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Abstract

In this paper we obtain an ordinary differential equation H from a Picard-Fuchs
equation associated with a nowhere vanishing holomorphic n-form. We work on a
moduli space T constructed from a Calabi-Yau manifold W together with a basis of
the middle complex de Rham cohomology of W . We verify the existence of a unique
vector field H on T such that its composition with the Gauss-Manin connection satisfies
certain properties. The ordinary differential equation given by H is a generalization
of differential equations introduced by Darboux, Halphen and Ramanujan.
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1 Introduction

The system of differential equations

(1.1)


dt1
dz + dt2

dz = t1t2
dt2
dz + dt3

dz = t2t3
dt1
dz + dt3

dz = t1t3

,

appeared in 1878 in the work of Gaston Darboux [9], where he was treating on the curvi-
linear coordinates and orthogonal systems. The problem that he was working on it is as
follow: Let A and B be two fixed surfaces in 3-dimensional Euclidean space R3. Suppose
that Σ is a family of surfaces parallel to A, and Σ′ is another family of surfaces parallel
to B. Is there a third family of surfaces parameterized by u such that intersects Σ and Σ′

orthogonally? The more interesting case of this problem is when the family (u) is of the
second degree and Darboux proved that in this case this family is given by

x21
t1(u)

+
x22
t2(u)

+
x23
t3(u)

= 1,

in which x1, x2, x3 are coordinates of R3, and t1, t2, t3 are functions of u given by the
following equation

(1.2) t3(
dt1
du

+
dt2
du

) = t2(
dt1
du

+
dt3
du

) = t1(
dt2
du

+
dt3
du

).
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Therefore, the system of equations (1.1) is a particular case of the equation (1.2).
In 1881, G. Halphen [17] studied the system of differential equations (1.1) in C3. He

proved that this system satisfies an important invariant property. To express this invariant
property, for the constants a, b, a′, b′, let

(1.3) w =
az + b

a′z + b′
& ti = − 2a′

a′z + b′
+

ab′ − ba′

(a′z + b′)2
si, i = 1, 2, 3.

By substituting (1.3) in the system (1.1), we have

(1.4)


ds1
dw + ds2

dw = s1s2
ds2
dw + ds3

dw = s2s3
ds1
dw + ds3

dw = s1s3

,

from which it follows that the system (1.1) is invariant under the change of variables (1.3).
Therefore, to find a general solution of (1.1), it is enough to apply (1.3) to a particular
solution of (1.4). Halphen gave a solution of the system (1.1) in terms of the logarithmic
derivatives of the null theta functions; namely

t1 = 2(ln θ4(0|z))′,

t2 = 2(ln θ2(0|z))′, ′ =
∂

∂z
,

t3 = 2(ln θ3(0|z))′.

where 
θ2(0|z) :=

∑∞
n=−∞ q

1
2 (n+

1
2 )

2

θ3(0|z) :=
∑∞

n=−∞ q
1
2n

2

θ4(0|z) :=
∑∞

n=−∞(−1)nq
1
2n

2

, q = e2πiz, Im(z) > 0.

F. Brioschi [3] in 1881 studied the following extension of the system (1.1)

(1.5)


dt1
dz + dt2

dz = t1t2 + ϕ(z)
dt2
dz + dt3

dz = t2t3 + ϕ(z)
dt1
dz + dt3

dz = t1t3 + ϕ(z)

,

in which ϕ(z) is a function of z. Again in 1881, Halphen in [18] introduced and investigated
a class of differential equations with (1.5) as a particular case. In the case of three variables,
he showed that this class is given by

(1.6)


dt1
dz = a1t

2
1 + (λ− a1)(t1t2 + t1t3 − t2t3)

dt2
dz = a2t

2
2 + (λ− a2)(t2t3 + t2t1 − t3t1)

dt3
dz = a3t

2
3 + (λ− a3)(t3t1 + t3t2 − t1t2)

,

where, a1, a2, a3, λ are constants. He proved that the system (1.6) also satisfies the in-
variant property and it is in a direct relationship with the Gauss hypergeometric equation
(see [16]). One can see that the system (1.6) is equivalent to the system (1.1), when
a1 = a2 = a3 = 0 and λ = 1. If we look at the system (1.6) as a vector field in C3, then
it is a semi-complete vector field. In this context, an extension of Halphen vector field,
namely Halphen type vector field, was introduced by Adolfo Guillot in [14, 15].

In 1916 Ramanujan [24] introduced another system of differential equations as follow

(1.7) R :


dr1
dτ = r21 − 1

12r2
dr2
dτ = 4r1r2 − 6r3
dr3
dτ = 6r1r3 − 1

3r
2
2

,
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that is in a close relationship with Darboux-Halphen differential equation (1.1). He verified
that the Eisenstein series 2πi

12 E2(τ), 12(2πi12 )2E4(τ), 8(2πi12 )3E6(τ) satisfy (1.7), where

E2j(τ) := 1− 4j

B2j

∞∑
r=1

σ2j−1(r)q
r, q = e2πiτ ,

σi(n) :=
∑
d|n

di,

and Bk’s are Bernoulli’s numbers. In (1.9) we will see a relationship between the systems
of equations (1.1) and (1.7).

Calabi-Yau manifolds are defined as compact connected Kähler manifolds whose canon-
ical bundle is trivial, though many other equivalent definitions are sometimes used. They
were named ”Calabi-Yau manifold” by Candelas et al. (1985) [7] after E. Calabi (1954)
[4, 5], who first studied them, and S. T. Yau (1976) [27], who proved the Calabi conjecture
that says Calabi-Yau manifolds accept Ricci flat metrics. In this text, we suppose that for
an n-dimensional Calabi-Yau manifold hp,0 = 0, 0 < p < n, where hp,q refers to (p, q)-th
Hodge number of Calabi-Yau manifold (see §3). It is clear that the connectedness of a
Calabi-Yau manifold and the triviality of its canonical bundle imply that h0,0 = hn,0 = 1.
In order to explain the generalization of Darboux-Halphen-Ramanujan vector fields, DHR
for short, we consider the family of 1-dimensional Calabi-Yau manifolds, which are elliptic
curves, and for more details the reader refers to [23].

Let E be an elliptic curve over C. Then the Hodge filtration F •H1 of the first de
Rham cohomology group H1

dR(E) is given as follow,

{0} = F 2 ⊂ F 1 ⊂ F 0 = H1
dR(E), dimF i = 2− i,

where F 1 ⊂ H1
dR(E) includes classes of holomorphic closed 1-forms on E. Let T be the

moduli of the pair (E, [α1, α2]), in which α1 ∈ F 1, α2 ∈ F 0 \F 1, and the intersection form
matrix in αi’s is as follow

(〈αi, αj〉)1≤i,j≤2 =

(
0 1
−1 0

)
.

To be more precise, let E0 := E \{∞} be the affine curve that its Weierstrass presentation
is given as follow

E0 = {(x, y) ∈ C2| f(x, y) := y2 − 4(x− t1)3 + t2(x− t1) + t3 = 0}.

Then α1 and α2, resp., are induced by [dxy ] and [xdxy ], resp., where [dxy ] and [xdxy ] are

generators of the first de Rham cohomology H1
dR(E0) of the affine curve E0. Since

H1
dR(E) ∼= H1

dR(E0), it follows that α1 and α2 are generators of H1
dR(E); and hence

α1 ∧ α2 6= 0. It is seen that T is a 3-dimensional space, and there exist a unique vector
field H on T such that the composition of Gauss-Manin connection (see §3.1)

∇ : H1
dR(E/T)→ Ω1

T ⊗OT
H1

dR(E/T),

with H satisfies the following:

∇H

(
α1

α2

)
=

(
0 −1
0 0

)
.
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Roughly speaking, for y2 = 4(x − t1)(x − t2)(x − t3) we have T = TDH := {(t1, t2, t3) ∈
C3|t1 6= t2 6= t3} and H = DH is given by the following system

(1.8) DH :


dt1
dz = t1(t2 + t3)− t2t3
dt2
dz = t2(t1 + t3)− t1t3
dt3
dz = t3(t1 + t2)− t1t2

,

which is an special case of the system (1.6) introduced by Darboux-Halphen with a1 =
a2 = a3 = 0 and λ = 1. Or equivalently for y2 = 4(x − r1)3 + t2(x − r1) + r3 we obtain
T = TR := {(r1, r2, r3) ∈ C3|27r23 − r32 = 0}, and H = R is presented by system (1.7)
introduced by Ramanujan (for details see [23, Proposition 3.8]). The algebraic morphism
φ : TDH → TR defined by

(1.9) φ : (t1, t2, t3) 7→ (T, 4
∑

1≤i<j≤3
(T − ti)(T − tj), 4(T − t1)(T − t2)(T − t3)),

where T := 1
3(t1 + t2 + t3), connects two systems (1.7) and (1.8), i.e., φ∗DH = R.

After these works, H. Movasati [22] considered a one parameter family of Calabi-Yau
3-folds, which is known as the family of mirror quintic 3-folds, and studied on it. If W is
a mirror quintic 3-fold, then the Hodge filtration of H3

dR(W ) is given as follow

{0} = F 4 ⊂ F 3 ⊂ . . . ⊂ F 0 = H3
dR(W ), dimF i = 4− i.

The complex moduli of W is one dimensional that we parameterize it by z. There is
a nowhere vanishing holomorphic 3-form ω ∈ F 3 such that the Picard-Fuchs equation
associated with it is given by

L = ϑ5 − 55z(ϑ+
1

5
)(ϑ+

2

5
)(ϑ+

3

5
)(ϑ+

4

5
),

in which ϑ := ∇z ∂
∂z

is the composition of Gauss-Manin connection ∇ with the vector

field z ∂
∂z . Movasati treated on the moduli space T of the pair (W, [α1, α2, α3, α4]), where

αi ∈ F 4−i \ F 5−i, and the intersection form matrix in αi’s is given as follow

(〈αi, αj〉)1≤i,j≤4 =

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

He proved that T is a 7-dimensional space and there is a unique vector field H and a unique
meromorphic function y on T such that,

∇H

 α1

α2

α3

α4

 =

 0 1 0 0
0 0 y 0
0 0 0 −1
0 0 0 0


 α1

α2

α3

α4

 .

Indeed he expressed H and y explicitly, and he showed that y is related with the normal-
ized Yukawa coupling, whose was introduced by Candelas et al. in [6]. They computed
the coefficients of the q-expansion of the normalized Yukawa coupling for quintic 3-folds
in P4, that are conjectured to be the Gromov-Witten invariants of rational curves on a
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quintic 3-fold in P4.

After what we saw about the family of Calabi-Yau 1-folds and the family of mirror
quintic 3-folds, it is natural to ask whether there exist such a moduli space T and such
a vector field H in higher dimensions. In the present paper we give a positive answer to
this question. To do this, we fix an n-dimensional Calabi-Yau manifold W . We suppose
that the complex deformation of W is given by a one parameter family π : W → P of
n-dimensional Calabi-Yau manifolds, where P is a 1-dimensional quasi-projective variety
parameterized by z. Moreover, we assume that the n-th relative de Rham cohomology
group Hn

dR(W/P ) is n + 1-dimensional and the Picard-Fuchs equation L associated with
the unique nowhere vanishing holomorphic n-form ω ∈ Fn is given by

(1.10) L = ϑn+1 − an(z)ϑn − . . .− a1(z)ϑ− a0(z),

where F•Hn is the Hodge filtration of Hn
dR(W/P ), ϑ := ∇z ∂

∂z
and ai(z) ∈ Q(z), i =

0, 1, . . . , n. We provide the first result in the following proposition.

Proposition 1.1. The Picard-Fuchs equation L is self-dual.

Before stating the main theorem of this paper, we fix the (n + 1) × (n + 1) matrix Φ
as follow. If n is an odd integer, then set

(1.11) Φ :=

(
0n+1

2
Jn+1

2

−Jn+1
2

0n+1
2

)
,

where 0k, k ∈ N, denotes a k × k block of zeros, and Jk is the following k × k block

(1.12) Jk :=


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0

 .

If n is an even integer, then Φ := Jn+1. Also we suppose that F •Hn denotes the Hodge
filtration of Hn

dR(W ;C) given as follow:

F •Hn : {0} = Fn+1 ⊂ Fn ⊂ . . . ⊂ F 1 ⊂ F 0 = Hn
dR(W ;C).

Theorem 1.1. Let W be the Calabi-Yau n-fold given above and T be the moduli of
(W, [α1, α2, . . . , αn+1]), where {αi}n+1

i=1 is a basis of Hn
dR(W ;C) satisfying

(1.13) αi ∈ Fn+1−i \ Fn+2−i, i = 1, 2, . . . , n+ 1,

and the intersection form matrix in αi’s is subject to the condition:

(1.14) (〈αi, αj〉)1≤i,j≤n+1 = Φ.

Then there exist a unique vector field H and unique meromorphic functions yi, i =
1, 2, . . . , n − 2, on T such that the composition of Gauss-Manin connection ∇ with the
vector field H satisfies:

(1.15) ∇Hα = Y α,
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in which
α =

(
α1 α2 . . . αn+1

)t
,

and

(1.16) Y =



0 1 0 . . . 0 0
0 0 y1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . yn−2 0
0 0 0 . . . 0 −1
0 0 0 . . . 0 0


.

Moreover we have,

dimT =

{
(n+1)(n+3)

4 + 1; if n is odd
n(n+2)

4 + 1; if n is even
.

As we saw above, the system of ordinary differential equations given by H is an exten-
sion of systems of differential equations introduced by Darboux, Halphen and Ramanujan.

Definition 1.1. The vector field H introduced in Theorem 1.1, is called Darboux-Halphen-
Ramanujan, DHR for brevity, vector field.

The structure of this article is prepared as follow. First, in Section 2 we give an algo-
rithm to find the existence relationships among coefficients of a self-dual linear differential
equation of an arbitrary degree. In particular we provide these relationships in degrees
three and five. Section 3 contains a brief summary of some basic facts. After fixing some
notations and assumptions, the proof of Proposition 1.1 is given in §3.4. Finally, Section 4
is devoted to the proof of Theorem 1.1. In this section the proof is divided to the even case
and odd case depending to the dimension of Calabi-Yau manifold. And also we present
DHR vector field explicitly in dimensions three and five.

Remark 1.1. As we will see in §4, to prove Theorem 1.1 we introduce several matrices and
matrix equations. Recently we discovered that they are in a close relationship with Birkhoff
factorization given in quantum cohomology (see [13]). In fact, if we talk in physicists
language, our work is in B-model and the Birkhoff factorization is discussed in A-model
and mirror symmetry gives the existence relationships between them.

Acknowledgment. Here I would like to express my very great appreciation to Hossein
Movasati, my Ph.D. supervisor, who always was available and I used his valuable and
constructive suggestions and helps during the planning and development of this work. I
wish to thank IMPA for preparing such an excellent academic environment. This work has
been done during my Ph.D. and I am grateful to have economic supports of ”CNPq-TWAS
Fellowships Programme” during this period.

2 Self-Dual Linear Differential Equation

In this section by R we mean the simple commutative differential ring C[z], with quotient
field k := C(z) and derivative (.)′; and R[∂] is the ring of differential operators where ∂ is
the usual derivation ∂

∂z or logarithmic derivation z ∂
∂z . It is not difficult to check that k[ ∂∂z ]

and k[z ∂
∂z ] are isomorphic, hence we can freely switch between these two differential rings.

The pair (M,∂) refers to a differential R-module, i.e., M is a finitely generated R-module
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and ∂ : M → M is a map satisfying ∂(m + n) = ∂(m) + ∂(n) for every m,n ∈ M ; and
∂(fm) = f ′m + f∂(m) for every f ∈ R and every m ∈ M . For more details the reader
can see [25].

Definition 2.1. Let (M,∂) be a differential k-module. Then for each m ∈M we define the
evaluation map evm : k[∂]→M by

∑n
i=0 ai∂

i 7→
∑n

i=0 ai∂
im. The monic generator of the

kernel of evm as a left ideal is called the minimal operator of m over k[∂]. Furthermore, we
call m a cyclic vector of M if the degree of its minimal operator equals the k-dimension of
M , i.e. the set {m, ∂m, ..., ∂dimk(M)−1m} is a k-basis of M. We call a pair (M, e) consisting
of a differential module M and a cyclic vector e ∈M a marked differential module.

By a result due to N. Katz (see [25, § 2.1]), there is a one to one correspondence
between monic differential equations L ∈ k[∂] and marked differential modules (M, e).
More precisely, each differential k-module M has a cyclic vector, and in particular there
is a differential equation L ∈ k[∂] such that M is isomorphic to k[∂]/k[∂]L. Thus we can
assume L = ∂n+1 +

∑n
i=0 ai∂

i ∈ Q(z)[∂], is an irreducible monic differential equation and

(2.1) (ML, e) ∼= (C(z)[∂]/C(z)[∂]L, [1]),

is its corresponding marked differential C(z)-module. The dual equation Ľ of L is defined
as follow

(2.2) Ľ =
n+1∑
i=0

(−1)n−i∂iai, an+1 = 1.

Definition 2.2. It is said that L satisfies property (P), if there is a non-degenerate form
〈., .〉 : ML ×ML → C(z) such that

(i) 〈., .〉 is a (−1)n-symmetric form, i.e. 〈., .〉 ∈ HomC(z)[∂](Sym2ML,C(z)) if n is even,

and 〈., .〉 ∈ HomC(z)[∂](
∧2ML,C(z)) if n is odd.

(ii) 〈e, ∂ie〉 = 0 for i = 0, 1, . . . , n− 1.

We state a proposition that gives an equivalence condition for property (P) and for a
proof see [2]. Note that for ψ ∈ C(z), the operator ∂ψ is given as ∂ψ = ∂(ψ) + ψ∂, and
for convenient we denote by ψ′ = ∂(ψ), so ψ(i) = ∂(∂(. . . (∂︸ ︷︷ ︸

i−times

(ψ)) . . .)).

Proposition 2.1. The equation L satisfies the property (P) if and only if L is self-dual,
i.e., there is an 0 6= ψ ∈ C(z), such that

(2.3) Lψ = ψĽ.

Using Proposition 2.1, we give an algorithm to find the relationships that exist among
coefficients ai’s. Let L =

∑n+1
i=0 ai∂

i, with an+1 = 1, be a linear differential equation
satisfying property (P). Suppose that n = 2m or 2m+1, for a positive integer m. Then co-
efficients an−2, an−4, . . . , an−2m depend to the rest of the coefficients and their derivations.
First using the induction, one can easily verify that for ψ ∈ C(z)

∂jψ =

j∑
i=0

(
j
i

)
ψ(j−i)∂i.
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Therefore, it follows that

(2.4) Ľ =

n+1∑
i=0

n+1∑
j=i

(−1)n+1−j
(
j
i

)
a
(j−i)
j

 ∂i,

and

(2.5) Lψ =

n+1∑
i=0

n+1∑
j=i

(
j
i

)
ajψ

(j−i)

 ∂i.

If we substitute (2.4) and (2.5) in Lψ = ψĽ, then we have

(2.6)

n+1∑
i=0

n+1∑
j=i

(
j
i

)
ajψ

(j−i)

 ∂i =

n+1∑
i=0

ψ

n+1∑
j=i

(−1)n+1−j
(
j
i

)
a
(j−i)
j

 ∂i.

Now by comparing the coefficient of ∂n in (2.6), we express ψ′ and ψ(i)’s in terms of ψ,
an and derivations of an as follows

ψ′ = − 2

n+ 1
anψ,

ψ′′ =

(
(− 2

n+ 1
)2a2n −

2

n+ 1
a′n

)
ψ,(2.7)

ψ′′′ =

(
(− 2

n+ 1
)3a3n + 3(− 2

n+ 1
)2ana

′
n −

2

n+ 1
a′′n

)
ψ,

...

and we substitute ψ(i)’ in the left side of (2.6). In order to state an−2k, k = 1, 2, . . . ,m, as
an equation of an, an−1, an−3, . . . , an−(2k−1) and their derivations it is enough to compare

the coefficient of ∂n−2k of both sides of (2.6), which yields

n+1∑
j=n−2k

(
j

n− 2k

)
ajψ

(j−(n−2k)) =

 n+1∑
j=n−2k

(−1)n+1−j
(

j
n− 2k

)
a
(j−(n−2k))
j

ψ.

Therefore,

2an−2k =
n∑

j=n−2k+1

(−1)n+1−j
(

j
n− 2k

)
a
(j−(n−2k))
j

−
n+1∑

j=n−2k+1

(
j

n− 2k

)
aj(ψ

(j−(n−2k))/ψ).

For example if k = 1, then an−2 is given as follow

an−2 =
n− 1

n+ 1
an−1an −

n(n− 1)

2(n+ 1)
ana

′
n −

n(n− 1)

3(n+ 1)2
a3n +

(n− 1)

2
a′n−1 −

1

12
n(n− 1)a′′n.

As a result of this algorithm we provide the following lemma.

Lemma 2.1. Let L =
∑n+1

i=0 ai∂
i, with an+1 = 1, be a linear differential equation satisfying

property (P). Then followings hold:
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(i) If n = 3, then

a1 =
1

2
a2a3 −

3

4
a3a
′
3 −

1

8
a33 + a′2 −

1

2
a′′3.

(ii) If n = 5, then

a3 =
2

3
a4a5 −

5

3
a5a
′
5 −

5

27
a35 + 2a′4 −

5

3
a′′5,

a1 = a′2 − a′′′4 + a
(4)
5 − a

(2)
4 a5 − a′4a′5 +

5

3
a5(a

′
5)

2 +
1

3
a2a5

− 1

27
a4a

3
5 +

10

27
a35a
′
5 +

1

81
a55 −

1

3
a′4a

2
5 −

1

3
a4a5a

′
5 +

10

9
a25a
′′
5

+
10

3
a′5a
′′
5 −

1

3
a4a
′′
5 +

5

3
a5a
′′′
5 .

3 Picard-Fuchs Equation as a Self-Dual Linear Differential
Equation

In this section π : W → P refers to a family of n-dimensional compact Kähler mani-
folds, i.e., π is a holomorphic proper submersion of complex manifolds W and P such
that for any z ∈ P , Wz := π−1(z) is an n-dimensional compact Kähler manifold. If we
denote the k-th de Rham cohomology group of Wz by Hk

dR(Wz), then de Rham Lemma
gives the isomorphism Hk

dR(Wz) ∼= Hk(Wz,R), or equivalently Hk
dR(Wz;C) ∼= Hk(Wz,C)

where Hk
dR(Wz;C) denotes the complexified de Rham cohomology group. Here bk(Wz) :=

dimHk
dR(Wz;C) stands for the k-th betti number of Wz. Also by Hodge decomposition

theorem we have

(3.1) Hk
dR(Wz;C) =

⊕
p+q=k

Hp,q(Wz),

in which Hp,q(Wz) is (p, q)-th Dolbeault cohomology and by Dolbeault’s theorem we have
the isomorphism Hp,q(Wz) ∼= Hq(Wz,Ω

p
Wz

). We denote by hp,q(Wz) := dimHp,q(Wz),
that is called (p, q)-th Hodge number of Wz. By defining

F p(Wz) :=
⊕
p≤r≤n

Hr,n−r(Wz), 0 ≤ p ≤ n,

we yield the following decreasing filtration which is known as the Hodge filtration of
Hk

dR(Wz),

(3.2) F •Hk(Wz) : {0} = F k+1(Wz) ⊂ F k(Wz) ⊂ . . . ⊂ F 0(Wz) = Hk
dR(Wz;C).

We can consider the family W as a complex deformation of W := W0, 0 ∈ P . As one can
find in standard texts of complex geometry, e.g. [26], up to replacing P by a neighborhood
of the base point 0, bk(Wz) = bk(W ) and hp,q(Wz) = hp,q(W ) for any z ∈ P . Hence
simply we can write bk and hp,q instead of bk(Wz) and hp,q(Wz). Also one can see that
bk =

∑
p+q=k h

p,q, hp,q = hq,p and hp,q = hn−q,n−p.
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3.1 Gauss-Manin Connection and Griffiths Transversality

Consider the sheaf Rkπ∗CW on P , where CW is the constant sheaf on W with fibers C
and Rkπ∗ refers to k-th derived functor of the pushforward. For any z ∈ P , we have the
following presentation of the stalks of Rkπ∗CW

(Rkπ∗CW)z ' Hk(Wz,C)'Hk
dR(Wz;C).

Hence Rkπ∗CW is a locally constant sheaf on P . Formally speaking, Rkπ∗CW is the
sheaf associated to the presheaf U 7→ Hk(π−1(U),C) (see [12]). In fact, for a contractible
open subset U ⊂ P , by Ehresmann Lemma π−1(U) ∼= U × Wz for some z ∈ P , so
Hk(π−1(U),C) ' Hk(Wz,C). By defining

(3.3) Hk
dR(W/P ) := Rkπ∗CW ⊗C OP ,

which is a holomorphic vector bundle on P , then for any z ∈ P , Hk
dR(W/P )z ∼= Hk

dR(Wz;C).

Definition 3.1. The holomorphic vector bundle Hk
dR(W/P ) defined in (3.3) is called k-th

relative de Rham cohomology group. The unique integrable connection

∇GM : Hk
dR(W/P )→ Ω1

P ⊗OP
Hk

dR(W/P ),

whose flat sections coincides with Rkπ∗CW is known as Gauss-Manin connection.

For a vector field v on P , consider the map v⊗ Id : Ω1
P ⊗OP

Hk
dR(W/P )→ Hk

dR(W/P ).
Then by composing the Gauss-Manin connection ∇GM with v ⊗ Id we define

∇GM
v :Hk

dR(W/P )→ Hk
dR(W/P )(3.4)

∇GM
v := (v ⊗ Id) ◦ ∇GM.

From now on, if no confusion arises, we denote the Gauss-Manin connection by ∇ instead
of ∇GM.

Remark 3.1. The k-th relative de Rham cohomology groupHk
dR(W/P ) is locally free of fi-

nite rank, saym. Let {ωj}mj=1 be a local frame ofHk
dR(W/P ) and$ := (ω1 ω2 . . . ωm)t

be the matrix presentation of this frame, where t refers to the matrix transpose. Then we
define the matrix of Gauss-Manin connection, which is denoted by GM$, as follow

∇$ := (∇ω1 ∇ω2 . . . ∇ωm)t = GM$ ⊗$.

We are noting that for any z ∈ P and any j ∈ {1, 2, . . . ,m}, ωj(z) ∈ Hk
dR(Wz;C) and we

can present it by a k-form on Wz that we denote it also by ωj(z).

Each fiber Hk
dR(Wz;C) of Hk

dR(W/P ) has a Hodge filtration, and this yields a decreas-
ing filtration of Hk

dR(W/P ) by holomorphic subbundles

(3.5) F•Hk : {0} = Fk+1 ⊂ Fk ⊂ . . . ⊂ F1 ⊂ F0 = Hk
dR(W/P ),

such that for any z ∈ P and any p ∈ {0, 1, 2, . . . , k}

Fpz ∼= F p(Wz) =
⊕
p≤r≤k

Hr,k−r(Wz).

The filtration F•Hk given in (3.5), is also called Hodge filtration of Hk
dR(W/P ).

Theorem 3.1. (Griffiths transversality) Under above terminologies, following holds:

∇Fp ⊂ Ω1
P ⊗Fp−1, p = 1, 2, . . . k.
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3.2 Picard-Fuchs Equation

Here we consider the Hodge filtration F•Hn of Hn(W/P ) and fix the local section ω ∈ Fn;
indeed for any z ∈ P , ω(z) ∈ Hn,0(Wz) is a holomorphic n-form. Let D be the ring of
linear differential operators on P . If dimP = r and z1, z2, . . . , zr is a local coordinate of
(P, 0), then we have D = C(z1, z2, . . . , zr)[∂1, ∂2, . . . , ∂r], where C(z1, z2, . . . , zr) is the ring
of convergent power series of z1, z2, . . . , zr and ∂i = ∂

∂zi
. We define the OP -homomorphism

Ψ : D → Hn
dR(W/P ), which for vector fields v1, v2, . . . , vk on P is determined by

Ψ(v1v2 . . . vk) = ∇v1∇v2 . . .∇vkω.

By this definition, Ψ gives the structure of a D-module to Hn
dR(W/P ).

Definition 3.2. The ideal I = kerΨ, consist of differential operators that annihilate ω,
by definition is called Picard-Fuchs ideal and any L ∈ I is called a Picard-Fuchs equation.

Assumption 3.1. In what follows in this section, we suppose that W is a one parameter
family of n-dimensional compact Kähler manifolds, i.e., dimP = 1.

Let z be a coordinate of (P, 0) and define the differential operator ϑ := ∇z ∂
∂z

. Then

(Hn
dR(W/P ), ϑ) is a differential C(z)-module. Considering the terminologies introduced

in §2, we present the following definition of Picard-Fuchs equation.

Definition 3.3. Let W be a one parameter family of n-dimensional compact Kähler
manifolds and ω ∈ Hn

dR(W/P ) be a fixed non-zero element. Then the minimal operator
of ω is called the Picard-Fuchs equation associated with ω.

Assumption 3.2. From now on, we suppose that there exists a nowhere vanishing holo-
morphic n-form ω ∈ Fn such that the Picard-Fuchs equation L associated with it is of
order n+ 1 given as follow

(3.6) L = ϑn+1 − an(z)ϑn − . . .− a1(z)ϑ− a0(z),

where ai(z) ∈ Q(z), i = 0, 1, . . . , n. Therefore, by definition Lω = 0.

3.3 Intersection Form

For any α, ξ ∈ Hn
dR(W/P ), the intersection form of α and ξ by definition is

〈α, ξ〉(z) := Tr(α(z) ` ξ(z)), ∀z ∈ P,

in which ”`” refers to the cup product. In de Rham cohomology, the cup product of
differential forms is induced by the wedge product, hence in the family W the intersection
form is defined as follow

(3.7) 〈α, ξ〉(z) =

∫
Wz

α(z) ∧ ξ(z).

We state below a lemma that follows easily from properties of wedge product.

Lemma 3.1. Followings hold:

(i) 〈α, ξ〉 = (−1)n〈ξ, α〉, for any α, ξ ∈ Hn
dR(W/P ).

(ii) If F•Hn is the Hodge filtration of Hn
dR(W/P ), then

(3.8) 〈F i,F j〉 = 0, for i+ j ≥ n+ 1.

11



3.4 Self-Duality

Here we give the proof of Proposition 1.1. First we fix following notation.

Notation 3.1. By notation, for i = 1, . . . , n+ 1, we define ωi := ϑi−1ω.

We know that ω1 = ω ∈ Fn, hence by Griffiths transversality ωi ∈ F (n+1)−i. Therefore,
Lemma 3.1(ii) implies that

〈ω1, ωi〉 = 0, i = 1, 2, . . . , n.

One can find in [1, § 4.5] that

(3.9) 〈ω1, ωn+1〉(z) = c0 exp

(
− 2

n+ 1

∫ z

0
an(v)

dv

v

)
,

for some nonzero constant c0. If we denote by ã(z) := c0 exp
(
− 2
n+1

∫ z
0 an(v)dvv

)
, then for

any i ∈ {1, . . . , n}

(3.10) 〈ωi, ωn+2−i〉 = (−1)i−1ã.

To see this, first note that by Lemma 3.1(ii) we have 〈ωj+1, ωn−j〉 = 0, j = 0, 1, . . . , n−1.
On the other hand we know that

ϑ〈ωj+1, ωn−j〉 = 〈ϑωj+1, ωn−j〉+ 〈ωj+1, ϑωn−j〉 = 〈ωj+2, ωn−j〉+ 〈ωj+1, ωn−j+1〉 = 0,

where in the first side of above equation by ϑ we mean the usual derivation operator z ∂
∂z .

Thus we obtain 〈ωj+2, ωn−j〉 = −〈ωj+1, ωn−j+1〉, from which follows (3.10).

Proposition 3.1. Let F•Hn be the Hodge filtration of Hn
dR(W/P ). Then dimHn

dR(W/P ) =
n+ 1 if and only if dimF i/F i+1 = 1 for any i ∈ {0, 1, . . . , n}.

Proof. If dimF i/F i+1 = 1, then it is evident that dimHn
dR(W/P ) = n+1. Conversely

suppose that dimHn
dR(W/P ) = n + 1. Then it is enough to prove that dimF i/F i+1 6=

0. By (3.9) we know that 〈ω1, ωn+1〉 6= 0, hence Lemma 3.1(ii) implies that ωn+1 ∈
F0 \ F1. Now to prove dimF i/F i+1 6= 0, by contradiction suppose that there is a j ∈
{1, 2, 3, . . . , n − 1} such that dimF j/F j+1 = 0, and hence F j+1 = F j . We know that
ω(n+1)−j ∈ F j , thus by Griffiths transversality ω(n+1)−j+1 = ϑω(n+1)−j ∈ F j+1 = F j .
Again by using of Griffiths transversality we obtain that ω(n+1)−j+2 ∈ F j . By continuing
this process it follows that ωn+1 ∈ F j , which contradicts ωn+1 ∈ F0 \ F1. �

Assumption 3.3. In the rest of this section we assume that for any i ∈ {0, 1, . . . , n},
dimF i/F i+1 = 1, or equivalently dimHn

dR(W/P ) = n+ 1.

Remark 3.2. Assumption 3.3 yields that dimF i = (n+ 1)− i, i = 0, 1, . . . , n+ 1. It is
equivalent to say dim hi,j(Wz) = 1 for any z ∈ P and any non-negative integers i, j with
i+ j = n.

Proposition 3.2. The set {ω1, ω2, . . . , ωn+1} construct a frame for Hn
dR(W/P ) such that

for any i ∈ {1, 2, . . . , n+ 1},

(3.11) ωi ∈ F (n+1)−i \ F (n+2)−i.

12



Proof. We know that dimHn
dR(W/P ) = n+1, hence it is enough to show that for any

z, the set {ω1(z), ω2(z), . . . , ωn+1(z)} is linearly independent. To this end, suppose that
there are constants b1, b2, . . . , bn+1 such that b1ω1(z) + b2ω2(z) + . . .+ bn+1ωn+1(z) = 0. If
we set k := max{i | bi 6= 0, i = 1, 2, . . . , n+ 1}, then we can write

ωk(z) = c1ω1(z) + c2ω2(z) + . . .+ ck−1ωk−1(z),

in which ci = bi
bk

. By intersecting ωk with ωn+2−k, and using Lemma 3.1(ii) we have

〈ωk, ωn+2−k〉(z) = c1(z)〈ω1, ωn+2−k〉(z) + . . .+ ck−1(z)〈ωk−1, ωn+2−k〉(z) = 0.

On account of (3.10) we get 〈ωk, ωn+2−k〉(z) 6= 0, which is an contradiction. Thus for any
i ∈ {1, 2, . . . , n+ 1}, bi = 0.
To prove (3.11), first note that Griffiths transversality implies that ωi ∈ F (n+1)−i, i =
1, 2, . . . , n + 1. On the other hand, since dimF (n+2)−i = i − 1 and {ω1, ω2, . . . , ωi} is an
independent subset of Hn

dR(W/P ), it follows that ωi /∈ F (n+2)−i. �

Finally in the following proposition we give the proof of Proposition 1.1.

Proposition 3.3. The picard-Fuchs equation L satisfies the property (P), or equivalently
L is self-dual.

Proof. Consider the intersection form defined as follow

〈., .〉 : Hn
dR(W/P )×Hn

dR(W/P )→ C(z).

Equation (3.10) implies that 〈., .〉 is non-degenerate, and the Lemma 3.1(i) verifies that
〈., .〉 is a (−1)n-symmetric form. Lemma 3.1(ii) guaranties that in frame {ω, ϑω, . . . , ϑnω}
we have,

〈ω, ϑiω〉 = 0, for i = 0, 1, . . . , n− 1.

Hence by Definition 2.2, L satisfies the property (P). This is equivalent with self-duality
of L by Proposition 2.1. �

4 Darboux-Halphen-Ramanujan Vector Field

In this section π : W → P refers to a one parameter family of n-dimensional Calabi-Yau
manifolds, or equivalently it is a complex deformation of an n-dimensional Calabi-Yau
manifold W := W0. Let z be a local coordinate of (P, 0). Then for any z ∈ P , Wz is a
Calabi-Yau n-fold. We know that Calabi-Yau manifold W is a compact Kähler manifold
whose, up to multiplication by a constant, has a unique nowhere vanishing holomorphic n-
form ω ∈ Hn,0(W ). Thus, there is a holomorphic section of Hn

dR(W/P ) that at 0 coincides
with ω and we denote it also by ω. Hence ω ∈ Fn, where F•Hn is the Hodge filtration
of Hn

dR(W/P ), and ω(z) ∈ Hn,0(Wz) is a nowhere vanishing holomorphic n-form of Wz

for any z. In this section we fix ω ∈ Fn and suppose that ω satisfies Assumption 3.2
and F•Hn satisfies Assumption 3.3. Throughout this section, we employ the notations of
pervious sections.
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Example 4.1. By now, as I know, there are 14 examples of one parameter families of
Calabi-Yau 3-folds satisfying the hypothesis of W given above. Any of these 14 families
is mirror symmetry of 14 structures given in Table 1. In this table X(d1, d2, . . . , dr) ⊂
Ps(l0, l1, . . . , ls) refers to the complete intersection of r hypersurfaces of degree d1, d2, . . . , dr
in weighted projective space Ps(l0, l1, . . . , ls) with r ≤ s, such that

∑r
i=1 di =

∑s
j=0 lj. The

Picard-Fuchs equation L associated with the nowhere vanishing holomorphic 3-form of any
of these families is a hypergeometric equation given as follow:

(4.1) L = ϑ4 − cz(ϑ+ r1)(ϑ+ r2)(ϑ+ 1− r2)(ϑ+ 1− r1),

where r1, r2, c are given in Table 1. Note that ] 1 is the family of quintic 3-folds that we
pointed it out in §1. For more details one can see the references given in Table 1.

] r1 r2 c Structure References

1 1/5 2/5 55 X(5) ⊂ P4 [6, 11]

2 1/6 2/6 2536 X(6) ⊂ P4(2, 1, 1, 1, 1) [21]

3 1/8 3/8 218 X(8) ⊂ P4(4, 1, 1, 1, 1) [21]

4 1/10 3/10 2956 X(10) ⊂ P4(5, 2, 1, 1, 1) [21]

5 1/3 1/3 36 X(3, 3) ⊂ P5 [20]

6 1/4 2/4 210 X(2, 4) ⊂ P5 [20]

7 1/3 1/2 2433 X(2, 2, 3) ⊂ P6 [20]

8 1/2 1/2 28 X(2, 2, 2, 2) ⊂ P7 [20]

9 1/4 1/4 212 X(4, 4) ⊂ P5(2, 2, 1, 1, 1, 1) [19]

10 1/6 1/6 2836 X(6, 6) ⊂ P5(3, 3, 2, 2, 1, 1) [19]

11 1/4 1/3 2633 X(3, 4) ⊂ P5(2, 1, 1, 1, 1, 1) [19]

12 1/6 3/6 2833 X(2, 6) ⊂ P5(3, 1, 1, 1, 1, 1) [19]

13 1/6 1/4 21033 X(4, 6) ⊂ P5(3, 2, 2, 1, 1, 1) [19]

14 1/12 5/12 126 X(2, 12) ⊂ P5(6, 4, 1, 1, 1, 1) [10]

Table 1: Calabi-Yau 3-folds [8]

Hodge filtration of Hn
dR(W/P ) is as follow

(4.2) F•Hn : {0} = Fn+1 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0 = Hn
dR(W/P ), dimF i = (n+ 1)− i,

and as we saw in Proposition 3.2, {ω1, ω2, . . . , ωn+1} construct a frame of Hn
dR(W/P ) such

that

(4.3) ωi ∈ F (n+1)−i \ F (n+2)−i.

By using of Picard-Fuchs equation (3.6) we have

(4.4) ϑn+1ω = ϑωn+1 = a0ω1 + a1ω2 + . . .+ anωn+1.

Hence, considering Remark 3.1, if we apply the Gauss-Manin connection to the column of
n-forms $ =

(
ω1 ω2 . . . ωn+1

)t
, then

(4.5) ∇$ = GM$ ⊗$,

where

(4.6) GM$ =
1

z



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
a0 a1 a2 . . . an−1 an


dz.
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To see this, for j = 1, 2, . . . , n, we have

z∇ ∂
∂z
ωj = ∇z ∂

∂z
ωj = ϑωj = ωj+1 =⇒ ∇ωj =

1

z
dz ⊗ ωj+1.

Analogously, on account of (4.4), for ωn+1 we obtain ∇ωn+1 = 1
z

n∑
i=0

aidz ⊗ ωi+1.

In this section we are going to prove Theorem 1.1. In order to do this, we will treat
with intersection form, but because of different behaviors of intersection form for odd or
even integer n, see Lemma 3.1(i), we separate the cases for odd and even integers. First,
we state the results in the odd case in §4.1. In particular for n = 3, 5 we give an explicit
computation of results in §4.4 and §4.3.

4.1 Odd Case

In the whole of this subsection n is considered to be an odd positive integer. If we define
the intersection form matrix as follow

(4.7) Ω = (Ωij)1≤i,j≤n+1 := (〈ωi, ωj〉)1≤i,j≤n+1 ,

then Lemma 3.1(i) implies that Ωt = −Ω, and hence Ωii = 0, i = 1, 2, . . . , n+ 1. Lemma
3.1(ii) yields Ωij = 〈ωi, ωj〉 = 0 for i+j ≤ n+1, and by (3.10) we find Ωi(n+2−i) = (−1)i−1ã
for any i = 1, 2, . . . , n+ 1. Therefore, we can state the matrix Ω as follow

(4.8) Ω =


0 0 . . . 0 ã
0 0 . . . −ã Ω2(n+1)

...
... . .

. ...
...

0 ã . . . 0 Ωn(n+1)

−ã −Ω2(n+1) . . . −Ωn(n+1) 0

 .

Definition 4.1. We say that a basis {α1, α2, . . . , αn+1} of Hn
dR(W ;C) is compatible with

its Hodge filtration, if for any i ∈ {1, 2, . . . , n+ 1}

(4.9) αi ∈ Fn+1−i \ Fn+2−i.

Next we introduce a special moduli space of Calabi-Yau manifold W that in the rest
of this text will be in interest. To do this, we first provide an equivalence relation.

Definition 4.2. Let W1,W2 be two Calabi-Yau n-folds and {αi1, αi2, . . . , αin+1} be a basis
of Hn

dR(Wi;C), i = 1, 2, compatible with its Hodge filtration. Then we write

(4.10) (W1, [α
1
1, α

1
2, . . . , α

1
n+1]) ∼ (W2, [α

2
1, α

2
2, . . . , α

2
n+1])

if and only if there exist a biholomorphism ϕ : W1 → W2 such that ϕ∗(α2
j ) = α1

j , j =
1, 2, . . . , n+1. It is obvious that ”∼” is an equivalence relation. For the Calabi-Yau n-fold
W , and a basis {αi}n+1

i=1 of Hn
dR(W ;C) compatible with its Hodge filtration, the moduli

space T̃ of pair (W, [α1, α2, . . . , αn+1]) is defined under above equivalence relation (4.10).

Remark 4.1. We know that the family π : W → P is the complex deformation of W .
Hence for any different z1, z2 ∈ P , Wz1 andWz2 are not biholomorph. We thus have two dif-
ferent members (Wz1 , [ω1(z1), ω2(z1), . . . ωn+1(z1)]) and (Wz2 , [ω1(z2), ω2(z2), . . . ωn+1(z2)])
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of moduli space T̃. Also suppose that {µi}n+1
i=1 and {νi}n+1

i=1 are two bases of Hn
dR(W ;C)

compatible with its Hodge filtration. If for any

ϕ ∈ Aut(W ) := {f : W →W | f is a biholomorphism},

it does not preserve the bases, i.e., there exist a j ∈ {1, 2, . . . , n + 1} such that ϕ∗νj 6=
µj , then (W, [µ1, µ2, . . . , µn+1]) and (W, [ν1, ν2, . . . , νn+1]) yield two different elements of
moduli space T̃.

As we fixed in the beginning of this section, for any z ∈ P , {ω1(z), ω2(z), . . . , ωn+1(z)}
construct a basis for Hn

dR(Wz,C) that is compatible with its Hodge filtration. By abuse
of notation, we remove the letter z from this basis and denote it by {ω1, ω2, . . . , ωn+1},
and hence (Wz, [ω1, ω2, . . . ωn+1]) ∈ T̃. Let S be the change of basis matrix α = S$,
where {αi}n+1

i=1 is a basis of Hn
dR(Wz;C) compatible with its Hodge filtration, and α =(

α1 α2 . . . αn+1

)t
. Then (4.3) and (4.9) imply that S is a lower triangular matrix

which we consider it as follow

(4.11) S =


s11 0 0 . . . 0
s21 s22 0 . . . 0
s31 s32 s33 . . . 0
...

...
...

. . .
...

s(n+1)1 s(n+1)2 s(n+1)3 . . . s(n+1)(n+1)

 .

Hence the entries of S present coordinates of a chart of T̃ that we will employ it soon.

Lemma 4.1. Let {αi}n+1
i=1 be a frame of Hn

dR(W/P ) compatible with its Hodge filtration.

(i) If we define Ψ := (〈αi, αj〉)1≤i,j≤n+1, then Ψ = SΩSt.

(ii) If we set ∇α = GMα ⊗ α, then

(4.12) GMα = (dS + S.GM$)S−1,

where

(4.13) dS =


ds11 0 0 . . . 0
ds21 ds22 0 . . . 0
ds31 ds32 ds33 . . . 0

...
...

...
. . .

...
ds(n+1)1 ds(n+1)2 ds(n+1)3 . . . ds(n+1)(n+1)

 .

Proof.

(i) By using of α = S$, verifying Ψ = SΩSt is an easy exercise of linear algebra.

(ii) If we apply the Gauss-Manin connection to the equation α = S$, and considering
∇$ = GM$ ⊗$, then we have

∇α = dS ⊗$ + S∇$ = (dS + S.GM$)⊗$
= (dS + S.GM$)S−1 ⊗ α,

which completes the proof. �

Following proposition give a more important step of the proof of Theorem 1.1.
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Proposition 4.1. Let T̃ be the moduli of (W, [α1, α2, . . . , αn+1]), where {αi}n+1
i=1 is a basis

of Hn
dR(W ;C) compatible with its Hodge filtration. Then there exist a unique vector field

H̃ and unique meromorphic functions yi, i = 1, 2, . . . , n− 2, on T̃ such that

(4.14) ∇H̃α = Y α,

in which α =
(
α1 α2 . . . αn+1

)t
, and Y is given by (1.16).

Proof. The idea of the proof is to present the vector field H̃ explicitly in a chart
of T̃. It is easily seen that the dimension of T̃ is k + 1, where k = (n+1)(n+2)

2 . For any

(Wz, [α1, α2, . . . , αn+1]) ∈ T̃, let S be the change of basis matrix α = S$ given in (4.11).
We consider the chart t = (t0, t1, . . . , tk) of T̃, for which the coordinates are defined as
t0 = z, t1 = s11, t2 = s12, . . . , tk = s(n+1)(n+1). We suppose that the vector field H̃ is given
as follow

H̃ =
k∑
i=0

H̃i(t)
∂

∂ti
,

where H̃i’s, i = 0, 1, . . . , k, are meromorphic functions on T̃. Since H̃ satisfies ∇H̃α = Y α,
Lemma 4.1(ii) implies that

(4.15) (dS + S.GM$)S−1(H̃) = Y.

We have S.GM$(H̃) = żS.ĜM$, where ż(t) := H̃0(t) and ĜM$ is defined by GM$ =

ĜM$dz. Also if we define ṡ11(t) := H̃1(t), ṡ21(t) := H̃2(t), . . . , ṡ(n+1)(n+1)(t) := H̃k(t),

then we have dS(H̃) = Ṡ, where

(4.16) Ṡ =


ṡ11 0 0 . . . 0
ṡ21 ṡ22 0 . . . 0
ṡ31 ṡ32 ṡ33 . . . 0
...

...
...

. . .
...

ṡ(n+1)1 ṡ(n+1)2 ṡ(n+1)3 . . . ṡ(n+1)(n+1)

 .

Therefore (4.15) gives (Ṡ + żS.ĜM$)S−1 = Y, which yields

(4.17) Ṡ = Y S − żS.ĜM$.

Consequently we can find ż (or H̃0) and yi’s (that we state them in Lemma 4.2 below).
Hence all the terms of the right hand side of (4.17) are determined, from which we can find
H̃i’s, i = 1, 2, . . . , k. Thus, the existence of vector field H̃ that satisfies (4.14) is verified.
The uniqueness of H̃ and yi’s follow from Lemma 4.2(i),(ii). �

The proof of Proposition 4.1, implies more results about entries of Y that we express
them in a lemma below. Before that, we provide the following fact as a remark.

Remark 4.2. Since the matrix S is the change of basis matrix, it is invertible; thus for
any 1 ≤ i ≤ n+ 1, sii 6= 0.

Lemma 4.2. The equation

(4.18) Ṡ = Y S − żS.ĜM$,

implies that:
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(i) ż = zs22
s11

=
zs(n+1)(n+1)

snn
.

(ii) yi−1 = s22sii
s11s(i+1)(i+1)

, for all i = 2, 3, . . . , n− 1.

(iii) Moreover, if SΩSt = Φ, then yi−1 = −yn−i, for i 6= n+1
2 ; and

yn−1
2

= (−1)
n+3
2

ãs22s
2
n+1
2

n+1
2

s11
.

In the other word

(4.19) Y Φ = −ΦY t.

Proof. Let’s define B = (bij)1≤i,j≤n+1 := Y S − żS.ĜM$.

(i) The equation (4.18) implies that b12 = s22 − ż
zs11 = 0 and bn(n+1) = s(n+1)(n+1) −

ż
zsnn = 0, which prove (i).

(ii) The proof of (ii) follows from (i) and bi(i+1) = yi−1s(i+1)(i+1) − ż
zsii = 0, i =

2, 3, . . . , n− 1.

(iii) Let’s define C = (cij)1≤i,j≤n+1 := SΩSt. Then equation C = Φ yields ci(n+2−i) =

(−1)i+1ãsiis(n+2−i)(n+2−i) = 1, i = 1, 2, . . . , n+1
2 , from which we obtain

(4.20) s(n+2−i)(n+2−i) = (−1)i+1 1

ãsii
, i = 1, 2, . . . ,

n+ 1

2
.

Thus,
sii

s(i+1)(i+1)
= −

s(n+1−i)(n+1−i)

s(n+2−i)(n+2−i)
, i = 1, 2, . . . ,

n− 1

2
.

Therefore, on account of (ii) the proof of (iii) is complete.

�

Lemma 4.3. Let A := zĜM$. Then following equation holds:

(4.21) ϑΩ = AΩ + ΩAt.

Proof. By using of the fact ϑ〈ωi, ωj〉 = 〈ϑωi, ωj〉 + 〈ωi, ϑωj〉 and Picard-Fuchs equa-
tion (4.4), the proof is an easy exercise of linear algebra. �

Finally, we are now in a position that can prove Theorem 1.1.

Proof of Theorem 1.1. Let T̃ be the moduli space introduced in Proposition 4.1,
and suppose that (Wz, [α1, α2, . . . , αn+1]) ∈ T̃ is an arbitrary element. As we saw in the
proof of Proposition 4.1, there exist the matrix S such that

(〈αi, αj〉)1≤i,j≤n+1 = SΩSt.

Define the vector subspace M ⊂ Matn+1(C) to be

M := {B = (bij)1≤i,j≤n+1 ∈ Matn+1(C)| bij = 0, if i ≤ n+ 1− j}.
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If we define the map f as follow

f : T̃→M

f( Wz, [α1, α2, . . . , αn+1]) = SΩSt,

then T = f−1(Φ). Hence T is a subspace of T̃ and to prove the existence of vector field
H on T, it is enough to show that the vector field H̃, which was introduced in Proposition
4.1, is tangent to T and define H := H̃|T. To demonstrate the tangency of H̃ to T , it
suffices to prove that df |T(H̃) = 0, or equivalently verify that

(4.22) (ṠΩSt + SΩ̇St + SΩṠt)|T = 0,

in which Ω̇ = dΩ(H̃). Since Ω just depends to z, it follows that Ω̇ = ż ∂
∂zΩ. By using of

Lemma 4.3 it is deduced that

Ω̇ =
ż

z
(AΩ + ΩAt) = ż(ĜM$Ω + ΩĜM

t

$).

On the other hand as we saw in (4.17), Ṡ = Y S − żS.ĜM$, hence

ṠΩSt + SΩ̇St + SΩṠt = Y SΩSt + SΩStY t.

Since SΩSt|T = Φ, by using of Lemma 4.2(iii) we get

(ṠΩSt + SΩ̇St + SΩṠt)|T = (Y SΩSt + SΩStY t)|T = (Y Φ + ΦY t)|T = 0,

and the proof of existence of H is complete.
To prove the uniqueness, first notice that Lemma 4.2(ii) guaranties the uniqueness of

yi’s. Hence we just need to prove that the vector field H is unique. Suppose that there are
two vector fields H1 and H2 such that ∇Hi

α = Y α, i = 1, 2. If we set R := H1 − H2, then

(4.23) ∇Rα = 0.

We need to prove that R = 0, and to do this it is enough to verify that any integral curve
of R is a constant point. Assume that γ is an integral curve of R given as follow

γ : (C, 0)→ T; x 7→ γ(x).

Let’s denote C := γ(C, 0) ⊂ T. We know that the members of T are in the form of

the pairs (Ŵ , [α1, α2, . . . , αn+1]), where Ŵ is a Calabi-Yau manifold of the family W,

and {αi}n+1
i=1 form a basis of Hn

dR(Ŵ ;C) that is compatible with its Hodge filtration and
has constant intersection form matrix Φ. Thus, for any x ∈ (C, 0), we have γ(x) =

(Ŵ (x), [α1(x), α2(x), . . . , αn+1(x)]), and the vector field R on C is reduced to ∂
∂x as well.

We know that Ŵ (x) depends only on the parameter z, and hence x holomorphically
depends to z. From this we obtain a holomorphic function f such that x = f(z). We now
proceed to prove that f is constant. Otherwise, by contradiction suppose that f ′ 6= 0.
Then we get

(4.24) ∇ ∂
∂x
α1 =

∂z

∂x
∇ ∂

∂z
α1.

Equation (4.23) gives that ∇ ∂
∂x
α1 = 0, but since α1 = s11ω1, it follows that the right

hand side of (4.24) is not zero, which is a contradiction. Thus f is constant and Ŵ (x)
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does not depend on the parameter x. Since Ŵ (x) = Ŵ does not depend on x, we
can write the Taylor series of αi(x), i = 1, 2, 3, . . . , n + 1, in x at some point x0 as

αi(x) =
∑

j(x − x0)jαi,j , where αi,j ’s are elements in Hn
dR(Ŵ ;C) independent of x. In

this way the action of ∇ ∂
∂x

on αi is just the usual derivation ∂
∂x . Again according to (4.23)

we yield ∇ ∂
∂x
αi = 0, and we conclude that αi’s also do not depend on x. Therefore, the

image of γ is a point.
To prove that dimT = (n+1)(n+3)

4 + 1, it is enough to observe that SΩSt = Φ gives
(n+1)(n+3)

4 independent equations and that W is a one parameter family. �

Remark 4.3. Let m := (n+1)(n+3)
4 and fix m entries of S. By notation we denote them

by t1, t2, . . . , tm and call them independent entries of S. The matrix equation SΩSt = Φ

yields (n+1)2

4 independent equations that express the rest of entries of S, what we shall
call dependent entries, in terms of ti’s. For instance, suppose that sab is a dependent entry
of S and SΩSt = Φ gives the expression sab = ϕ(t1, t2, . . . , tm). We can obtain ṡab in the
following two ways:

(i) On account of sab = ϕ(t1, t2, . . . , tm), we first get

(4.25) ṡab =

m∑
i=1

ṫi
∂ϕ

∂ti
,

and then substitute ṫi’s from Ṡ = Y S − żS.ĜM$ in (4.25).

(ii) We first find ṡab directly from Ṡ = Y S − żS.ĜM$, and then using SΩSt = Φ to
express ṡab just in terms of ti’s.

We say that the equations SΩSt = Φ and Ṡ = Y S− żS.ĜM$ are compatible if (i) and (ii)
give the same result for ṡab. We are now in a position to introduce a chart of T, where ti’s
are its coordinates. In order to this, let t0 := z. Then t = (t0, t1, . . . , tm) gives a chart for
T that we will work explicitly with it in §4.3 and §4.4.

The corollary stated below, is an immediate result of Theorem 1.1.

Corollary 4.1. The equations SΩSt = Φ and Ṡ = Y S − żS.ĜM$ are compatible on T.

Conversely, one can find that the compatibility of equations SΩSt = Φ and Ṡ =
Y S − żS.ĜM$ implies the existence and uniqueness of DHR vector field. We see this
clearly in §4.3 and §4.4, where we compute DHR vector field explicitly.

4.2 Even Case

During this subsection n refers to an even positive integer. As we mentioned before,
the difference of even case with the odd case is just the symmetry of intersection form.
Lemma 3.1 implies that in the odd case the intersection form matrix is anti-symmetric,
but in the even case it is symmetric. Hence, in this section we follow all the notations and
definitions of §4.1, except the concepts related with intersection form. In particular the
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matrix Ω = (Ωij)1≤i,j≤n+1 := (〈ωi, ωj〉)1≤i,j≤n+1 , is given as follow,

(4.26) Ω =



0 0 . . . 0 a
0 0 . . . −a Ω2(n+1)

...
...

. .
.

Ωll = (−1)
n
2 a

. .
.

...
...

0 −a . . . Ωnn Ωn(n+1)

a Ω2(n+1) . . . Ωn(n+1) Ω(n+1)(n+1)


,

in which l = n
2 +1. Almost all results of odd case are valid in even case. More precisely, we

can repeat Lemma 4.1, Proposition 4.1 and Lemma 4.3 exactly the same. But for Lemma
4.2, (i) and (ii) are valid, and (iii) holds with some changes that we rewrite it as follow.

Lemma 4.4. The equation Ṡ = Y S − żS.GM$, implies that,

(iii) Moreover, if SΩSt = Φ, then yi−1 = −yn−i, for i = 2, 3, . . . , n2 . In the other word
Y Φ = −ΦY t.

Therefore to prove Theorem 1.1 in the even case, we can proceed analogously to the
proof of the odd case.

Remark 4.4. If we are more exact on the dimension of moduli space T in the even case
and odd case, then we find a nice relationship between them. Let T be the moduli space
given in Theorem 1.1 associated with a Calabi-Yau n-fold, where n is even, and T′ be the
moduli space associated with a Calabi-Yau (n− 1)-fold. Then we have

dimT =
n(n+ 2)

4
+ 1 =

((n− 1) + 1)((n− 1) + 3)

4
+ 1 = dimT′.

Thus, one of my interest for future works is to find more relationships between structures
of T and T′.

4.3 Five-Dimensional Case

In this subsection we give an explicit presentation of DHR vector field H, and in particular
we verify its uniqueness by using of self-duality of Picard-Fuchs equation. Here we are
following the notations and terminologies of §4.1 for n = 5.

The Picard-Fuchs equation (3.6) associated with the fixed nowhere vanishing holomor-
phic 5-form ω ∈ F5 reduces to

(4.27) L = ϑ6 − a0(z)− a1(z)ϑ− a2(z)ϑ2 − a3(z)ϑ3 − a4(z)ϑ4 − a5(z)ϑ5.

Lemma 4.5. The coefficients ai’s of L given in (4.27) satisfy following equations:

(4.28)

a3 = −2
3a4a5 + 5

3a5ϑa5 −
5
27a

3
5 − 5

3ϑ
2a5 + 2ϑa4,

a1 = ϑa2 − ϑ3a4 + ϑ4a5 + ϑ2a4a5 + ϑa4ϑa5 + 5
3a5(ϑa5)

2 − 1
3a2a5

+ 1
27a4a

3
5 − 10

27a
3
5ϑa5 + 1

81a
5
5 − 1

3ϑa4a
2
5 − 1

3a4a5ϑa5 + 10
9 a

2
5ϑ

2a5
−10

3 ϑa5ϑ
2a5 + 1

3a4ϑ
2a5 − 5

3a5ϑ
3a5.
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Proof. By Proposition 3.3 the Picard-Fuchs equation (4.27) is self-dual, and the
proof follows from Lemma 2.1(ii) . �

In the following proposition we compute all entries of the intersection matrix in the
case n = 5.

Proposition 4.2. The intersection form matrix Ω := (〈ωi, ωj〉)1≤i,j≤6, is given by

(4.29) Ω =


0 0 0 0 0 ã
0 0 0 0 −ã Ω26

0 0 0 ã Ω35 Ω36

0 0 −ã 0 Ω45 Ω46

0 ã −Ω35 −Ω45 0 Ω56

−ã −Ω26 −Ω36 −Ω46 −Ω56 0

 ,

where ã = c0 exp
(
1
3

∫ z
0 a5(v)dvv

)
for some nonzero constant c0, and

Ω26 = − 2
3 ãa5, Ω35 = 1

3 ãa5,

Ω36 = ãa4 + 4
9 ãa

2
5 − 2

3 ãϑa5, Ω45 = −ãa4 − 1
3 ãa

2
5 + ãϑa5,

Ω46 = −ãa3 − ãa4a5 − 8
27 ãa

3
5 + ãϑa4 + 4

3 ãa5ϑa5 −
2
3 ãϑ

2a5,

Ω56 = ãa2 + 2
3 ãa3a5 + ãa24 + ãa4a

2
5 + 16

81 ãa
4
5 − ãϑa3 − 5

3 ãa5ϑa4 −
16
9 ãa

2
5ϑa5

−2ãa4ϑa5 + 4
3 ã(ϑa5)2 + ãϑ2a4 + 16

9 ãa5ϑ
2a5 − 2

3 ãϑ
3a5.

Proof. On account of (4.8) we get that the matrix Ω is given by (4.29), and we just
need to find the entries Ω26,Ω35,Ω36,Ω45,Ω46,Ω56. In order to do this, we first easily see
that ϑã = 1

3 ãa5. By Picard-Fuchs equation (4.27) we obtain

(4.30) ϑω6 = ϑ6ω = a0ω1 + a1ω2 + a2ω3 + a3ω4 + a4ω5 + a5ω6.

Since 〈ω1, ω6〉 = ã, by considering (4.30) and the fact that 〈ω1, ωi〉 = 0, for i = 1, 2, . . . , 5,
we find Ω26 as follow:

ϑ〈ω1, ω6〉 = 〈ω2, ω6〉+ 〈ω1, ϑω6〉

⇒ Ω26 = ϑã− ãa5 ⇒ Ω26 = −2

3
ãa5.

We can find the rest of entries similarly and we just do that for Ω56,

Ω56 = ϑΩ46 − 〈ω4, ϑω6〉 = ϑΩ46 − a2Ω43 − a4Ω45 − a5Ω46

= ãa2 +
2

3
ãa3a5 + ãa24 + ãa4a

2
5 +

16

81
ãa45 − ãϑa3 −

5

3
ãa5ϑa4 −

16

9
ãa25ϑa5

− 2ãa4ϑa5 +
4

3
ã(ϑa5)

2 + ãϑ2a4 +
16

9
ãa5ϑ

2a5 −
2

3
ãϑ3a5.

�

The task is now to present DHR vector field H explicitly. In order to do this, we use
the chart t that we pointed it out in Remark 4.3. In the theorem below, we verify that H
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as an ordinary differential equation is given as follow:

(4.31)



ṫ0 = t0t3
t1

ṫ1 = t2

ṫ2 =
t23t4
t1t6

ṫ3 =
−t2t3t6+t23t5

t1t6

ṫ4 =
ãt3t26t7
t1

ṫ5 =
−t3t4+ãt3t26t8

t1

ṫ6 =
−t3t5+ãt3t26t9

t1

ṫ7 =
−t23t10
t1t6

ṫ8 =
−t23t11−t3t6t7

t1t6

ṫ9 =
3ãt3t5t9−6ãt3t6t8−3t3a4−t3a25+3t3ϑa5

3ãt1t6
ṫ10 = −t12
ṫ11 =

27ãt2t11−54ãt3t10+27ãt4t8−27ãt5t7+27a2+27a3a5−27ϑa3+15a4a25
27ãt1

+
−9a4ϑa5−54a5ϑa4+27ϑ2a4+4a45−42a25ϑa5+54a5ϑ2a5+18(ϑa5)2−18ϑ3a5

27ãt1
ṫ12 = −t3a0

ãt21

.

Theorem 4.1. Let T be the moduli space introduced in Theorem 1.1, for n = 5. Then
there is a chart (t0, t1, . . . , t12) for T such that in this chart we obtain

y1 =
t23
t1t6

, & y2 =
ãt3t

2
6

t1
,

and DHR vector field H is given by (4.31).

Proof. By Theorem 1.1 we get that T is 13-dimensional. Using the equation SΩSt =
Φ, and considering s11, s21, s22, s31, s32, s33, s41, s42, s43, s51, s52, s61 as independent entries
of S, we thus can express dependent entries in terms of independent entries as follows:

(4.32)

s44 = 1
ãs33

, s53 =
−3ãs32s43+3ãs33s42+3a4+a25−3ϑa5

3ãs22
,

s54 = −3s32+s33a5
3ãs22s33

, s55 = − 1
ãs22

,

s62 =
−27ãs21s52+27ãs22s51−27ãs31s42+27ãs32s41−27a2−27a3a5+27ϑa3−15a4a25

27ãs11

+
9a4ϑa5+54a5ϑa4−27ϑ2a4−4a45+42a25ϑa5−54a5ϑ2a5−18(ϑa5)2+18ϑ3a5

27ãs11
,

s63 =
27ãs21s32s43−27ãs21s33s42−27ãs22s31s43+27ãs22s33s41−27s21a4−9s21a25

27ãs11s22

+
27s21ϑa5−27s22a3−9s22a4a5+27s22ϑa4−2s22a35+18s22a5ϑa5−18s22ϑ2a5

27ãs11s22
,

s64 =
9s21s32−3s21s33a5−9s22s31−9s22s33a4−2s22s33a25+6s22s33ϑa5

9ãs11s22s33
,

s65 = 3s21−2s22a5
3ãs11s22

, s66 = 1
ãs11

.

We know that W is a family of one parameter 5-dimensional Calabi-Yau manifolds pa-
rameterized by z. Hence we present the chart t = (t0, t1, . . . , t12) for T, where t0 =
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z, t1 = s11, t2 = s21, t3 = s22, t4 = s31, t5 = s32, t6 = s33, t7 = s41, t8 = s42, t9 =
s43, t10 = s51, t11 = s52, t12 = s61. The same as the proof of Proposition 4.1, define
H :=

∑12
i=0Hi(t)

∂
∂ti

and set ṫi := Hi(t). Then H0, y1 and y2 follow from Lemma 4.2.
Therefore, the right hand side of the equation

(4.33) Ṡ = Y S − żS.ĜM$,

is totally determined. We also substitute a1, a3 from Lemma 4.5, and dependent entries
from (4.32) in the right hand side of (4.33). Consequently, the rest of Hi’s follow directly

from (4.33). Note that the compatibility of SΩSt = Φ and Ṡ = Y S− żS.ĜM$ follow from
substituting a1 and a3 from Lemma 4.5. �

4.4 Three-Dimensional Case

Here we substitute the dimension n = 5 with n = 3, and will proceed analogously to §4.3.
The Picard-Fuchs equation L is given as

(4.34) L = ϑ4 − a0(z)− a1(z)ϑ− a2(z)ϑ2 − a3(z)ϑ3,

where coefficients ai’s, by Lemma 2.1(i), satisfy the following relationship:

(4.35) a1 =
3

4
a3ϑa3 + ϑa2 −

1

2
ϑ2a3 −

1

8
a33 −

1

2
a2a3.

The intersection form matrix is as follow

(4.36) Ω =


0 0 0 ã
0 0 −ã Ω24

0 ã 0 Ω34

−ã −Ω24 −Ω34 0

 ,

in which

(4.37) ã = c0 exp

(
1

2

∫ z

0
a3(v)

dv

v

)
,

and
Ω24 = −1

2 ãa3, & Ω34 = 1
4 ãa

2
3 + ãa2 − 1

2 ãϑa3.

The chart t = (t0, t1, . . . , t6) of T is obtained by settin t0 = z, t1 = s11, t2 = s21, t3 =
s22, t4 = s31, t5 = s32, t6 = s41. We compute below dependent entries:

(4.38)
s33 = − 1

ãs22
, s42 =

4ãs22s31−4ãs21s32−a23−4a2+2ϑa3
4ãs11

,

s43 = 2s21−s22a3
2ãs11s22

, s44 = 1
ãs11

.

In the chart t, the meromorphic function y1 is given by

y1 = − ãt
3
3

t1
,
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and DHR vector field H has following presentation:

(4.39)



ṫ0 = t0t3
t1

ṫ1 = t2

ṫ2 = − ãt33t4
t1

ṫ3 = − t2t3+ãt33t5
t1

ṫ4 = −t6
ṫ5 =

4ãt2t5−8ãt3t4+a23+4a2−2ϑa3
4ãt1

ṫ6 = − t3a0
ãt21

.

Example 4.2. In Example 4.1 we introduced 14 families of Calabi-Yau 3-folds for which
Theorem 1.1 holds. We can rewrite the Picard-Fuchs equation (4.1) as follow

L = ϑ4 − a0(z)− a1(z)ϑ− a2(z)ϑ2 − a3(z)ϑ3,

in which

a0(z) =
cz(r1r2 − r21r2 − r1r22 + r21r

2
2)

1− cz
, a1(z) =

cz(r1 + r2 − r21 − r22)

1− cz
,

a2(z) =
cz(1 + r1 + r2 − r21 − r22)

1− cz
, a3(z) =

2cz

1− cz
.

On account of (4.37), we obtain

ã =
c0

1− cz
.

Now by replacing ai’s and ã in (4.39) we find DHR vector field H on the moduli space
associated with any of the families given in Table 1.
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