is convenient to introduce some objects. Given two germs of vector fields
Z and W set LZ(W ) := [Z,W ]. Recall that Σ(S, ℓ) = {Z ∈ Xn |LS(Z) = ℓ. Z}.
Let X and Y = S +N be as in theorem 2. Observe that:

• Jacobi’s identity implies that if W ∈ Σ(S, k) and Z ∈ Σ(S, ℓ) then [W,Z] ∈
Σ(S, k + ℓ).

• For all k ∈ Z we have dimC(Σ(S, k)) <∞ (because k1, ..., kn ∈ N).
• N ∈ Σ(S, 0), X ∈ Σ(S, ℓ) and LX(N) = 0, so that N ∈ ker(L0

X), where
L0
X := LX : Σ(S, 0) → Σ(S, ℓ). In particular, the vector field N ∈ Σ(S, 0)

of theorem 2 necessarily vanishes ⇐⇒ ker(L0
X) = {0}.

In § 3.2 we will see that under a non-resonance condition, which depends only
on X, then ker(L0

X) = {0}. Let us mention some correlated facts.

(I). If S has no resonances of the type 〈σ, k〉−kj = 0, where 〈σ, k〉 =
∑

j σj . kj ,
k = (k1, ..., kn) and σ = (σ1, ..., σn) ∈ Zn

≥0, then ker(LX) = {0}.
(II). When n = 3 and X has an isolated singularity at 0 ∈ C3 then ker(LX) =

{0} (cf. [LN]).
(III). When N 6≡ 0 and codC(sing(N)) = 1, or sing(N) has an irreducible compo-

nent of dimension one then it can be proved that X cannot have an isolated
singularity at 0 ∈ Cn.

In fact, we think that wheneverX has an isolated singularity at 0 ∈ Cn and ∇X = 0
then ker(L0

X) = {0}.

The next result is about the nature of the set K(S, ℓ) := {X ∈ Σ(S, ℓ)| ker(L0
X)

= {0} and ∇X = 0}.

Proposition 3. If K(S, ℓ) 6= ∅ then K(S, ℓ) is a Zariski open and dense subset
of E(S, ℓ). In particular, if there exists X ∈ E(S, ℓ) satisfying the non-resonance
condition mentioned in remark 1.6 then K(S, ℓ) is a Zariski open and dense in
E(S, ℓ).

Proposition 3 is a straightforward consequence of the following facts:

(A). The set of linear maps L(Σ(S, 0),Σ(S, ℓ)) is finite dimensional vector space.
Moreover, the subspace N I := {T ∈ L(Σ(S, 0),Σ(S, ℓ)) |T is not injective}
is an algebraic subset of L(Σ(S, 0),Σ(S, ℓ)).

(B). The map L : E(S, ℓ) → L(Σ(S, 0),Σ(S, ℓ)) defined by L(X) = L0
X is linear.

As a consequence, the set L−1(N I) is an algebraic subset of E(S, ℓ).
(C). K(S, ℓ) = E(S, ℓ) \ L−1(N I).

We leave the details to the reader.

Remark 1.7. In the case of the radial vector field, R :=
∑n

j=1 zj ∂zj , we have
K(R, ℓ) 6= ∅ for all ℓ ≥ 1. In fact, we will prove in § 3.2 that Jℓ+1 ∈ K(R, ℓ), where
Jℓ+1 is the generalized Jouanolou’s vector field (see example 3).

In the next result we will consider the problem of deformation of two dimensional
foliations with a g.K. singularity. Consider a holomorphic family of (n− 2)-forms,
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(ηt)t∈U , defined on a polydisc Q of Cn, where the space of parameters U is an open
set of Ck with 0 ∈ U . Let us assume that:

• For each t ∈ U the form ηt defines a two dimensional foliation Ft on Q.
Let (Xt)t∈U be the family of holomorphic vector fields on Q such that
dηt = iXt

ν, ν = dz1 ∧ ... ∧ dzn.
• F0 has a g.K. singularity at 0 ∈ Q, either non-degenerate, or nilpotent.

Theorem 3. In the above situation there exist a neighborhood 0 ∈ V ⊂ U , a
polydisk 0 ∈ P ⊂ Q, and a holomorphic map P : V → P ⊂ Cn such that P(0) = 0
and for any t ∈ V then P(t) is the nique singularity of Ft in P . Moreover, P(t) is
of the same type as P(0), in the sense that:

(a). If 0 is a non-degenerate singularity of F0 then P(t) is a non-degenerate
singularity of Ft, ∀t ∈ V . If 0 is a s.s.g.K. singularity of F0 then P(t) is a
s.s.g.K. singularity of Ft, ∀ t ∈ V .

(b). If 0 is a n.g.K. singularity of type (m1, ...,mn; ℓ) of F0 then P(t) is a n.g.K.
singularity of type (m1, ...,mn; ℓ) of Ft, ∀t ∈ V .

As an application of theorem 3 it can be done an easy proof of the fact that there
are irreducible components of the space of foliations of dimension two of Pn, n ≥ 3,
which are constituted of linear pull-backs of one dimensional foliations on Pn−1

(see the general case in [C-P]). Instead we will prove a generalization of a result of
[C-LN] which equally implies this result. Let η be an integrable (n − 2)-form on
Cn, with polynomials coefficients, written as

(7) η = η0 + ...+ ηd+1 =
d+1∑

j=0

ηj ,

where the coefficients of ηj are homogeneous polynomials of degree j, 0 ≤ j ≤ d+1,
d ≥ 2.

Theorem 4. In the above situation, assume that ηd+1 = iR iX ν, where

(a). R =
∑n

j=1 xj ∂xj
is the radial vector field on Cn and ν = dx1 ∧ ... ∧ dxn.

(b). X is a vector field with coefficients homogeneous of degree d such that ∇X =
0 and with an isolated singularity at 0 ∈ Cn.

Then there exists a translation Φ(x) = x+ a, a ∈ Cn, such that Φ∗(η) = ηd+1.

Remark 1.8. Note that the (n − 2)-form ηd+1 = iR iX ν of theorem 4 induces
a foliation of dimension one and degree d on Pn−1. In particular Fηd+1

, viewed
as a two dimensional foliation on Pn ⊃ Cn, is the pull-back of a one dimensional
foliation of degree d on Pn−1 by a linear map f : Pn− → Pn−1 (induced by a linear
map F : Cn+1 → Cn).

Let LPB(n, d) := {F |F = f∗(G), where G is a one dimensional foliation on Pn−1

of degree d and f : Pn− → Pn−1 is a linear map}. As a consequence of theorem 4
we get:

Corollary 1. For any d ≥ 2 and n ≥ 3 the set LPB(n, d) is an irreducible com-
ponent of the space of two dimensional foliations on Pn.

2. Proposition 1 and theorem 1

2.1. Proof of proposition 1. Let U be a domain of Cn, n ≥ 3, and η ∈ Λn−2(U),
η 6≡ 0. We will set sing(η) = {q ∈ U | η(q) = 0} and we will assume that
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(i). H1(U,O) = 0. In particular, if U is a polydisk then this is true.
(ii). η satisfies condition (I) of the integrability condition, that is, for any q ∈

U \ sing(η) then there exist a neigborhood V of q, V ⊂ U , and 1-forms
α1, ..., αn−2 ∈ Λ1(V ) such that

(8) η|V = α1 ∧ ... ∧ αn−2 .

(iii). η satisfies integrability condition (II) iff for all decomposition as in (ii) then
dαm ∧ η = 0, ∀ 1 ≤ m ≤ n− 2.

We want to prove that, assuming (ii) then, iX η = 0 ⇐⇒ (iii), where X is the
rotational of η: dη = iXν, ν = dz1 ∧ ... ∧ dzn. First of all observe that, if V and
α1, ..., αn−2 are as above then

dη|V =
n−2∑

j=1

(−1)j−1 α1 ∧ ... ∧ dαj ∧ ... ∧ αn−2 =⇒

(9) dαm ∧ η|V = ±αm ∧ dη|V , ∀ m ∈ {1, ..., n− 2} .

Proof of iXη = 0 =⇒ (iii). We have two possibilities:

Case 1. X ≡ 0, or equivalently dη ≡ 0. In this case, by (9) we have

dαm ∧ η|V = 0 , ∀ m ∈ {1, ..., n− 2} =⇒ (iii).

Case 2. X 6≡ 0. In this case, W := sing(η)∪ sing(X) is a proper analytic subset of
U , so that U \W is open and dense in U .

Let us fix q ∈ U \W and a neighborhood V of q such that (8) and (9) are true.
From iX η = 0 we get

iX (α1 ∧ ... ∧ αn−2) =

n−2∑

j=1

(−1)j−1iX(αj)α1 ∧ ... ∧ α̂j ∧ ... ∧ αn−2 = 0 ,

where α̂j means omission of αj . If we take the wedge product of the above sum by
αm we get

0 = αm ∧ [(−1)m−1 iX(αm)α1 ∧ ... ∧ α̂m ∧ ... ∧ αn−2] = (iX αm) η =⇒

iX αm = 0 , ∀m ∈ {1, ..., n− 2} .

Since iXdη = 0 we get iX(αm ∧ dη) = 0 and this implies that αm ∧ dη = 0,
because αm ∧ dη is a n-form and X 6≡ 0. Hence, (9) implies that dαm ∧ η|V ≡ 0,
∀m ∈ {1, ..., n− 2}, and so (iii) is true.

Proof of (iii) =⇒ iX η = 0. We can assume X 6≡ 0. Remark 1.1 im-
plies that, if we fix q ∈ U \ sing(η) then, we can find a coordinate system
w = (w1, ..., wn) : (V, q) → (Cn, 0) and f ∈ O∗(V ) such that η|V = f dw3∧ ...∧dwn.
Hence,

dη|V =

[
∂f

∂w1
dw1 +

∂f

∂w2
dw2

]
∧ dw3 ∧ ... ∧ dwn = iX̃ dw1 ∧ ... ∧ dwn ,

where

X̃ =
∂f

∂w2

∂w1
−

∂f

∂w1

∂w2
=⇒ iX̃ η = 0 .

Since X|V = φ. X̃ for some φ ∈ O∗(V ) we get that iX η |V = 0 and this implies
that iX η = 0, as wanted.
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Let us assume that codC(sing(X)) ≥ 3 and prove that there exists Y ∈
X (U) such that η = iY iX ν. Let W := U \ sing(X). Since H1(U,O) = 0
and codC(sing(X)) ≥ 3 it follows from a theorem of H. Cartan (see [H]) that
H1(W,O) = 0.

Now, if we fix q ∈ W then the relation iX η = 0 and the division theorem
imply that there exist a Stein neighborhood Vq of q and ζq ∈ Λn−1(Vq) such that
η|Vq

= iX ζq. Since ζq ∈ Λn−1(Vq) there exists Yq ∈ X (Vq) such that ζq = −iYq
ν,

or
η = iX ζq = iX i−Yq

ν = iYq
iX ν .

If Vq ∩ Vp 6= ∅ then i(Yp−Yq) iX ν = 0 =⇒ ∃ gp q ∈ O(Vp ∩ Vq) such that Yp −

Yq = gp q. X. Note that (gp q)Vp∩Vq 6=∅ is an additive cocycle. Since H1(W,O) = 0
the cocycle is trivial and there exists a collection (hp)q∈W , hp ∈ O(Vp) such that
gp q = hp − hq on Vp ∩ Vq 6= ∅. Hence, there exists a holomorphic vector field
Y1 ∈ X (W ) such that Y1|Vp

= Yp − hp. X. This implies that

iY1
dη = iYp

dη = η on Vp =⇒ iY1
dη = η

Since codC(sing(X)) ≥ 3, by Hartog’s theorem Y1 can be extended to a vector field
Y ∈ X (U) such that iY dη = η. Finally, since iY η = 0 we get

LY η = iY dη + d(iY η) = η �

2.2. Proof of theorem 1. Let η = iY iX ν, where ν = dz1∧...∧dzn and dη = iX ν.
Set S := DX(0) and T := DY (0). Under the hypothesis that S is non-singular we
will prove that tr(S) = 0, tr(T ) = 1 and [S, T ] = 0.

First of all, let us write X :=
∑

j Xj ∂zj and Y :=
∑

j Yj ∂zj . Since dη = iX ν,
we get

0 = d(iX ν) = ∇X. ν where ∇X =
∑

j

∂Xj

∂zj
=⇒ tr(S) = ∇X(0) = 0 .

Now, note that

LY η = η =⇒ LY dη = dη =⇒ iX ν = LY iX ν = i[Y,X] ν + iX LY ν =

= i[Y,X] ν + iX (∇Y. ν) , where ∇Y =
∑

j

∂Yj
∂zj

=⇒

(10) [Y,X] = (1−∇Y ) . X = f.X , where f = 1−∇Y .

Taking the 1-jet of both members of the above relation we get [T, S] = a. S, where
a = f(0) = 1− tr(T ). This relation can be written as S. T − T. S = a. S and since
S is invertible we obtain

S. T. S−1 = T + a. I ,

where I is the identity. Taking the trace in both members we get

tr(T ) = tr(T ) + n. a =⇒ a = 0 =⇒ tr(T ) = 1 and [S, T ] = 0 .

Let λ1, ..., λn 6= 0 and µ1, ..., µn be the eigenvalues of S and T respectively. Since
[S, T ] = 0, for all τ ∈ C the eigenvalues of T + τ. S are µj + τ. λj , 1 ≤ j ≤ n. Let
us assume that there is τ ∈ C such that ρj := µj + τ. λj , 1 ≤ j ≤ n, are two by two
different and satisfy Poincaré’s non-resonance relations

〈ρ, σ〉 − ρj 6= 0 , ∀ 1 ≤ j ≤ n and ∀ σ = (σ1, ..., σn) ∈ Z≥0 with |σ| =
∑

j

σj ≥ 2 .
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Let Z := Y + τ.X. Note that (10) implies

[Z,X] = [Y,X] = f.X

On the other hand, by Poincaré’s formal linearization theorem, there exists a formal
diffeomorphism Φ ∈ D̂iff(Cn, 0) such that DΦ(0) = I and Φ∗(Z) is linear and
semi-simple (because ρi 6= ρj , if i 6= j). If we set Ẑ := Φ∗(Z), X̂ := Φ∗(X), then
we have Ẑ =

∑
j ρj . xj ∂xj

and X̂ = X̂j . ∂xj
and the above relation implies that

(11) [Ẑ, X̂] = f̂ . X̂ , where f̂ = Φ∗(f) .

Note that f̂(0) = 0.

Claim 2.1. With the above notations we have

X̂k(x) = xk. ψk(x) , where ψk(0) = λk 6= 0 , 1 ≤ k ≤ n .

Proof. Since DX̂(0) =
∑

j λj xj ∂xj
it is enough to prove that xk|Xk, 1 ≤ k ≤ n.

Since Ẑ =
∑

j ρj . xj ∂xj
, relation (11) is equivalent to

(12) Ẑ(X̂k) = hk. X̂k , where hk = ρk + f̂ , 1 ≤ k ≤ n .

Let us write the Taylor series of X̂k and of hk as X̂k =
∑

j≥1Gj(x) and hk =∑
j≥0 φj(x) where Gj and φj are homogeneous of degree j, ∀ j ≥ 1. The idea is to

prove by induction on j ≥ 1 that xk |Gj for all j ≥ 1.
Step j = 1. The linear part of (11) gives [Ẑ,DX̂(0)] = 0. Since ρi 6= ρj if i 6= j

the linear vector field DX̂(0) is diagonal in the (formal) coordinates (x1, ..., xn).
Hence, G1(x) = λk. xk, and so xk |G1.

Step j − 1 =⇒ j, ∀ j ≥ 2. Since Ẑ is a linear vector field the homogeneous
term of degree j of the left hand of relation (12) is Ẑ(Gj). On the other hand,
the homogeneous term of degree j of the right hand of (12) is

∑
r+s=j φr. Gs which

implies that

Ẑ(Gj) =
∑

r+s=j

φr. Gs = ρk. Gj +
∑

r+s=j,s<j

φr. Gs =⇒

Ẑ(Gj)− ρk. Gj =
∑

r+s=j,s<j

φr. Gs := Hj .

By the induction hypothesis xk |Hj =⇒ Hj |(xk=0) = 0. If we write Gj(x) =∑
σ aσ. x

σ then Ẑ(Gj) =
∑

σ 〈ρ, σ〉 aσ x
σ and so

∑

σ

(〈σ, ρ〉 − ρk) aσ x
σ

∣∣∣∣∣
(xk=0)

= 0 =⇒

aσ = 0 if σk = 0 (because 〈σ, ρ〉−ρk 6= 0) =⇒ xk |Gj . Therefore, xk|Xk, 1 ≤ k ≤ n
and the claim is proved. �

Now, let us prove assertion (a) of theorem 1. The idea is to prove that there is
a linear combination W = g. X̂ + h. Ẑ, where g, h ∈ Ôn and (g(0), h(0)) 6= (0, 0),
such that [Ẑ,W ] = 0.

Recall that we have assumed that there are i < j such that λi. µj − λj . µi 6= 0.
Without lost of generality we will suppose that i = 1 and j = 2. We assert that



GERMS OF COMPLEX TWO DIMENSIONAL FOLIATIONS 11

there exist g, h ∈ Ôn such that (g(0), h(0)) 6= (0, 0) and W = g. X̂ + h. Ẑ satisfies
W (x1) = 0 and W (x2) = x2.

In fact, by claim 2.1 X̂(xj) = xj . ψj(x), 1 ≤ j ≤ n. Hence, if W is as above
then W (xj) = g. xj . ψj(x) + h. ρj . xj , 1 ≤ j ≤ n. In particular, the assertion is
equivalent to the fact that the system of linear equations below in g, h ∈ Ôn has a
solution g, h ∈ Ôn with (g(0), h(0)) 6= (0, 0):

{
ψ1(x). g + ρ1. h = 0
ψ2(x). g + ρ2. h = 1

This is true because the determinant of the system is ∆(x) = ρ2. ψ1(x)− ρ1. ψ2(x)

and ∆(0) = ρ2. λ1−ρ1. λ2 = µ2. λ1−µ1. λ2 6= 0. It remains to prove that [Ẑ,W ] = 0.

First of all, from [Ẑ, X̂] = f̂ . X̂ and W = g. X̂ + h. Ẑ we get [Ẑ,W ] = g1. X̂ +

h1. Ẑ, where g1 = Ẑ(g) + g. f̂ and h1 = Ẑ(h). On the other hand, if we set
W (xj) :=Wj then

[Ẑ,W ](xj) = (Ẑ.W −W.Ẑ)(xj) = Ẑ(Wj)− ρj .Wj , 1 ≤ j ≤ n =⇒

[Ẑ,W ](xj) = 0 if j = 1, 2 .

This implies that:

g1. X̂(x1) + h1. Ẑ(x1) = 0

g1. X̂(x2) + h1. Ẑ(x2) = 0
=⇒

g1. ψ1 + h1. ρ1 = 0
g1. ψ2 + h1. ρ2 = 0

=⇒ g1 = h1 = 0 ,

because ∆(0) 6= 0. Therefore, [Ẑ,W ] = 0 as asserted. Since Ẑ is linear diagonal
without resonances the vector field W must be also linear and diagonal, which
proves item (a) of theorem 1.

When Z = Y + τ.X is holomorphically linearizable then we can assume that the
diffeomorphism Φ and the vector fields Ẑ, X̂ and W are convergent. This proves
item (b) of theorem 1. �

3. Theorem 2

In this section we will assume that 0 is a n.g.K. singularity of η: DX(0) is
nilpotent, where X is the rotational of η. In this case, by proposition 1 there exists
a germ Y ∈ Xn such that η = iY dη, LY η = η and LY dη = dη.

3.1. Proof of theorem 2. We will use Poincaré-Dulac normalization theorem for
germs of vector fields (see [Me]). Let λ1, ..., λn be the eigenvalues of DY (0). Recall
that λ1, ..., λn ∈ C are in the Poicaré domain if 0 ∈ C is not in the convex hull of
the set {λ1, ..., λn}.

Theorem 3.1. There exists a formal diffeomorphism Φ ∈ D̂iff(Cn, 0) such that

Φ∗(Y ) := Ŷ ∈ X̂n can be written as

Ŷ = S +N ,

where S =
∑n

j=1 λj wj ∂wj
is linear diagonal, N is nilpotent (in a sense that we will

precise in remark 3.1) and [S,N ] = 0. When λ1, ..., λn are in the Poicaré domain
then we can assume that Φ is convergent.
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Remark 3.1. If we consider Ŷ as a derivation in Ôn then Ŷ induces a linear opera-
tor on the finite dimensional vector space of k-jets, jk(Ôn) := Jk

n , say Y k : Jk
n → Jk

n ,
in such a way that the diagram below commutes:

Ôn
Ŷ
−→ Ôn

jk ↓ ↓ jk

Jk
n

Y k

−→ Jk
n

Similarly, if we denote by Γp k := jk(Λ̂p
n) the finite dimensional vector space of

k-jets of p-forms, then the Lie derivative L
Ŷ
: Λ̂p

n → Λ̂p
n induces a linear operator

Lk

Ŷ
: Γp k → Γp k in such a way that the diagram below commutes:

Λ̂p
n

L
Ŷ−→ Λ̂p

n

jk ↓ ↓ jk

Γp k
Lk

Ŷ−→ Γp k

The vector field N is nilpotent in the sense that it induces the nilpotent parts of
the operators Y k and Lk

Ŷ
. Similarly S induces the semi-simple part of the operators

Y k and Lk

Ŷ
, respectively.

Note also that, if the coordinates are choosen in such a way that S =
∑

j λj zj ∂zj

then the monomial zσ = z
σ(1)
1 ...z

σ(n)
n is an eigenvector of S with S(zσ) = 〈λ, σ〉 . zσ,

where 〈λ, σ〉 =
∑

j σj . λj . Similarly, a monomial p-form of the type zσ. dzµ, where
zσ is a monomial as above and dzµ = dzµ1

∧ ...∧ dzµp
, 1 ≤ µ1 < ... < µp ≤ n, is an

eigenvector of of L
Ŷ

with eigenvalue 〈λ, σ〉+
∑p

j=1 λµj
.

Let Φ ∈ D̂iff(Cn, 0) be a diffeomorphism that normalizes the vector field Y
that satisfies LY η = iY dη = η. Set η̂ := Φ∗(η). Since LY η = η we obtain that
L
Ŷ
η̂ = η̂ and L

Ŷ
dη̂ = dη̂.

Claim 3.1. We assert that LS η̂ = η̂ and LN η̂ = 0. In particular, LS dη̂ = dη̂ and
LN dη̂ = 0.

Proof. Set η̂k := jk(η̂), k ≥ 0. From remark 3.1 we get Lk

Ŷ
η̂k = η̂k for all k ≥ 0.

In particular, η̂k is an eigenvector of Lk

Ŷ
. Since Lk

S and Lk
N are the semi-simple

and nilpotent parts of Lk

Ŷ
, respectively, we get Lk

S(η̂k) = η̂k and Lk
N (η̂k) = 0 for all

k ≥ 0. This implies the claim. �

Lemma 3.1. The eigenvalues λ1, ..., λn are rational positive and 0 < tr(S) < 1,
where tr(S) =

∑
j λj. In particular, they are in the Poincaré domain and we can

assume that Φ converges.

Proof. First of all we will prove that there are natural numbers k1, ..., kn and
a function ℓ : {1, ..., n} → {1, ..., n} such that the eigenvalues λ1, ..., λn satisfy the
following system of non-homogeneous linear equations

(13) kj . λj + tr(S)− λℓ(j) = 1 .

In fact, let us write X =
∑n

j=1Xj(z)∂zj . Since X has an isolated singularity
at 0 ∈ Cn we must have 〈X1, ..., Xn〉 ⊃ mp

n, for some p ∈ N. Therefore, if we
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write Φ∗(dη) = dη̂ = i
X̂
ν, where X̂ =

∑n
j=1 X̂j ∂wj

then
〈
X̂1, ..., X̂n

〉
⊃ m̂p

n.

In particular, the pth-jet of dη̂, jp(dη̂) (which has polynomial coefficients) has an
isolated singularity at 0 ∈ Cn. If we write

jp(dη̂) =
∑

j=1

Pj(w) dw1 ∧ ... ∧ d̂wj ∧ ... ∧ dwn ,

where Pj ∈ C[w1, ..., wn] has degree ≤ p, then

(14) {P1 = ... = Pn = 0} = {0} .

Note that (14) implies that, for each j ∈ {1, ..., n} there exists ℓ(j) ∈ {1, ..., n}

such that Pℓ(j) contains a monomial of the form a.w
kj

j , a 6= 0, for otherwise we
would have Pr(0, ..., 0, wj , 0, ..., 0) = 0, 1 ≤ r ≤ n, and (14) would not be true.
This is equivalent to say that jk(dη̂) contains a monomial of the form β, where

β := a.w
kj

j . dw1 ∧ ... ∧ d̂wℓ(j) ∧ ... ∧ dwn, a 6= 0. The relation LS dη̂ = dη̂ implies
that jk(dη̂) is an eigenvector of LS with correspondent eigenvalue 1. Since β is an
eigenvector of LS and

LS(β) =


kj . λj +

∑

j 6=ℓ(j)

λj


 . β

we get

kj . λj +
∑

j 6=ℓ(j)

λj = 1 =⇒ (13) .

In the next arguments we will use the dynamics of the function ℓ : In → In, where
In = {1, ..., n}. Recall that the orbit of m ∈ In is the set O(m) = {ℓs(m) | s ≥ 0},
where ℓ0(m) = m and ℓ s(m), s ≥ 1, is defined indutively by ℓs+1(m) = ℓ(ℓs(m)).
We say that m ∈ In is periodic of period r ≥ 1 if ℓ r(m) = m and r = min{s ≥
1 | ℓ s(m) = m}. Since In is finite any orbit "finishes" in a periodic orbit. This
means that, given m ∈ In then there is ro ≥ 0 such that ℓro(m) is periodic and

O(m) = {m, ℓ(m), ..., ℓro(m), ..., ℓro+r−1(m) = ℓro(m)} ,

where r ≥ 1 is the period of ℓro(m). The next step is the following:

Claim 3.2. tr(S) 6= 1.

Proof. Let us suppose by contradiction that tr(S) = 1. In this case, the system
of equations (13) takes the form:

(15) kj . λj − λℓ(j) = 0 , 1 ≤ j ≤ n .

As we will see at the end tr(S) = 1 implies also that, after a linear change of
variables, we can suppose:

(∗) If j ∈ In is such that kj = 1 then ℓ(j) > j.

Using this fact, let us prove that (15) implies λ1 = ... = λn = 0, which is a
contradiction with tr(S) = 1.

Fix m ∈ In. If m is a fixed point of ℓ, ℓ(m) = m, then (∗) implies km > 1. On
the other hand, (15) implies (km − 1)λm = 0, and so λm = 0.

From now on we will suppose that m is not a fixed point of ℓ. In this case, since
kj ≥ 1 for all j ∈ In, (15) implies that, if there is s ≥ 1 such that λℓs(m) = 0 then
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λm = 0. Since any orbit of ℓ contains a periodic point it is sufficient to prove that
λm = 0 when m is periodic of period r ≥ 2.

So, let m be periodic with period r ≥ 2. Set mj := ℓj−1(m), 1 ≤ j ≤ r, and
mr+1 := m1 = m. With this notation, we get from (15) that:

(16) kmj
. λmj

= λmj+1
, 1 ≤ j ≤ r .

Since r ≥ 2 there is jo ∈ {1, ..., r} such that mjo+1 < mjo , because m is periodic.
In particular, from (∗) we get kmjo

> 1. On the other hand, (16) implies that

(km1
...kmr

− 1)λm1
= 0 =⇒ λm = λm1

= 0 .

It remains to prove that we can suppose (∗).
Fix the formal coordinates z = (z1, ..., zn) like before, that is where S =∑
j λj zj ∂zj . Let X̂ be such that dη̂ = i

X̂
ν, where ν = dz1 ∧ ... ∧ dzn. Let us

prove first that, if tr(S) = 1 then [S, X̂1] = 0, where X̂1 denotes DX̂(0). From
LS dη̂ = dη̂ we obtain

dη̂ = i
X̂
ν = LS (i

X̂
ν) = i

LS(X̂) ν + i
X̂
(LS ν) = i[S,X̂] ν + tr(S). i

X̂
ν =⇒

[S, X̂] = (1− tr(S)) X̂ = 0 .

Taking the linear part in the above relation we get [S, X̂1] = 0. Now, let us note

that if kj = 1 then η̂ contains a monomial of the form awj dw1∧...∧d̂wℓ(j)∧...∧dwn,

a 6= 0, which is equivalent to say that X̂1 contains a term of the form ±awj ∂wℓ(j)
.

On the other hand, since [S, X̂1] = 0 and X̂1 is nilpotent, after a linear change
of variables we can suppose that all the entries of the matrix of X̂1 in the basis
where S is diagonal are below the diagonal. This means exactly that if kj = 1 then
ℓ(j) > j, as the reader can check. This finishes the proof of claim 3.2. �

Let us prove that λ1, ..., λn ∈ Q+ and 0 < tr(S) < 1. Denote by T be the linear
operator of Cn given by T (ζ) = (T1(ζ), ..., Tn(ζ)), where Tj(ζ) = Tj(ζ1, ..., ζn) =
kj . ζj − ζℓ(j). If we set a := 1 − tr(S) 6= 0, λ = (λ1, ..., λn) and A = (a, ..., a) then
system (13) can be written as

(17) Tj(λ) = a , ∀ 1 ≤ j ≤ r ⇐⇒ T (λ) = A .

We assert that T is invertible.
In fact, in the proof of claim 3.2 we have seen that the homogeneous system

(15), which is equivalent to T (ζ) = 0, has as unique solution ζ = 0 if ℓ satisfies the
following property:

(∗∗) For any periodic point m ∈ In of ℓ there exists s ≥ 0 such that kℓs(m) > 1.

Since the system (15) is equivalent to T (ζ) = 0, if (∗∗) is true then T is invertible.
On the other hand, if (∗∗) were not true then ℓ would have a periodic orbit

O(m) = {m, ℓ(m), ..., ℓ(r−1)(m), ℓr(m) = m} such that kℓs(m) = 1, ∀ 0 ≤ s ≤ r − 1.
Since the vector λ satisfies (17) we obtain

λℓ(s−1)(m) − λℓs(m) = a , 1 ≤ s ≤ r .

This implies r. a =
∑r

s=1

(
λℓ(s−1)(m) − λℓs(m)

)
= 0, which contradicts a 6= 0. There-

fore (∗∗) is true and T is invertible.
Now, from (17) we get

(λ1, ..., λn) = λ = T−1(A) = a. T−1(1, ..., 1) .
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Therefore, if set ρ := (ρ1, ..., ρn) = T−1(1, ..., 1) then λj = a. ρj , 1 ≤ j ≤ n.
Note that ρ ∈ Qn, because the entries of T are integer numbers. We assert that
ρ1, ..., ρn > 0.

In fact, T (ρ) = (1, ..., 1) is equivalent to

ρj =
1

kj

(
1 + ρℓ(j)

)
.

An induction argument using the above relation implies the following:

(∗ ∗ ∗) If m ∈ In is such that there exist s ≥ 0 with ρℓs(m) ∈ Q+ then ρm ∈ Q+.

Since any orbit contains a periodic point it is sufficient to prove that if m is periodic
then ρm ∈ Q+.

Suppose by contradiction that this is not true. In this case, there exists m ∈ In
with periodic orbit O(m) = {m, ℓ(m), ..., ℓ(r−1)(m), ℓr(m)} with λℓs(m) ≤ 0, ∀
0 ≤ s ≤ r − 1. Since

kℓs(m). ρℓs(m) − ρℓ(s+1)(m) = 1 , ∀ 0 ≤ s ≤ r − 1

we get

0 < r =
r−1∑

s=0

(
kℓs(m). ρℓs(m) − ρℓ(s+1)(m)

)
=

r−1∑

s=0

(
kℓs(m) − 1

)
ρℓs(m) ≤ 0 ,

because ρℓs(m) ≤ 0 and kℓs(m) − 1 ≥ 0 for all s = 0, ..., r − 1. This contradiction
implies that (∗ ∗ ∗) is true and that ρj ∈ Q+, ∀ 1 ≤ j ≤ n.

Let us prove that λj ∈ Q+, ∀ 1 ≤ j ≤ n. Set τ :=
∑n

j=1 ρj ∈ Q+. Since
λj = a. ρj = (1− tr(S)). ρj , 1 ≤ j ≤ n, we get

tr(S) = τ. (1− tr(S)) =⇒ tr(S) =
τ

1 + τ
∈ Q+ and 0 < tr(S) < 1 .

Therefore, λj = (1− tr(S)) ρj ∈ Q+, ∀ 1 ≤ j ≤ n. This finishes the proof of lemma
3.1. �

Let us finish the proof of theorem 2. Observe that λ1, ..., λn ∈ Q+ are in the
Poincaré domain and we can assume that Φ converges. In particular, Ŷ = S +N ,
η̂ = Φ∗(η) and dη̂ are holomorphic. If we write Φ(w) = (Φ1(w), ...,Φn(w)) =
(z1, ..., zn) then S =

∑
j λj wj ∂wj

is diagonal and semi-simple. Since λj ∈ Q+ and
[S,N ] = 0 then N is also a polynomial vector field. In fact, let us write the Taylor
series of N as

∑
j σ aj σ w

σ ∂wj
, where aj σ ∈ C. Then the relation [S,N ] = 0 implies

that (〈λ, σ〉 − λj) aj σ = 0. Therefore, if aj σ 6= 0 then we get the ressonance

(18) 〈λ, σ〉 = λj , ∀σ = (σ1, ..., σn) , 1 ≤ j ≤ n .

Since λj ∈ Q+, ∀j, the set {(j, σ) | 〈λ, σ〉−λj = 0} is finite, and soN is a polynomial
vector field.

Moreover, if we set ν̂ = dw1 ∧ ... ∧ dwn and dη̂ := i
X̂
ν̂ then we get η̂ = i

Ŷ
dη̂ =

i
Ŷ
i
X̂
ν̂ = iS iX̂ ν̂. On the other hand, from LSdη̂ = dη̂ we obtain

i
X̂
ν̂ = LS iX̂ ν̂ = i[S,X̂] ν̂ + i

X̂
LS ν̂ = i[S,X̂] ν̂ + tr(S) i

X̂
ν̂ =⇒

[S, X̂] = (1− tr(S)) X̂ .

This implies that X̂ is also a polynomial vector field. In fact, if X̂ contains non-
vanishing monomial of the form a.wσ ∂wj

then

〈σ, λ〉 = 1− tr(S) > 0 .
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Since λ1, ..., λn ∈ Q+ the set {(σ, µ) | 〈σ, λ〉 = 1 − tr(S)} is finite and so X̂ is a
polynomial vector field. Let us prove that [N, X̂] = 0.

Claim 3.3. After a polynomial change of variables (preserving the form of S) we
can assume that N =

∑n
j=1Nj(z) ∂zj , where N1 ≡ 0 and Nj = Nj (z1, ..., zj−1),

∀j ≥ 2. In other words
∂Nj

∂zi
= 0 if i ≥ j. In particular, [N, X̂] = 0.

Proof. First of all, after a permutation of the variables we can assume that
λ1 ≤ λ2 ≤ ... ≤ λn. Let L := DN(0) be the linear part of N at 0 ∈ Cn. The relation
[S,N ] = 0 implies that [S,L] = 0, because S is linear. Note that L is nilpotent.
Therefore, by Jordan’s theorem after a linear change of variables that preserves S
we can suppose that L =

∑n
j=2 αj zj−1 ∂zj , where αj ∈ {0, 1}, 2 ≤ j ≤ n. Note

that, if αj = 1 then N contains the monomial zj−1 ∂zj and by (18) we must have
λj−1 = λj . On the other hand, if λj−1 < λj for some j ∈ {2, .., n} then for all
i ∈ {1, ..., j − 1} the component Ni(z) does not depends on (zj , ..., zn).

In fact, if 1 ≤ i ≤ j − 1 and Ni contains a non-vanishing monomial a. zσ,
σ = (σ1, ..., σn), then (18) implies

〈λ, σ〉 = λi ≤ λj−1 < λj ≤ ... ≤ λn =⇒ σr = 0 , ∀ r > j − 1 .

This proves the first part of the claim. Let us prove that [N, X̂] = 0. From
LN dη̂ = 0 we get

0 = LN (i
X̂
ν) = i[N,X̂] ν + i

X̂
(LN ν) = i[N,X̂] ν +




n∑

j=1

∂Nj

∂zj


 . i

X̂
ν = i[N,X̂] ν ,

because ∂Nj

∂zj
= 0, 1 ≤ j ≤ n, by the first part. Therefore, [N, X̂] = 0. �

Now, since λ1, ..., λn ∈ Q+, there exists k1 ≤ ... ≤ kn ≤ r ∈ N such that
λj = kj/r, 1 ≤ j ≤ n, gcd(k1, ..., kn) = 1 and

∑n
j=1 kj < r. If we set S1 = r. S then

we get [S1, N ] = 0 and [S1, X̂] = k X̂, where k = r −
∑

j kj ∈ N. This finishes the
proof of theorem 2. �

3.2. The non-resonance condition. It remains to specify the non-ressonance
condition on the vector field X that implies ker(L0

X) = {0}, where L0
X : Σ0(S) →

Σk(S).
Let us recall first that the space of orbits of the vector field S =

∑n
j=1 kj xj ∂xj

,
k1, ..., kn ∈ N, is an analytic space of dimension n − 1 known as the weighted
projective space with weights w = (k1, ..., kn). It will be denoted by Pn−1

w . For
instance, when w = (1, ..., 1) then Pn−1

w = Pn−1, the usual projective space. Let us
denote by Πw : Cn \ {0} → Pn−1

w the natural projection.
Since [S,X] = k.X, k ∈ N, the (n−2)-form µ = iS iX ν is integrable and induces

a two dimensional foliation Fµ on Cn. The orbits of S are contained in the leaves
of Fµ, and so there exists a one dimensional foliation on Pn−1

w , denoted by Gµ,
such that Fµ = Π∗

w(Gµ). In this way, the orbits of S that are X-invariant can be
considered as singularities of Gµ. These orbits are the analytic separatrices of X
through 0 ∈ Cn and are contained in the singular set of Fµ. The non-resonance
condition will be on one of these orbits.

Let γ be one of these orbits. A straightforward computation gives dµ = ℓ. iX ν,
where ℓ = k+ tr(S), and since 0 ∈ Cn is an isolated singularity of X the curve γ is
contained in the Kupka set of Fµ and so the normal type of Fµ at γ is well defined
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(see definition 1). Let us denote this normal type by Yγ . To fix the ideas we will
assume that Yγ is a germ with a singularity at 0 ∈ Cn−1.

(⋆) Non-resonance condition. There exists a singular orbit γ of Fµ such that
the linear part DYγ (0) has eigenvalues µ1, ..., µn−1 that satisfy the non-resonance
conditions below:

∀ 1 ≤ ℓ ≤ n−1 , ∀ σ ∈ Zn−1
≥0 , if

n−1∑

j=1

σj . µj = µℓ then σj = 0 if j 6= ℓ and σℓ = 1 .

Remark 3.2. Let T =
∑n−1

j=1 µj yj ∂yj
. We would like to remark that condition

(⋆) implies that:

(a). If Z is a formal vector field in X̂n−1 such that [T,Z] = 0 then Z must be
linear and diagonal in the coordinate system y, Z =

∑
j αj yj ∂yj

.
(b). µ1, ..., µn−1 satisfy Poincaré’s non-resonance conditions. This fact together

with (a) implies that the germ of Yγ is formally equivalent to T .
(c). The derivation T : Ôn−1 → Ôn−1 satisfies the following properties:

(c.1). ker(T ) = C, that is, if T (f) = 0 then f is a constant.
(c.2). The equation T (φ) = ψ, where ψ(0) = 0 has an unique solution φ with

φ(0) = 0.

The proof of these facts is straightforward and is left to the reader.

Example 4. When S =
∑

j xj ∂xj
, the radial vector field, then the generalized

Jouanolou’s example of degree ℓ = k + 1 ≥ 2

X = Jℓ(x1, ..., xn) = xℓn ∂x1
+ xℓ1 ∂x2

+ ...+ xℓn−1 ∂xn
.

satisfies the non-resonance condition (⋆).
In fact, note that:

(a). [S,X] = k.X. If µ = iS iX ν, then dµ = iZ ν, where Z = (k + n)X.
(b). The orbit γ(t) = (et, ..., et) of S is contained in Kupka set of Fµ.

The normal type Yγ of Fµ at γ can be computed by taking a normal section Σ to γ
at some point, say the point p = (1, ..., 1) and by considering the restriction Fµ|Σ.
We can take for instance Σ = (xn = 1). The restriction Fµ|Σ can be computed
by projecting X onto the tangent space TΣ along S. If z = (z1, ..., zn−1) and
x = (z, 1) ∈ Σ then the projection Yγ at z is given by

Yγ(z) =
(
zn. Jℓ(z)− zℓn−1. R(z)

)
|(zn=1) =

=
(
1− z1. z

ℓ
n−1

)
∂z1 +

n−2∑

j=2

(
zℓj−1 − zj . z

ℓ
n−1

)
∂zj +

(
zℓn−2 − zℓ+1

n−1

)
∂zn−1

.

The point γ∩Σ = p = (1, ..., 1) is a singularity of Yγ satisfying codition (⋆). As the
reader can check, the Jacobian matrix of DYγ(p) is of the form −I + ℓ. A, where
A satisfies An−1 + An−2 + ... + A + I = 0, I the identity matrix. In particular,
the eigenvalues of DYγ(p) are of the form µ1, ..., µn−1, where µr = −1 + ℓ. δr,
1 ≤ r ≤ n − 1 and δ is a primitive nth-root of unity (see also [LN-So]). The proof
that µ1, ..., µn−1 satisfy condition (⋆) is not hard and is left to the reader.

Lemma 3.2. If X satisfies condition (⋆) then ker(L0
X) = {0}.
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Proof. Let X =
∑n

j=1Xj(z) ∂zj . We will assume, without lost of generality, that
the common orbit γ of X and S that satisfies condition (⋆) is contained in (zn 6= 0)
and passes through the point p = (a, 1) = (a1, ..., an−1, 1). Like in example 4, we
compute the normal type Yγ by projecting the vector field X onto the hyperplane
Σ = (zn = 1) through the vector field S. Seting z = (x, 1) = (x1, ..., xn−1, 1) we
get:

(19) Yγ(x) =
1

kn
(S(zn). X −X(zn). S)

∣∣∣∣
z=(x,1)

= X −
Xn

kn
. S

∣∣∣∣
z=(x,1)

By assumption, Yγ(a) = 0 and DYγ(a) has eigenvalues µ1, ..., µn−1 satisfying con-
dition (⋆).

In the proof we will use a weighted blow-up at 0 ∈ Cn with weights (k1, ..., kn).
After ramifications along the hyperplanes (zj = 0) if necessary, we can write the
affine chart of the weighted blow-up associated to the nth coordinate as

Π(τ, x) = Π(τ, x1, ..., xn−1) = (τk1 . x1, ..., τ
kn−1 . xn−1, τ

kn) = (z1, ..., zn) .

Let us prove that Π∗(S) = τ ∂τ and compute Π∗(X). Since zn = τkn we have

S(zn) = S(τkn) = kn τ
kn−1 S(τ) = kn zn = kn τ

kn =⇒ S(τ) = τ .

On the other hand, if j < n then

S(xj) = S(τ−kj . zj) = −kj τ
−kj−1 S(τ) zj + τ−kj S(zj) = 0 =⇒ Π∗(S) = τ ∂τ .

Now, using that [S,X] = k.X and X =
∑

j Xj ∂zj we obtain

Xj ◦Π(τ, x) = Xj(τ
k1 .x1, ..., τ

kn−1 .xn−1, τ
kn) = τk+kj . Xj(x, 1) , 1 ≤ j ≤ n ,

and by a straightforward computation

Π∗(X)(τ, x) = τk (f(x) τ ∂τ + Yγ(x)) ,

where Yγ is as in (19) and f(x) = 1
kn
Xn(x, 1).

Remark 3.3. Set Yγ(x) =
∑n−1

j=1 Yj(x) ∂xj
. From the relation d(iXν) = 0, ν =

dz1 ∧ ... ∧ dzn, we get d
(
iΠ∗(X) Π

∗(ν)
)
= 0, which is equivalent to

(20)
n−1∑

j=1

∂Yj
∂xj

+ (k + tr(S)) f(x) = 0

In particular, we obtain

f(a) = −

∑
j µj

k + tr(S)
6= 0 .

Let us prove that ker(L0
X) = {0}. Let N =

∑
j Nj ∂zj ∈ Σ(S, 0) be such that

L0
X(N) = [X,N ] = 0. This relation and [S,N ] = 0 imply that the orbit γ of X

and X is also N -invariant (in fact, γ ⊂ sing(N) because N is nilpotent). Let us
compute Π∗(N).

Since [S,N ] = 0, by a similar computation as in the case of X we get Nj ◦
Π(τ, x) = τkj . Nj(x, 1), 1 ≤ j ≤ n, which implies

Π∗(N)(τ, x) = g(x) τ ∂τ + Z(x) ,
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where g(x) = 1
kn
Nn(x, 1) and Z(x) = N − Nn

kn
S
∣∣∣
z=(x,1)

. Note that the points a

and (0, a) are singularities of Z and Π∗(N), respectively. Moreover, g(a) = 0 by
remark 3.3. After a translation we can suppose that a = 0 ∈ Cn−1.

Claim 3.4. There exists Φ̂ ∈ D̂iff(Cn, 0) of the form Φ̂(τ, x) = (φ(x). τ,Ψ(x)) =

(s, y), with φ ∈ Ô∗
n−1 and Ψ ∈ D̂iff(Cn−1, 0), such that

(21) Φ̂∗(Π
∗(X)) = u(y). sk.


α s ∂s +

n−1∑

j=1

µj yj ∂yj


 ,

where α = −
∑

j µj

k+tr(S) , u ∈ Ôn−1 and u(0) 6= 0.

Let us assume claim 3.4 and finish the proof of lemma 3.2. Set T :=∑n−1
j=1 µj yj ∂yj

and L := α s ∂s + T , so that Φ̂∗(Π
∗(X)) = u(y). sk. L. Note that

Φ̂∗(Π∗(N)) is of the form

Φ̂∗(Π
∗(N)) = g̃(y) s ∂s + Z̃(y) := Ñ ,

where g̃ and Z̃ are formal series. From [N,X] = 0 we get

[Φ̂∗(Π∗(N)), Φ̂∗(Π∗(X))] = [Ñ , u. sk. L] = Ñ
(
u. sk

)
L+ u. sk [Ñ , L] = 0 =⇒

[L, Ñ ] =
Ñ

(
u(y). sk

)

u(y). sk
L = φ(y). L ,

where φ(y) = k g̃(y) + Z̃(u(y))
u(y) ∈ Ôn−1. Note that φ(0) = 0. Therefore,

φ(y) (α s ∂s + T ) = [L, Ñ ] = [α s ∂s + T, g̃(y) s ∂s + Z̃] = T (g̃(y)) s ∂s + [T, Z̃] ,

because [s ∂s, g̃(y) s ∂s] = [s ∂s, Z̃] = [T, s ∂s] = 0. This implies

T (g̃(y)) = αφ(y)

[T, Z̃] = φ(y)T
.

The first relation above implies that [T, α−1 g̃(y)T ] = φ(y)T , which together the
second relation gives

[T, Z̃ − α−1 g̃(y)T ] = 0 .

It follows from remark 3.2 that Z̃−α1 g̃(y)T must be linear and diagonal. However,
since DZ̃(0) is nilpotent and g̃(0) = 0 this implies that Z̃ = α−1 g̃(y)T =⇒

Ñ = g̃(y) s ∂s+Z̃ = α−1 g̃(y)L =⇒ Ñ∧Φ̂∗(Π
∗(X)) = 0 =⇒ N∧X = 0 =⇒

N = hX, where h is holomorphic because X has an isolated singularity at 0 ∈ Cn.
However, since [S,N ] = 0 this implies

0 = [S, hX] = S(h). X + h. k.X =⇒ S(h) = −k. h =⇒ h = 0 ,

as the reader can check. Hence, N = 0 as we wished to prove. �

Proof of claim 3.4. Let W = τ−k.Π∗(X) = f(x) τ ∂τ + Yγ(x). First of all,
from remark 3.2 the germ Yγ is formally linearizable. Therefore, there exists Ψ ∈

D̂iff(Cn−1, 0) such that Ψ∗(Yγ) =
∑

j µj yj ∂yj
= T . In particular, the formal

diffeomorphism Φ(τ, x) = (τ,Ψ(x)) = (τ, y) is such that

Φ∗(W ) = f̃(y) τ ∂τ + T := W̃ , f̃(y) = f ◦ φ−1(y) .
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Note that f̃(0) = f(0) = α. Therefore, by remark 3.2 the equation T (h) = α − f̃

has an unique solution h ∈ Ôn−1 such that h(0) = 0. Now, set

Φ1(τ, y) = (eh(y). τ, y) = (s, y) .

We have

W̃ (s) = W̃ (eh(y). τ) = W̃ (eh(y)). τ + eh(y). W̃ (τ) = T (eh(y)). τ + eh(y). f̃(y). τ = α. s

which implies that Φ1∗(W̃ ) = α s ∂s + T and that

(Φ1 ◦ Φ)∗ Π
∗(X) = u(y). sk (α s ∂s + T ) ,

where u(y) = e−k h(y). This finishes the proof of claim 3.4 and of lemma 3.2. �

4. Proof of theorem 3

Let (ηt)t∈U be a holomorphic family of (n − 2)-forms on the polydisc Q ⊂ Cn

as in the hypothesis of theorem 3, 0 ∈ U ⊂ Ck. Consider the holomorphic family
of vector fields (Xt)t∈U given by dηt = iXt

ν, ν = dz1 ∧ ... ∧ dzn. We have assumed
that 0 ∈ Q is a g.K. singularity of η, so that 0 is an isolated singularity of X0.

When Y is a holomorphic vector field on an open set of W ⊂ Cn and q ∈ W
then the multiplicity of Y at q is defined as

µ(Y, q) := dimC

Oq

I(Y )
,

where I(Y ) is the ideal of Oq generated by the components of Y . Some known
facts about the multiplicity are the following:

(i). µ(Y, q) < +∞ ⇐⇒ q is an isolated singularity of Y .
(ii). µ(Y, q) = 0 ⇐⇒ Y (q) 6= 0.
(iii). µ(Y, q) = 1 ⇐⇒ det(DY (q)) 6= 0, that is the singularity is non-degenerate.

The following result is known for a holomorphic family of vector fields as (Xt)t∈U :

Theorem 4.1. Fix a polydisk P ⊂ P ⊂ Q such that 0 is the unique singularity of
X0 on P . Then there exists a polydisk in the parameter space 0 ∈ V ⊂ U such that
for all t ∈ V then Xt has a finite number of singularities on P and no singularities
on the boundary ∂P . Moreover,

∑

q∈P

µ(Xt, q) = µ(X0, 0) , ∀ t ∈ V .

Let us consider first the case in which η0 has a non-degenerate singularity at
0 ∈ Q. In this case µ(X0, 0) = 1 by theorem 4.1. Let P ⊂ Q and V be as in
theorem 4.1. Since µ(X0, 0) = 1 then by theorem 4.1, for every t ∈ V we have∑

p∈P µ(Xt, p) = 1. Hence, Xt has an unique singularity in P for all t ∈ V . If
we call P(t) this singularity, then the map t ∈ V 7→ P(t) ∈ P is holomorphic
(by the implicit function theorem applyed to the map (z, t) 7→ Xt(z)). If 0 is
a s.s.g.K. singularity then the eigenvalues λ1, ..., λn of DX0(0) are two by two
different, λi 6= λj for all i 6= j. Hence, by taking a smaller V if necessary, we can
assume that the same is true for the eigenvalues of DXt(P(t)) for all t ∈ V . This
proves item (a) of theorem 3.

Let us suppose now that 0 ∈ Cn is a n.g.K. singularity of η0 of type
(m1, ...,mn; ℓ). In this case, det(DX0(0)) = 0 because DX0(0) is nilpotent. There-
fore, µ(X0, 0) ≥ 2 by (ii) and (iii). Let P and V be as in theorem 4.1. Since the
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singularities of Xt on P are isolated, ∀ t ∈ V , there exists a holomorphic vector field
Yt on P such that ηt = iYt

dηt (by proposition 1). Note that the family of vector
fields (Yt)t∈V can be taken holomorphic in the variable t ∈ V (by the parametric
De Rham’s division theorem (cf. [DR])). Since Y0 has a non-degenerate singularity
at 0 ∈ Cn, by taking a smaller polydisk P ⊂ Q and a smaller V ⊂ U if necessary,
then there exists a holomorphic map P : V → P such that P(0) = 0, P(t) is a
non-degenerate singularity of Yt and is the unique singularity of Yt on P , ∀t ∈ V .
On the other hand, by theorem 4.1, Xt has a finite number of singularities on P
and ∑

q∈sing(Xt|P )

µ(Xt, q) = µ(X0, 0) ≥ 2 , ∀t ∈ V .

We assert that sing(Xt|P ) = {P(t)}, ∀t ∈ V .

In fact, let us fix to ∈ V . Denote the local flow of Yto by (s, q) 7→ φs(q). By
proposition 1 we have LYto

(dηto) = dηto . In terms of the local flow φs this means
that

d

ds
φ∗s(dηto)

∣∣∣∣
s=0

= dηto =⇒ φ∗s(dηto) = es. dηto .

On the other hand, the second relation above implies that sing(dηto) = sing(Xto)
is invariant by the flow φs. Hence, if q ∈ P and Yto(q) 6= 0 then Xto(q) 6= 0, for
otherwise sing(Xto |P ) would contain a regular orbit of the flow φs and would not
be finite. Since Xto has at least one singularity in P we must have sing(Xto |P ) =
sing(Yto |P ) = {P(to)}, which proves the assertion. It remains to prove that P(t)
is an n.g.K. singularity of Ft and has the same type as P(0) = 0.

Let Lt := DYt(P(t)) and At := DXt(P(t)). Let us prove that At is nilpotent for
all t ∈ V . We will use the following lemma of linear algebra:

Lemma 4.1. Let A and L be linear vector fields of Cn such that [L,A] = µ.A,
where µ 6= 0. Then A is nilpotent.

Proof. The idea is to prove by induction on m ∈ N that [L,Am] = m.µ.Am.
If we admit this fact then we get tr(Am) = 0 because tr( [L,Am] ) = 0, ∀m ∈ N.
This implies that all eigenvalues of A vanish and that A is nilpotent. In fact, if the
eigenvalues of A are µ1, ..., µn then

tr(Am) =
∑

j

µm
j , ∀m ∈ N =⇒

∑

j

µm
j = 0 , ∀m ∈ N =⇒ µ1 = ... = µn = 0 .

Finally, let us assume by induction that [L,Am−1] = (m − 1). µ. Am−1, m ≥ 2.
Then

[L,Am] = Am.L− L.Am = A.(Am−1.L− L.Am−1) + (A.L− L.A).Am−1 =

= A.[L,Am−1] + [L,A].Am−1 = m.µ.Am ,

by the induction hypothesis. �

Let us finish the proof of theorem 3. We have seen in the proof of theorem 2
that [Yt, Xt] = (1 − ∇Yt)Xt. By taking the linear part of both members we get
[Lt, At] = (1 − tr(Lt))At := µ(t). At. Since µ(0) 6= 0 there exists ǫ > 0 such that
µ(t) 6= 0 for |t| < ǫ. Hence, At is nilpotent by lemma 4.1, if |t| < ǫ. This can be
expressed by An

t = 0 for all |t| < ǫ. Since the function t ∈ V 7→ An
t is holomorphic

we obtain that An
t = 0 and that At is nilpotent for all t ∈ V . Now, theorem 2
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implies that DYt(P(t)) has positive rational eigenvalues. Hence, the eigenvalues of
DYt(P(t)) do not depend on t ∈ V and this implies that the type of the singularity
is independent of t ∈ V . �

5. Proof of theorem 4

Let η, be an integrable (n− 2)-form on Cn such that:

(I). η =
∑d+1

j=0 ηj , where ηk has coefficients homogeneous of degree k, 0 ≤ k ≤
d+ 1.

(II). η d+1 = iR iXd
ν, where

– R is the radial vector field on Cn, ν = dx1 ∧ ... ∧ dxn,
– Xd is a vector field, homogeneous of degree d, with an isolated singu-

larity at 0 ∈ Cn and ∇Xd = 0.

We want to prove that there is a translation Φ(x) = x+ a such that Φ∗(η) = ηd+1.
The proof will be based in the following lemma:

Lemma 5.1. Let θ = θ0 + ... + θℓ + η d+1 be an integrable (n − 2)-form, where
η d+1 is as before and the coefficients of θj are homogeneous polynomials of degree
j, 0 ≤ j ≤ ℓ. We assert that:

(a). if ℓ < d then θℓ = 0.
(b). if ℓ = d then θd = LV η d+1, where V is a constant vector field on Cn.

Proof. In the proof we will use the following: if µs is a k-form with coefficients
homogeneous of degree s then

LR µs = iR dµs + d iR µs = (k + s)µs .

First of all note that the rotational of η d+1 is (n + d − 1)Xd. In fact, we have
seen in the proof of theorem 2 that

dη d+1 = d(iR iXd
ν) = iZd

ν ,

where
Zd = [R,Xd] +∇R.Xd −∇Xd. R = (n+ d− 1)Xd ,

because [R,Xd] = (d − 1)Xd, ∇R = n and ∇Xd = 0. In particular, we can write
the rotational Z of θ as

Z = Z0 + ...+ Zℓ−1 + Zd , where dθj+1 = iZj
ν , 0 ≤ j ≤ ℓ− 1 .

Note that the coefficients of Zj are homogeneous polynomials of degree j, 0 ≤ j ≤
ℓ−1. Taking the term with homogeneous coefficients of degree d+ ℓ in the relation
iZ θ = 0 (integrability condition), we obtain the relation

iZd
θℓ + iZℓ−1

η d+1 = 0 .

Since

iZℓ−1
η d+1 = −iXd

iR iZℓ−1
ν = −iXd

iR dθℓ and Zd = (n+ d− 1)Xd

we get
iZd

θℓ + iZℓ−1
η d+1 = iXd

[(n+ d− 1) θℓ − iR dθℓ] =⇒

iXd
[(n+ d− 1) θℓ − iR dθℓ] = 0 .

Since Xd has an isolated singularity at 0 ∈ Cn the above relation and the division
theorem imply that (n + d − 1) θℓ − iR dθℓ = iXd

ζ, where by homogeneity of the
coefficients we must have
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• ζ = 0, if ℓ < d,
• ζ is a (n− 1)-form with constant coefficients, if ℓ = d.

If ζ = 0 then

(n+d−1) θℓ = iR dθℓ =⇒ iR θℓ = 0 =⇒ (n+d−1) θℓ = iR dθℓ+d iR θℓ = LR θℓ .

Since θℓ is a (n− 2)-form with homogeneous coefficients of degree ℓ we must have

LR θℓ = (n+ ℓ− 2) θℓ =⇒ θℓ = 0 if ℓ < d .

On the other hand, if ℓ = d and ζ is a constant form we can write ζ = iU ν, where
U is a constant vector field on Cn. This implies

(n+ d− 1) θd − iR dθd = iXd
ζ = −iU iXd

ν = iV dη d+1 ,

where V = − 1
n+d−1 U . From the above relation, we get

(n+ d− 1) iR θd = iR iV dη d+1 = −iV iR dη d+1 .

On the other hand,

iR dη d+1 = LR η d+1 − d iR ηd+1 = LR η d+1 = (n+ d− 1) η d+1 =⇒

(n+ d− 1) iR θd = −iV [(n+ d− 1) η d+1] =⇒ iR θd = −iV η d+1 =⇒

(n+ d− 1) θd − iR dθd − d iR θd = iV dη d+1 + d iV η d+1 = LV η d+1 .

Since iR dθd + d iR θd = LR θd = (n+ d− 2) θd, from the above relation we obtain
θd = LV η d+1 as wished. �

Let us finish the proof of theorem 4. Consider the translation Ta(x) = x + a,
where a = (a1, ..., an) ∈ Cn. If µ =

∑
I PI(x) dx

I is a k-form, where dxI =
dxi1 ∧ ... ∧ dxik and PI(x) is a polynomial, I = (i1 < ... < ik), then we can write

T ∗
a (µ) =

∑

I

PI(x+ a) dxI = µ+ µ1(a) +O(|a|2)

where O(|a|2) denotes a function of a such that lim
a→0

O(|a|2)
|a| = 0 and

µ1(a) =
∑

I

DPI(x).a dxI =
∑

I


∑

j

aj .
∂PI

∂xj
(x)


 dxI = LA µ ,

where A is the constant vector field
∑

j aj ∂xj
.

The above consideration implies that if η = η0+ ...+η d+1, a and A are as before,
then

T ∗
a (η) = η̃0 + ...+ η̃d + η d+1

where η̃j has coefficients homogeneous of degree j, 0 ≤ j ≤ d, and

η̃d = ηd + LA η d+1 .

On the other hand, (b) of lemma 5.1 implies that ηd = LV η d+1, for some constant
vector field V =

∑
j vj ∂xj

, vj ∈ C, 1 ≤ j ≤ n. In particular, if T (x) = x−v, where
v = (v1, ..., vn) then the term of order d in T ∗(η) is

η̃d = ηd − LV η d+1 = 0 .

Therefore, T ∗(η) = η̃0... + η̃ d−1 + η d+1 and an induction argument using (a) of
lemma 5.1 implies that T ∗(η) = η d+1. This finishes the proof of theorem 4. �
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