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Abstract

In this paper, we generalize the classical extragradient algorithm for solving variational in-
equality problems by utilizing non-null normal vectors of the feasible set. In particular, two
conceptual algorithms are proposed and each of them has three different variants which are
related to modified extragradient algorithms.
Our analysis contains two main parts: The first part contains two different linesearches, one on
the boundary of the feasible set and the other one along the feasible direction. The linesearches
allow us to find suitable halfspaces containing the solution set of the problem. By using non-null
normal vectors of the feasible set, these linesearches can potentially accelerate the convergence.
If all normal vectors are chosen as zero, then some of these variants reduce to several well-known
projection methods proposed in the literature for solving the variational inequality problem. The
second part consists of three special projection steps, generating three sequences with different
interesting features.
Convergence analysis of both conceptual algorithms is established assuming existence of solu-
tions, continuity and a weaker condition than pseudomonotonicity on the operator. Examples,
on each variant, show that the modifications proposed here perform better than previous classi-
cal variants. These results suggest that our scheme may significantly improve the extragradient
variants.
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1 Introduction

In this work, we present a conditional extragradient algorithms for solving constrained variational
inequality problems. Given an operator T : dom(T ) ⊆ Rn → Rn and a nonempty closed and convex
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set C ⊂ dom(T ), the classical variational inequality problem is to

find x∗ ∈ C such that 〈T (x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (1)

The solution set of this problem will be denoted by S∗. Problem (1) unifies a broad range of
approaches in optimization, equilibrium problem, and related problems, and serves as a useful
computational framework in very diverse applications. Indeed, this problem has been well studied
and has numerous important applications in physics, engineering, economics and optimization
theory (see, e.g., [17, 19,24] and the references therein).

It is well-known that (1) is closely related with the so-called dual formulation problem of the
variational inequalities, written as

find x∗ ∈ C such that 〈T (x), x− x∗〉 ≥ 0, ∀x ∈ C. (2)

The solution set of problem (2) will be denoted by S0. Throughout this paper, our standing
assumptions are the following:

(A1) T is continuous on C.

(A2) Problem (1) has at-least one solution and all solutions of (1) solve the dual problem (2).

Note that assumption (A1) implies S0 ⊆ S∗ (see Lemma 2.16 below). So, the existence of solutions
of (2) implies that of (1). However, the reverse assertion needs generalized monotonicity assump-
tions. For example, if T is pseudomonotone then S∗ ⊆ S0 (see [27, Lemma 1]). With this results,
we note that (A2) is strictly weaker than pseudomonotonicity of T (see Example 1.1.3 of [26]).
Moreover, the assumptions S∗ 6= ∅ and the continuity of T are natural and classical in the liter-
ature for most of methods for solving (1). Assumption (A2) has been used in various algorithms
for solving problem (1) (see [27,28]).

1.1 Extragradient algorithm

In this paper we focus on projection-type algorithms for solving problem (1). Excellent surveys
of projection algorithms for solving variational inequality problems can be found in [16, 18, 26].
One of the most studied projection algorithms is the so-called Extragradient algorithm, which first
appeared in [29]. The projection methods for solving problem (1) necessarily have to perform
two projection steps onto the feasible set because the natural extension of the projected gradient
method (one projection and T = ∇f) fails in general for monotone operators (see, e.g., [5]). Thus,
an extra projection step is required in order to establish the convergence of the projection methods.

Next we describe a general version of the extragradient algorithm together with important strate-
gies for computing the stepsizes (see, e.g., [16, 26]).
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Algorithm 1.1 (Extragradient Algorithm) Given αk, βk, γk.

Step 0 (Initialization): Take x0 ∈ C.

Step 1 (Iterative Step): Compute

zk = xk − βkT (xk), (3a)

yk = αkPC(zk) + (1− αk)xk, (3b)

and xk+1 = PC
(
xk − γkT (yk)

)
. (3c)

Step 2 (Stopping Test): If xk+1 = xk, then stop. Otherwise, set k ← k+ 1 and go to Step 1.

We now describe some possible strategies to choose positive stepsizes αk, βk and γk in (3b), (3a)
and (3c), respectively.

(a) Constant stepsizes: βk = γk where 0 < β̌ ≤ βk ≤ β̂ < +∞ and αk = 1, ∀k ∈ N.

(b) Armijo-type linesearch on the boundary of the feasible set: Set σ > 0, and δ ∈ (0, 1). For each
k, take αk = 1 and βk = σ2−j(k) where j(k) := min

{
j ∈ N : ‖T (xk)− T (PC(zk,j))‖ ≤ δ

σ2−j
‖xk − PC(zk,j)‖2

}
,

and zk,j = xk − σ2−jT (xk).

(4)

In this approach, we take γk = βk, y
k = PC(xk − βkT (xk)) and γk =

〈T (yk), xk − yk〉
‖T (yk)‖2

, ∀k ∈ N.

(c) Armijo-type linesearch along the feasible direction: Set δ ∈ (0, 1), zk := xk − βkT (xk) with,
(βk)k∈N ⊂ [β̌, β̂] such that 0 < β̌ ≤ β̂ < +∞, and αk = 2−`(k) where `(k) := min

{
` ∈ N : 〈T (zk,`), xk − PC(zk)〉 ≥ δ

βk
‖xk − PC(zk)‖2

}
,

and zk,` = 2−`PC(zk) + (1− 2−`)xk.

(5)

Then, define yk = αkPC(zk) + (1− αk)xk and γk = 〈T (yk),xk−yk〉
‖T (yk)‖2 , ∀k ∈ N.

Below follow several comments explaining the differences between these strategies.

It has been proved in [29] that the extragradient algorithm with Strategy (a) is globally conver-
gent if T is monotone and Lipschitz continuous on C. The main difficulty of this strategy is the
necessity of choosing βk in (3a) satisfying 0 < βk ≤ β < 1/L where L is the Lipschitz constant of T
and when L is not available, the stepsizes have be take sufficiently small to ensures the convergence.

Strategy (b) was first studied in [25] under monotonicity and Lipschitz continuity of T . The Lip-
schitz continuity assumption was removed later in [21]. Note that this strategy requires computing
the projection onto C inside the inner loop of the Armijo-type linesearch (4). So, the possibility
of computing many projections for each iteration k makes Strategy (b) inefficient when explicit
formula for PC is not available.

Strategy (c) was presented in [22]. This strategy guarantees convergence by assuming only the
monotonicity of T and the existence of solutions of (1), and without assuming Lipschitz continuity
on T . This approach demands only one projection for each outer step k. In Strategies (b) and
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(c), T is evaluated at least twice and the projection is computed at least twice per iteration. The
resulting algorithm is applicable to the whole class of monotone variational inequalities. It has the
advantage of not requiring exogenous parameters. Furthermore, Strategies (b) and (c) occasionally
allow long steplength because they both exploit much the information available at each iteration.
Extragradient-type algorithms is currently a subject of intense research (see, e.g., [1,4,5,7,14,33,35]).
A special modification on Strategy (c) was presented in [28] where the monotonicity was replaced
by (A2). The main difference is that it performs `(k) := min

{
` ∈ N : 〈T (zk,`), xk − PC(zk)〉 ≥ δ〈T (xk), xk − PC(zk)〉

}
,

and zk,` = 2−`PC(zk) + (1− 2−`)xk,
(6)

instead of (5).

1.2 Proposed schemes

The main part of this work contains two conceptual algorithms, each of them with three variants.
Convergence analysis of both conceptual algorithms is established assuming weaker assumptions
than previous extragradient algorithms [8, 30].

The approach presented here is closely related to the extragradient algorithm in the above sub-
section and is based on combining, modifying and generalizing of several ideas contained in various
classical extragradient variants. Our scheme was inspired by the conditional subgradient method
proposed in [30], and it uses a similar idea of Algorithm 1.1 over Strategies (a), (b) and (c). The
example presented in Section 3 motives our scheme and shows that the variants proposed here may
perform better than previous classical variants.

Basically, our two conceptual algorithms contain two parts: The first has two different line-
searches: one on the boundary of the feasible set and the other along the feasible direction. These
linesearches allow us to find a suitable halfspace separating the current iteration and the solution
set. The second has three projection steps allowing several variants with different and interesting
features on the generated sequence. In this setting some of the proposed variants on the concep-
tual algorithms are related to the algorithms presented in [4, 22, 33]. An essential characteristic of
the conceptual algorithms is the convergence under very mild assumptions, like continuity of the
operator T (see (A1)), existence of solutions of (1), and assuming that all such solutions also solve
the dual variational inequality (2) (see (A2)). We would like to emphasize that this concept is less
restrictive than pseudomonotonicity of T and plays a central role in the convergence analysis of our
algorithms.

This work is organized as follows: The next section provides and reviews some preliminary
results and notations. In Section 3, we present an example where extragradient method with non-
null normal vectors can yield some advantages over the original version without normal vectors.
In Section 4, we provide the convergence analysis for extragradient method with non-null normal
vectors. Section 5 states two different linesearches, which will be used in the Conceptual Algorithms
presented in Sections 6 and 7. Each next section (6 and 7) contains three subsection with the
convergence analysis of the variants on the two proposed conceptual algorithms. Moreover, we
show some comparisons and advantages of our variants with examples in several part of this paper.
Finally, Section 8 gives some concluding remarks.
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2 Preliminary results

In this section, we present some notations, definitions and results needed for the convergence
analysis of the proposed methods. We begin reminded some basic notation and definitions used in
this paper, which is standard and follows [3]. Throughout this paper, we write p := q to indicate
that p is defined to be equal to q. The inner product in Rn is denoted by 〈·, ·〉, and the norm
induced by this inner product by ‖ · ‖, i.e., ‖x‖ :=

√
〈x, x〉 for all x ∈ Rn. We write N for

the nonnegative integers {0, 1, 2, . . .} and the extended-real number system is R̄ := R ∪ {+∞}.
The closed ball centered at x ∈ Rn with radius ρ > 0 will be denoted by B[x, ρ], i.e., B[x, ρ] :=
{y ∈ Rn : ‖y − x‖ ≤ ρ}. The domain of any function f : Rn → R̄, denoted by dom(f), is
defined as dom(f) := {x ∈ Rn : f(x) < +∞} and we say f is proper if dom(f) 6= ∅. For any
set G we denote by cl(G) and cone(G), respectively the closure topological and the conic hull
of G. Finally, let T : Rn ⇒ Rn be an operator. Then, the domain and the graph of T are
dom(T ) = {x ∈ Rn : T (x) 6= ∅} and Gph(T ) = {(x, u) ∈ Rn × Rn : u ∈ T (x)}. We continue with
the definition and some results on normal cone.

Definition 2.1 Let C be a subset of Rn and let u ∈ C. A vector u ∈ Rn is called a normal to C
at x if for all y ∈ C, 〈u, y − x〉 ≤ 0. The collection of all such normal u is called the normal cone
of C at x and is denoted by NC(x). If x /∈ C, we define NC(x) = ∅.

Note that in some special cases, the normal cone can be computed explicitly as showed below.

Example 2.2 (See [30]) If C is a polyhedral set, i.e., C = {x ∈ Rn : 〈ai, x〉 ≤ bi, i = 1, . . . ,m},
then

NC(x) = {d ∈ Rn : d =
m∑
i=1

λiai, ;λi(〈ai, x〉 − bi) = 0, λi ≥ 0, i = 1, . . . ,m}

for x ∈ C, and NC(x) = ∅ for x /∈ C.

Example 2.3 (See [10, Example 2.62]) Let C be a closed convex cone in Rn. Define C	 := {d ∈
Rn : 〈d, x〉 ≤ 0, ∀x ∈ C}. Then, NC(x) = C	 ∩ {x}⊥ = {d ∈ C	 : 〈d, x〉 = 0}, if x ∈ C and ∅ if
x /∈ C.

Example 2.4 (See [32, Theorem 6.14]) Let C = {x ∈ X : F (x) ∈ D} for closed sets X ⊂ Rm and
D ∈ Rm and C1 mapping F : Rn → Rm such that F (x) = (f1(x), f2(x), . . . , fm(x)). Assume that
x ∈ C satisfies the constraint qualification that:

the unique vector y = (y1, . . . , yn) ∈ ND(F (x)) for which

−
m∑
i=1

yi∇fi(x) ∈ NX(x) is y = (0, . . . , 0).

Then, NC(x) =

{
m∑
i=1

yi∇fi(x) + z : y ∈ ND(F (x)), z ∈ NX(x)

}
.

The normal cone can be seen as an operator, i.e., NC : C ⊂ Rn ⇒ Rn : x 7→ NC(x). Indeed,
recall that the indicator function of C is defined by δC(y) := 0, if y ∈ C and +∞, otherwise,
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and the classical convex subdifferential operator for a proper function f : Rn → R̄ is defined by
∂f : Rn ⇒ Rn : x 7→ ∂f(x) := {u ∈ Rn : f(y) ≥ f(x) + 〈u, y − x〉, ∀ y ∈ Rn}. Then, it is well-
known that the normal cone operator can be expressed as NC = ∂δC .

Example 2.5 (See [31, Theorem 23.7] and [10, Proposition 2.61]) Let f : Rn → R̄ be a proper
and convex function. Consider C = {x ∈ Rn : f(x) ≤ 0}. Suppose that there exists x such that
f(x) < 0 (Slater condition). Then,

NC(x) =


cl(cone(∂f(x))), if f(x) = 0;

0, if f(x) < 0;

∅, if f(x) > 0.

Fact 2.6 The normal cone operator for C, NC , is maximal monotone operator and its graph,
Gph(NC), is closed, i.e., for all sequences (xk, uk)k∈N ⊂ Gph(NC) that converges to (x, u), we have
(x, u) ∈ Gph(NC).

Proof. See [12, Proposition 4.2.1(ii)]. �

Recall that the orthogonal projection of x onto C, PC(x), is the unique point in C, such that
‖PC(x)−y‖ ≤ ‖x−y‖ for all y ∈ C. Now, we state some well-known facts on orthogonal projections.

Fact 2.7 For all x, y ∈ Rn and all z ∈ C the following hold:

(i) ‖PC(x)−PC(y)‖2 ≤ ‖x−y‖2−‖(x−PC(x))−
(
y−PC(y)

)
‖2. (a.k.a. firm nonexpansiveness).

(ii) 〈x− PC(x), z − PC(x)〉 ≤ 0.

(iii) Let x ∈ C, y ∈ Rn and z = PC(y), then 〈x− y, x− z〉 ≥ ‖x− z‖2.

Proof. (i) & (ii): See [37, Lemmas 1.1 and 1.2].

(iii): Using (ii), we have 〈x− y, x− z〉 = 〈x− z, x− z〉+ 〈x− z, z − y〉 ≥ ‖x− z‖2. �

Corollary 2.8 For all x, p ∈ Rn and α > 0, we have

x− PC(x− αp)
α

∈ p+NC(PC(x− αp)).

Proof. Let z = x− αp, then the conclusion follows from z − PC(z) ∈ NC(PC(z)). �

Next, we present some lemmas that are useful in the sequel.

Lemma 2.9 Let H ⊆ Rn be a closed halfspace and C ⊆ Rn such that H ∩C 6= ∅. Then, for every
x ∈ C, we have PH∩C(x) = PH∩C(PH(x)).

Proof. If x ∈ H, then x = PH∩C(x) = PH∩C(PH(x)). Suppose that x /∈ H. Fix any y ∈ C ∩H.
Since x ∈ C but x /∈ H, there exists γ ∈ [0, 1), such that x̃ = γx+(1−γ)y ∈ C∩bdH, where bdH is
the hyperplane boundary of H. So, (x̃−PH(x))⊥(x−PH(x)) and (PH∩C(x)−PH(x))⊥(x−PH(x)),
then

‖x̃− x‖2 = ‖x̃− PH(x)‖2 + ‖x− PH(x)‖2, (7)
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and
‖PH∩C(x)− x‖2 = ‖PH∩C(x)− PH(x)‖2 + ‖x− PH(x)‖2, (8)

respectively. Using (7) and (8), we get

‖y − PH(x)‖2 ≥ ‖x̃− x‖2 = ‖x̃− PH(x)‖2 + ‖PH(x)− x‖2 ≥ ‖x̃− PH(x)‖2.
= ‖x̃− x‖2 − ‖x− PH(x)‖2 ≥ ‖PH∩C(x)− x‖2 − ‖x− PH(x)‖2 = ‖PH∩C(x)− PH(x)‖2.

Thus, ‖y − PH(x)‖ ≥ ‖PH∩C(x) − PH(x)‖ for all y ∈ C ∩ H and as consequence, PH∩C(x) =
PC∩H(PH(x)). �

Lemma 2.10 Let S be a nonempty, closed and convex set. Let x0, x ∈ Rn. Assume that x0 /∈ S
and that S ⊆W (x) = {y ∈ Rn : 〈y−x, x0−x〉 ≤ 0}. Then, x ∈ B[12(x0 +x), 12ρ], where x = PS(x0)
and ρ = dist(x0, S).

Proof. Since S is convex and closed, x = PS(x0) and ρ = dist(x0, S) are well-defined. S ⊆ W (x)
implies that x = PS(x0) ∈W (x). Define v := 1

2(x0+x) and r := x0−v = 1
2(x0−x), then x−v = −r

and ‖r‖ = 1
2‖x

0 − x‖ = 1
2ρ. It follows that

0 ≥ 〈x− x, x0 − x〉 =
〈
x− v + v − x, x0 − v + v − x

〉
= 〈−r + (v − x), r + (v − x)〉 = ‖v − x‖2 − ‖r‖2.

The result then follows. �

We will continue defining the so-called Fejér convergence.

Definition 2.11 Let S be a nonempty subset of Rn. A sequence (xk)k∈N ⊂ Rn is said to be Fejér
convergent to S if and only if for all x ∈ S there exists k0 ∈ N such that ‖xk+1−x‖ ≤ ‖xk −x‖ for
all k ≥ k0.

This definition was introduced in [11] and has been elaborated further in [2,23]. The following are
useful properties of Fejér sequences.

Fact 2.12 If (xk)k∈N is Fejér convergent to S, then the following hold

(i) The sequence (xk)k∈N is bounded.

(ii) The sequence
(
‖xk − x‖

)
k∈N converges for all x ∈ S.

(iii) If an accumulation point x∗ belongs to S, then the sequence (xk)k∈N converges to x∗.

Proof. (i) and (ii): See [3, Proposition 5.4]. (iii): See [3, Theorem 5.5]. �

We recall the following well-known characterization of S∗ which will be used repeatedly.

Fact 2.13 The following statements are equivalent:

(i) x ∈ S∗.

(ii) −T (x) ∈ NC(x).
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(iii) There exists β > 0 such that x = PC(x− βT (x)).

Proof. See Proposition 1.5.8 of [16]. �

Proposition 2.14 Given T : dom(T ) ⊆ Rn → Rn and α > 0. If x = PC(x− α(T (x) + αu)), with
u ∈ NC(x), then x ∈ S∗, or equivalently, x = PC(x− βT (x)) for all β > 0.

Proof. It follows from Corollary 2.8 that 0 ∈ T (x) + αu + NC(x), which is implies that −T (x) ∈
NC(x). The conclusion is now immediate from Fact 2.13. �

Remark 2.15 It is quite easy to see that the reverse of Proposition 2.14 is not true in general.

Lemma 2.16 If T : dom(T ) ⊆ Rn → Rn is continuous, then S0 ⊆ S∗.

Proof. Assume that x ∈ {x ∈ C : 〈T (y), y − x〉 ≥ 0 ∀ y ∈ C}. Take y(α) = (1 − α)x + αy, y ∈ C
with α ∈ (0, 1). Since y(α) ∈ C and hence

0 ≤ 〈T (y(α)), y(α)− x〉 = 〈T ((1− α)x+ αy), (1− α)x+ αy − x〉
=α〈T ((1− α)x+ αy), y − x〉.

Dividing by α > 0, we get 0 ≤ 〈T ((1− α)x+ αy), y − x〉, and taking limits, when α goes to 0, we
obtain from the continuity of T that 〈T (x), y − x〉 ≥ 0, for all y ∈ C, i.e., x ∈ S∗. �

Lemma 2.17 For any (z, v) ∈ Gph(NC) define H(z, v) :=
{
y ∈ Rn : 〈T (z)+v, y−z〉 ≤ 0

}
. Then,

S∗ = S0 ⊆ H(z, v).

Proof. S∗ = S0 by Assumption (A2) and Lemma 2.16. Take x∗ ∈ S0, then 〈T (z), x∗ − z〉 ≤ 0 for
all z ∈ C. Since (z, v) ∈ Gph(NC), we have 〈v, x∗ − z〉 ≤ 0. Summing up these inequalities, we get
〈T (z) + v, x∗ − z〉 ≤ 0. Then, x∗ ∈ H(z, v). �

Now follow a direct consequence of the definition of S0 the solution set of the dual problem (2),
which from Lemma 2.17 coincides with S∗.

Lemma 2.18 If T : dom(T ) ⊆ Rn → Rn is continuous and Assumption (A2) holds, then S∗ is a
closed and convex set.

3 Motivation: An example

In this section, we present an elementary instance of problem (1), in which normal vectors of the
feasible set is beneficial.

Example 3.1 Let B := (b1, b2) ∈ R2, recall that the rotation with angle γ ∈ (0, π/2) around B,
given by

Rγ,B : R2 → R2 : x 7→
[

cos γ sin γ

− sin γ cos γ

]
(x−B) +B,
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is monotone and Lipschitz continuous with constant 1. We consider problem (1) in R2 with the
operator T := Rπ

2 ,B
− Id, where B := (12 , 1), and the feasible set

C :=
{

(x1, x2) ∈ R2 : x21 + x22 ≤ 1, x1 ≤ 0, x2 ≥ 0
}
.

The unique solution of this problem is x ≈ (−0.935, 0.355) (see Figure 1).

We set a starting point x0 = y0 = (0, 1) and a scalar β = 0.4. Now, we observe the performance of
the following two algorithms:

(a1) Algorithm 1.1 with Strategy (a) (constant stepsizes, i.e., ∀k ∈ N, γk = βk = β and
αk = 1), which generates the following sequences as follows:

∀k ∈ N :

{
zk = PC(yk − βT (yk)),

yk+1 = PC(yk − βT (zk)).

(a2) A modified Algorithm 1.1 with Strategy (a) involving unit normal vectors in both projec-
tion steps, which generates the following sequences as follows:

∀k ∈ N :

{
zk = PC(xk − β(T (xk) + uk)), where uk ∈ NC(xk), ‖uk‖ = 1,

xk+1 = PC(xk − β(T (zk) + vk)), where vk ∈ NC(zk), ‖vk‖ = 1.

Figure 1: Advantage by using non-null normal vectors.

The first five iterations of each algorithm are showed in Figure 1: Recall that (yk)k∈N (red) and
(xk)k∈N (blue) are the sequences generated by the algorithms presented above in (a1) and (a2),
respectively. The comparison suggests that normal vectors of the feasible set can help the extra-
gradient algorithm to improve considerably the convergence speed.
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4 The extragradient algorithm with normal vectors

Inspired by the previous section, we investigate the extragradient algorithm with constant stepsizes
involving normal vectors of the feasible set. In this section we assume that T is Lipschitz with
constant L and (A2) holds. The algorithm proposed in this section is related with Algorithm 1.1
over Strategy (a) (constant stepsizes). It is defined as:

Algorithm 4.1 (Conditional Extragradient Algorithm) Take (βk)k∈N ⊂ [β̌, β̂] such that 0 <
β̌ ≤ β̂ < 1/(L+ 1) and δ ∈ (0, 1).

Step 1 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test 1): If xk = PC(xk − βkT (xk)), i.e., xk ∈ S∗, then stop. Otherwise:

Step 2 (First Projection): Take uk ∈ NC(xk) such that

‖uk‖ ≤ δ‖xk − PC(xk − βk(T (xk) + uk))‖. (9)

zk = PC(xk − βk(T (xk) + uk)). (10)

Step 3 (Second Projection): Take vk ∈ NC(zk) such that

‖vk − uk‖ ≤ ‖xk − zk‖. (11)

xk+1 = PC(xk − βk(T (zk) + vk)). (12)

Step 4 (Stopping Test 2): If xk+1 = xk then stop. Otherwise, set k ← k+1 and go to Step 1.

Proposition 4.2 The following hold:

(i) If Algorithm 4.1 stops then xk ∈ S∗.

(ii) Algorithm 4.1 is well-defined.

Proof. (i): If the algorithm stops at Step 1 then Proposition 2.13 garantes the optimality of xk. If
xk = PC(xk − βk(T (zk) + vk)) then xk ∈ S∗ by Proposition 2.14.

(ii): It is sufficient to prove that if Step 1 is not satisfied, i.e.,

‖xk − PC(xk − βkT (xk))‖ > 0. (13)

Then, Step 2 and Step 3 are attainable.

Step 2 is attainable: Suppose that (9) does not hold for every αuk ∈ NC(xk) with α > 0, i.e.,

‖αuk‖ > δ‖xk − PC(xk − βk(T (xk) + αuk))‖ ≥ 0.

Taking limit when α goes to 0, we get ‖xk − PC(xk − βkT (xk))‖ = 0, which contradicts (13).

Step 3 is attainable: Suppose that (11) does not hold for every αvk ∈ NC(zk) with α > 0, i.e.,

‖αvk − uk‖ > ‖xk − zk‖,
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where zk = PC(xk − βk(T (xk) + uk)) as (10) and uk ∈ NC(xk) satisfying (9). Letting α goes to 0
and using (9), we get ‖xk − zk‖ ≤ ‖uk‖ ≤ δ‖xk − zk‖. So, xk = zk. Then, Proposition 2.14 implies
a contradiction to (13). �

In the rest of this section, we investigate the remaining case that Algorithm 4.1 does not stop
and generates an infinite sequence (xk)k∈N.

Lemma 4.3 Suppose that T is Lipschitz continuous with constant L. Let x∗ ∈ S∗. Then, for every
k ∈ N, it holds that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− β2k(L+ 1)2)‖zk − xk‖2.

Proof. Define wk = xk − βk(T (zk) + vk) with vk ∈ NC(zk) as Step 3. Then, using (12) and
applying Fact 2.7(i), with x = wk and y = x∗, we get

‖xk+1 − x∗‖2 ≤ ‖wk − x∗‖2 − ‖wk − PC(wk)‖2

≤ ‖xk − x∗ − βk(T (zk) + vk)‖2 − ‖xk − xk+1 − βk(T (zk) + vk)‖2

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2βk〈T (zk) + vk, x∗ − xk+1〉. (14)

Since vk ∈ NC(zk) and (A2), we have

〈T (zk) + vk, x∗ − xk+1〉 =〈T (zk) + vk, zk − xk+1〉+ 〈T (zk) + vk, x∗ − zk〉
≤〈T (zk) + vk, zk − xk+1〉+ 〈T (zk), x∗ − zk〉
≤〈T (zk) + vk, zk − xk+1〉.

Substituting the above inequality in (14), we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk − xk+1‖2 − 2βk〈T (zk) + vk, xk+1 − zk〉
= ‖xk − x∗‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2 + 2〈xk − βk(T (zk) + vk)− zk, xk+1 − zk〉. (15)

Define xk = xk − βk(T (xk) + uk) with uk ∈ NC(xk) as Step 2 and recall that zk = PC(x̄k) and
xk+1 = PC(wk) = PC(xk − βk(T (zk) + vk)), we have

2〈xk − βk(T (zk) + vk)− zk, xk+1 − zk〉 = 2〈wk − PC(xk), PC(wk)− PC(xk)〉
= 2〈xk − PC(xk), PC(wk)− PC(xk)〉+ 2〈wk − xk, PC(wk)− PC(xk)〉
≤ 2〈wk − xk, PC(wk)− PC(xk)〉
= 2〈wk − xk, xk+1 − zk〉 = 2βk〈(T (xk) + uk)− (T (zk) + vk), xk+1 − zk〉

≤ 2βk

(
‖T (zk)− T (xk)‖+ ‖vk − uk‖

)
‖xk+1 − zk‖

≤ 2βk(L+ 1)‖zk − xk‖‖xk+1 − zk‖ ≤ β2k(L+ 1)2‖zk − xk‖2 + ‖xk+1 − zk‖2, (16)

using Fact 2.7(ii), with x = xk − βk(T (xk) + uk) and z = xk+1, in the first inequality, the Cauchy-
Schwarz inequality in the second one and the Lipschitz continuity of T and (11) in the third one.
Therefore, (16) together with (15) proves the lemma. �

Corollary 4.4 The sequence (xk)k∈N is Fejér convergent to S∗ and limk→∞ ‖zk − xk‖ = 0.
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Proof. It follows directly from Lemma 4.3 and the fact βk ≤ β̂ < 1/(L+ 1) for all k ∈ N that.

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− β̂2L2)‖zk − xk‖2 ≤ ‖xk − x∗‖2.

So, (xk)k∈N is Fejér convergent to S∗ and Fact 2.12(ii) together with the above inequality imply
limk→∞ ‖zk − xk‖ = 0. �

Proposition 4.5 The sequence (xk)k∈N converges to a point in S∗.

Proof. The sequence (xk)k∈N is bounded by Lemma 4.3 and Fact 2.12(i). Let x̃ be an accumulation
point of a subsequence (xik)k∈N. By Corollary 4.4, x̃ is also an accumulation point of (zik)k∈N.
Without loss of generality, we suppose that the corresponding parameters (βik)k∈N and (uik)k∈N
converge to β̃ and ũ, respectively. Since zk = PC(xk − βk(T (xk) + uk)), taking the limit along
the subsequence (ik)k∈N, we obtain x̃ = PC(x̃− β̃(T (x̃) + ũ)). Thus, Fact 2.6 and Proposition 2.14
imply x̃ ∈ S∗. �

Next, we examine the performance of Algorithm 4.1 for the variational inequality in Exam-
ple 3.1 with and without normal vectors.

Figure 2: Conditional extragradient method with and without normal vectors.

Figure 2 shows the first five elements of sequences (yk)k∈N (generated without normal vectors)
and (xk)k∈N (generated with non-null normal vectors). In practice, using normal vectors with large
magnitude can potentially produce significant difference.
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5 Two linesearches

In this section we present two linesearches, which will be used in our conceptual algorithms in the
next two sections. These linesearches are related to Strategies (b) and (c) in Algorithm 1.1. The
main difference here is that the new ones utilize normal vectors to the feasible sets.

We begin introducing a linesearch on the boundary of the feasible set, which is closely related
with the linesearch in Strategy (b) of the extragradient algorithm (see Algorithm 1.1). Indeed,
if we set the vectors u ∈ NC(x) and vα ∈ NC(zα) (α ∈ {σ, σθ, σθ2, . . . , }) as the null vector in
Linesearch B below, then it becomes Strategy (b) presented in (4).

Linesearch B (Linesearch on the boundary)

Input: (x, u, σ, δ,M). Where x ∈ C, u ∈ NC(x), σ > 0, δ ∈ (0, 1), and M > 0.
Set α = σ and θ ∈ (0, 1) and choose u ∈ NC(x). Denote zα = PC(x − α(T (x) + αu)) and choose
vα ∈ NC(zα) with ‖vα‖ ≤M .

While α‖T (zα)− T (x) + αvα − αu‖ > δ‖zα − x‖ do
α← θα and choose any vα ∈ NC(zα) with ‖vα‖ ≤M .

End While

Output: (α, zα, vα).

We now show that Linesearch B is well-defined assuming only (A1), i.e., continuity of T is
sufficient to prove the well-definition of Linesearch B.

Lemma 5.1 If x ∈ C and x /∈ S∗, then Linesearch B stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch B does not stop for all α ∈ P := {σ, σθ, σθ2, . . .}
and the chosen vectors

vα ∈ NC(zα), ‖vα‖ ≤M, (17a)

zα = PC(x− α(T (x) + αu)). (17b)

We have
α‖T (zα)− T (x) + αvα − αu‖ > δ‖zα − x‖. (18)

On the one hand, dividing both sides of (18) by α > 0 and letting α goes to 0, we obtain by the
boundedness of (vα)α∈P , presented in (17a), and the continuity of T that

0 = lim inf
α→0

‖T (zα)− T (x) + αvα − αu‖ ≥ lim inf
α→0

‖x− zα‖
α

≥ 0.

Thus, by (17b),

lim inf
α→0

‖x− PC(x− α(T (x) + αu))‖
α

= 0. (19)

On the other hand, Corollary 2.8 implies

x− PC(x− α(T (x) + αu))

α
∈ T (x) + αu+NC(PC(x− α(T (x) + αu))).
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From (19), the continuity of the projection and the closedness of Gph(NC) imply 0 ∈ T (x)+NC(x),
which is a contradiction since x /∈ S∗. �

As mentioned before, the disadvantage of Linesearch B is the necessity to compute the projec-
tion onto the feasible set inside the inner loop to find the stepsize α. To overcome this, we present a
linesearch along the feasible direction below, which is closely related to Strategy (c) of Algorithm
1.1. Indeed, if we set the vectors u ∈ NC(x) and vα ∈ NC(zα) (α ∈ {1, θ, θ2, . . . , }) as the null
vector in Linesearch F below, we obtain Strategy (c) presented in (6). Furthermore, if we only
choose u = 0 the projection step is done outside the procedure to find the stepsize α.

Linesearch F (Linesearch along the feasible direction)

Input: (x, u, β, δ,M). Where x ∈ C, u ∈ NC(x), β > 0, δ ∈ (0, 1), and M > 0.
Set α ← 1 and θ ∈ (0, 1). Define zα = PC(x− β(T (x) + αu)) and choose u ∈ NC(x), v1 ∈ NC(z1)
with ‖v1‖ ≤M .

While 〈T
(
αzα + (1− α)x

)
+ vα, x− zα〉 < δ〈T (x) + αu, x− zα〉 do

α← θα and choose any vα ∈ NC(αzα + (1− α)x) with ‖vα‖ ≤M .

End While

Output: (α, zα, vα).

In the following we prove that Linesearch F is well-defined assuming only (A1), i.e., continuity
of T is sufficient to prove the well-definition of Linesearch F.

Lemma 5.2 If x ∈ C and x /∈ S∗, then Linesearch F stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch F does not stop for all α ∈ P := {1, θ, θ2, . . . , }
and the chosen

vα ∈ NC
(
αzα + (1− α)x

)
, ‖vα‖ ≤M, (20a)

zα = PC
(
x− β(T (x) + αu)

)
. (20b)

We have
〈T (αzα + (1− α)x) + vα, x− zα〉 < δ〈T (x) + αu, x− zα〉. (21)

By (20a) the sequence (vα)α∈P is bounded, thus, without loss of generality, we can assume that it
converges to some v0 ∈ NC(x) (by Fact 2.6). The continuity of the projection operator and (20b)
imply that (zα)α∈P converges to z0 = PC(x− βT (x)). Taking the limit in (21), when α goes to 0,
we get 〈T (x) + v0, x− z0〉 ≤ δ〈T (x), x− z0〉. Noticing that v0 ∈ NC(x), we have

0 ≥ (1− δ)〈T (x), x− z0〉+ 〈v0, x− z0〉 ≥ (1− δ)〈T (x), x− z0〉 ≥
(1− δ)
β
‖x− z0‖2.

Then, it follows that x = z0 = PC(x− βT (x)), i.e., x ∈ S∗, a contradiction. �

6 Conceptual algorithm with Linesearch B

In this section, we study the Conceptual Algorithm B in which Linesearch B is used to obtain
the stepsizes. From now on, we assume that (A1) and (A2) hold. The next conceptual algorithm
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is related with Algorithm 1.1 over Strategy (b) when non-null normal vectors are using in the
steps (3a)-(3c).

Conceptual Algorithm B Given σ > 0, δ ∈ (0, 1), and M > 0.

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test 1): If xk = PC(xk − T (xk)), i.e., xk ∈ S∗, then stop. Otherwise,

Step 2 (Linesearch B): Take uk ∈ NC(xk) with ‖uk‖ ≤M and set

(αk, z
k, vk) = Linesearch B (xk, uk, σ, δ,M),

i.e., (αk, z
k, vk) satisfy 

vk ∈ NC(zk) with ‖vk‖ ≤M ; αk ≤ σ;

zk = PC(xk − αk(T (xk) + αku
k));

αk‖T (zk)− T (xk) + αk(v
k − uk)‖ ≤ δ‖zk − xk‖.

(22)

Step 3 (Projection Step): Set

vk := αkv
k (23a)

and xk+1 := F(xk). (23b)

Step 4 (Stopping Test 2): If xk+1 = xk then stop. Otherwise, set k ← k+ 1 and go to Step 1.

We consider three variants of this algorithm. Their main difference lies in the computation (23b):

FB.1(x
k) =PC

(
PH(zk,vk)(x

k)
)
; (Variant B.1) (24)

FB.2(x
k) =PC∩H(zk,vk)(x

k); (Variant B.2) (25)

FB.3(x
k) =PC∩H(zk,vk)∩W (xk)(x

0), (Variant B.3) (26)

where

H(z, v) :=
{
y ∈ Rn : 〈T (z) + v, y − z〉 ≤ 0

}
, (27a)

and W (x) :=
{
y ∈ Rn : 〈y − x, x0 − x〉 ≤ 0

}
. (27b)

These halfspaces have been widely used in the literature, e.g., [6, 8, 34] and the references therein.
Our goal is analyze the convergence of these variants. First, we start by showing that this conceptual
algorithm is well-defined.

Proposition 6.1 Assume that (23b) is well-defined whenever xk is available. Then, Conceptual
Algorithm B is also well-defined.

Proof. If Step 1 is not satisfied, then Step 2 is guaranteed by Lemma 5.1. Thus, the entire
algorithm is well-defined. �

Next, we present a useful proposition for establishing the well-definition of the projection step
(23b) over each variant.
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Proposition 6.2 xk ∈ S∗ if and only if xk ∈ H(zk, vk), where zk and vk are given respectively by
(22) and (23a).

Proof. Suppose that xk /∈ S∗. Define ūk = αku
k ∈ NC(xk) and wk = xk − αk(T (xk) + ūk). Then,

αk〈T (zk) + vk, xk − zk〉 = αk〈T (zk)− T (xk) + vk − ūk, xk − zk〉+ αk〈T (xk) + ūk, xk − zk〉
= αk〈T (zk)− T (xk) + vk − ūk, xk − zk〉+ 〈xk − wk, xk − zk〉
≥ −αk‖T (zk)− T (xk) + vk − ūk‖ · ‖xk − zk‖+ ‖xk − zk‖2

≥ −δ‖xk − zk‖2 + ‖xk − zk‖2 = (1− δ)‖xk − zk‖2 > 0, (28)

where we have used Linesearch B and Fact 2.7(iii) in the second inequality. Thus, xk /∈ H(zk, vk).
Conversely, if xk ∈ S∗ using Lemma 2.17, xk ∈ H(zk, vk). �

Now, we note a useful algebraic property on the sequence generated by Conceptual Algorithm
B, which is a direct consequence of Linesearch B. Let (xk)k∈N, (zk)k∈N and (αk)k∈N be sequences
generated by Conceptual Algorithm B, using (28), we get

∀k ∈ N : 〈T (zk) + vk, xk − zk〉 ≥ (1− δ)
αk

δ‖xk − zk‖2. (29)

6.1 Convergence analysis of Variant B.1

In this section, all results are for Variant B.1, which is summarized below.

Variant B.1 xk+1 = FB.1(x
k) = PC(PH(zk,vk)(x

k)) = PC

(
xk−

〈
T (zk) + vk, xk − zk

〉
‖T (zk) + vk‖2

(
T (zk)+vk

))
where

H(zk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

with zk and vk are respectively given by (22) and (23a).

Proposition 6.3 If xk+1 = xk, if and only if xk ∈ S∗ and Variant B.1 stops.

Proof. If xk+1 = PC
(
PH(zk,vk)(x

k)
)

= xk, then Fact 2.7(ii) implies

〈PH(zk,vk)(x
k)− xk, z − xk〉 = 〈PH(zk,vk)(x

k)− xk+1, z − xk+1〉 ≤ 0, (30)

for all z ∈ C. Using again Fact 2.7(ii),

〈PH(zk,vk)(x
k)− xk, PH(zk,vk)(x

k)− z〉 ≤ 0, (31)

for all z ∈ H(zk, vk). Note that C ∩ H(zk, vk) 6= ∅, because zk belongs to it. So, for any z ∈
C∩H(zk, vk), adding up (30) and (31) yields ‖xk−PH(zk,vk)(x

k)‖2 = 0. Hence, xk = PH(zk,vk)(x
k),

i.e., xk ∈ H(zk, vk). Thus, we have xk ∈ S∗ by Proposition 6.2. Conversely, if xk ∈ S∗, Proposition
6.2 implies xk ∈ H(zk, v̄k) and together with (24), we get xk = xk+1. �

As consequence of Proposition 6.3, we can assume that Variant B.1 does not stop. Note that
by Lemma 2.17, H(zk, vk) is nonempty for all k. So, the projection step (24) is well-defined. Thus,
Variant B.1 generates an infinite sequence (xk)k∈N such that xk /∈ S∗ for all k ∈ N.
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Proposition 6.4 The following hold:

(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) limk→∞〈T (zk) + vk, xk − zk〉 = 0.

Proof. (i): Take x∗ ∈ S∗. Note that, by definition (zk, vk) ∈ Gph(NC). Using (24), Fact 2.7(i) and
Lemma 2.17, we have

‖xk+1 − x∗‖2 = ‖PC(PH(zk,vk)(x
k))− PC(PH(zk,vk)(x∗))‖

2 ≤ ‖PH(zk,vk)(x
k)− PH(zk,vk)(x∗)‖

2

≤‖xk − x∗‖2 − ‖PH(zk,vk)(x
k)− xk‖2. (32)

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.
(ii): Follows from (i) and Fact 2.12(i).

(iii): Take x∗ ∈ S∗. Since PH(zk,vk)(x
k) = xk −

〈
T (zk) + vk, xk − zk

〉
‖T (zk) + vk‖2

(
T (zk) + vk

)
, and combining

it with (32), yields

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 −

∥∥∥∥∥xk −
〈
T (zk) + vk, xk − zk

〉
‖T (zk) + vk‖2

(
T (zk) + vk

)
− xk

∥∥∥∥∥
2

= ‖xk − x∗‖2 −
(〈T (zk) + vk, xk − zk〉)2

‖T (zk) + vk‖2
.

It follows from the last inequality that

(〈T (zk) + vk, xk − zk〉)2

‖T (zk) + vk‖2
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (33)

Since T and the projection are continuous and (xk)k∈N is bounded, (zk)k∈N is bounded. The
boundedness of

(
‖T (zk) + vk‖

)
k∈N follows from (22). Using Fact 2.12(ii), the right hand side of

(33) goes to 0, when k goes to ∞. Then, the result follows. �

Next we establish our main convergence result on Variant B.1.

Theorem 6.5 The sequence (xk)k∈N converges to a point in S∗.

Proof. We claim that there exists an accumulation point of (xk)k∈N belonging to S∗. The ex-
istence of the accumulation points of (xk)k∈N follows from Proposition 6.4(ii). Let (xik)k∈N
be a convergent subsequence of (xk)k∈N such that, (uik)k∈N, (vik)k∈N and (αik)k∈N also con-
verge, and set limk→∞ x

ik = x̃, limk→∞ u
ik = ũ, limk→∞ v

ik = ṽ and limk→∞ α
ik = α̃.

Using Proposition 6.4(iii), (29), and taking the limit along the subsequence (ik)k∈N, we have

0 = limk→∞〈T (zik) + vik , xik − zik〉 ≥ (1−δ)
α̃ limk→∞ ‖zik − xik‖2 ≥ 0. Then,

lim
k→∞

‖xik − zik‖ = 0. (34)
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Now we have two cases:

Case 1: limk→∞ αik = α̃ > 0. We have from (22), the continuity of the projection, and (34) that
x̃ = limk→∞ x

ik = limk→∞ z
ik = PC

(
x̃− α̃(T (x̃) + α̃ũ)

)
. Then, x̃ = PC

(
x̃− α̃(T (x̃) + α̃ũ)

)
and as

consequence of Proposition 2.14, x̃ ∈ S∗.
Case 2: limk→∞ αik = α̃ = 0. Define α̃k := αk

θ . Hence,

lim
k→∞

α̃ik = lim
k→∞

αik
θ

= 0. (35)

Since α̃k does not satisfy Armijo-type condition in Linesearch B, we have

‖T
(
z̃k
)
− T (xk) + α̃kṽ

k − α̃kuk‖ >
δ‖z̃k − xk‖

α̃k
, (36)

where ṽk ∈ NC(z̃k) and
z̃k = PC(xk − α̃k(T (xk) + α̃ku

k)). (37)

The left hand side of (36) goes to 0 along the subsequence (ik)k∈N by the continuity of T and PC .
So,

lim inf
k→0

‖z̃k − xk‖
α̃k

= 0. (38)

By Corollary 2.8, with x = xk, α = α̃k and p = T (xk) + α̃ku
k, we have

xk − z̃k

α̃k
∈ T (xk) + α̃ku

k +NC(z̃k).

Taking the limits along the subsequence (ik)k∈N and using (35), (37), (38), the continuity of T and
the closedness of Gph(NC), we get that 0 ∈ T (x̃) +NC(x̃), thus, x̃ ∈ S∗. �

Figure 3: Variant B.1 with and without normal vectors.
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Figure 3 above examines the performance of Variant B.1 for the variational inequality in Ex-
ample 3.1 with and without normal vectors. It shows the first five elements of sequences (yk)k∈N
(generated without normal vectors) and (xk)k∈N (generated with non-null normal vectors).

6.2 Convergence analysis on Variant B.2

In this section, all results are for Variant B.2, which is summarized below.

Variant B.2 xk+1 = FB.2(x
k) = PC∩H(zk,vk)(x

k) where

H(zk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

zk and vk are given by (22) and (23a), respectively.

Proposition 6.6 If xk+1 = xk, if and only if xk ∈ S∗ and Variant B.2 stops.

Proof. We have xk+1 = xk implies xk ∈ C ∩ H(zk, vk). Thus, xk ∈ S∗ by Proposition 6.2.
Conversely, if xk ∈ S∗, then Proposition 6.2 implies xk ∈ H(zk, v̄k). Then, the result follows from
(25). �

We study the case that Variant B.2 does not stop, thus, it generates a sequence (xk)k∈N.

Proposition 6.7 The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded and
limk→∞ ‖xk+1 − xk‖ = 0.

Proof. Take x∗ ∈ S∗. By Lemma 2.17, x∗ ∈ H(zk, vk), for all k, and also x∗ belongs to C implying
that the projection step (25) is well-defined. Then, using Fact 2.7(i) for two points xk, x∗ and the
set C ∩H(zk, vk), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (39)

So, (xk)k∈N is Féjer convergent to S∗. Hence, by Fact 2.12(i) (xk)k∈N is bounded. Taking the limit
in (39) and using Fact 2.12(ii), the result follows. �

The next proposition shows a relation between the projection steps in Variant B.1 and Variant
B.2. This fact has a geometry interpretation: since the projection of Variant B.2 is done onto a
smaller set, it can improve the convergence of Variant B.1.

Proposition 6.8 Let (xk)k∈N be the sequence generated by Variant B.2. Then:

(i) xk+1 = PC∩H(zk,vk)(PH(zk,vk)(x
k)).

(ii) limk→∞〈A(zk) + vk, xk − zk〉 = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(zk, vk) and C ∩Hk 6= ∅, the result follows from Lemma 2.9.

(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x
k) and that projections onto convex sets are

firmly-nonexpansive (see Fact 2.7(i)), we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2 − ‖PH(zk,vk)(x
k)− xk‖2.
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The rest of the proof is analogous to Proposition 6.4(iii). �

Finally we present the convergence result for Variant B.2.

Proposition 6.9 The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 6.5. �

Next, we examine the performance of Variant B.2 for the variational inequality in Example 3.1
with and without normal vectors.

Figure 4: Variant B.2 with and without normal vectors.

Figure 4 shows the first five elements of sequences (yk)k∈N (generated without normal vectors)
and (xk)k∈N (generated with non-null normal vectors).

6.3 Convergence analysis on Variant B.3

In this section, all results are for Variant B.3, which is summarized below.

Variant B.3 xk+1 = FB.3(x
k) = PC∩H(zk,vk)∩W (xk)(x

0) where

W (xk) =
{
y ∈ Rn : 〈y − xk, x0 − xk〉 ≤ 0

}
,

H(zk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

zk and vk are defined by (22) and (23a), respectively.
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Proposition 6.10 If xk+1 = xk, then xk ∈ S∗ and Variant B.3 stops.

Proof. We have xk+1 = PC∩H(zk,vk)∩W (xk)(x
0) = xk. So, xk ∈ C ∩H(zk, vk) ∩W (xk) ⊆ H(zk, vk).

Finally, xk ∈ S∗ by Proposition 6.2. �

We now consider the case Variant B.3 does not stop. Observe that W (xk) and H(zk, vk) are
closed halfspaces, for each k. Therefore, C ∩H(zk, vk) ∩W (xk) is a closed convex set. So, if the
set C ∩H(zk, vk) ∩W (xk) is nonempty, then the next iterate, xk+1, is well-defined. The following
lemma guarantees the non-emptiness of this set.

Lemma 6.11 For all k ∈ N, we have S∗ ⊆ C ∩H(zk, vk) ∩W (xk).

Proof. We proceed by induction. By definition, S∗ 6= ∅ and S∗ ⊆ C. By Lemma 2.17, S∗ ⊆
H(zk, vk), for all k. For k = 0, as W (x0) = Rn, S∗ ⊆ H(z0, v0) ∩ W (x0). Assume that S∗ ⊆
H(zk, vk)∩W (xk). Then, xk+1 = PC∩H(zk,vk)∩W (xk)(x

0) is well-defined. By Fact 2.7(ii), we obtain

〈x∗−xk+1 , x0−xk+1〉 ≤ 0, for all x∗ ∈ S∗. This implies x∗ ∈W (xk+1). Hence, S∗ ⊆ H(zk+1, vk+1)∩
W (xk+1). Then, the statement follows by induction. �

As previous variants we establish the conversely part of Proposition 6.10, which is a direct
consequence of Lemma 6.11.

Corollary 6.12 If xk ∈ S∗, then xk+1 = xk, and Variant B.3 stops.

Corollary 6.13 Variant B.3 is well-defined.

Proof. Lemma 6.11 shows that C ∩H(zk, vk)∩W (xk) is nonempty for all k ∈ N. So, the projection
step (26) is well-defined. Thus, Variant B.3 is well-defined by using Proposition 6.1. �

Before proving the convergence of the sequence (xk)k∈N, we study its boundedness. The next
lemma shows that the sequence remains in a ball determined by the initial point.

Lemma 6.14 Let x = PS∗(x
0) and ρ = dist(x0, S∗). Then (xk)k∈N ⊂ B

[
1
2(x0 + x), 12ρ

]
∩ C. In

particular, (xk)k∈N is bounded.

Proof. S∗ ⊆ H(zk, vk) ∩W (xk) follows from Lemma 6.11. Using Lemma 2.10, with S = S∗ and
x = xk, we have xk ∈ B

[
1
2(x0 + x), 12ρ

]
, for all k ∈ N. Finally, notice that (xk)k∈N ⊂ C. �

Now, we focus on the properties of the accumulation points.

Proposition 6.15 All accumulation points of (xk)k∈N belong to S∗.

Proof. Notice that W (xk) is a halfspace with normal x0− xk, we have xk = PW (xk)(x
0). Moreover,

xk+1 ∈ W (xk). Thus, by the firm non-expansiveness of PW (xk) (see Fact 2.7(i)), we have ‖xk+1 −
xk‖2 ≤ ‖xk+1−x0‖2−‖xk−x0‖2. So, the sequence (‖xk−x0‖)k∈N is monotone and nondecreasing.
In addition, (‖xk − x0‖)k∈N is bounded by Lemma 6.14. Thus, (xk)k∈N converges. So,

lim
k→∞

‖xk+1 − xk‖ = 0. (40)

Since xk+1 ∈ H(zk, vk), we get 〈T (zk) + vk, xk+1 − zk〉 ≤ 0, where vk and zk are defined by (23a)
and (22), respectively. Combining the above inequality with (29), we get 0 ≥ 〈T (zk) + vk, xk+1 −
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xk〉+
〈
T (zk) + vk, xk − zk

〉
≥ −‖T (zk) + vk‖ · ‖xk+1 − xk‖+ 1−δ

αk
‖xk − zk‖2. After simple algebra

and using (22),

‖xk − zk‖2 ≤ σ

1− δ
‖T (zk) + vk‖ · ‖xk+1 − xk‖. (41)

Choosing a subsequence (ik)k∈N such that, the subsequences (αik)k∈N, (xik)k∈N and (vik)k∈N con-
verge to α̃, x̃ and ṽ, respectively. This is possible by the boundedness of (vk)k∈N and (xk)k∈N .
Taking the limits in (41) and using (40), we obtain limk→∞ ‖xik − zik‖2 = 0. and as consequence
x̃ = limk→∞ z

ik . Now we consider two cases:

Case 1: limk→∞ αik = α̃ > 0. By (22) and the continuity of the projection, x̃ = limk→∞ z
ik =

PC
(
x̃− α̃(T (x̃) + α̃ũ)

)
and hence by Proposition 2.14, x̃ ∈ S∗.

Case 2: limk→∞ αik = α̃ = 0. Then, limk→∞
αik
θ = 0. The rest part of this case is analogous to

the proof of Theorem 6.5. �

Finally, we are ready to prove the convergence of the sequence (xk)k∈N generated by Variant B.3,
to the solution closest to x0.

Theorem 6.16 Define x = PS∗(x
0). Then, (xk)k∈N converges to x.

Proof. First note that from Lemma 2.18 x̄ is well-defined. It follows from Lemma 6.14 that
(xk)k∈N ⊂ B

[
1
2(x0 + x), 12ρ

]
∩ C, so it is bounded. Let (xik)k∈N be a convergent subsequence of

(xk)k∈N, and let x̂ be its limit. Thus, x̂ ∈ B
[
1
2(x0 + x), 12ρ

]
∩C. Furthermore, by Proposition 6.15,

x̂ ∈ S∗. So, x̂ ∈ S∗ ∩ B
[
1
2(x0 + x), 12ρ

]
= {x}, implying x̂ = x, i.e., x is the unique limit point of

(xk)k∈N. Hence, (xk)k∈N converges to x ∈ S∗. �

Figure 5: Variant B.3 with and without normal vectors.
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Figure 5 above shows the performance of the first five elements of the sequence generated by
Variant B.3 in Example 3.1 with and without normal vectors. Recall that (yk)k∈N (is the sequence
generated without normal vectors) and (xk)k∈N (generated with non-null normal vectors).

7 Conceptual algorithm with Linesearch F

We continue presenting our second conceptual algorithm for solving (1) using Linesearch F.

Conceptual Algorithm F Given (βk)k∈N ⊂ [β̌, β̂] 0 < β̌ ≤ β̂ < +∞, δ ∈ (0, 1), and M > 0.

Step 1 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test 1): If xk = PC(xk − T (xk)), then stop. Otherwise,

Step 2 (Linesearch F): Take uk ∈ NC(xk) with ‖uk‖ ≤M and set

(αk, z
k, vk) = Linesearch F (xk, uk, βk, δ,M), (42)

i.e., (αk, z
k, v̄k) satisfy

v̄k ∈ NC(αkz
k + (1− αk)xk) with ‖v̄k‖ ≤M ; αk ≤ 1 ;

zk = PC(xk − βk(T (xk) + αku
k));

〈T (αkz
k + (1− αk)xk) + v̄k, xk − zk〉 ≥ δ〈T (xk) + αku

k, xk − zk〉.
(43)

Step 3 (Projection Step): Set

xk := αkz
k + (1− αk)xk, (44a)

and xk+1 := F(xk). (44b)

Step 4 (Stopping Test 2): If xk+1 = xk, then stop. Otherwise, set k ← k+ 1 and go to Step 1.

Also, we consider three different projection steps (called Variants F.1, F.2 and F.3) which are
analogous to Conceptual Algorithm B. These variants of Conceptual Algorithm F have
their main difference in the projection step given in (44b).

FF.1(x
k) =PC

(
PH(xk,vk)(x

k)
)
; (Variant F.1) (45)

FF.2(x
k) =PC∩H(xk,vk)(x

k); (Variant F.2) (46)

FF.3(x
k) =PC∩H(xk,vk)∩W (xk)(x

0), (Variant F.3) (47)

where H(x, v) and W (x) are defined by (27). Now, we analyze some general properties of Con-
ceptual Algorithm F.

Proposition 7.1 Assuming that (44b) is well-defined whenever xk is available. Then, Concep-
tual Algorithm F is well-defined.

Proof. If Step 1 is not satisfied, then Step 2 is guaranteed by Lemma 5.2. Thus, the entire
algorithm is well-defined. �
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Proposition 7.2 xk ∈ H(xk, vk) for xk and vk as in (44a) and (42) respectively, if and only if,
xk ∈ S∗.

Proof. Since xk ∈ H(xk, vk), 〈T (xk)+vk, xk−xk〉 ≤ 0. Using the definition of αk in Algorithm F,
(43) and (44a), we have

0 ≥〈T (xk) + vk, xk − xk〉 = αk〈T (xk) + vk, xk − zk〉 ≥ αkδ
〈
T (xk) + αku

k, xk − zk
〉

≥ αk
βk
δ‖xk − zk‖2 ≥ αk

β̂
δ‖xk − zk‖2, (48)

implying that xk = zk. Then, from (43) and Proposition 2.14, xk ∈ S∗ by Proposition 2.14.
Conversely, if xk ∈ S∗, then xk ∈ H(xk, vk) by Lemma 2.17. �

Next, we note a useful algebraic property on the sequence generated by Conceptual Algo-
rithm F, which is a direct consequence of the linesearch in Algorithm F. Let (xk)k∈N and
(αk)k∈N be sequences generated by Conceptual Algorithm F, using (48), we get

∀k ∈ N : 〈T (xk) + vk, xk − xk〉 ≥ αk

β̂
δ‖xk − zk‖2. (49)

7.1 Convergence analysis on Variant F.1

In this subsection all results are for Variant F.1, which is summarized below.

Variant F.1 xk+1 = FF.1(x
k) = PC(PH(xk,vk)(x

k)) = PC

(
xk− 〈T (xk) + vk, xk − xk〉

‖T (xk) + vk‖2
(T (xk)+vk)

)
where

H(xk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

xk and vk as (44a) and (42), respectively.

Proposition 7.3 If xk+1 = xk, if and only if xk ∈ S∗, and Variant F.1 stops.

Proof. We have xk+1 = PC
(
PH(xk,vk)(x

k)
)

= xk. Then, Fact 2.7(ii) implies

〈PH(xk,vk)(x
k)− xk, z − xk〉 ≤ 0, (50)

for all z ∈ C. Again, using Fact 2.7(ii),

〈PH(xk,vk)(x
k)− xk, PH(xk,vk)(x

k)− z〉 ≤ 0, (51)

for all z ∈ H(xk, vk). Note that C ∩H(xk, vk) 6= ∅. So, for any z ∈ C ∩H(xk, vk), adding up (50)
and (51) yields ‖xk −PH(xk,vk)(x

k)‖2 = 0. Hence, xk = PH(xk,vk)(x
k), i.e., xk ∈ H(xk, vk). Finally,

we have xk ∈ S∗ by Proposition 7.2. Conversely, if xk ∈ S∗, Proposition 7.2 implies xk ∈ H(x̄k, v̄k)
and together with (45), we get xk = xk+1. �

From now on, we assume that Variant F.1 does not stop. Note that by Lemma 2.17, H(xk, vk)
is nonempty for all k. Then, the projection step (45) is well-defined. Thus, Variant F.1 generates
an infinite sequence (xk)k∈N such that xk 6∈ S∗ for all k ∈ N.
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Proposition 7.4 The following hold:

(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) limk→∞〈A(xk) + vk, xk − xk〉 = 0.

Proof. (i): Take x∗ ∈ S∗. Note that, by definition (xk, vk) ∈ Gph(NC). Using (45), Fact 2.7(i) and
Lemma 2.17, we have

‖xk+1 − x∗‖2 = ‖PC(PH(xk,vk)(x
k))− PC(PH(xk,vk)(x∗))‖

2

≤‖PH(xk,vk)(x
k)− PH(xk,vk)(x∗)‖

2 ≤ ‖xk − x∗‖2 − ‖PH(xk,vk)(x
k)− xk‖2. (52)

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.
(ii): Follows immediately from the previous item and Fact 2.12(i).

(iii): Take x∗ ∈ S∗. Using (44a) and PH(xk,vk)(x
k) = xk −

〈
T (xk) + vk, xk − xk

〉
‖T (xk) + vk‖2

(
T (xk) + vk

)
combining with (52), yields

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 −

∥∥∥∥∥xk −
〈
T (xk) + vk, xk − xk

〉
‖T (xk) + vk‖2

(
T (xk) + vk

)
− xk

∥∥∥∥∥
2

= ‖xk − x∗‖2 −
(〈T (xk) + vk, xk − xk〉)2

‖T (xk) + vk‖2
.

It follows that
(〈T (xk) + vk, xk − xk〉)2

‖T (xk) + vk‖2
≤ ‖xk − x∗‖2−‖xk+1− x∗‖2. Using Fact 2.12(ii), the right

side of the above inequality goes to 0, when k goes to ∞ and since T is continuous and (xk)k∈N,
(zk)k∈N and (xk)k∈N are bounded. Implying the boundedness of

(
‖T (xk)+vk‖

)
k∈N and the desired

result. �

Next, we establish our main convergence result on Variant F.1.

Theorem 7.5 The sequence (xk)k∈N converges to a point in S∗.

Proof. We claim that there exists an accumulation point of (xk)k∈N belonging to S∗. The existence of
the accumulation points follows from Proposition 7.4(ii). Let (xik)k∈N be a convergent subsequence
of (xk)k∈N such that, (xik), (vik), (uik), (αik)k∈N and (βik)k∈N also converge, and set limk→∞ x

ik = x̃,
limk→∞ u

ik = ũ, limk→∞ αik = α̃ and limk→∞ βik = β̃. Using Proposition 7.4(iii) and by passing
to the limit in (49), over the subsequence (ik)k∈N, we have 0 = limk→∞〈T (xik) + ūik , xik − xik〉 ≥
limk→∞

αik

β̂
δ‖xik − zik‖2 ≥ 0. Therefore,

lim
k→∞

αik‖x
ik − zik‖ = 0. (53)

Now we consider two cases.
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Case 1: limk→∞ αik = α̃ > 0. In the view of (53), limk→∞ ‖xik − zik‖ = 0. Using the continuity
of T , and the projection imply x̃ = limk→∞ x

ik = limk→∞ z
ik = PC

(
x̃ − β̃(T (x̃) + α̃ũ)

)
. Then,

x̃ = PC
(
x̃− β̃(T (x̃) + α̃ũ)

)
, and Proposition 2.14 implies that x̃ ∈ S∗.

Case 2: limk→∞ αik = α̃ = 0. Define α̃k =
αik
θ . Then,

lim
k→∞

α̃ik = 0. (54)

Define ỹk := α̃kz̃
k + (1− α̃k)xk, where z̃k = PC(xk − βk(T (xk) + α̃ku

k)), as (43). Hence,

lim
k→∞

yik = x̃. (55)

From the definition αk in Algorithm F, ỹk does not satisfy the condition, i.e.,〈
T (ỹk) + ṽk, xk − z̃k

〉
< δ〈T (xk) + α̃ku

k, xk − z̃k〉, (56)

for ṽk ∈ NC(ỹk) and all k. Taking a subsequence (ik)k∈N and relabeling if necessary, we assume that
(vkα̃k

)k∈N converges to ṽ over the subsequence (ik)k∈N. By Fact 2.6, ṽ belongs to NC(x̃). Using (43)

and (54), limk→∞ z̃
ik = z̃ = PC

(
x̃− β̃T (x̃)

)
. By passing to the limit in (56) over the subsequence

(ik)k∈N and using (55), we get 〈T (x̃) + ṽ, x̃− z̃〉 ≤ δ〈T (x̃), x̃− z̃〉. Then,

0 ≥ (1− δ)
〈
T (x̃), x̃− z̃

〉
+
〈
ṽ, x̃− z̃

〉
≥ (1− δ)

〈
T (x̃), x̃− z̃

〉
=

(1− δ)
β̃

〈
x̃− (x̃− β̃T (x̃)), x̃− z̃〉 ≥ (1− δ)

β̃
‖x̃− z̃‖2 ≥ (1− δ)

β̂
‖x̃− z̃‖2 ≥ 0.

This means x̃ = z̃, which implies x̃ ∈ S∗. �

Figure 6: Variant F.1 with and without normal vectors.
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Figure 6 examines the performance of Variant F.1 for the variational inequality in Example 3.1
with and without normal vectors. Figure 6 shows the first five elements of sequences (yk)k∈N
(generated without normal vectors) and (xk)k∈N (generated with non-null normal vectors).

7.2 Convergence analysis on Variant F.2

In this section, all results are for Variant F.2, which is summarized below.

Variant F.2 xk+1 = FF.2(x
k) = PC∩H(xk,vk)(x

k) where

H(xk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

xk and vk given by (44a) and (42), respectively.

Proposition 7.6 If xk+1 = xk, if and only if xk ∈ S∗, and Variant F.2 stops.

Proof. We have xk+1 = PC∩H(xk,vk)(x
k) = xk. So, xk ∈ C ∩ H(xk, vk). Hence, xk ∈ S∗ by

Proposition 7.2. Conversely, if xk ∈ S∗, Proposition 7.2 implies xk ∈ H(x̄k, v̄k) and together with
(46), we get xk = xk+1. �

From now on, we assume that Variant F.2 does not stop.

Proposition 7.7 The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded and
limk→∞ ‖xk+1 − xk‖ = 0.

Proof. Take x∗ ∈ S∗. By Lemma 2.17, x∗ ∈ H(xk, vk), for all k and also x∗ belongs to C, so, the
projection step (46) is well-defined. Then, using Fact 2.7(i) for the projection operator PH(xk,vk),
we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (57)

The above inequality implies that (xk)k∈N is Féjer convergent to S∗. Hence, by Fact 2.12(i)&(ii),
(xk)k∈N is bounded and thus (‖xk − x∗‖)k∈N is a convergent sequence. By passing to the limit in
(57) and using Fact 2.12(ii), we get limk→∞ ‖xk+1 − xk‖ = 0. �

The next proposition shows a relation between the projection steps in Variant F.1 and Variant
F.2. This fact has a geometry interpretation: since the projection of Variant F.2 is done over a
small set, it may improve the convergence behaviour of the sequence generated by Variant F.1.

Proposition 7.8 Let (xk)k∈N be the sequence generated by Variant F.2. Then,

(i) xk+1 = PC∩H(xk,vk)(PH(xk,vk)(x
k)).

(ii) limk→∞〈A(xk) + vk, xk − xk〉 = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(xk, vk) and C ∩Hk 6= ∅, by Lemma 2.9, we have the result.

(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x
k) and that projections onto convex sets

are firmly-nonexpansive (see Fact 2.7(i)), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2 − ‖PH(xk,vk)(x
k)− xk‖2.
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The rest of the proof is analogous to Proposition 7.4(iii). �

Proposition 7.9 The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 7.5. �

Next, we examine the performance of Variant F.2 for the variational inequality in Example 3.1
with and without normal vectors. Figure 7 shows the first five elements of sequences (yk)k∈N
(generated without normal vectors) and (xk)k∈N (generated with non-null normal vectors).

Figure 7: Variant F.2 with and without normal vectors.

7.3 Convergence analysis on Variant F.3

In this section, all results are for Variant F.3, which is summarized below.

Variant F.3 xk+1 = FF.3(x
k) = PC∩H(xk,vk)∩W (xk)(x

0) where

W (xk) =
{
y ∈ Rn : 〈y − xk, x0 − xk〉 ≤ 0

}
,

H(xk, vk) =
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
,

xk and vk given by (44a) and (42), respectively.

Proposition 7.10 If xk+1 = xk, then xk ∈ S∗ and Variant F.3 stops.
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Proof. We have xk+1 = PC∩H(xk,vk)∩W (xk)(x
0) = xk. So, xk ∈ C ∩H(xk, vk) ∩W (xk) ⊆ H(xk, vk).

Thus, xk ∈ S∗ by Proposition 7.2. �

From now on we assume that Variant F.3 does not stop. Observe that, by the virtue of
their definitions, W (xk) and H(xk, vk) are convex and closed halfspaces, for each k. Therefore,
C ∩H(xk, vk) ∩W (xk) is a closed convex set. So, if C ∩H(xk, vk) ∩W (xk) is nonempty, then the
next iterate, xk+1, is well-defined. The following lemma guarantees this fact and the proof is very
similar to Lemma 6.11.

Lemma 7.11 For all k ∈ N, we have S∗ ⊂ C ∩H(xk, vk) ∩W (xk).

Proof. We proceed by induction. By definition, S∗ 6= ∅ and S∗ ⊆ C. By Lemma 2.17, S∗ ⊆
H(xk, vk), for all k. For k = 0, as W (x0) = Rn, S∗ ⊆ H(x0, v0) ∩ W (x0). Assume that S∗ ⊆
H(x`, v`) ∩W (x`), for ` ≤ k. Henceforth, xk+1 = PC∩H(xk,vk)∩W (xk)(x

0) is well-defined. Then, by

Fact 2.7(ii), we have 〈x∗ − xk+1 , x0 − xk+1〉 ≤ 0, for all x∗ ∈ S∗. This implies x∗ ∈ W (xk+1), and
hence, S∗ ⊆ H(xk+1, vk+1) ∩W (xk+1). Then, the result follows by induction. �

The above lemma shows that the set C ∩ H(xk, vk) ∩W (xk) is nonempty and as consequence
the projection step, given in (47), is well-defined. Before proving the convergence of the sequence,
we study its boundedness. The next lemma shows that the sequence remains in a ball determined
by the initial point.

As previous variants we establish the conversely part of Proposition 7.10, which is a direct
consequence of Lemma 7.11.

Corollary 7.12 If xk ∈ S∗, then xk+1 = xk, and Variant F.3 stops.

Lemma 7.13 The sequence (xk)k∈N is bounded. Furthermore, (xk)k∈N ⊂ B
[
1
2(x0 + x), 12ρ

]
∩ C,

where x = PS∗(x
0) and ρ = dist(x0, S∗).

Proof. It follows from Lemma 7.11 that S∗ ⊆ H(xk, vk) ∩W (xk), for all k ∈ N. The proof now
follows by repeating the proof of Lemma 6.14. �

Finally we prove the convergence of the sequence generated by Variant F.3 to the solution
closest to x0.

Theorem 7.14 Define x = PS∗(x
0). Then, (xk)k∈N converges to x.

Proof. First we prove the optimality of the all accumulation points of (xk)k∈N. Notice that W (xk)
is a halfspace with normal x0−xk, we have xk = PW (xk)(x

0). Moreover, xk+1 ∈W (xk). So, by the

firm nonexpansiveness of PW (xk), we have 0 ≤ ‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2, which

implies that the sequence (‖xk − x0‖)k∈N is monotone and nondecreasing. From Lemma 7.13, we
have that (‖xk − x0‖) is bounded, thus, convergent. So,

lim
k→∞

‖xk+1 − xk‖ = 0. (58)

Since xk+1 ∈ H(xk, vk), we get

〈T (xk) + vk, xk+1 − xk〉 ≤ 0, (59)
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with vk and xk given by (42) and (44a). Substituting (44a) into (59), we have 〈T (xk) + vk, xk+1 −
xk〉+ αk

〈
T (xk) + vk, xk − zk

〉
≤ 0. Combining the above inequality with (43), we get

〈T (xk) + vk, xk+1 − xk〉+ αkδ〈T (xk) + αku
k, xk − zk〉 ≤ 0. (60)

Combining the above inequality with (43) and using Fact 2.7(iii), we can check that βk〈T (xk) +
αku

k, xk−zk〉 ≥ ‖xk−zk‖2. Thus, after use the last inequality and the Cauchy-Schwartz inequality
in (60), we get

αk
βk
δ‖xk − zk‖2 ≤ ‖T (xk) + vk‖ · ‖xk+1 − xk‖. (61)

Choosing a subsequence (ik) such that, the subsequences (αik)k∈N, (uik)k∈N, (βik)k∈N, (xik)k∈N and
(vik)k∈N converge to α̃, ũ, β̃, x̃ and ṽ respectively (this is possible by the boundedness of all of
these sequences) and taking limit in (61) along the subsequence (ik)k∈N, we get, from (58),

lim
k→∞

αik‖x
ik − zik‖2 = 0. (62)

Now we consider two cases,

Case 1: limk→∞ αik = α̃ > 0. By (62), limk→∞ ‖xik − zik‖2 = 0. By continuity of the projection,
we have x̃ = PC

(
x̃− β̃(T (x̃) + α̃ũ)

)
. So, x̃ ∈ S∗ by Proposition 2.14.

Case 2: limk→∞ αik = 0. Then, limk→∞
αik
θ = 0. The rest is similar to the proof of Theorem 7.5.

Thus, all accumulation points of (xk)k∈N are in S∗. The proof follows similar to Theorem 6.16. �

Next, we examine the performance of Variant F.3 for the variational inequality in Example 3.1
with and without normal vectors. Figure 8 shows the first five elements of sequences (yk)k∈N
(generated without normal vectors) and (xk)k∈N (generated with non-null normal vectors).

Figure 8: Variant F.3 with and without normal vectors.
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8 Final remarks

In this paper we have proposed two conceptual conditional extragradient algorithms generalizing
classical extragradient algorithms for solving constrained variational inequality problems. The main
idea here comes from the (sub)gradient algorithms where non-null normal vectors of the feasible
set improve the convergence, avoiding zigzagging. The scheme proposed here mainly contains two
parts:

(1) Two different linesearches are analyzed. The linesearches allow us to find suitable halfspaces
containing the solution set of the problem using non-null normal vectors of the feasible set. It is
well-known in the literature that such procedures are very effective in absence of Lipschitz continuity
and they use more information available at each iteration, allowing long steplength.

(2) Many projection steps are performed, which yield different and interesting features extending
several known projection algorithms. Furthermore, the convergence analysis of both conceptual
algorithms was established assuming existence of solutions, continuity and a weaker condition than
pseudomonotonicity on the operator, showing examples when the non-null vectors in the normal
cone archive better performance.

We hope that this study will serve as a basis for future research on other more efficient variants, as
well as including sophisticated linesearches permitting optimal choice for the vectors in the normal
cone of the feasible set. Several of the ideas of this paper merit further investigation, some of
which will be presented in future work. In particular we discuss in a separate paper variants of the
projection algorithms proposed in [9] for solving nonsmooth variational inequalities. The difficulties
of extending this previous result to point-to-set operators are non-trivial, the main obstacle yields in
the impossibility to use linesearches or separating techniques as was strongly used in this paper. To
our knowledge, variants of the linesearches for variational inequalities require smoothness of T , even
for the nonlinear convex optimization problems (T = ∂f) is not possible make linesearch, because
the negative subgradients are not always a descent direction. Actually, a few explicit methods have
been proposed in the literature for solving nonsmooth monotone variational inequality problems,
examples of such methods appear in [13,20]. Future work will be addressed to further investigation
on the modified Forward-Backward splitting iteration for inclusion problems [7,8,36], exploiting the
additive structure of the main operator and adding dynamic choices of the stepsizes with conditional
and deflected techniques [15,30].
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