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Abstract

The goal of this work is to study stable sets of skew-products with di-
mension 1 on the fibers. By studying the continuation of the periodic points,
we prove that assuming absolute stable and infinitesimal stable in the one-
parameter family of perturbations associated to the uniform translation is suf-
ficient to imply hyperbolicity. Working with bounded solution we improve the
previous result assuming Hölder variation. This means that a set is α-absolute
stable by the uniform translation if the distance from the conjugation to the
inclusion varies Hölder-continuous according to the distance of the original
systems with its perturbation. We prove that if α > 1/2, the skew-product is
C2 and preserves orientation on the fibers then the central direction is hyper-
bolic. After this we study the central topologically hyperbolic sets of Skew-
Products. We see that Kupka-Smale condition and topological hyperbolicity
property are not enough like it is for diffeomorphisms on surfaces (under the
hypothesis of dominated splitting) or endomorphisms in dimension 1 (under
the hypothesis of non critical points). Next we find an interesting family of
skew-products that we will call the rigid case which has a natural way of per-
turbing it to obtain hyperbolicity. We finish this thesis by working on the
continuation of hyperbolic periodic points proving a dichotomy for hyperbolic
sets about the ambient manifold dimension.
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1 Introduction

One of the objectives in Dynamical Systems is to describe the space of diffeomor-
phisms of a manifold. One of its classical question is the description of the stable
ones. In the study of such a question S. Smale introduced the concept of hyper-
bolicity in [Sm1]. J. Palis and S. Smale conjectured in [PaSm] that the Cr struc-
tural stable diffeomorphisms are the axiom A with strong transversality and the Cr

Ω−stable diffeomorphisms are the axiom A with no cycles. Both conjecture were
proved in the C1 topology, the first one the converse was proved by Robinson in
[R2] and the direct by R. Mañé in [M3]; for the second one the direct was proved
by J. Palis in [Pa] and the converse by S. Smale in [Sm2]. The question in the Cr

topology remains open.

One way to approach the stability conjecture is by working with a stronger notion
of stability. Given M a Cr Riemannian manifold and F : M → M a Cr stable
diffeomorphism, there exist U(F ) a neighborhood of F in the Cr-topology such
that for every G ∈ U(F ) we have an homeomorphism ϕ : M → M which verifies
ϕ ◦ F = G ◦ ϕ. What can be done now is to ask for a regularity in the variation
of ϕ according to the variation of G. It is said that F is absolute stable if there
exist C > 0 such that d(ϕ, Id) ≤ Cd(F,G). From the analysis via implicit function
done by J. Robbin in [R1] we can conclude that Axiom A plus strong transversality
implies absolute stability. The converse was proved in the C1 topology by J. Franks
in [F] and J. Guckenheimer in [G]. In the Cr topology context the converse was
proved by R. Mañé in [M1]. Since hyperbolicity implies a “C1” regularity, the open
question regarding this approach is what happens when the regularity is lower than
Lipschitz, in this context nothing is know.

There is also a related concept to this approach of the stability conjecture which
is infinitesimal stability. If X(M) is the space of C1 vector fields we can define the
adjoint map of F : M →M as F ∗ : X(M)→ X(M) by

F ∗(Y )(x) = DFF−1(x)(Y (F−1(x))).

We say that F is infinitesimally stable if the map F ∗ − Id is surjective. From the
analysis via implicit function done by J. Robbin in [R1] we can conclude that Axiom
A plus strong transversality implies infinitesimal stability. Later R. Mañe in [M1]
proved the converse. In Chapter 2 we discuss a point of view to understand the
relationship between absolute and infinitesimal stability.

In this work we mainly study the stable Skew-Products systems with dimension 1
on the fibers. This space family is closely related to the partially hyperbolic systems.
The techniques studied here work on the Cr context because we do not try to do
local perturbations, but to understand our invariant sets as a whole and to find
sufficient conditions that will imply hyperbolicity.

Given a Cr diffeomorphism h : M → M , we define the space of Skew-Products
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related to h as the space of Cr maps H : M × R→M × R such that

H(x, t) = (h(x), f(x, t)) where x ∈M, t ∈ R,

and f : M ×R→ R is a Cr function for which the map t 7→ f(x, t) is monotone for
every x ∈M .

We will use the notation of SP(h) or simply SP to describe this space.

It is a well known fact that the hyperbolic periodic points have a continuation
if the system is perturbed. If the perturbation is obtained by a one-parameter
curve which is differentiable then the curves that describe this continuation are also
differentiable due to implicit function theorem. By studying the first derivative of
such curves we proved some results related to absolute and infinitesimal stability.
What we did here is to give new proofs of this notions in the more rigid context
of skew-products but weakening the hypothesis by asking absolute and infinitesimal
stability in the perturbation by the uniform translation.

Given h : M → M , we are going to be interested to work with Skew-Products
defined over a locally maximal hyperbolic set of h, if Λ is an hyperbolic set then
SPH(h,Λ) or simply SPH is the space of Skew-Products defined over Λ. We note
the Skew-Products that preserve the orientation of the fibers ({x}×R) by SP+ and
SPH+.

Given H ∈ SP , the uniform translation will be the one-parameter family Hs =
(h, fs) where fs(x, t) = f(x, t)+s. A compact invariant set Λ0 ⊂M×R is absolutely
stable by the uniform translation if there exist ε > 0 and C > 0 such that for every
s ∈ (−ε, ε) there exist ϕs : Λ0 →M which verifies ϕs◦H = Hs◦ϕs and d(ϕs, i) ≤ C|s|
where i : Λ0 → M × R is the inclusion. We say that Λ0 ⊂ M × R is infinitesimally
stable by the uniform translation if there exist g : U0 → R such that

∂H

∂t
(z)g(z)− g(H(z)) = −1 ∀z ∈ U0,

where U0 is a neighborhood of Λ0.

Studying of the continuation of the hyperbolic periodic points we proved:

Theorem 1: If H ∈ SPH+ and Λ0 is a locally maximal set absolutely stable by
the uniform translation then Λ0 is hyperbolic.

Theorem 2: If H ∈ SPH+ and Λ0 is a locally maximal set infinitesimal stable
by the uniform translation then Λ0 is hyperbolic

Once we assume stability, we could say that a perturbation is bad for the stability
if the relationship between the distance of the conjugacy to the inclusion and the
distance from the perturbation to the original system has a bad sense of regularity.
An interesting conclusion from the previous results and the following theorem is that
in the orientation preserving Skew-Products context, the worst perturbation for the
stability is the uniform translation and if the regularity for this perturbation can be
tamed then the system is hyperbolic.
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The key point to prove the previous results is that the first derivative of the
continuation of the periodic points are uniformly bounded. What we did next is
to weak the hypothesis on the map φs asking it to vary just Hölder continuous
on the parameter s instead of Lipschitz. In this situation the previous technique
will not work because we do not have an uniform bound anymore. What we did
to overcome this was to adapt the techniques developed in [Ti] for systems with
Hölder-Shadowing property. The main idea here is that just Hölder continuity will
let us estimate the action of the differential on the center-bundle and also the lack
of speed will imply certain slow growth in the perturbations.

Given Λ0 ⊂M ×R a compact transitive invariant set we say that it is α-absolute
stable by the uniform translation if there exist C0 > 0 such that d(φs, i) < C0s

α.
We say that Λ0 is central hyperbolic if it either verifies:∥∥DHn

|{0}×TtR
∥∥ n→∞−→ 0 ∀(x, t) ∈ Λ0,

or ∥∥∥DH−n|{0}×TtR∥∥∥ n→∞−→ 0 ∀(x, t) ∈ Λ0.

The theorem then is the following:

Theorem 3: If H ∈ SP+ is C2 and Λ0 is a locally maximal set α-absolutely
stable by the uniform translation with α > 1/2 then Λ0 is central hyperbolic. If H is
just C1+γ with γ ∈ (0, 1) and α > 1/(1 + γ) then Λ0 is central hyperbolic.

After this, we continued to work in the understanding of the stable Skew-Products
by looking for geometric consequences from topological behaviors. This idea was
worked first in the complex dynamics context where the first result alike is the
Schwartz lemma which finally evolves in proving that if the Julia set is expansive with
no critical point inside then it is hyperbolic. After that, in the real dynamics context
Singer in [Si] proved that for maps in one dimensional manifolds with negative
Schwartzian derivative if all the critical points belong to the basin of some hyperbolic
attractor then the system is hyperbolic. This work was generalized by Mañé in [M2]
proving that for 1-dimensional manifolds a C2 Kupka-Smale endomorphism with
an expansive invariant set with no critical points has to be hyperbolic. Years later
Pujals and Sambarino proved in [PuSa1] that for C2 Kupka-Smale diffeomorphisms
of a surface, an invariant set that has dense periodic points and has dominated
splitting must be hyperbolic (They proved more in general a Palis Conjecture). The
scheme of the proof is first to see that the manifolds associated to the splitting are
in fact stable and unstable manifolds in a topological sense, and using that they
prove hyperbolicity.

In dimension 3 in [Pu] there is an example which is a skew-product, Kupka-Smale
and topologically hyperbolic but not hyperbolic. This example is not in a generic
context for partially hyperbolic systems and is also what we called rigid, yet we
managed to perturb it to create one which verifies what we called strong Kupka-
Smale. By no means the previous example has some kind of robustness, on the
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contrary it can be perturbed to become hyperbolic. The key part in this example is
the existence of a minimal set which is not hyperbolic.

Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically
contracting on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| < ε2, ∀k ≥ n,

where Iε1(z) = {x} × [t− ε1, t+ ε1] if z = (x, t).

Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically
expanding on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| > ε2, ∀k ≥ n.

We say that H is central topologically hyperbolic on Λ0 if it is either topologically
expanding or topologically contracting on Λ0.

In our study of central topologically hyperbolic skew-products the first thing to
see is the existence of an invariant graph:

Proposition 1.1: (Invariant Graph) If H ∈ SP and Λ0 is central topolog-
ically hyperbolic then there exist b0 : Λ → R a continuous function such that
Λ0 = graph(b0). In particular H(x, b0(x)) = (h(x), b0(h(x))).

Using this invariant graph, we got the following decomposition lemma:

Lemma 1.2: (Decomposition) If H = (h, f) ∈ SP and Λ0 is central topologically
hyperbolic and b0 : Λ→ R is a continuous function such that Λ0 = graph(b0). Then
there exist U a neighborhood of Λ×{0} in M×R and g0 : U →M×R which verifies

f(x, t) = g0(x, t− b0(x)) + b0(h(x)) and g0(x, 0) = 0 ∀x ∈ Λ.

Moreover if there exist g1 : U →M ×R and b1 : Λ→ R such that f(x, t) = g1(x, t−
b1(x)) + b1(h(x)) and g1(x, 0) = 0 ∀x ∈ Λ then b0(x) = b1(x) and g0(x, t) = g1(x, t)
for all x ∈ Λ.

At the moment we were working with this, our known examples of skew-products
had the map b0 always Cr. We called them later the rigid case. It is easy to see
that if b0 is Cr we have that g is Cr and therefore we can build and describe all
the rigid cases. This family of sets have the property that the dynamics live in a
hyper-surface reducing the dimension of the ambient manifold in 1. The problem
here is that the central direction, the one which we are intrested in studying, is not
tangent to the hyper-surface but transversal. Despite this we proved the following:

Theorem 4: If H = (h, f) ∈ SP and Λ0 is central topologically hyperbolic having
b0 the graph map as differentiable as H then it is approximated by central hyperbolic
systems. If H ∈ SPH is stable then Λ0 is hyperbolic.

The problem with the rigid case is that is not generic in SPH. This is due to
the fact that if b0 is Cr we can see that both the strong stable and strong unstable

4



manifolds belong to the graph of b0. This implies that for periodic points the strong
stable manifold and the strong unstable manifold intersect which is far to be generic.
We see that most of skew-products are what we called strong Kupka-Smale. We
discuss this with more detail in Chapter 3.

What we did next is to work with the family of locally constant Skew-Products
over hyperbolic sets LCSP . This is the set of Skew-Products in SPH such that if
Λ ⊂ M is the hyperbolic set of h, for every x ∈ Λ there exist a neighborhood U(x)
for which f(x, t) = f(y, t) ∀y ∈ U(x) ∀t ∈ R.

Having in mind the idea of the ambient manifold in which the set Λ0 lives, we
proved the following dichotomy:

Theorem 5: Given H ∈ LCSP, and Λ0 an homoclinic class, if Λ0 is an hyper-
bolic set then one of the following two happen:

• H|Λ0 is normally hyperbolic. If H|Λ0 is contracting in the central direction then
the tangent bundle of the sub-manifold is Euu ⊕ Ec and if it is expanding the
tangent bundle is Ess ⊕ Ec.

• H can be approximated on LCSP by skew-products such that the continuation
of Λ0 contains periodic points with strong connections.

The theorem says that if we take an hyperbolic homoclinic class of H then in
the first case we can reduce the dimension of the ambient manifold. If this do not
happen we can perturb it to build strong connections between periodic points. Once
we have this if we perturb again we obtain blenders inside Λ0 due to [BD]. This are
known to be dynamical objects with full topological dimension.

One part of the theorem comes from [BC], for the other part we studied the
continuation of the periodic points. We proved that if there are two points which
belongs to the same strong stable manifold for the contractive case we can perturb
our system and create a connection between periodic points. What we would like to
do is change the hypothesis of hyperbolicity by the hypothesis of stability. If we could
do so, in the normally hyperbolic situation we could apply [PuSa1] for dimension 2 or
[PuSa2] for higher dimension, obtaining hyperbolicity for the set and in the blender
case create some heterodimensional cycle if we do not have hyperbolicity. This is all
deeply related with the Palis conjecture which states in this context that a system
can be approximated by either hyperbolic ones or ones that have heterodimensional
cycles.

We finished this thesis with a discussion about the techniques worked and some
conjectures we formulated about this topic. In Chapter 2 we prove theorems 1, 2
and 3, in Chapter three we prove theorem 4 and in Chapter 4 we prove theorem 5.
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Notations

Let M be a compact orientable riemannian manifold. Given a Cr diffeomorphism
h : M → M , we define the space of Skew-Products related to h as the space of Cr

maps H : M × R→M × R such that

H(x, t) = (h(x), f(x, t)) where x ∈M, t ∈ R,

and f : M ×R→ R is a Cr function for which the map t 7→ f(x, t) is monotone for
every x ∈M .

We will use the notation of SP(h) or simply SP to describe this space.

We are going to call M the base and for every x ∈ M the set {x} × R will be
called a fiber.

On our study the dynamics on the base is going to be fix, so we set now the
notation h for the diffeomorphism acting on M .

We also use x to represent a point in M , t to represent a point in R and z to
represent a point in M × R. Let us also define the projections πM : M × R → M
and πc : M × R→ R.

On SP we are going to set the Cr topology, in particular the closeness of two
skew-products H1 = (h, f1) and H2 = (h, f2) will be given by the closeness of the
maps f1 and f2.

If Λ is an invariant set from h, we say that it is hyperbolic if there exists C > 0, λ ∈
(0, 1) and ∀x ∈ Λ there exist Es

x, E
u
x subspaces from TxM such that TxM = Es

x⊕Eu
x

and

∥∥Dhn|Esx∥∥ ≤ Cλn
∥∥∥Dh−n|Eux∥∥∥ ≤ Cλn ∀x ∈ Λ,∀n ∈ N.

We will call SPH(h,Λ) or simply SPH the space of Skew-Products defined over
a hyperbolic set in the base.

If h is hyperbolic, given ε > 0 let

W s
ε (x) = {y ∈M : d(hn(x), hn(y)) ≤ ε} ,

and
W u
ε (x) =

{
y ∈M : d(h−n(x), h−n(y)) ≤ ε

}
,

be the stable and unstable manifolds. It is a well known fact that those sets are Cr

manifolds tangent to the spaces Es
x and Eu

x respectively.

A compact set Λ is locally maximal if there exist U ⊂M such that Λ ⊂ U and

Λ =
⋂
n∈Z

hn(U).
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On most situations we are going to be interested in studying the Skew-Product
defined over locally maximal set of h which may or may not be M . We therefore set
the notation Λ as a locally maximal set of h. If we are working with an hyperbolic
set, we require it to be transitive and since it is locally maximal then the periodic
points are dense.

We also are going to be interested in studying locally maximal sets of H for which
we reserve the notation Λ0. In particular we want Λ and Λ0 to be related so we ask
from now on that πM(Λ0) = Λ.

If the map t 7→ f(x, t) is an increasing monotone map for every x ∈ M or for
every x ∈ Λ, then we say that H is an orientation preserving Skew-Product and we
are going to note them as SP+ for the general case and SPH+ if we are working
with an hyperbolic set on the base.

Given (x, t) ∈M × R and ε > 0 we define Iε(x, t) = {(x, t+ t1) : |t1| < ε}.
Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically

contracting on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| < ε2, ∀k ≥ n,

where Iε1(z) = {x} × [t− ε1, t+ ε1] if z = (x, t).

Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically
expanding on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| > ε2, ∀k ≥ n.

We say that H is central topologically hyperbolic on Λ0 if it is either central
topologically expanding or central topologically contracting on Λ0.

Given H ∈ SP and z ∈M × R we will call the central bundle

Ec
z = {(v, s) ∈ TzM × R : v = 0} .

Regarding the central bundle Ec, we can construct a continuous vector field e
such that e(z) ∈ Ec

z and |e(z)| = 1.

Given H = (h, f) ∈ SP we define the function f ′ : M × R → R by f ′(x, t) =
∂f
∂t

(x, t).

Since h does not depend on t ∈ R we have that the differential of the map H
acts on tangent bundle leaving the central bundle invariant. In particular due to
our notation we have that DH(e(z)) = f ′(z)e(H(z)). Therefore

∥∥∥DHn
|Ec

(x,t)

∥∥∥ =
n−1∏
i=0

|f ′(H i(x, t))|.
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Given z ∈ Λ0 we define the forward Lyapunov exponents as:

λ+,+(z) = limsupn
log(|

∏n−1
i=0 f

′(H i(z))|)
n

,

and

λ+,−(z) = liminfn
log(|

∏n−1
i=0 f

′(H i(z))|)
n

.

We say that H is central hyperbolic on Λ0 a locally invariant set if there exists
C > 0 and λ ∈ (0, 1) such that either:

∥∥DHn
|Ecz

∥∥ ≤ Cλn ∀z ∈ Λ0,

or ∥∥∥DH−n|Ecz∥∥∥ ≤ Cλn ∀z ∈ Λ0.

The last type of Skew-Products remaining to define are the locally constant. We
will define them with more detail later, but for now we just say that for every x ∈ Λ
there exist a neighborhood U(x) for which f(x, t) = f(y, t) ∀y ∈ U(x) ∀t ∈ R. We
call this family LCSP .

The dynamics of a Skew-Product in LCSP would not be interesting if Λ was not
a Cantor set and the dynamics in the fiber were not dominated by the dynamics on
the base. The first property comes from a restriction on h. For the second property
we require them to be partially hyperbolic.

Let F is a diffeomorphism of a manifold N and Λ1 a compact invariant set, we
say that Λ1 is partially hyperbolic with the decomposition TΛ1N = Es ⊕Ec ⊕Eu if
there exist C > 0 and λ ∈ (0, 1) such that :

∥∥DF n
|Esz

∥∥ ≤ Cλn ∀z ∈ Λ1,∥∥∥DF−n|Euz ∥∥∥ ≤ Cλn ∀z ∈ Λ1,∥∥DF n
Esz

∥∥∥∥∥DF−nEcz ∥∥∥ ≤ Cλn ∀z ∈ Λ1,

and ∥∥∥DF−nEux ∥∥∥∥∥DF n
Ecz

∥∥ ≤ Cλn ∀z ∈ Λ1.

Like in the hyperbolic case, it is know that there exist W cs(z), W cu(z), W ss(z),
W uu(z) and W c(z) Cr manifolds dynamically defined.

We are going to restrict our Skew-Products in SPH to those which are partially
hyperbolic. In particular for those we say that H ∈ SPH is strong Kupka-Smale if
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it is Kupka-Smale and also:

W ss(p) ∩W uu(q) = φ ∀p, q ∈ Per(H).

Let us fix now some notation in the context of LCSP . Given H ∈ LCSP and a
point z = (x, t) ∈ Λ0 we set:

• Ess(z) = Es(x)×{0} and Euu(z) = Eu(x)×{0} are invariant under DH, the
action of the later its basically the action of Dh and we call this spaces the
strong stable and strong unstable respectively.

• Since in this class of Skew-Products the periodic points are dense, we will be
interested in working over the homoclinic class of a periodic point which is
defined by:

Λ0(p) = W s(σ(p))>∩W u(σ(p)),

where σ(p) is the orbit of p.

If F is partially hyperbolic at Λ1, we say that it is normally hyperbolic if there
exist S ⊂ N a sub-manifold which contains Λ1, is locally invariant and its tangent
bundle is Es ⊕ Ec or Eu ⊕ Ec.

We will define now the locally constant Skew-Products with more detail. For that
we need the notion of Markov partition.

We will start taking h an hyperbolic map on Λ a locally maximal set. A Markov
partition P = {P1, . . . , Pk} is a finite covering of Λ such that

• If x, y ∈ Pi ∩Λ then W s
ε (x)∩W u

ε (y) contains a unique point which belongs to
Pi.

• int(Pi) ∩ int(Pj) = φ if i 6= j.

• If x ∈ int(Pi) ∩ Λ and h(x) ∈ Pj then h(W s
ε (x) ∩ Pi) ⊂ W s

ε (h(x)) ∩ Pj.
• If x ∈ int(Pi) ∩ Λ y h(x) ∈ Pj then W u

ε (h(x)) ∩ Pj ⊂ h(W u
ε (x) ∩ Pi).

From that definition, we have the next result:

Theorem 1.3: (Bowen-Sinai) If Λ is an hyperbolic locally invariant set then,
given β > 0 there exists a Markov partition P such that the rectangles of the partition
have diameter smaller than β. Moreover there exists a semi-conjugacy between Λ
and a sub-shift defined on PZ.

Set P = {P1, . . . , Pk} a Markov partition related to Λ and π : Λ → {1, . . . , k}
defined by π(x) = j if x ∈ Pj. We say that a H = (h, f) ∈ SP is locally constant
if for every x, y ∈ Λ such that π(x) = π(y) then f(x, t) = f(y, t) ∀t ∈ R. We will
denote the set of locally constant skew-products by LCSP(h,P) = LCSP . Pay
attention to the fact that our spaces LCSP have fixed the diffeomorphism on the
base h and also the Markov partition.

Let us fix now some notation in the context of LCSP . Given H ∈ LCSP and a
point z = (x, t) ∈ Λ0 we denote:
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• W s(x) as the stable set which contains the points y ∈ M which verifies
d(hn(x), hn(y))→ 0.

• W s
loc(x) as the local stable set which contains the points y ∈ W s(x) such that

π(hn(x)) = π(hn(y)) ∀n ≥ 0.

• W ss
loc(z) as the locally strong stable set which is W s

loc(x)× {t}.
• W ss(z) as the strong stable set which is the union ofH−n(W ss

loc(H
n(z))) ∀n ≥ 0.

• W u(x), W u
loc(x), W uu

loc (z) and W uu(z) defined in an analogous way.

• we say that two points z0 and z1 belong to the same cylinder if π(πM(z0)) =
π(πM(z1)).

• W su(z) as the set of points z1 such that belong to the same cylinder as z and
πc(z1) = πc(z).

• Given two periodic points p1 and p2 we say that they have a strong connection
if W ss(p1) ∩W uu(p2) 6= φ. Observe that if p1 ∈ W su(p2) then p1 and p2 have
a strong connection.

• Given H ∈ LCSP , for every Pi ∈ P we define the map fi : R → R by
fi(t) = f(x, t) for a certain x ∈ Pi. These functions will be called central
functions.
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2 Stability by Translations

Given a stable set Λ of a diffeomorphism F : M → M , we say that it is absolute
stable if the variation of the conjugation according to the variation of the perturba-
tion is Lipschitz. This means that there exist C > 0 and U(F ) such that for every
G ∈ U(F ) there exist ϕG : Λ → M which conjugate the dynamics between Λ and
ϕG(Λ) and verifies:

d(i, ϕG) ≤ Cd(F,G),

where i : Λ→M is the inclusion map.

Another way to work this is the following: suppose that Λ is a stable set of F
and take a one-parameter family of perturbations Fs with s ∈ (−ε, ε). We have for
every x ∈M a curve ϕx(s) which is the continuation of the point x. This define us
the following map:

ϕ : Λ→ C((−ε, ε),M),

where C((−ε, ε),M) represents the space of maps from (−ε, ε) to M . To us stability
means that the continuation is always close to the inclusion. This implies that
actually we are working on C0((−ε, ε),M) and the map ϕ is continuous if we set
the C0 topology in C0((−ε, ε),M). The absolute stability condition means that we
are working in CLip((−ε, ε),M) and the map ϕ is continuous if we set the Lipschitz
topology. Observe in particular that if Λ is in fact hyperbolic due to implicit function
theorem for Banach spaces we are working with C1((−ε, ε),M) and ϕ is continuous
if we set the C1 topology.

Having in mind the stability conjecture, given a one-parameter family of pertur-
bations the worse the regularity we can put in C((−ε, ε),M) the worse is the pertur-
bation to the stability. In our study we realized that for skew-products in SP+ the
uniform translation is the worst perturbation in terms of stability. We prove that if
we perturb by the uniform translation and we have some slightly stronger sense of
stability than the classical, then we have hyperbolicity.

Another concept associated to work with a stronger sense of stability is the one
of infinitesimal stability. If X(M) is the space of C1 vector fields we can define the
adjoint map of F as F ∗ : X(M)→ X(M) by

F ∗(Y )(x) = DFF−1(x)(Y (F−1(x))).

We say that F is infinitesimally stable if the map F ∗ − Id is surjective. This is
basically equivalent to work with C1((−ε, ε),M) and having that ϕ is continuous if
we set the C1 topology.

Let us fix now the main definitions in the context of skew-products for this chap-
ter. Given H ∈ SP and Λ0 a locally maximal set we say that is stable if there
exist U0 neighborhood of Λ0 and U(H) a neighborhood of H such that for every
H1 ∈ U(H) the maximal invariant set of H1 in U0 is conjugated to Λ0.
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Given H = (h, f) ∈ SP and Λ0 a locally maximal invariant set of H, we define
the uniform translation family by Hs = (h, fs) ∈ SP where fs(z) = f(z) + s for
s ∈ (−ε, ε) ⊂ R. We say that Λ0 is stable by the uniform translation if there exist
ε0 > 0 such that the locally maximal set Λs of Hs in U0 is conjugated to Λ0 and the
conjugation φs is C0 close to the inclusion ∀s ∈ (−ε0, ε0). We also say that:

• Λ0 is absolute stable by the uniform translation if there exist C0 > 0 such that
d(Id, φs) < C0s.

• Λ0 is infinitesimal stable by the uniform translation if there exist g : U0 → R
such that

∂H

∂t
(z)g(z)− g(H(z)) = −1 ∀z ∈ U0.

• Λ0 is α-absolute stable by the uniform translation if there exist C0 > 0 such
that d(Id, φs) < C0s

α.

2.1 Infinitesimal Stability and Absolute Stability

Even though it is well known that general concept of absolute and infinitesimal
stability is equivalent to hyperbolicity (c.f. [R1], [F], [G] and [M1]), our hypothesis
is weaker since we are only taking the perturbation by the uniform translation and
not considering the set of all perturbations.

Studying the continuation of periodic points we prove this two theorems:

Theorem 1: If H ∈ SPH+ and Λ0 is a locally maximal set absolutely stable by
the uniform translation then Λ0 is hyperbolic

Proof. If φs is the conjugacy between H and Hs, given z ∈ Λ0 we call z(s) = φs(z).
Since we are not perturbing the base it is clear that πM(z) = πM(z(s)) ∀z ∈ Λ0.

Due to the fact that h is hyperbolic on the base and therefore we have a strong
shadowing on the base, we have a dense set of periodic points A such that all of
them are contractive or all of them are expansive. Let us assume that they are
contractive.

Given a periodic point p ∈ A we have that p(s) is a Cr curve. We will now
compute the first derivative of such curve at s = 0 obtaining that:

Lemma 2.1:

p′(0) =
∞∑
i=1

i−1∏
j=1

f ′(H−j(p)).

Proof. We have that φs(H(p)) = Hs(φs(p)) which is equivalent to H(p)(s)
= Hs(p(s)). Now on the central coordinate which is the one that matters to us
we have that πc(H(p)(s)) = fs(p(s)) = f(p(s)) + s. If we take the first derivative
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we conclude:
H(p)′(0) = f ′(p)p′(0) + 1.

By an inductive argument we can see that:

p′(0) =
n∏
j=1

f ′(H−j(p)).H−n(p)′(0) +
n∑
i=1

i−1∏
j=1

f ′(H−j(p)).

Since
∏n

j=1 f
′(H−j(p)) converges to 0 by the hyperbolicity of p and H−n(p)′(0)

takes values on a finite set, if we take the limit when n goes to infinity we conclude
the lemma.

Observe that since H preserves orientation each term of the sum is a positive
number.

The absolute stable condition implies that p′(0) ≤ C0 ∀p ∈ A.

If there exist z ∈ Λ0 such that

limn

n∏
i=0

f ′(H−i(z)) 6= 0,

then there exist δ > 0 and {nk}k∈N an increasing sequence of natural numbers such
that

nk∏
i=0

f ′(H−i(z)) > δ ∀k ∈ N.

For each k ∈ N we can find pk ∈ A such that

nj∏
i=1

f ′(H−i(pk)) >
δ

2
∀j ≤ k.

In particular p′k(0) ≥ kδ/2 which is a contradiction. Therefore

limn

n∏
i=0

f ′(H−i(z)) = 0 ∀z ∈ Λ0.

This is a known condition to be equivalent to hyperbolicity on a given bundle.
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Theorem 2: If H ∈ SPH+ and Λ0 is a locally maximal set infinitesimal stable
by the uniform translation then Λ0 is hyperbolic

Proof. The concept of infinitesimal stable is directly linked with the differentiability
of the continuation of the set. Our concept of infinitesimal stable by the uniform
translation implies that the continuation when perturbed by the translation will be
differentiable.

Using the notation of the previous theorem, let us prove then that z(s) is differ-
entiable.

Suppose that it is differentiable and observe that z(s) must hold the condition

Hs(z(s)) = H(z)(s).

Since our perturbation only happens on the fiber, the previous equation can be
seen as

fs(z(s)) = πc(H(z)(s)).

Observe that fs(z(s)) = f(z(s)) + s and if we take derivatives we conclude that

f ′(z(s))Dπc(z
′(s)) + 1 = Dπc(H(z)′(s)),

which is the equation that verifies g(z) for s = 0. Observe that infinitesimal stable
by the uniform translation is an open property.

Given s let gs be the map associated to Hs from the infinitesimal stable property.
For a given point z we construct a curve cz(s) which verifies Dπc(c

′
z(s)) = gs(cz(s)),

πM(cz(s)) = πM(z) and cz(0) = z. Since it comes from an ordinary differential
equation we know that such a curve exist. Now cz(s) must verify

f ′(cz(s))Dπc(c
′
z(s)) + 1 = Dπc(c

′
H(z)(s)),

and therefore we have that

Hs(cz(s)) = cH(z)(s).

Given a family of curves that hold the previous equation, for a s fix, being Λs

locally maximal one must have that cz(s) ∈ Λs. Since cz(s) is nearby z and Λ0

is stable we have in fact that Λs = {cz(s) : z ∈ Λ0}. Therefore z(s) = cz(s)
which implies that z(s) is differentiable. Moreover we have that z → z(s) is a
continuous function taking the Cr topology for the space of curves. In particular
Dπc(z

′(0)) = g(z) which implies that |Dπc(z′(0))| < C0. From this point we proceed
as in the previous theorem concluding the hyperbolicity.
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2.2 α-Absolute Stability

What we do now is to weak the hypothesis on the map φs asking it to vary just
Hölder continuous on the parameter s instead of Lipschitz. Observe that now the
technique using the first derivative of the continuation of the periodic points would
not work because just Hölder does not imply that all this derivatives are uniformly
bounded which was the key part in the previous theorems.

What we will do is to adapt the techniques developed on [Ti] for systems with
Hölder-Shadowing property. The main idea here is that just Hölder continuity will
let us estimate the action of the differential on the center-bundle and also the lack
of speed will imply certain slow growth in the perturbations.

Theorem 3: If H ∈ SP+ is C2 and Λ0 is a locally maximal set α-absolutely
stable by the uniform translation with α > 1/2 then Λ0 is central hyperbolic. If H is
just C1+γ with γ ∈ (0, 1) and α > 1/(1 + γ) then Λ0 is central hyperbolic.

Observe first that for this theorem we are not asking to have an hyperbolic set on
the base. Also that the inequality on α is strict. It is not clear to us what happens
on α = 1/2 and we have counterexamples for α < 1/2. Nevertheless this examples
are weak because can be perturbed to be hyperbolic, this means that the known
examples are not generic. We will discuss this later with more detail.

The general framework is the following: Let {En}n∈Z be a family of euclidean
spaces of dimension m and A = {An∈Z : An : En → En+1} a sequence of linear
isomorphism such that there exist R > 0 with

‖An‖ < R and
∥∥A−1

n

∥∥ < R.

We say that A has bounded solution if there exist L > 0 such that for all i ∈ Z,
n > 0 and {wk ∈ Ek}k∈[i+1,...,i+n] with |wk| ≤ 1 there exist {vk ∈ Ek}k∈[i,i+n] which
verifies

vk+1 = Akvk + wk+1 k ∈ [i, . . . , i+ n− 1],

and |vk| ≤ L for k ∈ [i, . . . , i+N ].

What the previous definition controls is how far you can find an orbit of a per-
turbation of your system by translations that shadows the 0 orbit in finite steps.

What it is done in [To] and [OPT] is to prove that bounded solution implies
hyperbolicity on A.

Given z ∈ Λ0 we define A(z) = {DH|Ec : Ec(zm) → Ec(zm+1)} where zm =
Hm(z). We say that Λ0 has uniform bounded solution if there exist Q such that
A(z) has bounded solution and Q is a bound.
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Proposition 2.2: If H ∈ SP+ is C2 and Λ0 is a locally maximal set α-absolutely
stable by the uniform translation with α > 1/2 then Λ0 has uniform bounded solution.

Proof. The uniformity will come along the proof. It is just needed to see that the
constants does not depend on z. We will fix z and prove that A(z) = A has bounded
solution.

Observe first that DH|Ec(v) = f ′(z)v if v ∈ Ec(zm). We will identify Ec(zm) with
R. To simplify the notation we will call am = f ′(zm).

Given m ∈ Z and n ∈ N, take wm+1, . . . , wm+n ∈ R ({wi}m,n) with |wi| ≤ 1 let
vm, . . . , vm+n ∈ R ({vi}m,n) such that

vi+1 = aivi + wi+1 with m ≤ i ≤ m+ n− 1.

We define the norm ‖{vi}m,n‖ = max{|vi| : m ≤ i ≤ m+ n}.
To prove the proposition we need to find a number Q > 0 which for all n ∈ N,

for all m ∈ Z, and for all {wi}m,n with |wi| ≤ 1 we can find {vi}m,n such that

‖{vi}m,n‖ ≤ Q.

It will be clear in the proof that the starting point of the sequences {wi}m,n and
{vi}m,n will not be relevant in the computations, therefore we assume m = 0 and
from now on we note {wi}n and {vi}n.

In order to find Q, given {wi}n we define

E({wi}n) = {{vi}n : vi+1 = aivi + wi+1 with 0 ≤ i ≤ n− 1},

the space of orbits for the perturbation {wi}n. Since we want to find one {vi}n ∈
E({wi}n) with a small norm we will take the one with the smallest. We define then

F ({wi}n) = min{‖{vi}n‖ : {vi}n ∈ E({wi}n)}.

Since ‖·‖ is a norm the previous definition is good. Now we take the worst
perturbation and define

Q(n) = max{F ({wi}n) : {wi}n with |wi| ≤ 1}.

The previous definition is good because F is continuous according to {wi}n and
the space {wi}n with |wi| ≤ 1 is compact.

We therefore have to prove that there exist Q such that Q(n) ≤ Q.

Let us observe now that from the definition of Q(n) and linearity on the equation
vi+1 = aivi + wi+1 we have the following property: Given {w′i}n there exist {v′i}n ∈
E({w′i}n) such that

‖{v′i}n‖ ≤ Q(n) ‖{w′i}n‖ .

We now prove that in this algebraic context the algebraic uniform translation is
our worst perturbation:
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Lemma 2.3: If ai > 0 ∀i then Q(n) = F ({wi}n) with wi = 1 ∀i.

Proof. Observe first that if {vi}n ∈ E({wi}n) then {−vi}n ∈ E({−wi}n).

Given {wi}n with |wi| ≤ 1 if {vi}n ∈ E({wi}n) we have that

vi =
i−1∏
k=0

akv0 +
i∑

k=1

i−1∏
j=k

ajwk.

If Bi =
∏i−1

k=0 ak and Ci =
∑i

k=1

∏i−1
j=k+1 ajwk we define gi : R→ R and Gn : R→

R such that
g0(v) = v,

gi(v) = Biv + Ci with 1 ≤ i ≤ n,

and
Gn(v) = max{|gi(v)| : 0 ≤ i ≤ n}.

If Di =
∑i

k=1

∏i−1
j=k+1 aj in an analogous way we define fi : R→ R and Fn : R→

R such that
f0(v) = v,

fi(v) = Biv +Di with 1 ≤ i ≤ n,

and
Fn(v) = max{|fi(v)| : 0 ≤ i ≤ n}.

We therefore have that F ({wi}n) = min{Gn(v) : v ∈ R} and F ({1}n) =
min{Fn(v) : v ∈ R}.

Given i1, i2 ≤ n we define the maps (gi1 , gi2) : R→ R and (fi1 , fi2) : R→ R by

(gi1 , gi2)(v) = max{|gi1(v)|, |gi2(v)|},

and
(fi1 , fi2)(v) = max{|fi1(v)|, |fi2(v)|}.

We also define the values min(gi1 , gi2) and min(fi1 , fi2) as the minimum value
taken by the maps (gi1 , gi2) and (fi1 , fi2) respectively. It is easy to verify that the
infimum value is in fact a minimum.

Since |gi| and |fi| are convex functions Gn and Fn are also convex functions. This
implies the following assertion:

min(Gn) = max{min(gi1 , gi2) : i1, i2 ≤ n},

and
min(Fn) = max{min(fi1 , fi2) : i1, i2 ≤ n}.
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The previous assertion tell us that to compute F ({wi}n) and F ({1}n) we need to
compute just min(gi1 , gi2) and min(fi1 , fi2).

We are going to prove now that for i1 and i2 fixed we have that

min(gi1 , gi2) ≤ min(fi1 , fi2).

This and the previous assertion implies F ({wi}n) ≤ F ({1}n) which concludes the
lemma.

For the maps fi and gi we have the following property: Given k, l ∈ N such that
k + l ≤ n there exist Bk,l, Ck,l and Dk,l such that:

gk+l(v) = Bk,lgk(v) + Ck,l,

and
fk+l(v) = Bk,lfk(v) +Dk,l.

Let us observe now that Di is always positive. In particular it verifies Di ≥ |Ci|
and moreover Dk,l ≥ |Ck,l|.

The previous statements are easy computations concluded from the fact that
ai > 0.

Fix now i1 and i2. Suppose that i1 < i2 and take k = i1 and l = i2 − i1.

We have then:

gi1(v) = Bkv + Ck gi2(v) = Bk,lBkv +Bk,lCk + Ck,l,

fi1(v) = Bkv +Dk and fi2(v) = Bk,lBkv +Bk,lDk +Dk,l.

If min(gi1 , gi2) = (gi1 , gi2)(v0) then v0 verifies |gi1(v0)| = |gi2(v0)|. Moreover if v̂1

and v̂2 are such that gij(v̂j) = 0 then v0 ∈ [min{v̂1, v̂2},max{v̂1, v̂2}].
Suppose that v̂1 < v̂2 then v0 verifies the equation:

gi1(v0) = −gi2(v0).

If we resolve this we conclude that

v0 =
−Ck − Ck,l −Bk,lCk

Bk +Bk,l

,

and therefore

min(gi1 , gi2) =
−Ck,lBk

Bk +Bk,l

.

Since Bk and Bk,l are positive Ck,l must be negative this comes from the condition
v̂1 < v̂2. In any case we have

min(gi1 , gi2) =
|Ck,l|Bk

Bk +Bk,l

.
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Computing for fi1 and fi2 we conclude

min(fi1 , fi2) =
|Dk,l|Bk

Bk +Bk,l

.

Since Dk,l ≥ |Ck,l| we have that min(fi1 , fi2) ≥ min(gi1 , gi2) finishing the proof
of the lemma.

Observe that in this proof the fact that ai are positive and the dimension is 1 are
key facts. This implies that in a context with a higher dimension in the center bundle
or without the hypothesis of orientation preserving it is not clear which is the worst
perturbation. In fact this result is powerful because the worst perturbation {wi}m,n
does not depend either on n nor m and this is why we can relate the algebraic
perturbation to a perturbation of the skew-product. To generalize this result using
this technique one should look for a Cr vector field X on U0 a neighborhood of Λ0

such that for every n and m, Q(m,n) = F ({X(zi)}m,n).

Let us now link the algebraic uniform translation with the uniform translation in
the skew-products.

Recall that Hs = (h, fs) where fs = f + s. Given z ∈ Λ0, we called zi = H i(z)
and zi(s) the continuation of zi by the perturbation Hs. Remember also that zi(s)
only varies on the fiber. The α-absolute hypothesis tell us that

|πc(zi(s))− πc(zi)| ≤ C1s
α.

Let us call ui(s) = πc(zi(s))− πc(zi). We have then that |ui(s)| ≤ C1s
α.

We now prove that ui(s) is really close to verify vi+1(s) = aivi(s) + s which is the
un-normalized equation of the algebraic translation.

Let us prove then that:

|ui+1(s)− aiui(s)− s| ≤ C2s
2α.

Observe that

ui+1(s) = πc(zi+1(s))− πc(zi+1) = fs(zi(s))− f(zi) = f(zi(s))− f(zi) + s.

We now apply the Taylor polynomial to f restricted to the center bundle in the
point zi and we have that there exist Ĉ2 such that

|f(zi(s))− f(zi)− f ′(zi)(πc(zi(s))− πc(zi))| ≤ Ĉ2(πc(zi(s))− πc(zi))2.

Replacing πc(zi(s)) − πc(zi) by ui(s) and combining the previous equation we
prove our assertion.
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Here is where the condition α > 1/2 appears. Since s can be taken small enough,
if 2α > 1 then C2s

2α < s. If we do not have C2 but C1+γ then we can conclude that

|ui+1(s)− aiui(s)− s| ≤ C2s
(1+γ)α,

and we will just need that (1 + γ)α > 1.

Anyhow we will continue the proof for the C2 case.

If we define ri+1(s) = ui+1(s)− aiui(s)− s we just proved that ri(s) ≤ C2s
2α.

Using a previously proved property of Q(n) we have now that there exist
{ei(s)}n ∈ E({ri(s)}n) such that

‖{ei(s)}n‖ ≤ Q(n) ‖{ri(s)}n‖ .

This implies that
‖{ei(s)}n‖ ≤ C2Q(n)s2α.

It is easy to compute that {ui(s)− ei(s)}n ∈ E({s}n) and therefore{
ui(s)− ei(s)

s

}
n

∈ E({1}n).

Since we proved that Q(n) = F ({1}n) by definition of Q(n) we have that

Q(n)≤
∥∥∥{ui(s)−ei(s)s

}
n

∥∥∥ ≤ ‖{ui(s)}n‖
s

+ ‖{ei(s)}n‖
s

≤ C1s
α−1 + C2Q(n)s2α−1

From this we conclude that

Q(n) ≤ C1s
α−1

(1− C2s2α−1)
,

if we take s small enough such that C2s
2α−1 < 1. We can do this becuase 2α−1 > 0

by hypothesis. With this we finish the proof of the proposition.

Let us prove the theorem.

Proof. Take Q from the previous proposition which does not depend on z. Let us
use the same notation ai = f ′(zi). Given m ∈ Z and n ∈ N we define

λ(m,n) =
m+n−1∏
i=m

ai.

Let us prove the following lemma:

20



Lemma 2.4: There exist n0 such that for any m ∈ Z we have:

λ(i, n0) > 2 or λ(i+ n0, n0) < 1/2.

Proof. We will now use once again the algebraic uniform translation. This is: set
{wi}m,2n with wi = −1. Since A has bounded solution there exist {vi}m,2n such that

vi+1 = aivi − 1,

and ‖{vi}m,2n‖ < Q.

Observe that since ai > 0 if vi ≤ 0 then vj < 0 for all j ≥ i.

We have two cases now either: vm+n−1 > 0 or vm+n−1 ≤ 0 . For the first one we
have that vi > 0 for i ∈ {m, . . . ,m+ n− 1}.

From the equation vi+1 = aivi − 1 we have that ai = vi+1+1
vi

. Therefore

λ(m,n) =
m+n−1∏
i=m

vi+1 + 1

vi
=
vm+n + 1

v0

m+n−1∏
i=m

vi + 1

vi
=
vm+n + 1

v0

m+n−1∏
i=m

(
1 +

1

vi

)
.

Using the bound Q over vi we have that

λ(m,n) ≥ 1

Q

(
1 +

1

Q

)n
.

If vm+n−1 ≤ 0 then vi < 0 for i ∈ {m+ n, . . . ,m+ 2n− 1} and then

λ(m+ n, n) ≤ (Q+ 1)

(
1− 1

Q

)n
.

Taking n0 big enough we conclude our lemma.

From the previous lemma is easy to see that if λ(m,n0) > 2 then λ(m−kn0, n0) >
2 for all k ∈ N and if λ(m,n0) < 1/2 then λ(m + kn0, n0) < 1/2. Define now
Λu = {z ∈ Λ0 : λ(z,m, n0) > 2} and Λs = {z ∈ Λ0 : λ(z,m, n0) < 1/2}. Due to
continuity and the previous assertion we conclude that this two sets are compact,
invariant and disjoint and therefore one must be empty. Having that Λ0 = Λs or
Λ0 = Λu implies that Λ0 is central hyperbolic.
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3 Topologically Hyperbolic vs Hyperbolicity

Due to Mañé in [M2] it is known that in dimension 1 the expansive property, the
hyperbolicity of periodic points and the lack of critical points are enough hypothesis
to imply hyperbolicity. In dimension 2 [PuSa1] proved that dominated splitting and
hyperbolic periodic points imply the existence of a topological hyperbolic behavior
and with that they proved hyperoblicity. In dimension 3 there is an example due
to [Pu] which is Kupka-Smale and topologically hyperbolic but it is not hyperbolic.
The last example is a Skew-Product which has the lack of a generic property for
partially hyperbolic sets which we called the strong Kupka-Smale property.

Let us recall the definition of central topologically hyperbolic

Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically
contracting on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| < ε2, ∀k ≥ n,

where Iε1(z) = {x} × [t− ε1, t+ ε1] if z = (x, t).

Given H ∈ SP and Λ0 a locally maximal set we say that H is central topologically
expanding on Λ0 if for every 0 < ε1 < ε2 there exist n(ε1, ε2) such that for every
z ∈ Λ

|Hk(Iε1(z))| > ε2, ∀k ≥ n.

We say that H is central topologically hyperbolic on Λ0 if it is either central
topologically expanding or central topologically contracting on Λ0.

We are going to begin this chapter by proving some basic results about central
topologically hyperbolic sets. The main objects we are studying here are the invari-
ant graphs which are unique. This tell us that the dynamics of these set can be seen
C0 as the dynamics on the base. We will do the proofs mainly for the contractive
case, being the expansive case analogous.

Proposition 3.1: (Invariant Graph) If H ∈ SP and Λ0 is central topolog-
ically hyperbolic then there exist b0 : Λ → R a continuous function such that
Λ0 = graph(b0). In particular H(x, b0(x)) = (h(x), b0(h(x))). Moreover there is
U0 a neighborhood of Λ0 such that if b1 : Λ→ R verifies H(x, b1(x)) = b1(h(x)) and
graph(b1) ⊂ U0 then b1 = b0.

Proof. Without loss of generality we can assume that:

• Λ0 is central topologically contractive.

• Λ0 =
⋂
n∈ZH(Λ× [−1, 1]) since Λ0 is locally maximal.

• H ∈ SP+.

• And from the previous points that −1 < f(x,−1) < f(x, 1) < 1.
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We will see later the details about the non-preserving orientation case.

Let us see first the existence of b0. Given x ∈ Λ set xn = h−n(x). From the
previous assumption observe first that we have:

πc(H
n+1(xn+1,−1)) > πc(H

n(xn,−1)) and πc(H
n+1(xn+1, 1)) < πc(H

n(xn, 1)).

We define then

b(x)− := limnπc(H
n(xn,−1)) and b(x)+ := limnπc(H

n(xn, 1)).

Is clear that b(x)− ≤ b(x)+. By definition we have that πc(H
−n(x, b±(x))) ∈

(−1, 1) for every n ≥ 0 and therefore {x} × [b(x)−, b(x)+] ⊂ Λ0.

Moreover, by construction {x} × [b(x)−, b(x)+] is maximal among the intervals
inside the fiber of x which are contained in Λ0.

Let us assume that b(x)− < b(x)+. We have two cases now:

• there exist δ0 > 0 such that |H−n({x} × [b(x)−, b(x)+])| > δ0 > 0 ∀n ≥ 0

• liminfn|H−n({x} × [b(x)−, b(x)+])| = 0.

Suppose there exist δ0 > 0 such that |H−n({x} × [b(x)−, b(x)+])| > δ0 ∀n ≥ n0,
for certain n0. If we take y ∈ α(x) we have that b+(hn(y))− b−(hn(y)) ≥ δ0. Since
H is central topologically contractive, b+(hn(y))−b−(hn(y)) converge to 0 obtaining
a contradiction.

For the second case fix ε2 = b(x)+−b(x)− and take ε1 arbitrarily small. Let n0 be
from the definition of central topologically contractive. Since liminfn|H−n({x} ×
[b(x)−, b(x)+])| = 0 there exist n > n0 such that |H−n({x} × [b(x)−, b(x)+])| < ε1.
This implies that

H−n({x} × [b(x)−, b(x)+]) ⊂ Iε1(H
−n(z)),

and therefore {x}× [b(x)−, b(x)+] ⊂ Hn(Iε1(H
−n(z))). Then |Hn(Iε1(H

−n(z)))| > ε2
which contradicts the definition of central topologically hyperbolic.

In both cases we obtained a contradiction, so we must conclude that b0(x) :=
b−(x) = b+(x) is well defined and unique.

The uniqueness of b0(x) and the fact that (x, b0(x)) ∈ Λ0 implies that f(x, b0(x)) =
b0(h(x)).

If we have a sequence {xn}n ⊂ Λ which converges to x and limnb0(xn) does not
exist or it is different from b0(x) then we would have more than one point from Λ0

on the fiber of x which can not happen. We conclude then that b0 is continuous.

If we have b1 which verifies H(x, b1(x)) = (h(x), b1(h(x))) and graph(b1) ⊂ U0

where U0 is the one associated to the property of locally maximal from Λ0, then
grap(b1) is a compact invariant set and therefore Λ0 = graph(b1). Then by construc-
tion, on each fiber of x there is only one point of Λ0 and therefore b0(x) = b1(x).
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For the non-preserving orientation case, using the set of points

B(x) = {πc(Hn(xn,−1))}n∈N ∪ {πc(Hn(xn, 1))}n∈N,

we define b(x)− := liminf(B(x)) and b(x)+ := limsup(B(x)) and all the previous
arguments for the rest of the proof are valid.

Once we have our map b0 which is continuous we can naturally ask if it has
differentiable properties and in that case we will call it the rigid case. Using the
uniqueness in the previous proposition and the next lemma we will find a way to
describe them all. Also with that construction we will obtain central hyperbolicity
for stable maps in the rigid case.

Lemma 3.2: (Decomposition) If H = (h, f) ∈ SP and Λ0 is central topologically
hyperbolic and b0 : Λ→ R is a continuous function such that Λ0 = graph(b0). Then
there exist U a neighborhood of Λ×{0} in M×R and g0 : U →M×R which verifies

f(x, t) = g0(x, t− b0(x)) + b0(h(x)) and g0(x, 0) = 0 ∀x ∈ Λ.

Moreover if there exist g1 : U →M ×R and b1 : Λ→ R such that f(x, t) = g1(x, t−
b1(x)) + b1(h(x)) and g1(x, 0) = 0 ∀x ∈ Λ then b0(x) = b1(x) and g0(x, t) = g1(x, t)
for all x ∈ Λ.

Proof. For the existence we just define

g0(x, u) = f(x, u+ b0(x))− b0(h(x)).

For the uniqueness observe that f(x, b1(x)) = g1(x, b1(x) − b1(x)) + b1(h(x)) =
b1(h(x)) and from the uniqueness of b0 obtained in the previous proposition we
have that b0(x) = b1(x) ∀x ∈ Λ. From this is immediate that g1(x, t) = g0(x, t)
∀x ∈ Λ.

To end this introductory section on central topologically hyperbolic skew-products
let us observe which Lyapunov exponent properties they have:

Proposition 3.3: If H ∈ SP and Λ0 is central topologically contracting then
λ+,+(z) ≤ 0 ∀z ∈ Λ0. Moreover if there exist δ > 0 such that λ+,+(z) ≤ −δ < 0
then Λ0 is central hyperbolic. Analogously if Λ0 is central topologically expanding
then λ+,−(z) ≥ 0 ∀z ∈ Λ0 and if λ+,−(z) ≥ δ > 0 then Λ0 is central hyperbolic.

This result is also true for the C1 Skew-Products yet i would like to do a proof
using distortion. We need first the reformulation of a classical result:

Lemma 3.4: If H = (h, f) ∈ SP and f is C2 then there exist a constant C0 > 0
such that for every z0 and z1 ∈M × R with πM(z0) = πM(z1) we have:∣∣∂Hn

∂t
(z0)

∣∣∣∣∂Hn

∂t
(z1)

∣∣ ≤ exp(C0

n−1∑
i=0

|H i(z0)−H i(z1)|).
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Proof. Take C1 > 0 and C2 > 0 such that |f ′′(z)| < C1 and C2 < |f ′(z)| and define
C0 = C2/C1. Then C0 is a Lipschitz constant for the map z → log|f ′(z)| on the
fiber direction. Then we have

log

∣∣∂Hn

∂t
(z0)

∣∣∣∣∂Hn

∂t
(z1)

∣∣ = log

∏n−1
i=0 |f ′(H i(z0))|∏n−1
i=0 |f ′(H i(z0))|

=

n−1∑
i=0

log
∣∣f ′(H i(z0))

∣∣− log ∣∣f ′(H i(z0))
∣∣ ≤ C0

n−1∑
i=0

|H i(z0)−H i(z1)|.

Proof. Let us prove the proposition. Suppose that H is central topologically con-
tracting on Λ0 and that there exist z ∈ Λ0 and δ > 0 such that λ+,+(z) > δ > 0.
Take ε1 > 0 and ε2 > 0 such that δ − C0ε2 > 0 and |Hn(Iε1(z))| < ε2 ∀n ≥ 0. Let
{nk}k∈N be an increasing sequence of positive integers such that

log(|
∏nk−1

i=0 f ′(H i(z))|)
nk

≥ δ.

This implies that |
∏nk−1

i=0 f ′(H i(z))| ≥ exp(nkδ).

By the mean value theorem we have for every k a point zk ∈ Iε1(z) such that
|Hnk(Iε1(z))| = |∂Hn

∂t
(zk)|2ε1.

Applying the previous lemma to z and zk we have that∣∣∂Hnk

∂t
(z)
∣∣∣∣∂Hnk

∂t
(zk)

∣∣ ≤ exp(C0

nk−1∑
i=0

|H i(z)−H i(zk)|) ≤ exp(C0nkε2).

Then

|Hnk(Iε1(z))| =
∣∣∂Hn

∂t
(zk)

∣∣ 2ε1
≥ 2ε1

∣∣∂Hnk

∂t
(z)
∣∣ exp(−C0nkε2)

≥ 2ε1exp((δ − C0ε2)nk)

Since δ − C0ε2 > 0, |Hnk(Iε1(z))| grows exponentially fast which contradicts the
central topologically contracting hypothesis.

For the hyperbolic part of the proposition it is clear that λ+,+(z) < −δ implies
that

limn

n∏
i=0

f ′(H i(z)) = 0.

which is a property equivalent to hyperbolicity due to the compactness of Λ0.

For the central topologically expanding case the proof is analogous.
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3.1 Rigidity

The rigidity case for us will be the case when b0, the graph map, is Cr if Λ is
a manifold or it can be extended in a neighborhood of Λ to a Cr map. We will
see that this family of Skew-Products are not generic in SPH yet they have nice
properties.

Observe that in the decomposition lemma 3.2, the map g on the fibers is as
differentiable as f on the fibers. If b0 is differentiable then g0 is differentiable on
M . Therefore given H such that b0 is differentiable we have g0 differentiable, and
conversely given g0 and b0 differentiable such that g0(x, 0) = 0 if we define f(x, t) =
g0(x, t− b0(x)) + b0(h(x)), then f is Cr and b0 is going to be the graph map for the
skew-product H = (h, f).

Theorem 4: If H = (h, f) ∈ SP and Λ0 is central topologically hyperbolic having
b0 the graph map as differentiable as H then it is approximated by central hyperbolic
systems. If H ∈ SPH is stable then Λ0 is hyperbolic.

Proof. Let g0 be such that f(x, t) = g0(x, t− b0(x)) + b0(h(x)). Since b0 is Cr then
g is Cr. Take the family of one parameter gs : U → M × R as gs = (1 + s)g0 and
define

fs(x, t) = gs(x, t− b0(x)) + b0(h(x)) and Hs = (h, fs).

It is clear that if s < 0 then the maximal invariant set of Hs in U0 is contained
in the graph of b0 which is the set Λ0. In particular if z ∈ Λ0 then its orbit remains
in Λ0 under the action of Hs and therefore Λ0 is the maximal invariant set of Hs in
U0. It is not hard to compute that if z ∈ Λ0 then f ′s(z) = (1 + s)f ′(z). This implies
that λ+,±(z,Hs) = log(1 + s) + λ+,±(z,H).

Suppose that H is central topologically contractive. Then λ+,+(z,H) ≤ 0. There-
fore taking s < 0 we have that λ+,+(z,Hs) ≤ log(1 + s) < 0 which implies central
hyperbolicity on Λ0 for Hs.

If the periodic points are dense and we have points {zn}n∈N such that
λ+,+(zn, H)→ 0 we can find periodic points {pn}n∈N such that λ+,+(pn, H)→ 0.

Once we have such periodic points, taking s > 0 using the stability we conclude
once again that Λs the maximal invariant set of Hs in U0 must be Λ0. For those
periodic points we must have that λ+,+(pn, Hs) > 0, this implies that we can find
an arbitrarily small s which has a periodic point with Lyapunov exponent equal
to 0. Such a point can be bifurcated obtaining a contradiction with the stable
property.

Let us see now why the rigid case is not generic. The opposite concept here is
the strong Kupka-Smale property.

We are going to restrict our Skew-Products in SPH to those which are partially
hyperbolic. In particular for those we say that H ∈ SPH is strong Kupka-Smale if
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it is Kupka-Smale and also:

W ss(p) ∩W uu(q) = φ ∀p, q ∈ Per(H).

Theorem 3.5: There exist a residual set SKS ⊂ SP such that if H ∈ SKS then
H is strong Kupka-Smale.

Proof. It is the same proof of Kupka-Smale theorem but having also the care of mak-
ing the strong stable and strong unstable manifolds have a transversal intersection
which in the context of partially hyperbolic systems means empty intersection.

Theorem 3.6: If (H,Λ0) is rigid then H ∈ SKSc.

Proof. Suppose that H is central topologically contractive. Given a point z ∈ Λ0,
we define the cone C(K, z) = {v ∈ Tz(M × R) : if v = vI + vM then ‖vI‖

‖vM‖
< K}.

If b0 is differentiable then there exist K > 0 and ε > 0 such that for every z0 ∈ Λ0

and ∀z1 ∈ B(z0, ε) ∩ Λ0 we have that exp−1
z0

(z1) ∈ C(K, z0).

If z0 ∈ Λ0 and z1 ∈ W ss
ε (z0) then we have that exp−1

Hn(z0)(H
n(z1)) ∈ C(K,Hn(z0)).

Reciprocally if z0 ∈ Λ0 and z1 ∈ M × R is such that πM(z1) ∈ W s(πM(z0)),
d(z0, z1) ≤ ε and exp−1

Hn(z0)(H
n(z1)) ∈ C(K,Hn(z0)) then z1 ∈ W ss

ε (z0). This implies

that if b0 is Cr, z0, z1 in Λ0 verifying πM(z1) ∈ W s(πM(z0)) then z1 ∈ W ss
ε (z0).

The problem is that the condition z1 ∈ W ss(z0) only depends on its future and
the condition z1 ∈ Λ0 for the central topologically contractive case only depends on
its past, therefore if we have z0 ∈ Λ0, and x1 ∈ W s(πM(z0))∩Λ we can perturb our
system such that if t1 ∈ R verifies (x1, t1) ∈ W ss(z0) then b0(x1) 6= t1 and therefore
b0 can not be differentiable.

Observation 1: In LCSP the only rigid central topologically hyperbolic systems
are the trivial ones. We say that H ∈ LCSP is trivial if there exist t0 ∈ R
such f(x, t) = t0. This clearly implies that b0(x) = t0. In LCSP we have that
if z1 ∈ W ss

loc(z0) or z1 ∈ W uu
loc (z0) then πI(z1) = πI(z0). Using this and the previous

arguments if b0 is differentiable then b0 is locally constant. We leave as an easy
exercise for the reader to see that if b0 is locally constant then H is trivial.

Let us finish this chapter by perturbing the example in [Pu] to create a SKS
system central topologically hyperbolic which is not Hyperbolic. In particular it is
no rigid.

Theorem 3.7: There exist H ∈ SKS central topologically hyperbolic which is
not hyperbolic.

Proof. Take h : M → M such that it has Λ a locally maximal invariant set hyper-
bolic and not trivial. We have then that there exist Λ1 ⊂ Λ which is a non trivial
minimal set. Take a map ϕ : M → R which verifies:

ϕ(x)

{
= 1 if x ∈ Λ1

< 1 if x /∈ Λ1
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Define now the map f : M × R→ R by

f(x, t) = ϕ(x)t− t3.

Let H1 ∈ SP be defined by H1 = (h, f). Is clear that H is central topologically
contractive. Since f(x, 0) = 0 if b : M → R is the graph map associated then b = 0.
In particular it is rigid.

The lack of hyperbolicity comes from the fact that if x ∈ Λ1 then

∂Hn

∂t
(x, 0) = 1 ∀n > 0.

Observe that for any other point x /∈ Λ1

∂Hn

∂t
(x, 0) < 1 ∀n > 0.

which implies that H is Kupka-Smale.

Since the strong stable and strong unstable sets belong to M × {0} we conclude
that H1 is not strong Kupka-Smale.

We will perturb now H1 in a way that it becomes strong Kupka-Smale but the
dynamics on the minimal set are not destroyed. For this we define the space

B = {g : M × R→ R : g(x, t) = g′(x, t) = 0 if x ∈ Λ1} .

This is a closed set of a Banach space and therefore is a Banach space. For
each g ∈ B define Hg : M × R → R by Hg = (h, f + g). There exist U an open
neighborhood of the map 0 such that Hg ∈ SP for every g ∈ U .

To conclude we need to observe the following: Given a periodic point p, since
Λ1 is minimal on h we have that W ss(p) ∩ Λ1 × R = φ and W uu(p) ∩ Λ1 × R = φ.
This is because a non trivial minimal set can not intersect the stable manifold or
the unstable manifold of a periodic point. With this using the techniques on the
Kupka − Smale Theorem we can do our perturbation restricted to the space B
obtaining the strong Kupka-Smale property on a residual set of perturbations. Now
since the set of perturbations B does not alter the dynamics on Λ1 × R we have
that Hg is never hyperbolic. If we take the perturbation small enough the central
topologically hyperbolic conditions is not lost and therefore we finish the theorem.
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4 Analytic continuation on LCSP

In this chapter we are interested in continue our study in the ambient manifold of
Λ0. We do this by working with the continuation of the periodic points.

We recommend to revisit the notations chapter to refresh the symbols we are
going to use in this chapter. Let us begin by observing that LCSP has a Banach
manifold structure.

B = {g : P × R→ R of class Cr}.

Then B with the Cr topology is a Banach space. Given H1, H2 ∈ LCSP with
Hi = (h, fi) we can define the map g : P × R → R by g(Pi, t) = f1(x, t) − f2(x, t)
where x ∈ Pi. With that construction, it is easy to see that a neighborhood of a
given H ∈ LCSP is diffeomorphic to a neighborhood of the map 0 in B.

It is also clear that we can define the inclusion of LCSP ↪→ B by i(H)(Pi, t) =
f(x, t) if H = (h, f) and x ∈ Pi which is a differentiable map.

Given g ∈ B using an abuse of notation when we evaluate it on a point z in Λ×R,
g(z) we will referring to g(π(x), t) if z = (x, t). It is clear that a map g ∈ B is a
finite collection of maps of the interval R, we therefore define the maps associated
to g, gi(t) = g(Pi, t).

In this context we have a natural way of taking an arc of perturbations which is:
Given H ∈ LCSP and g ∈ B we define Hs ∈ LCSP by

Hs(z) = (h(x), f(z) + sg(z)).

In particular we set the notation f si = fi + sgi.

The objective is to study for a given H ∈ LCSP , Λ0 an homoclinic class.

4.1 Hyperbolic sets

From Kupka-Smale theorem we now that generically the periodic points are hyper-
bolic and that the stable and unstable manifolds have transversal intersection. In
our context the second property is technically free since by definition the three di-
rections, stable, central and unstable are transversal. We might have conflict with
periodic points of different index (which induce heterodimensional cycles), but as
we are going to see later the stable and unstable manifolds move in an independent
way. To begin taking the flavor of the perturbations we are going to do, let us start
by proving the hyperbolicity condition in the Kupka-Smale theorem.

Theorem 4.1: (Kupka-Smale) There exist a residual subset KS ⊂ LCSP such
that every skew-product in KS has all the periodic points hyperbolic.
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Proof. It is clear that the hyperbolicity worry us in the central direction. If we fix a
word A = (a1, . . . , am) ∈

⋃∞
n=1Pn of elements of the Markov partition we define the

map fA = fam ◦ · · · ◦ fa1 . It is easy to see that we can identify the periodic points
of H in Λ0 with the fixed points of fA making A vary on

⋃∞
n=1Pn.

Fixed A and l ≤ m set Al = (a1, . . . , al). Given t ∈ R, and g ∈ B we define
f sA = f sam ◦ · · · ◦ f

s
a1

. We observe that for s = 0

∂f sA
∂s

(t) =
m∑
i=1

g(fAi(t))
m∏

j=i+1

f ′aj(fAi(t)).

It is not hard to see that the equation above defines a linear operator over g which
goes from B to R and which is surjective, therefore using the classic arguments of
transversality we obtain a residual set on LCSP such that the fixed points of fA
are hyperbolic. Since the set of words is countable and the countable intersection of
residual set is a residual set we conclude the result.

The next results show us a way to characterize the hyperbolic set of a locally
constant skew-product.

Theorem 5: Given H ∈ LCSP, and Λ0 an homoclinic class, if Λ0 is an hyper-
bolic set then one of the following two happen:

• H|Λ0 is normally hyperbolic. If H|Λ0 is contracting in the central direction then
the tangent bundle of the sub-manifold is Euu ⊕ Ec and if it is expanding the
tangent bundle is Ess ⊕ Ec.

• H can be approximated on LCSP by skew-products such that the continuation
of Λ0 contains periodic points with strong connections.

Observation 2: The theorem says that if we take an hyperbolic homoclinic class
of H then in the first case we can reduce the dimension of the ambient manifold.
If this do not happen we can perturb it to build strong connections between periodic
points. Once we have this if we perturb again we obtain blenders inside Λ0 due to
[BD]. This are known to be dynamical objects with full topological dimension.

What we would like to do is change the hypothesis of hyperbolicity by the hypothesis
of stability. If we could do so, in the normally hyperbolic situation we could apply
[PuSa1] for dimension 2 or [PuSa2] for higher dimension, obtaining hyperbolicity
for the set and in the blender case create some heterodimensional cycle if we do not
have hyperbolicity.

To prove the theorem we use the next result due to C. Bonatti and S. Crovisier
in [BC].

Theorem 4.2: (Bonatti-Crovisier) If F is a diffeomorphism of a manifold N ,
Λ1 is a partially hyperbolic set with the decomposition TΛ1N = Es ⊕ Ec ⊕ Eu and
∀z ∈ Λ1, W ss(z)∩Λ1 = {z} then Λ is normally hyperbolic. In particular the tangent
bundle of S is Eu ⊕ Ec.
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Observation 3: There exist an analogous version for the case which ∀z ∈ Λ1,
W uu(z) ∩ Λ1 = {z} obtaining S tangent to Es ⊕ Ec.

Observation 4: The reciprocal is also true, this is: if Λ1 is partially hyperbolic
and normally hyperbolic with S tangent to Ec⊕Eu, then ∀z ∈ Λ1, W uu(z)∩Λ1 = {z}.

We will split the proof in two cases, one where the center bundle is contracting
and the other one were the central bundle is expanding. The proofs are analogous
up to certain details which we will reviewed. Let us first see the contractive case.

4.2 Contractive case

Assuming that Ec is contracting and using the theorem of BC we just need to prove
the next proposition:

Proposition 4.3: Let H ∈ LCSP, and Λ0 be an homoclinic class. Suppose
that H|Λ0 is hyperbolic with Ec contracting. If there exist z0 and z1 which belong to
the same strong stable manifold then there exists g ∈ B and {sn}n∈N a decreasing
sequence to 0 such that Hsn has periodic points with a strong connection which
belongs to the continuation of Λ0.

Let us recall that Hs is a Skew-Product defined by:

Hs(z) = (h(x), f(z) + sg(z)).

Without loss of generality we assume that z1 ∈ W ss
loc(z0).

Given a periodic point p of H, it must have an analytic continuation in a neigh-
borhood of H. This means that there exist a curve p(s) of class Cr such that
H
np
s (p(s)) = p(s) where np is the period of p. In fact, since we are assuming that

Λ0 is hyperbolic we have that given g there exists an uniform ε0 such that p(s) is
defined in (−ε0, ε0).

Let us start by calculating the first derivative of the continuation in the parameter
s.

Lemma 4.4: If p = (x0, t0) is a periodic hyperbolic point of H and n is the period
then we have that t′0(s) verifies

t′0(s) =

∑n−1
i=0 g(H i

s(p(s)))
∏n−1

j=i+1[f ′ + sg′(Hj
s (p(s)))]

1−
∏n−1

i=0 [f ′ + sg′(H i
s(p(s)))]

,

where f ′(x, t) = f ′π(x)(t) and g′(x, t) = g′π(x)(t).

Proof. The result is obtained by computing the equation Hn
s (q(s)) = q(s) and taking

the first derivative in the parameter s.
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Observation 5: The hyperbolicity of Λ0 implies that there exist C > 0 and
0 < λ < 1 such that

n−1∏
j=i+1

[f ′ + sg′(Hj
s (p(s)))] ≤ Cλn−i−1.

The idea now is to estimate p(s) using its Taylor polynomial of first degree. Since
each p has its own continuation, to begin talking about the limit of these continua-
tions we need to have an uniform control over the remainders of such polynomials.
For that is the next lemma:

Lemma 4.5: Given ε1 > 0 exist δ0 > 0 such that if p = (x, t) is a periodic point
then we have

t(s) = t(0) + st′(s) + r(p, s),

where |r(p,s)||s| < ε1 for every p periodic and for every s ∈ (−δ0, δ0).

Proof. Using the later observation it is not hard to see that t′(s) is uniformly
bounded which implies that {p(s) : p ∈ Λ0} is an equicontinous family. More-
over if r ≥ 2 we have that the functions t′′(s) are also uniformly bounded which
implies that {p′(s) : p ∈ Λ0} es equicontinous and from that point we conclude
using Arzelà-Ascoli theorem and Weierstrass theorem.

If {pm}m∈N and {qm}m∈N are two sequences of periodic points of H which converge
to z0 and z1 respectively, with z1 ∈ W ss

loc(z0), we want to understand what happens

with ∂πc(pm(s))
∂s |s=0

(we will note p′m) and ∂πc(qm(s))
∂s |s=0

(q′m) because of the next lemma:

Lemma 4.6: If limm p′m y limm q′m exist but they are different then for every
s0 > 0 arbitrary small there exist |s| < s0 such that Hs has periodic points in Λ0(s)
with a strong connection.

Proof. Let z′0 = limm p′m, z′1 = limm q′m, z0 = (a0, u0), z1 = (a1, u1), pm = (xm, tm),
qm = (ym, rm). Since z0 and z1 are on the same local stable manifold they have the
same central coordinate, this is u0 = u1. Since Hs ∈ LCSP and it is defined on
the same Markov partition of H we have that xm(s) and ym(s) are constant and
equal to xm and ym respectively. What we have to prove then is that there exist
s ∈ (−s0, s0) and m0,m1 ∈ N such that tm0(s) = rm1(s). For this we use the Taylor
polynomial and we observe that:

tn(s)− rm(s) = tn(0)− rm(0) + s(t′n − r′m) + r(s,m, n),

where the right part of the equation is equal 0 when s = rm(0)−tn(0)−r(s,m,n)
t′n−r′m

. For n
and m big enough, we can take the numerator arbitrary small and the denominator
we can suppose it far from 0. Therefore we can find s small enough to verify
tn(s) = rm(s).
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The previous lemma tell us that if we have an uniform control over the remain-
ders of the Taylor polynomials we just need to find a perturbation for which the
derivatives of z0 and z1 are distinct.

Once we have computed the derivative for the periodic points, we extend to the
closure.

Lemma 4.7: If {pm}m∈N converges to z0 then z′0 = limm p′m exist and is equal
to

∞∑
i=1

[
i−1∏
j=1

f ′(H−j(z0))]g(H−i(z0)).

Proof. Since we are working on the contractive case, it is more convenient for us to
see that we can rewrite the equation for the periodic points as:

t′m =

∑nm
i=1[
∏i−1

j=1 f
′(H−j(pm))]g(H−i(pm))

1− [
∏nm−1

i=0 f ′(H i(pm))]
.

The denominator in the previous equation converges to 1 when n is big enough.
Therefore we are interested in study the sum. If we fix k we observe that

k∑
i=1

[
i−1∏
j=1

f ′(H−j(pm))]g(H−i(pm))−
k∑
i=1

[
i−1∏
j=1

f ′(H−j(z0))]g(H−i(z0)),

converges to 0 and ∣∣∣∣∣
nm∑

i=k+1

[
i−1∏
j=1

f ′(H−j(pm))]g(H−i(pm))

∣∣∣∣∣ < Cλk

1− λ
.

From that we conclude the result making k grow to infinity.

Observation 6: The series associated to z′0 is absolutely convergent and domi-
nated by a geometric series.

Observation 7: If z0 is a periodic point then the previous limit coincide with the
derivative computed at the beginning.

Observation 8: In the equation of t′0 we can appreciate why are we working with
these kind of perturbations. Basically what we want is to control through the maps
gi the derivatives of z0 and z1. For that, we are going to need to separate points
using the gi functions. Now these functions can only separate points which are on
different cylinders or point which belong to the same cylinder but have different
central coordinate. The trick is that if we can not separate two points then we are
going to construct periodic points which are on the same cylinder with the same
central coordinate.

Let us formalize the previous.
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Definition: Given A ⊂ Λ0, we say that it is g-Independent if given two points
of A, they belong to different cylinders or if they belong to the same cylinder they
have different central coordinate.

Definition: Given A,B ⊂ Λ0, we say that they are g-Independent if for every
a ∈ A and b ∈ B, the set {a, b} is g-independent.

Definition: Given a finite set of points z0, . . . , zn en Λ(p) we say that they are a
su-pseudo-orbit (su-po) if H(zi) ∈ W su(zi+1) ∀i < n. If also z0 ∈ W su(zn) then we
say that it is periodic.

Lemma 4.8: If z0, . . . , zn is a periodic su-po such that {z0, . . . , zn−1} is g-inde-
pendent then there exist q periodic such that its period is n and H i(q) ∈ W su(zi).

Proof. If t0 = πc(z0), by definition of periodic su-po we have that t0 = fπ(πM (zn−1)) ◦
· · · ◦ fπ(πM (z0))(t0). Then we take x ∈ Λ which is the periodic point associated to
h induced by the word π(πM(z0)), . . . , π(πM(zn−1)), and the point q = (x, t0) is a
periodic point of H which verifies the desired property.

Observation 9: It is not immediate that the periodic point obtained in the previ-
ous lemma belongs to Λ0. If it is contracting on the center bundle, then belongs to Λ0

because since the periodic points are dense there exist one which has an homoclinic
connection with q. In the future we will see that q can not be expanding in the center
bundle.

Combining the concept of periodic su-po with g-independent we obtain:

Corollary 4.9: If z ∈ Λ0 is not g-independent with its future orbit then there
exist q periodic such that q ∈ W su(z).

Proof. Take n such that Hn(z) ∈ W su(z). Then z,H(z), . . . , Hn(z) is a periodic
su-po and we apply the previous lemma obtaining q as desired.

Corollary 4.10: If q is a periodic point and its orbit is not g − Independent
then there exist q1 ∈ Λ0 a periodic point which has a strong connection with some
point in the orbit of q.

Proof. Let nq be the period of q. Suppose without losing generality that H l(q) ∈
W su(q), where l < nq. Then by the previous corollary we have q1 ∈ W su(q) a periodic
point of period l which is different from q. If this point were not contracting on the
center bundle then using q and q1 we can construct a family of periodic points qn
all periodic, all contracting on the center bundle, homoclinically related to q which
converges to q1 contradicting the hyperbolicity of Λ0.

Lemma 4.11: The point q obtained on the lemma 4.8 belongs to Λ0.

Proof. Let us suppose that q do not belong to Λ0, If this happens as we have seen
before we must have that q is expanding on the center bundle. Using the reasoning
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of the previous corollary we can suppose that W su(θ(q)) ∩ per(Λ0) = φ. If that is
not the case we can contradict the hyperbolicity of Λ0.

If the orbit of q is not g-Independent then we find another periodic point q1 for
which its orbit belongs to W su(θ(q)). If this point were contracting in the central
bundle it would belong to Λ0, therefore we can assume that expands on the central
bundle. Is easy to build g ∈ B such that q′ 6= q′1. Then for such g there exist
s ∈ (−ε, ε) and p1 ∈ Λ0 periodic such that p1(s) has a strong connection with q1(s)
or q(s) obtaining again a contradiction with the fact that Λ0 is hyperbolic.

Suppose then that the orbit of q is g-Independent. Let z0 ∈ Λ0, such that
q ∈ W su(z0). This point exist by hypothesis. We are assuming also that this
point is not periodic. If the past orbit of z0 would not be g-Independent from the
orbit of q then we can build q1 a periodic point which has a strong connection with
q and with z0. By the same reasons as before we obtain a contradiction.

We have now to study the case for which the past orbit of z0 is g-Independent
from the orbit of q.

Let u0, . . . , un0−1 be constants belonging to [−1, 1] such that:

d0 :=

∑n0−1
i=0 [

∏n0−1
j=i+1 f

′(Hj(q))]ui

1−
∏np−1

i=0 f ′(H i(q))
6= 0.

Take N0 such that

|d0| −
CλN0

1− λ
> 0.

Since we can assume that the past orbit of q is g-Independent, there exist
g1, . . . , gk : I → [−1, 1] such that g(H i(q)) = ui y g(H−i(z0)) = 0 if i < N0.

For such gi we have that

|q′ − z′0| =

∣∣∣∣∣d0 −
∞∑

i=N0

[
i−1∏
j=1

f ′(H−j(z0))]g(H−i(z0))

∣∣∣∣∣ ≥ |d0| −
CλN0

1− λ
> 0.

This implies that exists s ∈ (−ε, ε) and p1 ∈ Λ0 a periodic point such that p1(s)
has a strong connection with q(s) obtaining a contradiction with the hyperbolicity
of Λ0.

Let us prove the proposition.

Proof. We are going to see that there exist a perturbation of H, Cr close in LCSP
such that z′0 − z′1 6= 0.

If z0 and z1 are not the same point and they belong to the same strong stable
manifold then they must have different itineraries in their past orbit. Since πc(z0) =
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πc(z1) while we have that H−i(z0) and H−i(z1) belong to the same cylinder we are
going to have that

[
i−1∏
j=1

f ′(H−j(z0))]g(H−i(z0)) = [
i−1∏
j=1

f ′(H−j(z1))]g(H−i(z1)).

Therefore we can assume without losing generality that H−1(z0) and H−1(z1) are
not in the same cylinder.

We have two cases now:

• (H1) #per(Λ) ∩W su(z0) = 1

• (H2) per(Λ) ∩W su(z0) = φ

If we had more than one periodic point we would have already a strong connection
and we would have finished.

Let us see first the case (H1). In this case, we can assume that z0 is periodic
with period n0.

Lemma 4.12: If the past orbit of H−1(z1) and the orbit of z0 are not
g-Independent then there exist q a periodic point with a strong connection with z0.

Proof. Let i0 > 1 and 0 ≤ j0 < n0 such that H−i0(z1) and Hj0(z0) are not g-
Independent. This means that Hj0(z0) ∈ W su(H−i0(z1)). Then

H−i0(z1), . . . , H−1(z1), z0, . . . , H
j0(z0),

is a periodic su-po. Then there exist a periodic point in Λ0 with a strong connection
with z0.

Let us assume that the past orbit ofH−1(z1) and the orbit of z0 are g-Independent.

Take u0, . . . , un0−1 real numbers on [−1, 1] such that

d0 :=

∑n0−1
i=0 [

∏n0−1
j=i+1 f

′(Hj(z0))]ui

1−
∏np−1

i=0 f ′(H i(z0))
6= 0.

Take N0 such that

|d0| −
CλN0

1− λ
> 0.

We can assume that the orbit of z0 is g-Independent, and therefore there exist
g1, . . . , gk : I → [−1, 1] such that g(H i(z0)) = ui and g(H−i(z1)) = 0 if i < N0.

For such gi we have that

|z′0 − z′1| =

∣∣∣∣∣d0 −
∞∑

i=N0

[
i−1∏
j=1

f ′(H−j(z1))]g(H−i(z1))

∣∣∣∣∣ ≥ |d0| −
CλN0

1− λ
> 0.
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Finishing the proof for the case (H1).

Let us see now (H2). We have then that z0 and z1 are not periodic and that
H−1(z0) and H−1(z1) belong to different cylinders.

Lemma 4.13: If the past orbit of H−1(z0) is not g-Independent of H−1(z0) then
we have a periodic point in W su(H−1(z0)).

Proof. Analogue to the proof of the corollary 4.9

We now study two cases (H2.a) as the case in which the hypothesis of the previous
lemma is true and (H2.b) the opposite. Let us proof first the case (H2.b).

We are assuming then that the past orbit from H−1(z0) is g-Independent from
H−1(z0).

If there exist 1 < l0 < l1 such that H−l0(z1), H−l1(z1) ∈ W su(H−1(z0)), we have
that H−l1(z1), . . . , H−l0(z1) is a periodic su-po, obtaining a periodic point q which
belongs to W su(H−1(z0)). Since the past orbit from H−1(z0) is g-Independent from
H−1(z0) we have that H−1(z0) do not belong to W uu

loc (q) and then we are again in
the case (H1).

Let us assume that there exists only one point in the past orbit from z1 (H−l0(z1))
which belongs to W su(H−1(z0)), this point can not be H−1(z1) by hypothesis.

Lemma 4.14: If the past orbit from H−1(z0) is not g-Independent from H−1(z1)
then we have a periodic point in W su(H−1(z0)).

Proof. Let H−k0(z0) ∈ W su(H−1(z1)) then

H−k0(z0), . . . , H−2(z0), H−l0(z1), . . . , H−1(z1),

is a periodic su-po and therefore we have a periodic point which belongs to
W su(H−1(z0))

If we are on the hypothesis from the previous lemma we are again in the case
(H1). Assuming that we are not, if we had that the past orbit of H−1(z1) is not
g-Independent from H−1(z1) then we have a periodic point in W su(H−1(z1)). Also,
since we are assuming that H−l0(z1) belongs to W su(H−1(z0)) and that this point
is not in the local strong unstable manifold of any periodic point then we have that
H−1(z1) is not in the local strong unstable manifold from the periodic point obtained
and therefore we are again in the case (H1).

From the above reasoning we can assume that H−l0(z1) is g-Independent from its
past orbit and from the past orbit of H−1(z0).

Take N0 such that 1 >
2λN0
1−λ . We can build g1, . . . , gk : I → [−1, 1] such that

g(H−1(z1)) = 1, g(H−j(z0)) = 0 if 0 < j < N0 and g(H−j(z1)) = 0 if 1 < j < N0.
Then for such functions
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z′0 =
∞∑

i=N0

[
i−1∏
j=1

f ′(H−j(z0))]g(H−i(z0)),

z′1 = 1 +
∞∑

i=N0

[
i−1∏
j=1

f ′(H−j(z1))]g(H−i(z1)),

and therefore

|z′0 − z′1| ≥ 1− 2λN0
1− λ

> 0,

finishing the case (H2.b).

Let us see (H2.a). If q is a periodic point in W su(H−1(z0)) and H−1(z0) /∈ W uu
loc (q)

then we are in (H1). Assume then that H−1(z0) ∈ W uu
loc (q), and let us observe that

z′0 = f ′(H−1(z0)).H−1(z0)′ + g(H−1(z0)) = f ′(q).q′ + g(q) = H(q)′,

and we conclude that in the previous equation g is only evaluated among σ(q) which
we may assume g-Independent.

Let us study now what happens with the past orbit from z1. If this were g-
Independent from q then we proceed as in (H1).

Assume therefore that it is not. If the point in the past orbit of z1 which belongs
to W su(q) does not belong to W uu

loc (q) we would be again in (H1). We can assume
then that it belongs to W uu

loc (q). Let j0 be the smallest natural such that H−j0(z1) ∈
W uu
loc (q).

Let j1 = max{0 ≤ j < j0 : H−j0+i(z1) ∈ W su(H i(q)) ∀i ≤ j}. If j1 = j0 − 1 then
z0 and z1 are in W su(Hj0(q)) and then we are again on (H1).

If j1 < j0 − 1 taking the set A = {H−1(z1), . . . , H−j0+j1+1(z1)} we have that:

Lemma 4.15: If A is not g-Independent from σ(q) then there exist a periodic
point which has a strong connection with a point in σ(q).

Proof. Let j2 < j0 − j1 and l0 such that H−j2(z1) ∈ W su(H l0(q)). Then

H−j0(z1), . . . , H−j2−1(z1), H l0(q), . . . , q,

is a periodic su-po which give us a periodic point q2. By construction of A this point
is not one of the orbit from q and therefore we conclude.

Lemma 4.16: If A is not g-Independent we are in the case (H1).

Proof. If A is not g-Independent we can find a periodic point which belongs to
W su(z) for certain z ∈ A. This periodic point can not be in W uu

loc (z) because H−j0(z1)
is in W uu

loc (q). Then z and the periodic point are in (H1).
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Observe now that

z′1 = [

j=j0−j1∏
j=1

f ′(H−j(z1))].Hj1(q)′ +

j0−j1−1∑
i=1

[
i−1∏
j=1

f ′(H−j(z1))]g(H−i(z1)).

If A is g-Independent and g-Independent from σ(q), there exist g1, . . . , gk : I →
[−1, 1] such that g(H i(q)) = 0 for every i and

j0−j1−1∑
i=1

[
i−1∏
j=1

f ′(H−j(z1))]g(H−i(z1)) 6= 0.

Then z′0 = 0 and z′1 the previous number, obtaining that z′0 − z′1 6= 0. With this
we conclude the proof of (H2.a) and the theorem.

4.3 Expansive case

Suppose now that Ec is part of the unstable space. By theorem 4.2 we need to prove

Proposition 4.17: Let H ∈ LCSP and Λ0 an homoclinic class. Suppose that it
is hyperbolic and Ec is unstable. Then if there exist z0 and z1 which are part of the
same strong unstable manifold, there exist g ∈ B and sn a sequence decreasing to
0 such that Hsn has periodic points with strong connections and they belong to the
continuation of Λ0.

Proof. To prove this we do an analogue construction. Let us observe the important
details. Given a periodic point the formula of the first derivative of the continuation
of the point it is the same, but it is convenient for us to rewrite it as:

t′(s) =

∑n−1
i=0 g(H i

s(p(s)))
∏n−1

j=i+1[f ′ + sg′(Hj
s (p(s)))]

1−
∏n−1

i=0 [f ′ + sg′(H i
s(p(s)))]

=

∏n−1
i=0 [f ′ + sg′(H i

s(p(s)))]

1−
∏n−1

i=0 [f ′ + sg′(H i
s(p(s)))]

n−1∑
i=0

g(H i
s(p(s)))

i∏
j=0

1

f ′ + sg′(Hj
s (p(s)))

.

Since ∏n−1
i=0 [f ′ + sg′(H i

s(p(s)))]

1−
∏n−1

i=0 [f ′ + sg′(H i
s(p(s)))]

,

converges to −1 when the period of the points grow, it is easy to see that t′(s) is
uniformly bounded and taking its derivative once more it is not hard to see that
t′′(s) is also uniformly bounded and therefore we obtain once again a uniform control
over the remainders of the Taylor polynomials for the functions t(s).
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If now we take a family of periodic points which converges to z, we have that∏n−1
i=0 f

′(H i(p))

1−
∏n−1

i=0 f
′(H i(p))

,

converges to −1. Fixed k1, we see that

n−1∑
i=k1

g(H i(p))
i∏

j=0

1

f ′(Hj(p))
,

is equal to
k1∏
j=0

1

f ′(Hj(p))

n−1∑
i=k1

g(H i(p))
i∏

j=k1+1

1

f ′(Hj(p))
.

Taking absolute value we see that

|
n−1∑
i=k1

g(H i(p))
i∏

j=0

1

f ′(Hj(p))
| ≤ Cλk1+1

1− λ
,

where λ and C come from the hyperbolicity and therefore it converges to 0. This
implies that z′ exist and is equal to

−
∞∑
i=0

[
i∏

j=0

1

f ′(Hj(z))
]g(H i(z)).

From this equation we observe that the derivative z′ is only dependent of the
future orbit of z and therefore if we have z0 and z1 which belong to the same
local strong unstable manifold but they are not the same point then using the same
techniques as in the contractive case we can prove that either already exists periodic
points with a strong connection or that there exist g ∈ B such that z′0 6= z′1.
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5 Conclusions

Let us begin this chapter with an immediate corollary of theorem 3. Take A : M →
SL(2) a Cr map and define F : M × R2 →M × R2 by

F (x, v) = (h(x), A(x)v).

Given θ ∈ [0, 2π) we define Rθ : R2 → R2 as the rotation of angle θ. We say F is
stable by rotations if it is conjugated to Rθ ◦ F . We say that it is α-absolute stable
by rotations if the conjugacy φθ verifies d(φθ, Id) ≤ Cθα.

Corollary 5.1: If F is α-absolute stably by rotations and α > 1/2 then it is
hyperbolic.

Proof. Take π : R2 − {0} → S1 defined by π(v) = v
‖v‖ . We now consider Hθ :

M × S1 →M × S1 defined by

Hθ(x, v) = (h(x), π(RθA(x)v)).

In particular Hθ is the perturbation by the uniform translation of H0 and then
we are in the hypothesis of theorem 3. From this we conclude that F has dominated
splitting and since we are taking A(x) ∈ SL(2) we have hyperbolicity.

We can see now that with a slightly modification of the example in 3.7 the theorem
3 is on the verge of optimal.

Theorem 5.2: For every α < 1/2 there is Hα ∈ SKS of class C2 such that Hα

is α-absolute stable and central topologically hyperbolic but not hyperbolic.

Proof. We define the maps fβ : M × R→ R with β > 0 by

fβ(x, t) = ϕ(x)t− t2+β.

We do the same process as in 3.7 using fβ instead of f and we obtain our map
Hβ which is strong Kupka-Smale. For the points which are not in the minimal set
associated to Λ1 their continuation by the uniform translation is differentiable if the
perturbation is taken correctly.

Let Hβ,s be the perturbation family of Hβ by the uniform translation. Inside the
minimal set associated to Λ1, the action of the skew-product Hβ,s on the fibers does
not depend on the base. This is:

(fβ + gβ + s)(x, t) = t− t2+β + s.

This implies that to find bs(x) we have to solve the equation

bs(x)− bs(x)2+β + s = bs(x),
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which has solution
bs(x) = s

1
2+β .

If given α < 1/2 we take β > 0 such that α = 1
2+β

then Hβ is α-absolute stable
but not hyperbolic.

It is clear that the obstruction to hyperbolicity is on the minimal set of Λ0 asso-
ciated to Λ1. This opened us the following question which we will enunciate it as a
conjecture:

Conjecture 5.3: If Λ0 is locally maximal, central topologically hyperbolic and
verifies: if Λ1 ⊂ Λ0 is a minimal set then Λ1 is hyperbolic. Then Λ0 is hyperbolic.

Observe that the orbit of a periodic point is a minimal set. What we are saying
is that if the atoms of our set are all hyperbolic then our set should be hyperbolic.
In lower dimensions, 1 and 2, the hyperbolicity of the periodic points was enough to
imply hyperbolicity on the whole set and therefore the notion of atoms has always
been the periodic points. In dimension 3 there is more space and we can not jump
to hyperbolicity from the hyperbolicity of the periodic points. This is why we are
proposing to extend the notion of atoms.

There is in fact a more general way to extend this conjecture and is the following:

Conjecture 5.4: Let f : M → M be a Cr diffeomorphism. Suppose that there
exist Λ a compact locally maximal set which has dominated splitting TΛM = E ⊕ F
which verifies the following property: If Λ1 ⊂ Λ is a minimal set then Λ1 is hyperbolic
with Es = E and Eu = F , we should have then that Λ is hyperbolic.

For this conjecture to be useful we should have a Kupka-Smale’s theorem like for
minimal sets which should be:

Conjecture 5.5: There exist B ⊂ Diff r(M) a residual (or dense) set such that
if Λ ⊂M is minimal then Λ is hyperbolic.

A result in this way is not clear why should be true because a key property in the
Kupka-Smale theorem is that generically the periodic points are countable which is
not the case for the minimal sets.

Anyhow we have a proposition which points towards our first conjecture:

Proposition 5.6: Given H ∈ SP if Λ0 is locally maximal, central topologically
contracting set which verifies:

• If Λ1 ⊂ Λ0 is a minimal set then Λ1 is hyperbolic

• If z ∈ Λ0 then f ′(z) ≤ 1

Then Λ0 is hyperbolic.

Proof. Take z ∈ Λ0, in ω(z) there is a minimal set Λ1. This can be seen using Zorn’s
lemma. We take now an open neighborhood U1 of Λ1 associated to its hyperbolicity.
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When the orbit of z get inside of U1 the derivative of H in the center bundle decreases
exponentially fast. When the orbit of z goes outside of U1 it can not increase by the
second hypothesis therefore we have:

limn
∂Hn

∂t
(z) = 0 ∀z ∈ Λ0.

This is known to be an equivalent condition to hyperbolicity.

The previous proposition tell us that to build a counter-example of the first
conjecture the example built here is far away to be a starting point.

From the perspective of α-absolute stable by the uniform translation the counter-
example shown is also weak. We say that because even though Hα is not hyperbolic,
the perturbation by the uniform translation actually makes it hyperbolic. Maybe for
α ≤ 1/2 we can have that even though the system is not hyperbolic there is an open
and dense set of parameters for which the perturbation by the uniform translation
is hyperbolic.

Another observation from the α-absolute stable theorem proved before that could
link all the previous things discussed is that in the proof we never cared for the
whereabouts of the orbit in the base.

43



References

[BC] C. Bonatti and S. Crovisier, Center manifolds for partially hyperbolic set with-
out strong unstable connections. (2014), arXiv:1401.2452.

[BD] C. Bonatti and L. Dı́az, Persistence of transitive diffeomorphisms. Annals of
Mathematic, (1995) 143, 367-396.

[F] J. Franks, Differentiable Ω-stable diffeomorphisms, Topology, 11 (1972), 107-
113.

[G] J. Guckenheimer, Absolutley Ω-stable diffeomorphisms, Topology, 11 (1972),
195-197.
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