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(IMPA)

The undersigned hereby certify that they have read and

recommend to IMPA for acceptance a thesis entitled “Darboux-Halphen-

Ramanujan Vector Field on a Moduli of Calabi-Yau Manifolds”

by YOUNES NIKDELAN in partial fulfillment of the requirements for the

degree of Doctor of Mathematics.

Dated: September 2014

Research Supervisor:
Hossein Movasati (IMPA)

External Examiners:
Bruno Scardua (UFRJ)

Mauricio Correa (UFMG)

Examing Committee:
Alcides Lins Neto (IMPA)

Mikhail Belolipetsky (IMPA)

ii



INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA
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Abstract

This research was intended as an attempt to obtain an ordinary differential equation H

from a linear differential equation L. We work on a Calabi-Yau n-fold W whose complex

deformation is one dimensional and middle complex de Rham cohomology Hn
dR(W ;C) is

(n + 1)-dimensional. Moreover, we suppose that the Picard-Fuchs equation L associated

with the unique nowhere vanishing holomorphic n-form ω on W is of order n+ 1. As a first

result, we prove that L is self-dual.

Next, we define T to be the moduli of W together with a basis of Hn
dR(W ;C), where

the basis is required to be compatible with the Hodge filtration of Hn
dR(W ;C); furthermore,

the intersection form matrix in this basis is constant. Then in our second result, we verify

the existence of a unique vector field H on T that satisfies certain properties. Indeed,

the ordinary differential equation given by H is a generalization of differential equations

introduced by Darboux, Halphen and Ramanujan.

Keywords: Darboux-Halphen-Ramanujan vector field, Hodge structure, Picard-Fuchs

equation, Gauss-Manin connection.
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Introduction

Calabi-Yau manifolds are defined as compact connected Kähler manifolds whose canonical
bundle is trivial, though many other equivalent definitions are sometimes used (see Theorem
4.3). They were named ”Calabi-Yau manifold” by Candelas et al. (1985) [9] after E. Calabi
(1954) [6, 7], who first studied them, and S. T. Yau (1976) [42], who proved the Calabi
conjecture that says Calabi-Yau manifolds accept Ricci flat metrics. In this text, we sup-
pose that for an n-dimensional Calabi-Yau manifold hp,0 = 0, 0 < p < n, where hp,q refers
to (p, q)-th Hodge number of Calabi-Yau manifold. It is clear that the connectedness of a
Calabi-Yau manifold and the triviality of its canonical bundle imply that h0,0 = hn,0 = 1.

Since introducing Calabi-Yau manifolds, a lot of work has been done on these manifolds
by mathematicians an physicists. The importance of Calabi-Yau manifolds were found
more, after discovering the concept of mirror symmetry by physicists. Mirror symmetry
is a conjecture that says there exist mirror pairs of Calabi-Yau manifolds. Quite roughly,
we should think of W and W̃ as being a mirror pair if there is an isomorphism between
MKah(W ) and Mcmplx(W̃ ), where MKah(X) and Mcmplx(X), resp., refer to Kähler and
complex moduli, resp., of a Kähler manifold X. One of important and primary of these
works in 1991 was given by Candelas et al. in [8], where they used the mirror symmetry
to predict the number of rational curves on quintic 3-folds. In some other works, such as
[1, 2, 11, 15, 27, 28, 29], authors construct new Calabi-Yau manifolds and their mirrors,
and then they investigate other properties of these constructed manifolds.

The main work of this thesis, which is motivated by linear differential equations in-
troduced by Darboux, Halphen and Ramanujan, is to present a vector field H with some
special properties on a moduli space of Calabi-Yau manifolds and we call it DHR vector
field. To know more about DHR vector field we start with 1-dimensional Calabi-Yau mani-
folds, which are elliptic curves. Let E be an elliptic curve over C. Then the Hodge filtration
(for definition see §2.3) F • of the first de Rham cohomology group (for definition see §2.5)
H1

dR(E) is given as follow,

{0} = F 2 ⊂ F 1 ⊂ F 0 = H1
dR(E), dimC(F i) = 2− i.

Let T be the moduli of the pair (E, [α1, α2]), in which α1 ∈ F 1, α2 ∈ F 0 \ F 1, and the

1
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matrix of their intersection forms (for definition see §2.6) is as follow,

(〈αi, αj〉)1≤i,j≤2 =

 0 1

−1 0

 .

To be more precise, if we consider the Weierstrass presentation of E in P2, then α1 and α2,
resp., are induced by [dxy ] and [xdxy ], resp., where [dxy ] and [xdxy ] are generators of the first

de Rham cohomology H1
dR(E0) of affine curve E0 := E \ {∞}. Since H1

dR(E) ∼= H1
dR(E0),

α1 and α2 are generators of H1
dR(E) and hence α1 ∧ α2 6= 0 (for more details see §1.1).

Then T is a 3-dimensional space, and there exist a unique vector field H on T such that
the composition of Gauss-Manin connection (for definition see §2.5) with H satisfies the
following

∇H

 α1

α2

 =

 0 −1

0 0

 .

As we will see in §1.1, by neglecting some details, if t = (t1, t2, t3) is a chart of T , then H
is given by the following system

ṫ1 = t1(t2 + t3)− t2t3
ṫ2 = t2(t1 + t3)− t1t3
ṫ3 = t3(t1 + t2)− t1t2

, (0.1)

which for the first time appeared in the works of Darboux [12] and then Halphen [23]
worked on its solutions and expressed a solution of this system in terms of the logarithmic
derivatives of the null theta functions. Or equivalently, H can be presented by the following
system of linear differential equations

ṫ1 = t21 − 1
12 t2

ṫ2 = 4t1t2 − 6t3

ṫ3 = 6t1t3 − 1
3 t

2
2

, (0.2)

that Ramanujan worked on this system and found a solution of Eisenstein series for it.

After these works, H. Movasati [31, 33] considered a one parameter family of Calabi-Yau
3-folds, which is known as the family of mirror quintic 3-folds, and studied on it. If W is a
mirror quintic 3-fold, then the Hodge filtration of H3

dR(W ) is given as follow,

{0} = F 4 ⊂ F 3 ⊂ . . . ⊂ F 0 = H3
dR(W ), dimC(F i) = 4− i,

and there is a holomorphic 3-form ω ∈ F 3 such that Lω = 0, where L is the Picard-Fuchs
equation

L = ϑ5 − 55z(ϑ+
1

5
)(ϑ+

2

5
)(ϑ+

3

5
)(ϑ+

4

5
),
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in which ϑ := ∇z ∂
∂z

. Movasati treated on the moduli space T of the pair (W, [α1, α2, α3, α4]),

where αi ∈ F 4−i \ F 5−i, and

(〈ωi, ωj〉)1≤i,j≤4 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 .

He proved that T is a 7-dimensional space and there is a unique vector field H and a unique
meromorphic function y on T such that,

∇H


α1

α2

α3

α4

 =


0 1 0 0

0 0 y 0

0 0 0 −1

0 0 0 0




α1

α2

α3

α4

 .

Indeed he express H and y explicitly, and he show that y is the Yukawa coupling (for more
details see Theorem 1.1).

After what we saw about the family of Calabi-Yau 1-folds and the family of mirror
quintic 3-folds, it is natural to ask whether there exist such a moduli space T and such a
vector field H in higher dimensions. In the present text we give a positive answer to this
question. In fact, we prove it for a Calabi-Yau n-fold that satisfies some certain conditions.
To do this, suppose that W is a Calabi-Yau n-fold that its complex deformation is given by
the one parameter family π :W → P of n-dimensional Calabi-Yau manifolds parameterized
by z, such that dimHn

dR(W/P ) = n+ 1, and the Picard-Fuchs equation L associated with
the unique nowhere vanishing holomorphic n-form ω ∈ Fn, where F• is the Hodge filtration
of Hn

dR(W/P ), is given by

L = ϑn+1 − an(z)ϑn − . . .− a1(z)ϑ− a0(z), (0.3)

in which ϑ := ∇z ∂
∂z

and ai(z) ∈ Q(z), i = 0, 1, . . . , n. Before stating the main theorem of

this thesis, we fix the (n+ 1)× (n+ 1) matrix Φ as follow. If n is an odd integer, then let

Φ :=

 0n+1
2

Jn+1
2

−Jn+1
2

0n+1
2

 , (0.4)

where for a positive integer k, by 0k we mean a k× k block of zeros, and Jk is the following
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k × k block

Jk =



0 0 . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . 0 0


. (0.5)

If n is an even integer, then Φ = Jn+1.

Theorem 0.1. Let W be the Calabi-Yau n-fold given above and T be the moduli of the pair
(W, [α1, α2, . . . , αn+1]), where {αi}n+1

i=1 is a basis of Hn
dR(W ;C) satisfying

αi ∈ Fn+1−i \ Fn+2−i, i = 1, 2, . . . , n+ 1, (0.6)

and the matrix of their intersection forms satisfies the following:

(〈αi, αj〉)1≤i,j≤n+1 = Φ. (0.7)

Then there exist a unique vector field H and unique meromorphic functions yi, i = 1, 2, . . . , n−
2, on T such that the composition of Gauss-Manin connection ∇ with the vector field H
satisfy:

∇Hα = Y α, (0.8)

in which

α =
(
α1 α2 . . . αn+1

)t
,

and

Y =



0 1 0 . . . 0 0

0 0 y1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . yn−2 0

0 0 0 . . . 0 −1

0 0 0 . . . 0 0


. (0.9)

And moreover,

dimC T =


(n+1)(n+3)

4 + 1; if n is odd,
n(n+2)

4 + 1; if n is even,
.

We prove this theorem in Chapter 5.

The chapters of this thesis are organized as follows:
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Chapter 1. In this chapter, we first explain the main problem in some special cases of
low dimensions that have been done, and reformulate them in our language. Then in
distinct sections we review the works of Darboux, Halphen and Ramanujan, that are
in relationship with our main problem.

Chapter 2. In this chapter we briefly recall the basic facts related with Hodge theory.
Firstly, the concept of integrable connections are stated. Secondly, the general theory
of Hodge structure is provided. After introducing de Rham cohomology, as a nice
example of Hodge structure, the Hodge decomposition of complexified de Rham coho-
mology and Hodge filtration is presented. Next the definitions and important results
of families of complex manifolds are established. In sequence we present Gauss-Manin
connection and Griffiths transversality that provide a family of complex manifolds
with a Hodge variation. Finally the concept of intersection forms is given. In particu-
lar we verify the existence relationship between intersection forms and Hodge filtration
in the context of de Rham cohomology.

Chapter 3. The composition of Gauss-Manin connection with a vector field yields a dif-
ferential operator on the relative de Rham cohomology group of a family of complex
manifolds. In this chapter we are going to study this operator and its generated linear
differential equations. First, we briefly state some basic facts related with differen-
tial operators. We give an algorithm to find the relationships among coefficients of a
self-dual linear differential operator of an arbitrary degree. Next, a special linear dif-
ferential operator associated with a holomorphic n-form, which is called Picard-Fuchs
equation, is presented. At the end of this chapter, after fixing some certain hypothe-
sis on a family of complex manifolds, we prove that its relative de Rham cohomology
group has a special type of frame, which we call it Yukawa frame. To do this we use
the properties of coupling function that we prove them in Proposition 3.3 in context
of de Rham cohomology. Also in Proposition 3.4, we give a relationship between the
dimensions of the relative de Rham cohomology group and its Hodg filtration, which
weakens our primary hypothesis.

Chapter 4. In this chapter we are going to recall fundamental definitions and facts related
to Calabi-Yau manifolds. Here we first announce Calabi-Yau theorem and then we
review the equivalence definitions of Calabi-Yau manifolds that are used in different
contexts. once we fix the definition of Calabi-Yau manifold, some primary examples
and classifications of low dimensional Calabi-Yau manifolds are given. Finally, we
review the properties of the families of Calabi-Yau manifolds and also some more
examples of families of Calabi-Yau manifolds are provided.

Chapter 5. In this chapter we state our main result about the encountering DHR vector
field. We first fix some hypothesis on a Calabi-Yau n-fold, under which we are work-
ing in the whole of this chapter. We first give a special moduli space T of a fixed
Calabi-Yau manifold. Then we prove that there exist a unique vector field, which we
call it DHR vector field, and several unique meromorphic functions on T that satisfy
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certain properties. Next, after computing the matrix of intersection forms and finding
the relationships among the coefficients of Picard-Fuchs equation, we express DHR
vector field explicitly in dimension five and three.

Chapter 6. During my works on this thesis, I encountered with various natural problems
that seem interesting. Hence it worth to organize them for more future researches.
And since they are directly related to my thesis, I state them in this chapter in different
sections.

Appendix A. Here we provide several tables, which include information about Picard-
Fuchs equation of Calabi-Yau manifolds.

The reader who has bacgrounds of Hodge theory, Gauss-Manin connection, intersection
form and Calabi-Yau manifolds, it is just enough to read chapters 3 and 5.



Chapter 1

Historical Backgrounds

In this thesis we are going to introduce a special vector field on a moduli space of a family
of Calabi-Yau manifolds. This vector field is in a close relationships with, and in a sense it
is an extension of, the vector fields introduced by Darboux, Halphen and Ramanujan that
we will review them below. Because of this relationship, the vector field is called Darboux-
Halphen-Ramanujan, abbreviatly DHR, vector field. In this chapter, in §1.1 we explain the
main problem in some special cases of low dimensions that have been done, and reformulate
them in our language. Then in distinct sections §1.2, §1.3 and §1.4, resp., we review the
works of Darboux, Halphen and Ramanujan, resp., that are in relationship with our main
problem.

1.1 Problem Statement

To have an idea of DHR vector field, we explain the issue on a family of 1-dimensional
Calabi-Yau manifolds, which are elliptic curves. For more details one can see [32] and [34].

Let E be an elliptic curve over C. We know that there are t1, t2, t3 ∈ C3, such that
∆ := t32 − 27t23 6= 0, and E in Weirestrass form is considered as a following projective curve
in P2,

E = {[x; y; z] ∈ P2|F (x, y, z) := zy2 − 4(x− t1z)3 + t2(x− t1z)z2 + t3z
3 = 0},

where F (x, y, z) is the homogenization of the function

f(x, y) := y2 − 4(x− t1)3 + t2(x− t1) + t3,

that gives the following affine elliptic curve E0

E0 = {[x; y; 1] ∈ P2| f(x, y) = 0}.

7
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Indeed ∆ is discriminant function of P (x) := 4(x− t1)3 + t2(x− t1) + t3, and since ∆ 6= 0,
P and P ′ do not vanish simultaneously. Also we can state

y2 = P (x)⇒ 2ydy = P ′(x)dx⇒ dx

y
= 2

dy

P ′(x)
.

So the 1-form dx
y is holomorphic on E0. On the other hand, we know that O := [0; 1; 0] ∈ E

is the only point at infinity and O /∈ E0. So the one form xdx
y is as well holomorphic on E0.

And if we let H1
dR(E0/C) be the first algebraic de Rham cohomology of E0, then one can see

in [34, Proposition 2.2] that H1
dR(E0/C) is freely generated by [dxy ] and [xdxy ]. It is obvious

that E = E0 \ {[0; 1; 0]}, so we have the inclusion ι : E0 → E. In [34, Proposition 2.4] we
can find that the inclusion ι induces the isomorphism

ι∗ : H1
dR(E/C)→ H1

dR(E0/C), (1.1)

hence there is a holomorphic 1-form α1 ∈ H1
dR(E/C) and a differential 1-form α2 ∈

H1
dR(E/C) such that ι∗(α1) = [dxy ] and ι∗(α2) = [xdxy ]. Since [dxy ] and [xdxy ] generate

H1
dR(E0/C), α1 and α2 as well generate H1

dR(E/C), so α1 ∧ α2 6= 0. We can repeat this
history with another presentation of E where

F (x, y, z) := zy2 − 4(x− zt1)(x− zt2)(x− zt3),

f(x, y) = y2 − 4(x− t1)(x− t2)(x− t3),

with t1 6= t2 6= t3 (for more details see [34, § 3.5]). Because of isomorphism (1.1), in the
continue the necessary calculations attached to H1

dR(E/C), such as computation of Gauss-
Manin connection, will be done on the first de Rham cohomology H1

dR(E0/C) of affine curve
E0.

Let E be an affine elliptic curve over C and

{0} = F 2 ⊂ F 1 ⊂ F 0 = H1
dR(E), dimC(F i) = 2− i,

be the Hodge filtration of H1
dR(E) (see §2.3). For any αi ∈ F i, i = 1, 2, that satisfy the

following intersection condition (see §2.6)

1

2πi

∫
E
α1 ∧ α2 = 1, (1.2)

there exist a unique

h = (h1, h2, h3) ∈ TH := {(t1, t2, t3) ∈ C3|t1 6= t2 6= t3}, (1.3)

such that E is given by

EH : y2 − 4(x− h1)(x− h2)(x− h3) = 0 (1.4)
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in P2, and α1, α2, respectively, are given by dx
y ,

xdx
y , respectively. In fact TH is the moduli

of (E,α1, α2, a1, a2, a3), where the ordered triple (a1, a2, a3) is the non-zero 2-torsion points
of E, i.e. 2ai = 0, i = 1, 2, 3. There is a unique vector field H, that we call it DHR vector
field, on TH such that

∇H(dxy ) = −xdx
y , ∇H(xdxy ) = 0, (1.5)

in which, ∇ is the Gauss-Manin connection (see §2.5) defined on TH given by

∇

 dx
y

xdx
y

 = AH

 dx
y

xdx
y

 (1.6)

with

AH =
dh1

2(h1 − h2)(h1 − h3)

 −h1 1

h2h3 − h1(h2 + h3) h1


+

dh2

2(h2 − h1)(h2 − h3)

 −h2 1

h1h3 − h2(h1 + h3) h2


+

dh3

2(h3 − h1)(h3 − h2)

 −h3 1

h1h2 − h3(h1 + h2) h3

 .

The vector field H is given by

H = (h1(h2 + h3)− h2h3)
∂

∂h1

+ (h2(h1 + h3)− h1h3)
∂

∂h2

+ (h3(h1 + h2)− h1h2)
∂

∂h3
,

that can be seen as the following ordinary differential equation in C3:

H :


ḣ1 = h1(h2 + h3)− h2h3

ḣ2 = h2(h1 + h3)− h1h3

ḣ3 = h3(h1 + h2)− h1h2

. (1.7)

So briefly, for the 1-forms α1 = dx
y and α2 = xdxy that satisfy the following intersection

condition

(〈αi, αj〉)1≤i,j≤2 =

 0 1

−1 0

 , (1.8)
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the DHR vector field H given by (1.7) satisfies the following equation,

∇Hα =

0 −1

0 0

α, (1.9)

in which α =
(
α1 α2

)t
, where t refers to matrix transpose. The system of differential

equation (1.7) appeared in the work of G. Darboux in 1978, and then G. Halphen (1881)
and M. Brioschi (1881) contributed to the study of this differential equation system, that
more details are presented in §1.2 and §1.3.

We can see the moduli of elliptic curves from another point of view and find another
DHR vector field that is presented by Ramanujan’s system of differential equations. To see
this, consider the triple (E,α1, α2), where E is an elliptic curve with two 1-forms α1 and
α2 satisfying (1.2). The moduli of (E,α1, α2)’s is given by

TR := {(t1, t2, t3) ∈ C3|27t23 − t32 = 0}, (1.10)

and more precisely for any (E,α1, α2) there exist a unique (r1, r2, r3) ∈ TR, such that E is
given by

ER : y2 = 4(x− r1)2 − r2(x− r1)− r3, (1.11)

in P2, and α1 = dx
y , α2 = xdx

y . The Gauss-Manin connection of TR is given by the matrix

AR = 1
∆

 −3
2r1α− 1

12d∆ 3
2α

∆r1 − 1
16r1d∆− (3

2r
2
1 + 1

8r2)α 3
2r1α+ 1

12d∆

 ,

∆ = 27r2
3 − r3

2, α = 3r3dr2 − 2r2dr3,

and the intersection form matrix is given by (1.8). It is seen that there exist a unique vector
field R on TR, which satisfies the following equation

∇Rα =

0 −1

0 0

α, (1.12)

and R is given by the Ramanujan’s system of differential equations

R :


ṙ1 = r2

1 − 1
12r2

ṙ2 = 4r1r2 − 6r3

ṙ3 = 6r1r3 − 1
3r

2
2

. (1.13)

It is natural to ask if there is any relationship between TH and TR, and the response is
positive. The algebraic morphism φ : TH → TR defined by

φ : (h1, h2, h3) 7→ (T, 4
∑

1≤i<j≤3

(T − hi)(T − hj), 4(T − h1)(T − h2)(T − h3)),
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where

T :=
1

3
(h1 + h2 + h3),

connects two families. That is, if in ER we replace r with φ(h) we obtain the family EH,
and φ maps all related concepts of EH, to the corresponding concepts of ER. In particular
φ∗H = R and φ∗AR = AH.

H. Movasati in [31, 33] worked on the family of mirror quintic 3-fold Calabi-Yau mani-
folds and he found DHR vector field on a moduli space constructed on the family of mirror
quintic 3-folds. We know that the family of quintic 3-folds are hypersurfaces of P4 given
by homogeneous polynomials of degree 5. It is seen in [8] that the mirror of the quintic
3-folds are given by the family of Wψ’s defined as the variety obtained by a resolution of
singularities of the following quotient:

Wψ := {[x0 : x1 : x2 : x3 : x4] ∈ P4 | x5
0 +x5

1 +x5
2 +x5

3 +x5
4−5ψx0x1x2x3x4 = 0}/G, (1.14)

where G is the group

G := {(ζ1, ζ2, · · · , ζ5) | ζ5
i = 1, ζ1ζ2ζ3ζ4ζ5 = 1},

acting in a canonical way and ψ5 6= 1 (for more details see Example 4.2). H. Movasati
started to work with a special moduli spaces consisting of a Calabi-Yau manifolds and a
basis of de Rham cohomology. More precisely, Let W1,W2 be two mirror quintic 3-folds and
{αi1, αi2, αi3, αi4} be a basis of Hn

dR(Wi;C), i = 1, 2. Then we have the following equivalence
relation,

(W1, [α
1
1, α

1
2, α

1
3, α

1
4]) ∼ (W2, [α

2
1, α

2
2, α

2
3, α

2
4]) (1.15)

if and only if there exist a biholomorphic function f : W1 → W2 such that f∗(α2
j ) =

α1
j , j = 1, 2, 3, 4. He considered T to be the moduli of pairs (W, [α1, α2, α3, α4]) under

above equivalence relation (1.15), where

αi ∈ F 4−i\F 5−i, i = 1, 2, 3, 4,

in which F • is the Hodge filtration of H3
dR(W ), satisfying the following intersection condi-

tion,

(〈αi, αj〉)1≤i,j≤4 = Φ.

with

Φ :=


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 . (1.16)

Movasati stated the following theorem to find DHR vector field.
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Theorem 1.1. Let T be the moduli of pairs (W, [α1, α2, α3, α4]) defined above. Then there
is a unique vector field Ra and a unique regular function y on T such that the Gauss-Manin
connection of the universal family of mirror quintic Calabi-Yau varieties over T composed
with the vector field Ra, namely ∇Ra, satisfies

∇Raα =


0 1 0 0
0 0 y 0
0 0 0 −1
0 0 0 0

α, (1.17)

in which
α =

(
α1 α2 α3 α4

)t
.

In fact,
T ∼= {(t0, t1, t2, t3, t4, t5, t6) ∈ C7 | t5t4(t4 − t50) 6= 0}, (1.18)

and under this isomorphism the vector field Ra as an ordinary differential equation is

Ra :



ṫ0 = 1
t5

(6 · 54t50 + t0t3 − 54t4)

ṫ1 = 1
t5

(−58t60 + 55t40t1 + 58t0t4 + t1t3)

ṫ2 = 1
t5

(−3 · 59t70 − 54t50t1 + 2 · 55t40t2 + 3 · 59t20t4 + 54t1t4 + 2t2t3)

ṫ3 = 1
t5

(−510t80 − 54t50t2 + 3 · 55t40t3 + 510t30t4 + 54t2t4 + 3t23)

ṫ4 = 1
t5

(56t40t4 + 5t3t4)

ṫ5 = 1
t5

(−54t50t6 + 3 · 55t40t5 + 2t3t5 + 54t4t6)

ṫ6 = 1
t5

(3 · 55t40t6 − 55t30t5 − 2t2t5 + 3t3t6)

, (1.19)

and y =
58(t4−t50)2

t35
is the Yukawa coupling.

1.2 Darboux

The system of differential equations
ṫ1 + ṫ2 = t1t2

ṫ2 + ṫ3 = t2t3

ṫ1 + ṫ3 = t1t3

, (1.20)

first time appeared in 1878 in the works of Gaston Darboux (1842-1917) when he was
studying the curvilinear coordinates and orthogonal systems in [12]. The problem that he
was trying to prove is as follow: Let A and B be two fixed surfaces in the 3-dimensional
Euclidean space R3 and suppose that Σ is the family of surfaces which are the locus of the
points that the sum of their distances from the surfaces A and B are constant; and Σ′ is
the family of surfaces which are the locus of the points that the difference of their distances
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from the surfaces A and B are constant. Is there a third family of surfaces that intersects
Σ and Σ′ orthogonally? This problem is equivalent to the following problem: Let A and B
be as before and suppose that Σ is a family of surfaces parallel to A which is parameterized
by v, and Σ′ is a family of surfaces parallel to B that is parameterized by w. Is there a third
family of surfaces parameterized by u such that intersects Σ and Σ′ orthogonally? Note
that, two surfaces A1 and A2 are said to be parallel, if there exist a constant c such that
for any a1 ∈ A1 and a2 ∈ A2, d(a1, A2) = d(a2, A1) = c, in which d refers to the Euclidean
distance of R3; and we say that a family of surfaces is parameterized by s = s(x, y, z), if
any surface belonging to this family is given by s(x, y, z) = constant, in which x, y, z are
the standard coordinates of R3. If for a function s = s(x, y, z), we define

sx =
∂s

∂x
, sy =

∂s

∂y
, sz =

∂s

∂z
,

then in the latter problem, the condition of parallelism is given by

v2
x + v2

y + v2
z = 1 & w2

x + w2
y + w2

z = 1,

and the condition of orthogonality is given by

uxvx + uyvy + uzvz = 0 & uxwx + uywy + uzwz = 0.

So th problem is equivalent to the following system of equations,
v2
x + v2

y + v2
z = 1

w2
x + w2

y + w2
z = 1

uxvx + uyvy + uzvz = 0

uxwx + uywy + uzwz = 0

. (1.21)

The more interesting case of this problem is when the family (u) is of second degree and
Darboux proved that in this case this family is given by

x2

t1(u)
+

y2

t2(u)
+

z2

t3(u)
= 1,

in which t1, t2, t3 are functions of u given by the following equation,

t3(
dt1
du

+
dt2
du

) = t2(
dt1
du

+
dt3
du

) = t1(
dt2
du

+
dt3
du

). (1.22)

Hence the system of equations (1.20) is a particular case of the equation (1.22).
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1.3 Halphen

In 1881, G. Halphen [23] studied the following system of differential equations
dt1
dz + dt2

dz = t1t2
dt2
dz + dt3

dz = t2t3
dt1
dz + dt3

dz = t1t3

, (1.23)

in which t1, t2, t3 are three unknown variables. Halphen proved that this system satisfies an
important invariant property. To express this invariant property, for the constants a, b, a′, b′,
let

w =
az + b

a′z + b′
, (1.24)

ti = − 2a′

a′z + b′
+

ab′ − ba′

(a′z + b′)2
si, i = 1, 2, 3. (1.25)

Then by substituting (1.24) and (1.25) in the system (1.23), we have
ds1
dw + ds2

dw = s1s2

ds2
dw + ds3

dw = s2s3

ds1
dw + ds3

dw = s1s3

. (1.26)

Hence, the system (1.23) is invariant under the change of variables (1.24) and (1.25). So
to find a general solution of (1.23), it is enough to first find a particular solution of (1.26),
and then applying (1.25). Halphen expressed a solution of the system (1.23) in terms of the
logarithmic derivatives of the null theta functions; namely,

t1 = 2(ln θ4(0|z))′,

t2 = 2(ln θ2(0|z))′, ′ =
∂

∂z
t3 = 2(ln θ3(0|z))′.

where 
θ2(0|z) :=

∑∞
n=−∞ q

1
2

(n+ 1
2

)2

θ3(0|z) :=
∑∞

n=−∞ q
1
2
n2

θ4(0|z) :=
∑∞

n=−∞(−1)nq
1
2
n2

, q = e2πiz, z ∈ H.

From it, we can found following three particular solutions of the system (1.23),

T1(z) = 8
ez + 4e4z + 9e9z + 16e16z + . . .

1 + 2ez + 2e4z + 2e9z + 2e16z + . . .
,

T2(z) = 8
−ez + 4e4z − 9e9z + 16e16z − . . .

1− 2ez + 2e4z − 2e9z + 2e16z − . . .
,

T3(z) =
1 + 9e2z + 25e6z + 49e12z + 81e20z + . . .

1 + e2z + e6z + e12z + e20z + . . .
.
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And the general solution of (1.23), is given as

ti(z) = − 2a′

a′z + b′
+

ab′ − ba′

(a′z + b′)2
Ti(

az + b

a′z + b′
), i = 1, 2, 3.

In [5], Fr. Brioschi in 1881 studied the following extension of the system (1.23)
dt1
dz + dt2

dz = t1t2 + ϕ(z)

dt2
dz + dt3

dz = t2t3 + ϕ(z)

dt1
dz + dt3

dz = t1t3 + ϕ(z)

, (1.27)

in which, ϕ(z) is a function of z. Again Halphen in [21] introduced and studied a class
of differential equations that the system (1.27) belongs to this class. In the case of three
variables, he showed that this class is given by

dt1
dz = a1t

2
1 + (λ− a1)(t1t2 + t1t3 − t2t3)

dt2
dz = a2t

2
2 + (λ− a2)(t2t3 + t2t1 − t3t1)

dt3
dz = a3t

2
3 + (λ− a3)(t3t1 + t3t2 − t1t2)

, (1.28)

where, a1, a2, a3, λ are constants. One can see that the system (1.28) is equivalent to the
system (1.23), when a1 = a2 = a3 = 0 and λ = 1. He proved that the system (1.28) also
satisfies the invariant property and it is in a direct relationship with the second order linear
differential equations and he gave a solution of the system (1.28) in terms of hypergeometric
functions X,Y, Z which had been introduced in [22].

1.4 Ramanujan

In this section we are going to find the origin of the system of equations (1.13) which has
been done by Ramanujan in [37]. To do this, let

σr,s(n) = σr(0)σs(n) + σr(1)σs(n− 1) + . . .+ σr(n)σs(0),

in which, σν(n) =
∑

d|n d
ν and, by definition, σs(0) = 1

2ζ(−s), where ζ(s) is the Riemann
Zeta-function. Ramanujan proves that

σr,s(n) =
Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
σr+s+1(n)

+
ζ(1− r) + ζ(1− s)

r + s
nσr+s−1(n) +O{n2/3(r+s+1)}.
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To prove this equation Ramanujan encounters the following equations

P (q) = 1− 24

∞∑
k=1

kqk

1− qk
,

Q(q) = 1 + 240

∞∑
k=1

k3qk

1− qk
,

R(q) = 1− 504

∞∑
k=1

k5qk

1− qk
,

that satisfy the following system of differential equations
q dPdq = P 2(q)−Q(q)

12

q dQdq = P (q)Q(q)−R(q)
3

q dRdq = P (q)R(q)−Q2(q)
2

. (1.29)

Next we give the relationships between the equations introduced by Ramanujan and Eisen-
stein series. First note that, Eisenstein series G2j of weight 2j, for integers j ≥ 2, are given
as follow

G2j(τ) :=
∑

m1,m2∈Z
(m1,m2)6=(0,0)

(m1τ +m2)−2j ,

and working with the q-expansion of the Eisenstein series, the alternate notations of Eisen-
stein series , for complex τ ’s with Imτ > 0, are defined

E2j(τ) :=
G2j(τ)

2ζ(2j)
= 1− 4j

B2j

∞∑
k=1

k2j−1e2πikτ

1− e2πikτ

= 1− 4j

B2j

∞∑
r=1

σ2j−1(r)qr, q = e2πiτ , (1.30)

in which Bk’s are Bernoulli’s numbers. So E4(τ) = Q(q), E6(τ) = R(q), and also P (q) =
E2(τ), where E2(τ) is defined by (1.30). Moreovere, if we let

(r1(τ), r2(τ), r3(τ)) = (
2πi

12
E2(τ), 12(

2πi

12
)2E4(τ), 8(

2πi

12
)3E6(τ)),

then using the system (1.29), one easily finds that (r1, r2, r3) stisfy the following system of
differential equations 

dr1
dτ = r2

1 − 1
12r2

dr2
dτ = 4r1r2 − 6r3

dr3
dτ = 6r1r3 − 1

3r
2
2

, (1.31)

which is the system (1.13).



Chapter 2

Hodge Theory and Families

In this chapter we briefly recall the basic facts related with Hodge theory. Firstly, in §2.1
the concept of integrable connections are stated. Secondly, in §2.2 the general theory of
Hodge structure is provided. Then in §2.3 after introducing de Rham cohomology, as a nice
example of Hodge structure, the Hodge decomposition of complexified de Rham cohomology
and Hodge filtration is presented. Next in §2.4 the definitions and important results of
families of complex manifolds are established. To provide a family of complex manifolds
with a Hodge variation, one needs Gauss-Manin connection and Griffiths transversality that
are stated in §2.5. Finally in §2.6 the concept of intersection forms is given. In particular
we give a proof of the existence relationship between intersection forms and Hodge filtration
in the context of de Rham cohomology.

In this chapter, a more detailed account as well as further information and omitted
proofs to most of the results can be found in [13, 36, 41].

2.1 Local Systems and Integrable Connections

Definition 2.1. Let (X, o) be a pointed topological space and R be a commutative ring with
a unit. A local system of R-modules on X is defined to be a collection V = {Vx}x∈X of R-
modules together with a collection of isomorphisms {ρ([γ])|Vx

∼−→ Vy}x,y∈X and [γ]∈π1(X,(x,y)),
in which π1(X, (x, y)) is the homotopy classes of pathes from x to y, that satisfy followings

(i) for the class of constant path ex at x, ρ([ex]) = idVx ,

(ii) for any two classes [γ] ∈ π1(X, (x, y)) and [γ′] ∈ π1(X, (y, z)), ρ([γ∗γ′]) = ρ([γ′])◦ρ([γ]),
in which the composition γ ∗ γ′ of pathes γ and γ′ means first traverse γ and then γ′,
both with double speed.

Usually we denote this local system by V, and moreover if R is a field and the fibers
Vx are R-vector spaces, then the rank of V, which is denoted by rk(V), by definition is
rk(V) := dimRVx. Also we denote a constant system with fibers V on X by V X .

17
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Definition 2.2. Let (X, o) be a pointed path-connected topological space. Then the col-
lection {ρ([γ])|γ is a loop at o} defines the associated monodromy representation

ρ : π1(X, o)→ GL(Vo).

The Definition 2.1 of a local system looks a little long and to make it more applicable
we present an equivalent statement of it. To do this, we define a locally constant sheaf F on
X to be a sheaf with the property that for some open cover {Ui}i∈I of X, the restrictions
ρUi,x : F(Ui)→̃Fx, x ∈ Ui are isomorphisms. Now suppose that X is path-connected and
locally simply-connected with a covering {Ui}i∈I of simply-connected open subsets of X. If
V is a locally system on X, then the unique isomorphisms fx,y : Vx

∼−→ Vy, x, y ∈ Ui, defined
by any path connecting x to y within Ui, give a locally constant sheaf by trivializations

φi : V|Ui
∼−→ VUi .

Conversely, let F be a locally constant sheaf on X. To associate a local system V to F , for
any x ∈ X, let Vx be the stalk Fx, and for any path γ : [a, b]→ X, in which [a, b] ⊂ Ui for
some i ∈ I, define ρ(γ) = ρUi,b ◦ ρ

−1
Ui,a

. In the case that [a, b] is not a subset of Ui, we divide
[a, b] to the subdivisions that any of them is a subset of some Ui and then define ρ(γ) as
compositions of isomorphisms. Hence we have the following theorem:

Theorem 2.1. Let X be a path connected and locally simply-connected topological space.
Then there is an one to one correspondence between local systems of R-modules and locally
constant sheaves of R-modules.

From now on we substitute the topological space X with the complex manifold S and
by a complex local system on S we mean a locally constant sheaf of C-vector space. If we
denote the category of complex local systems on S by LocSysC(S), next we see that it is
equivalent to the category of holomorphic vector bundles on S with an integral connection.

Definition 2.3. Let S be an n-dimensional complex manifold and V be an OS-module on
it. A holomorphic connection ∇ on V is a C-linear map ∇ : V → Ω1

S ⊗OS V, such that it
satisfies the Leibniz rule, i.e. for any local section f of OS and any local section v of V,

∇(fv) = df ⊗ v + f∇(v). (2.1)

A local section v of V is said to be horizontal if ∇(v) = 0, and by notation V∇ denotes
Ker(∇).

Observation 2.1. If V is locally free of finite rank m, then by considering the frame
{vj}mj=1 on an open subset U of S, we can write ∇(vj) =

∑m
i=1Cijvi, and then define the

connection matrix as matrix of holomorphic 1-forms on U given by CU = (Cij)1≤i,j≤m. So

for a holomorphic section v =
∑m

j=1 gjvj , by applying the Leibniz’ rule we have

∇(v) =
m∑
j=1

dgj ⊗ vj +
m∑

i,j=1

gjCij ⊗ vi,
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hence we can abbreviate the connection locally as follow

∇U = d+ CU . (2.2)

By defining Ωp
S(V) := Ωp

S ⊗OS V, the wedge product of differential forms induces

∇(p) :Ωp
S(V)→ Ωp+1

S (V) (2.3)

ω ⊗ v 7→ dω ⊗ v + (−1)pω ∧∇(v)

Definition 2.4. The curvature F∇ of connection ∇ by definition is the map

F∇ :V → Ω2
S(V), (2.4)

F∇(v) = ∇(1) ◦ ∇(v).

The connection ∇ is said to be flat or integrable if F∇ = 0.

Let V be a holomorphic vector bundle on S of finite rank m. Then by using (2.2) we see
that F∇U = dCU −CU ∧CU , in which (CU ∧CU )ij =

∑m
k=1Cik∧Ckj . Thus the integrability

of ∇ is equivalent to CU ∧CU = dCU . From now on, the pair (V,∇) refers to a holomorphic
vector bundle V with integrable connection ∇ and we call it integrable connection on S.
Integrable connections on S form a category that we denote it by IntCon(S).

If V is a complex local system on S, then

V := V⊗C OS (2.5)

is a holomorphic vector bundle on S. By defining ∇(v⊗f) = df⊗v, for any local sections f
and v, resp., of OS and V, resp., we can see that ∇ is an integrable connection of V, hence
(V,∇) is an integrable connection. Conversely, let (V,∇) be an integrable connection.
Then by defining V := V∇, it is seen that V is a complex local system on S and (V,∇) '
V⊗C (OS , d) (for more details see [36, § 10.3]). So we have the following theorem:

Theorem 2.2. Let S be a complex manifold. Then LocSysC(S) ∼= IntCon(S).

2.2 Hodge Structure

Definition 2.5. Let V be a Z-module of finite rank and VC := V ⊗ZC its complexification.
A Hodge structure of weight k on V is a direct sum decompositio

VC =
⊕
p+q=k

V p,q, (Hodge decomposition) (2.6)

with V p,q = V q,p. The numbers hp,q(V ) := dimV p,q are called Hodge numbers of the Hodge
structure.
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The Hodge filtration of V associated to the Hodge structure (2.6) is given by

F p(V ) =
⊕
r≥p

V r,k−r. (2.7)

To simplify the notation, we write F p instead of F p(V ) when no confusion arise. So obvi-
ously we have the decreasing filtration

0 = F k+1 ⊂ F k ⊂ . . . ⊂ F 1 ⊂ F 0 = VC. (2.8)

Also one can see V p,q = F p ∩F q and VC = F p⊕F k−p+1 (or equivalently F p ∩F k−p+1 = 0).

Conversely, the decreasing filtration (2.8) of VC with the property VC = F p ⊕ F k−p+1 gives
a Hodge filtration of weight k by defining V p,q = F p ∩ F q.

Definition 2.6. Let S be a complex manifold. A variation of Hodge structure of weight
k on S is a quadruple (S,V,∇,F•), in which V is a local system of finitely generated
abelian groups on S, ∇ : V → V ⊗Os Ω1

S is an integrable connection and F• := {Fp} is a
finite decreasing filtration of the holomorphic vector bundle V := V⊗Z OS by holomorphic
subbundles (the Hodge filtration), such that following conditions hold:

(i) for each s ∈ S the filtration {Fp(s)} of V(s) ' Vs ⊗Z C defines a Hodge structure of
weight k on the finitely generated abelian group Vs,

(ii) the connection ∇, whose sheaf of horizontal sections is VC, satisfies the Griffiths’
transversality condition

∇(Fp) ⊂ Ω1
S ⊗Fp−1. (2.9)

Note that in all the concepts of this section we can substitute the group of integers Z by
the group of reals R, and have the real Hodge structure or real variation of Hodge structure.

2.3 de Rham Cohomology and Hodge Filtration

Let X be an n-dimensional differentiable manifold, T X the tangent bundle of X and T ∗X
its cotangent bundle. By definition let

EmX := Γ (X,ΛmT ∗X) , m = 1, 2, 3, . . .

be the bundle of differential m-forms; note that by the space of 0-forms we mean the space
of differentiable functions. Then by considering the long exact sequence

E•X : 0
d−→ E0

X
d−→ E1

X
d−→ . . .

d−→ En−1
X

d−→ EnX
d−→ 0,

in which d is exterior derivative, we define the q-th de Rham cohomology Hq
dR(X) of X as

follow,

Hq
dR(X) := Hq(E•X , d) =

Ker
(
EqX

d−→ Eq+1
X

)
Im
(
Eq−1
X

d−→ EqX
) . (2.10)
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We can also see de Rham cohomology in the point of view of Čech cohomology. To do this
let Ωq(X), q = 1, 2, . . . , be the sheaf of differential q-forms, and Ω0(X) := O(X) the sheaf
of differential functions on X. Then we have the de Rham complex

Ω•(X) : 0→ RX ↪→ Ω0(X)
d−→ Ω1(X)

d−→ . . .
d−→ Ωn−1(X)

d−→ Ωn(X)
d−→ 0,

in which RX is a constant sheaf on X. If X is compact, then we have the following
isomorphism

Hq
dR(X) ∼= Ȟq(X,R).

Also in the context of singular cohomology, by de Rham lemma one has the following
isomorphism

Hq
dR(X) ∼= Hq(X,R), (de Rham lemma). (2.11)

Note that if X is connected, then for q = 0 we have

H0
dR(X) ∼= {locally constant R-valued functions on X} ∼= R. (2.12)

Next we suppose that X is a complex n-dimensional manifold, and hence m = 2n
dimensional differential manifold. Let J be the complex structure of X. Then for any
p ∈ X, complexify TpX to obtain (TpX)C := TpX ⊗R C which is a complex vector space
isometric to C2n. The automorphism Jp : TpX → TpX extends naturally to a automorphism
Jp : (TpX)C → (TpX)C, which is linear over C. Since J2

p = −id, the eigenvalues of Jp are ±i,
where i =

√
−1. Let T (1,0)

p X and T (0,1)
p X, resp., be the eigenspaces of Jp corresponding to

eigenvalues i and −i, resp. Then we see that T (1,0)
p X ∼= Cn ∼= T (0,1)

p X and that (TpX)C =

T (1,0)
p X ⊕ T (0,1)

p X. As this is valid for every point p ∈ X, we have defined two subbundles
of (T X)C := T X ⊗R C such that (T X)C = T (1,0)X ⊕ T (0,1)X. By a similar argument we
can see that the complexified cotangent bundle (T ∗X)C := T ∗X ⊗R C splits into pieces
(T ∗X)C = T ∗(1,0)X ⊕ T ∗(0,1)X. If we define Λp,qX := ΛpT ∗(1,0)X ⊗ ΛqT ∗(0,1)X, then by
using of splitting of (T ∗X)C it follows that

ΛkT ∗X ⊗R C =
k⊕
j=0

Λj,k−jX.

This is decomposition of the exterior k-forms on X induced by the complex structure J . A
section of Λp,qX is called a (p, q)-form and by notation we write

Ep,qX := Γ(X,Λp,qX).

Now we define ∂ and ∂̄ to be the components of exterior derivative d as follow,

∂ : Ep,qX → Ep+1,q
X & ∂̄ : Ep,qX → Ep,q+1

X .

Then ∂ and ∂̄ are first-order partial differential operators on complex k-forms which satisfy
d = ∂ + ∂̄. The identity d2 = 0 implies that ∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. So by using the
differential operator ∂̄ we have the following long exact sequence

Ep,•X : 0→ Ep,0X
∂̄−→ Ep,1X

∂̄−→ . . .
∂̄−→ Ep,qX

∂̄−→ Ep,q+1
X

∂̄−→ . . . , p = 0, 1, 2, . . .
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and hence we define the (p, q)-th Dolbeault cohomology Hp,q as follow

Hp,q(X) := Hq(Ep,•, ∂̄) =

Ker

(
Ep,qX

∂̄−→ Ep,q+1
X

)
Im

(
Ep,q−1
X

∂̄−→ Ep,qX

) .

If we denote the sheaf of holomorphic p-forms by Ωp
X and the sheaf of (p, q)-forms by Ωp,q

X ,
then we consider the Dolbeault complex as follow

Ωp,•
X : 0→ Ωp

X ↪→ Ωp,0
X

∂̄−→ Ωp,1
X

∂̄−→ . . .
∂̄−→ Ωp,q

X
∂̄−→ Ωp,q+1

X
∂̄−→ . . . , p = 0, 1, 2, . . .

which is a resolution of Ωp
X , and by Dolbeault’s theorem we have the following isomorphism

Hp,q(X) ∼= Hq(X,Ωp
X), (Dolbeault’s theorem). (2.13)

Next we are going to introduce a real Hodge structure of weight k on Hk
dR(X). To do

this we need X to be a Kähler manifold. By definition, a Kähler manifold is a 4-tuple
(X,ω, g, J), in which (X,ω) is a symplectic manifold, i.e. ω is a non-degenerate closed
2-form on X, with the complex structure J and the Riemannian metric g such that for any
two vector fields v, w on X we have g(v, w) = ω(v, Jw). Hence one can easily see that

h := g + iω (2.14)

is a hermitian metric on X. As we saw in (2.6), we also need to complexify Hk
dR(X) and

we denote its complexification as follow

Hk
dR(X;C) := Hk

dR(X)⊗R C,

and by de Rham lemma (2.11) we have

Hk
dR(X;C) ∼= Hk(X,C). (2.15)

Following theorem gives the real Hodge structure that we desire(see [36, Theorem 1.8]).

Theorem 2.3. (Hodge Decomposition Theorem) If X is a compact Kähler manifold,
then we have

Hk
dR(X;C) =

⊕
p+q=k

Hp,q(X), (2.16)

and moreover, Hp,q(X) = Hq,p(X), in which ” .̄ ” refers to complex conjugation.

Hence the complex conjugation map implies the isomorphism

Hp,q(X) ∼= Hq,p(X), (2.17)

thus if we denote the Hodge numbers by hp,q(X) := dimCH
p,q(X), then hp,q(X) = hq,p(X).

If there is no danger of confusion, we just denote the Hodge number by hp,q. Also we have
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hp,q = hn−q,n−p; to see this first we need to know a little about the Hodge ∗-operator.
The Kähler metric g of X present an inner product on TxX, and hence it induces an inner
product on T ∗x X and on the wedge product of T ∗x X, i.e. the bundle of q-forms ΛqT ∗x X,
which we denote it also by g. Using g we can define the positive definite hermitian form gCx
on (TxX)C, for any x ∈ X, as follow

gCx (v ⊗ λ,w ⊗ µ) = (λµ̄)gx(v, w), ∀λ, µ ∈ C and andv, w ∈ TxX. (2.18)

Definition 2.7. The Hodge ∗-operator

∗ : ΛqT ∗X → Λ2n−qT ∗X, (2.19)

in any point x ∈ X is defined by

α ∧ ∗β = gx(α, β)volg(x), ∀α, β ∈ ΛqT ∗x X, (2.20)

in which volg(x) refers to the volume form of X with respect to the metric g in x, of course
with a fixed orientation on X.

The Hodge ∗-operator (2.19) C-linearly extends to the operator

∗ : Λq(T ∗X)C → Λ2n−q(T ∗X)C, (2.21)

that is induced by
α ∧ ∗β̄ = gCx (α, β)volg(x), ∀α, β ∈ ΛqT ∗x X, (2.22)

in which gCx (., .) is given by (2.18). The operator given in (2.21) is also called Hodge ∗-
operator and it is not difficult to see that it sends Λp,qX to Λn−q,n−pX (for more details
one refers to [24]). And finally the equality hp,q = hn−q,n−p, follows from following theorem
which is proved in [24, Corollary 3.3.14].

Theorem 2.4. The Hodge ∗-operator on a compact Kähler manifold X, induces the fol-
lowing isomorphism,

Hp,q(X) ∼= Hn−q,n−p(X).

Notation 2.1. For a compact Kähler manifold X, we denote by bk(X) := dimCH
k
dR(X;C)

which is known as k-th Betti number of X. And if there is no ambiguity about the manifold
X, we just denote it by bk.

We can summarize above facts in the following lemma.

Lemma 2.1. Let X be a compact Kähler manifold of complex dimension n. Then the
followings hold:

(i) bk =
∑

p+q=k

hp,q, 0 ≤ k ≤ 2n.

(ii) hp,q = hq,p, 0 ≤ p, q ≤ n.
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(iii) hp,q = hn−q,n−p, 0 ≤ p, q ≤ n.

By using Lemma 2.1, we consider the Hodge diamond of an n-dimensional compact
Kähler manifold X as follow

Lemma 2.1(ii)←→

h0,0

h1,0 h1,0

h2,0 h1,1 h2,0

. .
. . . .

hn−1,0 hn−2,1 . . . hn−2,1 hn−1,0

Lemma 2.1(i)−−−−−−−−→ hn,0 hn−1,1 . . . hn−1,1 hn,0 l Lemma 2.1 (iii) (2.23)

hn−1,0 hn−2,1 . . . hn−2,1 hn−1,0

. . . . .
.

h2,0 h1,1 h2,0

h1,0 h1,0

h0,0

Now, as we saw in (2.7), we present the Hodge filtration of Hk
dR(X), 0 ≤ k ≤ n, as

follow

F p(X) =
⊕
p≤r≤k

Hr,k−r(X), 0 ≤ p ≤ k, (2.24)

and hence we have the following decreasing filtration

F • : 0 = F k+1 ⊂ F k ⊂ . . . ⊂ F 1 ⊂ F 0 = Hk
dR(X;C). (2.25)

One can easily see the following lemma.

Lemma 2.2. Following hold for the Hodge filtration F • of Hk
dR(X):

(i) Hp,q = F p ∩ F q, 0 ≤ p, q ≤ k.

(ii) Hk
dR(X;C) = F p ⊕ F k−p+1, 0 ≤ p ≤ k.
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2.4 Families and Complex Deformations

Definition 2.8. By a family of complex manifolds we mean a holomorphic proper submer-
sion π : X → S, in which X and S are complex manifolds. The manifold S sometimes is
called the base manifold and in the case that there is no ambiguity about the base manifold,
we simply denote the family of complex manifolds by X .
For any s ∈ S, let Xs be the fiber of π over the point s, i.e. Xs := π−1(s). If S is connected
and o ∈ S is a base point, then we say that X is a family of deformations of the fiber Xo,
and any fiber Xs, s ∈ S, is said a complex deformation of Xo. An infinitesimal complex
deformation of X is a deformation with base space S := Spec(C[ε]). Following theorem
gives a representation of infinitesimal deformation of X (see [18, Theorem 22.1]).

Theorem 2.5. The isomorphism classes of infinitesimal deformations of a compact complex
manifold X are parametrized by elements in H1(X, TX).

Remark 2.1. Let X be an n-dimensional compact complex manifold. The space of complex
deformations of X sometimes is called complex moduli space of X which is denoted by
Mcmplx(X). If E is a holomorphic vector bundle on X, then Serre duality states that

Hq(X,E) ∼= Hn−q(X,KX ⊗ E∗)∗,

in which KX = Λn,0X is the canonical bundle of X. So by Theorem 2.5, we have

Mcmplx(X) ∼= Hn−1(X,KX ⊗ T ∗X)∗. (2.26)

Next we state the well known Ehresmann Lemma, and then by applying it to the family
of complex manifolds we conclude a trivialization of them.

Theorem 2.6. (Ehresmann Lemma) Let π : X → S be a proper smooth submersion of
differentiable manifolds over a contractible pointed base (S, o). Then there exists a diffeo-
morphism T = (T1, T2) : X ∼−→ Xo × S, such that T2 = π.

Hence the first component of trivialization T , i.e. T1 : X → Xo, induces a diffeomor-
phism Xs

∼= Xo, for any s ∈ S.

Now in [41, Proposition 9.5] we have the following theorem.

Theorem 2.7. Let π : X → S be a family of complex manifolds over a pointed base (S, o).
Then up to replacing S by a neighborhood of the base point o, there exists a C∞ trivialization
T = (T1, π) : X → Xo × S, such that the fibers of T1 are complex submanifolds of X .

Note that in the complex case the trivialization T , in general, is not holomorphic, but
the diffeomorphismes T1 : Xs

∼−→ Xo, s ∈ S, enable us to verify that the family of complex
structures on Xo parameterized by S, i.e. Xs’s, varies holomorphically with s ∈ S.

In the continue, we announce some results about a family of complex manifolds X in
which Xo is a Kähler manifold. For more details one refers to [41, § 9.3].
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Proposition 2.1. [41, Propositions 9.20 and 9.21] Let π : X → S be a family of complex
manifolds that Xo is a Kähler manifold. Then for any s ∈ S, close enough to o, following
hold:

(i) hp,q(Xs) = hp,q(Xo), for suitable p and q’s.

(ii) Hk
dR(Xs;C) =

⊕
p+q=k

Hp,q(Xs).

Theorem 2.8. [41, Theorem 9.23] Let π : X → S be a family of complex manifolds. If Xo

is a Kähler manifold, then for any s ∈ S, close enough to o, Xs is also a Kähler manifold.

Definition 2.9. By a family of Kähler manifolds we mean a family of complex manifolds
X over the pointed base (S, o) that any fiber Xs, s ∈ S, is a Kähler manifold.

Remark 2.2. (i) Considering Theorem 2.8, in the family of complex manifolds X , up to a
neighborhood of base point o, to have a family of Kähler manifolds it is enough that
the fiber Xo be a Kähler manifold.

(ii) Note that in the family of complex manifolds X any fiber Xs is a compact complex
manifold, and to further emphasize sometimes we use the family of compact complex
(Kähler) manifolds instead of the family of complex (Kähler) manifolds.

(iii) Under hypothesis of Proposition 2.1, for any s ∈ S near to o, bk(Xs) = bk(Xo), and
(2.24) gives the following decreasing Hodge filtration of Hk

dR(Xs;C)

0 = F k+1(Xs) ⊂ F k(Xs) ⊂ . . . ⊂ F 1(Xs) ⊂ F 0(Xs) = Hk
dR(Xs;C). (2.27)

And also dimC F
j(Xs) = dimC F

j(Xo), 0 ≤ j ≤ k + 1.

2.5 Gauss-Manin Connection and Griffiths Transversality

Let π : X → S be a family of compact Kähler manifolds. In this section first we are going to
introduce a locally constant sheaf on S and then after presenting an integrable connection,
which is known as Gauss-Manin connection, we conclude a real variation of Hodge structure
on S.

Let VX be a constant sheaf on X for some group V , for example V = C, Q, R or Z.
Then consider the sheaf Rkπ∗VX on S, in which Rkπ∗ refers to k-th derived functor of
the pushforward (to know more about the derived functor one can see [36, § A.2.4]). By
[13, Corollary 2.25] we have the following more understandable presentation of the stalks
(Rkπ∗VX )s:

Theorem 2.9. For any s ∈ S, one has the following isomorphism

(Rkπ∗VX )s ' Hk(Xs, V ).
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In particular, in the case that V = C, we have

(Rkπ∗CX )s ' Hk(Xs,C)
(2.15)
' Hk

dR(Xs;C),

hence Rkπ∗CX is a locally constant sheaf on S. Formally speaking, Rkπ∗CX is the sheaf
associated to the presheaf U 7→ Hk(π−1(U),C). In fact, for a contractible open subset U ⊂
S, by Ehresmann Lemma π−1(U) ∼= U×Xs for some s ∈ S, so Hk(π−1(U),C) ' Hk(Xs,C).
Thus (Rkπ∗CX )|U is just the constant sheaf with group Hk

dR(Xs;C). Hence, by Theorem
2.1, equivalently we can consider Rkπ∗CX as a local system on S. Next by following the
process of constructing holomorphic vector bundle (2.5) from a local system, we define

Hk
dR(X/S) := Rkπ∗CX ⊗C OS , (2.28)

which is a holomorphic vector bundle on S, so by Theorem 2.2 there exist a unique integrable
connection on Hk

dR(X/S) such that the space of its horizontal local section is Rkπ∗CX . And
also, with a little neglect, we have

Hk
dR(X/S)s ∼= Hk

dR(Xs;C). (2.29)

For more details one refers to [36, Prop-Def 10.24].

Definition 2.10. The holomorphic vector bundle Hk
dR(X/S) defined in (2.28) is called k-th

relative de Rham cohomology group and the unique integrable connection

∇GM : Hk
dR(X/S)→ Ω1

S ⊗OS H
k
dR(X/S),

is said Gauss-Manin connection.

For a vector field v on S, consider the map

v ⊗ Id : Ω1
S ⊗OS H

k
dR(X/S)→ Hk

dR(X/S),

then by composing the Gauss-Manin connection ∇GM with v ⊗ Id we define

∇GM
v :Hk

dR(X/S)→ Hk
dR(X/S) (2.30)

∇GM
v = (v ⊗ Id) ◦ ∇GM.

From now on, if there is no danger of confusion we denote the Gauss-Manin connection by
∇ instead of ∇GM.

Observation 2.2. Proposition 2.1 implies that the k-th relative de Rham cohomology
group Hk

dR(X/S) is local free of finite rank, say m. By considering the locally frame
$ := {ωj}mj=1, the same as Observation 2.1, we have the Gauss-Manin matrix connection
which is denoted by GM$. More precisely if we consider the matrix presentation of $,
which we denote it also by $, as follow

$ := (ω1 ω2 . . . ωm)t ,
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in which t refers to the matrix transpose, then

∇$ := (∇ω1 ∇ω2 . . . ∇ωm)t = GM$ ⊗$.

Note that for any s ∈ S and any j ∈ {1, 2, . . . ,m}, ωj(s) ∈ Hk
dR(Xs;C) and we can present

it by a k-form in Xs that we denote it also by ωj(s).

Considering Remark 2.2(iii), each fiber of Hk
dR(X/S) has a Hodge filtration, and this

yields a decreasing filtration of Hk
dR(X/S) by holomorphic subbundles

F• : 0 = Fk+1 ⊂ Fk ⊂ . . . ⊂ F1 ⊂ F0 = Hk
dR(X/S), (2.31)

such that for any s ∈ S and any p ∈ {0, 1, 2, . . . , k},

Fps ∼= F p(Xs) =
⊕
p≤r≤k

Hr,k−r(Xs).

By definition, the filtration F• given in (2.31) is called Hodge filtration of Hk
dR(X/S).

However, one can still define the bundles Hp,n−p = Fp/Fp+1 such that for any s ∈ S,
Hp,n−ps

∼= Hp,n−p(Xs). And now to complete the real Hodge variation of S that we are
looking for, it is enough to show the Griffiths’ transversality which is given in the following
theorem (see [18, Theorem 16.4]).

Theorem 2.10. (Griffiths’ transversality) Let π : X → S be a family of compact
Kähler manifolds and Hk

dR(X/S) be its k-th relative de Rham cohomology group. If ∇ is
the Gauss-Manin connection and F• is the Hodge filtration of Hk

dR(X/S) given in (2.31),
then

∇Fp ⊂ Ω1
S ⊗Fp−1, p = 1, 2, . . . k.

2.6 Intersection Forms

In this section, we suppose that X is the family π : X → S of n-dimensional compact Kähler
manifolds. For any α, ω ∈ Hn

dR(X/S), the intersection form of α and ω by definition is

〈α, ω〉(s) := Tr(α(s) ` ω(s)), ∀s ∈ S,

in which ”`” refers to the cup product. But in de Rham cohomology, the cup product of
differential forms is induced by the wedge product, hence in the family X and its relative
de Rham cohomology group defined by differential forms, the intersection form is defined
as

〈α, ω〉(s) =

∫
Xs

α(s) ∧ ω(s). (2.32)

For more details one can see [14].
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For a fixed s ∈ S, we know that Xs is an n-dimensional compact Kähler manifold. It
is obvious that if η, ν ∈ Hn

dR(Xs;C), then η ∧ ν = (−1)n(ν ∧ η), thus 〈η, ν〉 = (−1)n〈ν, η〉.
Also it is easy to see that

η ∧ ν = 0, for any η ∈ F i(Xs) , ν ∈ F j(Xs) with i+ j ≥ n+ 1, (2.33)

in which F •(Xs) is the Hodge filtration of Hn
dR(Xs;C). To show this, first suppose that

(x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n) is a local chart of Xs, so since F i(Xs) =
⊕

i≤r≤n
Hr,n−r(Xs), η

is presented in this chart as follow

η =
∑

]Iη≥i
]Jη≤n−i

fIηJηdxIηdx̄Jη ,

and similarly ν ∈ F j(Xs) is locally presented as follow

ν =
∑

]Iν≥j
]Jν≤n−j

gIνJνdxIνdx̄Jν ,

thus,

η ∧ ν =
∑

]Iη≥i, ]Jη≤n−i
]Iν≥j, ]Jν≤n−j

hIηJηIνJνdxIηdxIνdx̄Jηdx̄Jν .

Now we know that ]Iη + ]Iν ≥ i + j ≥ n + 1, hence dxIηdxIν = 0, and this completes the
proof of (2.33). So we can state the following lemma.

Lemma 2.3. Let X be a family of n-dimensional compact Kähler manifolds. Then following
hold:

(i) 〈α, ω〉 = (−1)n〈ω, α〉, for any α, ω ∈ Hn
dR(X/S).

(ii) If F• is the Hodge filtration of Hn
dR(X/S), then

〈F i,F j〉 = 0, for i+ j ≥ n+ 1. (2.34)

Notation 2.2. Let X be the family of n-dimensional compact Kähler manifolds over the
pointed base (S, o). By dimHj

dR(X/S) = l we mean that dimCH
j
dR(Xo;C) = l. Proposition

2.1 guaranties that, up to a neighborhood of o, for any s ∈ S, dimCH
j
dR(Xs;C) = l. Also

by dimF j = k we mean that dimC F
j(Xs) = k, for any s ∈ S.

Remark 2.3. We are going to consider a special case with respect to the dimension of de
Rham cohomology. Let X be the family of n-dimensional compact Kähler manifolds such
that dimHn

dR(X/S) = n+ 1. Also suppose that dimF i = (n+ 1)− i, i = 0, 1, . . . , n, where
F• is the Hodge filtration of Hn

dR(X/S). Then it is an easy consequence that for any s ∈ S,
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dimHp,q(Xs) = 1 if p+ q = n. So if we consider a local frame {ωi}n+1
i=1 of Hn

dR(X/S) with
ωi ∈ F (n+1)−i, then we can define the matrix of intersection forms as follow

Ω = (Ωij)1≤i,j≤n+1 := (〈ωi, ωj〉)1≤i,j≤n+1 .

By using of Lemma 2.3, in the case that n is an odd integer Ω is given as

Ω =


0 0 . . . 0 Ω1(n+1)

0 0 . . . Ω2n Ω2(n+1)
...

... . .
. ...

...
0 −Ω2n . . . 0 Ωn(n+1)

−Ω1(n+1) −Ω2(n+1) . . . −Ωn(n+1) 0

 , (2.35)

and in the case that n is an even integer Ω is presented as follow

Ω =



0 0 . . . 0 Ω1(n+1)

0 0 . . . Ω2n Ω2(n+1)

...
...

. .
.

Ωll

. .
.

...
...

0 Ω2n . . . Ωnn Ωn(n+1)

Ω1(n+1) Ω2(n+1) . . . Ωn(n+1) Ω(n+1)(n+1)


, (2.36)

in which l = n
2 + 1.



Chapter 3

Picard-Fuchs Equation as a
Self-Dual Linear Differential
Equation

In the pervious chapter we introduced the Gauss-Manin connection. We saw that the
composition of Gauss-Manin connection with a vector field yields a differential operator on
the relative de Rham cohomology group of a family of complex manifolds. In this chapter we
are going to study this operator and its generated linear differential equations. First in §3.1,
we briefly state some basic facts related with differential operators. We give an algorithm
to find the relationships among coefficients of a self-dual linear differential operator of
an arbitrary degree. Next in §3.2, a special linear differential operator associated with a
holomorphic n-form, which is called Picard-Fuchs equation, is presented. At the end of this
chapter, in §3.3, after fixing some certain hypothesis on a family of complex manifolds, we
prove that its relative de Rham cohomology group has a special type of frame, which we
call it Yukawa frame. To do this we use the properties of coupling function that we prove
them in Proposition 3.3 in context of de Rham cohomology. Also in Proposition 3.4, we
give a relationship between the dimensions of the relative de Rham cohomology group and
its Hodg filtration, which weakens our primary hypothesis.

The basic concepts of this chapter are discussed more detailed in [2, 3].

3.1 Differential Operators

In this section by R we mean a simple commutative differential ring, with quotient field k
and derivative (.)′, and R[∂] is the ring of differential operators. We assume that the ring
of constants C is an algebraically closed field of characteristic zero, such that k also has the
same field of constants C and k 6= C.

In this section, for more details and proofs, one refers to [3].

Definition 3.1. A differential R-module is a pair (M,∂), where M is a finitely generated
R-module and ∂ : M →M is a map satisfying

31
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(i) ∂(m+ n) = ∂(m) + ∂(n) for every m,n ∈M ,

(ii) ∂(fm) = f ′m+ f∂(m) for every f ∈ R and every m ∈M .

A differential morphism between differential R-modules (M,∂) and (N, ∂) is a morphism of
R-modules ψ : M → N satisfying

∂ψ(m) = ψ(∂m)

for every m ∈M .

Definition 3.2. Let (M,∂) be a differential k-module. Then for each m ∈ M we define
the evaluation map evm : k[∂]→M by

n∑
i=0

ai∂
i 7→

n∑
i=0

ai∂
im.

The monic generator of the kernel of evm as a left ideal is called the minimal operator of m
over k[∂]. Furthermore, we call m a cyclic vector of M if the degree of its minimal operator
equals the k-dimension of M , i.e. the set {m, ∂m, ..., ∂dimk(M)−1m} is a k-basis of M. We
call a pair (M, e) consisting of a differential module M and a cyclic vector e ∈M a marked
differential module.

By a result due to N. Katz (see [39]), there is a one to one correspondence between
monic differential operators L ∈ k[∂] and marked differential modules (M, e).

Proposition 3.1. If the field of constants C of k is algebraically closed, then each differen-
tial k-module M has a cyclic vector. In particular, there is a differential operator L ∈ k[∂]
such that M is isomorphic to k[∂]/k[∂]L.

In the continue of this section, we suppose that k = C(z), the operator ∂ is the usual
derivation ∂

∂z or logarithmic derivation z ∂
∂z . Note that it is seen k[ ∂∂z ] and k[z ∂

∂z ] are
isomorphic, so we can freely switch between these two differential rings. Also we assume
that

L = ∂n+1 +
n∑
i=0

ai∂
i ∈ Q(z)[∂],

be an irreducible monic differential operator and

(ML, e) ∼= (C(z)[∂]/C(z)[∂]L, [1]), (3.1)

be its corresponding marked differential C(z)-module.

Definition 3.3. It is said that L satisfies property (P), if there is a non-degenerate form
〈., .〉 : ML ×ML → C(z) such that

(i) 〈., .〉 is a (−1)n-symmetric form, i.e. 〈., .〉 ∈ HomC(z)[∂](Sym2ML,C(z)) if n is even, and

〈., .〉 ∈ HomC(z)[∂](
∧2ML,C(z)) if n is odd.
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(ii) 〈e, ∂ie〉 = 0 for i = 0, 1, . . . , n− 1.

Following we state a proposition that gives an equivalence condition for property (P)
and for proof see [3]. Note that for ψ ∈ C(z), the operator ∂ψ is given as follow,

∂ψ = ∂(ψ) + ψ∂,

and for convenient we denote ψ′ = ∂(ψ), so ψ(i) = ∂(∂(. . . (∂︸ ︷︷ ︸
i−times

(ψ)) . . .)). Before stating the

proposition, we give the following definition.

Definition 3.4. Given an n-th order linear differential operator

L =
n∑
i=0

ai(z)∂
i ∈ k[∂], (3.2)

its dual operator Ľ is given by

Ľ =

n∑
i=0

(−1)n−i∂iai, (3.3)

in which, ∂ai = a′i + ai∂, i = 0, 1, . . . , n.

Proposition 3.2. The operator L satisfies the property (P) if and only if L is self-dual,
i.e. there is an 0 6= ψ ∈ C(z), such that

Lψ = ψĽ. (3.4)

Using Proposition 3.2, we prove the following lemma that gives existence relationships
among coefficients of L.

Lemma 3.1. Let L =
∑n+1

i=0 ai∂
i, with an+1 = 1, be a linear differential operator satisfying

property (P). Then the following hold:

(i) If n = 2, then

a0 =
1

3
a1a2 −

1

3
a2a
′
2 −

2

27
a3

2 +
1

2
a′1 −

1

6
a′′2. (3.5)

(ii) If n = 3, then

a1 = −3

4
a3a
′
3 + a′2 −

1

2
a′′3 −

1

8
a3

3 +
1

2
a2a3. (3.6)

(iii) If n = 5, then

a3 =
2

3
a4a5 −

5

3
a5a
′
5 −

5

27
a3

5 −
5

3
a′′5 + 2a′4, (3.7)

a1 = a′2 − a′′′4 + a
(4)
5 − a

(2)
4 a5 − a′4a′5 +

5

3
a5(a′5)2 +

1

3
a2a5 (3.8)

− 1

27
a4a

3
5 +

10

27
a3

5a
′
5 +

1

81
a5

5 −
1

3
a′4a

2
5 −

1

3
a4a5a

′
5 +

10

9
a2

5a
′′
5

+
10

3
a′5a
′′
5 −

1

3
a4a
′′
5 +

5

3
a5a
′′′
5 .
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Proof. We prove (iii), and the proofs of (i) and (ii) are given similarly. First we
compute Lψ, for ψ ∈ C(z) \ {0}, as follow

Lψ =
6∑
i=0

 6∑
j=i

 j

i

 ajψ
(j−i)

 ∂i. (3.9)

Next we find Ľ,

Ľ =
6∑
i=0

 6∑
j=i

(−1)6−j

 j

i

 a
(j−i)
j

 ∂i, (3.10)

hence,

ψĽ =
6∑
i=0

ψ

 6∑
j=i

(−1)6−j

 j

i

 a
(j−i)
j

 ∂i. (3.11)

Since L satisfies the property (P), by Proposition 3.2

Lψ = ψĽ. (3.12)

By comparing coefficients of ∂5 in (3.9) and (3.11) we find

ψ′ = −1

3
a5ψ, (3.13)

and then using (3.13), we compute ψ(i)’s, i=2,3,. . . ,6, in terms of ψ and a5, and substitute
them in (3.9). Finally (3.7) and (3.8), resp., follow from comparing the coefficients of ∂3

and ∂, resp., in (3.12). �

Next we give the general theory of property (P) based on an algorithm to find the
existence relationships among coefficients. Let L =

∑n+1
i=0 ai∂

i, with an+1 = 1, be a linear
differential operator satisfying property (P). Suppose that n = 2m or 2m+ 1, for a positive
integer m. Then m coefficients an−2, an−4, . . . , an−2m depend to the rest of coefficients and
their derivations. First one by induction can easily verify that for ψ ∈ C(z),

∂jψ =

j∑
i=0

 j

i

ψ(j−i)∂i.

So it follows that

Ľ =

n+1∑
i=0

n+1∑
j=i

(−1)n+1−j

 j

i

 a
(j−i)
j

 ∂i,
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and

Lψ =
n+1∑
i=0

n+1∑
j=i

 j

i

 ajψ
(j−i)

 ∂i.

Hence if we substitute them in Lψ = ψĽ, then we have:

n+1∑
i=0

n+1∑
j=i

 j

i

 ajψ
(j−i)

 ∂i =
n+1∑
i=0

ψ

n+1∑
j=i

(−1)n+1−j

 j

i

 a
(j−i)
j

 ∂i. (3.14)

Now by comparing the coefficient of ∂n in (3.14) we find ψ′ and its derivations in terms of
ψ and a5 and derivations of an as follows

ψ′ = − 2

n+ 1
anψ,

ψ′′ =

(
(− 2

n+ 1
)2a2

n −
2

n+ 1
a′n

)
ψ,

ψ′′′ =

(
(− 2

n+ 1
)3a3

n + 3(− 2

n+ 1
)2ana

′
n −

2

n+ 1
a′′n

)
ψ,

...

and substitute them in the left side of (3.14). Therefore to express an−2k, k = 1, 2, . . . ,m,
as equation of an, an−1, an−3, . . . , an−(2k−1) and their derivations it is enough to compare

the coefficient of ∂n−2k of both sides of (3.14), i.e.,

n+1∑
j=n−2k

 j

n− 2k

 ajψ
(j−(n−2k)) =

 n+1∑
j=n−2k

(−1)n+1−j

 j

n− 2k

 a
(j−(n−2k))
j

ψ,

thus,

2an−2k =

n∑
j=n−2k+1

(−1)n+1−j

 j

n− 2k

 a
(j−(n−2k))
j

−
n+1∑

j=n−2k+1

 j

n− 2k

 aj(ψ
(j−(n−2k))/ψ).

For example when k = 1, then an−2 is given as follow,

an−2 =
n− 1

n+ 1
an−1an −

n(n− 1)

2(n+ 1)
ana

′
n −

n(n− 1)

3(n+ 1)2
a3
n +

(n− 1)

2
a′n−1 −

1

12
n(n− 1)a′′n,

and one can see the truth of Lemma 3.1(i),(ii) by using of this equation.
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3.2 Picard-Fuchs Equation

In this section X refers to a family of n-dimensional compact Kähler manifolds on a pointed
base (S, o). Fix the local section ω ∈ Fn at o, in which F• is the Hodge filtration of
Hn(X/S). In fact for any s ∈ S, ω(s) ∈ Hn,0(Xs) is a holomorphic n-form. Let D be the
ring of linear differential operators on S. If dimS = r and z1, z2, . . . , zr is a local coordinate
of (S, o), then we have

D = C{z1, z2, . . . , zr}[∂1, ∂2, . . . , ∂r], (3.15)

where C{z1, z2, . . . , zr} is the ring of convergent power series of z1, z2, . . . , zr and ∂i = ∂
∂zi

.
Now by using the composition of Gauss-Manin connection ∇ with a vector field on S given
in (2.30), we define the OS-homomorphism Ψ : D → Hn

dR(X/S) which for vector fields
v1, v2, . . . , vk is determined by

Ψ(v1v2 . . . vk) = ∇v1∇v2 . . .∇vkω.

By this definition, Ψ gives the structure of a D-module to Hn
dR(X/S).

Definition 3.5. The ideal I = kerΨ, consist of the differential operators that annihilate ω,
by definition is called Picard-Fuchs ideal and any L ∈ I is called a Picard-Fuchs equation.

Definition 3.6. We say that X is a one parameter family of n-dimensional compact Kähler
manifolds if dimS = 1.

Now suppose that X is a one parameter family of n-dimensional compact Kähler man-
ifolds. Let z be a coordinate of S and define the differential operator ∂ := ∇ ∂

∂z
. Then

(Hn
dR(X/S), ∂) is a differential C(z)-module. Considering the terminologies introduced in

§3.1, we present the following definition of Picard-Fuchs equation.

Definition 3.7. Let X be a one parameter family of n-dimensional compact Kähler man-
ifolds and ω ∈ Hn

dR(X/S) be a fixed non-zero element. Then the minimal operator of ω is
called the Picard-Fuchs equation of ω.

The Proposition 3.1 guaranties the existence of a cyclic vector in Hn
dR(X/S), i.e. there

exist an ω ∈ Hn
dR(X/S) such that

{ω, ∂ω, . . . , ∂l−1ω}, (3.16)

construct a frame for Hn
dR(X/S) where l = dimHn

dR(X/S) and

∂iω = ∇ ∂
∂z
∇ ∂

∂z
. . .∇ ∂

∂z︸ ︷︷ ︸
i−times

ω. (3.17)

Observation 3.1. In the one parameter family of n-dimensional compact Kähler man-
ifolds X , if we define the differential operator ϑ := ∇z ∂

∂z
, then ϑ = z∂. What we

stated above about the operator ∂, is valid for the operator ϑ. In particular, there exist



37

ω ∈ Hn
dR(X/S) such that {ω, ϑω, . . . , ϑnω} construct a frame for Hn

dR(X/S). Considering
ϑn+1ω ∈ Hn

dR(X/S), there are rational holomorphic functions ai(z)’s, i = 0, 1, . . . , n, such
that

ϑn+1ω = a0(z)ω + a1(z)ϑω + . . .+ an(z)ϑnω.

Thus if we define
L = ϑn+1 − a0(z)− a1(z)ϑ+ . . .− an(z)ϑn,

then Lω = 0. In the other word, L is the Picard-Fuchs equation of ω.

What we are interesting more is that ω ∈ Hn
dR(X/S) ∩ Fn, and we will study it in the

next section.

3.3 Self-Duality

In this section we follow some terminologies and results given in [2, § 4.5] and we state some
new results that we will use them future. First we fix the following assumptions.

Assumption 3.1. During the whole of this section we are working with the family X
satisfying followings:

(i) π : X → S is a one parameter family of n-dimensional compact Kähler manifolds, i.e.
dimS = 1.

(ii) z is a local coordinate of S at the point o ∈ S, i.e z(o) = 0, and by notation ϑ refers
either to the differential operator ∇z ∂

∂z
if it operate on the elements of Hn

dR(X/S), or

to z ∂
∂z if it acts on the elements of C(z). Also by definition we consider ϑ0 = 1 to be

the identity differential operator.

(iii) For i ∈ {0, 1, . . . , n}, dimF i/F i+1 = 1, where F• is the Hodge filtration of Hn
dR(X/S),

or equivalently dimF i = (n + 1) − i. In the other word, hi,j(Xs) = 1 for any s ∈ S
and any non-negative integers i, j with i+ j = n. So dimHn

dR(X/S) = n+ 1.

(iv) ω ∈ Fn is a nowhere vanishing holomorphic n-form satisfying Lω = 0, in which L is
the following Picard-Fuchs equation

L = ϑn+1 + an(z)ϑn + . . .+ a1(z)ϑ+ a0(z), (3.18)

where ai(z) ∈ Q(z), i = 0, 1, . . . , n.

Remark 3.1. Under hypothesis (i), (ii), (iii) of Assumption 3.1, one can see in [2] that
if the family X has maximal unipotent monodromy at z = 0, then (iv) of Assumption 3.1
holds.

Notation 3.1. By notation, for i = 1, . . . , n+ 1, we define ωi as follow

ωi := ϑi−1ω. (3.19)
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The aim of this section is to prove that {ω1, ω2, . . . , ωn+1} construct a frame forHn
dR(X/S)

and for any i ∈ {1, 2, . . . , n+ 1},

ωi ∈ F (n+1)−i \ F (n+2)−i. (3.20)

Note that by Griffiths’ transversality we know

ωi ∈ F (n+1)−i. (3.21)

Definition 3.8. For any non-negative integers k, l, we define the coupling functions Xk,l(z)
as follow

Xk,l(z) =

∫
Xz

ϑkω(z) ∧ ϑlω(z) =

∫
Xz

ωk+1(z) ∧ ωl+1(z).

The coupling function Xn,0 is called n-point Yukawa function.

In fact, the coupling function Xk,l is the intersection form of ωk+1 and ωl+1, i.e.

Xk,l(z) = 〈ωk+1, ωl+1〉(z).

Proposition 3.3. Following properties hold for coupling functions Xk,l(z):

(i) Xk,l(z) = (−1)nXl,k(z).

(ii) Xk,l(z) = 0 for k + l < n.

(iii) ϑXk,l(z) = Xk+1,l(z) + Xk,l+1(z).

(iv) Xn,0(z) = (−1)iXn−i,i(z), i = 0, 1, 2, . . . , n.

(v) Xn+k+1,0(z) + an(z)Xn+k,0(z) + · · ·+ a0(z)Xk,0(z) = 0.

Proof.

(i),(ii) Directly follow from Lemma 2.3 and (3.21).

(iv) By (ii), Xn−i−1,i(z) = 0, so ϑXn−i−1,i(z) = 0, hence(iii) implies

Xn−j,j(z) + Xn−j−1,j+1(z) = 0 for j = 0, 1, . . . , n, (3.22)

thus,

Xn,0
j=0
↑
= (−1)1Xn−1,1

j=1
↑
= (−1)2Xn−2,2 = . . .

j=i−1
↑
= (−1)iXn−i,i.

(v) By denoting A = Xn+k+1,0(z) + an(z)Xn+k,0(z) + · · ·+ a0(z)Xk,0(z), we have

A =

∫
Xz

ϑk(ϑn+1ω + an(z)ϑnω + . . .+ a0(z)ω)(z) ∧ ω(z)

=

∫
Xz

ϑk(Lω)(z) ∧ ω(z)

Lω=0
↑
= 0.
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�

Theorem 3.1. The n-point Yukawa function Xn,0(z) satisfies the following first order linear
differential equation

ϑXn,0(z) +
2

n+ 1
an(z)Xn,0(z) = 0. (3.23)

Proof. By Proposition 3.3(iv) we have

Xn,0(z) = (−1)iXn−i,i, (3.24)

and Proposition 3.3(iii) implies

ϑXn−i,i = Xn−i+1,i(z) + Xn−i,i+1(z), i = 0, 1, . . . , n. (3.25)

It follows from (3.22), (3.24) and (3.25) that for k = 1, 2, . . . , n+ 1

kϑXn,0(z) =

k−1∑
i=0

(−1)iϑXn−i,i(z) = Xn+1,0(z) + (−1)k−1Xn−k+1,k(z). (3.26)

Depending to n, we prove the theorem in the following two cases:

Case 1. n is odd. By Proposition 3.3(i), Xn+1
2
,n+1

2
(z) = 0. Then using (3.26) for k =

(n+ 1)/2, we obtain
(n+ 1)

2
ϑXn,0(z) = Xn+1,0(z). (3.27)

In Proposition 3.3, (ii) and (v) implies

Xn+1,0(z) = −an(z)Xn,0(z) (3.28)

Substituting Xn+1,0(z) from (3.28) in (3.27) completes the proof of (3.23).

Case 2. n is even. By Proposition 3.3(i), Xn+1,0(z) = X0,n+1(z). So using (3.26) for
k = n+ 1, we obtain

(n+ 1)ϑXn,0(z) = 2Xn+1,0(z).

Now we are in the same situation (3.27) of Case 1, and analogously the proof is
complete. �

Corollary 3.1. The n-point Yukawa function Xn,0(z), explicitly is expressed as follow

Xn,0(z) = c0 exp

(
− 2

n+ 1

∫ z

0
an(v)

dv

v

)
,

for some nonzero constant c0 = Xn,0(0).

Proof. The proof follows directly from differential equation (3.23). �
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Example 3.1. Assume that L = ϑ4− z(ϑ+ 1/5)(ϑ+ 2/5)(ϑ+ 3/5)(ϑ+ 4/5) be the Picard-
Fuchs differential equation of the family of mirror quintic 3-folds in P4 (see Example 4.2).
In the other word, we can rewrite L as follow

L = ϑ4 − 2z

1− z
ϑ3 − 5

7

z

1− z
ϑ2 − 2

5

z

1− z
ϑ− 24

625

z

1− z
.

Then the Yukawa 3-point function X3,0(z) is given as

X3,0(z) = c0
1

1− z

and in [8] c0 is computed

c0 =
1

57
.

Corollary 3.2. If we denote by ã(z) = c0 exp
(
− 2
n+1

∫ z
0 an(v)dvv

)
, then for any i ∈ {1, . . . , n}

〈ωi, ωn+2−i〉 = (−1)i−1ã. (3.29)

Proof. Proposition 3.3(iv) and Corollary 3.1 directly verify (3.29). �

Remark 3.2. Following the notation of Corollary 3.2, since ã(z) 6= 0 for any z,

〈ωi, ωn+2−i〉(z) 6= 0, ∀i ∈ {0, 1, . . . , n}.

Theorem 3.2. The set {ω1, ω2, . . . , ωn+1} construct a frame for Hn
dR(X/S) and for any

i ∈ {1, 2, . . . , n+ 1},
ωi ∈ F (n+1)−i \ F (n+2)−i. (3.30)

Proof. We know that dimHn
dR(X/S) = n + 1, so it is enough to show that for any z,

the set {ω1(z), ω2(z), . . . , ωn+1(z)} is linearly independent. To do this suppose that there
are meromorphic functions b1, b2, . . . , bn+1 such that

b1(z)ω1(z) + b2(z)ω2(z) + . . .+ bn+1(z)ωn+1(z) = 0, (3.31)

and let
k = max{i | bi(z) 6= 0, i = 1, 2, . . . , n+ 1}.

Then we can write

ωk(z) = c1(z)ω1(z) + c2(z)ω2(z) + . . .+ ck−1(z)ωk−1(z),

in which ci(z) = bi
bk

(z). By intersecting ωk with ωn+2−k and using Proposition 3.3(ii) we
have

〈ωk, ωn+2−k〉(z) = c1(z)〈ω1, ωn+2−k〉(z) + . . .+ ck−1(z)〈ωk−1, ωn+2−k〉(z) = 0.



41

But by Remark 3.2 we know that 〈ωk, ωn+2−k〉(z) 6= 0, which is an contradiction. Therefore
for any z and any i ∈ {1, 2, . . . , n+ 1}, bi(z) = 0, that says {ω1, ω2, . . . , ωn+1} is a linearly
independent subset.
To prove (3.30), first note that Griffiths’ transversality implies that ωi ∈ F (n+1)−i, i =
1, 2, . . . , n + 1. On the other hand, since dimF (n+2)−i = i − 1, and {ω1, ω2, . . . , ωi} is an
independent subset of Hn

dR(X/S), ωi /∈ F (n+2)−i. �

Definition 3.9. The frame {ω1, ω2, . . . , ωn+1} is called Yukawa frame of Hn
dR(X/S).

Considering the terminologies introduced in §3.1, (Hn
dR(X/S), ϑ) is a differential C(z)-

module and (Hn
dR(X/S), ω) is a marked differential module and the equation L given in

(3.18) is the minimal operator of ω.

Theorem 3.3. The picard-Fuchs equation L satisfies the property (P), or equivalently L is
self dual, i.e., there is a non-zero ψ ∈ C(z) such that,

Lψ = ψĽ, (3.32)

where Ľ is the dual operator of L.

Proof. Consider the intersection form defined as follow,

〈., .〉 : Hn
dR(X/S)×Hn

dR(X/S)→ C(z).

Remark 3.2 implies that 〈., .〉 is non-degenerate, and the Lemma 2.3(i) verifies that 〈., .〉 is a
(−1)n-symmetric form. Also Lemma 2.3(ii) guaranties that in Yukawa frame {ω, ϑω, . . . , ϑnω}
we have,

〈ω, ϑiω〉 = 0, for i = 0, 1, . . . , n− 1.

Hence by Definition 3.3, L satisfies the property (P). And finally (3.32) follows directly from
Proposition 3.2. �

In the following proposition we give an equivalent statement of Assumption 3.1(iii).

Proposition 3.4. Let π : X → S be a one parameter family of n-dimensional compact
Kähler manifolds, z be a local coordinate of S at the point o ∈ S, and ω ∈ Fn be a nowhere
vanishing holomorphic n-form satisfying Lω = 0, where L is the following Picard-Fuchs
equation

L = ϑn+1 + an(z)ϑn + . . .+ a1(z)ϑ+ a0(z), (3.33)

in which ai(z) ∈ Q(z), i = 0, 1, . . . , n. Then dimF i/F i+1 = 1 for any i ∈ {0, 1, . . . , n}, if
and only if dimHn

dR(X/S) = n+ 1.

Proof. If dimF i/F i+1 = 1, then it is obvious that dimHn
dR(X/S) = n+ 1. Conversely

suppose that dimHn
dR(X/S) = n + 1. Then it is enough to prove that dimF i/F i+1 6= 0.

The same as before, for i = 1, . . . , n + 1 define ωi := ϑi−1ω and Griffiths’ transversality
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gives ωi ∈ F (n+1)−i. One can repeat the proof of Theorem 3.23 to see that 〈ω1, ωn+1〉 6= 0,
hence Proposition 3.3(ii) implies that

ωn+1 ∈ F0 \ F1. (3.34)

To prove dimF i/F i+1 6= 0, by contradiction suppose that there is a j ∈ {1, 2, 3, . . . , n− 1}
such that dimF j/F j+1 = 0, and hence F j+1 = F j . We know ω(n+1)−j ∈ F j , so by Griffiths’
transversality ω(n+1)−j+1 = ϑω(n+1)−j ∈ F j+1 = F j . Again using Griffiths’ transversality
we see that ω(n+1)−j+2 ∈ F j , and by continuing this process it follows that ωn+1 ∈ F j ,
which contradicts (3.34). Therefore dimF i/F i+1 6= 0. �



Chapter 4

Calabi-Yau Manifolds

As one can see in the title of this thesis, the space that we are working on is a Calabi-Yau
manifold. In this chapter we are going to recall fundamental definitions and facts related
to Calabi-Yau manifolds. Here we first announce Calabi-Yau theorem and then we review
the equivalence definitions of Calabi-Yau manifolds that are used in different contexts. In
§4.1, once we fix the definition of Calabi-Yau manifold, some primary examples and classi-
fications of low dimensional Calabi-Yau manifolds are given. Finally in §4.2 we review the
properties of the families of Calabi-Yau manifolds and also some more examples of families
of Calabi-Yau manifolds are provided.

The name of Calabi-Yau manifold comes from the Calabi-Yau Theorem. In 1954 first
E. Calabi [6, 7] proposed his conjecture, and could prove a part of it, then in 1976 S. T.
Yau [42] completed the proof of Calabi’s conjecture. After that in 1985 these manifolds
were named ”Calabi-Yau” by Candelas et al [9]. Before stating the Calabi-Yau Theorem,
we need to know some preliminary concepts that for more details one refers to [25].

Let (W,ω, g, J) be an n-dimensional compact Kähler manifold. From Riemannian geom-
etry we know the Levi-Civita connection and Riemann curvature tensor R with respect to
the Riemannian metric g. In index notation, we show the curvature tensor by Rabcd, and by
definition Rabcd := gaeR

e
bcd. The Ricci curvature tensor Rab of g by definition is Rab := Rcacb.

It is seen that Rab = Rba. Then the Ricci form ρ is defined to be ρac := JbaRbc and it is
seen that ρac = −ρca, and so that ρ is a 2-form. In fact, ρ is a closed real (1, 1)-form. It is
said that W is Ricci-flat if ρ ≡ 0.

Next we are going to introduce the first Chern class of W denoted by c1(W ). To do
this, note that the exact sequence of sheaves

0→ Z 2πi→ O
exp→O∗ → 0

gives a boundary map on cohomology H1(W,O∗) δ→H2(W,Z), where Z,O and O∗, resp.,
are the sheaves of constant Z-valued functions, holomorphic functions and nonzero holo-
morphic functions, resp. For any line bundle E ∈ Pic(W ) := H1(W,O∗), the first Chern
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class of E is defined to be δ(E) ∈ H2(W,Z) and is denoted by c1(E). By de Rham theorem,
we can consider c1(E) ∈ H2

dR(W ).

Definition 4.1. The canonical bundle of W is defined by KW := Λn,0W , i.e., the bundle
of (n, 0)-forms on W .

Since dimW = n, it is easily seen that KW is a holomorphic line bundle over W . By
definition the first Chern class c1(W ) of W is defined to be the first Chern class c1(KW ) of
canonical bundle KW . In [25], one can see that

[ρ] = 2πc1(W ), (4.1)

where [ρ] is the class of (1, 1)-form ρ in H2
dR(W ).

Observation 4.1. It is well known that for a line bundle E on W , c1(E) = 0 if and only
E is trivial, i.e., E ∼= W × C. So c1(W ) = 0 if and only if KW is trivial (see [4, § 20]).

In the following theorem we present the Calabi-Yau Theorem and one can find its proof
in [25, Chapter 5].

Theorem 4.1. (Calabi-Yau Theorem) Let (W,ω, g, J) be a compact Kähler manifold.
Suppose that ρ′ is a real closed (1, 1)-form on W with [ρ′] = 2πc1(W ). Then there exists a
unique Kähler metric g′ on W with Kähler form ω′, such that [ω] = [ω′] ∈ H2(W,R), and
the Ricci form of g′ is ρ′.

In particular if c1(W ) = 0, then W accepts a Kähler metric that the corresponding Ricci
form ρ ≡ 0. Conversely if W is Ricci-flat, then (4.1) implies that c1(W ) = 0. Hence we can
provide th following corollary.

Corollary 4.1. c1(W ) = 0 if and only if W is Ricci-flat.

We have another important result that follows from Calabi-Yau Theorem. Before giving
this result, we introduce the Kähler cone of W . As we know, the Kähler form ω is a real
closed (1, 1)-form, hence [ω] ∈ H1,1(W ) ∩ H2

dR(W ). Note that (W,J) may admit various
Kähler metrics, so we present the following definition.

Definition 4.2. The Kähler cone KW of W is defined to be the set of Kähler classes
[ω] ∈ H1,1(W ) ∩H2

dR(W ) of Kähler metrics.

It is easily seen that KW is a convex cone, i.e., if α1, α2 ∈ KW and t1, t2 > 0, then
t1α1 + t2α2 ∈ KW . So we can present the desired result as a following theorem (e.g. see
[25, Theorem 6.2.1]).

Theorem 4.2. If c1(W ) = 0, then for any Kähler classes [ω] ∈ H1,1(W ) ∩H2
dR(W ), there

exist a unique Ricci-flat Kähler metric on W . Moreover, the Ricci-flat metrics on W form
a smooth family of dimension h1,1(W ), isomorphic to the Kähler cone KW of W .
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Remark 4.1. Considering Theorem 4.2, it follows that the family of Ricci-flat metrics on
the fixed complex manifold (W,J) construct a real manifold of dimension h1,1(W ) that is
isomorphic to the Kähler cone KW . We define complex Kähler moduli space MKah(W ) of
W as follow,

MKah(W ) =
H2(W,R) + iKW

H2(W,Z)
,

and since H2,0(W ) = H0,2(W ) = 0, dimRH
2(W,R) = h1,1. So dimMKah(W ) = h1,1 (see

[18]).

Now we can give a primary definition of Calabi-Yau manifolds. A compact Kähler
manifold W is called a Calabi-Yau manifold if its canonical bundle is trivial, or equivalently
it is Ricci-flat. But depending on the contexts, authors give different equivalent definitions
of Calabi-Yau manifolds that we state the most important of them in Theorem 4.3. Before
doing that, we need to know the holonomy group.

Another concept that is in interested, is the holonomy group of W denoted by Hol(W ).
Let E be a k-dimensional holomorphic bundle on W and ∇E be a connection on E. For
any continues and piecewise-smooth curve γ : [0, 1]→W ,

Pγ : Ex → Ey

is the parallel transport map along γ, where γ(0) = x and γ(1) = y. More detailed, for any
e ∈ Ex there exist a unique continues and piecewise-smooth section ζ of γ∗E that ζ(0) = e,
and satisfies ∇Eγ̇(t)ζ(t) = 0 for any t ∈ [0, 1]. Then the paarallel transport of e is defined

Pγ(e) = ζ(1). It is obvious that Pγ ∈ GLk(C).

Definition 4.3. Let E be a holomorphic bundle on W and ∇E be a connection on E. For
any x ∈W , the holonomy group Holx(∇E) of ∇E based at x is defined as follow,

Holx(∇E) := {Pγ | γ is a loop based at x} ⊂ GLk(C).

Moreover, since W is connected, Holx(∇E) does not depend to x, and simply we show it
by Hol(∇E). If we denot by ∇LC the Levi-Civita connection of the metric g, then the
holonomy group Hol(W ) of W by definition is Hol(∇LC).

So we are in the position where can state the following theorem that gives the equivalent
definitions of Calabi-Yau manifolds.

Theorem 4.3. Let W be an n-dimensional compact Kähler manifold. Then followings are
equivalent:

(i) The canonical bundle of W is trivial.

(ii) The first Chern class of W is zero.

(iii) W accept a Ricci-flat Kähler metric.
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(iv) There exist a, up to multiplication by a constant, unique holomorphic nowhere vanish-
ing (n, 0)-form on W .

(v) The holonomy group of W is a subgroup of SU(n).

Proof.

((i)⇔(ii)) See Observation 4.1.

((ii)⇔(iii)) See Corollary 4.1.

((ii)⇔(iv)) If c1(W ) = 0, then by Observation 4.1 the canonical bundle of W is trivial, i.e.,
KW

∼= W ×C, hence the unit section η of KW is a globally non-vanishing (n, 0)-form.
For uniqueness, since dimW = n, for any other globally non-vanishing (n, 0)-form
η̂ there exist a holomorphic function f on W such that η̂ = fη. But because of
compactness of W , f is constant. For proof of the converse, i.e., (iv)⇒(ii) see [40,
Page 26].

((i)⇔(v)) For (i)⇒(v) see [25, Corollary 6.2.5]. And for (v)⇒(i) see [25, Page 122].

�

In the following proposition we see that what happen for Hodge numbers of W when
Hol(W ) = SU(n), and for a proof see [25, Proposition 6.2.6].

Proposition 4.1. If Hol(W ) = SU(n), then h0,0 = hn,0 = 1 and hp,0 = 0 for 0 < p < n.

4.1 Definitions and Properties

As we saw there are different equivalent definitions of Calabi-Yau manifolds, and in partic-
ular if Hol(W ) = SU(n), then hp,0 = 0 for 0 < p < n, which is more interested for us. So in
this thesis we are considering the following definition.

Definition 4.4. An n-dimensional Calabi-Yau manifold is a compact Kähler manifold W
of complex dimension n with a trivial canonical bundle such that the Hodge numbers hk,0

vanish for any 0 < k < n. Sometimes Calabi-Yau n-fold is used instead of n-dimensional
Calabi-Yau manifold.



47

So if W is a Calabi-Yau n-fold, then by (2.23), its Hodge diamond is as follow

1

0 0

0 h1,1 0

. .
. . . .

0 hn−2,1 . . . hn−2,1 0

1 hn−1,1 . . . hn−1,1 1 (4.2)

0 hn−2,1 . . . hn−2,1 0

. . . . .
.

0 h1,1 0

0 0

1

Before providing some important properties of Calabi-Yau manifolds, we present some
introductory examples of Calabi-Yau manifolds. To do this we need the following observa-
tion.

Observation 4.2. By using the ”adjunction formula” from algebraic geometry, e.g. [17],
one finds that given a polynomial equation P = 0 of degree d inside Pk−1, the resulting
hypersurface W := P−1(0) has c1(W ) = (d− k)c1(Pk−1).

Example 4.1. Consider the complex projective space Pn. We know that Pn with Fubini-
Study 2-form ωFS is a Kähler manifold (e.g., see [10]). Let P be a homogeneous polynomial
of degree n+1 in Pn without singularity, which is true for generic P . Then the hypersurface
W := P−1(0) is a compact submanifold of Pn that inherits the Kähler structure generated by
ωFS on Pn. Observation 4.2 guaranties that c1(W ) = 0, hence W is an (n− 1)-dimensional
compact Kähler manifold with trivial canonical bundle. Theorem 4.2 implies that W has a
family of Ricci-flat Kähler metrics, and in fact these metrics have holonomy SU(n− 1), and
W is a Calabi-Yau (n − 1)-fold. So for any n ≥ 2 the family of homogeneous polynomials
of degree n+ 1, gives a family of n− 1 dimensional Calabi-Yau manifolds. In particular we
study a little more when n = 2, 3, 4 in followings:

n=2. In this case, the given family is the family of elliptic curves. In fact the family of
1-dimensional Calabi-Yau manifolds are classified by the family of elliptic curves. We
know that elliptic curves are diffeomorphic to the torus, and the Ricci-flat metric on
a torus is actually the flat metric of the page. Thus the Hodge diamond of elliptic
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curves is as follow,

1

1 1 .

1

n=3. The resulted family is the family of complex K3 surfaces. By definition, a complex
K3 surface W is a compact complex surface (W,J) with h1,0(X) = 0 and trivial
canonical bundle. So all Calabi-Yau 2-folds are classified as K3 surfaces. We know
that the Euler characteristic of K3 surface W is χ(W ) = 24, on the other hand since

χ(W ) =
4∑
i=0

(−1)ibi(W ),

where bi(W )’s are Betti numbers of W , h0,0 = h4,4 = h2,0 = h0,2 = 1 and h1,0 =
h0,1 = h3,0 = h0,3 = 0, it follows that h1,1 = 20. Hence the Hodge diamond of a
complex K3 surface is as follow

1

0 0

1 20 1 .

0 0

1

n=4. In this case we have the family of hypersurfaces of degree 5 in P4 which are known
as the family of generic quintic threefolds or simply quintic threefolds. In spite of the
previous two cases, here the family of quintic threefolds does not classify the Calabi-
Yau threefolds and we will see in the future that there are too many examples of
Calabi-Yau threefolds. Indeed, the classification of Calabi-Yau threefolds is an open
problem, even though Yau suspects that there is a finite number of threefolds families.
The Hodge diamond of quintic threefolds is given as follow

1

0 0

0 1 0

1 101 101 1. (4.3)

0 1 0

0 0

1
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The importance of Calabi-Yau manifolds was discovered by physicists with introducing
the concept of mirror symmetry for Calabi-Yau manifolds. In fact, mirror symmetry is a
conjecture that says there exist mirror pair of Calabi-Yau manifolds W and W̌ that have a
certain relationships, which are quite complicated and long to write all and also we doesn’t
need them in this thesis. We just concentrate on one of mathematical significance of mirror
symmetry which says the pair of Calabi-Yau manifolds W and W̌ are mirror symmetry if
locally we have following isomorphisms,

Mcmplx(W ) ∼=MKah(W̌ ) and MKah(W ) ∼=Mcmplx(W̌ ), (4.4)

that for Mcmplx(W ) and MKah(W ) see Remarks 2.1 and 4.1.

Lemma 4.1. Let W be a Calabi-Yau n-fold. Then dimMcmplx(W ) = hn−1,1(W ).

Proof. Since the canonical bundle KW is trivial, (2.26) of Remark 2.1 implies that

Mcmplx(W ) ∼= Hn−1(W,Ω1
W )∗,

and then by Dolbeault’s theorem we have

Mcmplx(W ) ∼= H1,n−1(W )∗.

Thus dimMcmplx(W ) = h1,n−1(W ) = hn−1,1(W ). �

Remark 4.2. Considering Remark 4.1, Lemma 4.1 and (4.4), It follows that two necessary
conditions that under which the pair of Calabi-Yau n-folds W and W̌ construct a mirror
symmetry pair, are hn−1,1(W ) = h1,1(W̌ ) and h1,1(W ) = hn−1,1(W̌ ). For example from
Hodge diamond (4.3) of the family of quintic 3-folds we know that h1,1 = 1, i.e., this family
accepts one Kähler structure which is the one comes from Fubini-Study Kähler form. And
since h2,1 = 101, it accepts 101 nonholomorphic complex structure. In Example 4.2 we
will know the mirror symmetry of this family that accepts 101 Kähler structure and one
complex structure.

In the following example we introduce the mirror family of quintic 3-folds, which is
known as the family of mirror quintic 3-folds. This family, for the first time in 1990 was
presented by physicists Greene and Plesser [16], and then in 1991 Candelas et al [8] studied
it in more details. As we saw in Theorem 1.1, Movasati [31, 33] worked on a moduli space
of this family and presented the DHR vector field explicitly.

Example 4.2. (Mirror quintic 3-fold)For any ψ ∈ C, let

Xψ = {(x0, x1, x2, x3, x4)| fψ(x0, x1, x2, x3, x4) = 0},

in which

fψ(x0, x1, x2, x3, x4) = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4.
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If we define X∞ := {(x0, x1, x2, x3, x4)|
∏4
i=0 xi = 0}, then we can see Xψ as the family

π : X → P1, where X ⊂ P4 × C. One can easily see that the singular points of this family
are ψ5 = 1,∞. Now consider the following group

G := {(ζ0, ζ1, ζ2, ζ3, ζ4) | ζ5
i = 1, ζ0ζ1ζ2ζ3ζ4 = 1},

that acts on Xψ as follow

(ζ0, ζ1, ζ2, ζ3, ζ4).(x0, x1, x2, x3, x4) = (ζ0x0, ζ1x1, ζ2x2, ζ3x3, ζ4x4).

It is easy to see that this action is well defined. Now let Yψ = Xψ/G be the quotient
space of this action, which is quite singular. Indeed Yψ is singular in any x ∈ Xψ which its
stabilizer in G is nontrivial. The way of solving the singularities of Yψ are not important in
this thesis, and we just state the final result that says, for ψ 6= 1,∞ there exist a resolution
of singularities Wψ → Yψ such that Wψ is a Calabi-Yau 3-fold with

h1,1(Wψ) = 101 and h2,1(Wψ) = 1.

For details one can see above mentioned original references or [18, Theorem 18.1]. Note that
we construct a one parameter family Wψ that its complex structure depends to ψ which
suggests why h2,1 = 1. So the Hodge diamond of this family is as follow,

1

0 0

0 101 0

1 1 1 1 . (4.5)

0 101 0

0 0

1

which satisfies the necessary conditions, mentioned in Remark 4.2, for being the mirror
symmetry of the family of quintic 3-folds.
Another coordinate is defined on the family of mirror quintic 3-folds as z = (5ψ)−5. So
in this coordinate the singularities are z = 0, 5−5. We denote the family of mirror quintic
3-folds byW on the base space S = P\{0, 5−5}. If F• is the Hodge filtration of H3

dR(W/S),
then dimF i/F i+1 = 1, i = 0, 1, 2, 3. There is a global holomorphic 3-form ω ∈ H3,0(W)
that its Picard-Fuchs equation is as follow,

L = ϑ5 − 55z(ϑ+
1

5
)(ϑ+

2

5
)(ϑ+

3

5
)(ϑ+

4

5
).

in which ϑ = d
dz . So the family W satisfies the items of Assumption 3.1. In fact we are

interested in such families that satisfies the Assumption 3.1 and in the future we will know
more examples of this type.
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4.2 Families and More Examples

Here we are going to follow some terminologies introduced in §2.4. For more emphasize, if
π :W → S is a family of complex manifolds, then we denote by Ws := π−1(s) the fibers of π.
In the following proposition we see that an infinitesimal deformation of complex structure
of a Calabi-Yau manifold leaves it again a Calabi-Yau manifold.

Proposition 4.2. Let π :W → S be a family of complex manifolds. If Wo is a Calabi-Yau
manifold, then for any s ∈ S, close enough to o, Ws is also a Calabi-Yau manifold.

Proof. It is a straightforward result of Proposition 2.1 and Theorem 2.8. �

Definition 4.5. By a family of n-dimensional Calabi-Yau manifolds we mean a family
of complex manifolds W over the pointed base (S, o) that any fiber Ws, s ∈ S, is an
n-dimensional Calabi-Yau manifold.

Observation 4.3. Let W be a family of n-dimensional Calabi-Yau manifolds. We know
that the Calabi-Yau structure of W depends to its complex structure and its Kähler struc-
ture. So if we denote the moduli of Calabi-Yau structures ofW byMCY(W), thenMCY(W)
is a real manifold of dimension

dimRMCY(W) = dimRKW + dimRMcmplx(W) (4.6)

= h1,1(W) + 2hn−1,1(W).

As we saw in Example 4.1, one dimensional Calabi-Yau manifolds are elliptic curves
that are algebraic varieties. Calabi-Yau 2-folds are classified by K3 surfaces. In general
K3 surfaces are classified as quartic hypersurfaces in P3 (Example 4.1 for n=3) or Kummer
surfaces. Considering the Hodge diamond of K3 surfaces, we obtain that the moduli space
MK3 of K3 surfaces is a connected 20-dimensional singular complex manifold. Some K3
surfaces are algebraic, that is, they can be embedded as complex submanifolds in PN for
some N , and the others are not. So by (4.6) the family of Calabi-Yau 2-folds is a 60-
dimensional real manifold. And if n ≥ 3, then for Calabi-Yau n-folds we have the following
theorem that for proof one refers to [18, § 5.4].

Theorem 4.4. Let W be a Calabi-Yau n-fold and n ≥ 3. Then W is projective. That is,
M is isomorphic as a complex manifold to a complex submanifold of PN , for some N , and
is an algebraic variety.

This shows that CalabiYau manifolds or at least, their underlying complex manifolds,
can be studied using complex algebraic geometry.

In the same reference we can also find the following theorem.

Theorem 4.5. Any Calabi-Yau 2n-fold is simply connected.

Next we will give more examples of Calabi-Yau 3-folds.
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Example 4.3. First we are going to explain another way of constructing Calabi-Yau man-
ifolds, which is called complete intersection Calabi-Yau manifolds in projective spaces. Let
X = X(d1, d2, . . . , dr) be the complete intersection of r hypersurfaces Xi, i = 1, 2, . . . , r, of
degree di in Pn, with r ≤ n. That is, for any i ∈ {1, 2, . . . , r} there is a polynomial fi of
degree di such that Xi = {fi = 0}, and hence X = {f1 = f2 = . . . , fr = 0} ⊂ Pn. For a
generic choice of fi’s, X is a smooth manifold of dimension n− r, and of course a compact
Kähler submanifold of Pn. By using of adjunction formula, one can see that the canonical
bundle KX of X is trivial if and only if

∑r
i=1 di = n + 1. So X(d1, d2, . . . , dr) ⊂ Pn is a

Calabi-Yau (n− r)-fold if and only if
∑r

i=1 di = n+ 1.
There are other constructions for Calabi-Yau manifolds, such as hypersurfaces in weighted

projective spaces and complete intersection in weighted projective spaces, which the way of
these constructions are not so important in this thesis. We just need the existence of some
examples of Calabi-Yau manifolds that satisfy some certain properties and these construc-
tions provide us with them (see [1, 26, 27]). As we know the normal projective space Pn is
the weighted projective space P(1, 1, . . . , 1︸ ︷︷ ︸

(n+1)−th

). So all other constructions of Calabi-Yau man-

ifolds, i.e., hypersurfaces in projective spaces, complete intersections in projective spaces
and hypersurfaces in weighted projective spaces, are spacial cases of complete intersection
Calabi-Yau manifolds in weighted projective spaces.

In [11] there is a large list of Calabi-Yau 3-folds where among them there are 14 cases that
we are more interested in them and are listed in Table A.1. For these 14 families of Calabi-
Yau 3-folds h1,1 = 1, and hence for their mirror families h2,1 = 1. So the mirror families
of these 14 families of Calabi-Yau 3-folds are one parameter families and they satisfies the
following Picard-Fuchs differential equations which are hypergeometric equations:

L = ϑ5 − cz(ϑ+ r1)(ϑ+ r2)(ϑ+ 1− r2)(ϑ+ 1− r1), (4.7)

in which r1, r2, c are given in Table A.1. Note that ] 1 is the family of quintic 3-folds
that we discussed it and its mirror family in Example 4.2. ] 2, 3, 4 are hypersurfaces in
weighted projective spaces, ] 5, 6, 7, 8 are complete intersection Calabi-Yau 3-folds in pro-
jective spaces, and finally ] 9, 10, 11, 12, 13, 14 are complete intersection Calabi-Yau 3-folds
in weighted projective spaces. For more details one can see the references given in Table
A.1.

Example 4.4. For higher dimensions, H. Movasati and K. M. Shokri in [35] claim that
there are 40 numbers of one parameter Calabi-Yau 5-fold families, for which the Picard-
Fuchs differential equations are hypergeometric of the form

L = ϑ6 − z(ϑ+ r1)(ϑ+ r2)(ϑ+ r3)(ϑ+ r4)(ϑ+ r5)(ϑ+ r6) (4.8)

such that, ri = 1− ri−3, i = 4, 5, 6, and ri’s are given in Table A.2.



Chapter 5

Darboux-Halphen-Ramanujan
Vector Field

In this chapter we state our main result about the encountering DHR vector field. We first
fix some hypothesis on a Calabi-Yau n-fold, under which we are working in the whole of this
chapter. In §5.1 and §5.2 we give a special moduli space T of a fixed Calabi-Yau manifold.
Then we prove that there exist a unique vector field, which we call it DHR vector field, and
several unique meromorphic functions on T that satisfy certain properties. Next in §5.3
and §5.4, after computing the matrix of intersection forms and finding the relationships
among the coefficients of Picard-Fuchs equation, we express DHR vector field explicitly in
dimension five and three.

We first fix the following notations.

Notation 5.1. Let W be a one parameter family of Calabi-Yau n-folds parameterized by
z on the base space P . Then during this chapter we have followings:

• F• is the Hodge filtration of Hn
dR(W/P ).

• ∇ is the Gauss-Manin connection.

• The operator ϑ refers either to the differential operator ∇z ∂
∂z

if it operates on the

elements of Hn
dR(W/P ), or to z ∂

∂z if it acts on the elements of C(z). And also by
definition we consider ϑ0 = 1 to be the identity differential operator.

To avoid repeating the hypothesis, we consider the following assumption.

Assumption 5.1. During the whole of this chapter W is a Calabi-Yau n-fold that its
complex deformation is given by the family W satisfying followings:

(i) π : W → P is a one parameter family of n-dimensional Calabi-Yau manifolds parame-
terized by z. Indeed, W0 := π−1(0) = W .

(ii) dimHn
dR(W/P ) = n+ 1.
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(iii) The unique nowhere vanishing holomorphic n-form ω ∈ Fn satisfies Lω = 0, where L
is the following Picard-Fuchs equation of minimum degree

L = ϑn+1 − an(z)ϑn − . . .− a1(z)ϑ− a0(z), (5.1)

in which ai(z) ∈ Q(z), i = 0, 1, . . . , n.

Remark 5.1. Proposition 3.4, guaranties that dimF i/F i+1 = 1, i = 0, 1, . . . , n, or in the
other word for any z, dimH i,j(Wz) = 1 when i+ j = n.

For more convenient, we fix one more notation in the following.

Notation 5.2. For the fixed holomorphic n-form ω ∈ Fn, by notation we define

ωi = ϑi−1ω, i = 1, 2, . . . , n+ 1.

So Griffiths’ transversality implies that ωi ∈ F (n+1)−i.

Because of different behaviors of intersection form for odd or even integer n, we separate
the cases for odd and even integers and first we state the results in the odd case. Also for
n = 3, 5 we give an explicit computation of results.

5.1 Odd Case

In the whole of this section n is considered to be an odd positive integer. We know that
Hodge filtration of Hn

dR(W/P ) is as follow,

F• : {0} = Fn+1 ⊂ Fn ⊂ . . . ⊂ F1 ⊂ F0 = Hn
dR(W/P ), dim(F i) = (n+ 1)− i, (5.2)

and by Lemma 2.3 we have the following relationship between Hodge filtration and the
intersection form:

〈F i,F j〉 = 0, i+ j ≥ n+ 1. (5.3)

As we saw in Theorem 3.2, the set {ω1, ω2, . . . , ωn+1} construct Yukawa frame ofHn
dR(W/P ),

such that
ωi ∈ F (n+1)−i \ F (n+2)−i, (5.4)

and by using of Picard-Fuchs equation (5.1) we have

ϑn+1ω = ϑωn+1 = a0ω1 + a1ω2 + . . .+ anωn+1. (5.5)

Hence, considering Observation 2.2, if we apply the Gauss-Manin connection to the column
of n-forms

$ =
(
ω1 ω2 . . . ωn+1

)t
, (5.6)

then
∇$ = GM$ ⊗$, (5.7)
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where

GM$ =
1

z



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

a0 a1 a2 . . . an−1 an


dz. (5.8)

To see this, for j = 1, 2, . . . , n, we have

z∇ ∂
∂z
ωi = ∇z ∂

∂z
ωi = ϑωi = ωi+1 =⇒ ∇ωi =

1

z
dz ⊗ ωi+1,

and similarly, by using (5.5) for ωn+1 we get

∇ωn+1 =
1

z

n∑
i=0

aidz ⊗ ωi+1.

In continue we are going to talk about intersection forms. So, if we define the matrix of
intersection forms as

Ω = (Ωij)1≤i,j≤n+1 := (〈ωi, ωj〉)1≤i,j≤n+1 , (5.9)

then we find some entries of Ω in the following lemma.

Lemma 5.1. Followings hold for the matrix Ω:

(i) If i+ j ≤ n+ 1, then Ωij = 〈ωi, ωj〉 = 0.

(ii) Ωt = −Ω.

(iii) For any i = 1, 2, . . . , n+ 1, 〈ωi, ωn+2−i〉 = (−1)i+1ã, where

ã(z) = c0 exp

(
2

n+ 1

∫ z

0
an(v)

dv

v

)
, (5.10)

with nonzero constant c0.

Proof. By using Lemma 2.3, Remark 2.3 and Corollary 3.2 we can directly complete
the proof. �

So Lemma 5.1 gives the matrix Ω as follow,

Ω =



0 0 . . . 0 ã

0 0 . . . −ã Ω2(n+1)

...
... . .

. ...
...

0 ã . . . 0 Ωn(n+1)

−ã −Ω2(n+1) . . . −Ωn(n+1) 0


. (5.11)
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Next, we would like to introduce a special frame for Hn
dR(W/P ). To do this, we first fix

the (n+ 1)× (n+ 1) matrix Φ as follow

Φ :=

 0n+1
2

Jn+1
2

−Jn+1
2

0n+1
2

 , (5.12)

where for a positive integer k, by 0k we mean a k× k block of zeros, and Jk is the following
k × k block

Jk =



0 0 . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . 0 0


. (5.13)

Definition 5.1. We say that the frame {α1, α2, . . . , αn+1} of Hn
dR(W/P ) is compatible with

Hodge filtration F• of Hn
dR(W/P ), if for any i ∈ {1, 2, . . . , n+ 1},

αi ∈ Fn+1−i \ Fn+2−i, (5.14)

and it called standard frame if moreover the matrix of their intersection forms satisfies the
following:

(〈αi, αj〉)1≤i,j≤n+1 = Φ. (5.15)

Note that if {α1, α2, . . . , αn+1} is a basis of W , we have the same definitions for compatible
with Hodge filtration and standard basis.

In the continue we introduce a special moduli space of Calabi-Yau manifold W that we
will work on it. To do this, we first provide an equivalence relation.

Definition 5.2. Let W1,W2 be two Calabi-Yau n-folds and {αi1, αi2, . . . , αin+1} be a basis
of Hn

dR(Wi;C), i = 1, 2, compatible with its Hodge filtration. Then we write

(W1, [α
1
1, α

1
2, . . . , α

1
n+1]) ∼ (W2, [α

2
1, α

2
2, . . . , α

2
n+1]) (5.16)

if and only if there exist a biholomorphism ϕ : W1 → W2 such that ϕ∗(α2
j ) = α1

j , j =
1, 2, . . . , n+ 1. It is obvious that ”∼” is an equivalence relation. For Calabi-Yau n-fold W ,
and a basis {αi}n+1

i=1 of Hn
dR(W ;C) compatible with its Hodge filtration, the moduli space

T̃ of pair (W, [α1, α2, . . . , αn+1]) is defined under the above equivalence relation (5.16).

Remark 5.2. We know that the family π :W → P is the complex deformation of W . So for
any different z1, z2 ∈ P , Wz1 and Wz2 are not biholomorph, thus we have different members
(Wz1 , [ω1(z1), ω2(z1), . . . ωn+1(z1)]) and (Wz2 , [ω1(z2), ω2(z2), . . . ωn+1(z2)]) of moduli space
T̃. Also suppose that {µi}n+1

i=1 and {νi}n+1
i=1 are two bases of Hn

dR(W ;C) compatible with its
Hodge filtration. If for any

ϕ ∈ Aut(W ) := {f : W →W | f is a biholomorphism},
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it does not preserve the bases, i.e., there exist a j ∈ {1, 2, . . . , n + 1} such that ϕ∗νj 6= µj ,
then (W, [µ1, µ2, . . . , µn+1]) and (W, [ν1, ν2, . . . , νn+1]) give two different elements of moduli
space T̃.

As we fixed in the beginning of this chapter, for any z, {ω1(z), ω2(z), . . . , ωn+1(z)}
construct a basis for Hn

dR(Wz,C) that is compatible with its Hodge filtration, and by abuse
of notation, we remove the letter z from this basis and denote it by {ω1, ω2, . . . , ωn+1}, so
(Wz, [ω1, ω2, . . . ωn+1]) ∈ T̃. Let S be the change of basis matrix α = S$, where {αi}n+1

i=1 is
a basis of Hn

dR(Wz;C) and

α =
(
α1 α2 . . . αn+1

)t
. (5.17)

Then (5.4) and (5.14) imply that S is a lower triangular matrix which we consider it as
follow,

S =



s11 0 0 . . . 0

s21 s22 0 . . . 0

s31 s32 s33 . . . 0
...

...
...

. . .
...

s(n+1)1 s(n+1)2 s(n+1)3 . . . s(n+1)(n+1)


. (5.18)

So the entries of the change of basis matrix S, present coordinates of a chart of T̃ that we
use it in the proof of next proposition. Before stating the proposition, we give the following
lemma.

Lemma 5.2. Let {α1, α2, . . . , αn+1} be a frame of Hn
dR(W/P ) compatible with its Hodge

filtration.

(i) If we define Ψ := (〈αi, αj〉)1≤i,j≤n+1, then

Ψ = SΩSt. (5.19)

(ii) If we let ∇α = GMα ⊗ α, then

GMα = (dS + S.GM$)S−1, (5.20)

where

dS =


ds11 0 0 . . . 0
ds21 ds22 0 . . . 0
ds31 ds32 ds33 . . . 0

...
...

...
. . .

...
ds(n+1)1 ds(n+1)2 ds(n+1)3 . . . ds(n+1)(n+1)

 . (5.21)

Proof.
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(i) By using the α = S$, verifying (5.19) is an easy exercise of linear algebra.

(ii) If we apply the Gauss-Manin connection to the equation α = S$, then by using (5.7)
we have

∇α = dS ⊗$ + S∇$ = (dS + S.GM$)⊗$
= (dS + S.GM$)S−1 ⊗ α,

which completes the proof. �

Following proposition give the more important part of the proof of main theorem.

Proposition 5.1. Let T̃ be the moduli of (W, [α1, α2, . . . , αn+1]), where W is the Calabi-Yau
n-fold satisfying Assumption 5.1 and

αi ∈ Fn+1−i \ Fn+2−i, i = 1, 2, . . . , n+ 1. (5.22)

Then there exist a unique vector field H̃ and unique meromorphic functions yi, i = 1, 2, . . . , n−
2, on T̃ such that

∇H̃α = Y α, (5.23)

in which α =
(
α1 α2 . . . αn+1

)t
, and

Y =



0 1 0 . . . 0 0
0 0 y1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . yn−2 0
0 0 0 . . . 0 −1
0 0 0 . . . 0 0


. (5.24)

Proof. The idea of the proof is to present the vector field H̃ explicitly in a chart of
T̃. It is easily seen that the dimension of T̃ is k + 1, where k = (n+1)(n+2)

2 . For any

(Wz, [α1, α2, . . . , αn+1]) ∈ T̃, let S be the change of basis matrix α = S$ given in (5.18).
We consider the chart t = (t0, t1, . . . , tk) on T̃, for which the coordinates are defined as
t0 = z, t1 = s11, t2 = s12, . . . , tk = s(n+1)(n+1). We suppose that the vector field H̃ is given
as follow:

H̃ =
k∑
i=0

H̃i(t)
∂

∂ti
,

where H̃i’s, i = 0, 1, . . . , k, are meromorphic functions on T̃. Since H̃ satisfies ∇H̃α = Y α,
Lemma 5.2(ii) implies that

(dS + S.GM$)S−1(H̃) = Y. (5.25)



59

We have S.GM$(H̃) = żS.ĜM$, where ż(t) := H̃0(t) and

ĜM$ :=
1

z



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

a0 a1 a2 . . . an−1 an


. (5.26)

Also if we define ṡ11(t) := H̃1(t), ṡ21(t) := H̃2(t), . . . , ṡ(n+1)(n+1)(t) := H̃k(t), then we have

dS(H̃) = Ṡ, where

Ṡ =



ṡ11 0 0 . . . 0

ṡ21 ṡ22 0 . . . 0

ṡ31 ṡ32 ṡ33 . . . 0
...

...
...

. . .
...

ṡ(n+1)1 ṡ(n+1)2 ṡ(n+1)3 . . . ṡ(n+1)(n+1)


. (5.27)

Therefore (5.25) gives

(Ṡ + żS.ĜM$)S−1 = Y. (5.28)

Thus if we let
Ṡ = Y S − żS.ĜM$, (5.29)

then we can find ż (or H̃0) and yi’s (that we state them in Lemma 5.3). Also by defining Ṡ
as (5.29), we find H̃i’s, i = 1, 2, . . . , k, and hence the existence of vector field H̃ that satisfies
(5.23) is verified. The uniqueness of H̃ and yi’s follow from Lemma 5.3(i),(ii). �

The proof of Proposition 5.1, implies more results about entries of Y that we express
them in the following lemma. Before of stating the lemma, we provide the following fact as
a remark.

Remark 5.3. Since the matrix S is the change of basis matrix, it is invertible, thus for any
1 ≤ i ≤ n+ 1, sii 6= 0.

Lemma 5.3. Let the matrices ĜM$, Ω, Φ, S, Y and Ṡ, respectively, be the same as given
in (5.26), (5.11), (5.12), (5.18), (5.24) and (5.27), respectively. Then the equation

Ṡ = Y S − żS.ĜM$, (5.30)

implies that

(i) ż = zs22
s11

=
zs(n+1)(n+1)

snn
.
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(ii) yi−1 = s22sii
s11s(i+1)(i+1)

, for all i = 2, 3, . . . , n− 1.

(iii) Moreover, if SΩSt = Φ, then yi−1 = −yn−i, for i 6= n+1
2 , and

yn−1
2

= (−1)
n+3
2

ãs22s
2
n+1
2

n+1
2

s11
.

In the other word
Y Φ = −ΦY t. (5.31)

Proof. Let’s define the matrix B as follow

B = (bij)1≤i,j≤n+1 := Y S − żS.ĜM$.

(i) The equation (5.30) implies that

b12 = s22 −
ż

z
s11 = 0 and bn(n+1) = s(n+1)(n+1) −

ż

z
snn = 0,

which prove (i).

(ii) The proof of (ii) follows from (i) and

bi(i+1) = yi−1s(i+1)(i+1) −
ż

z
sii = 0, i = 2, 3, . . . , n− 1.

(iii) Let’s define the matrix C as follow

C = (cij)1≤i,j≤n+1 := SΩSt.

Then from equation C = Φ it follows that,

ci(n+2−i) = (−1)i+1ãsiis(n+2−i)(n+2−i) = 1, i = 1, 2, . . . ,
n+ 1

2
,

hence,

s(n+2−i)(n+2−i) = (−1)i+1 1

ãsii
, i = 1, 2, . . . ,

n+ 1

2
, (5.32)

thus,
sii

s(i+1)(i+1)
= −

s(n+1−i)(n+1−i)

s(n+2−i)(n+2−i)
, i = 1, 2, . . . ,

n− 1

2
,

therefore by using (ii), the proof of (iii) is complete. �

Lemma 5.4. Let the matrices Ω and ĜM$, respectively, be the same as given in (5.11) and
(5.26), respectively. Then following equation holds:

ϑΩ = AΩ + ΩAt, (5.33)

where A := zĜM$.
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Proof. By using of Proposition 3.3(iii) and Picard-Fuchs equation (5.1), the proof is
an easy exercise of linear algebra. �

Finally, we state the main result of this thesis in the following theorem.

Theorem 5.1. Let W be the Calabi-Yau n-fold satisfying Assumption 5.1, and T be the
moduli of (W, [α1, α2, . . . , αn+1]), where

αi ∈ Fn+1−i \ Fn+2−i, i = 1, 2, . . . , n+ 1, (5.34)

and

(〈αi, αj〉)1≤i,j≤n+1 = Φ. (5.35)

Then there exist a unique vector field H and unique meromorphic functions yi, i = 1, 2, . . . , n−
2, on T such that

∇Hα = Y α, (5.36)

in which

α =
(
α1 α2 . . . αn+1

)t
,

and

Y =



0 1 0 . . . 0 0
0 0 y1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . yn−2 0
0 0 0 . . . 0 −1
0 0 0 . . . 0 0


. (5.37)

Furthermore,

dimT =
(n+ 1)(n+ 3)

4
+ 1.

Proof. Let T̃ be the moduli space introduced in Proposition 5.1, and suppose that
(Wz, [α1, α2, . . . , αn+1]) ∈ T̃ be arbitrary. As we saw in the proof of Proposition 5.1, there
exist the matrix S such that

(〈αi, αj〉)1≤i,j≤n+1 = SΩSt.

Define the vector subspace M ⊂ Matn+1(C) to be

M = {B = (bij)1≤i,j≤n+1 ∈ Matn+1(C)| bij = 0, if i ≤ n+ 1− j}.

If we define the function f as follow

f : T̃→M

f( Wz, [α1, α2, . . . , αn+1]) = SΩSt,
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then T = f−1(Φ), because {α1, α2, . . . , αn+1} construct a standard frame of Hn
dR(W/P )

and 〈αi, αj〉1≤i,j≤n+1 = Φ. Hence T is a subspace of T̃ and to prove the existence of the
vector field H on T , it is enough to show that the vector field H̃, which was introduced in
Proposition 5.1, is tangent to T and set H := H̃|T. To demonstrate the tangency of H̃ to T
, it suffices to prove that df |T(H̃) = 0, or equivalently verify that

(ṠΩSt + SΩ̇St + SΩṠt)|T = 0, (5.38)

in which Ω̇ = dΩ(H̃). We have Ω̇ = ż ∂
∂zΩ, and by using of Lemma 5.4, it is seen that

Ω̇ =
ż

z
(AΩ + ΩAt) = ż(ĜM$Ω + ΩĜM

t

$).

On the other hand as we saw in (5.29), Ṡ = Y S − żS.ĜM$, so

ṠΩSt + SΩ̇St + SΩṠt = Y SΩSt + SΩStY t.

Since SΩSt|T = Φ, by using Lemma 5.3(iii) we have

(ṠΩSt + SΩ̇St + SΩṠt)|T = (Y SΩSt + SΩStY t)|T = Y Φ + ΦY t = 0,

and the proof of existence of H is complete.
To prove the uniqueness, first notice that Lemma 5.3(ii) guaranties the uniqueness of

yi’s. So we just need to prove that vector field H is unique. Suppose that there are two
vector fields H1 and H2 such that ∇Hiα = Y α, i = 1, 2. If we let R = H1 −H2, then

∇Rα = 0. (5.39)

We need to prove that R = 0, and to do this it is enough to verify that any integral curve
of R is a constant point. So assume that γ is an integral curve of R which is given by

γ : (C, 0)→ T

x 7→ γ(x).

Let’s denote the trajectory γ(C, 0) of R by C, i.e., C = γ(C, 0) ⊂ T. We know that the

members of T are in the form of the pairs (Ŵ , [α1, α2, . . . , αn+1]), where Ŵ is a Calabi-Yau

manifold of the family and {αi}n+1
i=1 form a basis of Hn

dR(Ŵ ;C) that is compatible with its
Hodge filtration and has constant intersection matrix Φ. So for any x ∈ (C, 0), we have

γ(x) = (Ŵ (x), [α1(x), α2(x), . . . , αn+1(x)]), and as well the vector field R on C is reduced

to ∂
∂x . We know that Ŵ (x) depends only on the parameter z and so x holomorphically

depends to z, i.e., there exist a holomorphic function f such that x = f(z). Now we prove
that f is constant. Otherwise, by contradiction suppose that f ′ 6= 0, then we have

∇ ∂
∂x
α1 =

∂z

∂x
∇ ∂

∂z
α1. (5.40)
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Equation (5.39) gives that ∇ ∂
∂x
α1 = 0, but the right hand side of (5.40) is not zero, because

α1 = s11ω1, which is a contradiction. Thus f is constant and Ŵ (x) does not depend on

the parameter x. Since Ŵ (x) = Ŵ does not depend on x, we can write the Taylor series of
αi(x), i = 2, 3, . . . , n+ 1, in x at some point x0 as

αi(x) =
∑
j

(x− x0)jαi,j

where αi,j ’s are elements in Hn
dR(Ŵ ;C) independent of x. In this way the action of ∇ ∂

∂x

on αi is just the usual derivation ∂
∂x . Again using (5.39) gives us ∇ ∂

∂x
αi = 0, and we

conclude that αi’s also do not depend on x and so the image of γ is a point and the proof
of uniqueness is complete.

To prove that

dimT =
(n+ 1)(n+ 3)

4
+ 1,

it is enough to observe that SΩSt = Φ gives (n+1)(n+3)
4 independent equations and that W

is a one parameter family. �

As we saw in §1.1, the vector field H has a relationship with the works of Darboux,
Halphen and Ramanujan, so we give the following definition.

Definition 5.3. The vector field H founded in Theorem 5.1, is called Darboux-Halphen-
Ramanujan, abbreviatly DHR , vector field.

Note that by using of equation SΩSt = Φ, we can write (n+1)2

4 entries of S in terms of

the rest (n+1)(n+3)
4 independent entries, and we call them dependent entries of S. Let sij

be a dependent entry of S. Then we can compute ṡij in two ways; the first one is using
the relationship following from SΩSt = Φ and writing it in terms of ṡrs of independent
entries and then using the equation Ṡ = Y S− żS.ĜM$; the second way is using directly the
equation Ṡ = Y S − żS.ĜM$. We say that the equations SΩSt = Φ and Ṡ = Y S − żS.ĜM$

are compatible if the results of computing ṡij , for all dependent entries sij , from above
introduced two ways are the same.

Corollary 5.1. The equations SΩSt = Φ and Ṡ = Y S − żS.ĜM$ are compatible on T.

Proof. It follows from uniqueness of DHR vector field. �

As well, one can find that the compatibility of equations SΩSt = Φ and Ṡ = Y S −
żS.ĜM$ implies the uniqueness of DHR vector field. We see this clearly in §5.3 and §5.4,
where we compute DHR vector field explicitly.
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5.2 Even Case

During this section n refers to an even positive integer. As we mentioned before, the
deference of even case with the odd case is just the symmetry of intersection form. Lemma
2.3 implies that in the odd case the matrix of intersection forms is anti-symmetric, but in
the even case it is symmetric. So in this section we follow all the notations and definitions
of §5.1, except the related concept with intersection form. In particular the matrix Ω =
(Ωij)1≤i,j≤n+1 := (〈ωi, ωj〉)1≤i,j≤n+1 , is given as follow,

Ω =



0 0 . . . 0 a

0 0 . . . −a Ω2(n+1)

...
...

. .
.

Ωll = (−1)
n
2 a

. .
.

...
...

0 −a . . . Ωnn Ωn(n+1)

a Ω2(n+1) . . . Ωn(n+1) Ω(n+1)(n+1)


, (5.41)

in which l = n
2 + 1. And as well, the constant matrix Φ is defined as follow,

Φ =



0 0 . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . 0 0


. (5.42)

In this section matrices ω, α, GMω, ĜMω, GMα, S, dS, Ṡ and Y are the sam as given in
§5.1. Almost all results of odd case are valid in even case. More precisely, we can repeat
Lemma 5.2, Proposition 5.1 and Lemma 5.4 exactly the same. But Lemma 5.3 is valid with
some changes that we rewrite it as follow.

Lemma 5.5. The equation
Ṡ = Y S − żS.GM$, (5.43)

implies that,

(i) ż = zs22
s11

= − zs(n+1)(n+1)

snn
.

(ii) yi−1 = s22sii
s11s(i+1)(i+1)

, for all i = 2, 3, . . . , n− 1.

(iii) Moreover, if SΩSt = Φ, then yi−1 = −yn−i, for i = 2, 3, . . . , n2 . In the other word

Y Φ = −ΦY t. (5.44)
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Proof. The proof is given similar to the proof of Lemma 5.3. �

Now we state the main theorem, and it is similar to the Theorem 5.1 and just the
dimension of moduli space T is changed.

Theorem 5.2. Let W be the Calabi-Yau n-fold satisfying Assumption 5.1, and T be the
moduli of (W, [α1, α2, . . . , αn+1]), where

αi ∈ Fn+1−i \ Fn+2−i, i = 1, 2, . . . , n+ 1, (5.45)

and

(〈αi, αj〉)1≤i,j≤n+1 = Φ. (5.46)

Then there exist a unique vector field H and unique meromorphic functions yi, i = 1, 2, . . . , n−
2, on T such that

∇Hα = Y α, (5.47)

in which

α =
(
α1 α2 . . . αn+1

)t
,

and

Y =



0 1 0 . . . 0 0
0 0 y1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . yn−2 0
0 0 0 . . . 0 −1
0 0 0 . . . 0 0


. (5.48)

Furthermore,

dimT =
n(n+ 2)

4
+ 1.

Proof. Considering the proof of Theorem 5.1, analogously we can proof this theorem. �

Remark 5.4. If we are more exact on the dimension of moduli space T in the even case and
odd case, then we find a nice relationship between them. Let T be the moduli space of a
Calabi-Yau n-fold, where n is even, and T′ be the moduli space of a Calabi-Yau (n−1)-fold.
Then we have

dimT =
n(n+ 2)

4
+ 1 =

((n− 1) + 1)((n− 1) + 3)

4
+ 1 = dimT′.

So if we can know better the algebraic and geometrical structure of the moduli space, then
we may find more relationships between structures of T and T′.
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5.3 Five-Dimensional Case

In this section we give an explicit presentation of DHR vector field H, and in particular we
verify its uniqueness by using of the existence relationships among coefficients of Picard-
Fuchs equation. Here we are following the notations and terminologies of §5.1 for n =
5. To review them briefly, W is a one parameter family of Calabi-Yau 5-folds satisfying
Assumption 5.1. In particular the Hodge filtration of H5

dR(W/P ) is as follow,

{0} = F6 ⊂ F5 ⊂ . . . ⊂ F1 ⊂ F0 = H5
dR(W/P ), dim(F i) = (6)− i, (5.49)

and the Picard-Fuchs equation (5.1), for the fixed holomorphic 5-form ω ∈ F5 reduces to

ϑ6 = a0(z) + a1(z)ϑ+ a2(z)ϑ2 + a3(z)ϑ3 + a4(z)ϑ4 + a5(z)ϑ5. (5.50)

and since this equation satisfies property (P), we have the following lemma to find the
relationships among the coefficients ai’s.

Lemma 5.6. The coefficients ai’s given in equation (5.50) satisfy following equations,

a3 = −2
3a4a5 + 5

3a5ϑa5 − 5
27a

3
5 − 5

3ϑ
2a5 + 2ϑa4,

a1 = ϑa2 − ϑ3a4 + ϑ4a5 + ϑ2a4a5 + ϑa4ϑa5 + 5
3a5(ϑa5)2 − 1

3a2a5

+ 1
27a4a

3
5 − 10

27a
3
5ϑa5 + 1

81a
5
5 − 1

3ϑa4a
2
5 − 1

3a4a5ϑa5 + 10
9 a

2
5ϑ

2a5

−10
3 ϑa5ϑ

2a5 + 1
3a4ϑ

2a5 − 5
3a5ϑ

3a5.

(5.51)

Proof. By Theorem 3.3 the Picard-Fuchs equation (5.50) satisfies the property (P),
and the proof follows from Lemma 3.1 (iii) . �

We know that if the Picard-Fuchs equation is hypergeometric, then it is of the form

ϑ6 − z(ϑ+ r1)(ϑ+ r2)(ϑ+ r3)(ϑ+ r4)(ϑ+ r5)(ϑ+ r6) = 0, (5.52)

in which ri’s are constants, and by rewriting it in the form of equation (5.50), we have

ϑ6 =
c1z

1− z
ϑ5 +

c2z

1− z
ϑ4 +

c3z

1− z
ϑ3 +

c4z

1− z
ϑ2 +

c5z

1− z
ϑ+

c6z

1− z
. (5.53)

In the following Lemma we find the relationships among ci’s.

Lemma 5.7. Following relationships hold for constants ci’s,

c3 = − 5
27c

3
1 + 2

3c1c2,
c3 = −5

6c
2
1 + 2

6c1c2 + 5
6c1 + c2,

c3 = −5
3c1 + 2c2,

c5 = 1
81c

5
1 − 1

27c
3
1c2 + 1

3c1c4,
c5 = 10

108c
4
1 − 1

108c
3
1c2 − 10

36c
3
1 − 1

6c
2
1c2 + 5

12c
2
1 + 1

3c1c2 + 1
4c1c4 − 1

4c1 − 1
4c2 + 1

4c4,
c5 = 25

54c
3
1 − 1

9c
2
1c2 − 10

6 c
2
1 − 1

6c1c2 + 1
6c1c4 + 11

6 c1 + 3
6c2 + 3

6c4,
c5 = 5

4c
2
1 − 7

12c1c2 + 1
12c1c4 − 11

4 c1 + 3
4c2 + 3

4c4,
c5 = c1 − c2 + c4.

(5.54)
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In particular if c1 = 3, then the equations of (5.54) reduce to the following two equations:

c3 = 2c2 − 5,

c5 = c4 − c2 + 3.
(5.55)

Proof. By Lemma 5.6, we have

c3 =
(−5c3

1 + 18c1c2)z2 + (45c2
1 − 18c1c2 − 45c1 − 54c2)z + (−45c1 + 54c2)

27z2 − 54z + 27
, (5.56)

c5 =
A4z

4 +A3z
3 +A2z

2 +A1z +A0

81z4 − 324z3 + 486z2 − 324z + 81
,

for any z, where

A0 = 81c1 − 81c2 + 81c4,

A1 = −405c2
1 + 189c1c2 − 27c1c4 + 891c1 − 243c2 − 243c4,

A2 = 225c3
1 − 54c2

1c2 − 810c2
1 − 81c1c2 + 81c1c4 + 891c1 + 243c2 + 243c4,

A3 = −30c4
1 + 3c3

1c2 + 90c3
1 + 54c2

1c2 − 135c2
1 − 108c1c2 − 81c1c4 + 81c1 + 81c2 − 81c4,

A4 = c5
1 − 3c3

1c2 + 27c1c4.

So by comparing the coefficients of zi in (5.56) for i = 0, 1, 2, 3, 4, results follow. �

Example 5.1. As we saw in Example 4.4 there are 40 families of Calabi-Yau 5-folds that
each of them satisfies Assumption 5.1, and their Picard-Fuchs differential equations are
hypergeometric of the form (5.52), such that ri = 1− ri−3, i = 4, 5, 6, and ri’s are given in
Table A.2. If we write their Picard-Fuchs equations in the form (5.53), then for all cases
c1 = 3, and other ci’s are given in Table A.3, for which the equations given in (5.55) hold.

In Lemma 5.1 we computed some enteries of the intersection matrix Ω = (〈ωi, ωj〉)1≤i,j≤6
given in (5.11). In the following proposition we compute all entries of the intersection matrix
in the case n = 5.

Proposition 5.2. The matrix of intersection forms, Ω = (〈ωi, ωj〉)1≤i,j≤6, is given by

Ω =



0 0 0 0 0 ã
0 0 0 0 −ã Ω26

0 0 0 ã Ω35 Ω36

0 0 −ã 0 Ω45 Ω46

0 ã −Ω35 −Ω45 0 Ω56

−ã −Ω26 −Ω36 −Ω46 −Ω56 0

 , (5.57)

where

ã = c0 exp

(
1

3

∫ z

0
a5(v)

dv

v

)
, (5.58)
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for some nonzero constant c0, and

Ω26 = −2
3 ãa5,

Ω35 = 1
3 ãa5,

Ω36 = ãa4 + 4
9 ãa

2
5 − 2

3 ãϑa5,

Ω45 = −ãa4 − 1
3 ãa

2
5 + ãϑa5,

Ω46 = −ãa3 − ãa4a5 − 8
27 ãa

3
5 + ãϑa4 + 4

3 ãa5ϑa5 − 2
3 ãϑ

2a5,

Ω56 = ãa2 + 2
3 ãa3a5 + ãa2

4 + ãa4a
2
5 + 16

81 ãa
4
5 − ãϑa3 − 5

3 ãa5ϑa4 − 16
9 ãa

2
5ϑa5

−2ãa4ϑa5 + 4
3 ã(ϑa5)2 + ãϑ2a4 + 16

9 ãa5ϑ
2a5 − 2

3 ãϑ
3a5.

Proof. By Lemma 5.1 we see that when n = 5, the matrix Ω is given by (5.57), and
we just need to find the entries Ω26,Ω35,Ω36,Ω45,Ω46,Ω56. First note that from (5.58) it
follows that,

ϑã =
1

3
ãa5. (5.59)

By Picard-Fuchs equation (5.50) we know that

ϑω6 = ϑ6ω = a0ω1 + a1ω2 + a2ω3 + a3ω4 + a4ω5 + a5ω6. (5.60)

Since 〈ω1, ω6〉 = ã, by considering (5.60) and the fact that 〈ω1, ωi〉 = 0, for i = 1, 2, . . . , 5,
we find Ω26 as follow

ϑ〈ω1, ω6〉 = 〈ω2, ω6〉+ 〈ω1, ϑω6〉

⇒ Ω26 = ϑã− ãa5 ⇒ Ω26 = −2

3
ãa5.

To find the rest of entries, similarly we have

ϑ〈ω2, ω5〉 = 〈ω3, ω5〉+ 〈ω2, ω6〉

⇒ Ω35 = −(2ϑã− ãa5)⇒ Ω35 =
1

3
ãa5.

Ω36 = ϑΩ26 − 〈ω2, ϑω6〉 = ϑΩ26 − a4Ω25 − a5Ω26

= ãa4 +
4

9
ãa2

5 −
2

3
ãϑa5.

Ω45 = ϑΩ35 − Ω36 = ãa4 +
4

9
ãa2

5 −
2

3
ãϑa5.
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Ω46 = ϑΩ36 − 〈ω3, ϑω6〉 = ϑΩ36 − a3Ω34 − a4Ω35 − a5Ω36

= −ãa3 − ãa4a5 −
8

27
ãa3

5 + ãϑa4 +
4

3
ãa5ϑa5 −

2

3
ãϑ2a5.

Ω56 = ϑΩ46 − 〈ω4, ϑω6〉 = ϑΩ46 − a2Ω43 − a4Ω45 − a5Ω46

= ãa2 +
2

3
ãa3a5 + ãa2

4 + ãa4a
2
5 +

16

81
ãa4

5 − ãϑa3 −
5

3
ãa5ϑa4 −

16

9
ãa2

5ϑa5

− 2ãa4ϑa5 +
4

3
ã(ϑa5)2 + ãϑ2a4 +

16

9
ãa5ϑ

2a5 −
2

3
ãϑ3a5.

Thus the proof is complete. �

Let T be the moduli space presented in Theorem 5.1, for n = 5. We are going to use
the chart which was presented in the proof of Proposition 5.1, and find a chart for T , for
which we can compute the DHR vector field H explicitly.

Theorem 5.3. Let T be the moduli space introduced in Theorem 5.1, for n = 5. Then there
is a chart (t0, t1, . . . , t12) for T such that in this chart,

y1 =
t23
t1t6

, & y2 =
ãt3t

2
6

t1
,

and DHR vector field H is given by

H =
12∑
i=0

Hi
∂

∂ti

where,

H0 =
t0t3
t1
, H1 = t2, H2 =

t23t4
t1t6

,

H3 =
−t2t3t6 + t23t5

t1t6
H4 =

ãt3t
2
6t7
t1

, H5 =
−t3t4 + ãt3t

2
6t8

t1
,

H6 =
−t3t5 + ãt3t

2
6t9

t1
, H7 =

−t23t10

t1t6
, H8 =

−t23t11 − t3t6t7
t1t6

,

H9 =
3ãt3t5t9 − 6ãt3t6t8 − 3t3a4 − t3a2

5 + 3t3ϑa5

3ãt1t6
, H10 = −t12,

H11 =
27ãt2t11 − 54ãt3t10 + 27ãt4t8 − 27ãt5t7 + 27a2 + 27a3a5 − 27ϑa3 + 15a4a

2
5

27ãt1

+
−9a4ϑa5 − 54a5ϑa4 + 27ϑ2a4 + 4a4

5 − 42a2
5ϑa5 + 54a5ϑ

2a5 + 18(ϑa5)2 − 18ϑ3a5

27ãt1
,

H12 =
−t3a0

ãt21
.
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Proof. By Theorem 5.1 we know that T is 13-dimensional. Using the equation

Φ = SΩSt, (5.61)

and considering s11, s21, s22, s31, s32, s33, s41, s42, s43, s51, s52, s61, as independent entries of
S, then dependent entries are given in the following equations,

s44 = 1
ãs33

,

s53 =
−3ãs32s43+3ãs33s42+3a4+a25−3ϑa5

3ãs22
,

s54 = −3s32+s33a5
3ãs22s33

,

s55 = − 1
ãs22

,

s62 =
−27ãs21s52+27ãs22s51−27ãs31s42+27ãs32s41−27a2−27a3a5+27ϑa3−15a4a25

27ãs11

+
9a4ϑa5+54a5ϑa4−27ϑ2a4−4a45+42a25ϑa5−54a5ϑ2a5−18(ϑa5)2+18ϑ3a5

27ãs11
,

(5.62)

s63 =
27ãs21s32s43−27ãs21s33s42−27ãs22s31s43+27ãs22s33s41−27s21a4−9s21a25

27ãs11s22

+
27s21ϑa5−27s22a3−9s22a4a5+27s22ϑa4−2s22a35+18s22a5ϑa5−18s22ϑ2a5

27ãs11s22
,

s64 =
9s21s32−3s21s33a5−9s22s31−9s22s33a4−2s22s33a25+6s22s33ϑa5

9ãs11s22s33
,

s65 = 3s21−2s22a5
3ãs11s22

,

s66 = 1
ãs11

.

(5.63)

We know that W is a family of one parameter 5-dimensional Calabi-Yau manifolds param-
eterized by z. So we present a chart of T given by

t = (t0, t1, . . . , t12)

where t0 = z, t1 = s11, t2 = s21, t3 = s22, t4 = s31, t5 = s32, t6 = s33, t7 = s41, t8 =
s42, t9 = s43, t10 = s51, t11 = s52, t12 = s61.

If we consider ∇α = GMα ⊗ α, then we saw in (5.20) that

GMα = (dS + S.GM$)S−1. (5.64)
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We want to have ∇Hα = Y α, so the same as the proof of Proposition 5.1, define H as follow:

H =

12∑
i=0

Hi(t)
∂

∂ti
,

and as well set ṫi := Hi(t). Then H0 follows from Lemma 5.3(i), and we can find the rest
of Hi’s from the equation

Ṡ = Y S − żS.ĜM$, (5.65)

after using the equations given in (5.62) and (5.63) and also substituting a1 and a3 from
Lemma 5.6. What remains to verify is the compatibility of (5.61) and (5.65). After doing
calculations, it directly follows that (5.62), (5.63) and (5.65) give the same ṡ44, ṡ54, ṡ55, ṡ64,
ṡ65, ṡ66. By using of Lemma 5.6, we find the same ṡ53, ṡ62, ṡ63, from (5.62), (5.63) and
(5.65), and the proof is complete. �

5.4 Three-Dimensional Case

In this section also we are working under Assumption 5.1 and the notations of §5.1, for
n = 3. The statements of this section will be similar to the ones in §5.3.

For the one parameter family W of Calabi-Yau 3-folds, the Picard-Fuchs equation of
the fixed non-vanishing holomorphic 3-form ω is given as

ϑ4 = a0(z) + a1(z)ϑ+ a2(z)ϑ2 + a3(z)ϑ3. (5.66)

Lemma 5.8. The coefficients ai’s given in equation (5.66) satisfy the following relationship,

a1 =
3

4
a3ϑa3 + ϑa2 −

1

2
ϑ2a3 −

1

8
a3

3 −
1

2
a2a3. (5.67)

Proof. We know that the equation (5.66) satisfies the property (P), and the proof
follows from Lemma 3.1(ii). �

In the following proposition we provide all the entries of the intersection matrix (5.11),
for n = 3.

Proposition 5.3. Let Ω = (〈ωi, ωj〉)1≤i,j≤4 be the matrix of intersection forms. Then

Ω =


0 0 0 ã
0 0 −ã Ω24

0 ã 0 Ω34

−ã −Ω24 −Ω34 0

 , (5.68)

in which

ã = c0 exp

(
1

2

∫ z

0
a3(v)

dv

v

)
, (5.69)
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for a constant c0 6= 0, and

Ω24 = −1
2 ãa3,

Ω34 = 1
4 ãa

2
3 + ãa2 − 1

2 ãϑa3.

Proof. The proof is similar to the proof of Proposition 5.2. �

The following theorem is an analogous version of Theorem 5.3, for n = 3, to compute
the DHR vector field H explicitly.

Theorem 5.4. Let T be the moduli space introduced in Theorem 5.1, for n = 3. Then there
is a chart (t0, t1, . . . , t6) for T such that in this chart,

y1 = − ãt
3
3

t1
,

and the DHR vector field H is given by

H =

6∑
i=0

Hi
∂

∂ti

in which,

H0 =
t0t3
t1
, H1 = t2,

H2 = − ãt
3
3t4
t1

, H3 = − t2t3 + ãt33t5
t1

H4 = −t6, H5 =
4ãt2t5 − 8ãt3t4 + a2

3 + 4a2 − 2ϑa3

4ãt1
,

H6 = − t3a0

ãt21
.

Proof. The same as the proof of Theorem 5.3, analogously we can work for n = 3.
First note that T is 7-dimensional and by considering s11, s21, s22, s31, s32, s41 as independent
variables, the equation

Φ = SΩSt, (5.70)

implies the following

s33 = − 1
ãs22

,

s42 =
4ãs22s31−4ãs21s32−a23−4a2+2ϑa3

4ãs11
,

s43 = 2s21−s22a3
2ãs11s22

,

s44 = 1
ãs11

.

(5.71)
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Next we present a chart of T given by t = (t0, t1, . . . , t6), where t0 = z, t1 = s11, t2 =
s21, t3 = s22, t4 = s31, t5 = s32, t6 = s41, and then Hi’s follow from Lemma 5.3(i) and
equation

Ṡ = Y S − żS.ĜM$. (5.72)

Finally the Lemma 5.8, guaranties the compatibility of (5.70) and (5.72). �

Example 5.2. As we saw in Table A.1, there are 14 families of one-parameter Calabi-Yau
3-folds that satisfy Assumption 3.1, and Theorem 5.4 holds for them. In particular, H.
Movasati in [31, 33] worked on the family ]1 with more details, that we announced it in
Theorem 1.1.
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Chapter 6

Related Problems

During my works on this thesis, I encountered with various natural problems that seem
interesting. Hence it worth to organize them for more future researches. And since they
are directly related to my thesis, I state them in this chapter in different sections.

6.1 The Moduli Space

Let T be the moduli space given in Theorem 5.1. By now, the structure of moduli space
T is not well known to us, and it needs a deep study in both geometrical and algebraical
structures. So one of our goal is to work on such moduli spaces in a general context, which
is predicted to be a quasi-affine space.

6.2 Yukawa Coupling

Let π :W → P be a one parameter family of n-dimensional Calabi-Yau manifolds satisfying
Assumption 5.1.

In the case of 3-folds, i.e. n = 3, D. Morrison in [29] defines the Yukawa coupling the
first non-zero l-point Yukawa function which is given by

W0,l(z) =

∫
Wz

ω(z) ∧ ϑlω(z).

By Proposition 3.3 we know that W0,0 = W0,1 = W0,2 = 0, so for Calabi-Yau 3-folds
Yukawa coupling is the function W0,3. If we apply the replacement ω(z) 7→ f(z)ω(z), then
W0,l transforms as

W0,l 7→ f(z)
l∑

j=0

(
l

j

)
djf(z)

dzj
W0,l−j .

Since W0,0 = W0,1 = W0,2 = 0, the change in the Yukawa coupling is simply W0,3 7→
f(z)2W0,3.
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For the first time, by using the mirror symmetry, Candelas et al. in [8] have computed
the coefficients of the q-expansion of the Yukawa coupling for quintic 3-folds in P4. More
detailed, the coefficients ndd

3 of the q-expansion of the normalized Yukawa coupling

W0,3 = 5 +
∞∑
d=1

(ndd
3)

qd

1− qd
, q = e2πiz,

are conjectured to be the Gromov-Witten invariants of rational curves of degree d on a
quintic 3-fold in P4. The integers nd predict numbers of rational curves of degree d on
quintic 3-folds. And several of these numbers have been confirmed by other researchers in
mathematics and mathematical physic. And then, Morrison in [29] as well computed the
coefficients of q-expansions of the normalized Yukawa coupling of the families ] 2, 3, 4 given
in Table A.1, that they predict the numbers of rational curves on the weighted projective
hypersurfaces. For more details one refers to [8, 29, 30].

Then in [31, 33] H. Movasati changed his point of view and worked on a special moduli
space of mirror quintic 3-folds. As we saw in Theorem 1.1, he found a unique vector field
Ra on the moduli space T such that satisfies the equation ∇Raα = αY , given in (1.17).

In the chart that he provided for T , he proved that the function y =
58(t4−t50)2

t35
, which

appears as an entry of Y , is the Yukawa coupling computed by Candelas et al. And in [31]
he computed the same nd’s, which appear in the coefficients of q-expansion of normalized
Yukawa coupling, in the new chart, and also he computed some coefficients of q-expansions
of the chart functions and, up to multiplying by a constant, all these coefficients are integers.

Now we back to our DHR vector field H that we introduced it in Theorem 5.1. Here we
are faced with a situation the same as H. Movasati’s work. That is, we have a special moduli
space T of Calabi-Yau n-folds and H is a unique vector field on T that satisfies ∇Hα = Y α,
given in (5.47). We know that n − 2 numbers of entries of the matrix Y are functions
y1, y2, . . . , yn−2. But in Lemma 5.3(iii) we saw that yi−1 = −yn−i, for i 6= n+1

2 , hence we
have n−1

2 numbers of functions y1, y2, . . . , yn−1
2

, that we call them Yukawa couplings of the

family W. And the question is that if we consider the q-expansion of these functions, what
kind of information they will give us? If we discuss in the context of Morrison, then just
the Yukawa coupling

yn−1
2

= (−1)
n+3
2

ãs22s
2
n+1
2

n+1
2

s11

is in relationship with the n-point Yukawa function W0,n = 〈ω, ϑnω〉. I think that yn−1
2

plays a more important role.

6.3 Geometric Structure of Calabi-Yau 5-Folds

H. Movasati and K. M. Shokri in [35] worked on the generalized hypergeometric differential
equation

ϑn − z(ϑ+ r1)(ϑ+ r2) . . . (ϑ+ rn) = 0, (6.1)
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in which, ϑ = z ∂
∂z and ri’s are rational numbers with 0 < ri < 1. A holomorphic solution

of (6.1) is given by

F (r|z) := nFn−1(r1, . . . , rn; 1, 1, . . . , 1|z) =

∞∑
k=0

(r1)k . . . (rn)k
k!n

zk, |z| < 1

where, r = (r1, r2, . . . , rn) and (ri)k = ri(ri + 1)(ri + 2)...(ri + k − 1), (ri)0 = 1, is the
Pochhammer symbol. As well, the first logarithmic solution in the Frobenius basis around
z = 0 has the form G(r|z) + F (r|z) log z, where

G(r|z) =

∞∑
k=1

(r1)k · · · (rn)k
(k!)n

[ n∑
j=1

k−1∑
i=0

(
1

rj + i
− 1

1 + i
)
]
zk. (6.2)

The mirror map

q(r|z) =: z exp(
G(r|z)
F (r|z)

),

is a natural generalization of the Schwarz function. It is said that q(r|z) isN -integral, if there
is a natural number N such that q(r|Nz) has integral coefficients. For even integer n ≥ 4
with an N -integral mirror map q(r|z), the set {r1, r2, . . . , rn} is conjecturally invariant under
x 7→ 1 − x, and so we may identify r = (r1, r2, . . . , rn) with its n

2 elements in the interval
[0, 1

2 ]. In the case n = 4, the Authors of [35] found that q(a|z) is N -integral if and only if
(r1, r2, r3, r4) belongs to the well-known 14 hypergeometric cases of Calabi-Yau equations,
such that the first two elements (r1, r2) are given in Table A.1 and r3 = 1− r2, r4 = 1− r1.
As we see in Table A.1, for any of these 14 hypergeometric differential equations L, there
is a one parameter family of Calabi-Yau 3-folds that L is the Picard-Fuchs equation of a
3-form on this family, and in the same table the geometric structure of Calabi-Yau 3-folds
and the references are given.

For n = 6 they found 40 examples of N -integral mirror maps. In this case (r1, r2, r3) are
given in Table A.2. As well as the case n = 4, we expect that in this case also there are 40
numbers of one parameter families of Calabi-Yau 5-folds. In [2], Batyrev and Starten provide
some geometrical structures of complete intersections in weighted projective spaces. I think
that by following these structures we can find and explain the topological, geometrical and
algebraical structures of these 40 examples.

6.4 Semi-complete Vector Fields

For the first time J. C. Rebelo [38] in 1996 introduced the concept of semi-complete vector
fields, and then Adolfo Guillot [19] in his thesis worked on these vector fields and gave
some examples, including Halphen type vector fields, in C3. In fact he called these vector
fields uniformizable instead of semi-complete. We first recall the following definition of
semi-complete vector fields from [20]:
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Definition 6.1. A holomorphic vector field H on a complex manifold W is semi-complete
if for every p ∈ W there exists a connected domain 0 ∈ Up ⊂ C and a map φp : Up → W
such that:

(i) φp(0) = p,

(ii)
dφp(t)
dt |t=t0 = H(φp(t0)),

(iii) for every sequence {ti} ⊂ Up such that lim
i→∞

ti ∈ ∂Up, the sequence {φp(ti)} escapes

from every compact subset of W .

A meromorphic vector field R on W is semi-complete if it is semi-complete in restriction to
the open set where R is holomorphic.

If we look better to Definition 6.1, the first two conditions say that φp is a solution
of vector field H with initial condition φp(0) = p, and the third condition imply that the
domain Up is maximal, i.e., the domain of the solution φp can not be extended to a larger set.
Of course every complete vector field is semi-complete, and hence this definition weakens
the definition of completeness of a vector field. Indeed, this definition formalizes the notion
of differential equations having only single-valued solutions. An interesting examples of
semi-complete vector fields in C3 belong to the family of the Halphen’s equation given by

dt1
dz = a1t

2
1 + (1− a1)(t1t2 + t1t3 − t2t3)

dt2
dz = a2t

2
2 + (1− a2)(t2t3 + t2t1 − t3t1)

dt3
dz = a3t

2
3 + (1− a3)(t3t1 + t3t2 − t1t2)

, (6.3)

where the classification of semi-complete vector fields, which has single valued solutions,
within this family is done by Halphen in [21]. One of this vector fields is when a1 = a2 =
a3 = 0 and λ = 1, i.e., following vector field

H :


dt1
dz = t1t2 + t1t3 − t2t3
dt2
dz = t2t3 + t2t1 − t3t1
dt3
dz = t3t1 + t3t2 − t1t2

. (6.4)

Let E =
∑3

j=1 tj
∂
∂tj

and Z =
∑3

j=1
∂
∂tj

. Then one can easily verify that

[E,H] = H, [E,Z] = −Z, [Z,H] = 2E, (6.5)

where [., .] refers to Lie bracket. Considering these equations gives the idea of following
definition which is given by Guillot.

Definition 6.2. A quadratic homogeneous vector field H in C3 is called Halphen tyepe if
there exist a rational vector field Z, homogeneous of degree zero, such that [Z,H] = 2E.
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And one can see that the homogeneity of the vector fields given in this definition implies
als [E,H] = H, [E,Z] = −Z, so the vector fields H, Z and E construct a Lie algebra
isomorphic to sl2(C). Guillot also proves that the local solutions of a Halphen type vector
field is invariant under the change of variables (1.24) and (1.25). Then he studies the
Halphen type vector fields and give a criterion for semi-completeness of this vector fields.
As well as Halphen vector field, Guillot and Rebelo in [20] study Ramanujan vector field

R :


dr1
dτ = r2

1 − 1
12r2

dr2
dτ = 4r1r2 − 6r3

dr3
dτ = 6r1r3 − 1

3r
2
2

, (6.6)

and prove that it is meromorphic semi-complete.

Thus considering the above facts, the questions are that: What we can say about DHR
vector field H? Does it satisfies some conditions similar to what given in (6.5)? What
we can say about the semi-completeness or meromorphic semi-completeness of DHR vector
field? Does its solutions satisfy some invariant properties?
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Appendix A

Tables

Here we provide several tables, which include information about Picard-Fuchs equation of
Calabi-Yau manifolds.

] r1 r2 c Description References

1 1/5 2/5 55 X(5) ⊂ P4 [8, 16]

2 1/6 2/6 2536 X(6) ⊂ P4(2, 1, 1, 1, 1) [29]

3 1/8 3/8 218 X(8) ⊂ P4(4, 1, 1, 1, 1) [29]

4 1/10 3/10 2956 X(10) ⊂ P4(5, 2, 1, 1, 1) [29]

5 1/3 1/3 36 X(3, 3) ⊂ P5 [28]

6 1/4 2/4 210 X(2, 4) ⊂ P5 [28]

7 1/3 1/2 2433 X(2, 2, 3) ⊂ P6 [28]

8 1/2 1/2 28 X(2, 2, 2, 2) ⊂ P7 [28]

9 1/4 1/4 212 X(4, 4) ⊂ P5(2, 2, 1, 1, 1, 1) [27]

10 1/6 1/6 2836 X(6, 6) ⊂ P5(3, 3, 2, 2, 1, 1) [27]

11 1/4 1/3 2633 X(3, 4) ⊂ P5(2, 1, 1, 1, 1, 1) [27]

12 1/6 3/6 2833 X(2, 6) ⊂ P5(3, 1, 1, 1, 1, 1) [27]

13 1/6 1/4 21033 X(4, 6) ⊂ P5(3, 2, 2, 1, 1, 1) [27]

14 1/12 5/12 126 X(2, 12) ⊂ P5(6, 4, 1, 1, 1, 1) [15]

Table A.1: Calabi-Yau 3-folds with h1,1 = 1. Here X(d1, d2, . . . , dr) ⊂ Ps(l0, l1, . . . , ls)
refers to the complete intersection of r hypersurfaces of degree d1, d2, . . . , dr, in weighted
projective space Ps(l0, l1, . . . , ls) with r ≤ s, such that

∑r
i=1 di =

∑s
j=0 lj
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] r1 r2 r3 r4 r5 r6

1 1/2 1/2 1/2 1/2 1/2 1/2

2 2/3 2/3 2/3 1/3 1/3 1/3

3 3/4 1/2 1/2 1/2 1/2 1/4

4 3/4 3/4 1/2 1/2 1/4 1/4

5 3/4 3/4 3/4 1/4 1/4 1/4

6 2/3 1/2 1/2 1/2 1/2 1/3

7 2/3 2/3 1/2 1/2 1/3 1/3

8 5/6 1/2 1/2 1/2 1/2 1/6

9 5/6 2/3 1/2 1/2 1/3 1/6

10 5/6 2/3 2/3 1/3 1/3 1/3

11 5/6 5/6 1/2 1/2 1/6 1/6

12 5/6 5/6 2/3 1/3 1/6 1/6

13 5/6 5/6 5/6 1/6 1/6 1/6

14 6/7 5/7 4/7 3/7 2/7 1/7

15 7/8 5/8 1/2 1/2 3/8 1/8

16 7/8 3/4 5/8 3/8 1/4 1/8

17 8/9 7/9 5/9 4/9 2/9 1/9

18 4/5 3/5 1/2 1/2 2/5 1/5

19 9/10 7/10 1/2 1/2 3/10 1/10

20 3/4 2/3 1/2 1/2 1/3 1/4

21 3/4 2/3 2/3 1/3 1/3 1/4

22 3/4 3/4 2/3 1/3 1/4 1/4

23 5/6 3/4 1/2 1/2 1/4 1/6

24 5/6 3/4 2/3 1/3 1/4 1/6

25 5/6 3/4 3/4 1/4 1/4 1/4

26 5/6 5/6 3/4 1/4 1/6 1/6

27 11/12 7/12 1/2 1/2 5/12 1/12

28 11/12 2/3 7/12 5/12 1/3 1/12

29 11/12 3/4 7/12 5/12 1/4 1/12

30 11/12 5/6 7/12 5/12 1/6 1/12

31 13/14 11/14 9/14 5/14 3/14 1/14

32 4/5 2/3 3/5 2/5 1/3 1/5

33 17/18 13/18 11/18 7/18 5/18 1/18

34 4/5 3/4 3/5 2/5 1/4 1/5

35 9/10 3/4 7/10 3/10 1/4 1/10

36 7/8 2/3 5/8 3/8 1/3 1/8

37 7/8 5/6 5/8 3/8 1/6 1/8

38 5/6 4/5 3/5 2/5 1/5 1/6

39 9/10 7/10 2/3 1/3 3/10 1/10

40 9/10 5/6 7/10 3/10 1/6 1/10

Table A.2: Constants ri’s of Picard-Fuchs equation L = ϑ6−z(ϑ+r1)(ϑ+r2)(ϑ+r3)(ϑ+r4)(ϑ+r5)(ϑ+r6)
and it is predicted that in any case, L is a Picard-Fuchs equation of a one parameter family of Calabi-Yau
5-folds.
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] c1 c2 c3 c4 c5 c6

1 3 15/4 5/2 15/16 3/16 1/64

2 3 11/3 7/3 22/27 4/27 8/729

3 3 59/16 19/8 27/32 5/32 3/256

4 3 29/8 9/4 193/256 33/256 9/1024

5 3 57/16 17/8 171/256 27/256 27/4096

6 3 67/18 22/9 43/48 25/144 1/72

7 3 133/36 43/18 277/324 13/81 1/81

8 3 131/36 41/18 37/48 19/144 5/576

9 3 65/18 20/9 949/1296 157/1296 5/648

10 3 43/12 13/6 25/36 1/9 5/729

11 3 127/36 37/18 799/1296 115/1296 25/5184

12 3 7/2 2 251/432 35/432 25/5832

13 3 41/12 11/6 205/432 25/432 125/46656

14 3 25/7 15/7 232/343 36/343 720/117649

15 3 115/32 35/16 2889/4096 457/4096 105/16384

16 3 113/32 33/16 2545/4096 369/4096 315/65536

17 3 95/27 55/27 1318/2187 184/2187 2240/531441

18 3 73/20 23/10 1971/2500 173/1250 6/625

19 3 71/20 21/10 6439/10000 939/10000 189/40000

20 3 527/144 167/72 463/576 83/576 1/96

21 3 523/144 163/72 991/1296 43/324 1/108

22 3 259/72 79/36 1649/2304 91/768 1/128

23 3 515/144 155/72 197/288 31/288 5/768

24 3 511/144 151/72 3355/5184 511/5184 5/864

25 3 253/72 73/36 1385/2304 67/768 5/1024

26 3 499/144 139/72 1391/2592 185/2592 25/6912

27 3 257/72 77/36 13849/20736 2041/20736 385/82944

28 3 85/24 25/12 4363/6912 619/6912 385/93312

29 3 505/144 145/72 12139/20736 1627/20736 385/110592

30 3 83/24 23/12 1201/2304 145/2304 1925/746496

31 3 97/28 27/14 415/784 51/784 19305/7529536

32 3 163/45 101/45 4216/5625 716/5625 16/1875

33 3 377/108 107/54 19645/34992 2473/34992 85085/34012224

34 3 287/80 87/40 7009/10000 567/5000 9/1250

35 3 279/80 79/40 11253/20000 1503/20000 567/160000

36 3 1027/288 307/144 24625/36864 3761/36864 35/6144

37 3 1003/288 283/144 20497/36864 2705/36864 175/49152

38 3 637/180 187/90 14239/22500 1057/11250 2/375

39 3 317/90 92/45 54701/90000 2567/30000 21/5000

40 3 619/180 169/90 44951/90000 1817/30000 21/8000

Table A.3: Constants ci’s of Picard-Fuchs equation L = ϑ6−( c1z
1−zϑ

5+ c2z
1−zϑ

4+ c3z
1−zϑ

3+ c4z
1−zϑ

2+ c5z
1−zϑ+ c6z

1−z )
and it is predicted that in any case, L is a Picard-Fuchs equation of a one parameter family of Calabi-Yau
5-folds.
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l’Académie des Sciences 92 (1881), 1389–1393.

[6] E. Calabi, The space of Kähler metrics, In Iroceeding of International Congrees of

Mathematicians, Amesterdam, 1954 2 (1956), 206–207.

[7] , On Kähler manifolds with vanishing canonical class, In algebraic geometry

and topology, a simposium in honer of S. Lefschetz, Princeton University Press (1957),

78–89.

[8] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of

Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B

359 (1991), no. 1, 21–74. MR MR1115626 (93b:32029)

[9] Philip Candelas, Gary Horowitz, Andrew Strominger, and Edward Witten, Vacuum

configurations for superstrings, Nuclear Physics 258 (1985), 46–74.

[10] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics;

1764, Springer-Verlag, Berlin Heidelberg, 2001.

85



86

[11] Yao-Han Chen, Yifan Yang, and Noriko Yui, Monodromy of Picard-Fuchs differential

equations for Calabi-Yau threefolds, J. Reine Angew. Math. 616 (2008), 167–203, With

an appendix by Cord Erdenberger. MR 2369490 (2009m:32046)
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[13] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in

Mathematics, vol. 163, Springer-Verlag, Heidelberg, 1970.

[14] Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles,

motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-

Verlag, Berlin, 1982, Philosophical Studies Series in Philosophy, 20. MR 84m:14046

[15] Charles F. Doran and John W. Morgan, Mirror symmetry and integral variations of

Hodge structure underlying one-parameter families of Calabi-Yau threefolds, Mirror

symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, Amer. Math. Soc., Providence, RI,

2006, arXiv:math/0505272v1[math.AG], pp. 517–537. MR 2282973 (2008e:14010)

[16] B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space, Nuclear Physics

338 (1990), no. 1, 15–37.

[17] P. A. Griths and J. Harris, Principles of algebraic geometry, John Wiley and Sons Inc.,

New York, 1994. Reprint of the 1978 original.

[18] Mark W. Gross, Daniel Huybrechts, and Dominic D. Joyce, Calabi-yau manifolds and

related geometries, lectures at a summer school in Nordfjordeid, Norway, June 2001,

Springer-Verlag, Berlin Heidelberg, 2003.

[19] Adolfo Guillot, Champs quadratiques uniformisables, Ecole Normale Suprieure de Lyon,

2001, These de doctorat.

[20] , Semicomplete meromorphic vector fields on complex surfaces, J. reine angew.

Math. 667 (2012), 27–65.

[21] G. H. Halphen, Sur certains systéme d’équations différetielles, C. R. Acad. Sci Paris
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[23] , Sur un systéme d’équations différetielles, C. R. Acad. Sci Paris 92 (1881),

1101–1103.

[24] Daniel Huybrechts, Complex geometry, an introduction, Springer-Verlag, Berlin Hei-

delberg, 2005.

[25] Dominic. D. Joyce, Compact manifolds with special holonomy, Oxford University Pub-

lication, Lincoln College, Oxford, New York, 2000.

[26] A. Klemm and R. Schimmrigk, Landau-ginzburg string vacua, Nucl. Phys. B411 (1994),

559–583.

[27] Albrecht Klemm and Stefan Theisen, Mirror maps and instanton sums for complete

intersections in weighted projective space, Modern Phys. Lett. A9 (1994), no. 20, 1807–

1817.

[28] A. Libgober and J. Teitelbaum, Lines on Calabi-Yau complete intersections, mirror

symmetry, and Picard-Fuchs equations, Internat. Math. Res. Notices (1993), no. 1,

29–39.

[29] David R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, Essays

on mirror manifolds, Int. Press, Hong Kong, 1992, arXiv:alg-geom/9202026v1, pp. 241–

264. MR MR1191426 (94b:32035)

[30] , Mirror symmetry and rational curves on quintic threefolds: a guide for math-

ematicians, J. Amer. Math. Soc. 6 (1993), 223–247, arXiv:alg–geom/9202004.

[31] Hossein Movasati, Eisenstein type series for Calabi-Yau varieties, Nuclear Physics B

847 (2011), 460484.

[32] , Multiple integrals and modular differential equations, 28th Brazilian Mathe-

matics Colloquium, Instituto de Matemática Pura e Aplicada, IMPA, 2011.
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