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Abstract

In this paper we present a variant of the proximal forward-backward splitting method for solving
nonsmooth optimization problems in Hilbert spaces, when the objective function is the sum of
two nondifferentiable convex functions. The proposed iteration, which will be call the Prox-
imal Subgradient Splitting Method, extends the classical projected subgradient iteration for
important classes of problems, exploiting the additive structure of the objective function. The
weak convergence of the generated sequence was established using different stepsizes and under
suitable assumptions. Moreover, we analyze the complexity of the iterates.
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1 Introduction

The purpose of this paper is to study the convergence properties of a variant of the proximal
forward-backward splitting method for solving optimization problems of the following form:

min f(x) + g(x) s.t. x ∈ H, (1)

where H is a nontrivial real Hilbert space, and f : H → R̄ and g : H → R̄ are two proper lower
semicontinuous and convex functions. We are interested in the case where both functions f and g
are nondifferentiable, and the domain of f is an open subset of H containing the domain of g. The
solution set of this problem will be denoted by S∗, which is a closed and convex subset of the domain
of g. Problem (1) has recently been received much of attention, because it has broad applications
to several different areas such as control, signal processing, system identification, machine learning
and restoration of images; see, for instance, [17,18,23,29] and the references therein.

A special case of problem (1) is the nonsmooth constrained optimization problem, taking g = δC
where δC is the indicator function of a nonempty closed and convex set C in H, defined by δC(y) :=
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0, if y ∈ C and +∞, otherwise. Then, problem (1) becomes in the constrained minimization
problem

min f(x) s.t. x ∈ C. (2)

Another important case of problem (1), which has had much interest in signal denoising and data
mining, is the following optimization problem with ℓ1-regularization

min f(x) + λ∥x∥1 s.t. x ∈ H, (3)

where λ > 0 and the norm ∥·∥1 is used to induce the sparsity in the solutions. Moreover, problem (3)
contains the important and well studied Low-Rank problem, when H = Rn and f(x) = ∥Ax− b∥22
where A ∈ Rm×n, m << n, and b ∈ Rm, which is just a convex approximation of the very famous
ℓ0 minimization problem; see [11]. Recently, this problem became popular in signal processing and
statistical inference; see, for instance, [21,40].

We focus here our attention on the so-called proximal forward-backward splitting iteration [29],
which contains a forward gradient step of f (an explicit step) followed by a backward proximal step
of g (an implicit step). The main idea of our approach consists of replacing, in the forward step
of the proximal forward-backward splitting iteration, the gradient of f by a subgradient of f (note
that here f is assumed nondifferentiable in general). In the particular case that g is the indicator
function, the proposed iteration becomes to the classical projected subgradient iteration.

To describe and motivate our iteration, first we recall the definition of the so-called proximal
operator as proxg : H → H where proxg(x), x ∈ H is a unique solution of the following optimization
problem

min g(y) +
1

2
∥x− y∥2 s.t. y ∈ H. (4)

The proximal operator proxg is well-defined and has attractive properties, e.g., it is continuous
and firmly nonexpansive; for other properties and algebra rules see [3, 17, 18]. If g = δC is the
indicator function, the orthogonal projection onto C, PC(x) := {y ∈ C : ∥x− y∥ = dist(x,C)} is
the same that proxδC (x) for all x ∈ H; see, for instance, [2]. Now, let us recall the definition of the
subdifferential operator ∂g : H ⇒ H by ∂g(x) := {w ∈ H : g(y) ≥ g(x) + ⟨w, y − x⟩, ∀ y ∈ H} . We
also present the proximal operator proxαg through of its relation with the subdifferential operator
∂g, i.e., proxαg = (I + α∂g)−1 and as a direct consequence of the first optimality condition of (4),
we have a useful inclusion:

z − proxαg(z)

α
∈ ∂g(proxαg(z)), (5)

for any z ∈ H and α > 0. The iteration proposed here called the Proximal Subgradient Splitting
Method for solving problem (1), is motivated by the well-known fact that x ∈ S∗ if and only if
exists u ∈ ∂f(x) such that x = proxαg(x − αu). Thus, the iteration generalizes the proximal
forward-backward splitting iteration for the differentiable case, as a fixed point iteration, defined
as the following form: beginning with x0 belonging to the domain of g, set

xk+1 = proxαkg
(xk − αku

k), (6)

where uk ∈ ∂f(xk) and the stepsize αk is positive for all k ∈ N.
Iteration (6) covers important situations in which f is not differentiable. The nondifferentiability

of the function f has a direct impact on the computational effort and the importance of such
problems is underlined because they occur frequently in applications. Actually, nondifferentiability
arises, for instance, in the problem of minimizing the total variation of a signal over a convex set, in
the problem of minimizing the sum of two set-distance functions, in problems involving maxima of
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convex functions, the Dantzing selector-type problems, the non-Gaussian image denoising problem
and in Tykhonov regularization problems with L1 norms; see, for instance, [12,16,26]. The iteration
of the proximal subgradient splitting method, proposed in (6), solves these important instances,
extending the classical projected subgradient iteration for solving (2).

Within of problem (1), f is usually assumed to be differentiable, the convergence of the iteration
(6) to a solution of (1) has been established in the literature, when the gradient of f is globally
Lipschitz continuous. Moreover, the stepsizes αk have to be chosen very small or less than some
constant related with the available Lipschitz constant or throughout of a linesearch; see, for in-
stance, [5, 9, 18, 29, 32]. It is important to mention that the forward-backward iteration finds also
application for solving more general problems, like the variational inequality and inclusion prob-
lems; see, for instance, [8,10,13,14,39] and the references therein. On the other hand, the standard
convergence analysis for this iteration requires at least a co-coercivity assumption and the stepsizes
into a suitable interval; see, for instance, Theorem 25.8 of [3]. Note that co-coercive operators are
monotone and Lipschitz continuous, but the converse does not hold in general; see [41]. Although,
for gradients of lower semicontinuous, proper and convex functions, the co-coercivity is equiva-
lent to the global Lipschitz continuity assumption. This nice and surprising fact, used strongly
in the convergence analysis of the proximal forward-backward method for problem (1), when f is
differentiable, is known as the Baillon-Haddad Theorem; see Corollary 18.16 of [3].

The main aim of this work is to release the differentiability on f of the forward-backward splitting
method, extending the classical projected subgradient method for problem (2) and containing, as
particular case, a new proximal subgradient iteration for problem (3). Note that, in general, for
evaluating of the proximal operator is necessary to solve a strongly convex minimization problem.
Thus, in the context of problem (1), we assume that to evaluate the proximal operator of f is very
hard, leaving out the possibility to use the Douglas-Rachford splitting iteration presented in [16].
The proposed iteration here uses the proximal operator of g and the explicit subgradient iteration
of f (the proximal operator of f is never evaluated), which is much easier to implement than the
proximal operator of f+g or f as in the standard proximal point algorithm or the Douglas-Rachford
splitting iteration, respectively for nonsmooth problems, like (1); see, for instance, [14,16].

This work is organized as follows. The next subsection provides our notations and assumptions,
and some preliminaries results that will be used in the remainder of this paper. The proximal
subgradient splitting method and its weak convergence are analyzed by choosing different stepsizes
in Section 2. Finally, Section 3 gives some concluding remarks.

1.1 Assumptions and Preliminaries

In this section, we present our assumptions, a classical definition and some results needed for the
convergence analysis of the proposed method.

We begin reminded some definitions and notation used in this paper, which is standard and
follows [3, 38]. Throughout this paper, we write p := q to indicate that p is defined to be equal to
q. The inner product in H is denoted by ⟨·, ·⟩, and the norm induced by this inner product, by ∥ · ∥,
i.e., ∥x∥ :=

√
⟨x, x⟩ for all x ∈ H. We write N for the nonnegative integers {0, 1, 2, . . .} and the

extended-real number system is R̄ := R ∪ {+∞}. The closed ball centered at x ∈ H with radius
ρ > 0 will be denoted by B[x; ρ], i.e., B[x; ρ] := {y ∈ H : ∥y− x∥ ≤ ρ}. The domain of any function
h : H → R̄, denoted by dom(h), is defined as dom(h) := {x ∈ H : h(x) < +∞}. The optimal value
of problem (1) will be denoted by s∗ := inf{(f + g)(x) : x ∈ H}. Finally, ℓ1(N) denotes the set of
summable sequences in [0,+∞).
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Throughout this paper we assume the following:

A1. ∂f is bounded on bounded sets on the domain of g, i.e., ∃ ζ > 0 such that ∂f(x) ⊆ B[0; ζ] for
all x ∈ V , where V is any bounded subset of dom(g).

A2. ∂g has bounded elements on the domain of g, i.e., ∃ ρ > 0 such that ∂g(x) ∩ B[0; ρ] ̸= ∅ for
all x ∈ dom(g).

In connection with Assumption A1, we recall that ∂f is locally bounded on its open domain. In
finite dimension spaces, this result implies that A1 always holds. Furthermore, the boundedness
of the subgradients is crucial for the convergence analysis of many classical subgradient methods
in Hilbert spaces and it has been widely considered in the literature; see, for instance, [1, 7, 8, 35].
Regarding to AssumptionA2, we emphasize that it holds trivially for important instance of problem
(1), e.g., problems (2) and (3), or when dom(g) is a bounded set or when H is a finite dimensional
space. Note that Assumption A2 even allows instances where ∂g is an unbounded set as is the
particular case when g is the indicator function. It is an existence condition, which is in general
weaker than A1.

Now we recall the definition of the quasi-Féjer convergence.

Definition 1.1. We say that the sequence
(
xk
)
k∈N is quasi-Fejér convergent to a nonempty subset

S of H iff ∀x ∈ S, ∃(ϵk)k∈N ∈ ℓ1(N) such that ∥xk+1 − x∥2 ≤ ∥xk − x∥2 + ϵk, for all k ∈ N.

This definition, originated in [20], has been elaborated further in [15, 25]. In the following we
present two well-known fact for quasi-Fejér convergent sequences.

Fact 1.1. If the sequence
(
xk
)
k∈N is quasi-Fejér convergent to S, then

(a) the sequence
(
xk
)
k∈N is bounded and

(b)
(
xk
)
k∈N is weakly convergent iff all weak accumulation points of

(
xk
)
k∈N belong to S.

Proof. Item (a) follows from Proposition 3.3(i) of [15], and Item (b) follows from Theorem 3.8
of [15].

2 The Proximal Subgradient Splitting Method

In this section we propose the proximal subgradient splitting method extending the classical subgra-
dient iteration. We prove that the sequence of point generated by the proposed method converges
weakly to a solution of (1) using different ways to choose the stepsizes.

The method formally is stated as follows:

Proximal Subgradient Splitting Method (PSS Method)

Initialization Step. Take x0 ∈ dom(g).

Iterative Step. Set

xk+1 = proxαkg

(
xk − αku

k
)
, (6)

where uk ∈ ∂f(xk).

Stop Criteria. If xk+1 = xk, then stop.
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If PSS Method stops at step k, then xk = proxαkg

(
xk − αku

k
)
with uk ∈ ∂f(xk), implying that

xk is solution of problem (1). Then, from now on we assume that PSS Method generates an
infinite sequence

(
xk
)
k∈N. Moreover, it follows direct from (6) that the sequence

(
xk
)
k∈N belongs

to dom(g).

In the following we prove a crucial property of the iterates generated by PSS Method.

Lemma 2.1. Let x ∈ dom(g). Then, for all k ∈ N,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 2αk

[
(f + g)(x)− (f + g)(xk)

]
+ α2

k∥uk + wk∥2,

where wk ∈ ∂g(xk) is arbitrary.

Proof. Take any x ∈ dom(g). Note that (5) and (6) imply that wk+1 :=
xk − xk+1

αk
− uk, with

uk ∈ ∂f(xk) as defined by PSS Method, belongs to ∂g(xk+1). Then,

α2
k∥uk + wk+1∥2 + ∥xk − x∥2 − ∥xk+1 − x∥2 = ∥xk+1 − xk∥2 + ∥xk − x∥2 − ∥xk+1 − x∥2

= 2⟨xk − xk+1, xk − x⟩ = 2αk⟨uk, xk − x⟩+ 2⟨xk − xk+1 − αku
k, xk − x⟩

= 2αk⟨uk, xk − x⟩+ 2αk

⟨
xk − xk+1

αk
− uk, xk+1 − x

⟩
+ 2αk

⟨
xk − xk+1

αk
− uk, xk − xk+1

⟩
= 2αk⟨uk, xk − x⟩+ 2αk

⟨
xk − xk+1

αk
− uk, xk+1 − x

⟩
+ 2∥xk − xk+1∥2 − 2αk⟨uk, xk − xk+1⟩.

Now using again that
xk − xk+1

αk
− uk = wk+1 ∈ ∂g(xk+1) and the convexity of f and g, we obtain

2⟨xk − xk+1, xk − x⟩ ≥ 2αk

[
f(xk)− f(x) + g(xk+1)− g(x) + ⟨uk, xk+1 − xk⟩

]
+ 2∥xk − xk+1∥2

= 2αk

[
(f + g)(xk)− (f + g)(x) + g(xk+1)− g(xk) + ⟨uk, xk+1 − xk⟩

]
+ 2∥xk − xk+1∥2

≥ 2αk

[
(f + g)(xk)− (f + g)(x) + ⟨wk + uk, xk+1 − xk⟩

]
+ 2α2

k∥uk + wk+1∥2,

for any wk ∈ ∂g(xk). We thus have shown that

∥xk+1 − x∥2 ≤∥xk − x∥2 + 2αk

[
(f + g)(x)− (f + g)(xk)

]
+ 2α2

k⟨wk + uk, uk + wk+1⟩ − α2
k∥uk + wk+1∥2

= ∥xk − x∥2 + 2αk

[
(f + g)(x)− (f + g)(xk)

]
+ α2

k∥uk + wk∥2.

Note that wk ∈ ∂g(xk) is arbitrary and the result follows.

Since the subgradient methods are not a descent methods, like the proposed method here, it is
common to keep track of the best point found so far, i.e., the one with smallest function value of
the iterates. At each step, we set it recursively as (f + g)0best := (f + g)(x0) and

(f + g)kbest := min
{
(f + g)k−1

best, (f + g)(xk)
}
, (7)

for all k. Since
(
(f + g)kbest

)
k∈N is a decreasing sequence, it has a limit (which can be −∞).

When the function f is differentiable and its gradient Lipschitz continuous, it is possible to prove
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the complexity of the iterates generated by PSS Method; see [32]. In our instance (f is not
necessarily differentiable) we expect, of course, slower convergence.

Next we present a convergence rate result for the sequence of the best functional values(
(f + g)kbest

)
k∈N to s∗ = inf{(f + g)(x) : x ∈ H}.

Lemma 2.2. Let
(
(f + g)kbest

)
k∈N be the sequence defined by (7). If S∗ ̸= ∅, then, for all k ∈ N,

(f + g)kbest − s∗ ≤
[dist(x0, S∗)]

2 + Ck
∑k

i=0 α
2
i

2
∑k

i=0 αi

,

where Ck := max
{
∥ui + wi∥2 : 0 ≤ i ≤ k

}
with wi ∈ ∂g(xi) (i = 0, . . . , k) are arbitrary.

Proof. Define x∗ := PS∗(x
0). Note that x∗ exists because S∗ is a nonempty closed and convex set

of H. Using Lemma 2.5, with x∗ ∈ S∗, we get

∥xk+1 − x∗∥2 ≤∥xk − x∗∥2 + 2αk

[
s∗ − (f + g)(xk)

]
+ α2

k∥uk + wk∥2

≤∥x0 − x∗∥2 + 2

k∑
i=0

αi

[
s∗ − (f + g)(xi)

]
+ Ck

k∑
i=0

α2
i (8)

≤ [dist(x0, S∗)]
2 + 2

[
s∗ − (f + g)kbest

] k∑
i=0

αi + Ck

k∑
i=0

α2
i ,

where (f + g)kbest is defined by (7) and the result follows after simple algebra.

Next we establish the rate of convergence of the ergodic sequence
(
x̄k
)
k∈N of

(
xk
)
k∈N, which is

defined recursively as x̄0 = x0 and given σ0 = α0 and σk = σk−1 + αk, we define

x̄k =

(
1− αk

σk

)
x̄k−1 +

αk

σk
xk.

After easy induction, we have σk =
∑k

i=0 αi and

x̄k =
1

σk

k∑
i=0

αi x
i, (9)

for all k ∈ N.
The following result is very similar to Lemma 2.2, now over the ergodic sequence.

Lemma 2.3. Let
(
x̄k
)
k∈N be the ergodic sequence defined by (9). If S∗ ̸= ∅, then

(f + g)(x̄k)− s∗ ≤
[dist(x0, S∗)]

2 + Ck
∑k

i=0 α
2
i

2
∑k

i=0 αi

,

where Ck = max
{
∥ui + wi∥2 : 0 ≤ i ≤ k

}
with wi ∈ ∂g(xi) (i = 0, . . . , k) are arbitrary.
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Proof. Repeating the proof of Lemma 2.2 until Equation (8) and after dividing by σk :=
∑k

i=0 αi,
we get

k∑
i=0

αi

σk

[
(f + g)(xi)− s∗

]
≤ 1

2σk

(
[dist(x0, S∗)]

2 − ∥xk+1 − x∗∥2
)
+

Ck

2σk

k∑
i=0

α2
i

≤ 1

2σk

(
[dist(x0, S∗)]

2 + Ck

k∑
i=0

α2
i

)
. (10)

Using the convexity of f + g and (9) in the above inequality (10), the result follows.

If we consider constant stepsizes, i.e., αk = α for all k ∈ N, then the optimal rate is obtained

when α = dist(x0,S∗)√
Ck

· 1√
k+1

from minimizing the right part of Lemmas 2.2 and 2.3. Our focus on

constant stepsizes is motivated by the fact that we are interested in quantifying the progress of the
proposed method in finite number of iterations to archiving an approximate solution.

Corollary 2.4. Let
(
xk
)
k∈N be the sequence generated by PSS Method with the stepsizes αk

constant equal to α,
(
(f + g)kbest

)
k∈N be the sequence defined by (7) and x̄k be the ergodic sequence

as (9). Then, the iteration attains the optimal rate at α = α∗ := dist(x0,S∗)√
Ck

· 1√
k+1

, i.e., for all

k ∈ N,

(f + g)kbest − s∗ ≤
[dist(x0, S∗)]

2 + α2(k + 1)Ck

2(k + 1)α
≤ dist(x0, S∗) ·

√
Ck√

k + 1

and

(f + g)(x̄k)− s∗ ≤
[dist(x0, S∗)]

2 + α2(k + 1)Ck

2(k + 1)α
≤ dist(x0, S∗) ·

√
Ck√

k + 1
,

where Ck = max
{
∥ui + wi∥2 : 0 ≤ i ≤ k

}
with wi ∈ ∂g(xi) (i = 0, . . . , k) are arbitrary.

Our analysis showed that the expected error of the iterates generated by PSS Method with
constant stepsizes after k iterations is O

(
(k + 1)−1/2

)
. Hence, we can search an ε-solution of

problem (1) with O
(
ε−2
)
iterations. Of course, this is worse than the rate O(k−1) and O

(
ε−1
)

iterations of the proximal forward-backward iteration for the differentiable and convex f with
Lipschitz continuous gradient; see, for instance, [32].

2.1 Exogenous stepsizes

In this subsection we analyze the convergence of PSS Method using exogenous stepsizes, i.e. the

positive exogenous sequence of stepsizes (αk)k∈N satisfies that αk =
βk
ηk

where ηk := max{1, ∥uk∥}
for all k, and

∞∑
k=0

β2
k < +∞ and

∞∑
k=0

βk = +∞. (11)

We begin with a useful consequence of Lemma 2.1.

Corollary 2.5. Let x ∈ dom(g). Then, for all k ∈ N,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 2
βk
ηk

[
(f + g)(x)− (f + g)(xk)

]
+
(
1 + 2ρ+ ρ2

)
β2
k,

where ρ > 0 as Assumption A2.
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Proof. The result follows after note that ηk ≥ ∥uk∥, ηk ≥ 1 for all k ∈ N and as consequence

∥uk + wk∥2

η2k
=

∥uk∥2

η2k
+ 2

∥uk∥∥wk∥
η2k

+
∥wk∥2

η2k
≤ 1 + 2ρ+ ρ2,

since wk ∈ ∂g(xk) is arbitrary, in view of Assumption A2 we can assume that ∥wk∥ ≤ ρ for all
k ∈ N.

Now we define the auxiliary set

Slev :=
{
x ∈ dom(g) : (f + g)(x) ≤ (f + g)(xk), ∀k ∈ N

}
. (12)

When the solution set of problem (1) is nonempty, Slev ̸= ∅ because S∗ ⊆ Slev. Now, we prove the
main result of this subsection in the following theorem.

Theorem 2.6. Let
(
xk
)
k∈N be the sequence generated by PSS Method with exogenous stepesizes.

(a) If exists x̄ ∈ Slev, then:

(i) The sequence
(
xk
)
k∈N is quasi-Fejér convergent to

Lf+g(x̄) := {x ∈ dom(g) : (f + g)(x) ≤ (f + g)(x̄)} .

(ii) limk→∞ (f + g)(xk) = (f + g)(x̄).

(iii) The sequence
(
xk
)
k∈N is weakly convergent to some x̃ ∈ Lf+g(x̄).

(b) lim infk→∞(f + g)(xk) = infx∈H(f + g)(x) = s∗ (possibly s∗ = −∞).

(c) If S∗ ̸= ∅, then the sequence
(
xk
)
k∈N converges weakly to some x̄ ∈ S∗.

(d) If S∗ = ∅, then
(
xk
)
k∈N is unbounded.

Proof.

(a) By assumption there exists x̄ ∈ Slev, i.e., (f + g)(x̄) ≤ (f + g)(xk), for all k ∈ N.

(i) To show that
(
xk
)
k∈N is quasi-Fejér convergent to Lf+g(x̄) (which is nonempty because x̄ ∈

Lf+g(x̄)), we use Corollary 2.5, for any x ∈ Lf+g(x̄) ⊆ dom(g), establishing that ∥xk+1 − x∥2 ≤
∥xk − x∥2 + (1 + 2ρ+ ρ2)β2

k, for all k ∈ N. Thus,
(
xk
)
k∈N is quasi-Fejér convergent to Lf+g(x̄).

(ii) The sequence
(
xk
)
k∈N is bounded from Fact 1.1(a), and hence it has accumulation points. To

prove that
lim
k→∞

(f + g)(xk) = (f + g)(x̄), (13)

we use Corollary 2.5, with x = x̄ ∈ Lf+g(x̄) ⊆ dom(g), getting

βk

[
(f + g)(xk)− (f + g)(x̄)

]
≤ 1

2
(∥xk − x̄∥2 − ∥xk+1 − x̄∥2) + 2(1 + 2ρ+ ρ2)β2

k.

Summing, from k = 0 to m, the above inequality, we have

m∑
k=0

βk

[
(f + g)(xk)− (f + g)(x̄)

]
≤ 1

2
(∥x0 − x̄∥2 − ∥xm+1 − x̄∥2) + 2(1 + 2ρ+ ρ2)

m∑
k=0

β2
k,
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and taking limit, when m goes to ∞,

∞∑
k=0

βk

[
(f + g)(xk)− (f + g)(x̄)

]
< +∞. (14)

Then, (14) together with (11) implies that there exists a subsequence
(
(f + g)(xik)

)
k∈N of(

(f + g)(xk)
)
k∈N such that

lim inf
k→∞

[
(f + g)(xik)− (f + g)(x̄)

]
= 0. (15)

Indeed, if (15) does not hold, then there exists σ > 0 and k ≥ k̃, such that (f+g)(xk)−(f+g)(x̄) ≥ σ
and using (14), we get

+∞ >
∞∑
k=k̃

βk

[
(f + g)(xk)− (f + g)(x̄)

]
≥ σ

∞∑
k=k̃

βk,

in contradiction with (11). Also, define φk := (f + g)(xk) − (f + g)(x̄), which is positive for all k
because x̄ ∈ Slev. Then, for any uk ∈ ∂g(xk) and wk ∈ ∂g(xk), we get

φk − φk+1 = (f + g)(xk)− (f + g)(xk+1) ≤ ⟨uk + wk, xk − xk+1⟩
≤ ∥uk + wk∥∥xk − xk+1∥ ≤ (ζ + ρ)∥xk − xk+1∥, (16)

where ζ > 0 such that ∥uk∥ ≤ ζ, for all k ∈ N (ζ exists in virtue of the boundedness of
(
xk
)
k∈N

and Assumption A1) and ∥wk∥ ≤ ρ, for all k ∈ N (ρ exists because wk ∈ ∂g(xk) are arbitrary and

Assumption A2). Using Corollary 2.5, with x = xk, we have ∥xk − xk+1∥ ≤
√

1 + 2ρ+ ρ2 · βk,
which together with (16) implies that

φk − φk+1 ≤
√

1 + 2ρ+ ρ2 · (ζ + ρ)βk := ρ̄βk (17)

for all k ∈ N. From (15), there exists a subsequence (φik)k∈N of (φk)k∈N such that limk→∞ φik = 0.
If the claim given in (13) does not hold, then there exists some δ > 0 and a subsequence (φℓk)k∈N
of (φk)k∈N, such that φℓk ≥ δ for all k ∈ N. Thus, we can construct a third subsequence (φjk)k∈N
of (φk)k∈N, where the indices jk are chosen in the following way:

j0 := min{m ≥ 0 | φm ≥ δ},

j2k+1 := min{m ≥ j2k | φm ≤ δ/2},

j2k+2 := min{m ≥ j2k+1 | φm ≥ δ},

for each k. The existence of the subsequences (φik)k∈N, (φℓk)k∈N of (φk)k∈N, guarantees that the
subsequence (φjk)k∈N of (φk)k∈N is well-defined for all k ≥ 0. It follows from the definition of jk
that

φm ≥ δ for j2k ≤ m ≤ j2k+1 − 1 (18)

φm ≤ δ

2
for j2k+1 ≤ m ≤ j2k+2 − 1

for all k, and hence

φj2k − φj2k+1
≥ δ

2
, (19)
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for all k ∈ N. In view of (14) and recall that φk = (f + g)(xk)− (f + g)(x̄) ≥ 0 for all k ∈ N,

+∞ >
∞∑
k=0

βkφk ≥
∞∑
k=0

j2k+1−1∑
m=j2k

βmφm ≥ δ

2

∞∑
k=0

j2k+1−1∑
m=j2k

βm

=
δ

2ρ̄

∞∑
k=0

j2k+1−1∑
m=j2k

ρ̄βm ≥ δ

2ρ̄

∞∑
k=0

j2k+1−1∑
m=j2k

(φm − φm+1) =
δ

2ρ̄

∞∑
k=0

(φj2k − φj2k+1
)

≥ δ

2ρ̄

∞∑
k=0

δ

2
= +∞,

where we have used (18) in the second inequality and (17) in the third inequality and (19) in the
last one. Thus, lim

k→∞
(f + g)(xk) = (f + g)(x̄), establishing (ii).

(iii) Let x̃ a weak accumulation point of
(
xk
)
k∈N, which exists by Item (a)(i) and Fact 1.1(i). From

now on, we denote
(
xik
)
k∈N any subsequence of

(
xk
)
k∈N converging weakly to x̃. Since f + g is

weakly lower semicontinuous and using (13), we get

(f + g)(x̃) ≤ lim inf
k→∞

(f + g)(xik) = lim
k→∞

(f + g)(xk) = (f + g)(x̄),

implying that (f + g)(x̃) ≤ (f + g)(x̄) and thus x̃ ∈ Lf+g(x̄). As consequence, all accumulation
points of

(
xk
)
k∈N belong to Lf+g(x̄) and since

(
xk
)
k∈N is quasi-Fejér convergent to Lf+g(x̄), we

get that
(
xk
)
k∈N converges to x̃ ∈ Lf+g(x̄) from Fact 1.1(b).

(b) Since
(
xk
)
k∈N ⊂ dom(g), we get s∗ ≤ lim infk→∞(f + g)(xk). Suppose that s∗ < lim infk→∞(f +

g)(xk). Hence, there exists x̂ such that

(f + g)(x̂) < lim inf
k→∞

(f + g)(xk). (20)

It follows from (20) that there exists k̄ ∈ N such that (f +g)(x̂) ≤ (f +g)(xk) for all k ≥ k̄. Since k̄
is finite we can assume without loss of generality that (f + g)(x̂) ≤ (f + g)(xk) for all k ∈ N. Using
the definition of Slev, given in (12), we have that x̂ ∈ Slev. By Item (a)(ii) limk→∞(f + g)(xk) =
(f + g)(x̂), in contradiction with (20). Establishing the result.

(c) Since S∗ ̸= ∅, take x∗ ∈ S∗ and as consequence, Lf+g(x∗) = S∗. Since
(
xk
)
k∈N ⊂ dom(g), we

get (f + g)(x∗) ≤ (f + g)(xk) for all k ∈ N implying that x∗ ∈ Slev. Applying Item (a)(iii), with
x̄ = x∗, we get that

(
xk
)
k∈N converges weakly to some x̃ ∈ S∗.

(d) Assume that S∗ is empty but
(
xk
)
k∈N is bounded. Let

(
xℓk
)
k∈N be a subsequence of

(
xk
)
k∈N

such that limk→∞(f + g)(xℓk) = lim infk→∞(f + g)(xk). Since
(
xℓk
)
k∈N is bounded, without loss

of generality (i.e. refining
(
xℓk
)
k∈N if necessary), we may assume that

(
xℓk
)
k∈N converges weakly

to some x̄ ∈ dom(g). By the weak lower semicontinuity of f + g on dom(g),

(f + g)(x̄) ≤ lim inf
k→∞

(f + g)(xℓk) = lim
k→∞

(f + g)(xℓk) = lim inf
k→∞

(f + g)(xk) = s∗, (21)

using Item (b) in the last equality. By (21), x̄ ∈ S∗, in contradiction with the hypothesis and the
result follows.
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For exogenous stepsizes, Theorem 2.6 guarantees the convergence of
(
(f + g)(xk)

)
k∈N to the

optimal value of problem (1), i.e., lim infk→∞(f + g)(xk) = s∗, implying the convergence of(
(f + g)kbest

)
k∈N, defined in (7), to s∗. It is important to say that in the proof of the above crucial

result, we have used a similar idea recently presented in [6] for a different instance.

In the following we present a direct consequence of Lemmas 2.2 and 2.3, when the stepsizes are
given by (11).

Corollary 2.7. Let
(
x̄k
)
k∈N be the ergodic sequence defined by (9) and (βk)k∈N as (11). If S∗ ̸= ∅,

then, for all k ∈ N,

(f + g)kbest − s∗ ≤ ζ
[dist(x0, S∗)]

2 + (1 + 2ρ+ ρ2)
∑k

i=0 β
2
i

2
∑k

i=0 βi

and

(f + g)(x̄k)− s∗ ≤ ζ
[dist(x0, S∗)]

2 + (1 + 2ρ+ ρ2)
∑k

i=0 β
2
i

2
∑k

i=0 βi
,

where ζ > 0 and ρ > 0 are as Assumptions A1 and A2, respectively.

The above corollary shows that if we assume existence of solutions, the expected error of
the iterates generated by PSS Method with the exogenous stepsizes (11) after k iterations is

O
(
(
∑k

i=0 βi)
−1
)
. Since (βk)k∈N satisfies (11) the best performance of the iteration (in term of

functional values) is archived for example taking βk ∼= 1/kr with r bigger than 1/2, but near of this
value, for all k.

2.2 Polyak stepsizes

In this subsection we analyze the convergence of PSS Method using Polyak stepsizes, i.e. the
positive exogenous sequence of stepsizes (αk)k∈N satisfies that having chose any wk ∈ ∂g(xk) and
denoted ρk := ∥wk∥ for all k ∈ N. Then define, for all k ∈ N,

αk = γk
(f + g)(xk)− sk

∥uk∥2 + 2ρk∥uk∥+ ρ2k
, (22)

where 0 < γ ≤ γk ≤ 2 − γ and assume that sk a monotone decreasing variable target value
approximating s∗ := inf{(f + g)(x) : x ∈ H} is available, satisfying that sk ≤ (f + g)(xk) for
all k ∈ N. When s∗ is known, the simplest variant of the stepsizes proposed in (22) is obtained
selecting the stepsizes

αk = γk
(f + g)(xk)− s∗

∥uk∥2 + 2ρk∥uk∥+ ρ2k
, (23)

for all k ∈ N. Unfortunately, for finding an optimal solution, scheme (23) requires prior knowledge
of the optimal objective function value s∗. As s∗ is usually unknown, we prefer to do our analysis
over (22), replacing it by the variable target value sk. When g is the indicator function of a closed
and convex set a further discussion about how to choose sk has been presented in the literature for
problems where a good upper or lower bound of the optimal objective function value is available;
see, for instance, [24, 27,36,38].

Now we present a direct consequence of Lemma 2.1.
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Corollary 2.8. Suppose that limk→∞ sk = s̃ ≥ s∗ and let any x ∈ Lf+g(s̃). Then,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − γ(2− γ)

[
sk − (f + g)(xk)

]2
∥uk∥2 + 2ρk∥uk∥+ ρ2k

,

for all k ∈ N.

Proof. Take x ∈ Lf+g(s̃) := {x ∈ dom(g) : (f + g)(x) ≤ s̃}. Since (sk)k∈N is a monotone decreas-
ing sequence convergent to s̃, which is below to the functional values iterates,

(f + g)(xk) ≥ sk ≥ s̃ ≥ (f + g)(x), ∀x ∈ Lf+g(s̃), (24)

for all k ∈ N. Then, applying Lemma 2.1 and using (24), we get, for all k ∈ N,

∥xk+1 − x∥2 ≤∥xk − x∥2 − 2γk

[
sk − (f + g)(xk)

] [
(f + g)(x)− (f + g)(xk)

]
∥uk∥2 + 2ρk∥uk∥+ ρ2k

+ γ2k

[
sk − (f + g)(xk)

]2
∥uk∥2 + 2ρk∥uk∥+ ρ2k

≤∥xk − x∥2 − γk(2− γk)

[
sk − (f + g)(xk)

]2
∥uk∥2 + 2ρk∥uk∥+ ρ2k

≤∥xk − x∥2 − γ(2− γ)

[
sk − (f + g)(xk)

]2
∥uk∥2 + 2ρk∥uk∥+ ρ2k

, (25)

where we used that x ∈ Lf+g(s̃) and (24) in the second inequality. The result follows from (25).

Now, we prove the first main result of this subsection in the following theorem.

Theorem 2.9. Let
(
xk
)
k∈N the sequence generated by PSS Method with αk given by (22). If

limk→∞ sk = s̃ ≥ s∗ and Lf+g(s̃) ̸= ∅, then

(a)
(
xk
)
k∈N is quasi-Fejér convergent to Lf+g(s̃).

(b) limk→∞
[
(f + g)(xk)− sk

]
= 0.

(c)
(
xk
)
k∈N is weakly convergent to some x̃ ∈ Lf+g(s̃).

Proof.

(a) It is direct consequence of Corollary 2.8.

(b) By Item (a),
(
xk
)
k∈N is bounded. Using Corollary 2.8, we get, for any x ∈ Lf+g(s̃),

γ(2− γ)
[
sk − (f + g)(xk)

]2
≤
(
∥uk∥2 + 2ρk∥uk∥+ ρ2k

) [
∥xk − x∥2 − ∥xk+1 − x∥2

]
≤
(
ζ2 + 2ρζ + ρ2

) [
∥xk − x∥2 − ∥xk+1 − x∥2

]
:= ρ̂

[
∥xk − x∥2 − ∥xk+1 − x∥2

]
, (26)
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where the last inequality following from Assumptions A1 and A2 (∥uk∥ ≤ ζ and ρk = ∥wk∥ ≤ ρ
for all k ∈ N). Summing (26), over k = 0 to m, we obtain

γ(2− γ)

m∑
k=0

[
sk − (f + g)(xk)

]2
≤ ρ̂

[
∥x0 − x∥2 − ∥xm+1 − x∥2

]
≤ ρ̂∥x0 − x∥2. (27)

Taking limit when m goes to ∞, we get the desired result.

(c) From Item (b) if s̃ = limk→∞ sk, then limk→∞ (f + g)(xk) = s̃. Let x̃ a weak accumulation
point of

(
xk
)
k∈N, which exists by the boundedness of

(
xk
)
k∈N direct consequence of Item (a). From

now on, we denote
(
xℓk
)
k∈N any subsequence of

(
xk
)
k∈N converging weakly to x̃. Since f + g is

weakly lower semicontinuous, we get (f+g)(x̃) ≤ lim infk→∞(f+g)(xℓk) = limk→∞(f+g)(xk) = s̃,
implying that (f + g)(x̃) ≤ s̃ and thus x̃ ∈ Lf+g(s̃). The result follows from Fact 1.1(b) and Item
(a).

Before the analysis of the inconsistent case when s̃ = limk→∞ sk is strictly less than s∗ =
inf{(f+g)(x) : x ∈ H}, we present a useful corollary direct consequence of Theorem 2.9, which will
be used for the analysis of this case, s̃ < s∗. In the next corollary, we show the special case when
the optimal value s∗ is known and finite and the stepsize αk is defined by (23), i.e., for all k ∈ N,

αk = γk
(f + g)(xk)− s∗

∥uk∥2 + 2ρk∥uk∥+ ρ2k
,

where 0 < γ ≤ γk ≤ 2− γ.

Corollary 2.10. Let
(
xk
)
k∈N the sequence generated by PSS Method with αk given by (23), and

S∗ ̸= ∅. Then,

(a)
(
xk
)
k∈N is quasi-Fejér convergent to S∗.

(b) limk→∞ (f + g)(xk) = s∗.

(c)
(
xk
)
k∈N is weakly convergent to some x̃ ∈ S∗.

(d) limk→∞
√
k + 1 ·

[
(f + g)(xk)− s∗

]
= 0.

Proof. The items (a) to (c) are direct consequence of Theorem 2.9. The proof of Item (d) is by
contradiction. Assume that limk→∞

√
k + 1 ·

[
(f + g)(xk)− s∗

]
= 2δ, for some δ > 0. Then, for k̄

large enough, we have (f + g)(xk)− s∗ ≥ δ√
k+1

for all k ≥ k̄. Thus,

∞∑
k=k̄

[
(f + g)(xk)− s∗

]2
≥ δ2

∞∑
k=k̄

1

k + 1
= +∞. (28)

On the other hand, by substituting the expression for the stepsize αk given by (23), in (26) (sk = s∗
for all k ∈ N), we get, for all k ≥ k̄,

∞∑
k=k̄

[
(f + g)(xk)− s∗

]2
< +∞,

which contradicts (28). Establishing the result.
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Next a result on the complexity of the iterates

Lemma 2.11. Let
(
xk
)
k∈N the sequence generated by PSS Method with αk, given by (22). If

limk→∞ sk = s̃ ≥ s∗ and Lf+g(s̃) ̸= ∅, then, for all k ∈ N,

(f + g)kbest − s̃ ≤

√
Dk

γ(2− γ)
·
dist(x0,Lf+g(s̃))√

k + 1
,

where Dk := max
{
∥ui∥2 + 2ρi∥ui∥+ ρ2i : 1 ≤ i ≤ k

}
with ρi := ∥wi∥ and wi ∈ ∂g(xi) (i = 0, . . . , k)

are arbitrary. Moreover,
lim
k→∞

(f + g)kbest = s̃.

Proof. Using the proof of Theorem 2.9, with any x ∈ Lf+g(s̃), until (26), we obtain

(k + 1)
[
(f + g)kbest − s̃

]2
≤

k∑
i=0

[
(f + g)(xi)− sk

]2 ≤ Dk

γ(2− γ)

[
dist(x0,Lf+g(s̃))

]2
,

where Dk := max
{
∥ui∥2 + 2ρi∥ui∥+ ρ2i : 1 ≤ i ≤ k

}
with ρi = ∥wi∥ and wi ∈ ∂g(xi) (i = 0, . . . , k)

are arbitrary. After simple algebra the result follows.

Our analysis proved that the expected error of the iterates generated by PSS Method with the
Polyak stepsizes (22) after k iterations is O

(
(k + 1)−1/2

)
if we assume sk ≥ s∗ for all k ∈ N. Of

course, the result is weaker than Corollary 2.10(d), when sk = s∗ for all k ∈ N.
Now we are ready to prove the last main result of this subsection.

Theorem 2.12. Let
(
xk
)
k∈N the sequence generated by PSS Method with αk, given by (22). If

S∗ ̸= ∅ and limk→∞ sk = s̃ < s∗, then

lim
k→∞

(f + g)kbest = lim
k→∞

min
0≤i≤k

(f + g)(xi) ≤ s∗ +
2− γ

γ
(s∗ − s̃).

Proof. Suppose that (f + g)(xk) > s∗, otherwise the result holds trivially. It is clear that, for all
k ∈ N,

αk = γk
(f + g)(xk)− sk
(f + g)(xk)− s∗

(f + g)(xk)− s∗
∥uk∥2 + 2ρk∥uk∥+ ρ2k

:= γ̃k
(f + g)(xk)− s∗

∥uk∥2 + 2ρk∥uk∥+ ρ2k
,

where

γ ≤ γ̃k = γk
(f + g)(xk)− sk
(f + g)(xk)− s∗

,

which must be bigger than 2− γ for some k̄ ∈ N. Otherwise, if

γ̃k ≤ 2− γ (29)

for all k ∈ N, we can apply Corollary 2.10(b) for getting of limk→∞ (f + g)(xk) = s∗, implying that
γ̃k goes to +∞ (note that for all sufficiently large k, sk < s∗ ≤ (f + g)(xk), because s̃ < s∗), which
is a contradiction with (29). Thus, there exist k̄ and δ > 0 arbitrary such that

γk̄
(f + g)(xk̄)− sk̄
(f + g)(xk̄)− s∗

= γ̃k̄ > 2− δ.
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After simple algebra and using that sk̄ ≥ s̃, we get that

(f + g)(xk̄) < s∗ +
γk̄

2− δ − γk̄
(s∗ − s̃) ≤ s∗ +

2− γ

γ − δ
(s∗ − s̃),

since δ > 0 was arbitrary and the result follows.

Finally in the following corollary we summarize the behaviour of the limit of the sequence of(
(f + g)kbest

)
k∈N depending of the limit of s̃ = limk→∞ sk, which is direct consequence of Theo-

rem 2.12 and Lemma 2.11.

Corollary 2.13. Let
(
xk
)
k∈N the sequence generated by PSS Method with αk, given by (22). If

S∗ ̸= ∅ and limk→∞ sk = s̃, then

lim
k→∞

(f + g)kbest

 = s̃, if s̃ ≥ s∗

≤ s∗ +
2− γ

γ
(s∗ − s̃), if s̃ < s∗.

3 Final Remarks

In this work we dealt with the weak convergence of the new approach called the Proximal Sub-
gradient Splitting (PSS) Method for minimizing the sum of two nonsmooth and convex functions.
In the iteration of this method, neither the functions need be differentiable or finite in all H and,
therefote, a broad class of problems can be solved. PSS Method is very useful when the proximal
operator of f is complex to evaluate and its (sub)gradient is simple to compute.

As future research, we will investigate variations of our scheme for solving structured convex
optimization problems with the aim of finding new methods, like the coordinate gradient method,
which have been proposed, for instance, in [28, 33, 37] only for the differentiable case. We also
are looking to the incremental subgradient method [30] for problem (1), when f is the sum of a
large number of nonsmooth convex functions. The idea is to perform the subgradient iteration
incrementally, by sequentially taking steps along the subgradients of the component functions,
before the proximal step. This incremental approach has been very successful in solving large least
squares problems, and it has resulted in a much better practical rate of convergence with application
in the training of neural networks; see, for instance, [22].

On the other hand, it is important to say that the main drawback of subgradient iterations is their
rather slow convergence. However, subgradient methods are distinguished by their applicability,
simplicity and efficient use of memory, which is very important for large scale problems; especially
if the required accuracy for the solution is not too high; see, for instance, [31] and the references
therein. We also intend to study fast and variable metric versions of the proximal subgradient
splitting method proposed here to achieve better performance, like in the differentiable case; see
[19,34].

Finally, we hope that this study serves as a basis for future research on other more efficient
variants on the proximal subgradient iteration, like cutting plane method, ϵ-subgradients and bundle
variants, conjugate gradient method and nonsmooth quasi-Newton and Newton methods for solving
problem (1) and its variations.
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