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Abstract

Abstract. In this technical report, we extend the Black-Litterman model for the

skew normal market by applying conditional value-at-risk as an alternative risk

measure to obtain the optimal portfolio. Furthermore, we modify the model of

the location parameter L by using the covariance matrix of the market and L ∼
N(µ0, τCov(X)). In this case, we introduce a non-orthogonal formulation to the

skew normal case, which correlates the prior model and the views.

Illustrative examples of the approach are developed for Brazilian stock market

portfolios using publicly available data of some of the major traded assets leading

to a robust analysis of some the main risk indicators such as Value at Risk and the

Conditional Value at Risk.

Keywords. Black-Litterman model, skew normal distribution, conditional value-at-

risk, non-orthogonal formulation.

1



Contents

1 Introduction 2

2 The Black-Litterman Model in Skew Normal Markets 4

2.1 The Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Model One of L|V . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Model Two of L|V . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 The Posterior Model for X . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Implementation 10

3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 EBL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 EBL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 Introduction

In 1992, Black and Litterman [BL91] introduced a model to combine the market equilibrium

with the views of the investor. It is called the Black-Litterman model (hereafter, BL

model). Specifically, they used the CAPM equilibrium market portfolio as a starting point

and ‘reverse optimization’ to generate a stable distribution of returns. Then they gave

a way to specify investors’ views and used Bayes’ formula to blend them with the prior

model to obtain a posterior distribution of the portfolio. Finally, a new optimal portfolio

is obtained by using mean-variance approach. For more details on the BL model, see the

survey written by Walters [Wal11].

However, the Black-Litterman model is based on many assumptions, such as the as-

sumptions of normality to value risk, etc, and hence, questioned by many practitioners. To

quantify the views involves a lot of uncertainties and errors. The parameters in this model,

such as τ and Ω are still under discussion. Critics also doubt that this model depends too
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much on the input data and may result in a useless output. Therefore, many researchers

extended the model to be more general and suitable for more types of portfolios.

Firstly, one extension is to deal with non-normally distributed markets in reality. Gi-

acometti, Bertocchi, Rachev and Fabozzi [GBRF07] used the t-distribution or the stable

distribution to model the market. Xiao and Valdez [XV13] considered the case when re-

turns in the market fall within the class of the elliptical distribution. Meucci [Meu06] used

copula-opinion pooling (COP) approach to extend the BL methodology to non-normally

distributed markets and views. Blasi [Bla09] gave an example of a very simple volatility

trading strategy producing skew normal returns and provided the optimization problem to

embed the BL model in the skew normal market case.

Another extension is to use newly defined risk measures, such as value-at-risk (VaR)

and conditional value-at-risk (CVaR). Accordingly, in the work of Giacometti, Bertocchi,

Rachev and Fabozzi [GBRF07], they established a frame work by applying the t and the

stable distribution for asset returns. For each case, they gave the formulas of using value-

at-risk and conditional value-at-risk as risk measures. Correspondingly, Meucci [Meu06]

minimized the CVaR subject to the constraint of a minimum target expected return.

Finally, many researchers have investigated to embed other models in the BL model.

Beach and Orlov [BO07] used GARCH-derived views as an input into the Black-Litterman

model. Fabozzi, Focardi and Kolm [FFK06] used cross-sectional momentum strategy as

an input view and combine the strategy with the Black-Litterman model. Ogliaro, Rice,

Becker and de Carvalho [ORBdC12] introduced a non-orthogonal approach into the BL

model. By using a matrix Γ, they characterized the relation between the prior model and

the views.

Inspired by these works, in this report, we will explore further along the three directions.

Specifically, in Section 2, we will consider the BL model in skew-normal market. We firstly

follow the same idea in [Bla08] to model the market, however, we provide another different

way to model the location parameter L. Instead of using the scale matrix, we use the

covariance matrix of the market and L ∼ N(µ0, τCov(X)). In Subsection 2.2, we convert

the views on the expected returns to the location parameters. Correspondingly, we obtain

two posterior models based on how we model the location parameter L. Moreover, for the

second model, we apply a matrix Γ as in [ORBdC12] to correlate the prior model and the

view. In this way, we introduce the non-orthogonal approach into the skew-normal market.

We call the two models the extended Black-Litterman model 1 and 2 , in brief, EBL1 and

EBL2. Section 3 serves two purposes, we will use the data of 8 stocks in the Brazilian
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stock market, BM&F Bovespa, to illustrate how our model works and confirm our insight.

Finally, conclusions and more future work will be discussed.

2 The Black-Litterman Model in Skew Normal Mar-

kets

2.1 The Market

Consider a portfolio of N securities or asset classes, whose returns have a multivariate skew

normal distribution:

X|L=µ ∼ SN(µ,Σ, α), (1)

where µ is the location parameter, and is considered to be random and normally distributed

with µ ∼ N(µ0,Σ0). Note that Σ is a positive definite matrix and α is the shape parameter.

For more properties of the skew normal family, see [Azz05], [AC99] and [ADV96].

From the work of Blasi [Bla08] and [Bla09], we have the following lemma:

Lemma 2.1 (Blasi [Bla08] and [Bla09]) If the returns of assets follow a multivariate skew

normal distribution as (1), and the location parameter has a normal distribution, which is,

L ∼ N(µ0,Σ0). (2)

Then the marginal density function of X is:

fX(x) = 2ϕ(x;µ0,Σ + Σ0)Φ
(
α′σ−1

1 (x− µ0)
)
, (3)

where

α = α′Lσ
−1Σ(Σ + Σ0)−1(1 + α′1∆α1)−1/2σ1

∆ = (Σ−1 + Σ−1
0 )−1

∆ = d−1∆d−1

α1 = −αLσ−1d,

and d is the diagonal matrix of standard deviations of ∆, and σ1 is the diagonal matrix of

standard deviations of Σ + Σ0.
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In particular, if Σ0 = τΣ, where τ ∈ (0, 1], we have

L ∼ N(µ0, τΣ). (4)

We can simplify (3) and yield:

X ∼ SN
(
µ0, (1 + τ)Σ, α

)
, (5)

where α =
αL√
1+τ√

1+ τ
1+τ

α′LΣαL
.

Note that the positive definite matrix Σ is not the covariance matrix of X, which is

equal to

Cov(X) = Σ− 2

π
(σα̃)(σα̃)′, (6)

where σ is the diagonal matrix of standard deviations of Σ and

α̃ =
Σα√

1 + α′Σα
, Σ = σ−1Σσ−1.

Naturally, we can alternatively model the covariance matrix of location as τ ·Cov(X), such

that

L ∼ N
(
µ0, τCov(X)

)
. (7)

Substituting the assumption (7) to Lemma 2.1, the marginal density function of X is

fX(x) = 2ϕ
(
x;µ0,Σ + τCov(X)

)
Φ
(
α′σ−1

1 (x− µ0)
)
, (8)

where

α = α′Lσ
−1Σ

[
Σ + τCov(X)

]−1
(1 + α′1∆α1)−1/2σ1

∆ =
[
Σ−1 +

[
τCov(X)

]−1
]−1

∆ = d−1∆d−1

α1 = −αLσ−1d,

and d is the diagonal matrix of standard deviations of ∆, and σ1 is the diagonal matrix of

standard deviations of Σ + τCov(X).
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2.2 The Views

In order to put the views in the prior distribution of asset returns, we use the same technique

with the standard BL model. That is, given the expected returns of the assets, the views

expressed on the expected returns are normally distributed:

V |E(X) ∼ N(v,Ω). (9)

However in this model, the distribution of X is conditioned on the location parameter L

described in Section 2.1. We, therefore, try to ‘move’ our views from the expectations of

X to L. This is an alternative way to connect the market and the views. Note we have

E(X) = L+ σα̃

√
2

π
.

Suppose P is the K × N pick matrix: the k-th row of the pick matrix determines the

weights of the k-th view. That is, P = (P1, P2, . . . , PK)′, where Pi is a 1 × N matrix. So

(9) is equivalent with

V |L=µ ∼ N(P
(
µ+ σα̃

√
2

π

)
,Ω). (10)

2.3 The Posterior

2.3.1 Model One of L|V

Let fL be the density functions of L satisfied (4) and fV |L=µ
is the density function of V |L=µ

satisfied (10). Based on Bayes’ rule and and obtain

fL|V (µ|v) ∝ fV |µ(v|µ)fL(µ) (11)

∝ |τΣ|
1
2 |Ω|

1
2 ·

e−
1
2

[
(µ−µ0)′(τΣ)−1(µ−µ0)+

(
v−P
(
µ+σα̃
√

2
π

))′
Ω−1
(
v−P
(
µ+σα̃
√

2
π

))]
∝ |(τΣ)−1 + P ′Ω−1P |

1
2 ·

e−
1
2

(µ−µLBL)′((τΣ)−1+P ′Ω−1P )(µ−µLBL),
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where

µLBL =
[
(τΣ)−1 + P ′Ω−1P

]−1
[
(τΣ)−1µ0 + P ′Ω−1

(
v − P

(
σα̃

√
2

π

))]
= µ0 + (τΣ)P ′

[
P (τΣ)P ′ + Ω

]−1
[
v − P

(
σα̃

√
2

π

)
− Pµ0

]
, (12)

with the covariance matrix

ΣL
BL =

[
(τΣ)−1 + P ′Ω−1P

]−1

(13)

= (τΣ)− (τΣ)P ′
(
P (τΣ)P ′ + Ω

)−1
P (τΣ). (14)

Eventually, the posterior distribution of locations given the views is a normal distribu-

tion similar with the standard BL model:

L|V ∼ N(µLBL,Σ
L
BL) (15)

2.3.2 Model Two of L|V

As is discussed in Section 2.1, an alternative way to model the location parameter L is to

use the covariance matrix Cov(X) of X as in (7). The views also follow the distribution

as in (10). Moreover, as in the working paper of Ogliaro, Rice, Becker and de Carvalho

[ORBdC12], we follow the same idea of the theorem in [ORBdC12] and suppose the prior

model and the views are correlated by a matrix Γ. Then the posterior density of L|V is a

normal distribution N(µLBL,Σ
L
BL), where

ΣL
BL =

[
Σ−1

0 +
(
P − ΓΣ−1

0

)′(
Ω− ΓΣ−1

0 Γ′
)−1 ·

(
P − ΓΣ−1

0

)]−1

(16)

µLBL = ΣL
BL ·

[
Σ−1

0 µ0 +
(
P − ΓΣ−1

0

)′(
Ω− ΓΣ−1

0 Γ′
)−1 ·(

v − P
(
σα̃

√
2

π

)
− ΓΣ−1

0 µ0

)]
(17)

In [ORBdC12], the authors define Γ = γΓ̂, where Γ̂ is calculated through the data

following a certain rule. They introduced an index forecast error to calculate γ through an

optimization model. However, the model cannot guarantee that the optimal γ is always

valid. By modifying the model, we provide two methods rather than in paper [ORBdC12].
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For the first one, denote Υ as the correlation matrix of each asset with the portfolio formed

by each view. Namely,

Υij = corr
(
Xj, Pi(X1, X2, . . . , XN)′

)
.

By multiplying the matrices of standard deviations, we have

Γ = γ ×
(
diag(Ω)

) 1
2
Υ
(
diag(Cov(X))

) 1
2
,

where γ ≥ 0 is a parameter specified by users to make the matrix(
τCov(X) Γ′

Γ Ω

)

positive definite and can be viewed as a covariance matrix. One obvious drawback is the

correlation we calculate is Pearson’s correlation, this cannot characterize the correlation

precisely when the data is skewed. We can calculate the Spearman’s or Kendall’s covariance

instead. But in any way, the magnitude of every row of Γ is small. When γ gets larger,

the views and the prior model are more correlated.

The alternative method is simple. We set Γ = γPΣ0, where γ ∈ [0, 1].

For this model, if we suppose Γ = γPΣ0, we have

ΣL
BL =

[
Σ−1

0 +
(
P − ΓΣ−1

0

)′(
Ω− ΓΣ−1

0 Γ′
)−1(

P − ΓΣ−1
0

)]−1

= Σ0 − (PΣ0 − Γ)′
[
(PΣ0 − Γ)(P − ΓΣ−1

0 )′ + Ω− ΓΣ−1
0 Γ′

]−1
(PΣ0 − Γ)

= Σ0 − (PΣ0 − Γ)′(PΣ0P
′ − PΓ′ − ΓP ′ + Ω)−1(PΣ0 − Γ)

= Σ0 − (1− γ)2Σ0P
′[(1− 2γ)PΣ0P

′ + Ω
]−1

PΣ0 (18)

Equation (18) is because we substitute Γ = γPΣ0. When we choose γ such that (1 −
2γ)PΣP ′ + Ω is close to a zero matrix, the inverse of it would get very large, and hence,

det(ΣL
BL) goes to infinity. If we assume γ 6= 1 and Ω = PΣ0P

′, for this special case we

have

ΣL
BL = Σ0 − Σ0P

′
[ 1− 2γ

(1− γ)2
PΣ0P

′ +
1

(1− γ)2
Ω
]−1

PΣ0

= Σ0 − Σ0P
′
[
PΣ0P

′ +
1 + γ

1− γ
PΣ0P

′
]−1

PΣ0 (19)
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We notice that the function

f(γ) =
1 + γ

1− γ
is an increasing function and f(0) = 1. Let

Ω1 =
1 + γ

1− γ
PΣ0P

′.

From Equation (19) and comparing with Equation (14), we will analyse in three cases

about the effects caused by changing γ.

• when 0 < γ < 1, we have 1 < 1+γ
1−γ . So when γ tends to 1, it has the same effect with

changing Ω to diminish the confidence.

• when −1 < γ < 0, we have 0 < 1+γ
1−γ < 1, and therefore, this has the same effect with

enhancing the confidence of the views.

• Clearly, when γ tends to zero, (16) tends to (13) and (17) tends to (12) with τΣ

replaced by Σ0.

2.3.3 The Posterior Model for X

By substituting Equation (12) and (13), or (16) and (17) to Lemma 2.1 we get:

fX|V (x|v) = 2φ(x;µLBL,Σ + ΣL
BL)Φ

(
α′BLσ

−1
BL(x− µLBL)

)
(20)

where σBL is the diagonal matrix of the standard deviations of Σ+ΣL
BL. To make it satisfy

the form of a multivariate skew normal distribution, the parameter αBL is given by:

α′BLσ
−1
BL = α′σ−1Σ

(
Σ + ΣL

BL

)−1(
1 + α′∆∆BLα∆

)−1/2

α′∆ = −α′σ−1dBL

∆BL =
[
Σ−1 +

(
ΣL
BL

)−1
]−1

,

where ∆BL is the correlation matrix of ∆BL and dBL is the diagonal matrix of standard

deviations of ∆BL. Obviously, we have dBL∆BLdBL = ∆BL.

Therefore, Equation (20) is a multivariate skew normal distribution density function.

We have

X|V ∼ SN(µLBL,Σ + ΣL
BL, αBL). (21)
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2.4 The Allocation

Since the posterior distribution is also a multivariate skew normal distribution, as is shown

in (21), we cannot use the mean-variance optimization or CAPM freely. However, what

we concern is the riskiness, especially the loss in some extreme scenarios, such as economic

recession or financial crisis; therefore we choose to use CVaR to measure the risk.

In the paper by Rockafellar and Uryasev [RU00], they considered minimizing CVaR,

with a given expected return. The model can also be found in Pflug [Pfl00]. Suppose we

have a portfolio with N assets and X = (X1, . . . , XN)′ is the return vector of X. Let

w = (w1, w2, . . . , wN)′ be the weight vector. Then we have the return R(w,X) of the

portfolio as a function of w and X. Let VaRβ(w,X) and CVaRβ(w,X) be the value-at-

risk and conditional value-at-risk of the portfolio. Let RS×N = (R1, R2, . . . , RS) be the

panel data with S simulated joint scenarios of returns and Ri, i = 1, 2, . . . , S be vectors of

N -dimension. R̂1×N = (r̂1, r̂2, . . . , r̂N)′ is a vector of mean values of all the assets, or more

generally, the expected returns of the assets. Denote di = max{−w′Ri − VaRβ(w,X), 0},
i = 1, 2, . . . , S and Rmin is the target return. Given a target expected return, we minimize

the CVaR to obtain the optimal portfolio.

The model can be formalized in the following way:

min
w

CV aRβ(w,X) = VaRβ(w,X) +
1

S(1− β)

S∑
n=1

max{−w′Rn − VaRβ(w,X), 0}

s.t. di ≥ −w′Ri − VaRβ(w,X), i = 1, 2, . . . , S

w′R̂1×N ≥ Rmin

N∑
j

wj = 1

wj ≥ 0, j = 1, 2, . . . , N.

di ≥ 0, i = 1, 2, . . . , S

(22)

3 Implementation

Based on the analysis, we call the Black-Litterman model using the skew normal distri-

bution to fit the data and CVaR portfolio optimization to choose the optimal portfolio as

an extended Black-Litterman model (EBL model). Specifically, using model 1 and 2 for
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the location parameter is called EBL1 and EBL2, respectively. The data is comprised of

eight stocks in BM&F Bovespa. These stocks are contained in the Ibovespa index and are

mid-large cap. We will perform an initial check for evidence of the skewness in the data.

Then, we express the same views on returns and proceed with the study of the two models.

3.1 The Data

To implement our model, we select eight stocks in BM&F Bovespa, ITUB4, PETR4,

VALE5, BRFS3, ITSA4, BBAS3, GGBR4, EMBR3. These stocks are contained in the

Ibovespa index and all together make up a great percentage. We summarize some infor-

mation of the stocks in Table 1.

Table 1: The information of the stocks
Code Sector Part. %

ITUB4 Financial / Financial Intermediaries 7.036%

PETR4 Oil, Gas and Biofuels 7.820%

VALE5 Basic Materials Mining 8.278%

BRFS3 Consumer Non Cyclical / Food Processors 2.292%

ITSA4 Financial / Financial Intermediaries 2.869%

BBAS3 Financial / Financial Intermediaries 2.599%

GGBR4 Basic Materials / Steel and Metalurgy 1.994%

EMBR3 Capital Goods and Services / 1.355%

Transportation Equipment and Co

The data series starts from 01/01/2004 to 01/01/2014, with weekly observations. This

time period includes the 2008 finance crisis, the European debt crisis and also other events

that may affect the Brazilian market. Short-term trading is always conducted in stock

market or futures market. We calculate the compound 5-day returns of every stock. The

statistic characteristics of the data are shown in Table 2, where we can see that BRFS3

has the biggest mean value and positive skewness. This means BRFS3 has more extreme

values to the right. On the contrary, GGBR4 has the biggest negative skewness and the

largest kurtosis and GGBR4 has more values on the left tail, which can be proved in the

following plots.
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Table 2: The statistic characteristics of the data
Variable Mean×10−3 Std Dev Skewness Kurtosis Min & Max

ITUB4 2.2 0.052 0.07 4.65 -0.27 & 0.29

PETR4 2.6 0.040 -0.14 1.46 -0.17 & 0.21

VALE5 2.2 0.047 -0.11 1.17 -0.17 & 0.16

BRFS3 4.8 0.097 0.43 8.14 -0.41 & 0.57

ITSA4 2.0 0.052 0.04 7.01 -0.29 & 0.34

BBAS3 1.9 0.054 -0.24 2.85 -0.31 & 0.23

GGBR4 0.5 0.065 -1.42 10.61 -0.55 & 0.26

EMBR3 0.2 0.050 -0.34 3.46 -0.29 & 0.17

From the statistics of the returns, we make an insight that the distribution of the data

is skewed and has a fat tail. Take GGBR4 as an example, the histogram of the returns of

GGBR4, Figure 1, has a left fat tail. We fit the normal and the skew normal distributions

to the data, respectively. Note that in Figure 1 the solid line represents the skew normal

density function, whereas the dotted line is fitted by a normal density. Figure 2 is the QQ-

plot. Almost all the points in the plot for the skew normal distribution are on a straight

line.

Finally, based on the results of MLE in Table 3, we can conclude that GGBR4 is skew

normally distributed.

Table 3: The test of normality

likelihood ratio test (test.normality)

LRT 33.48

p-value 0

For all the 8 stocks, we plot the Gaussian CVaR and modified CVaR, and the latter is

calculated using higher moments. In Figure 3, it shows that for each stock, the Gaussian

CVaR and modified CVaR are quite different especially when the confidence-level gets

higher. This means that the higher moments cannot be ignored. We, therefore, fit the

data to a skew normal distribution. The MLE estimations for 8 stocks are listed in Table

4.
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Table 4: The MLE estimations for 8 stocks
ITUB4 PETR4 VALE5 BRFS3 ITSA4 BBAS3 GGBR4 EMBR3

µ0 × 10−3 16.8 7.7 22.2 -19.3 14.7 15.6 54.1 19.3

α -0.16 0.58 -0.12 0.58 0.47 -0.03 -2.10 -0.30

The matrix of Σ is

1000×



2.8 1.2 1.4 0.3 2.5 2.0 2.5 1.0

2.3 1.3 0.2 1.3 1.3 1.8 0.6

2.5 0.2 1.3 1.3 3.1 1.1

9.9 0.4 0.6 −0.3 0.0

2.7 1.9 2.4 1.0

3.2 2.4 1.0

7.1 2.1

2.7



Figure 1: Fit the normal and the skew normal distribution to the compound returns of

GGBR4.
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Figure 2: QQ-plot for GGBR4

Figure 3: Conditional Value-at-Risk with β ∈ [0.9, 0.99]
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3.2 Methodology

For this particular problem, we will process the EBL1 and EBL2 model, respectively. We

set the risk confidence β = 0.95. To avoid the allocation focuses on some certain assets, we

constrain wi ∈ [5%, 30%], i = 1, 2, . . . , 8. Next, we blend our views with the two models

respectively. Assume that our views are:

‘GGBR4 will have a weekly return of 1%’

and

‘BBAS3 will outperform ITUB4 by 2%’.

Therefore the pick matrix reads

P =

(
0 0 0 0 0 0 1 0

−1 0 0 0 0 1 0 0

)
.

Accordingly, the views vector becomes V = (1%, 2%)′, and the confidence matrix of the

views is

Ω =

(
0.032 0

0 0.052

)
.

Hereafter, we denote the results of the two models by the following symbols:

• µ1
EBL, α1

EBL and Σ1
EBL: parameters of the posterior distribution of the EBL1 model;

• µ2
EBL, α2

EBL and Σ2
EBL: parameters of the posterior distribution of the EBL2 model;

3.3 The Results

3.3.1 EBL1

The prior model is obtained directly in Figure 4. We blend our views and calculate the pos-

terior distribution and the optimal portfolio. The parameters of the posterior distribution

are shown in Table 5.
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Figure 4: The transition map of the prior model
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Figure 5: The transition map for EBL model

3.3.2 EBL2

The prior model of EBL2 is the same with EBL1. Likewise, the posterior model has the

parameters in Table 5.

L ∼ N(µ0, τCov(X)).
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Table 5: Posterior model parameters

µ1
EBL · 10−3 α1

EBL diag(Σ1
EBL) · 10−3 µ2

EBL · 10−3 α2
EBL diag(Σ2

EBL) · 10−3

ITUB4 18.1 -0.12 3.3 17.9 -0.13 3.3

PETR4 9.3 0.44 2.6 9.6 0.49 2.8

VALE5 25.0 -0.09 3.0 24.6 -0.10 3.0

BRFS3 -19.1 0.43 12.4 -17.4 0.48 12.2

ITSA4 16.4 0.34 3.2 16.4 0.38 3.2

BBAS3 20.3 -0.02 3.7 20.0 -0.02 3.7

GGBR4 61.2 -1.67 7.7 59.9 -1.77 7.6

EMBR3 21.6 -0.21 3.3 21.0 -0.24 3.3

Figure 6: The transition map of the alternative approach

Now we will perturb the views a little in two ways. First, we want our views to have a

little correlation with the prior model. We choose the first method to assign Γ. By setting
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γ = 0.2, we have

Γ = 10−5 ×

(
16.67 14.38 17.51 8.56 16.86 15.01 39.36 9.99

−18.64 −3.78 −2.94 6.47 −12.67 26.32 −4.03 1.37

)
.

On the other hand, if we are less confident on our views, and we want to depend on the

prior model mostly, we set γ close to 1. We use the second method with γ = 0.95, and we

have

Γ = 10−5 ×

(
44.65 38.51 46.89 22.93 45.17 40.21 105.43 26.76

−20.53 −4.16 −3.23 7.13 −13.95 29.00 −4.44 1.51

)

With the same method, we set γ = −0.3,

Γ = 10−5 ×

(
−9.07 −8.58 −8.87 −5.44 −8.96 −8.25 −17.87 −5.25

3.99 0.24 0.61 −2.17 2.82 −5.96 0.82 −0.39

)

Correspondingly, the transition map is given in Figure 7 and 8, respectively.
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Figure 7: The transition map of the EBL2 with γ = 0.2
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Figure 8: The transition map of EBL2 with γ = 0.95
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Figure 9: The transition map of EBL2 with γ = −0.3

3.4 Conclusions

In this report, we extend the Black-Litterman model based on the two models of the

location parameter L, and we call the corresponding model EBL1 and EBL2. From the

results of the implementation, the portfolios of the two models both change according to

our views. That is, the weights of GGBR4 and BBAS4 increase, whereas ITUB4 decreases.

However, it can be seen that GGBR4, PETR4 and BRFS3 change less in EBL2 than in

EBL1. Moreover, for EBL2, we perturb the model a little by setting γ = 0.2, 0.95 and

-0.3. In the case of γ = 0.2, the transition map in Figure 7 shows that GGBR4 increases

more, whereas BBAS3 does not increase at all. This can be explained that we originally

have more confidence on GGBR4 than BBAS3, nevertheless, ITUB4 decreases less. By

setting γ as a small number close to zero, we want to reduce our confidence of our original

views and make our views correlate with the prior model. On the other side, when γ is

close to 1, our empirical study shows that the stable region is smaller than the one that γ

is close to 0. Figure 8 shows that when γ is close to 1, the views and the prior model are
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almost perfect correlated and the resulting portfolios are almost the same. Therefore, for

the Black-Litterman model in skew-normal market, we provide another way to reduce our

confidence after we already fixed our views. For the last case, in Figure 9, we can see that

both BBAS3 and GGBR4 increase more than any case we have discussed before.

CVaR optimization is a very powerful method in asset allocation. It does not depend on

the distribution of the assets, and therefore can be used for any asset when it is not normally

distributed. However, in Cont, Deguest and Scandolo [CDS10], they proved that CVaR

is less robust than historical VaR in some circumstances. Therefore, considering other

coherent risk measure to choose the portfolio would be interesting. Finally, some parts

of the models can still be improved, such as assigning values for Γ, estimating covariance

matrix for the data, and so forth.
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