GERMS OF COMPLEX TWO DIMENSIONAL FOLIATIONS

BY A. LINS NETO

ABsTRACT. The purpose of this paper is to show how some results about
codimension one foliations in dimension three can be generalized to dimension
two foliations in dimension n > 4.
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0.1. Notations. We begin by stablishing some notations that we will use along
the text.
1- O(U) := set of holomorphic functions defined on a domain U C C™.
O (U):=={f € OW) | f(p) #0,Vp e U}.
O,, := ring of germs at (C™,0) of holomorphic functions, m,, = the
maximal ideal of O,,.
O = {f € O] £(0) # 0}.
O,, ring of formal power series.
(f1y ..y ) = ideal of O,, (or @n) generated by f1,..., fk-
2- W(C”, 0) := group of formal biholomorphisms at (C",0) fixing 0.
3- A¥(U) := set of holomorphic k-forms defined on a domain U C C™.
A% .= set of germs at (C™,0) of holomorphic k-forms.
AF := set of formal k-forms at (C",0).
4- X(U) := set of holomorphic vector fields defined on a domain U C C".
X, := set of germs at (C™,0) of holomorphic vector fields.
X, := set of formal vector fields at (C™,0).
5- Given a formal power series & = Zj>0 ®;, ®; homogeneous of degree j,

then j*(®) = Y-¥_ ®; denotes the k-jet of ®, j > 0.
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6- ixn := the interior product of the k-form 7, k£ > 1, by the vector field X.

7- Lx := the Lie derivative in the direction of the vector field X. When X
and Y are vector fields in the same space then LxY := [X,Y], the Lie
bracket.

1. BASIC DEFINITIONS AND STATEMENT OF THE RESULTS

A singular holomorphic foliation F of codimension k, 1 < k < n, on a polydisc
@ C C" can be defined by a holomorphic k-form n € Q*(Q) (see [Me] and [C-C-F]).
The form 7 is integrable in the sense that for any p € @ such that 7n(p) # 0 then
there exists a neighborhood U, of p such that:

(I). mly, is locally completely decomposable (briefly l.c.d.). This means that
there exist & holomorphic 1-forms oy, ...,ax on U, such that n|y, = ai A
VAN

(IT). For all 1 < j < k we have doj A =0.

The singular set of n or F is defined as
sing(n) := {p € Q | n(p) = 0} .

Conditions (I) and (II) are therefore valid in a neighborhood of any non-singular
point of 1. The foliation defined by 1 will be denoted by F,.

Remark 1.1. Condition (I) implies that for any p ¢ sing(n) the subspace
ker(n(p)) == {v € T,Q[in(p) = 0} C T,Q

has codimension k. Therefore ker(n) defines a holomorphic distribution of codimen-
sion k outside sing(n). Condition (II) implies that this distribution is integrable
and defines a regular foliation F,, outside sing(n). In particular, if we take U, small
enough then there exist a coordinate system w = (wy,...,w,): (Up,p) — (C™,0)
and f € O*(U,) such that

(1) 77|U,, = fodwy A ... Ndwy, .

This means that in these coordinates the leaves of F, |y, are the levels (w; =
Clyeeey W = Cp)-

When the foliation has dimension two then 7 is a (n —2)-form and its differential
dn is a (n — 1)-form. In particular, if we fix a coordinate system z = (z1, ..., z,,) of
C™ then we can write

(2) dn=ixv,

where v = dzy A ... Adz, and X is a holomorphic vector field on ). The vector
field X will be called the rotational of 1 in the coordinate system z. Note that,
if X is the rotational of 7 in another coordinate system Z then X = ¢. X, where
¢ € O*(Q). In other words, if dy # 0 then dn defines a singular one dimensional
foliation on @. The following basic fact will be proved in § 2:

Proposition 1. Let n be a holomorphic (n — 2)-form on the polydisc Q@ C C™ and
X be its rotational. If we assume that n satisfies condition (1) then condition (II)
is equivalent to

(3) ixﬂzo.



GERMS OF COMPLEX TWO DIMENSIONAL FOLIATIONS 3

Moreover, if codc(sing(X)) > 3 then there exists a holomorphic vector field Y on
Q such that

(4) U:iinu:iyd’r):Lyn.
In particular, if p ¢ sing(n) then X (p) AY (p) # 0 and ker(n(p)) = (X (p),Y (p)).

Remark 1.2. The rotational X can be defined for any holomorphic (n — 2)-form
on @ by (2), but in general the form does not define a foliation. When X # 0 then
relation (3) implies also condition (I). When X = 0 then 7 is closed, but does not
satisfy condition (I) in general. For instance n = dz; A dwy + dzg A dwy on C* is
closed but not decomposable.

Remark 1.3. In the above situation, if we assume that codg(sing(X)) > 3 then
all irreducible components of sing(n) have dimension > 1. In fact, by proposition
1 this implies that n = iy ix v, and so

sing(n) ={p € Q| X(p) NY(p) =0} .

On the other hand, it is known that a set defined as above has no isolated points.

Next, we state the analogous of the Kupka phenomenon for codimension one
foliations (see [K] and [Me]). Let n be a germ at (C™,0) of (n — 2)-form defining a
germ of singular two dimensional holomorphic foliation F,, and X be the rotational
of n: dnp=ixdzi N...Ndz,.

Proposition 2. With the above notations assume that X (0) # 0. Then there ezists
a coordinate system w = (w1, ..., wy,) in which the form n does not depends on the
variable wy, that is, it can be written as:

n =1ty dws A ... \dw, =iy iawl dwi N dws A ... N\ dw,,

where in the above formula Y is a holomorphic vector field of the form

Y = ZY] (wa, ..., Wy) O, -

Jj=2
The proof of proposition 2 in a more general situation can be found in [Me].

Remark 1.4. Another way to state proposition 2 is to say that F,, is equivalent to
the product of two one dimensional foliations: the singular foliation on (C"~1,0)
induced by the vector field Y and the fibers of the projection IT: C* — C"*~! given
by (w1, ...,w,) = (w2, ...,wy). We can say also that F, = II*(G), where G is the
foliation induced by Y. Note also that the curve vy := II71(0) is contained in the
singular set of 7.

Definition 1. In the situation of proposition 2 and remark 1.4 the curve v will be
called a singular curve of Kupka type and the holomorphic class of the vector field
Y the normal type of ~.

Definition 2. The singularity 0 € C" of the (n—2)-form 7 will be called generalised
Kupka (notation: g.K.) if 0 is an isolated singularity of the rotational X (and so
of dn). A gXK. singularity will be called non-degenerate if the linear part DX (0)
is non-singular. It will be called semi-simple if DX (0) is non-degenerate and has
eigenvalues two by two different (notation: s.s.g.K.). It will be called nilpotent if
the linear part DX (0) is nilpotent (notation: n.g.K.).
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We would like to note that the concepts of definition 2 are independent of the
n-form used to calculate the rotational X of . In fact, they depend only of the
foliation defined by 7, in the sense that:

nis n.gK. (or s.s.gK.) < f.nisngK. (or ss.gK.),V f € OF.

Next, we will see examples of the above situations.

Example 1. Semi-simple case. Consider two linear diagonal vector fields on C™,
n>3,8=3"_ Njaj0,, and T = 37| pjx; 0y, Since [S,T] = 0 they generate
an action of C? on C". We will assume that

(5) )\i.uj—ui.)\j;éO,Vlgi<j§n.

With condition (5) the generic orbit of the action has dimension two and so S and
T generate a singular holomorphic two dimensional foliation on C2. This foliation
is also defined by the (n — 2)-form n = igir v, where v = dzy A ... Adxy,. It can
be shown that dn = ix v, where X = tr(S).T — tr(T).S (tr = trace). Note that
condition (5) implies that X =0 <= tr(S) =tr(T) = 0. In this case, the form n
is closed and we say that the foliation can be defined by a holomorphic closed form.

According to our definition, the form 7 is semi-simple if and only if ¢7(S). u; —
tr(T).A\; # 0 for all j € {1,...,n}. Let us remark also that f(z) = x;...x,, is an

integrating factor of n, in the sense that d (% 77) = 0. In this case, we say that the

foliation can be defined by a meromorphic closed form.

In the next result we will see a situation in which the germ of foliation is equiva-
lent to one generated by a linear action of C2, as in example 1. Let 1 be a germ at
0 € C" of holomorphic integrable (n — 2)-form with rotational X. We will assume
that 0 is a g.K. non-degenerate singularity of . In particular, if S = DX(0) then
det(S) # 0. Moreover, there exists a germ of vector field Y such that n = iy ix v,
where v = dz; A ... Adz,. Let A, ..., \,, denote the eigenvalues of S and uq, ..., tn
the eigenvalues of T':= DY (0). We will asume that there are 1 < i < j < n such
that A;. pi; — Aj. iy # 0. This is equivalent to igir v # 0.

Theorem 1. In the above situation we have tr(S) =0, tr(T) =1 and [S,T]) = 0.
In particular, given T € C then the eigenvalues of S+71.T are A\j+7.pu;, 1 < j < n.
Moreover:

(a). If there exists T € C such that the eigenvalues of S+ 7. T satisfy Poincaré’s
non-resonance conditions (cf. [M]) and are two by different then F, is
formally equivalent to a foliation generated by a linear action of C2.

(b). If there exists T € C such that X + 7.Y is linearizable and S + 7.T has
eigenvalues two by two different then F,, is holomorphically equivalent to a
foliation generated by a linear action of C?. In particular, if the eigenvalues
of S+1.T satisfy Brjuno’s condition of small denominators ( see [M]) then
this condition is verified.

Example 2. Nilpotent case. Let S = Z;;l kjxj 0y, , where k; € N, 1 < j <n. We
say that a germ Z at 0 € C™, of holomorphic vector field, is quasi-homogeneous with
respect to S, with weight ¢ € NU {0}, if [S, Z] = £. Z. In this case, the vector field
Z must be polynomial. In fact, if we write Z = 377 Z;(x). s, then [S,Z] = (. Z
is equivalent to

(6) S(Zj)=(+kj)Zj, 1<j<mn,
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which implies that Z1, ..., Z,, are polynomials quasi-homogeneous with respect to
S:
Zj (tkl.xl, ,tknl‘n) = te+k] . Zj (Z‘l, ,.Z‘n) V1< 1< n, VteC.

In this situation, the vector fields S an Z generate an action of the affine group
on C™ and the (n—2)-form n = n(S,Z) := igiz v is integrable (v = dxy A ... Adx,,).
Note that

dn = d(isiz l/) =Lg (’iZ V) - ’isd(’iz I/) = Z'[S7z]l/ + iz (LS I/) —-VZ.igv,
where VZ =3, 2. Tt follows that dn = ix v, where
X=0U+1tr(59).Z2-VZ.S.

Therefore X is the rotational of n and we can say that 7 is n.g.K. iff 0 € C™ is an
isolated singularity of X. Note that X satisfies [S, X] =/¢.X and VX = 0.

Remark 1.5. In this remark we discuss the existence of an example as above. Let
X(S.0) ={Z|[S,Z] = 0.2}, £(S.0) = {X € 2(5,¢)|VX = 0} and N(S,0) =
{X € £(5,¢)| X has an isolated singularity at 0 € C™ }. As we have seen before,
¥(S,¢) is a finite dimensional vector space. Since £(S,¢) is a linear subspace of
¥(8,4), it is also a finite dimensional vector space. On the other hand, it is not
difficult to see that N(S,¢) is a Zariski open subset of £(S,¢). In particular, if
N(S,€) # 0 then N(S,¢) is a Zariski open and dense subset of £(S5,¢). It can be
verified that, if M(S,¢) # 0 and X € N(S,¢) then the form n = igix v is n.g.K.
with rotational (¢ + tr(S)) X.

Let N(S) := {£ € N|N(S,¢) # (0}. We would like to observe also that for all S
the set N(9) is infinite. We will not prove this assertion in general, but in the next
example we will see a situation in which N(S) = N.

Example 3. Let us assume that the vector field S of example 2 is the radial vector
field, S = >7_, x;0,;. In this case it can be proved that X(S,¢) = {Z| the
coefficients of Z are homogeneous polynomials of degree ¢+ 1}. We assert that for
all £ > 1 then N(S, /) is Zariski open and dense in £(S5,¢). In order to prove this
fact, it is enough to exhibit one example X € N(S,¢). We then consider the vector
field
Jop1 = ah ! 0, + 2T Oy + o+ 25T 00, + o+l O,

Clearly, VJyy1 = 0 and 0 € C” is an isolated singularity of J,11. This example is
known as the generalized Jouanolou’s example of degree ¢ + 1 (cf. [LN-So).

In the next result we will see that the situation of example 2 is, in some sense,
general.

Theorem 2. Assume that 0 € C™ is a n.g.K. singularity of n. Then there exists a
holomorphic cordinate system w = (w1, ...,wy) around 0 € C™ where  has polyno-
mial coefficients. More precisely, there exist two polynomial vector fields X and Y
in C" such that
(a). Y =S+ N, where S = 377, kjw; Oy, is linear semi-simple with eigenval-
ues ki, ...k, € N, DN(0) is linear nilpotent and [S, N] = 0.
(b). [N,X] =0 and [S,X] = k. X, where k € N. In other words, X is quasi-
homogeneous with respect to S with weight k.
(¢). In this coordinate system we have n = iy ix dwy A ... A dw,, and Ly (n) =

(k+tr(S))n.



6 BY A. LINS NETO

In particular, F;, can be defined by a local action of the affine group.

Definition 3. In the situation of theorem 2, S = 2?21 kjw; 0y, and Lg(X) =
k. X, we say that the n.g.K. singularity is of type (k1, ..., kn; k).

Remark 1.6. We would like to observe that in many cases it can be proved that
vector field NV of the statement of theorem 2 vanishes. In order to discuss this
assertion it is convenient to introduce some objects. Given two germs of vector fields
Z and W set Lz(W) := [Z,W]. Recall that X(S,¢) = {Z € X,,|Ls(Z) = (. Z}.
Let X and Y =5 4+ N be as in theorem 2. Observe that:
e Jacobi’s identity implies that if W € 3(S, k) and Z € %(S,{) then [W, Z] €
(S, k+0).
e For all k € Z we have dimc(X(S, k)) < oo (because ki, ..., k, € N).
e N € 3(5,0), X € (5,¢) and Lx(N) = 0, so that N € ker(L%), where
LY = Lx: %(S,0) — %(S,¢). In particular, the vector field N € X(S,0)
of theorem 2 necessarily vanishes <= ker(L%) = {0}.
In §3.2 we will see that under a non-resonance condition, which depends only
on X, then ker(L%) = {0}. Let us mention some correlated facts.
(I). If S has no resonances of the type (o, k) —k; = 0, where (0, k) = Zj oj.kj,
k= (ki,....,kn) and 0 = (01, ...,00,) € ZZ,, then ker(Lx) = {0}.
(I1). When n = 3 and X has an isolated singularity at 0 € C? then ker(Lx) =
{0} (cf. [LN]).

(III). When N # 0 and codc(sing(N)) = 1, or sing(N) has an irreducible compo-
nent of dimension one then it can be proved that X cannot have an isolated
singularity at 0 € C".

In fact, we think that whenever X has an isolated singularity at 0 € C™* and VX =0
then ker(L%) = {0}.

The next result is about the nature of the set K(S,¢) := {X € X(S, )| ker(L%)
= {0} and VX = 0}.

Proposition 3. If K(S,¢) # 0 then K(S,¢) is a Zariski open and dense subset
of £(S,¢). In particular, if there exists X € £(S,L) satisfying the non-resonance
condition mentioned in remark 1.6 then K(S,€) is a Zariski open and dense in

£(S,0).

Proposition 3 is a straightforward consequence of the following facts:

(A). The set of linear maps £(3(S,0), (S, ¢)) is finite dimensional vector space.
Moreover, the subspace NI := {T € L(X(S,0),%(S,£))| T is not injective}
is an algebraic subset of £(X(S5,0),X(S,7)).

(B). The map L: &(S,¢) — L(X(S,0),%(S,¢)) defined by L(X) = L is linear.
As a consequence, the set L=1(AT) is an algebraic subset of £(S, /).

(C). K(S,6) =&(S,0)\ LY (NTI).

We leave the details to the reader.
Remark 1.7. In the case of the radial vector field, R := Z?Zl 2 0,;, we have

K(R,¢) # 0 for all £ > 1. In fact, we will prove in §3.2 that Jo1 € K(R,¢), where
Jet1 is the generalized Jouanolou’s vector field (see example 3).

In the next result we will consider the problem of deformation of two dimensional
foliations with a g.K. singularity. Consider a holomorphic family of (n — 2)-forms,
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(nt)tev, defined on a polydisc @ of C™, where the space of parameters U is an open
set of C* with 0 € U. Let us assume that:
e For each t € U the form 7; defines a two dimensional foliation F; on Q.
Let (Xt)tev be the family of holomorphic vector fields on @ such that
dn, =ix, v, v=dz A... Ndz,.
e Fi has a g.K. singularity at 0 € @, either non-degenerate, or nilpotent.

Theorem 3. In the above situation there exist a neighborhood 0 € V. C U, a
polydisk 0 € P C @, and a holomorphic map P: V — P C C" such that P(0) =0
and for any t € V then P(t) is the nique singularity of F; in P. Moreover, P(t) is
of the same type as P(0), in the sense that:

(a). If 0 is a non-degenerate singularity of Fo then P(t) is a non-degenerate
singularity of Fy, Vt € V. If0 is a s.s.g.K. singularity of Fo then P(t) is a
s.s.9. K. singularity of Fy, Vt e V.

(b). If 0 is a n.g. K. singularity of type (my, ..., mp; L) of Fo then P(t) is a n.g. K.
singularity of type (mq,...,mp; L) of Fy, Vt € V.

As an application of theorem 3 it can be done an easy proof of the fact that there
are irreducible components of the space of foliations of dimension two of P, n > 3,
which are constituted of linear pull-backs of one dimensional foliations on P!
(see the general case in [C-P]). Instead we will prove a generalization of a result of
[C-LN] which equally implies this result. Let n be an integrable (n — 2)-form on
C™, with polynomials coefficients, written as

d+1
(7) 77:770+~-~+77d+1:277ja
§=0

where the coefficients of n; are homogeneous polynomials of degree j, 0 < j < d+1,
d>2.
Theorem 4. In the above situation, assume that ng11 = igix v, where
(a). R= Z;’:l x; 0y, is the radial vector field on C" and v = dxy A ... A dy,.
(b). X is a vector field with coefficients homogeneous of degree d such that VX =
0 and with an isolated singularity at 0 € C™.
Then there exists a translation ®(x) = x + a, a € C*, such that ®*(n) = n4+1-

Remark 1.8. Note that the (n — 2)-form 7441 = igrix v of theorem 4 induces
a foliation of dimension one and degree d on P"~!. In particular Fiapr> viewed
as a two dimensional foliation on P* O C", is the pull-back of a one dimensional
foliation of degree d on P"~! by a linear map f: P"— — P"~! (induced by a linear
map F: C"*1 — C").

Let LPB(n,d) := {F|F = f*(G), where G is a one dimensional foliation on P"~*
of degree d and f: P"— — P"~! is a linear map}. As a consequence of theorem 4
we get:

Corollary 1. For any d > 2 and n > 3 the set LPB(n,d) is an irreducible com-
ponent of the space of two dimensional foliations on P™.

2. PROPOSITION 1 AND THEOREM 1

2.1. Proof of proposition 1. Let U be a domain of C®, n > 3, and n € A" 2(U),
n # 0. We will set sing(n) = {q € U|n(¢q) = 0} and we will assume that
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(i). HY(U,0) = 0. In particular, if U is a polydisk then this is true.
(ii). n satisfies condition (I) of the integrability condition, that is, for any ¢ €
U \ sing(n) then there exist a neigborhood V of ¢, V' C U, and 1-forms
a1, ..y 0o € A (V) such that
(8) Ny =1 A . Aay_a .
(iii). 7 satisfies integrability condition (IT) iff for all decomposition as in (ii) then
dom Am=0,V1<m<n-—2.
We want to prove that, assuming (ii) then, ix 7 = 0 <= (iii), where X is the

rotational of n: dn = ixv, v = dz; A ... Ndz,. First of all observe that, if V' and
Qag, ..., o are as above then

n—2
d’l]‘v = Z(—l)j_l (e SRVANITWAN dOéj N NQp_o =
j=1
(9) dog, Ay = am Adnly , Yme {1,..,n—2}.

Proof of ixn =0 = (iii). We have two possibilities:
Case 1. X =0, or equivalently dn = 0. In this case, by (9) we have
do Anly =0, Vme{l,..,n—-2} = (iii).
Case 2. X £ 0. In this case, W := sing(n) U sing(X) is a proper analytic subset of
U, so that U \ W is open and dense in U.
Let us fix ¢ € U\ W and a neighborhood V of ¢ such that (8) and (9) are true.
From ix n =0 we get
n—2
ix (041 A A Oén_g) = Z(—l)]_lix(aj)()q A A &}/\ N0 =0,
j=1
where &; means omission of «;. If we take the wedge product of the above sum by
a,y, We get
0=amA (=) Vix(am)ar Ao Aam A o Aay_o] = (ix am)n =
ixam=0,Vme{l,..,n—2}.
Since ixdn = 0 we get ix(am A dn) = 0 and this implies that a,, A dn = 0,
because oy, A dn is a n-form and X # 0. Hence, (9) implies that da,, A nly = 0,
VYm e {1,....,n — 2}, and so (iii) is true.

Proof of (i) == ixn = 0. We can assume X # 0. Remark 1.1 im-
plies that, if we fix ¢ € U \ sing(n) then, we can find a coordinate system
w = (Wi, .., wy): (V,q) = (C*,0) and f € O*(V) such that |y = f dwsA... Adw,.
Hence,

dnly = ﬁdw1 + ﬁalu)g Ndws A ... Adw, =igdwi A...Adwy, ,
611)1 8w2
where o7 of
Xzﬂawl—%&m — l)"('r]:o

Since X|y = ¢. X for some ¢ € O*(V) we get that ix 7|y = 0 and this implies
that ¢x n = 0, as wanted.
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Let us assume that codc(sing(X)) > 3 and prove that there exists YV €
X(U) such that n = iyixv. Let W := U \ sing(X). Since H' (U,0) = 0
and codc(sing(X)) > 3 it follows from a theorem of H. Cartan (see [H]|) that
HY(W,0) =0.

Now, if we fix ¢ € W then the relation ix 7 = 0 and the division theorem
imply that there exist a Stein neighborhood V; of ¢ and ¢, € A"~!(V,) such that
nlv, =ix (. Since ¢ € A"~ 1(V,) there exists Y, € X(V;) such that {; = —iy, v,
or

T]:Z'ch :iXi_qu:iyiny .
IfVonV, # 0 then ity _y,)ixv =0 = 3 gpq € O(V, NV,) such that Y, —
Yy = gpq- X. Note that (g,4)v,v,0 is an additive cocycle. Since H'(W,0) = 0
the cocycle is trivial and there exists a collection (hp)gew, hp € O(V,) such that
9pq = hp —hg on V, NV, # 0. Hence, there exists a holomorphic vector field
Y1 € X(W) such that Yi|y, =Y, — h,. X. This implies that

iy, dn =1y, dp=nonV, = iy,dnp=n
Since codg(sing(X)) > 3, by Hartog’s theorem Y7 can be extended to a vector field
Y € X(U) such that iy dp = 7. Finally, since iy n = 0 we get
LyT]Ziyd’r]—Fd(iy??):n U

2.2. Proof of theorem 1. Let n =iy ix v, where v = dz; A...Adz, and dn = ix V.
Set S := DX(0) and T := DY (0). Under the hypothesis that S is non-singular we
will prove that tr(S) =0, tr(T) =1 and [S,T] = 0.

First of all, let us write X := Zj X; 0, and Y := Zj Y; 0.,. Since dn = ix v,
we get
0X;
5‘zj

0=d(ixv) = VX.v where VX =) — tr(S) =VX(0)=0.
J

Now, note that

Lyn=n = Lydn=dn = iXyZLyixVZi[y’X]V—FixLyl/:

. . aY;
=iy, x|V +ix (VY.v) , where VY:zjza—z; =
(10) V,X] = (1-VY).X = f.X, where f=1— VY .

Taking the 1-jet of both members of the above relation we get [T, S] = a. .S, where
a = f(0) =1 —tr(T). This relation can be written as S.7 — 7.5 = a. S and since
S is invertible we obtain
ST.S'=T+a.T,
where I is the identity. Taking the trace in both members we get
tr(T)=tr(T)+n.a = a=0 = tr(T)=1and [S,T]=0.

Let A1, ..., A, # 0 and pq, ..., 4, be the eigenvalues of S and T respectively. Since
[S,T] = 0, for all 7 € C the eigenvalues of T+ 7. .S are pu; + 7. A;, 1 < j <n. Let
us assume that there is 7 € C such that p; := p; +7.2;, 1 < j < n, are two by two
different and satisfy Poincaré’s non-resonance relations

(p,o) —p; #0,V1<j<nandVo=(01,..,0,) € Lo with |J|:ZJj22.
J
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Let Z :=Y + 7. X. Note that (10) implies
2,X] = [Y,X] = £.X

On the other hand, by Poincaré’s formal linearization theorem, there exists a formal
diffeomorphism ¢ € ﬁi_f\f((C”ﬂ) such that D®(0) = I and ®*(Z) is linear and
semi-simple (because p; # p;, if i # j). If we set 7 = *(Z2), X = ®*(X), then
we have Z = > Pj-Tj Oz, and X = )?j. 0., and the above relation implies that

(11) [Z,X]=F. X, where f = ®*(f) .

~

Note that f(0) = 0.
Claim 2.1. With the above notations we have
Xp(x) = ap.thr(x) . where Y (0) =X\, £0, 1<k <n.

Proof. Since D)?(O) = >_; Aj zj O, it is enough to prove that zx|Xy, 1 <k <n.

Since Z = > Pj-Tj On;, relation (11) is equivalent to
(12) Z(Xk):hk.)?k,Wherehk:pk—i—f, 1<k<n.

Let us write the Taylor series of )?k and of hj as )?k = Zj>1 Gj(x) and hy =
ijo ¢;(z) where G; and ¢; are homogeneous of degree j, V j > 1. The idea is to
prove by induction on j > 1 that x| G; for all j > 1.

Step j = 1. The linear part of (11) gives [2, DX (0)] = 0. Since p; # pjifi#j
the linear vector field DX (0) is diagonal in the (formal) coordinates (z1, ..., zy).
Hence, G1(z) = Ag. zk, and so zy | Gy.

Step j —1 = 4,V j > 2. Since 7 is a linear vector field the homogeneous
term of degree j of the left hand of relation (12) is Z(Gj). On the other hand,
the homogeneous term of degree j of the right hand of (12)is >, _ ; Or. G5 which
implies that

Z(GJ): Z ¢)7'-Gs:pk-Gj+ Z qu.Gs —

r+s=j r+s=7,5<J
E(Gj)—pk.GjZ Z d),..Gs = Hj .
rs=j,5<j
By the induction hypothesis zy | H; == Hj|(z,—0) = 0. If we write G;(z) =
Y o Gg-x7 then E(Gj) => . (p,0) as x7 and so

> (o.0) = pr) ag z” =0 =
o (zx=0)
ae = 0if o, = 0 (because (0, p) —pr # 0) = x| G;. Therefore, 4| Xy, 1 <k <n
and the claim is proved. O

Now, let us prove assertion (a) of theorem 1. The idea is to prove that there is
a linear combination W = g. X + h. Z, where g,h € O, and (g(0), 2(0)) # (0,0),
such that [Z, W] = 0.

Recall that we have assumed that there are ¢ < j such that A;. u; — Aj. pu; # 0.
Without lost of generality we will suppose that ¢ = 1 and j = 2. We assert that
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there exist g, h € O, such that (g(0),2(0)) # (0,0) and W = g. X + h. Z satisfies
W(z1) =0 and W(x2) = z2.

In fact, by claim 2.1 )/(\'(xj) = z;.9j(z), 1 < j < n. Hence, if W is as above
then W(z;) = g.2;.¢j(z) + h.p;j.x;, 1 < j < n. In particular, the assertion is
equivalent to the fact that the system of linear equations below in g, h € @n has a
solution g, h € O,, with ((0), h(0)) # (0,0):

{wl(:v).g +p1.h=0
Pa(x). g+ p2.h =1

This is true because the determinant of the system is A(x) = pa. 91 (x) — p1. 92(x)
and A(0) = pa. A1 —p1- A2 = p2. A1 —p1. g # 0. It remains to prove that [Z, W] = 0.

~

First of all, from [E,X] = j?)? and W = g.)? +h.Z we get [2, W] = gl.)? +
hi.Z, where ¢1 = Z(g9) + g.f and hy = Z(h). On the other hand, if we set
W (x;) := W; then

2, W)(x;) = (ZW = W.Z)(2;) = Z(W;) = p;. Wy, 1< j<n =

[Z,W](z;) =0ifj =1,2.
This implies that:

-~

g1 X (1) + b Z(a )=0 _, adathip =0

1
—— :h :0’
g1- X (x2) + hy. Z(x2) g1-2 +hi.p2 =0 o !

because A(0) # 0. Therefore, [Z,W] = 0 as asserted. Since Z is linear diagonal
without resonances the vector field W must be also linear and diagonal, which
proves item (a) of theorem 1.

When Z =Y + 7. X is holomorphically linearizable then we can assume that the
diffeomorphism ® and the vector fields Z , X and W are convergent. This proves
item (b) of theorem 1. O

3. THEOREM 2

In this section we will assume that 0 is a n.g.K. singularity of n: DX(0) is
nilpotent, where X is the rotational of 7. In this case, by proposition 1 there exists
a germ Y € X, such that n =iy dn, Ly n =n and Ly dn = dn.

3.1. Proof of theorem 2. We will use Poincaré-Dulac normalization theorem for
germs of vector fields (see [Me]). Let Aq, ..., A, be the eigenvalues of DY (0). Recall
that Aq,..., A\, € C are in the Poicaré domain if 0 € C is not in the convex hull of
the set {A1,..., A\n}.

Theorem 3.1. There exists a formal diffeomorphism ® € ﬁz’f\f((C”,O) such that
o*(Y) =Y € X, can be written as
Y=S+N,

where S = Z;;l Aj w; Oy, is linear diagonal, N is nilpotent (in a sense that we will
precise in remark 3.1) and [S,N] = 0. When A1, ..., A, are in the Poicaré domain
then we can assume that ® is convergent.
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Remark 3.1. If we consider Y as a derivation in @n then Y induces a linear opera-
tor on the finite dimensional vector space of k-jets, j*(0,,) := J*, say Y*: Jk — Jk.
in such a way that the diagram below commutes:
0, = 0,
il Lk

Yk

JEo == Jk
Similarly, if we denote by I'’* .= jk (/A\f,’L) the finite dimensional vector space of

k-jets of p-forms, then the Lie derivative Ly : /A\ﬁ’L — /A\fl induces a linear operator
L’%: '’k — TPk in such a way that the diagram below commutes:

—~ Lo —~
~kA€L —r Aﬁ.k
gL %
Lk
rek X ek
The vector field NV is nilpotent in the sense that it induces the nilpotent parts of

the operators Y* and lei/' Similarly S induces the semi-simple part of the operators
Y* and L’;L/, respectively.

Note also that, if the coordinates are choosen in such a way that S = Zj Aj zj 0,
then the monomial 27 = zf(l)...zg(n) is an eigenvector of S with S(z7) = (A, o). 27,
where (\, o) = Zj 0j.Aj. Similarly, a monomial p-form of the type 27.dz,, where
27 is a monomial as above and dz, = dz,, A ... Adz,, 1 < pp <... < pp <n,is an
eigenvector of of Ly with eigenvalue (A, o) + 377, A,

g

Let ® € W(C",O) be a diffeomorphism that normalizes the vector field Y
that satisfies Ly n = iy dnp = 1. Set 1 := ®*(n). Since Ly n = n we obtain that
L?ﬁz ﬁand L?dﬁz dﬁ.

Claim 3.1. We assert that Ls) =17 and Ly 7 = 0. In particular, Lg dij = d7j and
Ly dp=0.

Proof. Set 1y, := j*(7), k > 0. From remark 3.1 we get Li% M = My for all k > 0.
In particular, 7 is an eigenvector of L’}%. Since L’g and L% are the semi-simple
and nilpotent parts of L’;A,, respectively, we get L% (7)) = 7y and L% () = 0 for all
k > 0. This implies the claim. O

Lemma 3.1. The eigenvalues A1, ..., A, are rational positive and 0 < tr(S) < 1,
where tr(S) = >, Aj. In particular, they are in the Poincaré domain and we can
assume that ® converges.

Proof. First of all we will prove that there are natural numbers k1, ..., k, and
a function £: {1,...,n} — {1,...,n} such that the eigenvalues Ay, ..., \,, satisfy the
following system of non-homogeneous linear equations

(13) ki Aj+ tr(S) — )‘Z(j) =1.

In fact, let us write X = 377, X;(2)9;,. Since X has an isolated singularity
at 0 € C* we must have (X1,...,X,,) D mP, for some p € N. Therefore, if we



GERMS OF COMPLEX TWO DIMENSIONAL FOLIATIONS 13

write ®*(dn) = dn = igv, where X = Z?zl )?j Ow, then <)?1,...,)A(n> D mh.

In particular, the pt*-jet of dnj, j7(dn) (which has polynomial coefficients) has an
isolated singularity at 0 € C". If we write

JPdi) =Y Pi(w)dwy A .. Adwy A .. Adwy,
j=1

where P; € Clwy, ..., wy] has degree < p, then

(14) {P=..=PF,=0}={0}.

Note that (14) implies that, for each j € {1,...,n} there exists £(j) € {1,...,n}
such that Pp;) contains a monomial of the form a. wfj , a # 0, for otherwise we
would have P.(0,...,0,w;,0,...,0) = 0, 1 < r < n, and (14) would not be true.
This is equivalent to say that j*(d7) contains a monomial of the form 3, where
8= a.wfj.dwl A oo Adwgy A ... A dwy, a # 0. The relation Lg di) = dij implies
that j*(dn) is an eigenvector of Lg with correspondent eigenvalue 1. Since 3 is an
eigenvector of Lg and

Ls(B) = ki N+ D> A | -8
J#L()

we get

kidi+ D> =1 = (13).

J#(J)
In the next arguments we will use the dynamics of the function ¢: I,, — I,,, where
I, = {1,...,n}. Recall that the orbit of m € I,, is the set O(m) = {¢*(m)|s > 0},
where (°(m) = m and £%(m), s > 1, is defined indutively by £*T1(m) = £(¢*(m)).
We say that m € I, is periodic of period r > 1 if £"(m) = m and r = min{s >
1[£°(m) = m}. Since I, is finite any orbit "finishes" in a periodic orbit. This
means that, given m € I,, then there is 7, > 0 such that ¢"(m) is periodic and
O(m) = {m, t(m), ..., €7 (m), ... £~ (m) = £7(m)} ,

where r > 1 is the period of " (m). The next step is the following:
Claim 3.2. tr(S) # 1.

Proof. Let us suppose by contradiction that ¢r(S) = 1. In this case, the system
of equations (13) takes the form:

(15) kiiXj =Xy =0, 1<j5<n.

As we will see at the end ¢r(S) = 1 implies also that, after a linear change of

variables, we can suppose:
() If j € I, is such that k; = 1 then £(j) > j.

Using this fact, let us prove that (15) implies A\; = ... = A\, = 0, which is a
contradiction with tr(S) = 1.

Fix m € I,,. If m is a fixed point of £, £(m) = m, then (x) implies k,, > 1. On
the other hand, (15) implies (k,, — 1) A\;, =0, and so \,,, = 0.

From now on we will suppose that m is not a fixed point of £. In this case, since
k;j > 1 for all j € I,,, (15) implies that, if there is s > 1 such that Ays(,,) = 0 then
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Am = 0. Since any orbit of ¢ contains a periodic point it is sufficient to prove that
Am = 0 when m is periodic of period r > 2.

So, let m be periodic with period r > 2. Set m; := #~1(m), 1 < j < r, and
Myy1 := mq = m. With this notation, we get from (15) that:

(16) Ky Amy, = Amypy > 1<G <7

i1

Since r > 2 there is j, € {1,...,r} such that m;, 11 < m;, , because m is periodic.

In particular, from (x) we get ky,;, > 1. On the other hand, (16) implies that
(kg ook, — DA, =0 = A=A, =0.

It remains to prove that we can suppose ().

Fix the formal coordinates z = (z1,...,2,) like before, that is where S =
2.jAj#j 0. Let X be such that di) = i¢v, where v = dz1 A ... A dAzn Let us
prove first that, if ¢r(S) = 1 then [S, X1] = 0, where X; denotes DX (0). From
Lg dn = dnij we obtain

df=igv=_>Lg(igv) =iy v +tig(Lsv) =iggv+itr(S).igy =

(S, X]=(1—tr(S) X =0.
Taking the lincar part in the above relation we get [S, X;] = 0. Now, let us note
that if k; = 1 then 7) contains a monomial of the form a w; dwy A... Adwg ;) A... Adwn,
a # 0, which is equivalent to say that X, contains a term of the form +a Wj Oy ;-
On the other hand, since [S, )?1} = 0 and )A(l is nilpotent, after a linear change
of variables we can suppose that all the entries of the matrix of X; in the basis
where S is diagonal are below the diagonal. This means exactly that if k; = 1 then
£(j) > j, as the reader can check. This finishes the proof of claim 3.2. O

Let us prove that Ay, ..., A\, € Q4 and 0 < ¢r(S) < 1. Denote by T be the linear
operator of C" given by T'(¢) = (T1.(¢), ..., Tn(¢)), where T3(¢) = T;((1, .., Cn) =
kj. (= oy f weset a:=1—1tr(S) #0, A = (A,..., \y) and A = (a, ...,a) then
system (13) can be written as
(17) TiN)=a,V1<j<r <= T\=A.

We assert that T is invertible.

In fact, in the proof of claim 3.2 we have seen that the homogeneous system
(15), which is equivalent to T'(¢) = 0, has as unique solution ¢ = 0 if ¢ satisfies the
following property:

(#*) For any periodic point m € I,, of £ there exists s > 0 such that kgs () > 1.
Since the system (15) is equivalent to T'(¢) = 0, if (sx) is true then 7' is invertible.

On the other hand, if (x*) were not true then ¢ would have a periodic orbit
O(m) = {m, £(m),....,£=Y (m), £"(m) = m} such that kpsgmy =1, V0 <s<r—1
Since the vector A satisfies (17) we obtain

Ag(s—m(m )\g =a, 1 S S S T.
This implies 7.a = Y. _; (Ao D(m) — Ags (m)) = 0, which contradicts a # 0. There-

fore () is true and T is invertible.
Now, from (17) we get

Ay Ap) =A=T"YA) =a.T7'(1,...,1) .
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Therefore, if set p := (p1,..., pn) = T7(1,...,1) then A\; = a.p;, 1 < j < n.
Note that p € Q", because the entries of T" are integer numbers. We assert that

P1y s pn > 0.
In fact, T'(p) = (1,...,1) is equivalent to

1
P (L4 pegy)) -

An induction argument using the above relation implies the following:
(x*x) If m € I, is such that there exist s > 0 with pys(,,) € Q4 then p,, € Q.
Since any orbit contains a periodic point it is sufficient to prove that if m is periodic

then p,, € Q4.

Suppose by contradiction that this is not true. In this case, there exists m € I,
with periodic orbit O(m) = {m,€(m),.... 00 (m), " (m)} with Ape(my < 0, V
0<s<r—1. Since

Kes (m)- Pes(m) — Pe(s+1) (m) = 1,Vo<s<r—1

we get
r—1 r—1
0<r =" (Kes(my- Pes(m) = Lo+ (my) = D (Kes(my = 1) pesmy <0,
s=0 s=0

because pgs () < 0 and kgs() —1 > 0 for all s = 0,...,7 — 1. This contradiction
implies that (* % %) is true and that p; € Q4,V1<j <n.

Let us prove that A; € Q4, V1 < j < n. Set 7 := Z?=1 p; € Q4. Since
Aj=a.p; =(1—1tr(9)).pj, 1 <j<n, we get

tr(S) = 7.(1 — tr(S)) = tr(S) = % €Qp and 0 < tr(S) < 1.
T

Therefore, \; = (1—tr(S)) p; € Q4, V1 < j < n. This finishes the proof of lemma
3.1. (I

Let us finish the proof of theorem 2. Observe that Ay,...,\, € Q4 are in the
Poincaré domain and we can assume that ® converges. In particular, Y=S+N ,
7 = ®*(n) and dn are holomorphic. If we write ®(w) = (P1(w), ..., Pp(w)) =
(21, .., 2n) then S =3 . Ajw; Oy, is diagonal and semi-simple. Since A\; € Q4 and
[S, N] =0 then N is also a polynomial vector field. In fact, let us write the Taylor
series of N as »_; , aj, w” Oy, Where aj, € C. Then the relation [S, N| = 0 implies
that ((X\,0) — Aj) aj» = 0. Therefore, if a;, # 0 then we get the ressonance

(18) (No)y=Xj,Vo=(01,..,00), 1<j<n.

Since \; € Q, V7, the set {(j,0) | (A, 0)—A; = 0} is finite, and so N is a polynomial
vector field.

Moreover, if we set ¥ = dwy A ... A dw, and di) := i U then we get ) = iy dij) =
igigV =1igig V. On the other hand, from Lgdn = dij we obtain

/U\ZLSi)?f/\Z’L'[S)?]/V\—l—i)?l/s/u\:i[sg]/v\—l—tT(S)i)?f/\ —
(S5, X] = (1—tr(S) X .

This implies that X is also a polynomial vector field. In fact, if X contains non-
vanishing monomial of the form a.w? d,,; then

(0, \) =1—1r(S)>0.
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Since Ar,..., A\n € Q4 the set {(o,p)| (0,A) = 1 — tr(S)} is finite and so X is a
polynomial vector field. Let us prove that [N, X] = 0.

Claim 3.3. After a polynomial change of variables (preserving the form of S) we
can assume that N = E?Zl Nj(2)0.;, where N1 = 0 and Nj = Nj(21,...,2j-1),

Vj > 2. In other words %ﬁfj =0 ifi>j. In particular, [N, )/ﬂ =0.

Proof. First of all, after a permutation of the variables we can assume that
A1 < Ao < ... < A\p. Let L:= DN(0) be the linear part of N at 0 € C™. The relation
[S, N] = 0 implies that [S, L] = 0, because S is linear. Note that L is nilpotent.
Therefore, by Jordan’s theorem after a linear change of variables that preserves S
we can suppose that L = 377, a;z;_10,;, where a; € {0,1}, 2 < j < n. Note
that, if a; = 1 then N contains the monomial z;_; 0., and by (18) we must have
Aj—1 = A;. On the other hand, if A\j_; < A; for some j € {2,..,n} then for all
i€ {1,...,j — 1} the component N;(z) does not depends on (z;, ..., z,).

In fact, if 1 < ¢ < j — 1 and N, contains a non-vanishing monomial a. 2z,
o= (01,...,0p), then (18) implies

<)\,O‘>:>\Z‘§)\j,1</\j§...§/\n — O’TZO,VT>j—1.

This proves the first part of the claim. Let us prove that [N, X ] = 0. From
Ly dn =0 we get

. . . . N ON; | .
0=Ly(igv) =iy gV tig (Lyv) =iy gVt Z 5 J gV =NV
j=1 "%
because 22 =0, 1 < j < n, by the first part. Therefore, [N, )A(] = 0. O

6Zj

Now, since Aq1,...,A, € Q4, there exists k&1 < ... < k, < r € N such that
Aj=ki/r, 1 <5 <n, ged(k,....k,) = 1and 377, kj <r. If we set S; = 7.5 then
we get [S1, N] = 0 and [Sy, X] = kX, where k = r — >_; k;j € N. This finishes the
proof of theorem 2. (I

3.2. The non-resonance condition. It remains to specify the non-ressonance
condition on the vector field X that implies ker(L%) = {0}, where L% : $0(S) —
Yk (9).

Let us recall first that the space of orbits of the vector field S = Z?:l kjxj0Op,,
ki,...kn, € N, is an analytic space of dimension n — 1 known as the weighted
projective space with weights w = (ki,...,k,). It will be denoted by P?~1. For
instance, when w = (1,...,1) then P?~! = P*»~1 the usual projective space. Let us
denote by II,,: C*\ {0} — P?~! the natural projection.

Since [S, X] = k. X, k € N, the (n—2)-form p = ig ix v is integrable and induces
a two dimensional foliation F,, on C". The orbits of S are contained in the leaves
of F,, and so there exists a one dimensional foliation on P?~', denoted by G,,
such that F, = II (G,). In this way, the orbits of S that are X-invariant can be
considered as singularities of G,. These orbits are the analytic separatrices of X
through 0 € C™ and are contained in the singular set of F,,. The non-resonance
condition will be on one of these orbits.

Let v be one of these orbits. A straightforward computation gives du = £.ix v,
where ¢ = k4 tr(S), and since 0 € C™ is an isolated singularity of X the curve ~ is
contained in the Kupka set of 7, and so the normal type of F,, at «y is well defined
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(see definition 1). Let us denote this normal type by Y,. To fix the ideas we will
assume that Y, is a germ with a singularity at 0 € C"*~1.

(x) Non-resonance condition. There exists a singular orbit v of F,, such that
the linear part DY, (0) has eigenvalues j1, ..., tp—1 that satisfy the non-resonance
conditions below:

n—1
Vi<i{<n—-1,VYo e Zggl , ionj.,uj:ugthenaj:Oifj#éandagzl.
j=1

Remark 3.2. Let T = Z?;ll i y; Oy, We would like to remark that condition
(%) implies that:
(a). If Z is a formal vector field in X,_; such that [T, Z] = 0 then Z must be
linear and diagonal in the coordinate system y, Z =, a; y; 9y;.
(b). g1, ..., in—1 satisfy Poincaré’s non-resonance conditions. This fact together
with (a) implies that the germ of Y, is formally equivalent to T'.
(¢). The derivation T': @n_l — (5n_1 satisfies the following properties:
(c.1). ker(T) = C, that is, if T'(f) = 0 then f is a constant.
(c.2). The equation T'(¢) = 1), where ¢(0) = 0 has an unique solution ¢ with
¢(0) = 0.
The proof of these facts is straightforward and is left to the reader.

Example 4. When S = Zj xj Oy, , the radial vector field, then the generalized
Jouanolou’s example of degree { =k + 1 > 2

X = Jy(x1, ) =2 00y + 25 00y + .+ 28 0,

satisfies the non-resonance condition (x).

In fact, note that:

(a). [S,X]=k.X. If p =igixv, then dy =iz v, where Z = (k+n) X.

(b). The orbit y(t) = (e, ...,e") of S is contained in Kupka set of F,.
The normal type Y, of F,, at v can be computed by taking a normal section X to «y
at some point, say the point p = (1,...,1) and by considering the restriction F,|s.
We can take for instance ¥ = (z,, = 1). The restriction F,|5; can be computed
by projecting X onto the tangent space TX along S. If z = (z1,...,2,—1) and
x = (#,1) € X then the projection Y, at z is given by

Yw(z) = (zn Jo(z) — pryR(z)) |(Z'n.:1) =

n—2
=(1- 2. zfl_l) 0, + Z (zf_l —zj.2h_4) 0., + (zfl_2 - sztll) 0z, _, -
j=2

The point yNX =p = (1,...,1) is a singularity of Y., satisfying codition (). As the
reader can check, the Jacobian matrix of DY, (p) is of the form —I 4 ¢. A, where
A satisfies A" 4+ A""2 + .+ A+ I = 0, I the identity matrix. In particular,
the eigenvalues of DY, (p) are of the form pi,..., tn—1, where p, = —1+ £.57,
1<r<n-—1and J is a primitive n'"-root of unity (see also [LN-So|). The proof
that u1, ..., tn—1 satisfy condition (%) is not hard and is left to the reader.

Lemma 3.2. If X satisfies condition (%) then ker(L%) = {0}.
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Proof. Let X = Z?Zl X;(2) 0-,. We will assume, without lost of generality, that
the common orbit v of X and S that satisfies condition (%) is contained in (z, # 0)
and passes through the point p = (a,1) = (a1, ...,an—1,1). Like in example 4, we
compute the normal type Y, by projecting the vector field X onto the hyperplane
¥ = (z, = 1) through the vector field S. Seting z = (z,1) = (1, ...,2n—1,1) we
get:

1 Xn
(19) Y, (z) = —(S(zn). X — X(2,).5) =X-—.5
kn _ kn _
z=(z,1) z=(z,1)
By assumption, Y, (a) = 0 and DY, (a) has eigenvalues p1, ..., tt,—1 satisfying con-
dition ().

In the proof we will use a weighted blow-up at 0 € C™ with weights (k1, ..., k,,).
After ramifications along the hyperplanes (z; = 0) if necessary, we can write the
affine chart of the weighted blow-up associated to the n* coordinate as

(7, ) =II(7, 21, e, Tp1) = (TF . g, oy TRy, 7F0) = (210, 0y 20)
Let us prove that IT*(S) = 79, and compute IT*(X). Since 2, = 7%» we have
S(zn) = S(TF) = ky 71 S(1) = kp 2y = kn " = S(1)=7.
On the other hand, if j < n then

S(zj)=S(r7%.25) = ~kj 7871 S(r) 25+ 777 S(2;) =0 = T*(S) =70, .
Now, using that [S, X] = k. X and X =}, X; 0., we obtain
Xjoll(r,z) = X;(tF g, ooy 7oty g 7hn) = 7FFPK X (1), 1< <m,
and by a straightforward computation
I (X)(r,2) = 7" (f(2) 7 0- + V()
where Y, is as in (19) and f(z) = = X, (z,1).

T ka
Remark 3.3. Set Y, (z) = 27;11 Yj(x)0z;. From the relation d(ixv) = 0, v =
dz1 N ... Ndz,, we get d (in*(X) H*(y)) = 0, which is equivalent to
n—1
oY
(20) Dot (ke r(S) f(x) =0
j=1 J
In particular, we obtain
fla) = 2 £0

k+tr(S)

Let us prove that ker(L%) = {0}. Let N = > N;j 0., € 5(5,0) be such that
L% (N) = [X,N] = 0. This relation and [S, N] = 0 imply that the orbit v of X
and X is also N-invariant (in fact, v C sing(IN) because N is nilpotent). Let us
compute IT*(N).

Since [S,N] = 0, by a similar computation as in the case of X we get N; o
H(r,z) = 7% . N;(z,1), 1 < j < n, which implies

I (N)(r, ) = g(x) 7 0- + Z()
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where g(z) = £=Nyp(z,1) and Z(z) = N — % S ) Note that the points a
n S

and (0,a) are singularities of Z and II*(N), respectively. Moreover, g(a) = 0 by
remark 3.3. After a translation we can suppose that a =0 € C" 1.

Claim 3.4. There exists ® € D/iﬁ((C",O) of the form ®(r,z) = (p(x).7,¥(x)) =
(s,y), with ¢ € (/9\,*171 and W € Dif f(C"~1,0), such that

n—1
(21) O, (I1"(X) =uly).s* | asde+ > piy;idy |
j=1
2k %)
where o = =35, w € On oy and u(0) #£ 0.

Let us assume claim 3.4 and finish theAproof of lemma 3.2. Set T :=
Z?;ll 1;y; Oy, and L := asds + T, so that ®,(II*(X)) = u(y).s*. L. Note that
&*(IT*(N)) is of the form

. (I1°(N) = g(y) 50 + Z(y) == N ,
where § and Z are formal series. From [N, X] = 0 we get

[&*(IT*(N)), ®*(I1*(X))] = [N, u.s*. L] = N (u.s") L+ u.s"[N,[] =0 =

~ N (u(y).s*)
L N=——F"F"—"FT+L= .L
LK) = e L= o). L
where ¢(y) =k g(y) + Zsz%)) € O,n_1. Note that ¢(0) = 0. Therefore,

d(y) (asds +T) = [L,N| = [asds +T,5(y) s 0s + Z] = T(§(y)) s 9s + [T, Z] ,
because [s 0y, §(y) s 0s] = [s D5, Z] = [T, 5,] = 0. This implies

T(()) = a6ly)
[T’ Z] = ¢(y)T '

The first relation above implies that [T, o' g(y) T| = ¢(y) T, which together the
second relation gives

1.2 —a ' §(y) T =0.
It follows from remark 3.2 that Z—a* §(y) T must be linear and diagonal. However,
since DZ(0) is nilpotent and §(0) = 0 this implies that Z = o~ §(y) T =
N=§y)s0s+Z=a"'§(y) L = NA®,(II*(X))=0 = NAX=0 =
N = h X, where h is holomorphic because X has an isolated singularity at 0 € C".
However, since [S, N] = 0 this implies
0=[S,hX]=S0h).X+hkX = Sh)=-kh = h=0,

as the reader can check. Hence, N = 0 as we wished to prove. (I

Proof of claim 8.4. Let W = 7= *.1I*(X) = f(z)70, + Y,(x). First of all,
from remark 3.2 the germ Y, is formally linearizable. Therefore, there exists ¥ €
Dif f(C"~*,0) such that W.(Y,) = >, p;y;0,; = T. In particular, the formal
diffeomorphism ®(7,z) = (7, ¥(x)) = (7,y) is such that

W)= f) 10, +T =W, f(y)=fod  (y).
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Note that f(0) = £(0) = . Therefore, by remark 3.2 the equation T'(h) = a — f
has an unique solution h € O, _; such that h(0) = 0. Now, set

(I)l(T7 y) = (eh(y)'Ta y) = (57y) .
We have
W(s) = W(e"W 1) = W(e"W). 74" W (r) = T("W). 74 "W. fy). 7 = a.s

which implies that ®,,(W) = asds + T and that
(®1 0 @), IT*(X) = u(y). s" (asds + T) ,
where u(y) = e #"¥). This finishes the proof of claim 3.4 and of lemma 3.2. O

4. PROOF OF THEOREM 3

Let (n¢)tev be a holomorphic family of (n — 2)-forms on the polydisc @ C C*
as in the hypothesis of theorem 3, 0 € U C CF. Consider the holomorphic family
of vector fields (X;)ieu given by dny = ix,v, v =dz1 A ... Adz,. We have assumed
that 0 € @ is a g.K. singularity of n, so that 0 is an isolated singularity of Xj.

When Y is a holomorphic vector field on an open set of W C C™ and ¢ € W
then the multiplicity of Y at ¢ is defined as

Ny Oy
(Y, q) := dimc o)
where Z(Y') is the ideal of O, generated by the components of ¥. Some known
facts about the multiplicity are the following:
(i). u(Y,q) < +o00 <= ¢ is an isolated singularity of Y.

(ii). 1u(Y.q) =0 < Y(qg) #0.

(iii). u(Y,q) =1 <= det(DY (q)) # 0, that is the singularity is non-degenerate.
The following result is known for a holomorphic family of vector fields as (X;)iev :

Theorem 4.1. Fiz a polydisk P C P C Q such that 0 is the unique singularity of
Xo on P. Then there exists a polydisk in the parameter space 0 € V. C U such that
for allt € V then X has a finite number of singularities on P and no singularities
on the boundary OP. Moreover,

> wXi,q) = p(Xo,0), VEEV .

qeP

Let us consider first the case in which 7y has a non-degenerate singularity at
0 € Q. In this case u(Xp,0) = 1 by theorem 4.1. Let P C @ and V be as in
theorem 4.1. Since u(Xp,0) = 1 then by theorem 4.1, for every t € V we have
ZpEP w(X:,p) = 1. Hence, X; has an unique singularity in P for all t € V. If
we call P(t) this singularity, then the map t € V — P(t) € P is holomorphic
(by the implicit function theorem applyed to the map (z,t) — Xy(z)). If 0 is
a s.5.g.K. singularity then the eigenvalues Aj,..., A, of DX((0) are two by two
different, A; # A; for all i # j. Hence, by taking a smaller V' if necessary, we can
assume that the same is true for the eigenvalues of DX, (P(t)) for all ¢t € V. This
proves item (a) of theorem 3.

Let us suppose now that 0 € C" is a n.g.K. singularity of 7y of type
(mq,...,mp;£). In this case, det(DXy(0)) = 0 because DX((0) is nilpotent. There-
fore, (Xo,0) > 2 by (ii) and (iii). Let P and V be as in theorem 4.1. Since the
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singularities of X; on P are isolated, V¢ € V, there exists a holomorphic vector field
Y; on P such that 1, = iy, dn; (by proposition 1). Note that the family of vector
fields (Y;)iev can be taken holomorphic in the variable ¢ € V' (by the parametric
De Rham’s division theorem (cf. [DR])). Since Y, has a non-degenerate singularity
at 0 € C™, by taking a smaller polydisk P C @ and a smaller V' C U if necessary,
then there exists a holomorphic map P: V — P such that P(0) = 0, P(¢) is a
non-degenerate singularity of Y; and is the unique singularity of Y; on P, Vt € V.
On the other hand, by theorem 4.1, X; has a finite number of singularities on P
and
> w(Xiq) = p(X0,0) 22, VEEV .
g€sing(X¢|p)

We assert that sing(X.|p) = {P(t)}, Vt € V.

In fact, let us fix t, € V. Denote the local flow of Y;, by (s,q) — ¢s(q). By
proposition 1 we have Ly, (dn:,) = dns,. In terms of the local flow ¢, this means
that

d
s &5 (dne,) =dn, = o;(dm,)=e".dn, .
S s=0

On the other hand, the second relation above implies that sing(dn,) = sing(Xy,)
is invariant by the flow ¢;. Hence, if ¢ € P and Y;, (¢) # 0 then X; (q) # 0, for
otherwise sing(X:, |p) would contain a regular orbit of the flow ¢s and would not
be finite. Since X, has at least one singularity in P we must have sing(X;, |p) =
sing(Yy,|p) = {P(to)}, which proves the assertion. It remains to prove that P(t)
is an n.g.K. singularity of F; and has the same type as P(0) = 0.

Let L; := DY;(P(t)) and A; := DX (P(t)). Let us prove that A; is nilpotent for
all t € V. We will use the following lemma of linear algebra:

Lemma 4.1. Let A and L be linear vector fields of C™ such that [L, A] = p. A,
where u # 0. Then A is nilpotent.

Proof. The idea is to prove by induction on m € N that [L, A™] = m. pu. A™.
If we admit this fact then we get tr(A™) = 0 because tr([L, A™]) =0, Vm € N.
This implies that all eigenvalues of A vanish and that A is nilpotent. In fact, if the
eigenvalues of A are pq, ..., tt,, then

tr(A™) =Y pt,VmeN = > p'=0,YmeN = m=..=p,=0.
J J
Finally, let us assume by induction that [L, A"~ = (m — 1). u. A™~1 m > 2.
Then

[L,A™] = A" L — LA™ = A(A™ 'L - LA™Y 4+ (AL — L.A). A" =

= AL, A"+ [L, AL AT = mop A™
by the induction hypothesis. O

Let us finish the proof of theorem 3. We have seen in the proof of theorem 2
that [Y;, Xy] = (1 — VY;) X,;. By taking the linear part of both members we get
[Ly, Ay = (1 —tr(Ly)) Ay := p(t). Ay. Since p(0) # 0 there exists € > 0 such that
w(t) # 0 for |¢| < e. Hence, A; is nilpotent by lemma 4.1, if |¢| < e. This can be
expressed by A7 = 0 for all |t| < e. Since the function ¢ € V' — A} is holomorphic
we obtain that A} = 0 and that A; is nilpotent for all £ € V. Now, theorem 2
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implies that DY;(P(t)) has positive rational eigenvalues. Hence, the eigenvalues of
DY;(P(t)) do not depend on ¢ € V and this implies that the type of the singularity
is independent of t € V. (]

5. PROOF OF THEOREM 4

Let 7, be an integrable (n — 2)-form on C™ such that:
M. n= Z?:é 7;, where 1, has coefficients homogeneous of degree k, 0 < k <
d+1.
(I). n441 =irix, v, where
— R is the radial vector field on C"™, v = dz1 A ... Adzx,,
— X, is a vector field, homogeneous of degree d, with an isolated singu-
larity at 0 € C™ and VX4 = 0.
We want to prove that there is a translation ®(z) = x + a such that ®*(n) = ngy1.
The proof will be based in the following lemma:

Lemma 5.1. Let = 0y + ... + 0y + ngy1 be an integrable (n — 2)-form, where
Nd+1 @5 as before and the coefficients of 0; are homogeneous polynomials of degree
7, 0< 5 <. We assert that:

(a). if £ < d then 6, =0.

(b). if £ = d then 84 = Ly 1441, where V is a constant vector field on C™.

Proof. In the proof we will use the following: if us is a k-form with coefficients

homogeneous of degree s then
Lrps =irpdus +digps = (k+s) ps -

First of all note that the rotational of 1411 is (n +d — 1) Xy4. In fact, we have

seen in the proof of theorem 2 that
d77d+1 = d(iRixd 1/> = iZd v,
where
Zg = [R,Xd] +VR. Xy —VX, R= (TL+d* 1)Xd ,
because [R,Xy4] = (d — 1) X4, VR = n and VX4 = 0. In particular, we can write
the rotational Z of 0 as
Z=Zo+..+Zpy 1+ 2y, WheredﬂjH:iZjl/, O§j§€—1 .
Note that the coefficients of Z; are homogeneous polynomials of degree 7, 0 < j <
¢ —1. Taking the term with homogeneous coeflicients of degree d+ ¢ in the relation
iz 0 = 0 (integrability condition), we obtain the relation
iz,00+ iz, ,Nay1 =0
Since
7;Zg,l Nd+1 = —’iXd Z'RZ'Z/__1 V= —iXd irdfy and Z4 = (n +d— 1) Xyg
we get
iz,00+iz, N1 =ix, [(n+d—1)0; —igdd] =
1x, [(’n—l—d—l)@g—iRd@g] =0.

Since X, has an isolated singularity at 0 € C™ the above relation and the division
theorem imply that (n +d — 1), — irdf; = ix, ¢, where by homogeneity of the
coefficients we must have
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e (=0,if ¢ <d,
e (isa (n—1)-form with constant coefficients, if ¢ = d.
If =0 then

(n+d-1)0; =igdfy = irby=0 — (n+d—1)0;=irdfy+digrby=Lgrb, .
Since 6, is a (n — 2)-form with homogeneous coefficients of degree ¢ we must have
LrOy=n+¢-2)0, = 6,=0ifl<d.

On the other hand, if £ = d and ( is a constant form we can write ( = iy v, where

U is a constant vector field on C™. This implies
n+d—1)04 —irdbs =ix, (= —iyix,V ="ty dnds1 ,

where V = fﬁ U. From the above relation, we get

(n+d—1)irbs=iriyvdngr1 = —ivigdnas1 -
On the other hand,
irRdNay1 = LrNay1 — dirNar1 = Lrnagr1 = (n+d—1)nay1 =
(n+d-1)irbs=—iv [(n+d—1)na+1] = irba=—ivnayn =
(n+d—1)03—irdby — dir0q =iy dnge1 +divnar1 = Ly g1 -

Since irdfy+ dir0s = Lr6; = (n+d — 2) 84, from the above relation we obtain
04 = Ly 1441 as wished. O

Let us finish the proof of theorem 4. Consider the translation T,(z) = x + a,
where a = (ay,...,a,) € C". If p = Y, Pr(z)da’ is a k-form, where da! =
dx;, A ... Ndzx;, and Pr(z) is a polynomial, I = (i1 < ... < i), then we can write

Ti(p) =) Pr(e+a)de’ = p+ pi(a) + O(la?)
I

where O(Ja|?) denotes a function of a such that lin% %ﬂm =0 and
a—

oP
ul(a):ZDPI(a:).adm:Z Zaj.a—;(x) dey=Lap,
I I j J

where A is the constant vector field >, a; 0,

The above consideration implies that if n = ng+...+7 441, @ and A are as before,
then

Ty (n) =10 + -+ 7a + Ndt1
where 7); has coefficients homogeneous of degree j, 0 < j < d, and
fla =1Na+Land+ -
On the other hand, (b) of lemma 5.1 implies that ng = Ly 1441, for some constant
vector field V' =3, v; 0z;, v; € C, 1 < j < n. In particular, if T'(x) = z — v, where
v = (v1,...,v,) then the term of order d in T™(n) is
Na =1a— Lvnay1 =0.

Therefore, T*(n) = 7jg... + Na—1 + Na+1 and an induction argument using (a) of
lemma 5.1 implies that 7*(n) = n44+1. This finishes the proof of theorem 4. O



24

[Br
[C-LN

[Ce-LN

[C-C-F
[Ce-Ma
[C-P
IDR

[

[LN

BY A. LINS NETO

References

| M. Brunella : "Birational geometry of foliations"; text book for a course
in the First Latin American Congress of Mathematics, IMPA (2000).

| C. Camacho and A. Lins Neto: "The Topology of Integrable Differential
Forms Near a Singularity"; Publ. Math. I.H.E.S., 55 (1982), 5-35.

| D. Cerveau, A. Lins Neto: "Irreducible components of the space of holo-
morphic foliations of degree two in CP(n), n > 3"; Ann. of Math. (1996)
577-612.

| Mauricio Corréa Jr., Omegar Calvo-Andrade, Arturo Fernandez-Pérez:
"Highter codimension foliations and Kupka singularities"; arxiv:1408.7020
| D. Cerveau, J.-F. Mattei: "Formes intégrables holomorphes singuliéres";
Astérisque, vol.97 (1982).

| Cukierman, F.; Pereira, J. V.: "Stability of holomorphic foliations with
split tangent sheaf"; Amer. J. Math. 130 (2008), no. 2, 4130439.

| G. de Rham: "Sur la division des formes et des courants par une forme
linéaire"; Comm. Math. Helvetici, 28 (1954), pp. 346-352.

| R. Hartshorne: "Algebraic Geometry"; Graduate Texts in Mathematics
52. Springer-Verlag, 1977.

| A. Lins Neto : "Finite determinacy of germs of integrable 1-forms in
dimension 3 (a special case)"; Geometric Dynamics, Lect. Notes in Math.
n° 1007 (1981), pp 480-497.

| A. Lins Neto, M.G. Soares: "Algebraic solutions of one-dimensional foli-
ations"; J. Diff. Geometry 43 (1996) pg. 652-673.

| J. Martinet: "Normalisations des champs de vecteurs holomorphes
(d’aprés A.-D. Brjuno)"; Séminaire Bourbaki, vol. 1980/81, 55-70. Lect.
Notes in Math. 901, S.V.

| Medeiros, Airton S.: "Singular foliations and differential p-forms"; Ann.
Fac. Sci. Toulouse Math. (6) 9 (2000), no. 3, 4510466.

A. Lins NETO

Instituto de Matemaética Pura e Aplicada
Estrada Dona Castorina, 110

Horto, Rio de Janeiro, Brasil

E-Mail: alcides@impa.br



