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Abstract

In this work we study the well-posedness for the initial value problem associated to a generalized
derivative Schrodinger equation for small size initial data in weighted Sobolev space. The
techniques used include parabolic regularization method combined with sharp linear estimates.
An important point in our work is that the contraction principle is likely to fail but gives
us inspiration to obtain certain uniform estimates that are crucial to obtain the main result.
To prove such uniform estimates we assume smallness on the initial data in weighted Sobolev

spaces.



Resumo

Neste trabalho estudamos a boa colocacao para o problema de valor inicial associado a equacao
de Schrédinger com derivada generalizada com dado inicial pequeno em espaco de Sobolev com
peso. A técnica que empregamos para conseguir tal resultado é o método da regularizacao
parabdlica mais estimativas 6timas da solugao do problema linear. Um ponto importante no
nosso trabalho é que o argumento do principio de contracao tende a falhar mas ele nos da
inspiracao para obter certas estimativas uniformes que sao cruciais na obtencao do resultado
principal. Para estabelecer tais estimativas uniformes, nds assumimos dados iniciais pequenos

em espagos com peso.



Notations

The notation A < B means there is a constant ¢ > 0 such that A < ¢B. And we say,
A~ B when A< Band B S A.

For a real number r we shall denote r+ instead of r + €, whenever € is a positive number
whose value is not important. Also we write 7", to denote T raised to some positive

power.
We denote (z) = (1 + 22)'/2, called Japanese bracket.

If f € L*(R) then we denote f the Fourier transform of f, and f denotes its inverse

Fourier transform.

For a s € R, J®, and D* stand the Bessel and the Riesz potentials of order s, given via

Fourier transform by the formulas

—

Jof ={§)°f. and D*f=[¢f.
H*(R) denotes the Sobolev space of order s defined by
H*(R) ={f € S'(R); J*f € L*(R)}

endowed with the norm

/]

we = ||J°f |22
We also consider the Sobolev spaces
LE(R) ={f € §'(R); J*f € L*(R)}

for p > 1.



e For a function f = f(z,t), with (z,t) € R x [0,T], we denote

gz = ([ ([ 15 00ar)Par)
g = ([ s

and

j{ISdt)q.
£y = ([ 176w )

e When f(z,t) is defined for time ¢ in the whole line R we shall consider the notations

e Similarly we denote

Hf“L‘gL’;Z? Hf”LgH; and Hf”L?ZL‘g-
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Introduction

We shall study the following initial value problem (IVP)

i0u + 02u + ilul T 0u = 0
u(-,0) = wy

where u is a complex valued function of (z,f) e Rx Rand 0 < a < 1.
The equation in (1) is a generalization of the derivative nonlinear Schrédinger equation,
(DNLS)
i0pu + 0%u +i(|u|*u), =0, (z,t) € R x R. (2)

The DNLS equation appears in physics as a model that describes the propagation of Alfvén
waves in plasma (see [22], [23], [25]). In mathematics, this equation has also been extensively
studied in regard of well-posedness of its associated IVP ([6], [8], [11], [12], [13], [14], [30],
[31]). Tsutsumi and Fukuda [32], using parabolic regularization, proved local well-posedness in
Sobolev spaces H*(R), s > 3/2. Hayashi [12] proved well-posedness for initial data uyg € H*(R)

satisfying the smallness condition

ol 2 < V2. (3)

His idea was to use a gauge transformation to turn the DNLS equation into a system of nonlinear
Schrodinger equations without derivative in the nonlinearity. This system, in turn, can be
treated using Strichartz estimates. It is known that DNLS can be writen as a Hamiltonian

system

d oy
S ut) = —iE'(u(t)) (4)

where E(u) the energy of u defined by

1

Blu)(t) = ;

1
/|8xu|2dx+Zlm/|u|2u&cud$. (5)



As a consequence of (4) it follows that E is a conserved quantity. In particular, the
result of Hayashi is global in time. Later on Hayashi and Ozawa [13] based on the same
gauge transformation proved global well-posedness for initial condition in H™(R), m € N,
also satisfying the smallness condition (3). The best result regarding local well-posedness was
obtained by Takaoka in [30]. He proved the IVP associated to DNLS was well-posed in H*(R),

for s > 1/2. He considered the gauge transformation

o(2,1) = ulz, t) exp (% / ]u(y,t)\Qdy) |

to convert the DNLS into
10w + 020 = —iv*0,0 — %\0\40 (6)
and used the Fourier restriction norm method introduced by Bourgain [3]. Biagioni and Linares
2] proved that the IVP associated to DNLS is not well-posed in H*(R) for s < 1/2, which
implies that Takaoka’s result is sharp. Using the I-method Colliander, Keel, Staffilani, Takaoka
and Tao ([5], [6]) showed that the IVP associated to DNLS is global well-posed for s > 1/2.
The main difficulty to deal with DNLS is the presence of the derivative in the nonlinearity,
which causes the so called loss of derivatives. This means that the standard way of proving

existence of solution of

u(t) = U(t)ug — /0 U(t — )0, (|ul*u)dt’ (7)

can not be accomplished only using the property of unitary group and Strichartz (Lemma 1.2.1)
of the Schrédinger propagator U(t) = €%, In fact the right hand side of (7) has less derivative
than the left hand side and Strichartz estimates do not provide us gain of derivatives. This is
one point that makes the study of DNLS more difficulty than the corresponding cubic nonlinear

Schrodinger equation (NLS), namely
i0pu + O2u + Aul*u = 0.

The equation in (1) admits a family of solitary waves solutions given explicitily by

- c 1 xr—ct .
P(x,t) = pue(x —ct)expi {wt + 5(9{: —ct) — 13 Pt (y)dy} :
where w > ¢?/4 and
()10 = (3 +a)(4w — ?)

4y/w (cosh(“T“\/élw —c%y) — 2\%) .



Liu, Simpson and Sulem in [21] studied the orbital stability of these solitary waves for the

equation in (1). More precisely,

Definition 0.0.1. The solitary wave v, . is said to be orbitally stable for (1) if for each initial

data ug € H'(R) sufficiently close to 1,,.(0) corresponds a unique u global solution of (1) and

S inf t) — ey (t, - —
up (e,yﬁngR”“( ) — €7y Y)|| e

15 sufficiently small. Otherwise 1, . is said to be orbitally unstable.

Results of orbital stability or instability were obtained according with the value of a. There
it was assumed the existence of solution of the IVP (1) for arbitrary a > —1, and initial data
up € H'(R). However, besides the case a = 1 there is only a few well-posedness results for (1).
For integer powers a > 4 Hao [10] proved local well-posedness in H'/?(R).

In the present work we carry out the case a > (0. The main result regards the most

interesting case 0 < a < 1.

Theorem 0.0.2. Let X = H32(R)N{f € S'(R);zf € H/*(R)}. Ifup € X and
[uollx = lluoll sz + lzuoll /2
is sufficiently small, then there exist T = T(||uo||x) > 0 and an unique
we C([0,T]; H¥?7) N L=([0,T); X)
solution of the integral equation
u(t) = U(t)ug — /t Ut —t)(|u|'T*0pu) (t)dt'. (8)
0

Our strategy to prove this theorem will be based on the technique known as parabolic
regularization (or viscosity argument) introduced by T. Kato [16]. It consists in the following:

First we prove that for each positive parameter e (viscosity) the initial value problem

10U + O2ue + i|u T 0u. = ied*u, ©)

ue(+,0) = wg

has solution in [0,7;]. The second step is to prove that the solutions u. converge as € goes to

zero and the limit solves (1). The first step is quite simple due to the presence of the parabolic



term ied?u. As is usual we can obtain solution u, € C([0,T.]; H*(R)), with T. = €/|luo|| g+,
in some Sobolev space H*(R). The difficulty lies in the second step. But before considering
the problem of convergence we have to argue that all the solutions can be extended to a same

interval of time. This uniform extention will be possible if
sup [[ue||zge s < 00. (10)
e>0 ¢

The estimate (10) permits to extend all the solutions to an interval of time [0, 7] independent of
¢ and the extension still satisfies sup, . [|uc||zsens < oo. Using compactness, for each t € [0, T
we have weak convergence u.(t) of some subsequence to an element u(t) in H*(R). So, u is the
candidate to be a solution. Thus we have a great chance to be successful with the parabolic
regularization if we can prove the uniform estimate (10). In [15] it is already presented how (10)
can be obtained in H*(R), s > 3/2, for nonlinearities like u™d,u, m € N. There, the argument
can also be adapted to the nonlinearity |u|'™@d,u whenever we have some smoothness of the

nonlinearity, for example a > 1, that allows us to prove

e < ellull B (11)

i

However, (11) is no longer true for low powers a since |z|'*® does not have enough regular-
ity. In this work we obtain a uniform estimate like (10) in H*?(R) when 0 < a < 1 (See
Theorem 3.20). Our argument was inspired trying to use the contraction mapping princi-
ple. Using sharp smoothing properties associated to the linear equation we define a subspace

E C C([0,T]; H*(R)) and prove that the associated integral operator
t

U(u) = U(t)ug — / Ut —t)(|u|" T *0pu)dt’
0

is well defined, i.e, ¥ : F — E for small data. However W is not a contraction. This is why we
use parabolic regularization to study this problem.

This work is organized as follows:

In Chapter 1 we present a list of results that will be used along the work.

In Chapter 2 we consider the regularized equation (2.1). We prove the existence of solutions
ue defined in an interval of time that depends on the parameter e. Aiming to extend the solution
to an interval of time independent of the parameter ¢ we establish some uniform estimates for

the linear solutions of the regularized equation.



We prove that the solutions u, of the regularized problem can be all extended to an interval
[0,T] where T' depends only on the size of the initial data. We also prove that the solutions
u, are uniformly bounded in H*? with respect to the parameter €. To achieve this uniform
estimate we impose that the initial data belongs to a weighted Sobolev space and has small
size on it.

In Chapter 4 the convergence of the solutions defined in [0,7] will be studied. First it
is proved that this sequence converges strongly in L L? to some function u. Then using the
uniform estimate provided in the third chapter and compactness argument, it is shown that for
each t € [0,T] there is some subsequence {uq ()} converging weakly in H3/2(R) and the weak
limit is in fact w(t). Finally, we prove that u is solution of the integral equation (8) and it is
the unique possible solution.

In Chapter 5 we study the case a > 1. In particular, we establish well-posedness for the
IVP (1) in H*(R), s > 1, for small data via contraction argument.

Finally in Chapter 6 we add some remarks.



Chapter 1

Preliminaries

1.1 Basic results

In this section we list without proof some elementary inequalities and some commutator esti-

mates useful in our analysis below.

Lemma 1.1.1. (Gronwall inequality) Let f be a nonnegative absolutely continuous function

satisfying the differential inequality
F'(t) < () f(t) + ()
almost everywhere, with @ and ¥ also nonegative. Then we have
F(t) < eloel)ds [ £(0) + /O tw(s)ds} .
Proof. See for example [26]. O

Lemma 1.1.2. Given so < s < sy, we have

£l e < 1AW oo L F 1177
where § = L2
S1 — So
Proof. See for example [20]. O

Lemma 1.1.3. (Sobolev embeddings)

i) For 2 < p < oo, there exists a constant ¢ > 0 such that,

[fllze < el D f[ 2

13



for all f € H*(R), where s =1/2 —1/p;
ii) When p = oo, there exists a constant ¢ > 0 such that,
[fllzoe < el fll s
or all f € H'/**(R).
Proof. See [20] Chapter 3. O

Lemma 1.1.4. (Leibniz rule for fractional derivatives)
(i) Let 0 < s < 1, 81,82 € [0,8] with s = s1+ s2 and 1 < p,p1,ps < 00, such that 1/p =

1/p1 + 1/pa. Then, for some constant ¢ > we have
1D*(fg) — fD*g = gD*fllr» < || D fl[ror | D™ gl| o -
(ii) For f = f(x,t),9 = g(x,t) we have
|D*(fg) — fD%g — gDsfHL’;éLqT < CHDslfHL’;quTl ||DS2QHL£1L"T1 (1.1)

for 1 < p,p1,p2,q,q1,q2 < 00, such that 1/p = 1/py + 1/py and 1/q = 1/q1 + 1/qs. Moreover,
for s1 = 0 the value g1 = 0o s allowed.

(i) If p=1 and q = 2, there exists some constant ¢ > 0 such that
||Ds(f9) — fD%g — gDsfHL;CL?T < CHDSlfHLi’.quTl ||D829||L?;1LqT1
for 1 < p1,p2,q1,q2 < 00, such that 1 =1/p1+ 1/ps and 1/2 =1/q1 + 1/qa.

Lemma 1.1.5. (Chain rule) Let 0 < s < 1 and F': C — C be given such that F is C* (regarded
as a function in R?).

(i) For all 1 < p,p1,ps < 00 such that 1/p = 1/p1 + 1/p,, there is a constant ¢ > 0 such that

ID*(F (D ee < el F' (Ao 1D fllLra-
(i) In the case of functions f = f(x,t) it holds
ID*(F( DI zrs. < el E (Al o pan 1D Fll ez e
for 1< p,p1,p2,4,q1,q2 < 00, such that 1/p=1/p1 + 1/ps and 1/q=1/q1 + 1/qa.
The proof of Lemma 1.1.4 and Lemma 1.1.5 were established by Kenig, Ponce e Vega [17].

Remark 1. Visan and Killip [33] established a chain rule when F' is only a Hélder continuous

function of order o € (0,1).

14



1.2 The Schrodinger propagator

Consider the IVP associated to the free Schrodinger equation

iOu+0*u = 0,z eRt>0
U(,O) = f

(1.2)

whose solutions is given by
u(w, t) = {e” " f} (@)
and is denoted by U(t) f. The family {U(t) }er forms a unitary group in H*(R), for all s € R.

In the following we will list some estimates satisfied for solutions of IVP (1.2). We begin by

the so called L7LP estimates or Strichartz estimates.

Lemma 1.2.1. (Strichartz estimates) For all pair (p,q) satisfying

2<p<o0 and 2/¢g=1/2—-1/p

we have
1U@) fllpa.re < cll fllr2 (1.3)
and
t
‘ / Ut —t)F(x,t")dt <|Fll,o v (1.4)
0 LeIk e
where 1/p' +1/p=1/¢' + 1/q =1, for some constant ¢ > 0.
Proof. See Ginibre and Velo [7] O

Next we have the smoothing effects estimates
Lemma 1.2.2. (homogeneous smoothing effect) There exists a constant ¢ > 0, such that
I DY2U ()l 1. < el 2
for all f € L*(R).
By duality it follows from Lemma 1.2.2:

Lemma 1.2.3. There exists a constant ¢ > 0 such that

HDW / U F(-t)dt
R

<l Fllzazz

LPL2

forall F € LLLA.

15



For the inhomogeneous problem

iOu+ 0*u = iF(z,t) (L5)

whose solution is
t
(e, t) = / Ut — ) F (- #)dt’ (1.6)
0

we have:
Lemma 1.2.4. (Inhomogeneus smoothing effect) For u given as (1.6) we have
||aquL2TLg° S ”FHL;LQT

The estimates above were proved by Kenig, Ponce and Vega [17]. For a detailed proof of
Lemmas 1.2.1 to 1.2.4 see [20] Chapter 4.
Finally, we present some maximal function estimates for the Schrodinger propagator. More

precisely,
Lemma 1.2.5. (Maximal L? estimate) Given s > 1/2 there exists a constant ¢ > 0 such that
1U@) fllezry < cllfllas
for all f € H*(R).
Proof. See Kenig, Ponce and Vega in [18] . O
Lemma 1.2.6. (Maximal L* estimate) There erists a constant ¢ > 0 such that
|U@) fllare < | DY £ e
for all f € HYA(R).

Proof. See Kenig and Ruiz [19] . O

1.3 Two technical lemmas

In this section we shall prove the following lemmas.

16



Lemma 1.3.1. (Interpolation) Let 6 € [0,1] be given. There exists some constant ¢ > 0 such
that,
1TV () )l < el T2 () DI T22 112

Lemma 1.3.2. Given 0 < s < 1 we have

17°({x) )l < el > (@ f)ll2 + 1|7 f 2
for some constant ¢ > 0.

Before going through the proof of these lemmas we shall present some facts that will help

us in their proofs. To prove Lemma 1.3.1 we consider for 0 < a < 2 the following derivative

D, f(z) = lim flrty) = f<x>dy (1.7)

lyl>e ly[*+e
Theorem 1.3.3 (Characterization I). Let 0 < a <2 and 1 < p < oco. Then f € L2(R) if, and
only if, f € LP(R) and the limit defined in (1.7) converges in LP norm. In this case

17 Flle = [ fllze + 1 Paf | o
Proof. See Stein [27] or [29]. O
Lemma 1.3.4. Let 0 < a <1 and 1 < p < 0o. Then there exists a constant ¢ > 0 such that
(e@+ DT e < NI fllze < e(@+ EDITC) e
for allt € R.

Proof. Denote ¢(x) = log(z).

D.(()'1)a) = Dale""f)(x)
1 (o + y) = ') f )

= lim dy
e—0 ly|>€ |y|1+a
, it(plzty)—p(z)) _ q
—  pitel@) g € £(
e im ~ x+y)dy
=0 ly|>e |y|1+
=0 Jlyl>e ||

= "Dgai(f)() + eID, f ().

Thus
1D () F)(@)zr < Npai(F)llze + | Dafllze-

17



Let us estimate ||¢a.t(f)]| -

e—0

_ it(plzty)—p(z)) _ 1
baclf)(x) = lim / e+ )y
e<|y|<1 |y|

pitle(aty)—p() _
+f et gy
ly|>1 Y|

Since |e? — 1] < 2 we have

1
allr < 2 /| L sy
y|>1

1
20 £ ler / Ly
i1 [yt
= callfller

To take care of Iy we first note that
e — 1| = [e/? — 72| = 2|5in(0/2)| < |6].

So

|ezt(<p z4y)—p(x — 1] < |t]|e(x + y) — p(2)].

Since ¢ is Lipschitz we have

| P2 @) 1] <ty
Then
t]|y]
Ll < tin [ F( +y)ldy
=0 Jecyl<1 ly |1+a
= [t|lim —|f(z +y)|dy.
e—0

e<lyl<1 1Y ’O‘

Applying Minkowsky’s inequality in the integral (1.9) we get

Mol < et [ )y
e<|y\<1| |

e—0
1

= [tl[f ]z lim T dy

e<lyl<1 |y|*

= Calt[l[fllzr-

We conclude that
Pt (F)lle S (1 + [EDI S]] -

18



Then applying Theorem 1.3.3 we obtain

D) Hllze < A+ EDAf e + [Dafllr)
S @ EDIT fllze-

Therefore

17 Ollze S 1PalCYHllze + 11f]l2e
S (DI fllze- (1.10)

The opposite inequality follows immediately by applying (1.10) to the function (-)~ f instead
of f. O

Now we are ready to prove Lemma 1.3.1
Proof of Lemma 1.3.1 :

Given g € L*(R) such that ||g||z2 = 1 define F, : S — C by
Fy(e) = [ @) ) wg(a)ds
R

where S is the strip S = {z € C;0 < Re(z) < 1}. Using the Cauchy-Schwarz inequality and
Lemma 1.3.4

. _ (22
[Fyiy)] = @Y

[ @) @lgte)da
< e WY () ) g e

= Wy g

< (L4 e IR ) 1o

Since the function (1 + |y|)e~®**1 is bounded it follows

[Fy(iy)] S 172 () £ e

Similarly, we have

2

F(1+iy)] = e

/Rﬁ’“”y«miyf><x>a<x>dx
< VI g e

= VI ((2) V) e (1.11)

19



Before applying Lemma 1.3.4 to (1.11) we make the following computation

1722 () F)llze ~ @)™ Fllze + D2 ()~ )| e
= |Ifllze + D20 ((x) =" f)ll e

iy T
= Wl + 1ol 2 (1070 25 ) (112)
) L2
Now we can use Lemma 1.3.4 to obtain
(o tar)| saemn| e ()| (113
| (1) s s (g5 ) )
It turns out we can bound (1.13) as
7 <L f> < ‘ 7! <L f>
’ ()" /|2 ()" /|2
el (l“ 7).
<$> <$>2
x
< e+ ( W+ |10t
LOO
S Ml + ||aa:fHL2~ (1.14)
We conclude from the estimates (1.12), (1.13) and (1.14)
1722 (@)~ ez S (L + [y f Il gare
and then we finally get
[Fo(L+ i) S I [z
Therefore using the Three Lines Theorem (see [28]) we obtain
[F O] S T2 Ol 1722 11 (1.15)

for all § € [0,1]. Taking the supremum over all g € L*(R) such that ||g||zz= = 1 in (1.15) we

obtain

T (@) e S 1T (@) ORI £
So we finally conclude
1720 (@) ) e S N2 () DRI 2 F 1 2

U

To prove Lemma 1.3.2 it will be more convenient to consider the characterization of Sobolev

20



spaces in terms of the following derivative

( f(@ +y) — f@) dy)”? (1.16)

|y|1+25

We have the following characterization

Theorem 1.3.5. Let s € (0,1) and 2/(1+2s) < p < oco. Then f € LE(R) if, and only if f and
Ds f belong to LP(R). Moreover

172 Flle ~ A fllze + 1D fll 2o
for all f € LP(R).
Proof. See Stein [27] or [29]. O

Remark 2. When p = 2 we have the following product rule

D> (f9)ll> < 1D (9)llz> + 9D f | > (1.17)

Proof of Lemma 1.3.2: Consider the cut-off function x € C°(R), supported in [—2,2] and
identically 1 in [—1, 1]. Before going any further notice the following
CLAIM 1: If ¢ is Lipschitz and bounded then D*y is bounded as well.

In fact,
s (@ +y) —p(@)?
(D Sp(x))z - ‘y|1+23 d
2
1
S / Wy lelie [
i<t [y B st Lyl
< 0Q.

To prove Lemma 1.3.2 it is enough to prove

D> () )2 S N> @ )l + 17l 2

We have

D> (@) 2 < ID*() fx(@) e + 1D (@) f (1= x(2) )]l
< I+11

21



We are going to use the characterization in Theorem 1.3.5 to estimate I and II. In fact, using

Theorem 1.3.5, together with (1.17) and CLAIM 1 with ¢(z) = (z)x(x) we have

D> () fx (@) Nz S lleflle + 1P ()l
S leflle + 10D fllz + [P0l 2
S el (ANl + 1P fllz2) + Dl oo | f 1] 2

S Il + (D7 Fl o

Then we conclude

LS fle-

Similarly, using Theorem 1.3.5, (1.17) and CLAIM 1 for the function p(z) = <Zi—>(1 — x(x)) we

have
|1D°((z) (1 = x(2)) )z = [|D*(pzxf)l|r2
S ez fllee + 1D (ezf) |22
S ez fllee + |z fDpll Lz + 9D (2 f) || 2
S lellee ([zfllzz + 1D (@ f)||2) + Dl oe |2 f]] 2
Sz fllee + 1D (@ f)l e
Then

LS || (@)l a-
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Chapter 2

The viscosity argument

In this chapter we are going to perform the viscosity argument. That is, for every € > 0 we are
going to solve the (IVP) problem

i0u + 0*u + tju|' " 0u = ied?u

u(-,0) = wg

(2.1)

where (z,t) € R x [0,00) and a € (0,1). This problem is simpler to solve than (1) since

t(1-i€)97 which has stronger decay

the additional term i€d?u provides us with the propagator e’
properties than the original ¢ . These decay properties translate into gain of derivatives
which are very convenient in handling the loss of derivative introduced by the nonlinear term.
A crucial point here is to establish estimates for ¢#(1=9% yniformly in the parameter e. These
uniform estimates, in turn, will allow us to pass to the limit as ¢ goes to zero. In the next
chapter we will prove that the solutions u. can be uniformly estimated in H3/?(R). Therefore
in this chapter we will solve the reguralized problem (2.1) for initial data ug in H*?(R), even

though we could do so for uy in a Sobolev space of lower regularity.

2.1 Solution of the e-nonlinear problem in H?/?

it(1—i€)02

In our work we are going to denote by U,(t) the linear propagator e = which describes

the solution of
10w+ 02u = ied?u,

u(-,0) = wy,

(2.2)
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defined via Fourier transform by
U.(t)ug = {e~ 9% 40}V (2)
for all £ > 0. We will solve the integral equation
) = Uty = [ Uit = )00 0, 23)

and later on we will justify that the solution of (2.3) is actually solution of the diffential equation
(2.1). Denoting by ¥, the right hand side of (2.3) we are looking for u such that ¥ (u) = u.
Following the contraction principle argument we have to prove in a first step that there exist a

time T, > 0 and a constant A > 0 such that the integral operator ¥, maps the space
Esr={ueC(0,T]: H3/2(]R)); Hu||L%OH2/2 < A} (2.4)

to itself for all 0 < T < T, then we have to prove that ¥, : 4 — E4 1 is a contraction, for
all those T'. Consequently the Banach Theorem for Contraction Mappings assures the existence

and uniqueness of u. € E4 7 satisfying ¥, (u.) = .. In this task we will use the following lemma:

Lemma 2.1.1. Let s > 0. Then,

i) There exists cs > 0 such that

1U(6) £

1
we<en (14 ) Il (25)
for all f € L*(R), and t > 0.
i) for all f € L*(R) the map
t € (0,00) — Ut)f € H*(R) (2.6)
is continuous. Moreover, if f € H*(R) then the map in (2.6) is continuous to the right att = 0.

Proof. Indeed,

s s _—(e+i)€2t 7
ID°U®)fllz = NIl D fll 2

—ef2¢ 7
= el Tl

1 ) 2y =
_ s/2 —e&4t
‘Et‘s/gmeg t‘ e fHL?
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Since the function y*/2¢7¥ is bounded in {y € R;y > 0} we obtain

S 1 S
ID°U) fllz < o Sup{ly\ eI f ) ne

let|
1
— sl e (2.7
Estimate (2.7) with s = 0 gives us
U@ f ez < 11|z (2.8)

Then, using (2.7) and (2.8) we obtain (2.5). Now we are going to prove the property 7). Let
to > 0 be given and ¢ > t;. We have from (2.5) that

[U(t)f = Ue(to)

= ||Ue(t0)(U€(t — to)f _ f)| .
1
. (1+ |€to|8/2> 1U(t = to)f = fllzz-

Turns out

Ut —to)f — fllzz = ||[e”H0 117, (2.9)

2
€
Since for each ty < t the function

~

€ [(e7CHIE 1) f(g)?

is integrable and bounded by the function 2|f(§)|2, which is integrable, it follows from the
Dominated Convergence Theorem that

~

€+l)(t to
lim (e )l

Therefore we have continuity to right. To prove the continuity to the left we consider 0 < t < t.

Using (2.5) we have already proved we get

= WOt =0 = Dl
1
< O+|HQ>MWw%ﬁ—fM% 211

||Ue(t)f - Ue<t0) (210)

Then we proceed using the Dominated Convergence Theorem to conclude
li — — =0.
lim [U(to = )f = fllzz =0

Moreover, supposing f € H*(R) we have that for each ¢t > 0 the function

~

€ — (e —1)(e)* f(&)
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is integrable and bounded by 2[<§>3ﬂ2 which is integrable as well. Using one more time the

Dominated Convergence Theorem it follows

lim [U(t)f = fllm - = Tim [[(e” 9 = 1)(6)* .

= 0.

We start the contraction principle argument by controlling V. (u) in the norm || -

e s

]

3/2

for a function u belonging to the class F4 r defined in (2.4). Indeed, Lemma 2.1.1 with s =0

implies

U @)uoll s = NULE)(T*Puo) 112

S HJS/QUOHLQ.

Then we have

IN

t

I\Ue(t)uOlngszI/ Ue(t — ') (Jul " 0pu) () dt'|] 32
0

[uoll /2 + (N'L).

W)l e

N

Lemma 2.1.1 also implies

(VL) < / ULt — ) (Ju]20,) ()| o2t

1 a
</ (”W) Il Byt izt

4T1/4 .
s (T+ €3/4 ) Ill™ axu”Li’?L%

Using the Sobolev embedding H'/?*(R) C L>(R) we have

Mul"Opullgers < Nullfire 10aullLpLs

S

~ L°°H3/2

We conclude

LF H;

4eTHA .
) e < ol ¢ (7 4+ 25 ) Bl
for some constant c. If we take T, = T'(e, ||uol|| g3/2) > 0 sufficiently small such that

ATHA 1

Te
+ e/t T 2¢(2||ug|| gas2) e

26
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and A = 2||ug]| z3/2 it follows from the estimate (2.12) that ¥ (u) € L>([0, T]; H*?(R)) and

<
g < A

[ (w)

forall 0 < T < T,.. To conclude ¥.(u) € E4r it remains to prove ¥ (u) is continuous with

respect to t. We already know from Lemma 2.1.1 the map
t€[0,T] — Ud(t)up € H*(R)

is continuous. It remains to prove the continuity of

oe(t) = — / ULt — ) (] 0,u)

0
Denote F' = |u|*™d,u and let ¢y € [0, T]. For each t >t we have
Ve(t) —ve(to) = — /to Udto — ) (Ut —to)F(t') — F(t))dt/
0

- /t Ut —t")F(t")dt’

to

= I+1I.
Before estimating I and 17 notice that F' € L>([0,T]; L*(R)). In fact, using Sobolev embedding

HFHL%OLE < HuH}:%aLgo HamuHLi}oLg

< Ml el
S

Now using Lemma 2.1.1 we conclude

/

t 1
< ||F|lpeerz2 1+ ——-—— | dt. 2.13
< 1 | (4 =) 21

0

t
||II||H§/2 < /t||Ue(t—t)F(t’)||H3/2dt'
0

The integral in (4.25) goes to zero as t goes to ty, because the function

tIE[O,T]'—>1+W

is integrable. Next, we look at the term I. Also using Lemma 2.1.1 we have
to
[ rsrz < / [Ue(to — ') (Ue(t — o) (') — F())]| yar2dt’

0
o 1 / / /

< 1+ —— ) |U.(t = to)F(t) — F(t')]||2dt’. 2.14

s [ (14 ) 04— () - FO)y (2.14)
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Since

|U(t = t)F(¢) = F(¢)]|1z < 2/ F ()] 22

we can apply the Dominated Convergence Theorem to the integral in (2.14) and conclude
|1 1|l 372 goes to zero as t goes to ty. This concludes the proof that v, is continuous to the right.

The continuity on the left is proved similarly. Therefore,
U (Ear) C Ear.

Now let us prove that we can still choose T, > 0 such that the map
Ve:Ear — Ear

1o for all 0 < T < T,. Consider u,v € Ear
T

and denote G(u,v) = |u['T*d,u — |v|'T?0,v. We have

is a contraction with respect to the norm || - ||

¢
U, (1) — U(v) = — / UL(t — )G, v)(¢))dY.
0
Then using Lemma 2.1.1
t
[We(u) = Ue(v)| oz = ||/ Ue(t = )G, 0) ()t || o a2
< / !/
s [ (1 ) 160 @l
4T

S (T+ W) 1G(u, 0) | g2

To estimate ||G(u,v)|peer2 first note that G(u,v) can be written as
G, v) = (% = o] *7) By + o] 70, (u — v).

Then using

[lul™* = o] < (Jul® + [o]*) [u = o] (2.15)

we have

G, )z < I (™ = ™) Oaullgers + [0 (w — )l 22
< ™ = Pl g re 10aullgers + [0l L0 105 (w — v) L2

S (lullig s + Iollprs ) lu = vz s 10uull e

||U||1Lt°aLgo||ax(U =)l g2 (2.16)
T

_|_
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Applying Sobolev embedding in (2.16) we conclude

1+a
1G@zz S (Il gve + W0l o) = 0l e

)1+aH

< (4lluoll e U= 0] o e
Therefore
1.0 = ) < (T+ 255 ) @hualln) =l @17
for some constant ¢ > 0. Take 7, such that
- 4eTM? 1 |
CeA T 2e(luoll )t e

Thus from (2.17) we end up with
1
H‘IIE(U’) - \IIG(U)”L%OH;Q’/Q S 5”” - v‘|L%°H2/2'

Remark 3. We can choose

63

~ clluoll

€

for some constant c sufficiently large.
We have proved the following

3

Theorem 2.1.2. Let ¢ > 0 and ug € H¥%(R) be given. Then for all 0 < T < there

clluoll s

exists one, and only one, u. € C([0,T]; H¥?(R)) satisfying the integral equation (2.3).

Next we prove that the solution u, in Theorem 2.1.2 is in fact solution of the differential

equation (2.1).
Theorem 2.1.3. Let u, be the solution of (2.8) given in Theorem 2.1.2. Then,

ue € C((0,T.); H*(R)) (2.18)
and Oyu, exists in the topology of H 1(R) and satisfies

Opte = (i + €)0ue — |uc| T Opu.. (2.19)
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Proof. We already know from Lemma 2.1.1 that U(t)ug € C((0,T.]; H*(R)). So we have just

to investigate the continuity of

() = — /O t U.(t — ¢)F.(t')dt

where F, = |u|'T?0,u.. From Lemma 2.1.1 we have,

t
|ve(t) |z < /IIUe(t—t’)Fe(t’)HH%dt’
0

! 1
< - /

~ ||F6||L%OH;/2'

So, if we assume

F. € L>=([0,T); H/*(R)) (2.20)

we obtain

ve € L=([0,T); H*(R)). (2.21)

Lets keep the assumption (2.20) and prove (2.18). We claim that (2.21) together with the
continuity in H*? gives us (2.18). Indeed, choose some s € (2,5/2). Using Lemma 1.1.2 we
have

lve(t) = velto)llzz < llve(t) — ve(to)ll}, /2 llve(t) — ve(to) 7/ (2.22)

2s — 4
2s — 3

for 6 = . Using (2.21) and (2.22) we obtain

[[ve(t) — ve(to)]

H 5 ||Ue(t) - ve(to)HZg/m (223)

Since v. € C([0,T.]; H3?(R)) it follows from (2.23) that v. € C([0,T.]; H*(R)). To finish the
proof of (2.18) we need to justify (2.20). Indeed, using the Leibniz rule (Lemma 1.1.4) we have

IDY2Fl 2 S 1D (Jue )| ollOruell g + el [l ge | DY 20| 2, (2.24)
for 2 < p,q < oo satisfying 1/2 = 1/p + 1/q. Using Sobolev embedding in (2.24) we obtain

HDI/QFGHL% N |||u€|1+a||Ha1:||uE||H3/2 + ||U6| ZE%' (2'25)

Computing 9, (|uc|'™®) and using Sobolev embedding we obtain

el ™Mz < Nuell 220 + el O] 2

< ||u6| 2—572 + “us”%gona:vuenLi

S el (2.26)
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Combining (2.26) and (2.25) we finally obtain (2.20). Now we are going to prove (2.19).
Consider ¢ € (0,7] and h sufficiently small. Regarding the linear term U, (t)ug we have

Ug(t + h)UO — Ue(t)UO

2 — i+ BUL (o = {g(t: b, )}

where . ‘
o~ (HOE2(t+h) _ o (ite)et

. + (i + €)% (I

g(t;h, &) =
Notice that

lg(t; b, €)] < 2(1 + €)€>.

Then we can use the Dominated Convergence Theorem and conclude that

: . =1~ _

which means
Ue(t + h)UQ - Ue(t)UO
h

Next we analyse the nonlinear part v.. For all h > 0 we have,

lim — (i + )2U(t)ug|| =0 (2.27)

h—0

H;!

Ve(t + h) — ve(t)
h

— —%/t[Ue(t—i—h—t’)—Ue(t—t')}Fg(t’)dt’

1 t+h
~ / Ut +h—t")E(t")dt
t
= ILi(t,h) + Ly(t, h).
We have
1 t
heh) =~y [ U= R
0
1 ! !/ !/ /
—— [ Ut —t)E(t')dt
h Jo
(h)ve(t) — ve(t
Since v (t) € H*(R), it follows from (2.28) that
I{ii% [11(t, h) — (i 4+ €)D2vc(t) || =1 = 0. (2.29)
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Regarding the term I5(¢, h) we have

[2(t, k) = Fe()]l g < %l1 Ut + b = ) (Fe(t') = Fe(£)) || 2 dt!

1 t+h
+5/ |Uc(t + h— ) E.(t) — Fu(t)| yrdt
t

1 t+h
S o[ IO - Bl
t
1 t+h
+E/ [Uc(t 4+ h =) F(t) — Fe(t)|| g dt'. (2.30)
t

Using that F, belongs to the class C'([0,T]; H '(R)) as well as the map
7€ [0,T] — U(71)F(t)

we conclude from (2.30) that

}l}{‘% [12(t,h) — Fe(t)|| g1 = 0. (2.31)
Consequently
_u(t+h) —ue(t) 2 1+a
}lll{‘% h = (i + €)0;uc(t) — |ue| " Ozuc(t)

in the H~(R) topology. To conclude our proof, we study the limit

lim ve(t+ h) — Ue(t).
h 0 h

Indeed, for each h < 0 we write

Ve(t + h) — v(t)

1

h E/O
1
i

The argument we used to prove (2.31) can also be applied to the term I(h,t). Thus we also

obtain

i | Fo(t. h) = Fu(0)]| 2 = 0. (2.32)

Finally, we consider I;(t, k). Using the definition of v, we can write

Li(t,h) — (i + €)020.(t) = L1 (t, h) + Lia(t, h),
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where
t

Ln(t,h)=—(i+e) | Ut —t"E.(t)dt,
t+h

and

5 t+h AN oy
Ls(t, h) :/0 (Uﬁ(Hh t})L Ut t)Fg(t’)—(i+e)8§UE(t—t’)F€(t’)) dt’.

To prove both Iy (t, h) and I15(t, h) converge to zero as h goes to zero, notice that
F. e I>(0, T} H'(R)) (2.33)
This follows from the fact u, € L*°([0, T]; H*(R)). Using the boundness property of U, we have

t
12 (D)l 5/ 102Ut — ¢) Fe(t') || g2t
t+h

AN

t
| IE @
t

+h
S —hlFllos

Hence
lim || T34 (¢, h)|| 1 = 0.
h%” 1t h)||g-1 =0
It is remaining to analyse I;5(t, h). Notice we can write

Udtth =) = U= B) ) — (i 4+ 02U — ) Fu(t) = {a(h, £, ) R0},

h
where 2 2
—(i+e)(t+h—t)€? _ —(it+e)(t—t')¢ 4 l
Q(h> tla 5) = ‘ A € + (Z 4 6)526—(z+6)(t—t )52'
Thus
F t+h —
1ot 1) s < / lat, ) F@)€) .
0
Since

lq(R, 1, )Xo, ()] S €7, (2.34)

it follows the function

£ € [0,8]) — ) alh. ', €)Xioen () Fu(t) |

is bounded by
' — () Fe(t)]] 2,
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which, in turn, is integrable because F. € L*>°([0,T]; H'(R)). Consequently, we can apply the

Dominated Convergence Theorem and get

t —_—
lsn | a8, 1) 0 = / lsn 16€) (A, ¢, ) () Fu0) 50t (2.35)

Using (2.34) again we can apply the Dominated Convergence Theorem to conclude that for

each t' € [0, ]

}Li;%H<§>7IQ(hatlvg)X[O,t—i—h](t/)Fe(t,)“Lg = H}};ﬁg(&YIQ(h,t’,é)X[o,t+h](t')Fe(t’)HLg

= 0.

This finishes our proof.

O
Remark 4. The argument we presented above in the proof of (2.19) implies that
ue € C([0,T); H*(R))
whenever
F. e L=([0,T); H=2+) (2.36)

Since we proved F, € L>([0,T]; HY(R)), it is possible to prove u. € C([0,T]; H*>"(R)). But
we will not need this in our work. Unfortunately, we can not derivate the nonlinearity F, =
|u|* 20, u, twice when 0 < a < 1. This means we do not have (2.56) for s > 4. Consequently

we can not guarantee u, is sufficiently reqular.

2.2 Uniform estimates for the e-linear problem

In this section we establish properties that are true for U(t) and still hold for U.(¢) uniformly
in the parameter €. All these properties will be important to prove uniform estimates for the
solution of the problem (2.1). We are looking for estimates independent of € because we intend

to take the limit when e goes to zero later on.

Proposition 2.2.1. There exists a constant ¢ > 0 independent of € such that

[U) fllzaze < cllfllze

for all pairs (p,q) satisfying



Proof. Notice that U(t) = E.(t)U(t) where

E(t)g = {e€g}".

7TCB2

Let ¢(x) = e™™" and denote ¢, the function ¢,(x) = pp(px). Since ¢ = ¢, we have from the

properties of the Fourier transform that

= {of D) @

T V( T )

= — —x
etw et
T < T )

= — —x
et(p et

= Sope t (x)

where p.; = \/g . So we can write F.(t) as
E(t)g(-,t) = pp., * 9- (2.37)

Finally, we combine the Young inequality and Strichartz estimate for the Schrédinger group to

conclude
[U@) fllaze = [E@)U®) Loz
S e, * U@) fllnaze
S el lU @) fll e llza - (2.38)
Using that

[ eni@ae= [ oz

U fllzge S NU@Srorz

S fllze-

in (2.38) we conclude that

]

Next we are concerned with the question whether or not the smoothing effects for the

Schrodinger propagator are still true for Uc(t). If we knew, for example, that

[Ee(t) fllrgerz < cllfllzgerz (2.39)
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with ¢ independent of ¢ we would obtain

sup IDY2U) fll e, < el fll 22

Unfortunately we do not know if (2.39) is true. Looking for a replacement we introduce a norm
somehow similar to || - || rz but in which we are able to prove that the operators E(t) are

bounded uniformly in €. The norm is
I llizez2@y) = sup [l - [lz2q;)
JEZ
where () is the rectangle Q; = [0,7] x [,j+ 1], j € Z. This norm is weaker than || - HLgoLzT, ie.
I ez < N+ llngerz. (2.40)

In this weaker norm we are able to prove analogous of the Lemmas 1.2.2, 1.2.3 and 1.2.4

for U(t) with bounds independents of e.

Proposition 2.2.2. Let T > 0 and € > 0 satisfying 0 < € < w/T. Then there ezists ¢ > 0
independent of € such that

HDl/QUe(t)le;O(m(Qj)) <c||fllz2

for all f € L*(R).
To prove this proposition we need to prove the following lemma.

Lemma 2.2.3. Let T > 0 and € > 0 satisfying 0 < ¢ < «w/T. Then there erxists ¢ > 0
independent of € such that

[E()gllize 2@, < cllgllicew2ay)
for all g € I5°(L*(Q;)).
Proof. Writing E(t) as the convolution in (2.37) we have
B9 1) = [ emate = vty

= /| e (Y)g(x — y,t)dy+/ Cpe.(Y)g(x =y, t)dy
yl<1

ly[>1

= Ip(x,t) + Io(z, t).

36



By using Minkowsky inequality, a change of variables and [j —y,j+1—y|] C [j — 1,7 + 2] for
all |y| < 1, we have that

[ o( Ml zejjry < /| o W9 =y, Dl 2y i1y
y|<1
= [ on @l as-syrpy
lyl<1
:/ Coet WDNgCo O L2 (i-15+2ndy
lyl<1
= ||9('at)||L2([j—Lj+2])/R‘P(y)dy
= gl zeqi-1.4+2p
for all j € Z. So we obtain
[ ollie=(r2@;)) = S}ég||||10||L2([j,j+1])||L2([0,T])
J

= sup [[g]l2(-15+21x10,17)
JEZ
< 3llgllee(r2(qy))-

Now let us estimate [|/o[[ie(r2(q;))- In order to do so notice that pey < p?, whenever p.; > 1,

3 s
Le. € < 7. Then

— 2
SOPe,t(y) = Pep€ 7| pe, ey

< Pz,te_wlpe’ty‘g‘
This allows us to conclude
Lz, )] < /| ot —u.0ldy
y|>1
_ 2
< /| | p2 e P g2 — y, t)|dy
y|>1
1 2 ,—|pe,eyl?
= ) Ekgpe,t' e P g(x —y,t)|dy
y|>1
1
< sup{de™:§ >0} y—|g(m —y,t)|dy.

2
ly|>1

Using change of variables we have
1
Ilizay S [l =)y
lyl>1Y

1
S /| |>1yj|!9|!L2<[j—y,j+1—y}x[o,TDde
Y

N

1
lyl>1 ?HgHLQ([mwmj,yH]x[o,T])dy
)
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where m;, denotes the integer number such that m;, < j —y <m;, + 1. Then we conclude

1
Hoollz2@) S SupHQHLQ([m,mH]x[o,T])/ —dy
meZ ly|>1 Y
19llis=(22(Q;))-

Therefore

Hoollis= (2@ S 19llise(r2(@y)-

Proof of Proposition 2.2.2 : Since

D'?U.(t)f = D'E.)U()f
E.(t)DV?U(t)f

we have from Lemma 2.2.3 that

IDY2U(t) flli= 225y < el DY2U W) fllize 22,
To complete the proof we recall (2.40) as well as the smoothing effect Lemma 1.2.2 to conclude

IDY2 U flliz= 2@,y < ellD2UD fllizory

< e

Next we establish the smoothing effect for the inhomogeneous problem associated to (2.2).

Proposition 2.2.4. Let T > 0 and € > 0 , such that 0 < ex/T. Then there exists ¢ > 0

independent of € such that
t
1/2 1/2
D2 [ Ut = 0P 0 ez < T Pl
Proof. By duality it is equivalent to prove

/ (DW / ULt — 1V EC t’)(x)dt’) Glx)de

where the supremum is taken over all G € L*(R), such that ||G||z2 = 1. Using Fubini’s theorem,

sup

u < ¢l Flli 2y
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Parserval’s identity and the definition of U,(t) it follows

(2 [ e et oo
- /R</0D U= OF (1) ()dt

= /t <D1/2Ue(t —t"F(, t’)(x)@(as)das) dt’

G(z)dx

N——

- / t / €[/ =06~ B 1) ()G (€) dedt
0 R

t
= / / F(z,t"\DV2E(t — ) U —t)G(z)dzdt’. (2.41)

0o JR
Splitting the integral with respect to the variable z in (2.41) into a sum of integrals over the

intervals [7, j + 1] we obtain

/(Dl/2 /t Ue(t—t’)F(-,t’)(w)dt’)@(m)dm

< /j . /0 t’F(%t/)HDl/QEe(t—t’)U(t’—t)@(x)\dt’d:c. (2.42)

JET

Using Holder’s inequality we have that (2.42) is bounded by
D Il e2isxon 1D E(t = YU (- = 0G| 2y, j+1x 0.y
jez

< sup |DVPE(t — )U(- = )Gl r2gsuxiom O IF 2 Gi+1xo)-

ez JEZ

Notice that by the change of variables s — t — t and Lemma 2.2.3

ID'E(t — YU = )Gl reijruxong = [DY2E(s)U(=8)G| L2 js1xo.)

HEe(S)D1/2U<_5)6HL2([]'»]'+1]><[O,t})

N

DU (=8)Glis= (220, )

sup || D2U (=) G| 2(fk 1)o7
keZ

IN

IDY2U (=5)Gll e 13

AN

1G]l -

Then we conclude that

/( / ULt = )P t'><x>dt') Cla)de

for all G € L*(R) with |G|z = 1. O

S HF|’1J1-(L2(Q]~))
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Proposition 2.2.5. Let T' > 0 and € > 0 , such that 0 < en/T. Then there exists ¢ > 0

independent of € such that

t
H&c/o Ut = ) F (-, 1) dt' |1 z20,)) < CllF oz,
To prove this proposition we basically follow the ideas presented by Kenig, Ponce e Vega

[17]. Our additional effort consists basically in proving the following:

Lemma 2.2.6. For each w € C define the function f,(x) = % . Then there exists a
24w

constant ¢ > 0 such that

[Full < c
for all w € C.

Proof. We consider three cases
Case 1: Re(w) > 0.

Consider for each £ € R the complex function
i€z
e
F = —
+(Z) 2 + w2
and '}, the boundary of

D} ={z € C;|z| < R, Im(z) > 0}.

Since F is holomorphic in D}, \ {iw} , we have from the Residue Formula

/ Fi(z)dz = 2miRes(F,,iw)
i

.efwlﬂ
11—
21w
w

= 27

On the other hand,

[oroe = [ Stes [ R Guoaon

r 2+ w?

= If+1If
where g is the curve 6 € [0, 7] — Re™. Let us estimate the integral I1};.

/7r ei|§|R(cos 0+i sin@)iRei@
: (Re®)? 4 w?

™ —|¢|Rsin 6
< / e TR g
o |(Re?)? + w?|

T €—|§\Rsin€R

11| = dé
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Taking R > /2|w| we have that the integral (2.43) is less than

1 B ;
- —\§|Rsm0Rd0.
or? J, ©

Since sin # is positive in the range 0 < § < m we conclude
T
I} < —
| R| — 2R
and then I7}; — 0 as R — 400. Therefore

ix|g]
€ N E + +
/Rmdf’” = m e+ g

= lim F.(z)dz

To finish this case notice that

cos(&x) B cos(|¢]x)
/]RijLMde—/}R—ﬂ_i_w2 dz
os(&x)

. C .
because the function T is even and
w

72
sin(&x) o sin(|¢|z)
/Rx2+w2dx_0_/ﬂg 3:2—|—w2dx

is odd. Then

sin(&x
because the function (&2)
22 4+ w?

e~ cos(&x) sin(&x)
—  dr = dr —1 d
/szjtu)?m /R:cQ—irw?x Z/Rﬂ—l—w?x
- [l [ S,
r T2+ w? r T2+ w?

ciléle
- /R 2+ w? dr

o—wlél

™
w

{;}A(Q _ T ulel

2 + w? w

Then using the relation between Fourier transform and differentiation we finally obtain

Jo© = (5o—) @

72 + w?
d 1 A
B Zd_§<x2—|—w2> (&)

- a0

= —i7rsgn(§)e‘w|5‘.

We have just proven that
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Case 2: Re(w) < 0.
Applying the previous case to —w and noticing that f, = f_,, we get

Ful€) = —imsgn(€)eld

Case 3: Re(w) =0.

In this case we have
T

fu(x) = 5—, a=Im(w).

T —a

We are considering the Fourier transform of f,, as

: T .
lim / 5 5€ € o,
=0 s<|a?—a?|<1/s T~ — @

Note that
r 1|1 1
2—a2 2|lz—a z+al
Then
fu(€) = =lim ——e "y
260 0<|z?2—a?|<1/8 r—a
1 1 .
+—lim — Ty
2620 Js<ja2—a2|<1/s T+ @
= I+ 11

In the first limit we can replace the region {§ < |2?—a?| < 1/§} by the region {§ < |z—a| < 1/d}

since is not singular at x = —a. So
r—a
1 1 .
I = —lim — e =y
260 §<|z—al<1/s T — @
e_i(x+a)€
= —lim —dx
2690 Jscpp<1s T
e—ia§ e—i:v£
= lim dx.

2 090 Jsqpel<1s T

is not singular at the point = a we replace the region {0 < |z? — a?| <

Similarly, since
T+ a

1/6} by the region {d < |z + a| < 1/} in the limit to obtain

1 1 .
I = — lim/ — ey
2 §—0 5<|z+a‘<1/§x+a
1 e_i(x_a)g
= —lim —dx
2650 Jscpz)<1/5 x
61'0,5 ) 6—im§
= lim
2 020 Jscpp)<1s T

dz.
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cos(z€) .

X

Using that the function z +——

interval, we obtain

/ e~ s ir — / cos(z€) —isin(xf)dx
S<lz|<1/s L 5<|z|<1/8 T

sin(l¢))

= —isgn(§) /
o<|z|<1/8 T

. sin
~ —isga(e) [ S0) gy
slel<lyl<lel/s Y

Taking the limite § — 0 in both sides of (2.44) we have

—ixg .
lim € dr = —isgn(ﬁ)/wdy
020 Js<lz|<1/5 T R Y
= —imsgn(§).
Adding I and I1 we finally obtain
— el elag
Fule) = —in ()
= —imcos(a&)sgn(§).

In all three cases we have |ﬁ(§)| <, forall £ € R.

Proof of Proposition 2.2.5 : Denote by v the following function

o(z, 1) :/0 UL(t = ) F(-, ) (z)dt

The function v satisfies the inhomogeneous problem

0w+ 0% = ied?v+iF(z,t), v€R, t>0,
v(-,0) = 0.

CLAIM : It holds the following formula

. fztl i€)€? e
et déd
- [ [ S e e e

is odd, so it has integral zero over any symmetric

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

where F denotes the Fourier transform of F with respect to both variables z and ¢t. Let us

assume this claim is true for a while and go on in our proof. First of all, we differentiate the
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formula (2.48) with respect to the variable z to obtain

ax’u(x,t) = —//Hli—iie)éﬂ(eih'_e—it(l_ie)@)eixfﬁ@’T)dng

B deth m{N
_ //T+ e FlE mdedr
/ / Zfe_m -

— i€)&?
= Oy (x,t) + 3zvg(x, t).

Write
0,1 (z,t) = — ! // L15(5 Ve e dedr (2.49)
T 1 —ie w4+ &2 '
where w = w,; is a complex number such that w? = . Denoting
— i€
. \Y
i§
Ko ={ g} @

and using the properties of convolution in the integral (2.49) we have

8;51)1(1‘,75) = 1—26/(/K 57— ledf) thdT
- i [ (Jus s Poey@eae) e

= — 1 : /{Kw * ﬁ(t)(T)}(x)ede. (2.50)

1 — e

Using Plancherel’s Theorem with respect to the variable ¢ in the integral (2.50)

1 N
ﬁ||{KwT,e « FO(T)}Hz)|| 2.

Then applying Minkowsky’s inequality for integrals and finally Lemma 2.2.6 we obtain
sl < 1 [ Ko = )P (dulog
< 1o o= 9P 0lidy
v [ 1Fw) iy

1001 (, )|z =

IN

Sup HKwT,E
= ¢ [1F@. ) lzzdy
— APl

From (2.40) we finally conclude

H3x111||l;.>°(L2(Qj)) 5 ||F||L;L§
S Fle @
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Now we turn our attention to 0,vy. First of all note that this term can be written as
' EET)
. £ = 1/2 = it(1—ic) /lsgn(f)lil ) g i g
wlzt) = [ e | e
= DY2U.(t)G(x) (2.51)

where G is defined via Fourier Transform by

Ay [ isen(@)IE2F(E, 7)
G(ﬁ)/ T+(1—Z€>£2 dr

Next notice that
1 : —it(1—1e
{pVW} (t) =C Sgn(t)e t(1 )52 (252)

1 — ¢

So using Parseval’s identity and (2.52) we have

Gle) ~ sl [ 1T

= 1sgn 1/2 V; ’ T

= is@? [ OO {pv e @

— (Ol [ FCO©sgatle "0

= {HDUQ/Ug(t)F(-,t)sgn(t)dt} (&) (2.53)

where H is the Hilbert Transform. Finally using (2.51), Proposition 2.2.2, Proposition 2.2.4 ,
identity (2.53) and the fact the Hilbert transform is an isometry in L?(R) it follows that

100l 2@y = IDYV2U)G (2200,
S |Gl

— [UD? [ U sty

|D1/2/U ,t)sgn(t)dt|| 2

< IFln 2,

To complete the proof it remains to prove the formula (2.48). In fact, from the definition of

Uc(t), it follows that
Ud(t — ) F(-,¢)(x) = {e” IR ) €)1V O (). (2.54)

Using the property
{fC+my () =e™f(t)
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we have

HICR()(E) = {F(E6 7 — (1= ie)) (). (2:55)

Replacing the relation (2.55) into (2.54) it follows

Ut = )F (- t)a) = [

R

et {/ Fer —(1- ¢e>§2>e”'t'd7'} e de. (2.50)
R

Integrating (2.56) over the interval [0, ¢] and using Fubini’s theorem

/0 t Ue(t =) F (- 1) (z)dt’ = /R e~ (iate? { /R F(&,7 — (1 —ie)e?) ( /0 teiT/t/dT/) dT’} et dg

iT't 1

— /R e~ (it [ /R Fle, 7 — (1 —ie)er)S — dT'} eEde (2.57)

Performing the change of variables 7 = 7/ — (1 — i€)£? in the integral (2.57) we obtain

7 ei(T+(1—ie)g*)t _ 1(1 iy
/R (&) T+ (1 — ie£?) T e

t
[ue-tirc @i = [ e
0 R

_ et _ efit(lfie)g ‘
= F wCdedr.
/Rz (&7) e ¢ T

This finishes the proof. O

Since we will work in weighted Sobolev we need to know how to handle the commutator

of multiplication by z and U(t).

Proposition 2.2.7. If f is differentiable then for all x, t € R we have

2U(t) f(x) = Ue(t) (@ f) () = 2(i + )tU(t) (0o f) ().

Proof. By using properties of the Fourier transform and the definition of U.(t) we have

2U.(8)f(z) = a{e €Y (g)
= i{Oe(e T )}V ()
= —2(i+ e)t{e” TN} (2) + {e IO} ()

= =2(i + tU(t) (0 f) () + Ue(t) (2 f) ().
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Chapter 3

Uniform estimate for the solutions wu.

Throughout this chapter we consider the solutions u,. obtained in the previous chapter. We are

going to prove that such solutions are bounded with respect to the norm

QT(U)

lull e pzr2 + lltll e 12 + 100l 2200y + 102 (1) 22200y

= Oi(u) + Qa(u) + Q3(u) + Qu(v)
whenever the initial data uy belongs to the weighted Sobolev space
X =HPR)N{f € SR);zf € H/*(R)}
and
[uollx = lluollprar2 + lzuol| prave

is sufficiently small. Since the time of existence of the solutions u. depends on ||ucl| z3/2 we will
be able to extend each solution u, to an interval of time that depends only on the size of the

initial data.

3.1 Estimate for the norms (); and ()3

We start using Propositions 2.2.2, 2.2.4 and 2.2.5 to obtain

t
Qui(ue) + Q3(ue) < ||Ue(t)uO||LooH3/z+HD”Q/ Ue(t = ) (D (|uel F0pue) ) (') dt || oo 12
T 0

x

t
+H0zUe(t)uollie r2(q;) + Hax/o Ue(t = ) (On([uel " Oa1e)) ()t [lie (22, )

S ||u0||H3/2 + ||ax<|ue|1+aaxue)||lJ1.(L2(Qj))

N

ol gzs/2 + luel ™ O7uellir (20, + (1 + a)llluel* (Batte)*lln 2@y (3:1)
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Let us take care of each term in (3.1) separately. First we use Holder’s inequality to obtain

1+a 92 1+a 2
|||u€| * a.fvule;(L2(Qj)) < ||u€| ljl_—:a(Loo(Qj))||8:Bu€Hl;?°(L2(Qj))
< 1+a 9] )
= Hufi’ lj1_+“(Loo(Qj)) 3(u6>

In order to estimate the norm ||uc||p+e(z(g,) We are going to introduce the weight (z) =
J
(14 22)'/2 so we can pass from the norm [[tel[j1+a(100(q,)) to another one easier to handle. In
J
fact, using Holder’s inequality and the fact that (j) < 2(z) for x € [j,j + 1], we have

1

ellsapeoy < ) T uellizezoo@y)) || 75—
i ! ! (J) i+e
S @) T ulize ey
= [Ke) el e g (3.2)

Using Sobolev embedding in (3.2) we obtain
||u€||ljl.+a(L°°(Qj)) < ||J1/2+(<$>1_Ue) ||L;9Lg.
Combining Lemmas 1.3.1 and 1.3.2 it follows that

e Hz;+(Loo(Q]-)) S TV (@) ) | sor2

S ||J1/2(<x>u€)||2§fL% |’J3/2u€"%%OL%

N

Q(ue), (3.3)
for some 6 € [0, 1]. We conclude
|||Ue|1+aaiueHz;(L2(Qj)) S Q(Ue)%a- (3.4)

Now we turn our attention to |[uc|*(Dsuc)?[|i1(r2(q,))- First we use Holder’s inequality and then
J

estimate (3.3) to obtain

[
7T (LA(Qy))

a 2 < a
el @euo iz S Ml po, g 1950

el e oo ) 1Owttel® 2.
lj (L (Q])) ljl—a (L4(Q]’))
5 Q(“e)a”azueHQl%, . (35)
L (LMQy)

AN

To examine (3.5) we consider two cases:
Case 1: 1/2<a < 1.

In this case we have >4 50

—Qa
: [
I sy < T ||L1377(Qj),
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and then

[Opte]| 2 _ < TJr”azueH 2 g
LT (LA(Qy)) L (LT=a7(Qy))

1—a+

T i+l . 2
= T Z/ / |0pue(, t)| T2~ dadt
jez 70 I

< TH\Opue| 2
L™

L=

Since from Sobolev embedding we have

1Ostuell | 2o S el e

we conclude that

@cuE 2 _ ,S T+Ql Ue ).
| Hz;—a (14(Q))) (1)

Case 2: 0 <a<1/2
First let us prove the following

CLAIM: Consider p = (1 — 2a

) +. Then
IDY* ()20 )2 ST (@ )2 + 122 | 2.
In fact, since
DY ()P 0. f) = 0.DV* ()" f) — DY* (f0.((x)?))

we have

1DV ((@)0, )z < D) )2 + DM (F0(2))) 12 (36)

Since 9, ((z)?) and 9%((z)”) are bounded we have

1DV (£0u((@)) 2 < 1" (£0a((2)")) |12
~ 0 ((2)) 2 + 110n (fOu((2)?)) || .2
< 112102 (@) zoe + 105 £l 22 100 (@) | poe + 11| 221103 ()| o
S Al (3.7)

Now using Lemma 1.3.1 with # = 1 — p (notice that 0 <1 — p < 1) we obtain

174250 ()= | e

< ) NI T2 F ) (3.8)

ID¥({)” )] 2

I
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Applying Lemma 1.3.2 in (3.8) we get
1-0
1D () Nz < (2 @)z + 1722 fllee) 1722 g
S NPz A+ 1T f e (3.9)

Replacing the estimates (3.7) and (3.9) in (3.6) we finish the proof of our claim.

Going back to the proof of the case 2 we consider

(p.q) = (4, ] _42a—>7

but such that gp > 1. So using Holder’s inequality we have

1
axuﬁ 2 _ e "’&Eue 41400,
| ”zjl*“ (14(Q,)) ()7 . 1€7) HlJ(L @)
S H<j>pazue“z;(L4(Qj))
S @) Opuellpa s (3.10)
Using Sobolev embedding in (3.10)
[Ouc|| 2 S TYHIDY () Opue) || o2 (3.11)

1T (L4(Qy)

Then, using the claim we have just proved we conclude that in the case 0 < a < 1/2 we also

have
Bptte| = _ < THO(u,). 3.12
10 2 ) S T (3.12)
Thus, from (3.5) and the claim we conclude
|||u€|a<8$u6)2||l]1.(L2(Qj)) S T+Q(Ue)2+a- (3.13)

Plugging the estimates (3.4) and (3.13) in (3.1) we finally obtain

Q1 (ue) + Q3(ue) < lluollgare + (1 + THQ(u ). (3.14)

3.2 Estimates for the norms (), and (),

To estimate Qs (u.) and €4 (u.) we start applying Proposition 2.2.7 to obtain
zuc(e,t) = Uc(t)(wuo) — 2(i + €)tUc(t)(Ixuo)
t
- / Uc(t — ') (z]ue| " 0puc) (t')dt!
0
t
+2(i + ) / (£ — YUt — ) (O (e 0pu)) (¢t
0
= L+ NLy+ NL,.
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Then we have

D(ue) + Qu(ue) < Ll oo grrre + 100 Lllie22(@;))

HINLil| oo 12 + 102N Lil|i= 220,

HL%OHI

+||NL2||L%OH;/2 + ||aa:NL2||l}>°(L2(Qj))'

3.2.1 Linear terms

The linear terms can be estimated very easily by using Proposition 2.2.2. Indeed,

HLHLOTOH;/z 10 Lllizo 2y = |Ue(t)(@uo) — 2(i + E)tUe(t)<axu0)HL%oH;/2
H[0:Ue(t)(wuo) — 2(i + €)t0:Ue(t) (Ozio) i (12(@y))
||U€<t>(xu0>||L%oH;/2 + THUE(t)(aﬂJuO)HL%OH;/Q

H0:Ue(t) (o)1 (22(@y)) + Tl 02Ue(t) (rti0) lis= (22(@,)

N

N

[zl /2 + Tuol| 22

S ol x.

3.2.2 Nonlinear terms - Part 1

Here we focus on the nonlinear term N L. In fact, Proposition 2.2.4 implies for each t € [0, T
t
INLi(®)] e = |l /0 Ue(t = t') (@lue " Orue) () dt'|] o 12
t
< [ Ut = Ol 0 @it 1

0

t
+|DV2 / ULt — ) (e[ 0pul) ()| 12

0

t
< / el 0,2t + el D 2 o,
0

5 Tl/QHl"ue’lJraaer”L?TL% + “:L"ue’1+a('9mue”ljl-(L2(Qj)).

Using Holder’s inequality and the estimate for the norm || - [|;1+ 1 (q,)) In (3.3) we obtain
J
||I|Ue’Haamueﬂz;(L?(Qj)) < H|U’E|1+(LH1;(L°°(QJ‘))HxaﬁueHl;o(L2(Qj))
1+a
< ”uﬁ‘ l;-a(Loo(Qj))Hxaxuful;’o(LQ(Qj))

< Que) |20 uc]lis= 120

ol



Since

[20attellize (2@, = NOu(ue) — uellize(2@,))

IN

100 (zue) 1= 2@, + Nuelliz 2@,y

IN

Qy(ue) + HU€HL%L§

IN

Q4(ue) + Tl/QH“eHLi’?L%

IN

Quue) + T2 (ue)

IN

(1+ TI/Z)Q(uE)

we conclude

||x|ue|1+a8xue||l}(L2(Q ) S (14 TH)Q(u) e (3.15)

j
Since
”x|u6|1+a8a:ue”L2TLg = ||x|ue|1+aaxueHl]?.(L?(Q]-))

it follows from a similar argument that,

||$|Ue|1+a8xue||z§(L2(Q ) S (14 TH)Q(u)*, (3.16)

J

and so

|NL, 1+ THQ(u )t (3.17)

HL%OH;/Q 5 (

Finally, Proposition 2.2.5 and estimate (3.15) imply

t
||axNL1Hl;?°(L2(Qj)) < ||8x/0 Ue(t—t/)($|UE|1+‘Z8¢U€>(t/)dt/Hl?o(L?(Qj))

Hx\ue\”“&xue Hl;(LQ(Qj))

IN

S (14 THQ(u)™.

3.2.3 Nonlinear terms - Part 11

Now we shall analyse the nonlinear term N L,. First, we bound its H'/? norm as follows.

t
INLallye < 20+0] [ (6= O = )0l 00)) ()t
0

x

IN

t
21 + )| / (t = Y0t — 1) (Jud 2D ) (¢ |y
0 :

AN

2(1+e)||/0 (t =Vt — ) (Jue] T Opue) () dE || 22
+2(1 4 €)||D'? /0 (t — "YUt — ') (Do (e T0pue)) (#)dt || 2.

02



After that we apply Minkowski’s inequality and the smoothing effect in Proposition 2.2.4 to

obtain
t
INLa(Olve < 200+t [ [l 0]
0
t
+2(1—|—e)tHD1/2/ Uc(t — ') (0x(Jue] " 0pue) ) (¢)dt|| 12
0

t
+2(1 + €)|| D? / Uc(t — ) (=0, (|uc| " 0puc)) (') dt || 12
0

2(1 + €>T2|| |u6|1+a8$u6||L§.9L%

AN

+2(1 + €>T"8x(’u5|1+aazue) HIJI(LQ(QJ))
Using the estimates (3.4) and (3.13) we have

||8m(|u6|1+aaﬂcue)Hljl.(L2(Qj)) S “|ue|1+aa£ue||l}(L2(Qj))+H|u6|a(8zU6>2||ljl.(L2(Qj))

< 1+ TH), (3.18)

and using Sobolev embedding

H|u6’1+aaﬂfu€“L%’L% < ”ueHi—%aLgOHaxueHL%oL%
S HUGHIL;IH;/HHUGHL%OH%
5 Q(Ue)2+a-
Then we conclude
INLoll, oo S (14 T)Q(ue)* .

Ly HY? ~
Finally, to bound 9, N Ly with respect to the norm l;?O(LQ(Qj)) we employ Proposition 2.2.5 to

obtain

t
||azNL2Hl;><>(L2(QJ)) S 2(1 + E)”ax/() (t — t/)Ue(t — t/) (8x(\u5\1+“0xu6))(t')dt’”l;o(Lz(Qj))

IN

t
2(1 + e)T||8x/0 Ue(t = 1) (0 (fue " 00ue)) (1)t 122 (2@

t
+2(1 4 €)||8, / Ue(t = 1) (0 (t'[ue] " Opue) ) (8) At 1= 120 )
0

2(1+ E)T“aw(‘u6‘1+aaxue>Hljl-(LQ(Qj))

IN

+2(1+ )| 0u (¢ |ue| T Opue) 1 (22(q,)

IN

41+ E)T‘|aa:(|ue|l+aaz“e>HZ}(LQ(QJ'))'
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Using (3.18) it follows
||a$NL2||l]1(L2(Qj)) S (1 +T7)Q(u)* .

Therefore we obtain

Qo (ue) + Uue) < uollx + (1 4+ TH)Q(u)*H. (3.19)

3.3 Uniform time of definition and uniform estimate

Gathering the estimates (3.14) and (3.19) we conclude that there exist § > 0 and ¢ > 1,

constants independent of € such that
Qr(ue) < clluollx + (1 +T7)Qr(ue)*™ (3.20)

for all € > 0 whenever we have u, solution of (2.3) defined in [0,7]. A consequence of that is

the following

Theorem 3.3.1. Let ug € X, with ||ug||x < 1/4c. Considering the constants ¢ and 3 in (3.20)

_ (1 - 4c||uo||x)”ﬁ_

dcluol| x

we define

If uc is a solution of (2.3) defined in [0,T] with T' < T, we have

_ _ B
g <« L= VIOl
C

(3.21)

Proof. For 0 < T < T consider the polynomial p(z) = c;2? — & 4 ¢||uo||x, ¢z = ¢(1 +T7), and

note that p(x) has two roots

1—+/1—4dcs 1 1 —4cs
BV e o ) F O RV g s [

2CT QCT

that, in its turn, belong to (0,1). Then since c;x*™* — z + c||lug||x < p(z) in (0,1) and p(x) is
negative in (rg, 1) we have

cpr®t — x4 cflugl|x < 0

for all z € (rg,71). So, if we have z < c|lugl|x + cz2?T® then either z < ry or £ > r;. On the

other hand we have from (3.20) that

Qg (ue) < clluollx + e (ue)**.
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Thus Q4 (ue) € (0,70] U [r1,+00). Since

T €0, 7] — Q(u)
is continuous it follows that either
Qz(u) <71, for all 0T T (3.22)

or

Qp(ue) > ry, for all 0< T<T (3.23)

If the second possibility (3.23) happened we would have

lim Q7 (ue) > .
T—0

This is not possible because
lim Q7 (ue) = [luollx
T—0

and |[|ugl|x < ro. Therefore
Qs(ue) <rg, for all 0< T<T.

]

We finish this chapter by proving that all the solution u. can be defined in the same interval

of time.

Theorem 3.3.2. Let ug € X, with ||ug||x < 1/4c. Consider T, as in Theorem 3.3.1. Then all
the solutions u. of (2.3) can be extended to the interval of time [0,T%].

Proof. We know that there is a solution u, defined in [0, 7] where

63

14+a °

To=
clluoll 727

We assume T, < T, otherwise we do not have anything to prove. Since ||ug||x < 1/4c we have
in particular that u, is defined in [0, €*]. Consider the problem (2.3) with the initial condition
vy = ue(+, €3) instead of ug. Theorem 2.1.2 assures that there exists a solution v, defined in

[0, T.] where

3
~ €
T, = e

cllvoll sy
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By Theorem 3.3.1 we have

1
ool < Que) < o

Thus v, is defined in [0, €*]. Consider then ! the function defined in [0, 2¢3] by

ue(-,t), if tel0,él
V(- t —€3), if te e 26]

We have u! is a solution of (2.3) defined in [0, 2€%]. Assume 2¢3 < T, otherwise there is nothing
to prove. Consider the problem (2.3) with initial data u!(2¢?) instead of uy. By theorem 2.1.2
we have that there exists a solution v, of this initial value problem defined in |0, il], where

~ €3

S e

From Theorem 3.3.1 we have [|uf(2€°)|| ;32 < 1/2¢, then T! > ¢8. Define

ul(-,t), if te[0,2€%,

€

Uz('at) -
vt —€¥), if te 2636

We have u? is a solution of (2.3) defined in [0, 3¢’]. We can repeat this argument to obtain

extensions ul, u2, ... , u*7! of u. to the intervals [0,2€3], [0,3€3], ... , [0, ke3] as long as we

have ke3 < T,. So this argument finishes for some k, and then u’j will be an extension of u, to

0, T.]. ]
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Chapter 4

Sending ¢ to zero

In the previous chapter we proved that all solutions u. of (2.1) can be defined in the same
interval of time [0, 7']. Here we intend to let € go to zero, and then to prove the limit is in fact

the solution of the integral equation (8).

4.1 Convergence in L?

We will first prove that the sequence {u.} converges in L?. To do so it will be important the

following lemma

Lemma 4.1.1. Let ug € X satisfying the smallness assumption of Theorem 3.3.1. Let u,. be

the corresponding sequence of solutions of (2.1). Then,
up [0, 1 < o0
e>0
Proof. First we differentiate the integral equation (2.3) to obtain
t
deu(t) = U.()deuo — / UL(t — )0, (Jue| 0, () dt
0

= Uc(t)0puo — (1 + a)/o Ue(t —t')(Jue|* ™ Re(@d,uc)Dpuc ) (t')dt

t
— / Uc(t — 1) (Jue| 1 0%u,) () dt'.
0
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By applying Lemma 2.2.1 to the pair (4, 00) we obtain
T
otcligae S Wstolie+ 1+ a) [ lud (O liza
0

T
s [l
0
S 10utolle + (1+ Tl O Py + T 020
S 10utolle + (1+ T 100t g + T2l 0221

S 0zuollre + (1 + a)TllueII“Li;ng/z + T2 Jue| " OFue| g 1z (4.1)

Using the computation (3.3) we have

|||ue|a+1a§u6||L2TL§ = |||u€|a+1agu€”lj2.(L2(Qj))

||u€||llj2—:%a(L°°(Qj)) ||83U€||Z?O(L2(Q]))

o 1+a
- ||u6| lJ1-+(L°°(Qj))Q3<u€)

< Q(u )t (4.2)

IN

Then substituting (4.2) in (4.1) we conclude
10suell g ree S lluollmr + T Que)**

]

In what follows we fix u., us and we consider w = we ¢ = u. — ue. Taking the difference
between the equations

10 + (1 — i€)02uc + ilue| ™ Opue = 0 (4.3)

and

i0pue + (1 —i€)Pue + i|ug|' T Opue = 0. (4.4)

we get that w satisfies
10w + (1 — i€)0%w + (€' — )0 ue + i(|uc|"t — |ue ") 0pue + ilue|*0%w = 0. (4.5)
Considering the conjugate of (4.5) we have that w satisfies

—i0p0 + (1 4 i€)0?w — (€' — €)%t — i(|uc|" T — |ue|"T)0ptte — i|ue |0 w = 0. (4.6)
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Multiplying (4.5) by w and (4.6) by w and integrating their difference we obtain
d
z% / lw|?dz — (1 — ie) / |0, w|*dx — (1 + ie) / |0, w|dz
= 2@(6—6’)R€/W8§u6/d$

+2z’Re/(!u€]1+“ — |ue | WO ucdx

—i/|u€/|1+“w8mwdx—i/|u€/|1+“w8rwdx. (4.7)
Using integration by parts in (4.7) and the fact the functions involved vanish at infinity we
have
—i/|u6/]1+“w8xwdx—i/|u6/]1+“wamwdx
= —i/|u€/|1+“w6xwdx+i/8x(|u5/|1+aw)wdx
= —i/|u6/]1+“u_18xwd$+i/é’x(\ua\lJr“)\w\Qd:U—i-i/]uel\lﬂu_@xwdx
- i/@x(\u6/|1+“)|w\2d:c.
Then
’L%Hl[)(,t)”%% +2i6“8;ﬂl)(-,t)”%§ = 2i(e — e’)Re/u_)agueldx
+2iRe / (|4 = Ju +*) @00 dz
+i/0x(|u6/|1+“)|w|2dx
= I+1I+111
So
%Hw(vt)H%g < I+ [+ [ (4.8)

Next we are going to estimate each of the terms I, I] and I11. First we take care of I.

In fact, using integration by parts and Holder’s inequality

Re / WO uy (z,t)dx

= ‘Re/@xwaxue/(x,t)daj

< |[02w]| 2 [|Opue || 2
< (el + e ll ) l[ue |
< 2sup Q(u.)?

e>0
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Then
1I] < cle — €| (4.9)

where ¢ is a constant independent of € and €. Using (2.15) we have

hm/wwwﬂ—m$“mmm@JMx

AN

[l + = ol dz

S (luellze + llullgee) 100t e lwllZs

< sup Q(ue) | Ovue| e lw]| 72 - (4.10)
e>0
Also,
[t ubas| < ouuel i ol
= [[(1+ a)|u6’|a_1Re(a6’axu€’)HL%"HwH%i
< (1+ a)|||u6’|aaxue’||L§°”wH%g
< (14 a)lluellie 10sue |z llwliz,
S sup Q(ue)||Oztie || w7 (4.11)
e>0
Therefore
[T+ 111] S (105uell e + 10wue||zge ) [w]Z2- (4.12)

Gathering the estimates (4.9) and (4.12) in (4.8) we obtain
d
et Dlzz S le = €I+ 10zue ( Ollgellw(:, )17 (4.13)
Finally, applying Lemma 1.1.1 we obtain from (4.13)
¢ t
Hw(,t)H%g < exp (c/ H@xuel(.7s)HLgods)/ cle — €|ds.
0 0
So, by Holder inequality
(-, )3 S 2le = €T exp (T4 Opue g ) -
Since the quantity [|OyuellLs 1o is uniformly bounded in € we conclude that
Il =
that is, {uc}eso is a Cauchy sequence in L3¥L? and then there exists u € L L2 such that

lim [lue —ul| g2 = 0.
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4.2 Existence of solution

We have constructed a family {u,}.~o where each u, is the unique solution of

10 + O2u + iul' T 0u = ied?u

u(-,0) = wg

in C([0, T); H*?(R)). There the solutions also satisfy

i) {uc}eso is bounded in L%Hgﬂ;

ii) There exists a function u € C([0,T]; L*(R)) such that u, converges to u in L L2 as € goes
to zero. Furthermore, using property (i) and the interpolation

gzw

I -

me < |1 e,

we conclude
iii) For all 0 < s < 3/2, u € C([0,T]; H*(R)) and u, converges to u in LFH? as € goes to zero.
We are going to use these properties to show that u is a solution of the integral equation

(8). First we look at the linear part. Using Plancherel’s theorem we have

U (t)uo — Ut 2 = / |+ it 2] 6P

< / € 1P (€) e,

Now we use the Dominated Convergence Theorem to conclude that the last integral goes to

zero as € goes to zero. Then for each ¢ € [0,T] we have
liné |Ue(t)uo — U(t)ug|| 2 = 0. (4.14)
e—

To investigate the convergence of the nonlinear part denote

v(x,t) = — /Ot Ut —t")F(t"dt

where F(z,t) = |u|'™®d,u and similarly

ve(w,t) = — /0 t Ud(t — ) E.(t))dY
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where F.(z,t) = |uc|'™0,u.. We have
t
[0 —vellzz < H/ Ut = t)(F = F)")dt']| 2
H [ 0= ) = Ut — £ (B

IN

/ |F(t) - Fu(t)||2dt

/ H < —it—t)e _ ef<i+e><tft'>52> Ff(t\f)HLgdt’

T|F ~ Flliz s
(- “>f)<i<?'>—th'>>||Lgdt'

# [ (1= 0 ) F@ g

t
< AP - Fllig+ [ 0= CONF@ gt (415)
0

IA

Since |(1 — e‘e(t_t/)g)]*{(t\’ﬂ is bounded by 2|F(t')| and
IF )y 2 = IF () 24 22
= Nul"Opully 12
< TllullzipellOsul s
< Tlullzg

L H}

we can apply the Dominated Convergence Theorem to conclude

e—0

lim/ I(1 ) F ()| 2dt’ = 0.

Finally, we take care of ||F' — F||1sr2. Adding and subtracting [u|'"*0,u and using triangle

inequality

|1 F = Fellzgerz = ] 0pu — ’ue’HaazufHL%"Li

IN

(™ = ue™*) Ozl e 2

e 00 (u — ue) 152

IN

’1+a

[u - |Ue|1+a||L39Lg°HazU”L;OLg

e g e 100 (w — ue)l| g 22
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Using (2.15) and the Sobolev embedding, we have

1F = Fellogrz < N(lul® 4 fue ) — uell g e 10zl e 12
+HUGH2—‘L_OGL°°Hax<u_u€)”L%°L%
a

< (Ul e+ Tel2 o Ot e = el e

+ H ||1LJ;>CLI_11/2+||a (ue_u)HLi}oLg'

As u, is bounded in L%OH;E/ * we conclude
I1F = Fellrgerz S llu— uellgems-

Then we conclude

limn |[oe () — 0(8)|| 2 = 0 (4.16)
e—0 *

for each t € [0, 7). It follows from (4.14) and (4.16) that for every ¢ € [0, 7]

w(t) =limuc(t) = U(t)ug — /0 Ut —t)(Ju"T0u) (t')dt

e—0
in L?(R).

Now we prove that v € L>([0,T]; X) N C([0,T]; H*(R)) for all s < 3/2. To do so we first
note that since {u(t)}eso is bounded in H%2(R) and {zu,(t)}eso is bounded in H'/?(R) there
exist a subsequence {u,,(t)}52,, and functions v(t) € H¥?(R) and w(t) € H/*(R) such that

u,(t) = v(t), in H¥*(R) (4.17)

and

zu, (t) = w(t), in HY(R). (4.18)

We are going to argue that u(t) = v(t) and zu(t) = w(t) and then conclude u(t) € X. The
convergence (4.17) means

lim [ (D)(€)G(E)(1 + E2)°de = / )B(E)(1+ €2)de

Jj—00
for all ¢ € H32(R). So, considering

¢

FSrep

with ¢ € S(R), we have

i [ u, D0 = [ (o)

J—00
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for all » € S(R). After using Parserval Identity we obtain

lim / ue (2, 1) (a)de = / o(z, )6 () dz (4.19)

J—00

for all ¢ € S(R). On the other hand, recalling that u.,(t) — u(t) in L*(R) we also have

lim [ (7, t)p(v)dr = /u(x,t)gb(x)dx (4.20)

j—00

for all ¢ € S(R). Then from (4.19) and (4.20) we have

/v(x,t)d)(:v)d:v: /u(x,t)¢(x)dx

for all ¢ € S(R). Then we conclude v(z,t) = u(x,t) for almost every x € R. Now we are
going stablish the second identity zu(t) = w(t). Using the same argument we conclude from

the convergence (4.18) that

lim a:uej(a:,t)¢(a:)dx:/w(x,t)(b(x)dx (4.21)

j—00

for all ¢ € S(R). Again, using that {u,(t)}52, converges to u(t) in L*(R) we obtain

lim [ 2uc,(z,t)¢(x)dr = /xu(x,t)gzﬁ(x)dx (4.22)

Jj—o0
Then from (4.21) and (4.22) we obtain
/w(m,t)qS(m)dm = /xu(x,t)gb(x)dx

for all ¢ € S(R). Then w(z,t) = zu(x,t) for almost every x € R.

We summarize what we have proved above in the following theorem

Theorem 4.2.1. (Existence) Let ug € X, such that ||uo||x is sufficiently small. Then there
exvist T = T(|luol|x) > 0 and u : [0,T] — X, u € L>([0,T]; X) N C([0, T]; H3?~(R)), solution
of

u(t) = U(t)ug — /Ot Ut —t)(|u|"T*0pu) (t)dt'.

4.3 Uniqueness

Here we are going to prove that the function u is the unique solution of the integral equation

(8) in the class L>([0,7]; X) N C([0, T]; H?>~(R)).
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Lemma 4.3.1. Ifv € L>([0,T]; X)NC([0,T]; H*?>~(R)) is a solution of the integral equation
(8) then d,v € LLL2.

Proof. In fact, using Lemma 1.2.2 and Lemma 1.2.4 we have

100l ers. S 1D 2upl|ze + o]+ Ouvll s

S luollgsz + ol 2 10:v] 22

S Nuollgsr + T2 ([0 |z rgel| 00l e 2. (4.23)

Using Holder’s inequality and Sobolev embedding we have

1
1_
[oll e < 1) 0lligorg O o
SO 0) e (4.24)

Using Lemma 1.3.1 we have
17725 0) s < Nlollzeorin)-
Then we obtain d,v € L L3 and
0.0z z5. S Tutollgare + T2l 0 710
O

Let @ be another solution of (8) in L>([0,7]; X) N C([0, T]; H*?~(R)). We will prove that

u(t) = u(t) for all ¢ sufficiently small. To help us on this task we consider the norm

lvlle = 0l oo a2 + 10201 Lo 12

which allows us to compute the difference u — @ without differentiate the nonlinearity. Indeed,

using the smoothing effects we have

lu—allr < ||/ ) (lul"0pu — |a]"0,u) (¢')dt || g 12
+HD1/2/ U(t =) (Jul""Opu — [a"*0,0) (¢')dt || e 12
+1|0, / (0w — || 1 0pa) (t)d || e 2,
S M0 — |U|1+aaa:ﬂ||L1TLg + [lul " Opu — [l Oyt sz (4.25)
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Note that for (2.15)
[l " 0pu — Jal " 0ptt| = ||ul"™*" — [a™*||0p ] + |Jul"0p(d — u)]
S (" + ul)a — ullozal + [u] 7|0 (i@ — w)].

1

(4.26)

1 1 1 2
Then using Holder’s inequality with 5= + — + — and ¢ > — and then Sobolev’s embedding
p q T a

lful ™ Ou — @l Optill gz < TINal® + |ul*ll g rall@ — ull g 21Ot 3o s

T2 [ul 0 (i — ) 1.0

AN

T(||ﬂ||L%ng/2 + ||u||L%oH§’/2)1+a||ﬂ - UHL%OH;/Q
+ T2 ul g 102 (@ — )l 5 3.
Arguing as we did in (4.24) we get
™ Nezege S Null 200 2100)-

Thus

|||U’|1+aa$u - |ﬂ|1+aa$a”L%ﬂL% S T(HQNLHL%OHf/Q + ||u||L%oH2/2)1+a”ﬂ - UHL%OH;/Q

Hlull oo o733 @ = ).

Regarding the norm L!L% we have from (4.26) that

llal™*0pu = Ja " Dpll . S @l + Julll 1o, @ —wldi] o

T I—a 12
z T
o 10— )15
S (el e + @l o)lll@ = UIaxﬂHLzlia—L%
HlqufaL? lla = wl|7.

Now we choose n sufficiently large and use Holder’s inequality with

1 1 L 1 d 1 1 L 1
g —_ an —_ = —_.
1 1 n’ 2 24 n

1—a 1—a

Applying Sobolev embedding we obtain that

IA

e = uldpal]

SRR RN LS

1— 2
R Al

S HaxﬁHL;%aLz; I — uHL;?Hi/Q
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Using one more time that

|- ||L;+L°T° S llzee o

we obtain

Hul ™ 0u — @l Optill iz < (allEe qomyxy + 1l ooy ) 102 e Ukl

~Y
T
Hllull 4o g0 1 — el

It remains to estimate ||0, ||

Case 1: a>1/2.

Ll aL2+ :

In this case we can take 2+ = = and then interchange || -

| -] .. 1 and after
L3pg—e

I
Ly~ LZh

using Sobolev embedding we have

+
ng_ ~ ST HUHLOOH3/2

Case2: 0<a<1/2
1—2a
2

In this case we consider p > . Then using Holder’s inequality with

1 1 2

T "1-2

1—2a

and that the function ()77 € Lﬁ_(R), since p > , we obtain

10zl 1) POt 2o 2 1) 12y -

TJFH<‘>paa&ﬂ||L°T<>L§+

Ll aL2+

N

N

THD((-) 0ut)|| Lss 12 (4.28)

L is sufficiently small. To finish this case we claim that

1 _ 1
Wheree—2 5

1D(2)0e )2 S NI 2@ )2 + 122 fl e (4.29)
In fact, first notice that
1D (@) 0u fllz < IIDH({2)? )]l z2 + [I1D°(fOe({x)?)| 2

S 1D Fllze + 11 £0a () M2z + 102 (f0u(2)?) | 2
S DT Fllze + (102 (2) Mz + 1052 oo ) [1£ 121

Next consider § =1 — p. Notice 0 <1—p <1and 1+ € <1/2+ 6 for small e. So by Lemma
1.3.1 we obtain
D () )l S N2y NPT FI1G-.
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Finally, we use Lemma 1.3.2 to conclude

1D (@) Pl S 1T NI T2 f 1
S (@) e+ 1T Flle) " 1722510

< 2@z + 172 f | e

Then using (4.29) in (4.28) we deduce that

< T @] oo gpo,735) -

2+N

Then
lu"*0pu — |l F0sill ez S T ()l zqomyo + lullz=ori) " lu — allr (4.30)
b2 0 gy 1 — wllr-
Therefore
o= llr S [T (lallzeqomin + lullegomo) ™ + el 3o ma | e —all.— (431)

Taking 71" sufficiently small and recalling that ||u||ze(o,77,x) is small we obtain from (4.31) that
lw = allz = 0.
Hence a(t) = u(t) for all ¢ sufficiently small. To prove uniqueness in the whole [0, 7] consider
J=AT € [0, T.];u(t) = u(t), for all ¢te[0,T]}

and let 7! be its supremum . We would like to prove T, = T.. Suppose T < T, and consider

T € (T, T.). Since u and u are equals in the interval [0, 7]] we have
llu = illr S Ml Ot — [l O] oz ez + [l Opve = [ Oril| o2y - (4:32)
Using in (4.32) the same argument applied to (4.25) to obtain (4.31) we get
lu—allr < (T =T (1@l qrrmix + llullze i) e — dllr
Hlll gy 7y, lu — llr.

Loo([TL,T

We conclude that ||u — a|r =0, i.e. T € J, for all T sufficiently close to 7, on the right. That

is a contradiction because 7 is the supremum of J. Therefore u(t) = u(t) for all ¢ € [0, T%].
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Theorem 4.3.2 (Existence and Uniqueness). There exists 6 > 0 such that for each uy € X,
with

|uol|x <6

there exist T = T(8) and a unique u € L>([0,T]; X) N C([0, T]; H>>~(R)) solution of

u(t) = U(t)ug —/0 Ut —t)(|u|"T*0pu) (t)dt'.
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Chapter 5

Further results

In this chapter we regard the high power case @ > 1. The case a = 1 was already mentioned in
the introduction. A great difficulty we had in the low power case 0 < a < 1 was to control the
term HuHLyaL%o. Since we do not have maximal estimates for |U(?)f|[zree when 1 < p < 2,
we were obligated to introduce weights and many other difficulties arose from that. But now,
for a > 1 we are in a more comfortable situation, because we do have maximal estimate for
exponents p > 2. These maximal estimates will be our main ingredient in our approach here.
Another facility of the case a > 1 is the fact we have that the function |z|* is Lipschitz, so
we will be able to perform the contraction principal argument. So we will obtain a stronger

theorem of existence. Indeed, we have

Theorem 5.0.3. Leta > 1 and T > 0 be given. There exists § > 0 such that for all initial data
ug € H'W(R) with |Jug||gi+ < & there exists one, and only one u € C([0,T]; H*(R)) solution
of
u(t) = U(t)up — /t Ut —t')(Ju]"*0pu) (t))dt (5.1)
0

satisfying

IDY?* Oyul| e 2, |l L2ree < 00

Proof. Consider the integral operator ¥ = W, defined by the right hand side of the equality
in (5.1), the norm

Q(u) = [ull poe g1+ + D> O]l o2 + llull 25
and the space

Ear ={ueC(0,T]; H*(R)); Q(u) < A}.
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Next we consider u € E4 7 and initial data ||ug| g1+ < 6. We shall prove W(E4 ) C Ear for
small values d. Applying the smoothing effects Lemma 1.2.3 and Lemma 1.2.4 in the nonlinear

of U(u) we have
19 () o prae + D240, (u) | ez S 8 + |1 DY2F (Jul ™ 0u) | L1 3.
Now we use the Leibniz rule for fractional derivatives Lemma 1.1.4 to obtain
IDY2* (lul ™ 0uw)l| apz, S DY (ful ") 2= par|10sull 2 g2+ + 1l ™l zrnge 1DV Outll e 1z
where M is a sufficiently large number. Sobolev embedding Lemma 1.1.3 implies
10wl 2+ S Nlull gz

and from the fact ¢ > 1

Ml lzyzge < lullZzpoe lullzps-

Notice L°LF = L¥L° and using again Sobolev embedding we obtain
Hul™ s < Q)™ (5.2)

Thus
1DV (Ju " 0pu) || a2 S TR DY (Jul ™) || g2 s + Q(u)**.

Since the F'(z) = |2]*"! is C! (as a function in R?), the chain rule Lemma 1.1.5 implies
||D1/2+(|U|a+l)||L§*LJI\! S |||u|a||L§L¥+||D1/2+u||LiVI+L¥+‘

Using Sobolev embedding

Ml Npapas < T |ul®lzzeg
< ||U||L2L°°||U||LooLoo
S |IUHL2L<>°\|UHLOOH1+
and
DY ull g pare = DY ul s pass

S T+H“”L;9H;+-



We obtain

DY ([ulF ) | 2 par S THQ(w) .
We conclude

19 ()| e prae + DY 00 () ez S 0+ (L + TH)Qu)*

(5.3)

Next we estimate ||W(u)|[zz2r5. Indeed, using the maximal function estimate Lemma 1.2.5 we

have
T
H\P(U)”LiL%O < ||U0HH1/2+—{—/0 ”U(t)(U<_t/)<|u|1+aamu>)||L%L%odt/
S 5+|Hu|l+aaxUHL1THi/2+.
Note

el Ol 1 pyave = Nl Oatll gz + 1DV (] Opr) | 3 1

It turns out, by Sobolev embedding

[l Opull 1112

AN
|
==

Hbg';r
88
2
=
~

3

™!

S Tl el

TO(u)*.

IN

Using the Leibniz rule Lemma 1.1.4

||D1/2+(|U|1+aaxu)”L1TL§ < T1/2||D1/2+(|u|1+aazu)||L§L2T
< |]D1/2+(|U|1+G>HL5;4L¥Ha:ru|’L§+L§+

el 2152 1DV Opul| 12 e
where M is sufficiently large. Now using Sobolev embedding in (5.4) it follows

1DV (Jul ) gy = 1D (Jul ) g e

IN

THDY (Jul ™) e e

N T+H|U’1+GHL%°H;

S Tl cgns + T (ful ") | g2z
S T ull e + TNl Osull e 2

S T+Hu||1L;°aH;+ + T+HUH%%°L;;°H8:EU”L§9L§
< THQ(u)t.

72

(5.4)

(5.5)



Keeping using Sobolev embedding to the other terms of (5.4) we also have

”aanHL?ﬁL?T+ = T+”81U||L39L§+

S T+HUHL§9H%+7

and

|||U|1+'1||L35L§ao < ||U||L3L§9||U||CigOL;o
= ullzzg llullze e
S Nullzzrgllullfe s
< Qu)te.
We conclude
1 ()l 2 S TQ(u)* (5.6)

and then gathering with the estimate (5.3) we finally conclude
QU (u)) <5+ (1+T7)Qu)*™. (5.7)

If § < A/2 and A satisfies

c(1+TH)A*H < é

we have Q(u) < A. Then if we take

1

A= 1
(2e(1 1 7))

and initial data with size § < A/2 we will have U(E4 1) C E4r.
Next we will prove that the map ¥ is a contraction in E4r with respect to the norm €2

and then there will be a unique u € E4 p satisfying W(u) = u. We consider two elements u, v

of E4r. We have
t
U(u) — U(v) = — / Ut —#)(|u 0 — 0] 0,0)d . (5.8)
0
Then using Lemma 1.2.3 and 1.2.4 we have

10 (u) = @)l pgepgze + 1D 0u(W(w) = V()] 15z,
< DY (ul 05w — ol 0p0) |11y

< DYl = o) Daw)l| gz, + DY (Jo]*0u(w — 0)) | 11 13-
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Similar to our argument presented in the first part we have by the Leibniz rule

1D+ (ol =0 = o)llzrg S 1DV (o)l gm0 (= 0) 2o 2

HIl sz | DV 0w = )| peers

N

THDY2* (o] ) | - 2w — v)
HvllFapeellvll 2o e 2w — v)
< 1+ T+)Q(u)1+a9(u — ).

Now, in order to estimate || DY**((Jul"** — [o]"**)8,u)| 1112 we first notice that

lu

1
d
|1+a_|v‘1+a — A@(‘w(e)‘l—&-a)de

1
= (1+a)Re [/ lw(0)|* w(0)dO(u — v) (5.9)
0
where we are denoting w(6) = 6u + (1 — 0)v. Using the Leibniz rule Lemma 1.1.4
IDY2E(ul ™ = o))l gz < IDY2H(ul = [ )| 2 pas 18l 2+ 2
= o e | DY Ol ez
where M is taking sufficiently. Using Sobolev embedding it follows that
Ha:ru|’L§+L?F+ S T+||U||L;°H;+-
So we have
IDY2H(u e = o))y S THQA DY (Juf ™ = (o] ) |z (5.10)

~Y T

Q) [Jul™ = ol

Using (5.9)
1
Ml = ol e S /O [lw(@)]*(w = v) |11 50
1
S ||”LL—U||L3L°T°/0 [|w(0)|*(| 25 db-
But
Hw@) Nz < Nw(O)llrzrg lw(O)] 71
S Nw(@)rzrg[w(d)] QL;:H;/H
< Quw(8))
S (Qu) +Q(v))"
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Therefore

Hul ™ = ol s S 1+ T)(Qw) + Qv))*Qu — ). (5.11)

Now lets take care of

1DV (Jul 7 = [o] )| 2 -
We use formula (5.9)
1
DYl = oz S [ NP (@ 0O o)l s (512

Applying the Leibniz rule with 1/M = 1/M; + 1/M; and then using Sobolev embedding we
have
IDY2* (jw(@) " @ (@) (uw = 0)ll2-par S DY (lw(B)* (0)) | ar g lu — vll 2oz

(@) ol g a0 1DV (w = )] sz 20

< DY (lw ()" @ (0)) ] s gy u — v)

T w(O) |71 w0 225 1 D2 (u = )] oo 10
< DY (lw ()" @ (9)) ] Lyr gy A — v)

FT @)L e IOz lu = ol e
< DY (Jw(0)1* w(0)) ] ar e u — v)

+TTQ(w(9))*Qu — v).

Finally, since a > 1 the function F(z) = |2|*'z is C' and then we can apply the chain rule

(Lemma 1.1.5) and obtain
IDY2* (lw(0)* 0 (0)) | par < w (@) an 1DV (O)]] o

where 1/M = 1/M, + 1/M,. For M sufficiently large such that (¢ — 1)M; > 2 we have from
the Sobolev embedding

IDY2* (@)1 @ (0)) | ar < (O34

Hence

DY (w(9)|* @(9)) (1 = v) 2 1gr S THAO)"Qu —v). (5.13)
Replacing (5.13) in the integral (5.12) and using that Q(w(6)) < Q(u) + Q(v) we get
D2 (ul = — o)l 32 S THOw) + Q)2 — ). (5.14)
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Replacing the estimates (5.12) and (5.14) in (5.10) we obtain
1Dl = o) ety sz, < (1 + TH)(Q(w) + Q) O u — v). (5.15)
Therefore
10 () =@ (0) ] e g+ DV2F 00 (W (1) =W (0)) | oz S (AT Q) +Q(v)) ' Q(u—v). (5.16)

To finish the proof it remains take care of ||W(u) — W(v)|/z2r50. Indeed, applying the

maximal estimate Lemma 1.2.5 we have

t
W (u) = W ()| 22 L5 / U(t =) (|ul"*"0pu — o] 0v)dt!
0

L2L®

IN

t
/0 IUOU (=) (Jul" O — [0 0p0) || L2 e

«S H |u|1+aazu - |U’1+aaxUHL1TH;/2+- (517)
To estimate (5.17) we separate it in two partes
[l 0 — |U|1+aaxUHL1TLg (5.18)

and

1DV (Jul 0 — [o]*000) |y 2. (5.19)

We use (2.15) combined with Sobolev embedding to obtain that (5.18) can be bounded by

T (|ul™ = [0 ) Opull Lge 2z + 1000 (u — v) | L2

< Tllul™ = [0l llzpre 1 0ull g 22
HI[ol g 20 10 (w — v) | Lges
S Tllul® + [ol* g reellu = 0l g Lo 10nul| Lo 22

HV | e 100 (w0 = V) [l 25012

< T(Qu) + Q) (u — v).

In (5.19), since we can not control 3/2+ derivatives in the L2, we first pass from L%.L? to the

L2LZ. So we first bound (5.19) by
TY2IDY2* (Jul™* Oy — [0 0pu) | 2 2. (5.20)
Then adding and subtracting |v|**?d,u we can bound (5.20) by
T2 DY ((Jul e = o] )dpu) | 2 g, + T2 IDY2* (Jo 00 (u — )l 212, (5.21)
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Now we apply Leibniz rule keeping in mind we can only control 3/2+ derivatives in L°L2. So

in the second parcel of (5.21) we apply the Leibniz rule in the following way

IDY2H (Jol 0 (u — )2z S IDY2F (0™ ) | yrar 100 (w — 0) | g2 2+
ol 2o 1DY2* 00 (u — 0) | pgerg

< TD (o ) e s — ) + oz Q2w — )

Arguing as we did in (5.5) and in (5.2) we obtain
IDY2* (Jo] 0, (u = 0) |22 S (L + THR0)HQ(u — v). (5.22)

Now in the first parcel of (5.21) we use the Leibniz rule as we just did in the second parcel and

then we obtain

1DV ((ul ™ = o *)dew)llrzrs, S T2IDY (Jul ™ — ol ) g e Q(u)

Y

a7 = o[ 2y Qu). (5.23)
Using Sobolev embedding we have, for sufficiently large M,
DY (ful 7 = (o] ) ||z par S N0(ul T = [0l | g2
Notice since a > 1 we have, z — |z|* is Lipschtz, i.e
[l = Jol*] < (Jul "= + [o]* ") |u — vl. (5.24)
Using (5.24) and Sobolev embedding

10 (lul " = o] F ) rgers S [Mul@cu — [v]"Opv]lLLs

< el = ol ez l0eulge iz + 03 o 1900 = )22
S o R o X P
ol 1 100 (e — )l
S ol e + Tl ) = vl e e el
N2 e o = lagers
S Q) +00)Qu - ) (525)

7



Finally, still using the Lipschitz property (5.24) together with Sobolev embedding we obtain

Ml = ol iz < Mul® + 1" llzzeg v — vllzre

(N O

x

(Qu) + Q)" Qu — v).

IA

Therefore we have the bound

IV ((Juf 5 = o] ) 0s) 2z S (1+T)(uw) — 20)) 2w — )

Collecting all these estimates we conclude finally obtain
19 (u) = ¥ ()2 S 1+ TT)(Qu) + Q0))*Qu —v),
which combined with (5.16) provide us
QU (u) = V() S (1+T7)(Qu) + Q0)*Qu —v).

We conclude

QW (u) — ¥(v) < 5w —v)

1
2
for all u,v € E4r, provided we choose A convinient small.
Remark 5. Note that, if 0 < a < 1, we would have

| a

lul* = ol S lu—w

~

(5.26)

(5.27)

(5.28)

Then we would obtain ||0.(Ju]"™* — [v]'**)[|erz S Qu — v)* instead of (5.25) and so the

contraction principle argument would provide
Q¥ (u) —¥(v)) < =Q(u—v)°

instead of (5.16) which does not mean ¥ is a contraction.
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Chapter 6

Additional Remarks

It is a well-known fact that the generalized derivative Schrodinger equation has conserved energy
E(u) = 1/|8 ul*dx + le/ |lu| " a0, udx (6.1)
2 ‘ a+3 S '
Other two conseved quantities are the mass
1 2
M(u) = 5 |u|“dzx, (6.2)

and the momentum

P(u) = —%/ﬂ@mudx. (6.3)

Because the energy is conserved, the first question we would like to address is the existence of
global solution for this equation for the case 0 < a < 5.

In the following we would like to mention some results in the periodic context. Herr [14]
adjusted the argument in the work of Takaoka [30] to obatin that the IVP associated to DNLS
is local well-posed in H*(T) for s > 1/2. Later on Herr along with Griinrock [8] extended this

result for initial data ugy € P/l':s(']I'), where

[[uo] Hy(T) — H<€>SaUng’a

and s >1/2,2>r>4/3and 1 =1/r+1/r".
Recently Simpson and Ambrose [1] studied the general case a > 1 in the periodic setting.

It was proved existence of weak solution

u e L=([0,T); HY(T)) N C([0,T); H*(T)),
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s < 1, for periodic initial data ug € H'(T). They proved u is a strong solution € C([0,T]; H'(T))
if ug € H?(T). However it is still unknown if we have the existence of solutions u € C([0,T]; H*(T))
for initial data in H'(T).
Finally, we observe that the parabolic regularization method gives us, in the case a > 1,
a local strong result in H® for s > 3/2. The argument can be applied in both periodic and

nonperiodic case [32].
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