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Aos amigos e colegas geômetras, destacando a Vanderson Lima, Marco A.
Méndez Guaraco, Lucas Ambrozio, Rafael Montezuma, Lázaro Rodriguez, Guil-
herme Machado Freitas, Fabio Simas, Dima Yeroshkin, Marco Radeschi, Fernando
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Focho.

v





“He who desires but acts not, breeds pestilence.”
William Blake, “The Proverbs of Hell”.



Resumo

Uma ação polar é um tipo de ação isométrica própria definida pelo requerimento
da existência de uma subvariedade imersa completa intersecando todas as órbitas
ortogonalmente. Esta classe de ações aparece naturalmente em questões geométricas
e generaliza as ações de cohomogeneidade um, assim como a ação por conjugação
de um grupo de Lie compacto em si mesmo.

Este trabalho estuda sistematicamente as posśıveis ações polares em variedades
compactas e simplesmente conexas de dimensão cinco ou menos. Como resultado
se classificam os tipos equivariantes de ações assim como as variedade subjacentes
a menos de um difeomorfismo. Os exemplos são constrúıdos a partir de ações
lineares e outras ações naturais em bi-quocientes, seguidas de operações de cirurgia
equivariante. Como aplicação se determinam aquelas ações que admitem uma
métrica invariante de curvatura seccional não negativa.

Palavras-chave: ações isométricas, polar, curvatura não-negativa.
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Abstract

Polar actions are a special kind of proper isometric actions defined by the
existence of an immersed complete submanifold intersecting every orbit orthogonally.
This class of actions appears naturally in geometric questions and generalizes actions
of cohomogeneity one, as well as the adjoint action of a compact Lie group on itself.

The aim of this work is to study polar actions on simply connected compact
manifolds of dimension at most five. As a result we obtain an equivariant classifi-
cation as well as a classification of the underlying manifolds up to diffeomorphism.
There is a great variety of examples, most of them obtained from linear actions
and natural actions on biquotients followed by equivariant surgery operations.
Finally, as an application, it is shown which actions admit an invariant metric of
non-negative curvature.

Key words: isometric actions, polar, non-negative curvature.
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1 Introduction

The concept of symmetry has played an important role in geometry since its
inception. Within the field of Riemannian geometry we find the general theory of
proper isometric actions by Lie groups, and as a special case of interest that of
polar actions.

A complete Riemannian manifold M together with a proper isometric action of
a Lie group G is said to be polar if it admits a section, i.e., an immersed complete
submanifold Σ of M intersecting every G-orbit and doing so orthogonally. The
existence of Σ is equivalent to the integrability of the horizontal distribution along
the regular part; see [Bou95]. The section is preserved by the so called polar
group Π which is a discrete group acting properly and discontinuously on Σ with
quotient Σ/Π isometric to M/G. Hence, the orbit space is a good orbifold. The
existence of a section enables the reduction of a geometric problem on M invariant
under G to a possibly simpler one on Σ invariant under Π, as e.g. illustrated by
the generalization of the Chevalley Restriction Theorem in [PT87] which states
that smooth G-invariant functions on M are in one to one correspondence with
Π-invariant functions on Σ, C∞(M)G ∼= C∞(Σ)Π.

The knowledge of the orbit space together with certain isotropy data is enough
to reconstruct the equivariant diffeomorphism type of the action, as shown in
[GZ12]. This feature provides flexibility in the construction of new examples in
terms of abstract polar data and facilitates their equivariant classification. It also
proves useful in adapting general tools, as e.g. equivariant surgeries, to the polar
context.

Among classical examples are the adjoint action of a compact Lie group on
itself, equipped with a bi-invariant metric, or more generally the left action of K
on G/K, associated to a symmetric pair (G,K). The isotropy representations of K
on T[eK]G/K, so called s-representations, are of particular importance since they
agree with the class of linear polar actions up to orbit equivalence; see [Dad85]. In
fact, such s-representations completely describe the local structure of a general
polar action.

Trivial examples are given by the product of a homogeneous space with a
manifold. Another simple yet rich source of examples is that of cohomogeneity
one actions, where a section is given by a geodesic orthogonal to a regular orbit.
In this case, polar data is given by a group diagram H ⊆ K−, K+ ⊆ G, and the
reconstruction of the manifold is achieved as a gluing of two disc bundles G×K± Dl±

along their common boundary G/H. In this framework, compact simply-connected
cohomogeneity one manifolds were classified up to dimension 7 in [Hoe10]. In
particular, in dimension 5 the author shows that M is diffeomorphic to either S5,
SU(3)/ SO(3), S3 × S2 or the non-trivial S3-bundle over S2, denoted by S3×̃S2. In
addition, he classifies the actions up to equivariant diffeomorphism.

In this paper we classify all closed simply-connected polar manifolds of dimension
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1 Introduction

5 or less by addressing the case of cohomogeneity at least two. We assume that the
group acting is connected, since a polar action by a Lie group G naturally restricts
to its identity component G0 in a polar fashion and with the same cohomogeneity.
In order to facilitate the description of the actions we shall assume they are almost-
effective, i.e., at most a finite subgroup acts trivially. Polar manifolds of dimension
3 or 4 are not hard to classify (see Theorems 4.5 and 4.6) where in dimension 4 the
main case of T2 actions follows from [OR74, GZ12]. Our main contribution is thus
the classification of polar 5-manifolds. Among these, the effective polar T2-actions
are the most important and difficult case. We describe both the equivariant type
of the actions as well as the diffeomorphism type of the underlying manifolds.

Many of the actions discussed later on can be described as follows.

Main Example. Consider S3 × S3 ⊂ C4 where the circle acts linearly by mul-
tiplication as θ ? (z1, z2, z3, z4) = (z1θ, z2θ

−1, z3θ
k, z4), θ ∈ C, |θ| = 1, k ∈ Z. We

denote this circle by S1
(1,−1,k,0) and observe that it acts freely on S3× S3. Passing to

the quotient, we retrieve one of the two S3 bundles over S2 with map to the base
induced from the projection onto the first factor of S3 × S3. In fact, the outcome
manifold depends on the parity of k, as we may trivialize such bundle over two
hemispheres D2

± ⊂ S2 and observe that the gluing along their common boundary
S1 is determined by k ∈ π1(SO(4)) ∼= Z2. We have:

S3 ×k S2 := (S3 × S3)/ S1
(1,−1,k,0)

∼=

{
S3 × S2 k even

S3 ×̃ S2 k odd.

We may construct natural actions on the quotients S3×kS2, induced from actions on
S3 × S3 that either extend or commute with the previous right action by S1

(1,−1,k,0):

1. A circle action by S1
(0,0,0,1) acting as θ ? (z1, z2, z3, z4) = (z1, z2, z3, z4θ);

2. The standard action of SU(2) on the first factor of S3 × S3;

3. An SU(2)× S1 action by (A, θ) ? (z1, z2, z3, z4) = (A · (z1, z2), z3θ, z4);

4. A linear T3 action by (θ1, θ2, θ3, 1)?(z1, z2, z3, z4) = (z1θ1, z2θ2, z3θ3, z4), which
induces an effective action by T2 ∼= T3 / S1

(1,−1,k,0) on S3 ×k S2;

5. The maximal torus T4 ⊂ SO(4)× SO(4) which induces an effective T3 action
on S3 ×k S2.

As we will see, the induced actions are all polar with respect to the submersion
metric on S3 ×k S2, inherited from the standard metric on S3(1) × S3(1). In
particular, the metrics have non-negative curvature.

We now proceed with the description of all polar T2 actions on 5-manifolds,
where the above T2 actions on S3 ×k S2 play a key role as basic building blocks of
our construction.

2



1 Introduction

Theorem A. A closed simply-connected 5-manifold equipped with an effective polar
action by T2 is obtained, by equivariant surgery operations, from linear polar actions
on spheres and products of spheres, or one of the above T2-actions on S3 ×k S3.
Moreover, the equivariant surgeries correspond either to connected sums at fixed
points, or surgeries along regular orbits.

The question as to which surgeries are allowed is more subtle, see Figure 8 for
some examples and Section 5 for a detailed discussion.

For the diffeomorphism type of the manifolds themselves, we use the Barden-
Smale classification of 5-manifolds. It turns out that for polar S1, T2, and T3

actions the possible diffeomorphism types agree.

Theorem B. A closed simply-connected 5-manifold that admits a polar action
by an abelian Lie group is diffeomorphic to either S5, S3 × S2, S3×̃S2, or their
connected sums.

The case of T3 actions in dimension 5 is treated in [Oh83]. More generally,
all cohomogeneity two tori actions are automatically polar, as observed in [GZ12].
The case of polar S1 actions is fairly simple, and can also be treated in general for
any dimension; see Proposition 4.4.

For the classification of the non-abelian case we have:

Theorem C. Let G be a compact connected non-abelian Lie group, with a non-
trivial and almost-effective polar action on a compact simply-connected 5-manifold
M of cohomogeneity at least two. Then M is equivariantly diffeomorphic to one of
the following:

a) The linear polar actions on S5;

b) The SU(2) and SU(2) × S1 actions on S3 ×k S2 as described in the Main
Example;

c) The factor-wise linear actions by SO(3) × S1 and SO(3) × {1} on S3 × S2,
and their connected fixed-point sums #nS3 × S2;

d) The unique SO(3)-actions on the Wu manifold W = SU(3)/ SO(3) and on the
Brieskorn variety B of type (2, 3, 3, 3), or their respective fixed-point connected
sums, #kB and #lW.

In [Sim] general actions by SU(2) and SO(3) were classified. It follows from our
work that all but 2 of the actions admitting singular orbits are in fact polar.

We will see that further fixed point connected sums #kB#lW are equivariantly
diffeomorphic to #kB or #lW themselves, and that #kB has a unique polar action
by SO(3) whereas #lW has finitely many.

As an immediate consequence of the previous theorems we have the following,
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Corollary. A closed simply-connected polar 5-manifold is diffeomorphic to either
S5, #α(S3×̃S2)#n0(S3 × S2), #n1B or #n2W, for ni ∈ N0 and α = 0, 1.

As an application, we obtain an equivariant classification of all polar actions on
5-manifolds which admit invariant metrics with non-negative curvature.

Theorem D. Let M be a closed simply-connected 5-manifold with a polar action
of cohomogeneity at least two whose sectional curvature is non-negative. Then M5

is equivariantly diffeomorphic to a product of linear actions on spheres, the left
action of SO(3) on SU(3)/ SO(3), or one of the actions on S3 ×k S2 constructed in
the Main Example above.

In contrast, cohomogeneity one actions on 5-manifolds all admit non-negative
curvature, see [Hoe10]. The added rigidity when the cohomogeneity is ≥ 2 is
analogous to the case of positive curvature, where it was shown that a polar action
is equivariantly diffeomorphic to a linear action on a compact rank one symmetric
space; see [FGT].

This work is organized as follows. In Section 2 we summarize the basic definitions
and results on polar actions and describe the equivariant surgeries on such actions.
The third section is devoted to the construction of various examples that will
appear throughout the paper. In Section 4, we discuss all actions other than the
ones by T2 in dimension 5, which are treated in Section 5. The proof of Theorem B
is the content of Section 6, while the last section is reserved for applications in
non-negative curvature.
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2 Preliminaries on Polar Manifolds

We begin by recalling general facts about isometric group actions (see e.g. [Bre72])
and fixing some notations. Next, we discuss polar manifolds as described in [GZ12],
together with the equivariant “cut and paste” operations needed for the construction
of large families of relevant examples.

Let G denote a compact Lie group acting by isometries on a Riemannian
manifold M . The orbit through a point p ∈ M is an embedded homogeneous
submanifold G · p ∼= G/Gp, where Gp = {g ∈ G | g.p = p} is the isotropy subgroup
at p. This group acts on the normal sphere to the orbit in Tp(G · p)⊥, and by the
Slice Theorem we have:

Tε(G · p) ∼= (G× Sp)/Gp =: G×Gp Sp, (2.1)

where Sp is a slice at p. The neighborhood of a point in the orbit space, [p] ∈M/G,
is homeomorphic to the quotient Sp/Gp. The conjugacy class (Gp) of an isotropy
subgroup is called an isotropy type. Orbits corresponding to a minimal isotropy
type are called regular, and we reserve H to denote a choice of one of this regular or
principal isotropy subgroups. Orbits with bigger isotropy type are called singular,
unless they have the same dimension as the principal ones in which case they are
called exceptional.

The orbit space is not a manifold in general but a disjoint collection of strata,
which are smooth manifolds corresponding to the projection of each M(K) := {x ∈
M | (Gx) = (K)}. The partial order between isotropy types induces an inverse
relation between the strata, where a smaller isotropy type (K1) ≤ (K2) corresponds
to a bigger stratum containing the smaller one in its closure, M(K2) ⊂M(K1).

In the case of polar actions we obtain an optimal reduction in dimension for the
understanding of the orbit space M/G and its stratification by isotropy types. In
fact, the action of G on M induces an action of a discrete group Π = N(Σ)/Z(Σ),
called the polar group, where N(Σ) = {g ∈ G|g ·Σ = Σ} and the subgroup Z(Σ) is
the point-wise stabilizer of the section. The latter agrees with the principal isotropy
group of a regular point in the section, i.e., Z(Σ) = H, while Π acts properly and
discontinuously on Σ with isometric quotient Σ/Π ∼= M/G. In this way, the section
provides an orbifold cover of the orbit space.

Inside Π we identify reflections, i.e., elements which have a hypersurface or
mirror Mk−1 ⊂ Σk inside their fixed-point set. We consider the complement in Σ of
all possible mirrors {Mi} and define a chamber C to be the closure of a connected
component. By construction, the boundary of C ⊆ Σ has a stratification by totally
geodesic faces, given by the mirrors and their intersections. More precisely, we
define faces Fi of C to be the closure of each connected component of the open
intersections with a mirror,

Fi = int(Mi ∩ C) ⊂Mi.

5



2 Preliminaries on Polar Manifolds

Deeper faces Fi1···ik are defined as the connected intersections of the previous ones,
Fi1···ik = Fi1 ∩ · · · ∩ Fik The length of the sub-index is referred to as the depth at
which the face lies. To each face we can assign a unique generic isotropy subgroup.

Recall that by definition every orbit intersects the section, and thus a given
chamber as well. Moreover, an orbit may possibly intersect C more than once,
implying the existence of a non trivial stabilizer subgroup preserving the chamber,
ΠC := {g ∈ Π |g · C = C} ⊂ Π.

From now on, we shall restrict ourselves to the following class of actions, which
is a natural setting in our context since a polar action by a connected group on a
simply-connected manifold is always of this type (see Remark 2.10).

Definition 2.2. A polar action without exceptional orbits and with trivial stabilizer
group ΠC is called Coxeter polar.

One of the main properties about Coxeter polar actions is that the inclusion
C → Σ

σ−→M induces an isometry between the orbit spaces and the chamber,

C ∼= Σ/Π ∼= M/G. (2.3)

In the case of a general isometric group action we may not have a cross section
to the projection map M → M/G, while for a Coxeter polar action this is given
by the chamber C. Furthermore, the faces have constant isotropy group along the
interior, and (2.3) identifies the open strata in C with the Π-isotropy type strata in
Σ/Π, and the corresponding G-isotropy type strata in M/G. We may encode this
information in a marking of the open strata FI of C forming a partially ordered
graph of G-isotropy subgroups KI associated to each one. The subgraph below a
given vertex KI is called the history of KI and corresponds to the labeling of strata
at a point p ∈ FI . We say that the marking of C is compatible if the history at a
point p ∈ FI comes from a Coxeter polar representation, and the orbifold group at
p ∈ C coincides with the polar group of such representation.

The isotropy subgroups of Π are Coxeter groups, in fact given p ∈ Fi1···ik , we
have that Πp is generated by the reflections ri defined by the corresponding mirrors
through p, and satisfying relations (ri.rj)

mij = 1 depending on the angle between
them. The whole polar group Π is a quotient of a Coxeter group, as it is generated
by the reflections along mirrors in Σ, but there may be more relations than the
local ones just described. We shall regard the orbit space as a Riemannian Coxeter
orbifold, i.e., a Riemannian orbifold modeled on finite reflection groups. It is a
good orbifold, with only manifold points along the interior.

Definition 2.4. A connected Riemannian Coxeter orbifold C together with a
compatible group graph marking the strata defines Coxeter polar data, denoted by
(C,G(C)).

6



2 Preliminaries on Polar Manifolds

We point out that the slice representations do not need to be specified as part
of the Coxeter polar data. Indeed, they are determined by the group marking
due to the following lemma that will be proved in general in a forthcoming paper.
Observe that this is a weaker statement than that of item (b) of Lemma 2.4 in
[GZ12], whose proof seems to have a gap for reducible representations. An ad-hoc
argument for representations of dimension five or less follows easily from the work
of [Ber01, EH99] and would also be enough for the scope of this paper.

Lemma 2.5. A Coxeter polar representation by a Lie group L is determined up to
linear equivalence by its history and dimension. Furthermore, L is generated by the
face isotropy groups, as well as by L0 and H.

In particular, the group graph of a Coxeter polar action must satisfy the
following algebraic conditions:

Ki0···il = gen0≤k≤l{Kik}

H = Ki ∩Kj, ∀i 6= j with Fij 6= ∅.
(2.6)

The first equation rephrases part of the previous Lemma. The second one is valid
for adjacent faces, i.e., those with non-empty intersection. In fact, by definition
Ki ⊃ H, and Ki ∩Kj ⊂ H since it acts on the slice at p ∈ Fij with fixed point set
including the tangent space to each face, and therefore spanning all of TpΣ.

The face isotropy group Ki acts transitively on the sphere orthogonal to its
strata,

Ki/H ∼= Sli , li > 0. (2.7)

Because of (2.6) the group graph is completely determined by the isotropy groups
Ki marking the maximal faces. Furthermore, the reflections ri ∈ Π along these
maximal faces generate the polar group. These elements can also be thought of as
the unique involutions in the normalizer NK(H)/H ⊂ N(H)/H.

As an application of the fact that Π acts simply-transitively on the set of
chambers, thus tessellating the section, we can try to orient Σ by prescribing
an orientation on C and declaring each reflection along a maximal face to be
orientation reversing. The reader may see 3.2 for an illustrative example having
non-orientable section. This leads to the following criterion for orientability.

Lemma 2.8. The section of a Coxeter polar manifold is orientable if and only if
the chamber is, and if there are no relations of odd order among the reflections
corresponding to maximal faces.

Coxeter polar data is an invariant of the action which is enough to construct
and identify Coxeter polar manifolds:

Theorem 2.9 ([GZ12]). Coxeter polar data (C,G(C)) determines a Coxeter polar
manifold M(C,G(C)) up to equivariant diffeomorphism.
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2 Preliminaries on Polar Manifolds

We point out though that 2 different Coxeter polar data (C,G(C)) and
(C,G′(C)) can be equivariantly diffeomorphic since the diffeomorphism may not
respect the metric. This can also change the polar group and section, in fact, a
closed section can become non compact. It is an interesting question whether via
such a change of metric the section for any Coxeter polar action can be made
compact, as is the case for cohomogeneity one manifolds. See [GWZ08] for a
discussion in the case of cohomogeneity one actions.

As an immediate application of Theorem 2.9 observe that each strata in M gets
uniquely reconstructed as a trivial bundle M(K) = M∗

(K)×G/K, since it corresponds
to data given by the manifold M∗

(K) constantly marked by K.

Remark 2.10. A general polar manifold can be described as the quotient of a Coxeter
polar manifold by a group acting freely and discontinuously which commutes with
the action and preserves orbit types; see [GZ12]. In particular, it follows that a
simply-connected manifold with a polar action by a connected group is Coxeter
polar.

The following lemmas show how to construct new polar actions as quotients of
given ones.

Lemma 2.11. Let M be a polar G-manifold, and L be a Lie group acting freely
on M , such that the two actions commute. Then the induced G action on M/L is
polar if G and L have orthogonal orbits, i.e., Tp(G· p) ⊥ Tp(L· p).

Proof. The assumption implies that Tp(L· p) ⊂ TpΣ and hence Σ is L-invariant.
Furthermore, it projects to an immersed complete submanifold in M/L. The
polarity of the action is clear once we observe that Σ/L has the right dimension
and integrates the horizontal distribution along the regular part.

Lemma 2.12. Let M be a (Coxeter) polar G-manifold with section Σ, and L / G
be a normal subgroup which acts freely on M . Then the induced G/L action on the
quotient M/L is (Coxeter) polar with the submersion metric on M/L. A section is
given as a proper and discontinuous quotient of Σ by the action of Π∩L. Moreover,
in the Coxeter polar case, chambers are isometrically identified and the marking by
G/L-isotropy groups is obtained as the projection along G→ G/L of the previous
marking of G-isotropy groups. This gives an isomorphism of isotropy groups. In
addition, the new polar group is obtained as the quotient Π /Π∩L.

Proof. The section σ : Σ → M is horizontal with respect to the projection map
p : M →M/L, therefore we have by composition a section in the quotient given
by p ◦σ : Σ → M/L. The orbit spaces are isometric to each other, M/G =
(M/L)/(G/L). It then follows, that in the Coxeter polar case p identifies chambers
isometrically. The isotropy group at a point p(x) ∈ M/L corresponds to the
projection of Gx under the map Φ : G → G/L. In fact, the projection Φ induces

8



2 Preliminaries on Polar Manifolds

an isomorphism between isotropy groups since L ∩Gx = {e}. This shows that we
have retrieved a Coxeter polar action associated to data (C,G/L(C)).

Notice in general that we have a unique minimal section up to covers, which
admits possible self-intersections but does not have any self-tangencies since it
is totally geodesic. In our case, Σ covers the new section in M/L up to the
discrete action of N(Σ) ∩ L. As before, we may identify N(Σ) ∩ L =: Π∩L since
L ∩H = {e}. Finally, in the Coxeter polar case, the polar group is generated by
the same reflections (as elements in G) thanks to the coincidence of the chambers,
but is possibly smaller and equals Π /Π∩L.

Remark 2.13. Given a (Coxeter) polar L-action on M ′, and L ⊂ G, we can construct
a (Coxeter) polar G-manifold M as the quotient of M ′ ×G by the diagonal action
of L,

M ∼= M ′ ×L G, (2.14)

where the action of G is given by right multiplication on the second factor. Further-
more, the inclusion of a section Σ′ of M ′ as Σ× {e} →M ′ ×L G gives a section for
the G-action on M . In particular, the action on M is imprimitive, i.e., it admits
an equivariant map M → G/L for L ( G.

Conversely, consider a Coxeter polar G-manifold M such that all the isotropy
subgroups in the data G(C) are contained in a closed subgroup L ⊆ G. Then
the same Coxeter polar data yields, by restriction, compatible data (C,L(C)) for
an L-manifold M ′. By uniqueness of the reconstruction process we have that M
agrees with M ′ ×L G as above, up to an equivariant diffeomorphism.

Finally, there are equivariant “cut and paste” operations on G-manifolds that can
be adapted to work on polar manifolds. Given twoG-manifoldsM1, M2, we may glue
them along orbits of the same slice type, i.e., same isotropy type and isomorphic slice
representations. In this case, orbits will not only be diffeomorphic, but will also have
equivariantly isomorphic tubular neighborhoods T1 := T (G · p1) ∼= T (G · p2) =: T2.
We can then remove these tubular neighborhoods and glue the remaining pieces
along the equivariantly identified boundary. We thus obtain a new G-manifold,
denoted by

M1#p1∼p2M2 := M1\T1 ∪∂T M2\T2. (2.15)

Notice that the orbit space of M1#p1∼p2M2 corresponds to a connected sum of
M1/G and M2/G along [p1] ∼ [p2]. This motivates the following.

Definition 2.16. Given points pi ∈ Ci ⊂ Mi, i = 1, 2, lying on respective
chambers of Coxeter polar G-manifolds, having the same isotropy subgroups and
isomorphic slice representations, we define their orbit sum as a (marking preserving)
connected sum of the chambers C := C1#p1∼p2C2. For this, we cut out the points
pi together with their neighborhoods in Ci, and then glue along the boundary via
the identification induced from an isomorphism between the slice representations.
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2 Preliminaries on Polar Manifolds

As usual, the choice of compatible orientations on the chambers determines the
gluing. Moreover, we can make the identification isometric if we first modify the
metrics on each chamber, so that it is a product near the boundary of each ball
Bε(pi) ⊂ Ci.

By Theorem 2.9 we have a unique Coxeter polar manifold associated to this
new compatible data (C,G(C)). It will be referred to as the orbit sum of M1 and
M2 along the prescribed orbits, and denoted as before by M1#p1∼p2M2.

From now on we focus on the case where the cohomogeneity is at least two.
Taking advantage of the fact that the reconstructed manifold is not only polar but
Coxeter polar, we can determine the polar group out of the polar data (C,G(C))
thanks to the fact that this group is generated by the reflections along the maximal
(depth one) faces. Indeed, as only 0-dimensional strata can be deleted by this
operation, the assumption on the cohomogeneity implies that the gluing will
not erase any maximal face, thus preserving the corresponding reflections. As a
consequence we have that the new polar group Π will be the subgroup generated by
the respective polar groups Πi of the original manifolds Mi, when seen as subgroups
of the effective normalizer to the common principal isotropy subgroup H,

Π = gen{Π1,Π2} ⊂ N(H)/H. (2.17)

Next, we discuss the two extreme cases of orbit sum, that is, along either regular
orbits or fixed points. These will be of interest in our description of T2 polar actions
on 5-dimensional manifolds.

Proposition 2.18. The manifold, chamber and section coming from a fixed point
sum are the connected sum of the corresponding pieces, and the new polar group
coincides with the original:

M1#fixM2
∼= M1#M2

Σ ∼= Σ1#Σ2

Π = Π1 = Π2 .

Proof. Recalling the identity (2.15) above, together with the fact that the tubular
neighborhoods to the orbits are just balls around fixed points, it is clear that the
resulting manifold will be the connected sum of the original ones.

Notice that at corresponding fixed points pi we have Πi = (Πi)pi , and in turn
(Π1)p1 = (Π2)p2 as they have isomorphic slice representations. From (2.17) it follows
that the polar group remains the same, Π1 = Π2 = Π.

As the polar group acts freely and transitively on the set of chambers, we can
reflect our given chamber C = C1#C2 by the new polar group and retrieve the
section, i.e.,

Π ·C = Σ.

10



2 Preliminaries on Polar Manifolds

In particular, when reflecting the chamber minus a small neighborhood of a fixed
point, we retrieve the section minus a disc Dk. For the section of the orbit sum, we
have

Σ = Π ·(C1#C2) = Π ·[(C1 −Bε(p1)) ∪(∂Dk/Π) (C2 −Bε(p2))]

= [Π1 ·(C1 −Bε(p1))] ∪∂Dk [Π2 ·(C2 −Bε(p2))]

= (Σ1 − Dk) ∪Sk−1 (Σ2 − Dk) = Σ1#Σ2.

Proposition 2.19. The section associated to the polar action given by the regular
orbit sum M1#p1∼p2M2 is a connected manifold obtained by connected sums of
copies of the corresponding sections Σi of Mi, i = 1, 2, together with additional
0-surgeries.

Proof. Analogously to the proof of the previous proposition, reflecting the chamber
C1#C2 retrieves the new section.

Recall that Π is generated by the previous polar groups Π1 and Π2. An element
[g] ∈ Π−Π1 does not preserve the section Σ1, and in fact it gives a traslated copy
of it. Notice that the points pi, along with their neighborhoods where the gluing
takes place, are completely embedded in the regular part.

The spheres that bound the disks which were removed in the respective chambers
C1 and C2, get reflected along with the new chamber as many as |Π| times. As
they lie over the regular part they do not interfere with possible self-intersections.
Therefore, reflecting C1 − ε.Dk by the polar group Π, will give |Π /Π1| disjoint
copies of the original section Σ1, with each copy having as many as |Π1| discs
removed. We proceed to compute the new section:

Σ = Π ·(C1#C2) = Π ·[(C1 − Dk) ∪Sk−1 (C2 − Dk)]

= |Π /Π1 | · [Π1 ·(C1 − Dk)] ∪Π ·Sk−1 |Π /Π2 | · [Π2 ·(C2 − Dk)]

= |Π /Π1 | · [Σ1 − Π1 ·Dk] ∪Π ·Sk−1 |Π /Π2 | · [Σ2 − Π2 ·Dk]

= |Π /Π1 | · Σ1 t |Π /Π2 | · Σ2 / |Π | identifications.

The removal of open discs by pairs for later gluing along the bounding spheres,
corresponds to the definition of a 0-surgery, which is the usual connected sum
when the pieces are disjoint. Keeping track of the gluings we see that the section
we construct is connected, as each copy of Σ1 is connected to any of Σ2, and
reciprocally. In particular, only |Π /Π1|+ |Π /Π2| − 1 such surgeries are enough to

11



2 Preliminaries on Polar Manifolds

connect the different copies. This gives a possibly non-trivial remnant of 0-surgeries
to be performed on the connected sum of all the copies. We have:

Σ = (#n1Σ1#n2Σ2) / m 0-surgeries.

where ni = |Π /Πi| and m = |Π| − |Π /Π1| − |Π /Π2|+ 1.

12



3 Examples of polar actions

We now construct several examples that will appear in our classification.

Example 3.1. A linear polar representation gives rise to a polar action on the sphere.
Because of Lemma 2.5 these actions are Coxeter polar whenever the group acting
is connected. We have the following examples.

1. The action of a torus Tn ⊂ SO(2n) ⊂ SO(2n+N) on S2n+N−1 ⊂ Cn ⊕RN is
polar, since it comes from a trivially extended product of cohomogeneity one
circle actions of S1

i on Ci, for i = 1, . . . , n. The section is {(⊕ni=1Ri)⊕RN} ∩
S2n+N−1, with polar group Zn2 generated by reflections through the origin in
each Ri factor, and corresponding chamber given by {(

∏n
i=1 R≥0)× RN} ∩

S2n+N−1. Isotropy subgroups are coordinate sub-tori Tl
i1,...,il

= Πj∈{i1,...,il} S1
j .

2. The irreducible 5-dimensional SO(3) representation gives a linear action
of cohomogeneity one on the sphere S4 with discrete principal isotropy
group H = S(O(1)3) ⊂ SO(3) and singular isotropy groups K± given by
two different block embeddings of O(2) in SO(3) in the ij coordinates. The
polar group is D3. Other examples are the transitive linear actions of SO(3)
on S2 and SU(2) on S3, which are trivially polar.

3. Other linear polar actions on S5 come from the SO(3)× S1 product action on
R3⊕R2, the standard 4-dimensional representation of SO(4), or its subgroup
U(2), when trivially extended to R6. The latter two are double suspensions
of transitive actions on S3, and therefore have Coxeter polar data given by a
2-disk with fixed points of the action along the boundary and interior marked
by corresponding principal isotropy groups SO(3) ⊂ SO(4) and S1 ⊂ U(2),
respectively. The first case has a bi-angle (2-gon) for its quotient, marked
with fixed points at the vertices, sides labeled by K = SO(3) and SO(2)× S1,
and interior with principal isotropy group H = SO(2) ⊂ SO(3).

Before we give more detail about the main examples presented in the introduc-
tion, let us set the following convention.

Notation. A circle subgroup of a given Lie group G lying inside a fixed maximal
torus identified as Tk = S1× · · · × S1, will be specified by its (Lie algebra) slope
and denoted S1

v ⊂ Tk ⊂ G where Lie(S1
v) =< v >⊂ Rk ∼= Lie(Tk), e.g. S1

(v1,v2) ⊂
S1× S1 ⊂ G. Notice that v can be chosen to have coprime integer entries.

Example 3.2. The linear G = T3 action on S3× S3 ⊂ C2⊕C2 given by (θ1, θ2, θ3) ?
(z1, z2, z3, z4) = (z1θ1, z2θ2, z3θ3, z4) is clearly Coxeter polar since it is a product
of polar actions. It admits S1 × S2 as section, with polar group Π ∼= (Z2)

3 given
by all the involutions in T3 and chamber equal to [−1, 1]× D2, i.e., a solid “can”.
The boundary of C is composed of three faces with S1 isotropy and two closed
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3 Examples of polar actions

circles with isotropy group isomorphic to T2. Its interior is marked by the trivial
group. Secondly, if we consider the quotient of S3 × S3 by the action of the
circle L = S1

(1,−1,k) we obtain a Coxeter polar action on S3 ×k S2, as described in
Lemma 2.12. In particular the associated Coxeter polar data for both actions
have the same (isometric) chamber. Furthermore, the marking of the induced
action can be obtained as a relabeling of the isotropy group marking given by the
projection G→ G/L. In order to facilitate its description we choose the subgroup
T 2 ∼= S1

(0,1,0)× S1
(0,0,−1) ⊂ T3, which is a complement to S1

(1,−1,k) ⊂ T3 and therefore

projects isomorphically onto its image under the map Φ : T3 → T2 ∼= T3 / S1
(1,−1,k).

We illustrate this in the following diagram:

S1
(0,1,0)×S1

(0,0,1)

S1
(1,0,0)×S1

(0,0,1)

S1
(1,0,0)

S1
(0,0,1)

S1
(0,1,0)

N6 = S3 × S3.

Φ
S1
(1,k)

S1
(0,1)

S1
(1,0)

T2

M5 = S3 ×k S2.

Figure 1: A T3 action on S3 × S3 and the induced T2 action on S3 ×k S2 obtained from the
quotient by a circle subgroup S1

(1,−1,k).

The reflections along the maximal faces for the T3 action are (1, 1,±1), (1,±1, 1)
and (±1, 1, 1) ∈ T3 which, by Lemma 2.12, project to reflections for the induced T2

on S3 ×k S2 given by r1 = (1,±1), r2 = (±1, 1) and r3 = (−1, (−1)k), respectively.
In addition, the new section corresponds to S1 × S2/τk where τk = (−1,−1, (−1)k)
is the unique involution in L which belongs to the polar group of the T3 action on
S3× S3. This element reflects the S2 factor in Σ along a 2-plane when k is odd and
acts trivially when k is even, while it acts as the antipode along the S1 factor. It is
thus orientation preserving in the even case only. The resulting section depends on
the parity of k:

S1 × S2/τk ∼=

{
S1 × S2 k even

(S1 × S2)/τk k odd.

Notice that the group Π is generated by the reflections r1, r2 with only even relations
among them, but that when k is odd r3 = r1 · r2 gives an odd relation. This shows
that in Lemma 2.8 one needs to include the reflections for all faces.

More complicated T2 actions can be constructed combining the previous ones
by regular orbit sums or fixed point sums; see Figure 8. These will be discussed in
more detail in Section 5.
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3 Examples of polar actions

Example 3.3. General effective cohomogeneity two torus actions were previously
studied in [OR74] and [Oh83, Oh82]. From their work it follows that a Tn action
on a compact simply-connected manifold Mn+2 which admits singular orbits has
a topological D2 as quotient, with boundary stratified by segments of isotropy
Ki
∼= S1, and vertices of isotropy Ki,i+1

∼= T2. Furthermore, they show that the
marking determines the equivariant diffeomorphism type of the action. In their
terminology this marking has to be legally weighted, in the sense that consecutive
circle isotropy subgroups give independent generators of the common vertex group
T2, which is equivalent to (2.6). Hence, such a marking also gives compatible
Coxeter polar data and hence another Coxeter polar 5-manifold. From [OR74] it
follows that these actions are equivariantly diffeomorphic. Thus all these manifolds
turn out to be polar, as pointed out in [GZ12].

In the case of T 2 actions in dimension 4, a constructive description and clas-
sification is achieved as connected fixed point sums of basic actions on S4,±CP2,
S2 × S2 and CP2#± CP2 (see [OR74]). Here, the action on S4 is linear, while the
one on CP2 is obtained from the linear action of G = T3 ⊂ SO(6) on S5 under the
quotient by the subgroup L = S1

(1,1,1); see Lemma 2.12. There is also an infinite
family of inequivalent actions on S2 × S2 and CP2#− CP2. Coxeter polar data for
these actions are illustrated in Figure 2 below.

T2

T2

S1
(0,1)S1

(1,0)

T2 S1
(1,1) T2

S1
(0,1)

T2

S1
(1,0)

T2

T2

T2

T2

S1
(0,1)

S1
(1,0)

S1
(0,1)

S1
(1,k)

M = S4 M = CP2 M =

{
S2 × S2 k even

CP2#− CP2 k odd

Figure 2: Coxeter polar data for the basic T2 actions on M4.

In dimension 5, there is no finite set of actions such that all T3 actions are
obtained as equivariant surgeries along orbits of S1 or T2 isotropy ([Oh83]). Nev-
ertheless, in addition to the equivariant description in terms of data, Oh shows
that the underlying manifolds are diffeomorphic to S5, S3×S2, S3×̃S2 or connected
sums of these.

Example 3.4. There is a polar SU(2) action on the biquotient S3 ×k S2. Consider
quaternion notation, SU(2) ∼= Sp(1), and let this group act on itself by multiplication
from the left, identified as the first sphere factor of M = S3 × S3. The latter action
commutes with that of S1

(1,−1,k,0), and thus allows us to consider the product
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3 Examples of polar actions

action of Sp(1)×S1
(1,−1,k,0) 3 (u, θ) on M = Sp(1)×S3 by (u, θ) ? (z1 + z2j, z3, z4) =

(u·(z1 +z2j)·θ, z3.θ
k, z4). This is easily seen to be polar with Σ = {p}×S2 ⊂ S3×S3,

since it is orbit equivalent to the product of the standard action of SU(2) on the
first factor with a polar circle action on the second. It is hence Coxeter polar by
Remark 2.10.

We may consider the quotient under the normal subgroup L = S1
(1,−1,k,0) to

obtain an SU(2) action on M/L = S3 ×k S2, as in Lemma 2.12. Coxeter polar data
for the induced action is given in Figure 3 below. It is an imprimitive SU(2) polar
action on S3 ×k S2.

Example 3.5. Analogous to Example 3.2 is the case of the linear Coxeter polar
SU(2)× S1 action on S3 × S3 given by (A, θ) ? (z1, z2, z3, z4) = (A · (z1, z2), z3θ, z4)
and the corresponding induced action on the quotient by S1

(1,−1,k,0). In particular,

we retrieve an imprimitive Coxeter polar SU(2) × S1 action on the manifold
M = S3 ×k S2. Choosing a maximal torus ofG to be given by U(1)×S1 ⊂ SU(2)×S1,
we have Coxeter polar data as shown in Figure 3.

H = Zk

K = S1

G = SU(2) ⊃ K ⊃ H

H = S1
(1,k)

K = T2

G = SU(2)× S1 ⊃ K ⊃ H

Figure 3: Coxeter polar data for actions on M5 = S3 ×k S2.

Notice that the diagrams in Figure 3, when considered as Coxeter polar data
for K actions and later made effective, agree with the standard polar circle action
on S3.

Example 3.6. Consider the polar action of the circle S1
(0,0,0,1) on S3 × S3 which, as

before, commutes with that of the circle S1
(1,−1,k,0). The polarity of the induced

S1 action on S3 ×k S2 follows from Lemma 2.11. Notice that the original circle
action has section Σ = S3 × S2 ⊂ S3 × S3 with chamber S3 × D2, and that in
this case the action of S1

(1,−1,k,0) restricts to Σ. In fact, it restricts to the chamber
S3×D2 preserving boundary and interior. In particular, the 4-dimensional chamber
C4 = (S3×D2)/ S1

(1,−1,k,0) associated to the action on S3×k S2 is a smooth manifold
with unstratified boundary consisting of fixed points of the action, and interior with
trivial principal isotropy group. Notice that C4 has the structure of a 2-disc bundle
over S2 with projection onto the base S2 induced from that of S3 × D2 onto its
first factor. Such bundles are classified (up to bundle isomorphism) by π1(S1) ∼= Z,
and we may further restrict to non-negative integers by allowing an orientation
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reversing diffeomorphism of the base. Finally, they are all topologically distinct
and easily identifiable by the fundamental group of their boundary:

∂C = (S3 × S1)/ S1
(1,−1,k)

∼=

{
S2 × S1 k = 0

L3
k k 6= 0

where L3
k
∼= S3/Zk is a Lens space. The polar group is Z2 given by a unique

reflection, which reconstructs Σ as the double of C.

Example 3.7. The SO(3) action from the left on SU(3)/ SO(3) =:W5 associated to
the symmetric pair (SU(3), SO(3)) is naturally polar with section T2 and hence
Coxeter polar due to Remark 2.10.

Notice that the base point [e ·SO(3)] ∈ SU(3)/ SO(3) is a fixed point of the
action, where the slice representation is the unique irreducible 5-dimensional SO(3)
representation of Example 3.1. Hence, the principal isotropy group is H = S(O(1)3)
and any face isotropy group has to be O(2) since K/H is a sphere. Furthermore
the embedding of O(2) in SO(3) is determined by an axis, when thinking of SO(3)
as acting on R3, which is also fixed by the principal isotropy H = S(O(1)3). It
must hence coincide with one of the coordinate axis, and O(2) be given by one
of the three coordinate block embeddings into SO(3). Moreover, two consecutive
sides of the chamber correspond to different embeddings of O(2) since they need
to generate the isotropy group at the vertex of intersection. Vertices are thus
fixed points of the actions. Finally, there are only three vertices, since fixed points
[g · SO(3)] ∈ SU(3)/ SO(3) correspond to [g · SO(3)] ∈ NSU(3)(SO(3))/ SO(3) ∼= Z3.
We conclude that the chamber is a triangle marked by each of the three block
embeddings of O(2) along the sides, as shown in Figure 4.

SO(3)
12

SO(3)

23

SO(3)

13

Figure 4: Coxeter polar data for the SO(3) action on the Wu manifold. The labeling of the
sides corresponds to the block embeddings of O(2)→ SO(3) in the ij coordinates.

Example 3.8. There is one case among the manifolds listed in Theorem C whose
polarity is only established in an indirect way. This is the case of the SO(3)
action on the Brieskorn variety of type (2, 3, 3, 3), which is the zero locus of the
polynomial z2

0 + z3
1 + z3

2 + z3
3 intersected with the corresponding sphere S7(1) ⊂ C4.

This action was constructed in [Hud79] in the classification of SO(3) actions on
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5-manifolds, with prescribed orbit space and isotropy data as in Figure 5. Using the
Barden-Smale classification of 5-manifolds the author showed that the manifold is
diffeomorphic to the Brieskorn variety B. Furthermore, it was shown that there is a
unique SO(3) action with such data up to equivariant diffeomorphism. In turn, we
identify this as compatible Coxeter polar data to which there corresponds a unique
Coxeter polar SO(3)-manifold, thus establishing the polarity of his construction.
Notice that the polar group agrees with polar group at a fixed point and is hence
D3. Σ is a compact surface determined by its Euler characteristic and orientability.
In fact, it follows from Lemma 2.8 that Σ is orientable since any presentation of
D3 with generators given by involutions has even relations only. Furthermore, we
can regard the quotient map Σ → C under the action of Π as an orbifold cover
(see [Dav11]), and compute the Euler characteristic of the section from the orbifold
Euler characteristic of C by the formula:

χ(Σ)/|Π| = χorb(C).

In this case C has four points with orbifold group D3, four sides fixed by an
involution and one regular face, thus giving χorb(C) = 4 · 1/6− 4 · 1/2 + 1 = −1/3.
Hence, the section is a bi-torus, Σ = T2 # T2.

It is interesting to compare the data for this action with the connected fixed
point sum of two copies of the Wu manifold W#W ; see Figure 5. For both B and
W#W the associated section, polar group and chamber coincide, but the action of
Π on Σ is different.

12

23

12

13

12

13

12

13

M5 =W#W 6= M5 = B

Figure 5: Coxeter polar data for SO(3) actions on M5. Vertices are fixed points of the action
and the labeling of the sides corresponds to the ij coordinate embedding of O(2) in SO(3).

Further fixed point connected sums give rise to polar actions on #kB#lW . The
polar group is always the local polar group at a fixed point, Π = D3, hence the
section is orientable and corresponds to a connected sum of tori #n T2. Coxeter
polar data can be computed by Lemma 2.18, thus obtaining a polygon marked
with principal isotropy group H = S(O(1)3) along the interior, vertices given by
fixed points of the action, and sides labeled by either of the three coordinate block
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embeddings of O(2) in SO(3) without consecutive repetitions. Conversely, any such
labeling of a polygon gives compatible Coxeter polar data for an SO(3) action. With
only two sides this is the linear action on S5 given by the trivial extension of the
irreducible 5-dimensional SO(3) representation. For three sides, the compatibility
conditions force all three block embeddings to appear once and this corresponds
to the isotropy action of SO(3) on the Wu manifold. With 4 sides, we have two
possibilities for the markings, up to conjugation by a single element in N(H), and
these correspond either to the connected fixed point sumW#W or to the Brieskorn
variety B, as in Figure 5. One may continue with this kind of reasoning and prove
that there is a unique marking with five sides and four possibilities for the case of
six sides. Finally, an inductive argument on the number of sides shows that the
fixed point sums of W and B exhaust all possibilities. For this, notice first that if
only two block embeddings of O(2) are present in the data, then the number of
sides must be even and it corresponds to a repeated fixed point connected sum of
B with itself. On the other hand, if three different block embeddings appear in the
data, we can find a consecutive sequence of three sides with distinct labels. Erasing
the middle side of these three and merging two consecutive vertices into one, we
again have compatible polar data to which we can apply the inductive hypothesis.
Thus this manifold can be written as a fixed point sum #kB#lW . Finally we can
perform an additional fixed point sum with the Wu manifold at the vertex where
we erased a side, which gives back our original data and thus establishes the claim.
Notice that when we have only one side which has a different block embedding
than the rest, we can choose not to remove it but choose a neighboring side instead,
thus keeping the three different block embeddings of O(2) on the resulting data.
In this way the induction continues and proves that the original manifold can be
written as a repeated fixed point sum of Wu manifolds only, #nW. We conclude
that the SO(3) actions constructed out of such Coxeter polar data are connected
fixed point sums #nB or #nW. However, while there is a unique action on #nB
up to conjugation, this is not the case for #nW since it depends on the possible
markings, thus giving rise to inequivalent actions on the same manifold.

Example 3.9. The SO(3)× S1 factor-wise action on S3 × S2 is a product of coho-
mogeneity one actions. Coxeter polar data is given by a rectangle with four fixed
points, and sides labeled by singular isotropy groups K2i+1 = SO(3) and K2i = T2.
The principal isotropy group is H = S1

1,0 =: SO(2).
We may perform fixed point sums of the latter action with itself, obtaining new

polar manifolds. A generic picture for the Coxeter polar data is given in Figure 6.
Notice that the polar group is always (Z2)2 and the section T2 # · · ·# T2.

A diagram with only two vertices is also possible and corresponds to the
suspension of the SO(3)× S1 action on S4, i.e., the action on S5 given by the trivial
extension of the product SO(3)× S1 representation on R3 ⊕ R2.
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SO(3) T2

T2

SO(3)

T2

SO(3)

SO(2)

Figure 6: Polar data for the SO(3)× S1 action on #nS3 × S2, where the vertices correspond to
fixed points.

4 Classification in low dimensions

We shall consider compact simply-connected smooth manifolds Mn, n ≤ 5, on
which a compact connected Lie group G acts polarly, thus Coxeter polar, and
classify them up to equivariant diffeomorphism. The actions are assumed to be
almost effective, i.e., with a discrete ineffective kernel. As in the previous section,
H will denote the principal isotropy group along a section σ : Σk →Mn with polar
group Π and chamber C.

The strategy in order to achieve a classification is to solve the equivalent problem
of determining all sets of inequivalent Coxeter polar data (see Theorem 2.9). To
do so, we will consider the possible groups, chambers and compatible group graphs
marking the stratifications. We will then identify these data with the actions in
Section 3.

To begin, we notice that the bound on the dimension of the manifold restricts
both the cohomogeneity k and the dimension of the group, as follows from the
formulas,

n− k = dim(G)− dim(H)

dim(H) ≤ dim(O(n− k)).
(4.1)

The first is a simple dimension count on the decomposition TpM = Tp(G · p)⊕ Sp
at a regular point. The second comes from the fact that the representation of the
principal isotropy group in the orbit direction corresponds to the restriction of the
adjoint representation of G to H, and its kernel to the ineffective kernel of the
G-action. Therefore, we have H ⊂ O(n− k).

Moreover, any compact connected Lie group G can be taken, up to a finite
cover, to be of the form

G = Tl×G1 × · · · ×Gk (4.2)

for a torus Tl and simply-connected simple factors Gi. Together with the bound
on the dimension, this yields finitely many possibilities for the group.
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Notice that if the action does not have singular orbits, the section will agree
with the chamber, C = Σ, which is thus a smooth manifold without boundary
constantly marked by a principal isotropy group H. This is an example of an
imprimitive action for which the reconstructed manifold is a product of the section
with a regular orbit, M = G/H × Σ. These Coxeter polar actions will be called
trivial.

Since M is simply-connected, the orbit space M/G is compact and simply-
connected as well. Furthermore, it is isometric to a chamber Ck ⊂ Σ which has
the structure of a smooth Coxeter orbifold, i.e., one modeled on the quotient
of euclidean k-space by finite Coxeter groups. In particular, there will be no
singularities along the interior and we may “round the corners” along the boundary
to obtain a homeomorphism of C with a topological manifold with boundary.

Proposition 4.3. A compact simply-connected n-manifold with boundary is home-
omorphic to D2 if n=2, or a sphere with finitely many discs removed S3\ tri=0 D3

i ,
r ∈ N, if n=3.

The first case follows from the classification of closed surfaces, when capping
the circles in the boundary with closed discs. The case n = 3 is a consequence of
Poincaré duality, as shown in [Sim].

Once the orbit space is determined as a topological manifold with boundary, we
must still address its stratification and what the markings of the strata by isotropy
subgroups could be. This is particularly simple in the case of polar actions of
maximal cohomogeneity, i.e., those with codimension one section.

Proposition 4.4. A polar action on a closed n-manifold of cohomogeneity n−1 is
a circle action with orbit space given by a smooth manifold with boundary marked
as fixed points. Conversely, to each smooth manifold with boundary corresponds a
unique polar circle action on a closed manifold.

The associated manifold is simply-connected if and only if the orbit space is also
simply-connected.

Proof. If the cohomogeneity of the action is n−1 we have by (4.1) that the principal
isotropy has to be discrete, since O(1) is, and the group G one-dimensional. When
made effective this is an S1-action with trivial principal isotropy group and K = S1

as the only other possible singular isotropy subgroup. This corresponds to fixed
points on M , which constitute the boundary of the chamber.

As a converse, any (simply-connected) smooth manifold with boundary Cn−1

gives rise to a unique Coxeter polar S1-manifold Mn = M(C, S1(C)) by Theorem 2.9.
In particular, if this boundary were empty we are in the trivial case M = M ′ ×
S1, which is not simply connected. Furthermore, if the boundary is not trivial,
Seifert-Van Kampen’s theorem easily implies that the fundamental group of the
reconstructed manifold is that of the chamber C. Indeed, notice that the interior of
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4 Classification in low dimensions

C gets reconstructed as int(C)× S1, while an ε-collar neighborhood of a boundary
component of C gives rise to ∂0C × D2 ∼= Dε(∂0C) ⊂ M , from the uniqueness of
the reconstruction process. Each such piece is to be glued with the interior along
the common intersection (0, ε)× ∂0C × S1, which cancels the fundamental group of
the S1 factor. We then continue by induction on the boundary components.

Remark. A polar circle action is fixed point homogeneous, i.e., the group S1 acts
transitively on the sphere orthogonal to the fixed point stratum.

The polar group is Z2, generated by the unique reflection in S1 and the section
is the double of the chamber, Σ = D(C).

Corollary 4.5. There is only one effective compact simply-connected cohomogeneity
two polar 3-manifold, given by a linear S1-action on S3.

We now describe the classification in dimension 4.

Theorem 4.6. Let G be a compact connected Lie group, with a non-trivial and
and almost-effective polar action on a compact simply-connected 4-manifold M
of cohomogeneity k ≥ 2. Then M is equivariantly diffeomorphic to one of the
following:

a) T2-actions as described in Example 3.3;

b) The linear S1 and SO(3) actions on S4 as in Example 3.1;

c) The linear circle action on the first factor of S2 × S2, or their connected
fixed-point sums #nS2 × S2.

Proof. The circle actions corresponds to the case k = 3 which was already considered
in Proposition 4.4. Additionally we identify the reconstructed manifolds to be S4

when C = D3, S2 × S2 for C = D1 × S2, and fixed point sums of the latter in the
remaining cases. In fact, each fixed point connected sum of the previous S2 × S2

adds one sphere component to the boundary of the chamber (see Proposition 2.18),
allowing to retrieve any possible chamber C = S3\ ti≤N (D3)i.

If the cohomogeneity is 2, either the principal isotropy group is discrete and
hence dim(G) = 2, which implies G = T2, or we have a one dimensional principal
isotropy group and G = SU(2). For this last case, since there are no subgroups of
SU(2) of intermediate dimension, the chamber has to be a disc D2 with un-stratified
boundary marked by K = SU(2). As one can check, this coincides with the polar
data for the effective SO(3) action on S4 given by its irreducible 3-dimensional
representation plus two fixed directions.

Corollary 4.7. A closed simply-connected 4-manifold admitting a polar action is
diffeomorphic to S4 or a connected sum of copies of ±CP2 and S2 × S2.
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4 Classification in low dimensions

The previous corollary combines our classification and the work on cohomo-
geneity one manifolds in [Hoe10]. It should be mentioned that this is true even for
non-polar actions as observed in [GR].

We now address the classification of polar actions by non-abelian groups in
dimension 5, starting with those by SU(2) and SO(3).

Theorem 4.8. A non-trivial polar SU(2) action on a closed simply-connected
5-manifold is equivariantly diffeomorphic to one of the following:

1. The linear polar actions on S5 listed in Example 3.1;

2. The actions on S3 ×k S2 described in Example 3.4;

3. The SO(3)-action on the Brieskorn variety B of type (2, 3, 3, 3), the left SO(3)-
action on the Wu manifold W = SU(3)/ SO(3), or connected fixed point sums
#nB and #mW;

4. The linear SO(3) action on the first factor of S3 × S2 and repeated connected
fixed point sums, #nS3 × S2.

Proof. We distinguish between two main cases depending on whether the principal
isotropy group is discrete or one dimensional. In the latter case, we have a
cohomogeneity three action, with singular isotropy given by the whole group since
there are no subgroups of SU(2) of intermediate dimension. It follows that H = S1,
and that the chamber is a smooth manifold with unstratified boundary marked
as fixed points. A basic example is the SO(3) linear action on S5 given by the
trivial extension of its 3-dimensional representation, which corresponds to chamber
C = D3. The remaining cases correspond to the action on the first factor of
S3 × S2 with chamber D1 × S2, or their connected fixed point sums which have
C = S3\

⊔
i εD3

i .
We now assume that H is discrete. Hence the action has cohomogeneity two

and C = D2. The possible singular isotropy groups are K = S1, Pin(2) or SU(2). If
the boundary is unstratified and constantly marked by K = S1 or Pin(2), this gives
imprimitive actions which reconstruct S3 as K-manifolds, while as SU(2)-manifolds
they are equivariantly diffeomorphic to

M = SU(2)×K S3.

Since K acts freely on the product, we conclude from the associated long homotopy
sequence that, if K is not connected, then its quotient M is not simply-connected.
If we assume K = S1 and H = Zk, this is uniquely identified with the examples
treated in 3.4, which correspond to actions on the biquotient S3 ×k S2. If on the
other hand, the whole boundary corresponds to fixed points of the SU(2) action,
the principal isotropy group is then trivial and we recognize this as the linear
4-dimensional SU(2)-representation extended to act on S5.
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4 Classification in low dimensions

For the remaining cases the chamber has stratified boundary, with isolated
vertices corresponding to fixed points of the action, in order to satisfy (2.6). The
slice representation at such points must be the irreducible 5-dimensional one of
Example 3.1.2. These cases correspond to the action on S5 by the (trivial extension
of the) SO(3) 5-dimensional representation, the isotropy action of SO(3) on the
Wu manifold, the SO(3) action on the Brieskorn variety, and their connected fixed
point sums. We refer to the discussion in Examples 3.7, 3.8 and to Figures 4 and
5.

Remark 4.9. General SO(3) actions on 5-manifolds were previously studied in
[Hud79] and more recently in [Sim] who corrected and extended the classification
to that of (almost effective) SU(2) actions. An alternative proof of Theorem 4.8
follows from Theorem D in [Sim], after identifying the polar examples and discarding
the non-polar ones. The latter correspond to the linear diagonal SO(3) action
on S5 and to the left SU(2)-action on the Wu manifold. The SO(3) action on
S5 ⊂ R3+3 has orbit space a disk with boundary marked by S1 isotropy, and trivial
principal isotropy along the interior. This gives compatible imprimitive Coxeter
polar data for an SO(3) action, but corresponds to the (clearly polar) SO(3) action
on S3 ×k=2 S2 ∼= S3 × S2, presented in Example 3.4 as an ineffective SU(2) action.
In the same way, the left SU(2)-action on W has orbit space a disc with constant
S1 isotropy along the bounding circle and trivial isotropy in the interior, which
gives rise to Coxeter polar data reconstructing S3 × S2 instead of S5.

For general non-abelian group actions we have the following, which thus finishes
the proof of Theorem C in the introduction.

Theorem 4.10. Let G be a compact connected non-abelian Lie group, with a non-
trivial and almost-effective polar action on a compact simply-connected 5-manifold
M of cohomogeneity k = 2, 3. Then M is equivariantly diffeomorphic to one of the
following:

a) The SU(2) polar actions listed in Theorem 4.8;

b) The family of SU(2)× S1-actions on S3 ×k S2 as in Example 3.5;

c) The linear factor-wise SO(3)×S1 action on S3 × S2, and their connected
fixed-point sums;

d) Linear polar actions by U(2) and SO(4) on S5.

Proof. From the same considerations as in the classification in dimension four, we
have that a cohomogeneity k = 3 action corresponds to an SU(2) action with one
dimensional principal isotropy group.

If k = 2 we have C ∼= D2 and H ⊆ O(3) up to a finite cover, leaving the
following possibilities:

(G,H0) = (SU(2), e), (SU(2)×SU(2),∆SU(2)), (SU(2)×S1, S1). (4.11)
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4 Classification in low dimensions

Here, besides listing the possible groups by the dimension bound (4.1) for a given
H0 ⊂ G, we have discarded G = SU(2) × T3 with H0 = SU(2), since it would
not be almost-effective. The SU(2) actions of cohomogeneity 2 and 3 have been
addressed in Theorem 4.8.

For (G,H0) = (SU(2)× SU(2), SU(2)), notice that the effectiveness of the G-
action implies that H0 is embedded diagonally. Furthermore, there are no subgroups
of intermediate dimension between G and H0, implying that the boundary of the
orbit space consists of fixed points by G. In particular, we have that H must be
connected, since G corresponds to a face isotropy group and satisfies G/H = S3.
Thus the polar data is a disc with interior regular isotropy ∆ SU(2) and boundary
consisting of fixed points. If we pass to the quotient under the normal subgroup
Z2
∼= {±1} ⊂ ∆ SU(2), we have an effective G = SO(4) action with principal

isotropy group H = SO(3). This equivalent effective data is recognized as the linear
SO(4) ⊂ SO(6) action on S5.

If (G,H0) = (SU(2)×S1, S1), we start by determining the ways in which H0 may
lie in G. This cannot be given by the inclusion of the second factor, as it would not
be almost effective. It must hence be H0 = S1

(1,k) ⊂ SU(2) × S1, for k ∈ Z, since

a general circle S1
(q,k) would have normal ineffective kernel Zq ∼=< ei2π/q >⊂ S1

which can be quotiented out and still retrieve an SU(2)× S1 action. We distinguish
between the inclusion of the first factor only (k = 0) and the diagonal case (k 6= 0).

In the case of H0 = S1
(1,k), k 6= 0, the singular isotropy groups can be K ∼= T2,

Pin(2)×S1, or the whole group SU(2)×S1. We claim that, in any case, the boundary
will have constant isotropy. Notice that there is only one choice for the maximal
torus inside the different possible singular isotropy subgroups of a face, namely,
the one given by the product of the circle subgroups obtained from factor-wise
projection of H0

∼= S1 ⊂ SU(2)×S1. This rules out the possibility of a further
stratification of the boundary, since consecutive sides have to be labeled by different
isotropy groups and generate the isotropy group of the vertex in common. In
the case of unstratified boundary constantly marked by K = T2 or Pin(2) × S1

we have imprimitive actions which reconstruct S3 as a K-manifold, while as a
SU(2)× S1-manifold they give

(SU(2)× S1)×K S3.

In particular, K has to be connected in order for M to be simply-connected. Thus
we can assume K = T2 which is the case discussed in Example 3.5. The remaining
case with unstratified boundary equal to the fixed point set can only happen if
the principal isotropy group is H = S1

(1,1), in order to satisfy K/H ∼= S3. This is

identified as the linear effective action on S5 of the group U(2) ∼= SU(2) · S1 acting
as a subgroup of SO(4) ⊂ SO(6).

Finally, we turn to the case where the principal isotropy is H0 = S1
(1,0), which

corresponds to an effective SO(3)×S1 action (since we can quotient out the normal
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4 Classification in low dimensions

subgroup {(±1, 1)} ⊂ H0 ⊂ SU(2) × S1). If the boundary is unstratified it is
thus constantly marked by either K = T2, SO(3) or SO(3) × S1. The case with
K = SO(3) gives an imprimitive action that reconstructs a non-simply connected
manifold. The other two can be treated as before, and are easily identified as the
action on S3 ×k=0 S2 = S3 × S2 in Example 3.5, and the linear action on S5 given
by the trivial extension of the SO(3)× S1 representation in R3 ⊕R2. Finally, if the
boundary is stratified the marking of the sides must alternate between K = T2

and SO(3). These actions were the ones discussed in Example 3.9.
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5 Torus actions

In this section we treat in detail the case of polar effective T2-actions on compact
simply-connected 5-manifolds. We will prove Theorem A by determining the
admissible Coxeter polar data, addressing the possible isotropy groups, orbit spaces
and marked stratifications. In a second step we identify the actions concretely,
which requires the description of a few basic examples and the combination of them
by means of equivariant surgeries.

First, observe that the possible isotropy types (Gx) are known and correspond
to {e} = H ⊆ S1 ∼= K ⊆ T2, where S1 ranges over all the possible circle subgroups
inside the torus, and we omit parenthesis as conjugation is trivial. In fact, the
effectiveness of the action implies that the principal isotropy group is trivial since
the group is abelian. A next to minimal isotropy subgroup has to be a circle, since
K/H is a sphere. Moreover, since K0 and H generate K, further isotropy groups
will have to be connected leaving as only possibility K = G = T2, i.e., fixed points
of the action.

Secondly, notice that at a fixed point the 5-dimensional slice representation
coincides with the standard one by the maximal torus T2 ⊂ SO(4) ⊂ SO(5). In
particular, the existence of a fixed direction implies that fixed points are not
isolated, but form closed geodesics. For a point with S1 isotropy, the orbit is a
circle and the slice must be 4-dimensional. The slice representation is the usual
2-dimensional one by S1 extended trivially.

The possible orbit spaces are topological 3-manifolds with boundary, already
characterized in Proposition 4.3 as the complement of a finite number of disjoint
3-discs in a 3-sphere,

C = M/G = S3\(tN D3).

Each component of the boundary S2 ⊆ ∂(M/G) will be the union of one or more
faces with S1-isotropy, separated by closed geodesics consisting of fixed points. We
can encode the boundary stratification and marking information in an unoriented
graph, defining vertices to be the 2-dimensional faces and edges to be the closed
geodesics fixed by the action. It is well defined, since these fixed geodesics do
not intersect each other, leaving only two adjacent faces corresponding to their
endpoints. Also, as any simple closed curve separates the 2-sphere into two pieces,
this graph is in fact a tree. The marking of the chamber labels each vertex with a pair
of coprime integers (mi, ni) ∈ Z2, indicating the slope of the corresponding isotropy
circle subgroup. The compatibility condition (2.6) corresponds to consecutive
vertices having isotropy subgroups with trivial intersection, or equivalently that∣∣∣∣ mi ni

mi+1 ni+1

∣∣∣∣ = ±1.

We call this graph the boundary tree, which is a more convenient way of describing
the Coxeter polar data, adapted to this case. In particular, any finite tree with
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5 Torus actions

a compatible marking of slopes and possibly many connected components, will
give rise to a unique connected Coxeter polar T2-manifold of dimension five. This
reconstructed manifold need not be simply-connected, a problem we shall address
later.

We first focus on actions having only one boundary component for the orbit
space, i.e., a connected boundary tree. The simplest case is the one without
fixed points, and hence only one face marked by a circle isotropy subgroup K.
It corresponds to a tree with only one vertex. This action is imprimitive and
reconstructs S4 when restricted to K = S1 with the action by rotations in R2,
trivially extended to R5. As a T2 polar manifold it yields

S4 ×K T2 = S4 ×K (K × S1) = S4 × S1.

Although this manifold is not simply-connected it will be one of the building blocks
in our construction.

A boundary tree with two vertices connected by a single edge corresponds to a
pair of neighboring faces separated by one geodesic consisting of fixed points. We can
assume that the circle isotropy subgroups marking the faces are the canonical ones
of slopes (1, 0) and (0, 1), up to a T2 automorphism. The manifold is recognized as
the linear T2 action on S5 given by the standard embeddings T2 ⊂ SO(4) ⊂ SO(6).

The T2 action on S3 ×k S2 = S3 × S3/ S1
(1,1,k,0) as described in Example 3.2 has

boundary tree given by a linear sequence of three vertices labeled as in Figure 7.
Conversely, any T2 Coxeter polar action with the same underlying boundary tree
can be normalized to have the same marking by isotropy subgroups, as follows.
First pick two consecutive vertices and assume that their isotropy groups are the
circles of slopes (1, 0) and (0, 1), up to a T2 automorphism. Furthermore, we can
choose the middle vertex to be labeled (0, 1), so that the remaining one will have
isotropy subgroup of the form (1, k), for some integer k ∈ Z, since it is a singular
isotropy subgroup with trivial intersection with the circle (0, 1).

These manifolds can be combined by taking fixed point connected sums to
obtain new T2 polar manifolds. The resulting action may vary depending on the
point where it is performed, as opposed to the usual topological connected sum.
Once compatible points are specified the gluing is determined by the marking of
isotropy groups, since orientations for the manifolds have to be chosen so that
both have outward (or inward) pointing normal vector field along the maximal
faces of the boundary. We illustrate these subtleties in Figure 8, where two almost
identical pairs of manifolds are glued, and in fact only one summand differs from
its analogous by a T2 automorphism.

By means of fixed point connected sums of the basic actions in Figure 7 we
obtain all Coxeter polar T2 actions with orbit space M5/T2 ∼= D3.

Proposition 5.1. A Coxeter polar T2-manifold of dimension 5 with orbit space
homeomorphic to the 3-disc and N ≥ 0 geodesics fixed by the action is either:
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S1
(1,0)

Fixed

S1
(1,0)

S1
(0,1)

S1
(1,k)

S1
(0,1)

S1
(1,0)

Fixed

M5 = S4 × S1

(1, 0)

(0, 1)

(1, 0)

M5 = S5

(1, 0)

(0, 1)

(1, k)

M5 = S3 ×k S2

Figure 7: Coxeter polar data and their corresponding boundary trees for the basic T2 actions
on 5-manifolds with orbit space homeomorphic to the 3-disc.

1. The factor-wise S1× S1 polar action on S4 × S1, for N = 0;

2. The linear T2 action on S5 of Example 3.1, for N = 1;

3. The T2-actions on S3 ×k S2 described in Example 3.2 above, if N = 2;

4. Iterated (N − 2) fixed-point connected sums of S3 ×k S2, for different k ∈ Z,
in the case of N ≥ 3.

Proof. Notice that the number of fixed point connected components is the number
of edges in the boundary tree, and that we have already discussed the situation for
N ≤ 2. Observe as well that, if we consider two T2-manifolds M1 and M2 as above
that are associated to connected boundary trees Ti, for i = 1, 2, and we perform
an equivariant connected sum at respective fixed points, as in Proposition 2.18,
we will retrieve a new manifold with connected boundary tree given by the gluing
along corresponding edges (the ones associated to the fixed geodesics containing
those fixed points):

T = T1

⋃
e1∼e2

T2.

In particular, when we glue a linear sequence of three vertices along an edge we
are adding one more vertex to the original tree. We can do this in any way we like,
thus being able to “grow” all trees by this repeated operation, proving part (4).

Proof of Theorem A. If we are given two Coxeter polar T2-manifolds of dimension
five associated to polar data (Ci,T

2(Ci)), i = 1, 2, we may perform a surgery along
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6=
S1

(1,k)

S1
(0,1)

S1
(1,0)

#
S1

(0,1)

S1
(1,0)

S1
(q,1)

S1
(1,k)

S1
(0,1)

S1
(1,0)

#

S1
(1,q)

S1
(0,1)

S1
(1,0)

S1
(1,k)

S1
(0,1)

S1
(1,0)

S1
(q,1)

S1
(1,k) S1

(1,q)

S1
(1,0)

S1
(0,1)

(q, 1)

(1, 0)

(0, 1)

(1, k)

(1, 0)

(0, 1)

(1, k) (1, q)

Figure 8: Each column shows a different fixed point connected sum on the level of Coxeter
polar data, the resulting gluing and its corresponding boundary tree.
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5 Torus actions

a regular orbit. By Definition 2.16, the new chamber C will be the connected sum
through an interior point of the two given ones, C = C1#C2, and the new boundary
will be the union of the preceding two, along with their unaffected marking. This
can be translated as saying that the resulting boundary tree is the disjoint union
of the two given ones.

In this way, we have shown how to retrieve all the admissible boundary trees
or, equivalently, sets of Coxeter polar data, in terms of regular orbit sums of the
actions listed in Proposition 5.1.

However, we would like to say more, and establish a reciprocal statement.

Theorem 5.2. A Coxeter polar T2-manifold obtained from regular orbit sums of
the actions in Proposition 5.1 is simply-connected unless each summand is S4× S1.
In that case it will be simply-connected if and only if the circle isotropy groups that
occur generate the homology lattice of T2.

Proof. Recall the decomposition of the manifold that defines a regular orbit sum

(M1#regM2) ∼= (M1 − (T2×D3)) ∪T2×S2 (M2 − (T2×D3)) (5.3)

by using equation (2.15) for the case of a regular torus orbit. We can apply Seifert-
Van Kampen’s formula on the previous decomposition to compute the fundamental
group. Notice first that removing a regular orbit does not affect the fundamental
group of the manifold, because such orbits have codimension 3 in this case. We
then have:

π1(M1#regM2) ∼= [ π1(M1) ? π1(M2) ] / i∗π1(S2 × T2). (5.4)

The manifolds we have to glue come from Proposition 5.1, and they are all simply-
connected with the exception of S4 × S1. For the latter, by the explicit description
of the action we have that

(S4 × S1)− (T2×D3) ∼= (S4 − (S1 × D3))× S1 ∼= S2 × D2 × S1; (5.5)

and the induced map coming from the inclusion of its boundary S2 × T2 is an
epimorphism on the fundamental group level. Then, if we take regular orbit sums
of S4 × S1 with an already simply-connected manifold we will obtain a new simply-
connected manifold. In particular, if the manifold admits fixed points, the boundary
tree will have a connected component with at least one edge which corresponds to
a simply-connected manifold we can begin with.

Otherwise, under the absence of fixed points, the boundary tree will have only
isolated vertices marked by circle subgroups of slopes (mi, ni) corresponding to
regular orbit sums of blocks (S4 × S1)i. For each of these, we observe that the
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5 Torus actions

inclusion of a regular orbit induces an epimorphism in the fundamental groups,
which leads to the following isomorphism

π1( (S4 × S1)i) = π1(T2 /Ki) = Z2/ < (mi, ni) > .

Fixing coordinates for T2 will simplify the computation of the fundamental
groups along the gluing. For instance, if M ′ is the regular orbit sum of two blocks
(S4 × S1)i, i = 1, 2, then (5.4) implies that

π1(M ′) ∼= [ Z2/<(m1, n1)>] ? [Z2/<(m2, n2)> ]/ δ(Z2)

∼= Z2/ <(m1, n1), (m2, n2)>,

where we have observed that the map corresponding to the inclusion of the boundary
i∗|π1(T2) is the diagonal map from Z2 onto each factor followed by the corresponding
projections. Moreover, the inclusion of a regular orbit generates the fundamental
group of this new manifold M ′. In this way we may proceed inductively, where
π1(M

′) ∼= Z2/ < (m1, n1), · · · , (mi, ni) > is known, and we want to compute
the fundamental group of M = (S4 × S1)i+1 #reg M

′. The inductive step is
completely analogous, and so we have that the fundamental group of M will be
Z2/ <(m1, n1), · · · , (mi+1, ni+1)>.

In particular, the fundamental group will be trivial if and only if the isotropy
subgroups generate the homology of T2, or cyclic if they generate a sub-lattice.
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The goal of this section is to determine the diffeomorphism type of the underlying
manifolds for the polar torus actions on simply-connected 5-manifolds. In the case of
T3 this was done in [Oh83] were it was proven that these are obtained as connected
sums of S5, S3 × S2 and S3×̃S2. This will also be true for S1 and T2 actions, as
stated in Theorem B. We separate the two cases, addressing the simpler one of
S1-actions first. In both cases the proof relies on our explicit description of the
actions, together with the Barden-Smale classification of closed simply connected
5-manifolds.

Theorem 6.1. A compact simply-connected 5-manifold admitting a polar circle
action is diffeomorphic to a connected sum of S5, S3 × S2, and S3×̃S2.

Proof. Recall that these manifolds are reconstructed out of Coxeter polar data
(N, S1(N)) given by a smooth simply-connected 4-manifold N with non-trivial
boundary, and a marking specifying the trivial subgroup along the interior and
fixed points along the boundary.

The statement of the theorem follows from the classification of simply-connected
closed 5-manifolds (see [Bar65]), together with the claim that our manifolds have
free second homology group H2(M ;Z). To compute these groups we will use the
Mayer-Vietoris sequence for a decomposition of M given by

∂N × S1 ⊂ (∂N × εD2) ∪ (int(N)× S1) = M, (6.2)

where ∂N × D2 is a tubular neighborhood of ∂N inside M , and int(N) × S1

is the reconstructed manifold over the interior of N . Here, both the tubular
neighborhood of ∂N and the reconstructed manifold over int(N) are identified due
to the uniqueness properties of the reconstructed polar actions with prescribed
data. We then have the associated long exact sequence of homology with integer
coefficients,

Hi(∂N × S1)
α−→ Hi(∂N)⊕Hi(int(N)× S1)

β−→ Hi(M)
δ−→ Hi−1(∂N × S1). (6.3)

We have by hypothesis that π1(N) = 0, implying H1(N) = 0. Also notice that the
interior of N is a retract of it, and thus has the same homology.

By the Künneth formula, and thanks to the fact that S1 has free homology, we
have:

H1(∂N × S1) = H1(∂N)⊕ Zπ0(∂N),

H2(∂N × S1) = H2(∂N)⊕H1(∂N),

H2(int(N)× S1) = H2(N).
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6 Diffeomorphism Classification

The map α in (6.3) gives isomorphisms between the corresponding terms in the
i-th homology for i = 1, 2,

α : Hi(∂N) ⊂ Hi(∂N × S1)
∼−→ Hi(∂N) ∼= Hi(∂N × D2).

But there is another term coming from the common intersection in H2(∂N × S1),
which is H1(∂N)⊗H1(S1) ∼= H1(∂N). In this case, its image via α will be trivial,
as the generator of H1(S

1) is zero in H1(D2), while the map from H1(∂N) is
trivial since H1(N) = 0. Therefore, the kernel of δ in degree two is isomorphic to
H2(int(N)× S1) ∼= H2(N). It follows that H2(N) is free by the Poincaré duality
for manifolds with boundary.

The image of δ is a submodule of H1(∂N×S1), and in particular of the summand
H0(∂N × S1) which is free, as we have already seen how the term H1(∂N) cancels
out by applying itself isomorphically into its image via α. We conclude that H2(M)
is a free Z-module.

Remark 6.4. We may list the manifolds uniquely, with α = 0, 1 and n ∈ N0, as

#αS3×̃S2#nS3 × S2,

where the empty connected sum refers to the 5-sphere. These manifolds are uniquely
identified by the rank of its second integer homology group, together with the
property of being spin or not, which corresponds to α = 0, 1 respectively. This is
explicitly determined by the Coxeter polar data. In fact, we can compute the rank
of the second homology H2(M) as

H2(M) = H2(N)⊕ Z|π0(∂N)|−1.

Furthermore, M will be spin if and only if N is. First notice that, since N
retracts onto its interior, one being spin implies so for the other. Then, observe
that, if N is not spin, M will not be spin as well, for it contains the open subset
Mreg = int(N)× S1. On the other hand, if N is spin we fix a spin structure which
induces one on its interior and boundary. We now can construct a spin structure
on M by gluing along the decomposition (6.2). Each piece has a product spin
structure by choosing for S1 the unique spin structure that extends to D2. In this
way, we ensure that the spin structures agree on the common open stripe where
they are identified, allowing the gluing to be spin.

For polar T2 actions, the identification of the underlying diffeomorphism types
is analogous to the case of the circle actions, though significantly more involved.
We rely on the general description of the actions achieved in Section 5.

Theorem 6.5. A compact simply-connected 5-manifold admitting a polar effective
T2-action is diffeomorphic to a connected sum of S5, S3 × S2, or S3×̃S2.
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6 Diffeomorphism Classification

Proof. Analogously to the proof of Theorem 6.1 we will show that the second integer
homology groups H2(M ;Z) are free.

Polar effective T2-actions on compact simply-connected 5-manifolds were con-
structed by first forming connected sums of basic examples (this is the content
of Proposition 5.1), and later performing surgeries along normally embedded tori.
For the computations that follow, it is useful to revert the order in which these
operations are done. We will begin by taking regular orbits sums of the actions on
S4 × S1 and S5 only, and later make fixed point sums with S3 ×k S2. This last step
will only add free summands to the second homology, so we only need to compute
the second homology for the initial regular orbit sums. From the decomposition
(5.3) we have the following Mayer-Vietoris long exact sequence for integer homology

· · · → H2(S2 × T2)
α2−→ H2(M1 − (T2×D3))⊕H2(M2 − (T2×D3))

β2−→

β2−→ H2(M1#regM2)
δ2−→ H1(S2 × T2)

α1−→ · · · (6.6)

In order to compute the homology of a regular orbit sum H2(M1#regM2), we
first need to know what does each Mi look like when a tubular neighborhood
around a regular orbit has been removed. For Mi = S4 × S1 we have the equality
(5.5), while for S5 we can make use of an auxiliary Mayer-Vietoris computation
on the decomposition given by a tube T2×D3 and its complement, and show that
H2(S5 − (T2×D3)) = Z. In both cases the second homology group is generated
by the class of a 2-sphere bounding a slice D3 at a regular point. The group
H2(M1#regM2) will then be computed as the kernel to α1 plus the image of β2 from
(6.6). This kernel is clearly free, as any subgroup of Z2, while the other summand
requires that we control the map α2 coming from the inclusion of the common
intersection S2 × T2. Using the Künneth theorem for the product we have that
Z2 ∼= H2(S2×T2) ∼= Z.[S2]⊕Z.[T2]. As mentioned above, the class of the sphere in
the common intersection [S2] ∈ H2(T2×S2) generates, via α2, the second homology
of the block that is being added, say M2. Then, what is left for the image of β2

is just the other term corresponding to M1, H2(M1 − (T2×D3)), when quotiented
out by the image α2(Z.[T2]). This can be seen as the class of a regular orbit in the
boundary of (M1 − (T2×D3)).

We claim that α2([T2]) ∈ H2(M1 − (T2×D3)) is trivial since we can construct
an embedded 3-manifold with this torus for its boundary. For this, first consider
the 3-dimensional chamber associated to the T2-action in M1 − (T2×D3), which
is just the chamber that we already got for M1 minus an interior disc. Then,
take a segment inside this chamber joining the point that corresponds to this
regular orbit in the boundary together with a point in a face (with circle isotropy
subgroup), arriving orthogonally to this last stratum. The orbit of this segment
will be smoothly embedded in M , and diffeomorphic to D2 × S1 with the required
boundary, thus proving the claim.
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6 Diffeomorphism Classification

In conclusion, if we can ensure that the piece M1 − (T2×D3) has free second
homology, this will also be true for the sum of it with a basic block, M1#regM2. In
particular, it is true for the sum of two basic blocks. For the induction to continue,
we must see that the complement of a tube around a regular orbit in the resulting
manifold has free second homology. A key observation in order to see this is that,
instead of first gluing the pieces that define it and then removing a tube along
a regular orbit, we may directly glue the two pieces that define it along T2×D2,
obtaining

(M1#regM2)− (T2×D3) = (M1 − (T2×D3)) ∪T2×D2 (M2 − (T2×D3)).

Then, the homology can be computed via the corresponding Mayer-Vietoris se-
quence:

· · · → H2(T2×D2)
α2−→ H2(M1 − (T2×D3))⊕H2(M2 − (T2×D3))

β2−→

β2−→ H2((M1#regM2)− (T2×D3))
δ2−→ H1(S2 × T2)

α1−→ · · · .

As before, H2(M1#regM2) can be decomposed into the clearly free kernel of α1 plus
the image of β2. The latter is isomorphic to the sum of H2(Mi − (T2×D3)), for
i = 1, 2, which are free by inductive hypothesis, once we observe that the map α2

coming from the [T2] ∈ H2(T2×D2) is trivial by an analogous argument as in the
previous claim.

Remark 6.7. The diffeomorphism type can be determined explicitly from given
Coxeter polar data. Analogously to Remark 6.4, we may determine the rank of the
second homology and characterize when it is spin. In fact, we have a spin structure
on any regular orbit sum of copies of S4×S1 and S5. For this, it suffices to consider
the given spin structure on S5, the unique spin structure on T2×S2×(0, ε) ⊂ S4×S1

that extends to S4 × D2 and finally observe that the gluing map agrees with the
identity along the tubular neighborhood of the regular orbit, and is therefore spin.
On the other hand, if we perform a fixed point connected with an action on S3×̃S2

the manifold will not be spin. Hence, the resulting manifold will be spin if and only
if it is constructed taking fixed point connected sums with S3 ×k S2 for even k only.
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7 Applications to non-negative curvature

The interest in positively and non-negatively curved compact manifolds together
with the abundance of symmetry for the relatively few known examples, has led to
a program of studying manifolds with positive or non-negative curvature on which
a Lie group acts by isometries (see for example the surveys [Gro02, Wil07, Zil07]).

Remarkable results have been accomplished in low dimensions, where topological
classifications are obtained for prescribed curvature and symmetry conditions. For
instance, compact simply-connected positively curved 4-manifolds with continu-
ous symmetry, i.e., invariant under an isometric circle action, are equivariantly
diffeomorphic to S4 or CP2 with a linear action ([HK89, Fin77, GW13]). If we
consider non-negatively curved ones, we have in addition S2 × S2 and CP2#±CP2

([Kle90, SY94]) and the circle action is induced by a biquotient action ([GGK14]).

In contrast, in dimension 5 the topological question is open if we only consider
the action of a circle, unless this action is fixed point homogeneous (see [GGS12]).
Otherwise, we must strengthen the symmetry hypothesis as in [Ron02], where it
is proven that a positively curved (closed simply-connected) 5-manifold with an
isometric T2-action is diffeomorphic to the sphere S5. The list grows if we allow
the metric to be non-negatively curved to include the Wu manifold SU(3)/ SO(3),
S3 × S2 and the non-trivial bundle S3×̃S2 (see [GGS]). However, equivariant
classifications of non-negatively curved 5-manifolds are only obtained in the case of
an SU(2) action (see [Sim]) or of a T3 action (see [Oh83, GGK14]).

Polar actions are expected to be rigid in this context. In fact, it was shown in
[FGT] that a polar action with cohomogeneity at least two and positively curved
polar metric is equivariantly diffeomorphic to a linear action on a CROSS (compact
rank one symmetric space). However, the case of non-negative curvature is open in
general. Here, as an application of our classification results together with a closer
examination of what the sections are, we are able to classify polar actions with
non-negative curvature in dimension 5.

Proof of Theorem D. First observe that the actions listed in the theorem were
given with an invariant polar metric of non-negative curvature. We can then focus
on discarding the other cases that appear in our classification, using the fact that
the sections have to inherit non-negative curvature since they are totally geodesic
submanifolds. In particular, by a classic result of J. Cheeger and D. Gromoll, their
fundamental groups have to admit a lattice Zr of finite index.

In general, the chamber C of a polar manifold is a convex submanifold with
totally geodesic boundary. Moreover, if the curvature is non-negative, the proof
of the Soul theorem [CG72] implies that C admits a soul S. Flowing along a
gradient-like vector field adapted to the distance function to the soul, it follows that
the chamber is homeomorphic to a disc bundle over S. The simply-connectedness
of the manifold implies that of C and hence of S.
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7 Applications to non-negative curvature

We separate the proof according to the Lie group being abelian or not. We
begin with the S1 and T2 actions, and recall that the case of T3 actions was treated
in [Oh83, GGK14].

For a circle action, the soul can be a point, S2 or S3. In the first case we have
C = D4 which is recognized as a linear action on S5. For the last case, the chamber
will be S3 × I, corresponding to the circle action on the second factor of S3 × S2.
Finally, when the soul is S2 we have infinitely many possible disk bundles which
give rise to actions on S3 ×k S2 as discussed in Example 3.6.

In the case of a T2 action, the soul of the chamber must be a point or S2, giving
rise to C = D3 or S2 × I, respectively. We claim that only the basic actions on
S3 ×k S2, S4 × S1 and S5 of Figure 7, and the linear T2 action on the first factor
of S3 × S2 admit invariant non-negative curvature. When the orbit space is D3

the only other possible case is given by a repeated fixed point connected sum of
S3 ×k S2. Notice that the actions on S3 ×k S2 have Σ = S2 × S1 or a non-orientable
one, S2 × S1/τ1, as discussed in Example 3.2. Then, the fundamental group of
the section associated to a fixed point connected sum of at least two copies of
S3 ×k S2 will have the free group on two generators as a subgroup and thus cannot
admit non-negative curvature. When the chamber is S2 × I we have to perform
one regular orbit sum between two of the manifolds listed in Proposition 5.1. As
follows from Proposition 2.19, the fundamental group of such a gluing will be a free
product of copies of the fundamental group of the summands plus one additional
generator for each 0-surgery. A case by case analysis shows that the only admissible
fundamental group corresponds to both summands being S4 × S1. Furthermore,
by Theorem 5.2 the gluing of two copies of S4 × S1 will add to a simply-connected
manifold if and only if they are marked by complementary circle isotropy groups,
i.e., circles generating T2 with trivial intersection. This is identified as the T2

action on S3 × S2, coming from the action on the first factor only.

Among the polar actions by non-abelian Lie groups there are two families of
actions listed in Theorem C which are constructed as fixed point sums of linear
polar actions on S3 × S2 by the groups SO(3) and SO(3)× S1. These basic actions
admit S1× S2 and S1× S1 for their respective sections. In either case, a fixed point
sum of two or more copies has a section which can not be non-negatively curved.

Finally, among the SO(3) polar manifolds given by fixed point sums of the
actions on the Brieskorn or Wu manifold #kB and #lW, only the action on the
Wu manifold alone supports non-negative curvature, because otherwise we have
that Σ = #n T2, n ≥ 2.
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