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Abstract

In this thesis we study the phenomenon of metastability in two specific contexts.

In the first part of the text, we consider the zero-temperature limit of the ABC

Model. The ABC model is a conservative stochastic dynamics consisting of three

species of particles, labeled A, B, C, on a discrete ring {−N, . . . , N} (one particle

per site). The system evolves by nearest neighbor transpositions: AB → BA,

BC → CB, CA → AC with rate q and BA → AB, CB → BC, AC → CA with

rate 1. We investigate a strongly asymmetric regime, the zero-temperature limit,

where q = e−β, β ↑ ∞. The main result asserts that the particles almost always

form three pure domains (one of each species) and that, as the system size N grows

with β, this segregated shape evolves (in a proper time-scale) as a Brownian motion

on the circle, which may have a drift.

In the second part, we consider reversible random walks in potential fields. More

precisely, let Ξ be an open and bounded subset of Rd and let F : Ξ → R be

a twice continuously differential function. Denote by ΞN the discretization of Ξ,

ΞN = Ξ ∩ (N−1Zd), and denote by {XN(t) : t ≥ 0} the continuous-time, nearest-

neighbor, random walk on ΞN which jumps from x to y at rate e−(1/2)N [F (y)−F (x)].

We examine the metastable behavior of {XN(t) : t ≥ 0} among the wells of the

potential F . Our main result states that, in an appropriate time-scale, the evolution

of the random walk on ΞN can be described by a random walk in a weighted graph,

in which the vertices represent the wells of the force field and the edges represent

the saddle points.

Keywords: Metastability, Tunneling, Scaling limits, ABC Model, Brownian mo-

tion, Reversible random walks, Exit points
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Resumo

Nesta tese estudamos o fenômeno de metaestabilidade em dois contextos espećıficos.

Na primeira parte do texto, consideramos o limite de temperatura zero do Mo-

delo ABC. O modelo é um dinâmica markoviana conservativa que consiste em três

tipos de part́ıculas, rotuladas A, B, C, em um ćırculo discreto {−N, . . . , N} (uma

part́ıcula por śıtio). O sistema evolui através de transposições de part́ıculas vizi-

nhas mais próximas: AB → BA, BC → CB, CA→ AC com taxa q e BA→ AB,

CB → BC, AC → CA com taxa 1. Nós investigamos um regime fortemente as-

simétrico, o limite de temperatura zero, onde q = e−β, β ↑ ∞. O principal resultado

afirma que as part́ıculas formam quase sempre três domı́nos puros (um de cada

espécie) e que quando o tamanho do sistema, N , cresce com β, essa forma segregada

evolui (em uma escala de tempo apropriada) como um movimento browniano no

ćırculo, o qual pode ter um drift.

Na segunda parte, consideramos passeios aleatórios reverśıveis em campos po-

tenciais. Mais precisamente, seja Ξ um aberto limitado de Rd, e F : Ξ → R uma

função suave. Seja ΞN = Ξ ∩ (N−1Zd), e denote por {XN(t) : t ≥ 0} o passeio

aleatório a tempo cont́ınuo em ΞN que pula de um ponto x para um ponto vizi-

nho y à taxa e−(1/2)N [F (y)−F (x)]. Nós examinamos o comportamento metaestável de

{XN(t) : t ≥ 0} entre os vales do potencial F , no limite N ↑ ∞. Nosso principal

resultado estabelece que em apropriadas escalas de tempo a evolução do passeio

aleatório em ΞN pode ser descrita por um passeio aleatório em um grafo ponderado

em que cada vértice representa um vale do potencial F e cada aresta representa um

ponto de sela.

Palavras-chave: Metaestabilidade, Tunelamento, Limites de escala, Modelo ABC,

Movimento Browniano, Passeios aleatórios reverśıveis, Pontos de sáıda.
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Introdução

Esta tese é baseada em nossos trabalhos [37] e [34], nos quais analisamos o fenômeno

de metaestabilidade em dois diferentes contextos.

Metaestabilidade

De maneira informal, dizemos que um processo possui comportamento metaestável

quando ele fica por um tempo longo em um estado antes de uma transição rápida

para outro estado estável. Basicamente, metaestabilidade se refere à existência

de duas ou mais escalas de tempo segundo as quais o processo mostra diferentes

comportamentos. Na menor escala, a dinâmica alcança rapidamente um aparente

equiĺıbrio e permanece restrita a um subconjunto do espaço de estados. Entretanto,

quando o processo é visto em uma escala de tempo maior, observam-se eventuais

transições entre estes estados de pseudo-equiĺıbrio, ou uma transição para um estado

ainda mais estável.

Como fenômeno f́ısico, metaestabilidade está presente em grande variedade de

situações na natureza. Um exemplo clássico é a tardia transição de um ĺıquido super-

congelado para o estado sólido. Outros exemplos ocorrem na formação de grandes

biomoléculas, como as protéınas; em reações qúımicas; em sistemas magnéticos

de magnetização oposta a um campo externo; e até mesmo em transições entre

aparentes equiĺıbrios no mercado de ações. O papel da matemática consiste em

formular modelos microscópicos para as dinâmicas de interesse e provar o compor-

tamento metaestável nesses modelos, o que pode contribuir no entendimento das

caracteŕısticas essenciais por trás da universalidade desse fenômeno. Em tais pro-

postas de modelagem a metaestabilidade costuma ser atribúıda à presença de algum

tipo de aleatoriedade na dinâmica básica.

O inovador trabalho de Kramers [32] em 1940, com objetivo de descrever uma

reação qúımica, introduz um dos primeiros modelos matemáticos para metaestabili-
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Introdução

dade ao analisar o movimento de uma part́ıcula em um potencial unidimensional de

duplo-vale sob influência de um rúıdo gaussiano. Matematicamente, uma primeira

formulação rigorosa de estados metaestáveis surge com os trabalhos de Lebowitz e

Penrose [35] em 1971 no contexto da teoria de van der Waals-Maxwell da transição

ĺıquido-vapor.

Subsequentemente, Cassandro, Galves, Olivieri e Vares [21] em 1984 introduzi-

ram a abordagem de análise de caminhos, baseada em técnicas de grandes desvios

nas trajetórias da dinâmica, no esṕırito da teoria de Freidlin and Wentzell [28] para

pertubações aleatórias de sistemas dinâmicos. Em muitos diferentes contextos, es-

tas ideias permitiram provar que o tempo de sáıda de um conjunto metaestável tem

distribuição exponencial; obter estimativas para o valor esperado desse tempo; des-

crever as trajetórias t́ıpicas de escape e calcular a distribuição do ponto de sáıda

de um conjunto metaestável. Para uma excelente revisão dessas técnicas e mais

referências, indicamos o recente livro de Olivieri e Vares [40].

Em [15, 16], Bovier, Eckhoff, Gayrard e Klein iniciam uma abordagem de meta-

estabilidade via teoria do potencial baseada em cálculos de capacidades para redes

elétricas associadas a cadeias de Markov reverśıveis, no sentido de [23]. Os autores

estabelecem também relações entre pequenos autovalores do gerador associado à

dinâmica e tempos médios de sáıda de domı́nios. Essa abordagem fornece menos

informação a respeito das trajetórias t́ıpicas, porém permite obter estimativas mais

precisas para os tempos médios de sáıda de conjuntos metaestáveis [19], exibindo

precisamente o pré-fator (a menos de erro multiplicativo convergindo para 1), em

comparação à abordagem por análise de caminhos, onde as estimativas dos tem-

pos médios de sáıda se dão por equivalência logaŕıtmica. Para uma revisão dessas

técnicas referimos a [13, 14].

Em [3, 6] Beltrán e Landim introduzem o que mais tarde se chamou de abordagem

martingal para metaestabilidade [7]. Uma das ideias-chave aqui é observar o traço

do processo nos conjuntos metaestáveis. Esse procedimento consiste em ignorar

pedaços das trajetórias que são negligenciáveis nas escalas temporais de interesse.

Tal método não se limita ao caso reverśıvel, embora seja bem mais simples nesse caso.

As ferramentas de teoria do potencial também costumam ser úteis nessa abordagem,

já que é posśıvel expressar as probabilidades de salto do processo traço, entre outras

formas, por meio de capacidades. Assim como na abordagem via teoria do potencial,

este método permite examinar modelos em que a razão entre as taxas de salto não

é exponencial no parâmetro de escala, modelos onde se tem barreira energética

logaŕıtmica [4]. Nessa teoria, as informações sobre os tempos de transições entre os

conjuntos metaestáveis são codificadas por um teorema que expressa a convergência

da dinâmica (propriamente reescalada), em uma topologia introduzida em [33], para

uma cadeia de Markov limite com simplificado espaço de estados. Esse resultado

é, portanto, especialmente interessante no caso de diversos conjuntos metaestáveis

Instituto de Matemática Pura e Aplicada 2 2014
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em competição em uma mesma escala de tempo. Sob certas condições gerais em

termos de capacidades e da medida estacionária, em [3] a referida convergência é

demonstrada com uso da caracterização de processos de Markov via martingais.

As diferentes abordagens fornecem uma gama de ferramentas, mas descrições

completas baseiam-se na análise espećıfica de cada modelo. Geralmente é relevante

a estrutura geométrica do espaço de configurações, o perfil energético associado e

a caracterização das chamadas configurações de sela, o que pode facilitar o cálculo

preciso das quantidades de interesse via prinćıpios variacionais. Muitas técnicas são

consideravelmente mais simples ou somente aplicáveis na presença de reversibilidade.

Nesta tese analisamos metaestabilidade em dois modelos diferentes. Em am-

bos os modelos, nosso objetivo é caracterizar as dinâmicas markovianas limites no

sentido de [3, 33] de modo a obter uma descrição simples para o comportamento

dos processos em grandes escalas de tempo. No Caṕıtulo 1, analisamos o limite

de temperatura zero do modelo ABC, um sistema de part́ıculas conservativo que,

com exceção de um caso especial, não é reverśıvel. No Caṕıtulo 2, analisamos pas-

seios aleatórios reverśıveis em discretizações de subconjuntos limitados de Rd para

os quais a medida estacionária é descrita por um potencial de multi-vales F . No

que segue, apresentamos brevemente os modelos e os principais resultados de cada

parte deste trabalho.

Modelo ABC no limite de temperatura zero

Na primeira parte desta tese são apresentados resultados sobre o comportamento

metaestável do sistema de part́ıculas conhecido como modelo ABC. Introduzido por

Evans et al. [26, 27], o modelo é uma dinâmica conservativa que consiste em três

tipos de part́ıculas, rotuladas A, B e C, em um ćırculo discreto {−N, . . . , N} (uma

part́ıcula por śıtio). A dinâmica markoviana evolui através de transposições entre

part́ıculas vizinhas: AB → BA, BC → CB, CA → AC com taxa q e BA → AB,

CB → BC, AC → CA com taxa 1.

O comportamento assintótico do processo tem sido bastante estudado no regime

fracamente assimétrico, q = e−β/N , introduzido por Clincy et al. [22] (ver também

[2, 9, 12, 8]), quando o tamanho do sistema, N , vai para infinito e β é um parâmetro

fixo que faz o papel do inverso da temperatura, a qual podemos interpretar como o

grau de desordem do sistema. Aqui investigamos um regime fortemente assimétrico,

o limite de temperatura zero, em que q = e−β, β ↑ ∞. Neste regime, mostra-se que

as part́ıculas segregam-se formando quase sempre três domı́nios puros, um de cada

espécie, localizados na ordem ćıclica ABC.

Quando o número de part́ıculas de cada tipo, NA, NB e NC , é fixo (i.e. não

varia com β) observamos um fenômeno de metaestabilidade, que revela um interes-

sante (e, à primeira vista, surpreendente) comportamento assintótico não local. A

saber, para NA, NB, NC constantes, quando β ↑ ∞ a dinâmica do modelo ABC na
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escala de tempo emin{NA,NB ,NC}β converge1 para um processo de Markov que evolui

nas NA +NB +NC configurações segregadas, o qual salta de uma configuração para

outra qualquer a uma taxa estritamente positiva. As taxas de salto do processo

markoviano limite podem ser expressas em termos de probabilidades de absorção

de uma dinâmica extremamente mais simples (ver Figura 1.1). No Caṕıtulo 1 este

resultado é apresentado de maneira precisa (Teorema 1.2.5) em termos do já men-

cionado processo traço que é um objeto central em nossa análise do modelo ABC.

Nosso principal resultado no estudo do modelo ABC, Teorema 1.2.2, considera o

limite quando o número de part́ıculas cresce com β. Neste caso, sob certas condições

no modo com que NA, NB e NC ↑ ∞ com β, na escala de tempo N2emin{NA,NB ,NC}β

quando β ↑ ∞, a evolução do centro de massa das part́ıculas de tipo A (por exemplo)

converge para um movimento browniano no ćırculo. Sem assumir densidade positiva

de cada tipo de part́ıcula, encontramos um interessante caso em que o movimento

browniano limite tem um drift.

Uma diferença significativa entre o modelo ABC e outros processos onde resulta-

dos semelhantes foram demonstrados (ver, por exemplo, [5, 31]) é que, com exceção

do caso NA = NB = NC , o processo ABC é não reverśıvel e sua medida invari-

ante não é explicitamente conhecida. Para o nosso conhecimento, esta é a primeira

descrição precisa do limite de temperatura zero para um processo desse tipo.

Passeios aleatórios reverśıveis em campos potenciais

Na segunda parte desta tese, estudamos o comportamento metaestável de passeios

aleatórios reverśıveis em campos potenciais. Este é um problema antigo cuja origem

pode remeter pelo menos ao trabalho de Kramers [32]. O problema foi conside-

rado por Freidlin e Wentsell [28] e por Galves, Olivieri e Vares [29] no contexto de

pequenas pertubações aleatórias de sistemas dinâmicos, e, mais recentemente, por

Bovier, Eckhoff, Gayrard e Klein em uma série de artigos [15, 16, 17, 18] através da

abordagem de metaestabilidade via teoria do potencial.

Analisamos passeios aleatórios em discretizaçõces de um subconjunto de Rd ao

qual é associado um perfil energético F com diversos mı́nimos locais. Mais pre-

cisamente, seja Ξ um aberto limitado de Rd, e F : Ξ → R uma função suave. Seja

ΞN = Ξ∩(N−1Zd), e denote por {XN(t) : t ≥ 0} o passeio aleatório a tempo cont́ınuo

em ΞN que pula de um ponto x para um ponto vizinho y à taxa e−(1/2)N [F (y)−F (x)].

Nós examinamos o comportamento metaestável de {XN(t) : t ≥ 0} entre os vales

do potencial F , no limite N ↑ ∞.

Assumimos que o potencial F tem um número finito de pontos cŕıticos. Nos

mı́nimos locais exigimos que a matriz hessiana de F tenha autovalores estritamente

1A convergência ocorre em uma topologia apropriada introduzida em [33], mais fraca que a de

Skohorod.
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positivos; nos pontos de sela exigimos exatamente um autovalor estritamente ne-

gativo, os demais sendo estritamente positivos. Sob estas condições nosso principal

resultado, Teorema 2.2.4, estabelece que em apropriadas escalas de tempo a evolução

do passeio aleatório em ΞN pode ser descrita por um passeio aleatório em um grafo

ponderado em que cada vértice representa um vale do potencial F (i.e, vizinhança

de um mı́nimo local) e cada aresta representa um ponto de sela. Em cada escala

de tempo considerada, a dinâmica assintótica pode ter pontos abosorventes, cor-

respondendo a vales mais profundos. Quanto aos pontos transientes, as respectivas

taxas de salto dependem apenas do comportamento do potencial em vizinhanças

dos mı́nimos e das selas relevantes. Tais taxas são explicitadas em termos do deter-

minante e do autovalor negativo (no caso das selas) da matriz hessiana de F nesses

pontos.

Nossa análise ganha especial interesse no caso em que existem vários vales com

mesma profundidade em um mesmo ńıvel energético. Esse cenário, que não havia

sido considerado anteriormente, permite o acontecimento de situações mais ricas,

uma vez que a dinâmica limite, no sentido de [33], em cada escala de tempo, não se

limita necessariamente a apenas um salto posśıvel de um estado transiente para um

estado absorvente.

Nosso segundo principal resultado nesse contexto, Teorema 2.2.7, considera o

problema dos pontos de sáıda de um vale. Seja x um mı́nimo local do poten-

cial F e {z1, . . . ,zk} as mais baixas selas de F separando x de outros mı́nimos

locais. No Teorema 2.2.7 obtemos as probabilidades assintóticas de que o passeio

aleatório {XN(t) : t ≥ 0} saia do vale contendo o mı́nimo x atravessando vizinhanças

mesoscópicas das selas zi.

Instituto de Matemática Pura e Aplicada 5 2014





CHAPTER 1

Zero-temperature limit of the ABC model

Abstract. We consider the ABC model on a ring in a strongly asymmetric

regime. The main result asserts that the particles almost always form three pure

domains (one of each species) and that this segregated shape evolves, in a proper

time scale, as a Brownian motion on the circle, which may have a drift. This is,

to our knowledge, the first proof of a zero-temperature limit for a non-reversible

dynamics whose invariant measure is not explicitly known.

1.1 Introduction

The ABC model, introduced by Evans et al. [26, 27], is a stochastic conservative

dynamics consisting of three species of particles, labeled A, B, C, on a discrete

ring {−N, . . . , N} (one particle per site). The system evolves by nearest neighbor

transpositions: AB → BA, BC → CB, CA → AC with rate q and BA → AB,

CB → BC, AC → CA with rate 1.

The asymptotic behavior of the process (and of its variations) has been widely

studied in the weakly asymmetric regime q = e−β/N , introduced by Clincy et al. [22],

when the system sizeN goes to infinity and β is a fixed control parameter which plays

the role of the inverse temperature. In this regime, an interesting phase transition

phenomenon arises as β is tuned.
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CHAPTER 1. ZERO-TEMPERATURE LIMIT OF THE ABC MODEL

We investigate here a strongly asymmetric regime, the zero-temperature limit,

where q = e−β, β ↑ ∞. We consider two types of asymptotics: In Theorem 1.2.5

we examine the behavior of the process in the case where the number of particles of

each species, NA, NB and NC , is fixed and β ↑ ∞; in Theorem 1.2.2, NA, NB and

NC increase with β.

We show in Lemma 1.2.1 that the particles almost always form three pure do-

mains, one of each species, located clockwise in the cyclic-order ABC. For fixed

volume, we show that, in the time scale emin{NA,NB ,NC}β, as β ↑ ∞, the process con-

verges to a Markov chain that evolves among these 2N+1 segregated configurations,

jumping from any configuration to any other at positive rates. These jump rates can

be expressed in terms of some absorption probabilities of a much simpler dynamics.

When N grows with β, with some restrictions on the speed of this growth, we

prove in Theorem 1.2.2 that, in the time scale N2emin{NA,NB ,NC}β, the center of

mass of the particles of type A (for example) moves as a Brownian motion on the

circle. Without assuming positive proportion of each type of particle, we identify

an interesting degenerated case in which the limit Brownian motion has a drift.

Our method for proving Theorem 1.2.2 involves the analysis of the trace process

in the set of the segregated configurations, the process which neglects the time spent

in other configurations.

Results of the same nature (the description of the dynamics among the ground

states in finite volume and the convergence to a Brownian motion on a large torus)

were obtained for the Kawasaki dynamics for the Ising lattice gas at low temperature

in two dimensions by Beltrán, Gois and Landim [5, 31]. Many techniques used in

our analysis of the ABC model come from these papers. We emphasize that, in

comparison with the Kawasaki dynamics, a significant difference is that, with the

exception of the case NA = NB = NC , the ABC process is non-reversible and its

invariant measure is not explicitly known.

In this strongly asymmetric regime we are dealing, the model fits the assumptions

considered by Olivieri and Scoppola in [39]. In principle, the general procedure pro-

posed by them, consisting in the analysis of successive time-scales, eβ, e2β, . . ., could

be applied here, especially if we were interested in understanding the mechanism

of nucleation of the process starting from an arbitrary configuration. However, the

analysis based on this iterative scheme would become quite complicated in the ABC

model due to the combinatorial complexity of the evolution among the metastable

configurations which would appear in each scale. Our analysis, which relies on

a precise understanding of the microscopic dynamics when the process is close to

one of the segregated configurations, leads to a very accurate understanding of the

limiting process in the time-scale required for transitions among the most stable

configurations.
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1.2 Notations and results

1.2.1 The ABC Process

Given an integer N , let ΛN = {−N, . . . , N} be the one-dimensional discrete ring

of size 2N + 1. A configuration in Ω̃N := {A,B,C}ΛN is denoted by ω = {ω(k) :

k ∈ ΛN}, where ω(k) = α if site k is occupied by a particle of type α ∈ {A,B,C}.
We make the convention that α + 1, α + 2, . . . denote the particle types that are

successors to α in the cyclic-order ABC.

For i, j ∈ ΛN and ω ∈ Ω̃N we denote by σi,jω the configuration obtained from ω

by exchanging the particles at the sites i and j:

(σi,jω)(k) =


ω(k) if k /∈ {i, j},
ω(j) if k = i,

ω(i) if k = j.

We consider the continuous-time Markov chain {ηβ(t) : t ≥ 0} on the state

space Ω̃N whose generator Lβ acts on functions f : Ω̃N → R as

(Lβf)(ω) =
∑
k∈ΛN

cβk(ω)[f(σk,k+1ω)− f(ω)]

where, for β ≥ 0, the jump rates cβk are given by

cβk(ω) =

{
e−β if (ω(k), ω(k + 1)) ∈ {(A,B), (B,C), (C,A)},
1 otherwise.

Almost always we omit the index β and denote ηβ(t) just by η(t).

As the system evolves by nearest neighbor transpositions, the number of particles

of each species is conserved. Therefore, given three integers Nα, α ∈ {A,B,C}, such

that NA + NB + NC = 2N + 1, we have a well defined process on the component

ΩNA,NB ,NC = {ω ∈ Ω̃N :
∑

k∈ΛN
1{ω(k) = α} = Nα, α ∈ {A,B,C}}, which is clearly

irreducible and then admits a unique invariant measure. To shorten notation, let us

suppose that we have fixed NA, NB, and NC as functions of N and then we write

simply ΩN instead of ΩNA,NB ,NC .

The invariant measure µβ = µβ,N is in general not explicit known. However, in

the special case of equal densities NA = NB = NC , as shown in [26, 27], the process

is reversible with respect to the Gibbs measure µβ, given by

µβ(ω) =
1

Zβ
e−βH(ω),
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where Zβ is the normalizing partition function and H is a non-local Hamiltonian,

which may be written as

H(ω) =
1

2N + 1

∑
k∈ΛN

2N∑
i=1

i1
{

(ω(k), ω(k + i)) ∈ {(A,B), (B,C), (C,A)}
}
. (1.2.1)

A simple computation relying on the equal densities constraint shows that nearest

neighbor transpositions of type (α, α+1)→ (α+1, α) increase the energy H by 1 unit,

while the opposite kind of transposition decreases H by 1 unit. The reversibility of

the process in this special case follows from this observation.

The configurations in which the particles form three pure regions, one of each

species, located clockwise in the cyclic-order ABC deserve a special notation. Define

ωN0 ∈ ΩN as

ωN0 (j) =


A if 0 ≤ j ≤ NA − 1,

B if NA ≤ j ≤ NA +NB − 1,

C otherwise,

and, for each k ∈ ΛN , define ωNk = ΘkωN0 , where Θk : ΩN → ΩN stands for the shift

operator (Θkω)(i) = ω(i− k). By convention we omit the index N in the notation,

and we write simply ωk instead of ωNk . Denote by ΩN
0 the set of these configurations:

ΩN
0 = {ωk : k ∈ ΛN}.

We remark that, in the equal densities case, ΩN
0 corresponds to the set of ground

states of the energy H.

For each ω ∈ ΩN denote by Pβ
ω the probability measure induced by the Markov

process {η(t) : t ≥ 0} starting from ω on the Skorohod space D([0,∞),ΩN) of càdlàg

paths. Expectation with respect to Pβ
ω is represented by Eβ

ω.

1.2.2 Main results

We analyze in this article the asymptotic evolution, as β ↑ ∞, of the Markov process

{η(t) : t ≥ 0}, where also the number of particles may depend on β. For simplicity,

we omit this dependence in the notation.

From now on, we use the notation

M = min{NA, NB, NC}.

If the process starts from some ωk ∈ ΩN
0 , at least M jumps of rate e−β are needed

in order to visit another configuration in ΩN
0 . This suggests that, for fixed N , the

interesting time scale to consider is eMβ. In Section 1.9 we show that, in the time

scale N2eMβ, if N does not increase too fast with β, the process spends a negligible

time outside ΩN
0 :
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Lemma 1.2.1. Let M∗ = max{NA, NB, NC}. Assume that

lim
β→∞

N34M
∗
e−β = 0 (1.2.2)

Then, for every k ∈ ΛN , t ≥ 0

lim
β→∞

Eβ
ωk

[∫ t

0

1{η(sN2eMβ) /∈ ΩN
0 }ds

]
= 0. (1.2.3)

Our main result, Theorem 1.2.2, characterizes the motion of this segregated

shape in the time-scale N2eMβ when the system size grows with β. We express

the result in terms of the convergence of the evolution of a macroscopic variable

associated to the configurations: the center of mass of the particles of type A.

In order to define this center of mass we need to introduce some other notations.

For any configurations ξ, ζ ∈ ΩN , by a path from ξ to ζ we mean a sequence of

configurations γ = (ξ = ξ0, ξ1, . . . , ξn = ζ) such that ξk can be obtained from ξk−1

by a simple nearest neighbor transposition. We define dist(ξ, ζ) as the smallest n

such that there exists a path from ξ to ζ of length n. For any n, and k ∈ ΛN , define

∆n
k = {ω ∈ ΩN : dist(ω, ωk) = n}. (1.2.4)

Due to the periodic boundary conditions, for many configurations the centers of

mass of the particles of type α, α ∈ {A,B,C}, are not well defined. However, the

proof of Lemma 1.2.1 in fact shows that, under (1.2.2), for any t ≥ 0

lim
β→∞

Pβ
ω0

[
η(s) /∈ ΞN for some 0 ≤ s ≤ tN2eMβ

]
= 0, (1.2.5)

where ΞN is a subset of configurations such that ΞN ⊆ ΓN :=
⋃
k∈ΛN

ΓNk , where

ΓNk =

(
M⋃
n=0

∆n
k

)
∪

⋃
i1,i2,i3,i4∈ΛN

{σi1,i2σi3,i4ωk}.

Note that the configurations in ΓNk that are not at distance M or less from ωk differ

from ωk by at most two transpositions, not necessarily nearest-neighbor. In ΓN , the

center of mass can be defined unambiguously. Suppose, for example, that NA = M .

For ω ∈ ΓN0 , define the center of mass (of the particles of type A) of the configuration

ω, denoted by C(ω), as

C(ω) =
1

N

∑
k∈ΛN

k1{ω(k) = A}
NA

.

Then, for a configuration ξ ∈ ΓNk , k ∈ ΛN , take ω ∈ ΓN0 such that ξ = Θkω, and

define C(ξ) = C(ω) + k/N mod [−1, 1]. Just for completeness, for ξ /∈ ΓN define

C(ξ) = 0. Actually, by (1.2.5) this latter definition is not relevant.
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Let

d := |{α ∈ {A,B,C} : Nα = M}|. (1.2.6)

Note that d may vary with β, but we omit this dependence to simplify the notation.

Define

θβ :=
1

2d
eMβN2. (1.2.7)

Our main result is the following theorem.

Theorem 1.2.2. Assume that η(0) = ω0 and that N ↑ ∞ as β ↑ ∞ in such a way

that NA < NB ≤ NC, with NA ↑ ∞, NA/N → rA ≥ 0,

lim
β→∞

(
1

3

)NB
NC = b ∈ [0,∞) (1.2.8)

and

lim
β→∞

(N54NA +N34NC )e−β = 0. (1.2.9)

Then, as β ↑ ∞, the process {C(η(tθβ)) : t ≥ 0} converges in the uniform topology

to the diffusion

{(1/2)rA − (3/2)bt+Bt : t ≥ 0} (1.2.10)

on the circle [−1, 1], where {Bt : t ≥ 0} is a Brownian motion with infinitesimal

variance equal to 1. If b = 0 in (1.2.8), we may replace the assumption NA < NB

by NA ≤ NB.

Remark 1.2.3. In Theorem 1.2.2, if NB increases not so slowly, in the sense that

b = 0 in (1.2.8), then the limit is a Brownian motion without drift. This is the case

when we have positive proportion of each type of particle:

lim
β→∞

Nα

N
> 0, α ∈ {A,B,C}. (1.2.11)

On the other hand, if NB increases even more slowly, in the sense that b = ∞
in (1.2.8), then we have to look at the process in another time scale. Suppose, for

example, that we can find some u ∈ (1, 2) such that

lim
β→∞

(
1

3

)NB
Nu−1
C = c ∈ (0,∞). (1.2.12)

In this case, replacing (1.2.8) by (1.2.12), we can prove that, as β ↑ ∞, the process

{C(η(tNueNAβ)) : t ≥ 0} converges to a deterministic linear function {µt : t ≥ 0}
on the circle [−1, 1], where µ is a constant which depends on c. This will become

clear with the proofs given in Section 1.8.
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Remark 1.2.4. In Lemma 1.2.1, the restriction (1.2.2) is not optimal. It comes

from our crude estimation of µβ(ΞN) in the general densities case, where the invari-

ant measure is not explicitly known. By repeating the steps that lead to (1.9.16), we

see that assertion (1.2.3) also hods if

lim
β→∞

µβ(ΩN \ ΩN
0 ) = 0. (1.2.13)

In the special case of equal densities, where the invariant measure is explicitly known,

we can verify (1.2.13) without any assumption that controls the growth of N . Details

are given in Section 1.9.

1.2.3 Results for the trace process in ΩN
0

Now we present some results that are preliminary steps in our method to prove

Theorem 1.2.2, but which are interesting by themselves.

Denote by {η0(t) : t ≥ 0} the trace of the process {η(t) : t ≥ 0} on the set ΩN
0 ,

i.e, the Markov chain obtained from {η(t) : t ≥ 0} by neglecting the time spent

outside ΩN
0 . More precisely, we define {η0(t) : t ≥ 0} by

Tt =

∫ t

0

1
{
η(s) ∈ ΩN

0

}
ds; St = sup{s ≥ 0 : Ts ≤ t}; η0(t) = η (St) . (1.2.14)

We refer to [3] for important elementary properties of the trace process.

To prove Theorem 1.2.2 we first analyze the trace process {η0(t) : t ≥ 0}. For

finite volume we obtain the following result which reveals an interesting non-local

asymptotic behavior.

Theorem 1.2.5. For NA, NB and NC constant greater than or equal to 3, as β ↑ ∞
the speeded up process {η0(eMβt) : t ≥ 0} converges to a Markov process on ΩN

0 which

jumps from ωi to ωj at a strictly positive rate r(i, j).

The proof of this theorem, as well as the expression for r(i, j), is given in Sec-

tion 1.6. This theorem is complemented with Lemma 1.2.1, which says that we are

not losing much just looking at the trace process in ΩN
0 . The rates r(i, j), which

depend also on NA, NB and NC , can be expressed in terms of some absorption prob-

abilities of a simple Markov dynamics, the one described by Figure 1.1 in the next

section.

Remark 1.2.6. It is possible to reformulate Theorem 1.2.5, without referring to the

trace process, by asserting the convergence of the (time re-scaled) original process

{η(eMβt) : t ≥ 0} in a topology introduced in [33], weaker than the Skorohod one.

Denote by Rβ
0 (ωi, ωj) the jump rates of the trace process {η0(t) : t ≥ 0}. By

translation invariance, it is clear that

Rβ
0 (ωi, ωj) = Rβ

0 (ω0, ωj−i) =: rβ(j − i). (1.2.15)
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Let X(ωk) = k, k ∈ ΛN , so that if X(t) = X(η0(t)) then {X(t) : t ≥ 0} is a random

walk on ΛN which jumps from i to j at rate rβ(j − i).
The next result refers to the case where N goes to infinity as a function of β.

We start considering the degenerated case where NA and NB are constants and only

NC goes to infinity. We have a ballistic behavior in this situation.

Theorem 1.2.7. Assume that 3 ≤ NA < NB are constants and that NC ↑ ∞ as

β ↑ ∞ in such a way that

lim
β→∞

N5
Cβe

−β = 0. (1.2.16)

If η(0) = ω0, then, as β ↑ ∞, the process {X(tNeNAβ)/N : t ≥ 0} converges in the

uniform topology to a linear function {v(NA, NB)t : t ≥ 0} on the circle [−1, 1].

The condition NA < NB is crucial for the ballistic behavior. If NA and NB

are constant but NA = NB, then the process {X(t) : t ≥ 0} is symmetric. In

this case, scaling time by N2eMβ we can prove the convergence to a Brownian

motion if N6
Cβe

−β ↓ 0. In the case NA 6= NB, the velocity v(NA, NB), which is

an antisymmetric function of NA and NB, is negative when NA < NB. It can be

expressed in terms of some absorption probabilities for a random walk in a simple

graph, which can be explicitly computed in terms of NA and NB. The analysis

of the asymptotic dependence of v(NA, NB) on NA and NB, which is presented in

Lemma 1.7.4 helps us to find the specific scenario, (1.2.8), for the convergence to a

Brownian motion with drift.

The proof of Theorem 1.2.7 is given in Section 1.8, where we also state and prove

the version of Theorem 1.2.2 referring to the trace process (Theorem 1.8.1).

1.3 Sketch of the proofs

Our main result, Theorem 1.2.2, is a consequence of the corresponding Theorem 1.8.1

and the fact, to be proved in Section 1.10, that (assuming η(0) = ω0) the process

{C(η(tθβ)) : t ≥ 0} is close to the trace process {X(tθβ)/N + rA/2 : t ≥ 0} in the

Skohorod space D([0,∞), [−1, 1]).

The main idea to analyze the trace of the process {η(t) : t ≥ 0} on ΩN
0 is to

consider first the trace on a larger set ΩN
1 . Now we will see why such a set ΩN

1 comes

naturally.

To fix ideas, suppose that 3 ≤ NA ≤ NB ≤ NC are constants1. Suppose that the

process starts from the configuration ωk ∈ ΩN
0 . Note that, in order to visit any other

configuration in ΩN
0 , at least NA jumps of rate e−β are needed. The most simple

trajectory that we can imagine between ωk and another configuration in ΩN
0 occurs

1An interactive picture of the possible configurations of the ABC model, which can help in the

visualization of the trajectories, can be found at http://tube.geogebra.org/student/m98277.
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when the whole block of particles of type A is crossed, for example, by a particle

of type C walking clockwise (and for this, NA jumps of rate e−β are needed) and

then this detached particle of type C can continue moving in clockwise direction

inside the domain of particles of type B (now performing rate 1 jumps) until, after

crossing all the particles of type B, it meets the other particles of type C. This way,

we arrive at the configuration ωk−1. In an analogous way, we find a path from ωk
to ωk+1. This reveals that the correct time scale to analyze the trace process on ΩN

0

is eNAβ.

At first glance, it appears that these trajectories we described are the only ones

possible in the time scale eNAβ and that the asymptotic dynamics will be restricted

to jumps from ωk to ωk+1 or ωk−1. So, Theorem 1.2.5 is somewhat surprising. The

truth is that, for any j, there exists a trajectory from ωk, which is possible in the time

scale eNAβ, such that the next visited configuration in ΩN
0 is ωj. The explanation

is the following. Starting from ωk, in a time of order eNAβ it is possible that we

have a meeting of a particle of type C and a particle of type B inside the domain

of particles of type A. Once these two particles meet, they can interchange their

positions performing a rate 1 jump. This way, we fall in a metastable configuration

from which all possible jumps have rate e−β. This configuration is very similar to ωk
except for the pair BC inside the block of As. For this configuration, transposition

of nearest neighbor particles that are far from this pair BC, which may occur at the

frontiers between two different domains, are reverted with high probability in the

next jump of the chain. So, let us focus in what can happen with this pair BC.

After a time of order eβ, this pair can disappear if BC turns to CB and then,

with rate 1 jumps, the particles C and B return to their original positions in the

configuration ωk. But also, in a time of order eβ, the pair BC can move inside the

domain of particles of type A. For example, with a rate e−β jump, the particle C

can move to the right, in such a way that ABCAA becomes ABACA. Now, with a

rate 1 jump, the particle B moves to the right and we obtain AABCA. Clearly, the

pair BC can also move to the left. This way, we can move the pair BC until, for

example, near to the right end of the block of particles of type A, and we arrive at

a configuration that is almost ωk except for the appearance of a block AABCABB

in the frontier of the regions of particles A and B. From this configuration, the pair

CA can turn to AC and after NB jumps of rate 1 we arrive at ωk−1. But also, by

the same reason as before, instead of becomes AC, in times of order eβ the pair CA

can move inside the domain of particles of type B until eventually the process may

arrive at a configuration that is almost ωk−1 except for a block BBCABCC in the

frontier of regions of particles of types B and C. At this point, after a time of order

eβ, the pair AB can turn to BA and then, after NC jumps of rate 1, the process

can arrive at ωk−2. This shows how, in time scale eMβ, it is possible to find a path

starting from ωk such that the next visited configuration in ΩN
0 is ωk−2. Clearly, we
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could continue moving a pair of particles in order to arrive at any configuration in

ΩN
0 .

The class of the metastable configurations which appears in the above described

paths will be called ΩN
1 , and it will be precisely defined in Section 1.4. As the above

discussion indicates, starting from a configuration in ΩN
0 , after a time of order eNAβ,

we can visit a configuration ω ∈ ΩN
1 where we will stay for a time of order eβ.

Starting from ω ∈ ΩN
1 , in time scale eβ, essentially, what we see is a Markov chain

{η̂1(eβt) : t ≥ 0} in ΩN
1 for which the configurations in ΩN

0 are absorbing states.

The structure of this dynamics reveals to be pretty simple, as shown in Figure 1.1.

Jump probabilities:

3
10

3
10

2
5

ξkα,i+1 ξkα,i−1

ωk

from ξkα,1:

3
14

3
14

2
7

2
7

ωk ωk+1

ξkα,2 ξk+1
α−1,N(α−1)−2

from ξkα,i; 2 ≤ i ≤ Nα − 2:

ω0

ξ0A,1

ω−1 ω1
ω−2

ξ1C,1

ξ−1B,1

Figure 1.1: Graph structure of the ideal dynamics {η̂1(t) : t ≥ 0} related to the process.

The picture illustrates the case NA = 5, NB = 7 and NC = 9. The inner vertices represent

the configurations in ΩN
0 , absorbing states for this dynamics. The outer vertices represent

the metastable configurations in Ω1
N \ Ω0

N , which will be precisely defined in the next

section. The arrows on the right completely describe the corresponding discrete-time

jump chain.

The dynamics described in Figure 1.1 indicates that the trace on ΩN
0 is not

a symmetric process and that this asymmetry can be balanced depending on the

relative quantities of each type of particle. This behavior is at the origin of the drift

which appears in Theorem 1.2.2.

We have, therefore, a strategy to analyze the trace of {η(t) : t ≥ 0} on ΩN
0 .

At first, we consider the trace on ΩN
1 . This will be the subject of Section 1.5.

Instituto de Matemática Pura e Aplicada 16 2014



CHAPTER 1. ZERO-TEMPERATURE LIMIT OF THE ABC MODEL

Essentially, we have to answer the following question: starting from a configuration

ω in ΩN
1 , what is the distribution of the next visited configuration in ΩN

1 ? We

split this question into two, depending if ω belongs to ΩN
0 or not. In the first

case, we will see an interesting “uniformity” for this distribution, in a sense to be

clarified at Proposition 1.5.5. At this point the error terms in our estimates increase

exponentially in N , and here is where some constraints referring to the growth of N

arise. In the second case, we observe that the process is well approximated by the

asymptotic Markov chain {η̂1(t) : t ≥ 0}.
To pass from the trace on ΩN

1 to the trace on ΩN
0 , we have to look at the

absorptions probabilities on ΩN
0 for the chain {η̂1(t) : t ≥ 0} starting from ΩN

1 \ΩN
0 .

In Section 1.6, we present (approximations of) the jump rates rβ(k), k ∈ ΛN , defined

on (1.2.15), as functions of these absorption probabilities, which are estimated in

Section 1.7 allowing us to prove, in Section 1.8, the results for the trace process on

ΩN
0 in the case where N ↑ ∞ with β.

All the above discussion also suggests what are the typical configurations that

may appear between two consecutive visits to the set ΩN
0 . In Section 1.9 we will

estimate the measure µβ of these configurations and this will allow us to prove that

the process spends a negligible time outside ΩN
0 .

1.4 The subset of configurations ΩN
1

In this section we define the set of configurations ΩN
1 establishing notation that

identifies each one of its elements. Throughout the text, even when not explicitly

mentioned, we are assuming that M ≥ 3.

1.4.1 The configurations ζkα,i

For k ∈ ΛN , α ∈ {A,B,C} and 0 ≤ i ≤ Nα, denote by ζkα,i the configuration at

distance Nα from ωk, obtained from ωk ∈ ΩN
0 by a meeting of two distinct particles

of types different from α in the block of particles of type α. The index i indicates the

position of this meeting. More precisely, let fα be the position of the first particle

of type α in the configuration ω0, i.e,

fα = NA1{α ∈ {B,C}}+NB1{α = C}.

Then,

ζkα,i = Θkσf(α+1),fα+iσfα−1,fα−1+iω0.

Note that the extreme case i = 0 (respectively i = Nα) indicates that a particle of

type α+1 (respectively α−1) has crossed the whole block of particles of type α until

meeting a particle of type α − 1 (respectively α + 1). As illustrated in Figure 1.2,
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with this notation, ζkα,Nα = ζk−1
α+1,0, and these are the only configurations of this type

with double representation.

0 0

Figure 1.2: The configurations ζ2
B,2 and ζ2

B,0 = ζ3
A,8 for NA = 8, NB = 5, NC = 12. The

white, gray and black circles represent respectively particles of type A, B and C. We

use blue (respectively red) edges to indicate transpositions that occur at rate 1 (respec-

tively e−β).

For k ∈ ΛN and α ∈ {A,B,C}, we denote by FN,kα the corresponding set of such

configurations:

FN,kα = {ζkα,i : 0 ≤ i ≤ Nα}. (1.4.1)

We will see in Section 1.5 that, if the process starts from ωk, as β ↑ ∞, the

configurations in the set
⋃
α:Nα=M FN,kα are those that can be reached in a time

of order eMβ that allow the process to escape from the basin of attraction of the

configuration ωk.

1.4.2 The configurations ξkα,i

For k ∈ ΛN , α ∈ {A,B,C} and 1 ≤ i ≤ Nα− 1 we denote by ξkα,i the configuration

obtained from ζkα,i by interchanging the positions of the two distinct particles that

have met in the block of particles of type α. More precisely:

ξkα,i = Θkσfα+i−1,fα+iζ0
α,i.

Note that the jump leading ζkα,i to ξkα,i has rate 1.

Again, as illustrated in Figure 1.3, it happens that some of these configurations

have double representations, namely ξkα,Nα−1 = ξk−1
α+1,1.

We denote by GN the space of such configurations:

GN,kα = {ξkα,i : 1 ≤ i ≤ Nα − 1}, GN =
⋃
k∈ΛN

⋃
α∈{A,B,C}

GN,kα . (1.4.2)
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0 0

Figure 1.3: The configurations ξ2
B,2 and ξ2

B,1 = ξ3
A,7 for NA = 8, NB = 5, NC = 12. The

white, gray and black circles represent respectively particles of type A, B and C.

From a configuration in GN , each possible jump has rate e−β. In the particular

case of equal densities these configurations are local minima of the energy H defined

in (1.2.1). In the next section we analyze the trace of the ABC model on the set

ΩN
1 := ΩN

0 ∪ GN .

1.5 Trace of {η(t) : t ≥ 0} on ΩN
1

For a configuration ωk ∈ ΩN
0 , denote by V (ωk) the set of configurations that can

be obtained from ωk after a sequence of nearest neighbor transpositions of type

(α, α + 1) → (α + 1, α), i.e, rate e−β jumps. In other words, V (ωk) is the set of

configurations from which we can arrive at ωk just performing rate 1 jumps. Recall

the definition of ∆n
k in (1.2.4) and note that

⋃M
n=0 ∆n

k ⊂ V (ωk). For ω ∈ ΩN ,

denote by R(ω) and B(ω) the sets of configurations that can be obtained from ω

by a simple nearest neighbor transposition of types (α, α + 1) → (α + 1, α) and

(α+ 1, α)→ (α, α+ 1), respectively. Note that, if ω ∈ ∆n
k , for 1 ≤ n ≤M − 1, then

R(ω) ⊆ ∆n+1
k , B(ω) ⊆ ∆n−1

k . (1.5.1)

Now, define B∗k(ω) = B(ω) ∩ V (ωk) and D∗k(ω) = B(ω) \ V (ωk). In words, for a

configuration ω ∈ V (ωk), the set D∗k(ω) is formed by the configurations that are

not in V (ωk) which can be reached from ω after a rate 1 jump. The configurations

ω ∈
⋃
α:Nα=M FN,kα are those in

⋃M
n=0 ∆n

k for which D∗k(ω) 6= ∅. We can see in Figure

1.2 that, for example, |R(ζ2
B,2)| = 3, |B∗k(ζ2

B,2)| = 2 and D∗k(ζ
2
B,2) = {ξ2

B,2}.
In the graph representation of a configuration, call an edge blue, red, or black if,

respectively, the particles it links exchange their positions at rate 1, e−β or are of the

same type. With this convention, |R(ω)| and |B(ω)| are the numbers of red and blue

edges of the configuration ω and V (ωk) is the set of configurations obtained from

ωk by a sequence of transpositions performed only in red edges. A configuration
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ω ∈ V (ωk) can have two kinds of blue edges (call them blue1 and blue2), whose

transposition leads to configurations in B∗k(ω) and D∗k(ω) respectively.

Lemma 1.5.1. Let k ∈ ΛN and ω ∈ V (ωk) then

|R(ω)| ≤ |B∗k(ω)|+ 3. (1.5.2)

Proof. For ω = ωk, equality holds in (1.5.2), because the configuration ωk has three

red edges and no blue edges. Therefore, to conclude the proof by induction, we just

have to check that if (1.5.2) holds for a configuration ω ∈ V (ωk), then it remains

true after a transposition in a red edge (l, l + 1) of ω.

Observe that the transposition in the edge (l, l+ 1) only changes the color of the

three adjacent edges (l − 1, l), (l, l + 1) and (l + 1, l + 2). After this transposition,

the initially red edge (l, l + 1) becomes a blue1 edge. For the other two edges, it is

easy to check that black becomes red, blue becomes black, and red becomes blue.

And then, by checking all the possible cases we see that

|R(σl,l+1ω)| − |B∗k(σl,l+1ω)| ≤ |R(ω)| − |B∗k(ω)|,

which completes the prove.

For any subset Π ⊂ ΩN , denote by HΠ and H+
Π , respectively, the hitting time

and the first return to Π:

HΠ = inf
{
t > 0 : η(t) ∈ Π

}
,

H+
Π = inf

{
t > 0 : η(t) ∈ Π , η(s) 6= η(0) for some 0 < s < t

}
.

Corollary 1.5.2. For any β > log 4, and k ∈ ΛN

Pβ
ωk

[
H∆M

k
< H+

ωk

]
≤
(
4e−β

)M−1
, (1.5.3)

and, for each ω ∈ ∆M−1
k

Pβ
ω

[
H∆M

k
< Hωk

]
≤ 4e−β. (1.5.4)

Proof. By the observation (1.5.1), if the current state of the process is a configuration

ω ∈ ∆n
k , 1 ≤ n ≤ M − 1, the next visited configuration belongs to ∆n+1

k with

probability

pβ(ω) =
|R(ω)|e−β

|B(ω)|+ |R(ω)|e−β
, (1.5.5)

and to ∆n−1
k with probability 1− pβ(ω). By Lemma 1.5.1,

pβ(ω) ≤ 4e−β

1 + 4e−β
=: pβ. (1.5.6)
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Consider the random walk on {0, 1, . . . ,M} that jumps from n ∈ {1, . . . ,M − 1}
to n + 1 with probability pβ and to n − 1 with probability 1 − pβ. We know that,

starting from n, this walk reaches M before 0 with probability

pβ(n,M) =

(
eβ/4

)n − 1

(eβ/4)M − 1
.

A simple coupling argument allows us to dominate the probabilities appearing in

(1.5.3) and (1.5.4) respectively by pβ(1,M) and pβ(M − 1,M), from which we get

the corresponding bounds.

Recall the definition of the set FN,kα given in (1.4.1). For each ω ∈ ∆M
k , k ∈ ΛN ,

consider the probability measure ΦN(ω, ·) defined on ΩN
1 in the following way:

If ω /∈
⋃
α:Nα=M FN,kα ,

ΦN(ω, {ωk}) = 1;

If α is such that Nα = M ,

ΦN(ζkα,0, {ωk}) = ΦN(ζkα,0, {ωk+1}) = ΦN(ζkα,M , {ωk}) = ΦN(ζkα,M , {ωk−1}) =
1

2
;

and, for 1 ≤ i ≤M − 1,

ΦN(ζkα,i,Π) =

{
1
3

if Π = {ξkα,i},
2
3

if Π = {ωk}.

Throughout the paper we adopt the convention that C0 < ∞ is a constant

independent of NA, NB, NC and β whose value may change from line to line.

Lemma 1.5.3. There exists a constant C0 such that, for all β > 0, k ∈ ΛN , and

ω ∈ ∆M
k , ∣∣∣Pβ

ω

[
η(HΩN1

) ∈ Π
]
− ΦN(ω,Π)

∣∣∣ ≤ C0Ne
−β, Π ⊂ ΩN

1 .

Proof. We examine each case separately. Suppose the process starts from a con-

figuration ω ∈ ∆M
k \

⋃
α:Nα=M FN,kα . In this case D∗k(ω) = ∅ and B(ω) ⊆ ∆M−1

k ,

and then, as in the previous proof, starting from ω, the next visited configuration

belongs to ∆M−1
k with high probability 1 − pβ(ω) ≥ 1 − pβ, for pβ(ω) and pβ given

in (1.5.5) and (1.5.6). Now observe that from ∆M−1
k to reach a configuration in

ΩN
1 \{ωk} the process has to cross ∆M

k . So, conditioning in the first jump and using

the second part of Corollary 1.5.2 we get that Pβ
ω

[
HΩN1

6= Hωk

]
≤ C0e

−β.

Now suppose the process starts from ζkα,i for 1 ≤ i ≤ Nα − 1, Nα = M . As

illustrated in Figure 1.2, from ζkα,i there are three possible rate e−β jumps and three

possible rate 1 jumps, one of these leading to ξkα,i and the others two leading to ∆M−1
k .

So, as before, we obtain the corresponding hitting probability conditioning in the

first jump and using the second part of Corollary 1.5.2.
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Finally, suppose the process starts from ζkα,0. As illustrated in Figure 1.2, from

this configuration there are two possible rate e−β jumps and two possible rate 1

jumps, one of these leading to B∗k(ζ
k
α,0) ⊂ ∆M−1

k and the other leading to D∗k(ζ
k
α,0) ⊂

V (ωk+1), from which we can reach ωk+1 (before any other configuration in ΩN
1 )

performing N(α−1) − 1 < 2N jumps that have high probability 1/(1 + 4e−β). This

is done by movements of the detached particle of type α + 1 in counterclockwise

direction inside the domain of particles of type α−1 until it meets the other particles

of type α + 1. Therefore

Pβ

ζkα,0

[
η
(
HΩN1

)
= ωk±1

]
≥ 1

2 + 2e−β

(
1

1 + 4e−β

)2N

=
1

2
+O(Ne−β).

The argument for the case in which the process starts from ζkα,M is analogous.

Actually, for many configurations ω ∈ ∆M
k we could have obtained a better

estimation of the hitting distribution in ΩN
1 , considering from ω how many rate e−β

jumps are necessary in order to avoid that the first visited configuration in ΩN
1 will

be ωk. However, to take advantage of such more precise information a much more

complex analysis would be needed in the proof of Proposition 1.5.5 below.

Denote by {η1(t) : t ≥ 0} the trace of the process {η(t) : t ≥ 0} on ΩN
1 . It

is defined as in (1.2.14) with ΩN
0 changed by ΩN

1 . Surprisingly, as we will see in

Proposition 1.5.5, for this process the jump rates from ωk to any configuration in⋃
α:Nα=M GN,kα are, asymptotically, the same. This is due to the remarkable fact

(somewhat hidden in the next proof) that, as β ↑ ∞, the position i of the meeting

of the two different detached particles is asymptotically distributed in {0, 1, . . . ,M}
as
(

1
2M
, 1
M
, . . . , 1

M
, 1

2M

)
.

The proof of the next lemma is based on a combinatorial identity that was

first obtained by computing, in two different ways, some hitting probabilities for a

simplified dynamics related the ABC model (two biased random walks). However,

in Section 1.11 a completely elementary proof for this identity is presented.

Later we will assume stronger restrictions in the way that N ↑ ∞ as β ↑ ∞, but

for now, inspired in the estimate obtained in Lemma 1.5.3, it is already natural to

assume that

lim
β→∞

Ne−β = 0. (1.5.7)

Lemma 1.5.4. Assume (1.5.7). There exist constants C0 and β0 such that for all

β > β0, k ∈ ΛN , and α ∈ {A,B,C} such that Nα = M ,∣∣∣Pβ
ωk

[
H∆M

k
= Hζkα,i

< H+
ωk

]
− qie−(M−1)β

∣∣∣ ≤ C0M
(
4e−β

)M
, (1.5.8)
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where

qi =

{
2
3

if 1 ≤ i ≤M − 1,
1
3

if i = 0 or M.

Proof. Let us decompose the event [H∆M
k

= Hζkα,i
< H+

ωk
] in the number of jumps to

go from ωk to ζkα,i. Denote by τl the instant of the l-th jump of the chain {η(t) : t ≥
0}. By the observation (1.5.1), in each step of a path corresponding to this event,

the distance to ωk either increases or decreases by 1 unit. So

Pβ
ωk

[
H∆M

k
= Hζkα,i

< H+
ωk

]
=
∞∑
l=0

Pβ
ωk

[
τM+2l = H∆M

k
= Hζkα,i

< H+
ωk

]
. (1.5.9)

A path from ωk to ∆M
k of size M+2l should increase the distance to ωk in M+l steps

and decrease in l steps. As already observed in the proof of Corollary 1.5.2, from

any configuration ω ∈ ∪M−1
n=1 ∆n

k , the probability that the distance to ωk increases in

the next jump of the chain is bounded by 4e−β. Now, observe that the number of

possible evolutions of the distance to ωk along a path from ωk to ∆M
k of size M+2l is

bounded by
(
M+2l
l

)
. Decomposing the event [τM+2l = H∆M

k
< H+

ωk
] in these possible

profiles and then applying inductively the strong Markov property for each term,

we obtain

Pβ
ωk

[
τM+2l = H∆M

k
< H+

ωk

]
≤
(
M + 2l

l

)[
4e−β

]M+l−1
.

Using, for 1 ≤ l ≤ M , the bound
(
M+2l
l

)
≤ (M + 2l)l ≤ (3M)l, and, for l > M , the

universal bound
(
M+2l
l

)
≤ 2M+2l, we obtain that

∞∑
l=1

Pβ
ωk

[
τM+2l = H∆M

k
= Hζkα,i

< H+
ωk

]
≤ C0[4e−β]M

(
M

M∑
l=1

[12Me−β]l−1 + 2M
∞∑
l=M

[16e−β]l−1

)
≤ C0M(4e−β)M ,

(1.5.10)

for β large enough, in view of (1.5.7).

Let us focus now in the term corresponding to l = 0, which computes the prob-

ability of the trajectories from ωk to ζkα,i with exactly M jumps. Consider first the

case 1 ≤ i ≤ M − 1. Without loss of generality, let us suppose that α = B. The

configuration ζkB,i is obtained from ωk when a particle of type A meets a particle

of type C in the region of particles of type B, in such a way that the particle A

has done i jumps, and the particle C has done M − i jumps. For j ∈ {1, . . . , i}
denote by Aj the event in which the first j jumps are made by the particle A and

the (j + 1)-th jump is made by the particle C. For r ∈ {1, . . . ,M − i}, define Cr in
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a analogous way. Then

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk

]
=

i∑
j=1

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk
,Aj

]
+

M−i∑
r=1

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk
, Cr
]
.

Now note that there are
(
M−j−1
i−j

)
possible paths of size M corresponding to the event

[τM = H∆M
k

= Hζkα,i
< H+

ωk
,Aj]. In each of these paths, the first jump has probability

1/3, the next j jumps have probability e−β/(1+4e−β) and the next M−j−1 jumps

have probability e−β/(2 + 5e−β). Figure 1.4 illustrates this situation in a particular

example.

0 0 0

0 0 0

Figure 1.4: One of the two paths from ω2 to ξ2
B,3 that correspond to the event A2. In

this example, NA = 8, NB = 5, NC = 12. The white, gray and black circles represent

respectively particles of type A, B and C.

Doing the same analysis for the trajectories corresponding to the events Cr, we
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conclude that

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk

]
=

i∑
j=1

(
M − j − 1

i− j

)
1

3

(
e−β

1 + 4e−β

)j (
e−β

2 + 5e−β

)M−j−1

+
M−i∑
r=1

(
M − r − 1

M − i− r

)
1

3

(
e−β

1 + 4e−β

)r (
e−β

2 + 5e−β

)M−r−1

.

This can be rewritten as

1

3
e−(M−1)β

(
1 +O(Me−β)

)
×

[
i∑

j=1

(
M − j − 1

i− j

)(
1

2

)M−j−1

+
M−i∑
r=1

(
M − r − 1

M − i− r

)(
1

2

)M−r−1
]
.

And then, by Lemma 1.11.1, for i ∈ {1, . . . ,M − 1}

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk

]
=

2

3
e−(M−1)β +O(Me−Mβ). (1.5.11)

In the cases i = 0 or i = M , there is a unique path of size M from ωk to ζkα,i, which

has probability equal to

1

3

(
e−β

1 + 4e−β

)M−1

.

Therefore, for i = 0 or i = M

Pβ
ωk

[
τM = H∆M

k
= Hζkα,i

< H+
ωk

]
=

1

3
e−(M−1)β +O(Me−Mβ). (1.5.12)

Using (1.5.9), (1.5.10), (1.5.11) and (1.5.12) we obtain (1.5.8).

Recall the definitions of d in (1.2.6) and of GN,kα in (1.4.2) and let Rβ
1 (·, ·) denote

the jump rates of {η1(t) : t ≥ 0}, the trace process on ΩN
1 .

Proposition 1.5.5. Assume (1.5.7). There exist finite constants C0 and β0 such

that for all β > β0, k ∈ ΛN and ξ ∈ ΩN
1 ,∣∣∣Rβ

1 (ωk, ξ)−R1(ωk, ξ)e
−Mβ

∣∣∣ ≤ C0N4Me−(M+1)β, (1.5.13)

where

R1(ωk, ξ) =


d
2

if ξ ∈ {ωk−1, ωk+1},
2
3

if ξ ∈
⋃
α:Nα=M GN,kα ,

0 if ξ /∈
⋃
α:Nα=M GN,kα ∪ {ωk−1, ωk+1}.
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Proof. By [3, Proposition 6.1], for every ω, ξ ∈ ΩN
1 ,

Rβ
1 (ω, ξ) = λβ(ω)Pβ

ω

[
H+

ΩN1
= Hξ

]
, (1.5.14)

where λβ(ω) is the total jump rate from ω for the original chain {η(t) : t ≥ 0}.
A crucial observation is that, starting from ωk, to reach any other configuration in

ΩN
1 the process has to cross ∆M

k . Thus, for every ξ ∈ ΩN
1 , ξ 6= ωk, on the event

{H+
ΩN1

= Hξ} we have that H∆M
k
< H+

ΩN1
, and then by the strong Markov property,

Pβ
ωk

[
H+

ΩN1
= Hξ

]
=
∑
ω∈∆M

k

Pβ
ωk

[
H∆M

k
= Hω < H+

ωk

]
Pβ
ω

[
HΩN1

= Hξ

]
. (1.5.15)

If ξ /∈
⋃
α:Nα=M GN,kα ∪ {ωk−1, ωk+1} then, by Lemma 1.5.3,

Pβ
ω

[
HΩN1

= Hξ

]
≤ C0Ne

−β,

for every ω ∈ ∆M
k . So

Pβ
ωk

[
H+

ΩN1
= Hξ

]
≤ C0Ne

−β
∑
ω∈∆M

k

Pβ
ωk

[
H∆M

k
= Hω < H+

ωk

]
= C0Ne

−βPβ
ωk

[
H∆M

k
< H+

ωk

]
≤ C0N

(
4e−β

)M
by the first part of Corollary 1.5.2. So, by (1.5.14) and the fact that λβ(ωk) = 3e−β

we get (1.5.13) for ξ /∈
⋃
α:Nα=M GN,kα ∪ {ωk−1, ωk+1}.

Now let us consider the case ξ = ξkα,i for Nα = M , 1 ≤ i ≤ M − 1. By

Lemma 1.5.3, for every ω ∈ ∆M
k

Pβ
ω

[
HΩN1

= Hξkα,i

]
=

1

3
1
{
ω = ζkα,i

}
+O

(
Ne−β

)
.

Therefore, by (1.5.14), (1.5.15), and the first part of Corollary 1.5.2,

Rβ
1

(
ωk, ξ

k
α,i

)
= e−βPβ

ωk

[
H∆M

k
= Hζkα,i

< H+
ωk

]
+O

(
N(4e−β)M+1

)
.

And then, by Lemma 1.5.4,

Rβ
1

(
ωk, ξ

k
α,i

)
=

2

3
e−Mβ +O

(
N(4e−β)M+1

)
.

Let us make the same argument for the case ξ = ωk+1. By Lemma 1.5.3, for

every ω ∈ ∆M
k

Pβ
ω

[
HΩN1

= Hωk+1

]
=

1

2
1
{
ω ∈ {ζkα,0 : Nα = M}

}
+O

(
Ne−β

)
.
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Again, using (1.5.14), (1.5.15), and the first part of Corollary 1.5.2, we obtain that

Rβ
1 (ωk, ωk+1) =

3e−β

2

∑
α:Nα=M

Pβ
ωk

[
H∆M

k
= Hζkα,0

< H+
ωk

]
+O

(
N(4e−β)M+1

)
.

And therefore, by Lemma 1.5.4,

Rβ
1 (ωk, ωk+1) =

d

2
e−Mβ +O

(
N(4e−β)M+1

)
.

The case ξ = ωk−1 is analogous.

The proposition we just proved estimates the jump rates of the trace process

{η1(t) : t ≥ 0} from the configurations in ΩN
0 . Now we want to estimate the

jump rates from the configurations in GN . Arguing as in this last proof, for each

configuration in GN as initial distribution, we will need to compute the distribution

of the process in the first return to ΩN
1 . If we allow errors of order Ne−β, these

hitting probabilities are easily obtained.

From any configuration ξkα,i ∈ GN , as illustrated in Figure 1.3, there are six

possibilities for the first jump. Each of these six configurations is associated to one

of the six red edges of the configuration ξkα,i. This association provides a way to label

these configurations. We will denote these configurations by ξk,jα,i , for j = 1, . . . , 6.

We do this in such a way that, if we enumerate the red edges of ξkα,i as r1, . . . , r6

clockwise, then ξk,jα,i is the configuration obtained from ξkα,i after a transposition in rj.

To fix a initial point for the enumeration of the red edges, we impose that this is

done in such a way that ξk,2α,i = ζkα,i. Note that, with this convention we have that

ξk,jα,Nα−1 = ξk−1,j+1
α+1,1 and, for 1 ≤ i ≤ Nα− 2, ξk,3α,i = ξk,1α,i+1. See Figures 1.5 and 1.6 for

an example.

0 0

r1

r2

r3

r4

r5

r6
r1

r2

r3

r4

r5

r6

Figure 1.5: The configurations ξ2
C,4 and ξ2

C,1 with the corresponding labels of the red edges.

In this example NA = 8, NB = 5, NC = 12. The white, gray and black circles represents

respectively particles of types A, B and C.

For each ω ∈ R(ξkα,i), k ∈ ΛN , α ∈ {A,B,C}, 1 ≤ i ≤ Nα − 1, consider the

probability measure ΦN(ω, ·) defined on ΩN
1 in the following way:
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ξ2,1
C,4 ξ2,2

C,4 ξ2,3
C,4

ξ2,4
C,4 ξ2,5

C,4 ξ2,6
C,4

0 0 0

0 0 0

Figure 1.6: The six configurations that can be reached after one jump from the configu-

ration ξ2
C,4, which is illustrated in Figure 1.5.

(i) If 2 ≤ i ≤ Nα − 2,

ΦN
(
ξk,jα,i , {ξkα,i}

)
= 1, for j = 4, 5, 6;

ΦN
(
ξk,jα,i ,Π

)
=

{
1
2

if Π = {ξkα,i},
1
2

if Π = {ξkα,i−2+j}
, for j = 1, 3;

and

ΦN
(
ξk,2α,i ,Π

)
=

{
1
3

if Π = {ξkα,i},
2
3

if Π = {ωk}.

(ii) And if i = 1,

ΦN
(
ξk,jα,1,Π

)
=

{
1
3

if Π = {ξkα,1},
2
3

if Π = {ωk+2−j}
, for j = 1, 2;

ΦN
(
ξk,3α,1,Π

)
=

{
1
2

if Π = {ξkα,1},
1
2

if Π = {ξkα,2}
, ΦN

(
ξk,6α,1,Π

)
=

{
1
2

if Π = {ξkα,1},
1
2

if Π = {ξk+1
α−1,Nα−1−2}

and

ΦN
(
ξk,jα,1, {ξkα,i}

)
= 1, for j = 4, 5.
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Lemma 1.5.6. There exists a constant C0, such that, for any β > 0, k ∈ ΛN ,

α ∈ {A,B,C}, 1 ≤ i ≤ Nα − 1 and ω ∈ R(ξkα,i)∣∣∣Pβ
ω

[
η(HΩN1

) ∈ Π
]
− ΦN(ω,Π)

∣∣∣ ≤ C0Ne
−β. (1.5.16)

Proof. We present the proof for the case 2 ≤ i ≤ Nα − 2, the extreme case i = 1 is

similar and the verification is left to the reader.

As observed in the proof of Lemma 1.5.1, a transposition in one of the red edges

of ξkα,i only changes the color of this edge, which always becomes a blue edge, and of

the two that are adjacent to it, for which black becomes red, and red becomes blue.

In the configuration ξkα,i, for 2 ≤ i ≤ Nα−2, as illustrated in Figure 1.5, the edges

adjacent to r4, r5 and r6 are all black. Then, by the above observation, as illustrated

in Figure 1.6, for j = 4, 5, 6, we have that |R(ξk,jα,i)| = 7 and B(ξk,jα,i) = {ξkα,i}.
Therefore, if τ1 is the instant of the first jump of the chain, for j = 4, 5, 6,

Pβ

ξk,jα,i

[
HΩN1

= Hξkα,i

]
≥ Pβ

ξk,jα,i

[
η(τ1) = ξkα,i

]
=

1

1 + 7e−β
= 1 +O(e−β).

This proves (1.5.16) for ω = ξk,jα,i , j = 4, 5, 6.

Doing the same kind of analysis for the edge r1 of the configuration ξkα,i, we note

that |R(ξk,1α,i )| = 5 and |B(ξk,1α,i )| = 2. In fact, we can see that

B(ξk,1α,i ) =
{
ξkα,i, ξ

k
α,i−1

}
.

Therefore, for l = i− 1, i

Pβ

ξk,1α,i

[
HΩN1

= Hξkα,l

]
≥ Pβ

ξk,1α,i

[
η(τ1) = ξkα,l

]
=

1

2 + 5e−β
=

1

2
+O(e−β).

This proves (1.5.16) for ω = ξk,1α,i , and the proof for ω = ξk,3α,i is analogous.

Now let us consider the case ω = ξk,2α,i = ζkα,i ∈ V (ωk) ∩∆Nα
k . The case Nα = M

was already considered in Lemma 1.5.3. In that proof a better approximation (error

of order e−β instead of Ne−β) was given using the second part of Corollary 1.5.2. In

the general case we need to argue differently. We have that |B(ζkα,i)| = |R(ζkα,i)| = 3.

One of the three configurations in B(ζkα,i) is ξkα,i. So

Pβ

ζkα,i

[
HΩN1

= Hξkα,i

]
≥ Pβ

ζkα,i

[
η(τ1) = ξkα,i

]
=

1

3 + 3e−β
=

1

3
+O

(
e−β
)
. (1.5.17)

From the other two configurations in B(ζkαi), the configuration ωk is the only one in

ΩN
1 that can be reached after a sequence of rate 1 jumps. Moreover, starting from

some of the two configurations in B(ζkα,i)\{ξkα,i} = B∗k(ζ
k
α,i), if the next Nα−1 jumps

of the chain correspond to transpositions in blue edges of the configurations, then,

after these jumps, the process will ultimately fall in ωk. This gives

Pβ

ζkα,i

[
HΩN1

= Hωk

]
≥ 1

3 + 3e−β

∑
ω∈B∗k(ζkα,i)

Pβ
ω

[
Nα−1⋂
l=1

{η(τl) ∈ B(η(τl−1))}

]
. (1.5.18)
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In this situation, transpositions in blue edges corresponds to movements of the

detached particle of type α+ 1 in clockwise direction inside the domain of particles

of type α or movements of the detached particle of type α − 1 in counterclockwise

direction. Therefore, any configuration ω that can be reached from B∗k(ζ
k
α,i) after a

sequence of transposition in blue edges belongs to V (ωk). In fact, to arrive in ωk,

we just need to keep moving the detached particles in the correct direction until

they meet the corresponding region of particles of their type. So the inequality of

Lemma 1.5.1 holds for these configurations. And then, applying inductively the

strong Markov property in (1.5.18) we see that

Pβ

ζkα,i

[
HΩN1

= Hωk

]
≥ 2

3 + 3e−β

(
1

1 + 4e−β

)Nα−1

=
2

3
+O

(
Ne−β

)
. (1.5.19)

Inequalities (1.5.17) and (1.5.19) prove (1.5.16) for the case ω = ξk,2α,i . This concludes

the proof of the lemma.

Proposition 1.5.7. There exists a finite constant C0 such that for any β > 0,

k ∈ ΛN , α ∈ {A,B,C} and ω ∈ ΩN
1 ,∣∣∣Rβ

1 (ξkα,i, ω)−R1(ξkα,i, ω)e−β
∣∣∣ ≤ C0Ne

−2β,

where, for 2 ≤ i ≤ Nα − 2

R1(ξkα,i, ω) =


1
2

if ω ∈ {ξkα,i−1, ξ
k
α,i+1},

2
3

if ω = ωk,

0 if ω /∈ {ξkα,i−1, ξ
k
α,i+1, ωk}.

and for i = 1 (recall that ξkα,1 = ξk+1
α−1,N(α−1)−1),

R1(ξkα,1, ω) =


1
2

if ω ∈ {ξkα,2, ξk+1
α−1,N(α−1)−2},

2
3

if ω ∈ {ωk, ωk+1},
0 if ω /∈ {ξkα,2, ξk+1

α−1,N(α−1)−2, ωk, ωk+1}.

Proof. By (1.5.14),

Rβ
1 (ξkα,i, ω) = λβ(ξkα,i)P

β

ξkα,i

[
H+

ΩN1
= Hω

]
= 6e−βPβ

ξkα,i

[
H+

ΩN1
= Hω

]
.

Now, conditioning in the first jump, and using Lemma 1.5.6 we get

Rβ
1 (ξkα,i, ω) = e−β

6∑
j=1

Pβ

ξk,jα,i

[
H+

ΩN1
= Hω

]
= R1(ξkα,i, ω)e−β +O

(
Ne−2β

)
,

as desired.
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1.6 Trace of {η(t) : t ≥ 0} on ΩN
0

Knowing the jump rates for the trace process {η1(t) : t ≥ 0} on the set ΩN
1 , we

can obtain the jump rates for the trace process on the set ΩN
0 computing, for each

configuration ω ∈ GN , the distribution of the first visited configuration in ΩN
0 for

the process {η1(t) : t ≥ 0} starting from ω. We start replacing the original process

{η1(t) : t ≥ 0} by an ideal process {η̂1(t) : t ≥ 0} for which these absorption

probabilities are more easily obtained.

For α such that Nα = M , define

GNα = {ξkγ,j : j = 1, . . . , Nγ − 1; γ + k = α}.

To understand why we defined GNα this way note that, starting from some ξ0
α,i, the

configurations ξkγ,j in GN which may be visited by the process after times of order

eβ are those such that γ+ k = α. On the set ΩN
0 ∪GNα consider the continuous-time

Markov chain {η̂1(t) : t ≥ 0} with absorbing states ΩN
0 that jumps from ξkγ,i to ω

with the ideal rates

R̂β
1 (ξkγ,i, ω) := R1(ξkγ,i, ω)e−β

given in Proposition 1.5.7. Note that the corresponding discrete-time jump chain

depends only on NA, NB and NC , and not directly on β. Figure 1.1 presents the

graph structure of this simple dynamics.

For α such that Nα = M , 1 ≤ i ≤ M − 1 and k ∈ ΛN , denote by pNα (i, k) the

probability for the chain {η̂1(t) : t ≥ 0} of, starting from ξ0
α,i being absorbed in ωk.

Lemma 1.6.1. There exists a constant C0 such that, for any β > 0, k ∈ ΛN , α

such that Nα = M , and 1 ≤ i ≤M − 1∣∣∣Pβ

ξ0α,i

[
HΩN0

= Hωk

]
− pNα (i, k)

∣∣∣ ≤ C0N
3βe−β. (1.6.1)

Proof. By Proposition 1.5.7, there exists a constant C0 such that

max
ξ∈GNα ∪ΩN0

∑
ω∈GNα ∪ΩN0

∣∣∣Rβ
1 (ξ, ω)− R̂β

1 (ξ, ω)
∣∣∣ ≤ C0N

3e−2β.

Therefore, for all 1 ≤ i ≤ M , there exists a coupling P
β

of the two processes such

that η1(0) = η̂1(0) = ξ0
α,i, P

β
-a.s, and such that for all t > 0,

P
β

[Tcp ≤ t] ≤ P
[
E(C0N

3e−2β) ≤ t
]
, (1.6.2)

where Tcp = inf{t > 0 : η1(t) 6= η̂1(t)} and E(C0N
3e−2β) is a mean (C0N

3e−2β)−1

exponential random variable. To prove (1.6.1) it is sufficient to prove that

P
β
[
η1(Hη1

ΩN0
) 6= η̂1(H η̂1

ΩN0
)
]
≤ C̃N3βe−β,
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for some universal constant C̃, where Hη1
ΩN0

and H η̂1
ΩN0

are the hitting times of ΩN
0 for

this two processes. Let Tβ = 3
2
βeβ.

P
β
[
η1(Hη1

ΩN0
) 6= η̂1(H η̂1

ΩN0
)
]

= P
β
[
η1(Hη1

ΩN0
) 6= η̂1(H η̂1

ΩN0
), H η̂1

ΩN0
≤ Tβ

]
+ P

β
[
η1(Hη1

ΩN0
) 6= η̂1(H η̂1

ΩN0
), H η̂1

ΩN0
> Tβ

]
≤ P

β
[Tcp ≤ Tβ] + P

β
[
H η̂1

ΩN0
> Tβ

]
. (1.6.3)

By the definition of the process {η̂1(t) : t ≥ 0}, the absorption time H η̂1
ΩN0

is stochas-

tically dominated by a mean
(

2
3
e−β
)−1

exponential random variable. Using this fact

and (1.6.2) in (1.6.3), we obtain that

P
β
[
η1(Hη1

ΩN0
) 6= η̂1(H η̂1

ΩN0
)
]
≤ P

[
E(C0N

3e−2β) ≤ Tβ
]

+ P

[
E
(

2

3
e−β
)
> Tβ

]
= 1− exp

{
−C0N

3e−2βTβ
}

+ exp

{
−2

3
e−βTβ

}
≤ C0N

3e−2βTβ + exp

{
−2

3
e−βTβ

}
≤ C̃N3βe−β,

by the definition of Tβ.

For α such that Nα = M , and k 6= 0 define

gNα (k) =
M−1∑
i=1

pNα (i, k).

Recall that we have defined rβ(k) as the jump rate from ω0 to ωk for the trace

process {η0(t) : t ≥ 0} on ΩN
0 . Next theorem expresses rβ(k) in terms of gNα (k) with

an error term ψ(β), such that, as β ↑ ∞, eMβψ(β) vanishes, if we impose proper

restrictions in the way that N grows with β.

Proposition 1.6.2. Assume (1.5.7). There exist constants C0 and β0 such that for

any β > β0 and k ∈ ΛN , k 6= 0,∣∣rβ(k)− r(NA, NB, NC , k)e−Mβ
∣∣ ≤ ψ(β) (1.6.4)

where

r(NA, NB, NC , k) =
d

2
1{|k| = 1}+

2

3

∑
α:Nα=M

gNα (k) (1.6.5)

and ψ is some function such that, for any β > 0,

ψ(β) ≤ C0

(
N24M +N3Mβ +N64Mβe−β

)
e−(M+1)β. (1.6.6)
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Proof. Noting that {η0(t) : t ≥ 0} is also the trace of the process {η1(t) : t ≥ 0}, by

[3, Corollary 6.2]

rβ(k) = Rβ
1 (ω0, ωk) +

∑
α:Nα=M

M−1∑
i=1

Rβ
1 (ω0, ξ

0
α,i)P

β

ξ0α,i

[
HΩN0

= Hωk

]
+

∑
ω∈GN\

⋃
α:Nα=M G

N,0
α

Rβ
1 (ω0, ω)Pβ

ω

[
HΩN0

= Hωk

]
. (1.6.7)

By Proposition 1.5.5 the first of the three terms above is equal to

d

2
1{|k| = 1}e−Mβ +O

(
N4M

)
e−(M+1)β. (1.6.8)

A simple analysis, such as the one made to obtain (1.7.1) below, indicates that

pNα (i, k) ≤ (3/5)min{i−1,M−i−1} for every k 6= 0, and then gNα (k) ≤ C0, where C0 is a

constant independent of M . Using this observation, Proposition 1.5.5 and Lemma

1.6.1, we obtain that the second term in (1.6.7) is equal to

2

3

∑
α:Nα=M

gNα (k)e−Mβ +O
(
N4M +N3Mβ +N4M4Mβe−β

)
e−(M+1)β. (1.6.9)

Now let’s look at the third term in (1.6.7). For ω ∈ GN \
⋃
α:Nα=M GN,0α , by Propo-

sition 1.5.5, Rβ
1 (ω0, ω) ≤ C0N4Me−(M+1)β. Now observe that for ω ∈ GN,jα with

|j − k| ≥ 4, α ∈ {A,B,C},

Pβ
ω

[
HΩN0

= Hωk

]
≤ C0

(
(3/5)N +N3βe−β

)
.

To see this we first approximate by the ideal process, as in Lemma 1.6.1, and then

we make a simple analysis as in (1.7.1) below. Then, the third term in (1.6.7) is

O
(
N24M +N64Mβe−β

)
e−(M+1)β. (1.6.10)

The result follows summing (1.6.8), (1.6.9) and (1.6.10).

We obtain Theorem 1.2.5 as an immediate corollary of Proposition 1.6.2.

Proof of Theorem 1.2.5. The rates of the speeded up process {η0(eMβt) : t ≥ 0} are

simply the rates for the process {η0(t) : t ≥ 0} multiplied by eMβ. In the case where

NA, NB and NC are constants, we obtain, multiplying (1.6.4) by eMβ and sending

β ↑ ∞, that the process {η0(eMβt) : t ≥ 0} converges to a Markov chain in ΩN
0 ,

which jumps from ωi to ωj with rate r(NA, NB, NC , j − i) given in (1.6.5).
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1.7 Understanding gNα (k)

To understand the scaling limits of the system when N ↑ ∞ with β, we need to

estimate gNα (k). Consider the ideal random walk {η̂1(t) : t ≥ 0} starting from ξ0
α,i,

1 ≤ i ≤ Nα − 1. For its jump chain, in each step, the probability of no absorption

in ΩN
0 is less than or equal to 3/5. To arrive at ωk, k 6= 0, it is necessary to survive

at least (|k|− 1)(M − 2) steps without absorption in ΩN
0 . Therefore, for every k 6= 0

and 1 ≤ i ≤M − 1,

pNα (i, k) ≤
(

3

5

)(M−2)(|k|−1)

. (1.7.1)

This simple analysis indicates the fast decaying of gNα (k), both in M and in k, but

it does not give information about gNα (1) or gNα (−1) which are not negligible. So,

we need to go further into the calculations. The next lemma reduces the analysis of

gNα (k) to the analysis of the terms pNα (1, k) and pNα (M − 1, k).

Lemma 1.7.1. Let α be such that Nα = M . For every k ∈ ΛN , k 6= 0, we have that

gNα (k) =

(
3

2
+

2

3M−2 + 1

)(
pNα (1, k) + pNα (M − 1, k)

)
(1.7.2)

Proof. Let us fix NA, NB, NC and k 6= 0. By the standard conditioning argument

we have that, for 2 ≤ i ≤M − 2,

pNα (i, k) =
3

10
pNα (i− 1, k) +

3

10
pNα (i+ 1, k). (1.7.3)

This recurrence relation has characteristic equation (3/10)λ2−λ+(3/10) = 0, whose

roots are λ1 = 3 and λ2 = 1/3. So that, we find the closed form

pNα (i, k) = h1
N,k3

i + h2
N,k

(
1

3

)i
, i = 1, . . . ,M − 1, (1.7.4)

where h1
N,k and h2

N,k are constants independent of i, which may be computed in terms

of pNα (1, k) and pNα (M − 1, k) using the relation (1.7.4) for i = 1 and i = M − 1.

Now

gNα (k) =
M−1∑
i=1

pNα (i, k) = h1
N,k

M−1∑
i=1

3i + h2
N,k

M−1∑
i=1

(
1

3

)i
,

and we get (1.7.2) after elementary calculations.

This lemma has an easy and useful corollary that would be sufficient to prove

the particular case of Theorem 1.8.1 under the assumption (1.2.11).

Corollary 1.7.2. There exists an universal constant C0 such that for all N and

k ∈ ΛN , k 6= 0, ∣∣∣∣gNα (k)− 3

4
1{|k| = 1}

∣∣∣∣ ≤ C0

(
3

5

)M
.
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Proof. For |k| > 1, the result follows from the previous lemma and observation (1.7.1).

Let us consider the case k = 1 (the case k = −1 is analogous). By the same ar-

gument that leads to (1.7.1) we get that pNα (M − 1, 1) ≤ (3/5)M−2. So, using the

previous lemma, we just need to care about pNα (1, 1). If M is large, we expect that

pNα (1, 1) is near to 1/2. A way of formalizing this without much effort involving

computations is to couple the jump chain of {η̂1(t) : t ≥ 0} with another process for

which we can use symmetry. The idea is very simple but requires some notations.

Let (Xn)n≥0 be the discrete-time jump chain associated to the process {η̂1(t) : t ≥ 0}
starting from ξ0

α,1 (its jump probabilities are given in Figure 1.1). Define the hitting

time HX ,

HX = HX{
ξ−1
(α+1),1

,ξ1
(α−1),1

,ω0,ω1

},
as the first time the chain (Xn)n≥0 visits any of the configurations ξ−1

(α+1),1, ξ1
(α−1),1,

ω0, ω1. We can conclude that pNα (1, 1) = 1/2 +O((3/5)M) if we show that both the

event HX = HX
ω1

and the event HX = HX
ω0

have probability 1/2 +O((3/5)M).

To achieve this, consider an auxiliary discrete-time chain (X̂n)n≥0 defined on the

infinite set Z ∪ {u−, u+} starting from 0. To define the jump probabilities of this

chain, consider Ŝ : Z \ {0} → {u−, u+} defined as

Ŝ(i) =

{
u− if i < 0,

u+ if i > 0.

We define the chain (X̂n)n≥0 imposing that, from i ∈ Z \ {0}, it jumps to i± 1 with

probability 3/10 and to Ŝ(i) with probability 2/5. From 0, it jumps to ±1 with

probability 3/14 and to u− and u+ with probability 2/7. We define u− and u+ as

absorbing states. By symmetry, this chain is absorbed in u−, with probability 1/2,

or in u+, with probability 1/2. There is an obvious correspondence between the

states of the chain (X̂n)n≥0 near to 0 and the states of the chain (Xn)n≥0 near to

ξ0
α,1. We can couple these two chains in such a way that, with this correspondence,

they walk together until the time HX . Let PX,X̂ denote such a coupling. As already

done before, observe that PX,X̂
[
HX ≥M − 2

]
≤ (3/5)M−3. Therefore,

PX,X̂
[
HX = HX

ω1

]
= PX,Y

[
HX = HX

ω1
, HX < M − 2

]
+O

((
3

5

)M)

= PX,X̂
[
HX̂ = HX̂

u+
, HX < M − 2

]
+O

((
3

5

)M)

=
1

2
+O

((
3

5

)M)
,

and the same holds changing ω1 by ω0 and u+ by u−. With this, we conclude that

pNα (1, 1) = 1/2 +O
(

(3/5)M
)

, and then the result follows from Lemma 1.7.1.
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Now, for l,m ≥ 3 we will define a quantity v(l,m) in terms of some absorbtion

probabilities of a simple discrete-time Markov chain (Y l,m
n )n≥0 that depends on l

and m. We will see later that this quantity will represent the velocity of the ballistic

process that appears in the statement of Theorem 1.2.7.

Let us define the chain (Y l,m
n )n≥0. Its state space is the set Z∪{u1, u0, u−1, u−2}.

To define its jump probabilities consider the function S : Z \ {−(m− 2), 0, l− 2} →
{u1, u0, u−1, u−2} defined as

S(i) =


u−2 if i < −(m− 2),

u−1 if −(m− 2) < i < 0,

u0 if 0 < i < l − 2,

u1 if i > l − 2.

We define the chain (Y l,m
n )n≥0 imposing that, from i ∈ Z \ {−(m − 2), 0, l − 2)},

it jumps to i ± 1 with probability 3/10 and to S(i) with probability 2/5. From

i ∈ {−(m − 2), 0, l − 2)} it jumps to i ± 1 with probability 3/14 and to S(i ± 1)

with probability 2/7. The states u1, u0, u−1 and u−2 are defined as absorbing states.

Figure 1.7 illustrates the structure of this simple chain. Roughly speaking, after an

identification of the states, (Y l,m
n )n≥0 is the jump chain of the process {η̂1(t) : t ≥ 0},

illustrated in Figure 1.1, with NA = l, NB = m and NC =∞.

. . . . . .

−(m− 2) 0 l − 2

u1u0u−1u−2

Figure 1.7: The graph structure of the chain (Y l,m
n )n≥0.

For 0 ≤ i ≤ l− 2 and k ∈ {1, 0,−1,−2} denote by pl,m(i, uk) the probability for

the chain (Y l,m
n )n≥0 starting from i being absorbed in uk. We define v(l,m) as

v(l,m) :=
2

3

1∑
k=−2

k

(
l−2∑
i=0

pl,m(i, uk)

)
.

Repeating the proof of Lemma 1.7.1, with an obvious identification of the states, we

get that

v(l,m) =
2

3

(
3

2
+

2

3l−2 + 1

) ∑
k∈{−2,−1,1}

∑
i∈{0,l−2}

kpl,m(i, uk). (1.7.5)
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Lemma 1.7.3. There exists a constant C0 such that for any 3 ≤ NA < NB < NC,∣∣∣∣∣23 ∑
k∈ΛN

kgNA (k)− v(NA, NB)

∣∣∣∣∣ ≤ C0N
2
C

(
3

5

)NC
Proof. If k /∈ {−2,−1, 0, 1} we note that for i = 1, NA − 1, starting from ξ0

A,i, the

chain {η̂1(t) : t ≥ 0} must make at least NC jumps to arrive at ωk. So, using

Lemma 1.7.1 we get that

gNA (k) ≤ C0(3/5)NC , k /∈ {−2,−1, 0, 1}. (1.7.6)

For k ∈ {−2,−1, 0, 1} we use the same coupling argument used in the last corollary,

now coupling the jump chain of {η̂1(t) : t ≥ 0} with the chain (Y NA,NB
n )n≥0. If we

do not survive at least NC steps without absorption, we do not feel the difference

of these two chains. So, in (1.7.2) we may change pNA (i + 1, k) by pNA,NB(i, uk),

i = 0, NA − 2, causing errors of order O((3/5)NC ).

The key to obtain the specific scenario in which the process will converge to a

Brownian motion with drift is to understand the dependence of v(NA, NB) on NA

and NB. The next lemma is sufficient for this purpose.

Lemma 1.7.4. Suppose that 3 ≤ NA < NB, then

v(NA, NB) =

[
−3 +O

((
1

3

)NA)](1

3

)NB
+O

((
1

3

)2NB
)
. (1.7.7)

Proof. By (1.7.5), in order to explicitly compute v(l,m) we just need to compute

the six absorption probabilities

pl,m(i, uk), i = 0, l − 2, k = 1,−1,−2. (1.7.8)

Solving a recurrence as in (1.7.3), we can compute the distribution of the first visited

state in the set {0, l − 2, u0} if the chain (Y l,m
n )n≥0 starts from 1. We find that, the

process will first visit l−2, 0 or u0 with probabilities pl, ql and rl, respectively, where

pl =
3− (1/3)

3l−2 − (1/3)l−2
, ql =

3l−3 − (1/3)l−3

3l−2 − (1/3)l−2
, rl = 1− pl − ql. (1.7.9)

This provides a simplification of the chain (Y l,m
n )n≥0, which is best explained with

Figure 1.8.

With this, we can easily compute the distribution of the first visited configuration

in {−(m− 2), u−1, u0, l− 2} if the process starts from 0. We obtain that the process

will first visit l− 2, u0, −(m− 2), u−1 with, respectively, probabilities pl,m, ql,m, pm,l
and qm,l, where

pl,m =
3
14
pl

1− 3
14

(ql + qm)
, ql,m =

2
7

+ 3
14
rl

1− 3
14

(ql + qm)
. (1.7.10)
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0−(m− 2) l − 21−1

u0u−1

3
14

2
7

qm

pl

ql
rl

3
14pm

rm

2
7

Figure 1.8: A first simplification in the dynamics of (Y l,m
n )n≥0.

Now, if we define

pl,∞ := lim
j→∞

pl,j, ql,∞ := lim
j→∞

ql,j, q∞,m := lim
j→∞

qj,m,

this means that, in order to compute the probabilities in (1.7.8), we can consider

the simple seven-state chain whose jump probabilities are given in Figure 1.9.

0−(m− 2) l − 2

u1u0u−1u−2

pm,l

qm,l

pl,∞

ql,m

pl,m

ql,∞

q∞,l

pm,∞

q∞,m

qm,∞

Figure 1.9: A further simplification in the dynamics of (Y l,m
n )n≥0.

From this point, it is easy to find that

pl,m(0, u1) =
pl,mq∞,l

1− (pl,mpl,∞ + pm,lpm,∞)
, pl,m(l − 2, u1) = q∞,l + pl,∞p

l,m(0, u1),

pl,m(0, u−1) =
qm,l + pm,lqm,∞

1− (pl,mpl,∞ + pm,lpm,∞)
, pl,m(l − 2, u−1) = pl,∞p

l,m(0, u−1),

pl,m(0, u−2) =
pm,lq∞,m

1− (pl,mpl,∞ + pm,lpm,∞)
, pl,m(l − 2, u−2) = pl,∞p

l,m(0, u−2).

To simplify the notations, in the next equations x and y will represent respectively

(1/3)l and (1/3)m. After many but elementary calculations we see from the last

equations and the explicit expressions (1.7.9) and (1.7.10) that

pl,m(0, u1) =
3x

1− 9x2
+O(y2),

pl,m(0, u−1) =
1− 27x2

2− 18x2
− (3 +O(x))y +O(y2),

pl,m(0, u−2) = (3 +O(x))y +O(y2),
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and

pl,m(l − 2, u1) =
1− 27x2

2− 18x2
+O(y2)

pl,m(l − 2, u−1) =
3x

1− 9x2
+O(x)y +O(y2),

pl,m(l − 2, u−2) = O(x)y +O(y2),

From now, many cancellations take place and we see from (1.7.5) that v(l,m) =

[−3 +O(x)]y +O(y2), as desired.

1.8 Scaling limits for the trace process on ΩN
0 when

N ↑ ∞
Recall the definition of the random walk {X(t) : t ≥ 0} presented just before

Theorem 1.2.7.

Theorem 1.8.1. Let θβ be as in (1.2.7). Assume that η(0) = ω0, 3 ≤ NA < NB ≤
NC and that N ↑ ∞ as β ↑ ∞ in such a way that (1.2.8) holds and that

lim
β→∞

(N5
C4NA +N6

CNAβ)e−β = 0. (1.8.1)

Then, as β ↑ ∞, the process {X(tθβ)/N : t ≥ 0} converges in the uniform topology

to a Brownian motion with drift {µt+ σBt : t ≥ 0} on the circle [−1, 1]. If b = 0 in

(1.2.8), we may replace the assumption NA < NB by NA ≤ NB.

In Theorem 1.8.1 the number of particles of type A can go to infinity or be

constant. The parameters µ and σ can be explicitly computed. In the case where

NA ↑ ∞ we have that µ = −3b/2 and σ = 1. If NA is constant, then there is a

multiplicative correction (1 + O
(
(1/3)NA

)
in these values. The restriction (1.8.1),

which imposes that N can not increase too fast, is not optimal. It comes from our

not very accurate estimate of rβ(k) in Proposition 1.6.2. A more careful analysis

would need to take into account a much larger combinatorial complexity.

In this section we will prove Theorems 1.2.7 and 1.8.1. The general strategy is

the same for the two proofs, and so we start considering a general context.

For θ̃β, a function of β, define the process {Y β(t) : t ≥ 0} by

Y β(t) =
X(θ̃βt)

N
.

By [24, Theorem 8.7.1], in order to prove that, as β → ∞, the Markov chain

{Y β(t) : t ≥ 0} converges to a diffusion {µt+σBt : t ≥ 0}, it is enough to verify the
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convergence of the corresponding infinitesimal mean and covariance and a condition

that rules out jumps in the limit. More precisely, we have to show that

lim
β→∞

∑
k∈ΛN

(
k

N

)2

rβ(k)θ̃β = σ2, lim
β→∞

∑
k∈ΛN

k

N
rβ(k)θ̃β = µ, (1.8.2)

and that, for every δ > 0

lim
β→∞

∑
|k|>Nδ

rβ(k)θ̃β = 0. (1.8.3)

By Proposition 1.6.2, if for ψ(β) satisfying (1.6.6), we can prove that

lim
β→∞

Nθ̃βψ(β) = 0, (1.8.4)

then we may replace conditions (1.8.2) and (1.8.3) by the following:

lim
β→∞

∑
α:Nα=M

(
1 +

2

3

∑
k∈ΛN

k2gNα (k)

)
e−Mβ θ̃βN

−2 = σ2, (1.8.5)

lim
β→∞

2

3

( ∑
α:Nα=M

∑
k∈ΛN

kgNα (k)

)
e−Mβ θ̃βN

−1 = µ, (1.8.6)

and, for every δ > 0

lim
β→∞

∑
α:Nα=M

∑
|k|>Nδ

gNα (k)e−Mβ θ̃β = 0. (1.8.7)

For the sake of clarity, from now on we look at each case separately. In fact, all the

work has already been done.

Proof of Theorem 1.2.7. In this case θ̃β = NeNAβ. Since NA < NB are constants,

we get (1.8.4) from assumption (1.2.16). Just observing (1.7.6) we obtain (1.8.7)

and (1.8.5) with σ2 = 0. To conclude, observe that Lemma 1.7.3 gives (1.8.6) with

µ = v(NA, NB).

Proof of Theorem 1.8.1. In this case θ̃β = θβ. Consider first the case b > 0. In this

setting, since NA < NB ≤ NC , (1.8.4) follows from assumption (1.8.1). As before,

(1.8.7) follows from (1.7.6). For simplicity, let’s suppose that we are in the case where

NA ↑ ∞. By Lemma 1.7.3 the limit in (1.8.6) is equal to limβ→∞(1/2)v(NA, NB)N

and then, from Lemma 1.7.4 and assumption (1.2.8) we get (1.8.6) with µ = −3b/2.

To conclude, it remains to verify (1.8.5). By (1.7.6), the limit in (1.8.5) is equal to

1

2

(
1 + lim

β→∞

2

3

1∑
k=−2

k2gNA (k)

)
. (1.8.8)

Instituto de Matemática Pura e Aplicada 40 2014



CHAPTER 1. ZERO-TEMPERATURE LIMIT OF THE ABC MODEL

Now, (1.8.5) with σ2 = 1 follows easily from Corollary 1.7.2. If NA is constant, we

could, for example, analyze the limit (1.8.8) in the same way that we have estimated∑
k∈ΛN

kgNα (k) in Lemmas 1.7.3 and 1.7.4, obtaining this way, after many (but

elementary) calculations, that (1.8.5) holds with σ2 = 1 +O((1/3)NA). Now, noting

that, by symmetry, (1.8.6) is equal to 0 if NA = NB and recalling the definition of

d, we see that the convergences still work for NA ≤ NB in the case b = 0.

1.9 Proof of Lemma 1.2.1

1.9.1 Some estimates for the invariant measure

Recall the notations introduced in the beginning of Section 1.5. Let µβ be the

invariant measure of the ABC process {η(t) : t ≥ 0}. In our context the invariance

of the measure µβ is characterized by the fact that, for every ω ∈ ΩN ,

e−β
∑

ξ∈B(ω)

µβ(ξ) +
∑
ξ∈R(ω)

µβ(ξ) = |B(ω)|µβ(ω) + e−β|R(ω)|µβ(ω). (1.9.1)

Lemma 1.9.1. For any β > 0, k ∈ ΛN and 1 ≤ n ≤M ,∑
ω∈∆n

k

|B∗k(ω)|µβ(ω) = e−β
∑

ξ∈∆n−1
k

|R(ξ)|µβ(ξ). (1.9.2)

Proof. Fix k ∈ ΛN . We prove the result by induction in n. The case n = 1 is just

the relation (1.9.1) for ω = ωk. Now suppose that (1.9.2) holds for some n ≤M −1.

Summing the relation (1.9.1) over all ω ∈ ∆n
k we obtain

e−β
∑
ω∈∆n

k

∑
ξ∈B(ω)

µβ(ξ) +
∑
ω∈∆n

k

∑
ξ∈R(ω)

µβ(ξ)

=
∑
ω∈∆n

k

|B(ω)|µβ(ω) + e−β
∑
ω∈∆n

k

|R(ω)|µβ(ω)
(1.9.3)

By (1.5.1), we note that in the first member on the left-hand side of (1.9.3), we are

measuring configurations on ∆n−1
k . Moreover, note that each configuration ξ ∈ ∆n−1

k

is counted repeatedly |R(ξ)| times. This is due to the simple fact that there are

exactly |R(ξ)| configurations ω ∈ ∆n
k such that ξ ∈ B(ω). So, we may rewrite the

first member on the left-hand side of (1.9.3) as e−β
∑

ξ∈∆n−1
k
|R(ξ)|µβ(ξ) and then,

by the induction hypothesis it cancels with the first member on the right-hand side

of the equality. Now note that in the second member of the left-hand side, we

are measuring configurations in ∆n+1
k and each configuration ξ ∈ ∆n+1

k is counted

repeatedly |B∗k(ξ)| times. Thus we get the relation (1.9.2) with n replaced by n+ 1,

which concludes the proof.
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Corollary 1.9.2. For any β > 0, k ∈ ΛN and 1 ≤ n ≤M∑
ω∈∆n

k

|B∗k(ω)|µβ(ω) ≤ (4e−β)nµβ(ωk),

and then, for β large enough,

M∑
n=1

∑
ω∈∆n

k

|B∗k(ω)|µβ(ω) ≤ 5e−βµβ(ωk). (1.9.4)

Proof. The proof consists in iterations of (1.9.2) using the inequality |R(ξ)| ≤
4|B∗k(ξ)|, which, by Lemma 1.5.1, holds for every ξ ∈ V (ωk).

For any set of configurations H ⊆ ΩN , define inductively

B0(H) = H, Bn(H) =
⋃

ω∈Bn−1(H)

B(ω), n = 1, 2, . . . , (1.9.5)

and then define B∞(H) =
⋃∞
n=0B

n(H). In the same way, just changing B by R

in (1.9.5), define Rn(H), n ≥ 1. When H = {ωk} we write simply Rn
k instead of

Rn({ωk}). We omit the index n when n = 1.

Lemma 1.9.3. For any β > 0, k ∈ ΛN and n ≥ 1,

∑
ω∈RM+n

k

|B∗k(ω)|µβ(ω) + e−β
n−1∑
i=0

∑
ω∈RM+i

k

∑
ζ∈D∗k(ω)

µβ(ζ)

= e−β
∑

ξ∈RM+n−1
k

|R(ξ)|µβ(ξ) +
n−1∑
i=0

∑
ξ∈RM+i

k

|D∗k(ξ)|µβ(ξ)

(1.9.6)

Proof. Fix k ∈ ΛN . The proof by induction is very similar to the proof of Lemma 1.9.1.

To pass from the case n to the case n+1, sum the relation (1.9.1) over all ω ∈ RM+n
k

decomposing B(ω) = B∗k(ω)∪D∗k(ω). The inductive argument is completed observ-

ing that ∑
ω∈RM+n

k

∑
ξ∈B∗k(ω)

µβ(ξ) =
∑

ξ∈RM+n−1
k

|R(ξ)|µβ(ξ),

and ∑
ω∈RM+n

k

∑
ξ∈R(ω)

µβ(ξ) =
∑

ξ∈RM+n+1
k

|B∗k(ξ)|µβ(ξ).

In the same way, we obtain the base case n = 1 from the case n = M of Lemma 1.9.1.

Remind that we have defined M∗ = max{NA, NB, NC}.
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Corollary 1.9.4. There exists a constant C0 such that, for any β > 0,

µβ

( ⋃
k∈ΛN

M∗⋃
n=M

Rn
k

)
≤ C04M

∗
e−Mβµβ(ΩN

0 ), (1.9.7)

µβ
(
GN
)
≤ C04M

∗
e−(M−1)βµβ(ΩN

0 ), (1.9.8)

µβ
(
R(GN)

)
≤ C04M

∗
e−Mβµβ(ΩN

0 ). (1.9.9)

Proof. Fix k ∈ ΛN . Let Zk(0) =
∑

ω∈∆M
k
|B∗k(ω)|µβ(ω) and, for n ≥ 1, let Zk(n) be

the expression in (1.9.6). Obviously, for any ω ∈ V (ωk) \ {ωk} we have |B∗k(ω)| ≥ 1.

Let’s label the particles of the system in such a way that for the configuration

ωk, the labels A1, A2, . . . , ANA , B1, B2, . . . are placed clockwise and the particle A1

is the particle of type A that is adjacent to a particle of type C, which is CNC .

With these labels we note that, when they exist, the blue edges of a configuration

ω ∈ V (ωk) of the type whose transposition leads to configurations in D∗k(ω) connect

the adjacent particles (α − 1)N(α−1)
and (α + 1)1, for some α ∈ {A,B,C}, see

Figure 1.2. So, for configurations in V (ωk) there are at most three of such blue

edges, that is |D∗k(ω)| ≤ 3. Moreover, from ωk to achieve a configuration ω ∈ V (ωk)

with |D∗k(ω)| = 3, at least NA + NB + NC − 3 > M∗ jumps are necessary. So,

for configurations ω ∈
⋃M∗

n=M Rn
k , we have |D∗k(ω)| ≤ 2. These inequalities and

the one of Lemma 1.5.1 applied to equality (1.9.6) allow us to conclude that, for

1 ≤ n ≤M∗ −M + 1

Zk(n) ≤ (4e−β)Zk(n− 1) + 2
n−1∑
i=0

Zk(i).

Thus, just using that 4e−β < 1 and Corollary 1.9.2, we get

Zk(n) ≤ 4nZk(0) ≤ 4n4Me−βµβ(ωk). (1.9.10)

Now note that

GN ⊆
⋃
k∈ΛN

⋃
m∈{NA,NB ,NC}

⋃
ω∈Rmk

D∗k(ω).

So, by the definition of Zk(n) and (1.9.10),

µβ

( ⋃
k∈ΛN

M∗⋃
n=M

Rn
k

)
+ e−βµβ(GN) ≤

∑
k∈ΛN

M∗−M+1∑
n=0

Zk(n) ≤ C04M∗e−Mβµβ(ΩN
0 ),

which proves (1.9.7) and (1.9.8). To obtain the inequality (1.9.9), just note that for

each ω ∈ GN , the invariance of µβ says that
∑

v∈R(ω) µβ(v) = 6e−βµβ(ω), and so

µβ(R(GN)) ≤ 6e−βµβ(GN).
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1.9.2 The set that the process never leaves

The proof of Lemma 1.2.1 consists in finding a set of configurations ΞN that the

process never leaves in the time scale eMβ. The set ΞN needs to be sufficiently small

so that µβ(ΞN \ ΩN
0 )/µβ(ΩN

0 ) vanishes as β ↑ ∞, which will allow us to conclude

that, in fact, the process stays almost always in ΩN
0 . The analysis of the excursions

between two consecutive visits to the set ΩN
0 , which we have made in Section 1.5,

suggests a natural candidate. We define ΞN as

ΞN = B∞

( ⋃
k∈ΛN

M⋃
n=0

Rn
k

)
∪B∞

(
R(GN)

)
. (1.9.11)

This choice is optimal in the sense that, starting from ΩN
0 , any configuration in

ΞN can, in fact, be visited after a time of order eMβ. It is interesting to note

that the configurations in ΞN that are not in
⋃
k∈ΛN

⋃M
n=0 ∆n

k are very similar to

the configurations in ΩN
0 , differing by at most two particles that are detached from

their corresponding blocks. This observation, which will be crucial for Section 1.10,

justifies the inclusion ΞN ⊆ ΓN stated in Section 1.2.2.

Let ∂ΞN denote the boundary of ΞN , that is

∂ΞN =
{
ω ∈ ΞN : there exists ξ ∈ ΩN \ ΞN and i ∈ ΛN such that ξ = σi,i+1ω

}
.

Note that ΞN was defined in such a way that

B(ξ) ⊆ ΞN , if ξ ∈ ∂ΞN . (1.9.12)

Lemma 1.9.5. There exists a constant C0 such that, for any β > 0,

µβ(ΞN \ ΩN
0 ) ≤ C04M

∗
e−βµβ(ΩN

0 ) (1.9.13)

and

µβ(∂ΞN) ≤ C04M
∗
e−Mβµβ(ΩN

0 ). (1.9.14)

Proof. Note that

ΞN \ ΩN
0 ⊆

( ⋃
k∈ΛN

M∗⋃
n=1

Rn
k

)
∪ GN ∪R(GN)

and

∂ΞN ⊆

( ⋃
k∈ΛN

M∗⋃
n=M

Rn
k

)
∪R(GN).

Now use Corollaries 1.9.2 and 1.9.4.
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Proof of Lemma 1.2.1. We follow the strategy presented in [31]. Fix k ∈ ΛN and

t ≥ 0. We first claim that

lim
β→∞

Eβ
ωk

[∫ t

0

1{η(sN2eMβ) /∈ ΞN}ds
]

= 0. (1.9.15)

For each ω ∈ ∂ΞN , denote by J(ω, t) the number of jumps from ω to configurations

in ΩN \ ΞN in the time interval [0, t] and let Rβ(ω,ΩN \ ΞN) be the total jump rate

from ω to ΩN \ΞN . Note that the process {(η(t), J(ω, t)) : t ≥ 0} is a Markov chain.

If L̃β stands for the generator of this chain and f(ξ, n) = n, it is easy to see that

L̃βf(ξ, n) = 1{ξ = ω}Rβ(ω,ΩN
0 \ ΞN), so that

{J(ω, t)−
∫ t

0

Rβ(ω,ΩN
0 \ ΞN)1{η(s) = ω}ds : t ≥ 0}

is a martingale, and thus

Eβ
ωk

[J(ω, t)] = Eβ
ωk

[∫ t

0

Rβ(ω,ΩN
0 \ ΞN)1{η(s) = ω}ds

]
.

Therefore, if we define J(t) =
∑

ω∈∂ΞN J(ω, t), by observation (1.9.12) we get that

Pβ
ωk

[J(t) ≥ 1] ≤ Eβ
ωk

[J(t)] ≤ C0Ne
−βEβ

ωk

[∫ t

0

1{η(s) ∈ ∂ΞN}ds
]
.

By symmetry,

Eβ
ωk

[∫ t

0

1{η(s) ∈ ∂ΞN}ds
]

=
1

|ΩN
0 |
∑
j∈ΛN

Eβ
ωj

[∫ t

0

1{η(s) ∈ ∂ΞN}ds
]

=
1

|ΩN
0 |µβ(ω0)

∑
j∈ΛN

µβ(ωj)E
β
ωj

[∫ t

0

1{η(s) ∈ ∂ΞN}ds
]
.

(1.9.16)

The sum is bounded above by

Eβ
µβ

[∫ t

0

1{η(s) ∈ ∂ΞN}ds
]

= tµβ(∂ΞN)

and the denominator is equal to µβ(ΩN
0 ), and so

Pβ
ωk

[
J(tN2eMβ) ≥ 1

]
≤ C0tN

3e−βeMβµβ(∂ΞN)

µβ(ΩN
0 )

.

By (1.9.14) the above expression is less than or equal to C0tN
34M

∗
e−β, which van-

ishes as β ↑ ∞, in view of assumption (1.2.2). Therefore, we have proved (1.2.5),

that is, for any t ≥ 0, starting from ωk, with probability converging to 1, the process

{η(s) : s ≥ 0} does not leave the set ΞN in the time interval [0, tN2eMβ], which is
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a result stronger than (1.9.15). To conclude the proof of the lemma it remains to

show that

lim
β→∞

Eβ
ωk

[∫ t

0

1{η(sN2eMβ) ∈ ΞN \ ΩN
0 }ds

]
= 0.

By repeating the arguments used in (1.9.16) we obtain that the previous expectation

is bounded by tµβ(ΞN \ ΩN
0 )/µβ(ΩN

0 ). By (1.9.13) this is bounded by C0t4
M∗e−β,

which, in view of assumption (1.2.2), vanishes as β ↑ ∞.

About Remark 1.2.4. Now we prove that, for the equal densities case NA = NB =

NC , (1.2.13) holds without assumptions controlling the growth of N . In fact, this

can be derived from the estimates of the partition function Zβ presented in [26, 27].

However, for completeness we present a proof here. Subtracting a function of M

in the Hamiltonian (1.2.1) (in fact, this function is M2 but this not relevant) and

incorporating this correction in the partition function Zβ, we may suppose that the

ground states ωk, k ∈ ΛN , have energy zero. For each n, the number of configurations

with energy n is bounded by 33M , since this is a bound for the total number of

configurations. So,

µβ({ω : H(ω) > M/2}) ≤
∑

n>M/2 33Me−nβ

Zβ
≤ C0

(
27e−β/2

)M
,

and this goes to zero when β ↑ ∞ (for this term is even better if M grows fast). For

configurations with energy at most M/2 (which are configurations at distance at

most M/2 from some ground state) we can use the estimate (1.9.4). So, in the limit

β ↑ ∞, in the equal densities case, the invariant measure is concentrated in ΩN
0 , no

matter how fast N ↑ ∞.

1.10 Convergence of the center of mass

In this section we assume the hypothesis of Theorem 1.2.2, under which we will

show that, when β ↑ ∞, the process {C(η(tN2eMβ) : t ≥ 0)} is close to the process

{X(tN2eMβ)/N + rA/2 : t ≥ 0} in the Skohorod space D([0,∞), [−1, 1]).

In the previous section we showed that under (1.2.2) we have (1.2.5), where ΞN

is the set defined in (1.9.11). Later it will be useful to note that ΞN can also be

expressed as the union ΞN =
⋃
k∈ΛN

ΞN
k where

ΞN
k =

M⋃
n=0

∆n
k ∪

⋃
α∈{A,B,C}

B∞
(
R(GN,kα )

)
.

In order to compare the process {C(η(tN2eMβ) : t ≥ 0)} with the trace process

{X(tN2eMβ)/N + rA/2 : t ≥ 0} we will use the process, derived from {η(t) : t ≥ 0},
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that records the last visit to the set ΩN
0 . Define

X̂(t) :=

{
X(η(t)) if η(t) ∈ ΩN

0 ,

X(η(σ(t)−)) if η(t) /∈ ΩN
0 .

where σ(t) = sup{s ≤ t : η(s) ∈ ΩN
0 }. As we have done for {X(t) : t ≥ 0}, we

are omitting the dependence on β. The last visit process {X̂(t) : t ≥ 0} has the

advantage with respect to the trace process that it does not translate in time the

original trajectory.

With the same proof of [3, Proposition 4.4], with obvious small modifications for

our case, under (1.2.3) we have that

lim
β→∞

Eβ
ω0

[
ρ(X∗, X̂∗)

]
= 0, (1.10.1)

where X∗ and X̂∗ denote the speeded up processes {X(tN2eMβ)/N : t ≥ 0} and

{X̂(tN2eMβ)/N : t ≥ 0}, respectively, and ρ is a distance that generates the Sko-

horod topology in D([0,∞), [−1, 1]).

Now we prove that the last visit process is close to the center of mass in the

uniform metric.

Proposition 1.10.1. Assume the hypothesis of Theorem 1.2.2. For any ε > 0 and

t > 0,

lim
β→∞

Pβ
ω0

[
sup

0≤s≤tN2eMβ

|X̂(s)/N + rA/2− C(η(s))| > ε

]
= 0.

Proof. Let N̂(t) be the number of jumps of the process {X̂(s) : s ≥ 0} during the

time interval [0, tN2eMβ]. We claim that there exists a constant L, depending on t,

such that

lim
β→∞

Pβ
ω0

[
N2

L
< N̂(t) < LN2

]
= 1. (1.10.2)

In fact, let N(t) be the number of jumps of {X(s) : s ≥ 0} during the time interval

[0, tN2eMβ]. Observing that

N(t) = N̂

(
t+

∫ t

0

1{η(sN2eMβ) /∈ ΩN
0 }ds

)
,

the claim will be proved if we prove (1.10.2) for N̂(t) changed by N(t). Now note

that

Pβ
ω0

[
N(t) ≥ LN2

]
= P

[
T β1 + T β2 + . . .+ T βLN2 < tN2eMβ

]
, (1.10.3)

where, T βi , i = 1, 2, . . . are independent mean 1/λβ exponential random variables,

with λβ =
∑

k∈ΛN
rβ(k). By Proposition 1.6.2, because of (1.2.9), there exist con-

stants 1 < c0 < C0 < ∞ such that eMβλβ ∈ (c0, C0), for all β > 0. Hence, the
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expression in (1.10.3) goes to zero as β ↑ ∞, if t/L < 1/C0. In the same way, we

show that limβ↑∞Pβ
ω0

[N(t) ≤ N2] = 0, and the claim is proved.

Let τ = HΩN0 \{ω0}. Using (1.2.5), (1.10.2), the strong Markov property and

translation invariance we see that the proposition will be proved if we prove that

lim
β→∞

N2Pβ
ω0

[
sup

0≤s≤τ
|C(η(s))− C(ω0)| > ε, η([0, τ ]) ⊆ ΞN

]
= 0. (1.10.4)

Observe that if ω ∈ ΞN
k then |C(ω)− C(ωk)| < 1/NA < ε/2, for β large enough. So,

if ν denotes the hitting time of
⋃
|k|>Nε/2 ΞN

k , (1.10.4) will be proved if we prove that

lim
β→∞

N2Pβ
ω0

[
ν ≤ τ, η([0, τ ]) ⊆ ΞN

]
= 0. (1.10.5)

For k ∈ ΛN , let Bk = {ω ∈ V (ωk) ∩ ΞN : D∗k(ω) = ∅}. Note that

M⋃
n=0

∆n
k \

⋃
α∈{A,B,C}

FN,kα ⊆ Bk ⊆ ΞN
k

and the first inclusion is an equality in the special case of equal densities. The set

Bk is formed by the configurations in ΞN from which the process is attracted to ωk.

In the same way we proved Lemma 1.5.6, we see that

Pβ
ω

[
HBck < Hωk

]
≤ C0Ne

−β, if ω ∈ Bk. (1.10.6)

Let ν̃ denote the hitting time of
⋃

0<|k|<Nε/2 Bk. Using the strong Markov property

and (1.10.6), we see that Pβ
ω0

[ν̃ ≤ ν ≤ τ ] ≤ C0Ne
−β and then, decomposing the

event appearing in (1.10.5) in the partition {ν̃ ≤ ν}∪{ν < ν̃}, we see that the proof

will be completed once we show that

lim
β→∞

N2Pβ
ω0

[
ν < ν̃, η([0, ν]) ⊆ ΞN

]
= 0. (1.10.7)

Observing that, for each k ∈ ΛN

ΞN
k \

k+1⋃
j=k−1

Bj =
⋃

α∈{A,B,C}

(
GN,kα ∪R(GN,kα ) ∪ {ξk+1

α,2 , ξ
k−1
Nα−2}

)
∪
⋃

α:Nα=M

{ζkα,0, ζkα,Nα},

we note that the only possible paths from ω0 to
⋃
|k|>Nε/2 ΞN

k contained in ΞN that

avoid the set
⋃

0<|k|<Nε/2 Bk are those passing through the intermediate metastates

in GN . Now we will use that, starting from GN the trace of {η(t) : t ≥ 0} in ΩN
1 is

well approximated by the ideal process {η̂1(t) : t ≥ 0} whose jump probabilities are

given in Figure 1.1. A small modification of Lemma 1.6.1 is needed to justify this

approximation. To arrive in
⋃
|k|>Nε/2 ΞN

k we have to pass first at some configuration

in
⋃
|k|=bNε/4c ΞN

k . From this point we make the same coupling as in Lemma 1.6.1.
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Observe now that from
⋃
|k|=bNε/4c ΞN

k the ideal process must make at least δN2ε

jumps without absorption in ΩN
0 , for some constant δ. This gives the bound

Pβ
ω0

[
ν < ν̃, η([0, ν]) ⊆ ΞN

]
≤
(

3

5

)δN2ε

+ C0N
3βe−β.

So, (1.10.7) follows by (1.2.9) which imposes that N increases slowly with β. This

completes the proof of the proposition.

Now, Theorem 1.2.2 follows from (1.10.1), Proposition 1.10.1 and Theorem 1.8.1.

1.11 Appendix

Lemma 1.11.1. For any integers M and 1 ≤ i ≤M − 1,

i∑
j=1

(
M − j − 1

i− j

)(
1

2

)M−j
+

M−i∑
r=1

(
M − r − 1

M − i− r

)(
1

2

)M−r
= 1 (1.11.1)

Proof. Fix M . For any i ∈ {1, . . . ,M − 1} define

φ(i) =
i∑

j=1

(
M − j − 1

i− j

)
2j−1.

Multiplying (1.11.1) by 2M−1, the equality to be proved becomes

φ(i) + φ(M − i) = 2M−1.

We claim that, for any 1 ≤ i ≤ M − 1, φ(i) counts the number of subsets of

{1, . . . ,M − 1} with at most i− 1 elements, which implies the above equality. The

proof of this claim relies on a suitable way of classifying the elements of(
[M − 1]

≤ i− 1

)
:= {E ⊆ {1, . . . ,M − 1} : |E| ≤ i− 1}.

We first observe that for any E ∈
(

[M−1]
≤i−1

)
there exists 1 ≤ k0 ≤ i such that

|E ∩ {k0, . . . ,M − 1}| = i− k0.

To see this, note that if we define h on {1, . . . , i} as h(k) = i−k−|E∩{k, . . . ,M−1}|,
then h(k + 1) ∈ {h(k), h(k) − 1}, h(1) ≥ 0, h(i) ≤ 0. So, there must exist some

k0 ∈ {1, . . . , i} such that h(k0) = 0. Therefore, we may decompose(
[M − 1]

≤ i− 1

)
=

i⋃
j=1

Dij (1.11.2)
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into a disjoint union, where

Dij :=

{
E ∈

(
[M − 1]

≤ i− 1

)
: j = max{1 ≤ k ≤ i : |E ∩ {k, . . . ,M − 1}| = i− k}

}
.

Now note that if E ∈ Dij then j /∈ E. Another simple argument, using again the

function h defined above, shows that, in fact,

Dij = {E ⊆ {1, . . . ,M − 1} : j /∈ E, |E ∩ {j + 1, . . . ,M − 1}| = i− j}} ,

and so, |Dij| =
(
M−j−1
i−j

)
2j−1. As the union in (1.11.2) is disjoint, summing in j, from

1 to i, we get that φ(i) is the cardinality of
(

[M−1]
≤i−1

)
, as claimed.
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Instituto de Matemática Pura e Aplicada 50 2014



CHAPTER 2

Metastability of reversible random walks in potential fields

by Claudio Landim, Ricardo Misturini and Kenkichi Tsunoda

Abstract. Let Ξ be an open and bounded subset of Rd and let F : Ξ → R be

a twice continuously differential function. Denote by ΞN the discretization of Ξ,

ΞN = Ξ∩ (N−1Zd), and denote by {XN (t) : t ≥ 0} the continuous-time, nearest-

neighbor, random walk on ΞN which jumps from x to y at rate e−(1/2)N [F (y)−F (x)].

We examine in this article the metastable behavior of {XN (t) : t ≥ 0} among the

wells of the potential F .

2.1 Introduction

We introduced recently in [3, 6] an approach to prove the metastable behavior of

Markov chains which has been successfully applied in several different contexts. We

refer to [7, 33] for a description of the method and for examples of Markov chains

whose metastable behavior has been established with this approach.

We examine in this article the metastable behavior of reversible random walks

in force fields. This is an old problem whose origin can be traced back at least to

Kramers [32]. It has been adressed by Freidlin and Wentsell [28] and by Galves,

Olivieri and Vares [29] in the context of small random perturbations of dynamical

systems, and, more recently, by Bovier, Eckhoff, Gayrard and Klein in a series of

papers [15, 16, 17, 18] through the potential theoretic approach. This problem has

raised interest and has found applications in many areas, as computer sciences [20]

and chemical physics [38].
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The first main result of this article, Theorem 2.2.4, states that starting from a

neighborhood of a local minimum of the force field, in an appropriate time-scale,

the evolution of the random walk can be described by a reversible Markov chain in

a finite graph, in which the vertices represent the wells of the force field and the

edges the saddle points.

More precisely, denote by XN(t) a reversible random walk evolving in a dis-

cretization of a bounded domain Ξ ⊂ Rd according to a force field F : Ξ → R. A

precise definition of the dynamics is given below in (2.2.1). Let x1, . . . ,xL be the

local minima of the field F , and let YN(t) be the process which records the minima

visited: YN(t) is equal to j if the chain XN(t) belongs to a neighborhood of xj,

1 ≤ j ≤ L, and 0 otherwise. Clearly, YN(t) is not Markovian. Theorem 2.2.4 asserts

that starting from a neighborhood of a local minimum xj, there exists a time scale

βN , which depends on j, in which YN(tβN) converges in some topology to a Marko-

vian dynamics whose state space is a subset of {1, . . . , L}. This asymptotic dynamics

may have absorbing points, and its jump rates depend solely on the behavior of the

potential in the neighborhoods of the local minima and in the neighborhoods of the

saddle points. Theorem 2.2.4 is similar in spirit to the one of Noé, Wu, Prinz and

Plattner [38], who proved that projected metastable Markovian dynamics can be

well approximated by hidden Markovian dynamics.

The second main result, Theorem 2.2.7, adresses the problem of the exit points

from a domain. Consider a local minimum xj of the force field and denote by

{z1, . . . ,zK} the lowest saddle points of F which separate xj from the other local

minima. Theorem 2.2.7 provides the asymptotic probabilities that the chain XN(t)

will traverse a mesoscopic neighborhood of a saddle point zi before hitting another

local minima of the force field.

We explained already in [7] the main differences between our approach and the

potential theoretic one [15, 16], and between our approach and the pathwise one due

to Cassandro, Galves, Olivieri and Vares [21]. We will not repeat this exposition

here. Our approach does not aim to characterize the typical paths in a transition

between two metastable states, in contrast with the transition path theory [25].

Nevertheless, in the case where the number of wells is small, as in the examples

presented in [36], Theorems 2.2.4 and 2.2.7 describe the distribution of the transition

paths, at least at the scale of the metastable sets, by indicating the sequence of

metastable sets visited in a transition between two metastable sets.

In the case of complex networks, the Lennard–Jones clusters analyzed in [20] for

instance, to give a rough view of the transition paths from two metastable states,

we may proceed in two ways. One possibility is to reduce the number of nodes

by considering the trace of the original chain on a subset of the state space (cf.

[3, Section 6.1] for the definition of trace processes). Avena and Gaudillière [1]

proposed a natural algorithm to reduce the number of vertices of a chain. The
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algorithm produces a subset V with the property that the mean hitting time of V

does not depend on the starting point. In this sense the vertices of V are “uniformly”

distributed among the set of nodes. The algorithm can also be callibrated to provide

a large or small set of nodes V .

Another possibility is to identify certain nodes, losing the Markov property, and

to apply Theorem 2.2.4 below to approximate this new dynamics by a Markovian

dynamics. To describe the transition paths at this level of accuracy, one can compute

for these reduced dynamics the equilibrium potential between two metastable sets

(the committor in the terminology of [20]), and the optimal flow for Thomson’s

principle (the probability current of reactive trajectories).

In both cases, the selection of the set of nodes or the selection of nodes to

be merged have to be carried out judiciously, to reduce as much as possible the

number of nodes without losing the essential features of the original chain. From a

computational point of view, the jump rates of trace process are easily calculated,

while the jump rates of projected processes are more difficult to derive. In the first

case, it suffices to apply recursively the first displayed equation below the proof of

Corollary 6.2 in [3], while in the second case, one has to calculate the capacities

between the metastable sets.

2.2 Notation and Results

Let Ξ be an open and bounded subset of Rd, and denote by ∂ Ξ its boundary, which

is assumed to be a smooth manifold. Fix a twice continuously differentiable function

F : Ξ ∪ ∂ Ξ → R, with a finite number of critical points, satisfying the following

assumptions:

(H1) The second partial derivatives of F are Lipschitz continuous. Denote by C1

the Lipschitz constant;

(H2) All the eigenvalues of the Hessian of F at the critical points which are local

minima are strictly positive.

(H3) The Hessian of F at the critical points which are not local minima or local

maxima has one strictly negative eigenvalue, all the other ones being strictly

positive.

(H4) For every x ∈ ∂ Ξ, (∇F )(x) · n(x) < 0, where n(x) represents the exterior

normal to the boundary of Ξ, and x · y the scalar product of x y ∈ Rd.

Denote by ΞN the discretization of Ξ: ΞN = Ξ ∩ (N−1Zd), N ≥ 1, where

N−1Zd = {k/N : k ∈ Zd}. The elements of ΞN are represented by the symbols
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x = (x1, . . . ,xd), y and z. Let µN be the probability measure on ΞN defined by

µN(x) =
1

ZN
e−NF (x) , x ∈ ΞN ,

where ZN is the partition function ZN =
∑

x∈ΞN
exp{−NF (x)}. Let {XN(t) : t ≥ 0}

be the continuous-time Markov chain on ΞN whose generator LN is given by

(LNf)(x) =
∑
y∈ΞN

‖y−x‖=1/N

e−(1/2)N [F (y)−F (x)] [f(y)− f(x)] , (2.2.1)

where ‖ · ‖ represents the Euclidean norm of Rd. The rates were chosen for the

measure µN to be reversible for the dynamics. Denote by RN(x,y), λN(x), x,

y ∈ ΞN , the jump rates, holding rates of the chain XN(t), respectively:

RN(x,y) =

{
e−(1/2)N [F (y)−F (x)] ‖y − x‖ = 1/N , x , y ∈ ΞN ,

0 otherwise .

λN(x) =
∑
y∈ΞN

‖y−x‖=1/N

RN(x,y) .

Denote by D(R+,ΞN) the space of right-continuous trajectories f : R+ → ΞN

with left-limits, endowed with the Skorohod topology. Let Px = PN
x , x ∈ ΞN , be the

measure on D(R+,ΞN) induced by the chain XN(t) starting from x. Expectation

with respect to Px is denoted by Ex.

For a subset A of ΞN , denote by HA (resp. H+
A ) the hitting time of (resp. return

time to) the set A:

HA := inf{t > 0 : XN(t) ∈ A} ,
H+
A := inf{t > 0 : XN(t) ∈ A , XN(s) 6= XN(0) for some 0 < s < t} .

The capacity between two disjoint sets A, B of ΞN , denoted by capN(A,B), is given

by

capN(A,B) =
∑
x∈A

µN(x)λN(x) Px

[
HB < H+

A

]
.

A. The wells and their capacities. Denote by M the set of local minima and by

S the set of saddle points of F in Ξ. Let S1 be the set of the lowest saddle points:

S1 =
{
z ∈ S : F (z) = min{F (y) : y ∈ S}

}
.

We represent by z1,1, . . . ,z1,n1 the elements of S1, S1 = {z1,1, . . . ,z1,n1}. Starting

from S1, we define inductively a finite sequence of disjoint subsets of S. Assume

that S1, . . . ,Si have been defined, let S+
i = S1 ∪ · · · ∪Si, and let

Si+1 =
{
z ∈ S : F (z) = min{F (y) : y ∈ S \S+

i }
}
.
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We denote by zi,j, 1 ≤ j ≤ ni the elements of Si. We obtain in this way a partition

{Si : 1 ≤ i ≤ i0} of S.

We will refer to the index i as the level of a saddle point. Denote by Hi the

height of the saddle points in Si:

Hi = F (zi,1) , 1 ≤ i ≤ i0 ,

so that H1 < H2 < · · · < Hi0 .

For each 1 ≤ i ≤ i0, let Ω̂i be the subset of Ξ defined by

Ω̂i =
{
x ∈ Ξ : F (x) ≤ F (zi,1)

}
.

By definition, Ω̂i ⊂ Ω̂i+1. The set Ω̂i can be written as a disjoint union of connected

components: Ω̂i = ∪1≤j≤κiΩ̂
i
j, where Ω̂i

j ∩ Ω̂i
k = ∅, j 6= k, and where each set Ω̂i

j

is connected. Some connected component may not contain any saddle point in Si,

and some may contain more than one saddle point. Denote by Ωi
j, 1 ≤ j ≤ `i, the

connected components Ω̂i
j′ which contain a point in Si, and let Ωi = ∪1≤j≤`iΩ

i
j.

Clearly, the number of components Ωi
j is smaller than the number of elements of

Si, `i ≤ ni.

Each component Ωi
j is a union of wells, Ωi

j = W i
j,1 ∪ · · · ∪W i

j,`ij
. The sets W i

j,a

are defined as follows. Let Ω̊i
j be the interior of Ωi

j. Each set W i
j,a is the closure of

a connected component of Ω̊i
j. The intersection of two wells is a subset of the set

of saddle points: W i
j,a ∩W i

j,b ⊂ Si. Figure 2.1 illustrates the wells of two connected

components of some level. The sets W ε
a are introduced just before (2.2.2).

W ε
a

W ε
b

Figure 2.1: Some wells which form two connected components Ωi
1 and Ωi

2.

Fix 1 ≤ i ≤ i0 and 1 ≤ j ≤ `i and a connected component Ω = Ωi
j. To avoid

heavy notation, unless when strictly required, we omit from now on the dependence

of the sets Si, W
i
j,a and the numbers `ij on the indices i and j which are fixed.

Let S = {1, . . . , `} denote the set of the indices of the wells forming the connected

component Ω. For a 6= b ∈ S, denote by Sa,b the set of saddle points separating Wa
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from Wb,

Sa,b =
{
z ∈ S : z ∈ Wa ∩Wb

}
,

and denote by S(A), A ⊂ S, the set of saddle points separating ∪a∈AWa from

∪a∈AcWa:

S(A) =
⋃

a∈A , b∈Ac
Sa,b .

For a saddle point z ∈ S, denote by −µ(z) the unique negative eigenvalue of the

Hessian of F at z.

Recall that F (z) = Hi, z ∈ S = Si. For 0 < ε < Hi − Hi−1, 1 ≤ a ≤ `, let

W ε
a = {x ∈ Wa : F (x) < Hi − ε}, and let

EaN = W ε
a ∩ ΞN , 1 ≤ a ≤ ` , EN(A) =

⋃
a∈A

EaN , A ⊂ S . (2.2.2)

Each well W 1
j,a contains exactly one local minimum of F , while the wells W i

j,a,

1 < i ≤ i0, may contain more than one local minimum. Denote by {ma,1, . . . ,ma,q},
q = qa, the deepest local minima of F which belong to W i

j,a:

{ma,1, . . . ,ma,q} =
{
y ∈ Wa ∩M : F (y) = min{F (y′) : y′ ∈ Wa ∩M}

}
.

Let ha = F (ma,1) and let

µ(a) =

qa∑
k=1

1√
det HessF (ma,k)

, a ∈ S ,

where HessF (x) represents the Hessian of F calculated at x, and det HessF (x) its

determinant. A calculation, presented in (2.6.5), shows that for each a ∈ S,

µN(EaN) = [1 + oN(1)]
(2πN)d/2

ZN
e−Nha µ(a) . (2.2.3)

The next result and Theorem 2.2.2 below are discrete versions of a result of

Bovier, Eckhoff, Gayrard and Klein [17]. The proofs are based on the proof of

Theorem 3.1 in [17] and on [10, 11].

Theorem 2.2.1. For every proper subset A of S,

lim
N→∞

ZN
(2πN)d/2

2πN eNHi capN(EN(A),EN(Ac)) =
∑

z∈S(A)

µ(z)√
− det HessF (z)

·

This result together with two other estimates permit to prove the metastable

behavior of the Markov chain XN(t) among the shallowest valleys EaN . To examine

the metastable behavior of the chain XN(t) on deeper wells we need to extend
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Theorem 2.2.1 to disjoint sets A, B which do not form a partition of S, A∪B 6= S.

The statement of this extension and its proof requires the introduction of a graph.

B. A Graph associated to the chain. Let G = (S,E) be the weighted graph

whose vertices are S = {1, . . . , `}, the indices of the sets Wa. Place an edge between

a and b ∈ S if and only if there exists a saddle point z belonging to Wa ∩Wb, i.e., if

Sa,b 6= ∅. The weight of the edge between a and b, denoted by c(a, b), is set to be

c(a, b) =
∑

z∈Sa,b

µ(z)√
− det HessF (z)

. (2.2.4)

Note that c(a, b) vanishes if there is no saddle point z belonging to Wa∩Wb and that

the weights are independent of N . Figure 2.2 present the weighted graph associated

to one of the connected component of Figure 2.1.

a b

c(a, b)

a b

µ(z)√
− det HessF (z)

Figure 2.2: The simple weighted graph and the graph with multiple edges associated to

one of the connected components of Figure 2.1.

The graph G has to be interpreted as an electrical network, where the weights

c(a, b) represent the conductances. It would be more natural to start with a graph

with multiple edges, each edge corresponding to a saddle point z. However, adding

the parallel conductances one can reduce the graph with multiple edges to the above

graph.

Let

cN(a, b) =
(2πN)d/2

ZN

e−NHi

2πN
c(a, b) , a , b ∈ S .

It follows from Theorem 2.2.1 and from a calculation that

cN(a, b) =

[1 + oN(1)]
1

2

{
capN(EaN , ĔaN) + capN(EbN , ĔbN) − capN

(
EaN ∪ EbN ,∪c 6=a,bEcN

)}
,

(2.2.5)

where, ĔaN = ∪c 6=aEcN . This explains the definition of cN(a, b). Moreover, by [3,

Lemma 6.8], cN(a, b) is equal to µN(EaN)rN(EaN , EbN), where rN = r1
N represents the

average rates introduced below in (2.6.1).
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For two disjoint subsets A, B of S, denote by capG(A,B) the conductance be-

tween A and B. To define the conductance, denote by {Yk : k ≥ 0} the discrete-time

random walk on S which jumps from a to b with probability

p(a, b) =
c(a, b)∑
b′∈S c(a, b

′)
· (2.2.6)

Denote by PYa , a ∈ S, the distribution of the chain Yk starting from a and by VA,B,

A, B ⊂ S, A ∩B = ∅, the equilibrium potential between A and B:

VA,B(b) = PYb
[
HA < HB

]
, b ∈ S ,

where HC , C ⊂ S, represents the hitting time of C: HC = min{k ≥ 0 : Yk ∈ C}.
The conductance between A and B is defined as

capG(A,B) =
1

2

∑
a,b∈S

c(a, b)
[
VA,B(b)− VA,B(a)

]2
.

By [30, Proposition 3.1.2] the conductance between A and B coincides with the

capacity between A and B. The next result establishes that the capacities for the

chain XN(t) can be computed from the conductances on the finite graph G.

Theorem 2.2.2. For every disjoint subsets A, B of S,

capN(EN(A),EN(B)) = [1 + oN(1)]
(2πN)d/2

ZN

e−NHi

2πN
capG(A,B) .

Remark 2.2.3. It follows from the proofs of Theorems 2.2.1 and 2.2.2 that both

statements remain in force if we replace the sets EaN by singletons {xaN}, where

xaN ∈ EaN . In this case the sets EN(A) become {xaN : a ∈ A}.

C. Metastability. The Markov chain XN(t) exhibits a metastable behavior among

the wells of each connected component Ωi
j. The description of this behavior requires

some further notation.

Recall that ha = F (ma,1) represents the value of F at a deepest minima of

the well Wa. Let θ̂a = Hi − ha > 0, a ∈ S, be the depth of the well Wa. The

depths θ̂a provide the time-scale at which a metastable behavior is observed. Let

θ1 < θ2 < · · · < θn, n ≤ `, be the increasing enumeration of the sequence θ̂a,

1 ≤ a ≤ `:

{θ̂1, . . . , θ̂`} = {θ1, . . . , θn} .

Of course, n and θm depend on the component Ωi
j. If we need to stress this depen-

dence, we will denote n, θm by ni,j, θ
i,j
m , respectively.

The chain exhibits a metastable behavior on n different time scales in the set Ω.

Let Tm = {a ∈ S : θ̂a = θm}, 1 ≤ m ≤ n, so that T1, . . . , Tn forms a partition of S,

and let

Sm = Tm ∪ · · · ∪ Tn , 1 ≤ m ≤ n .
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Define the projection Ψm
N : ΞN → Sm ∪ {N}, 1 ≤ m ≤ n, as

Ψm
N(x) =

∑
a∈Sm

a1
{
x ∈ EaN

}
+ N 1

{
x 6∈

⋃
a∈Sm

EaN

}
. (2.2.7)

Denote by Xm
N(t) the projection of the Markov chain XN(t) by Ψm

N :

Xm
N(t) = Ψm

N(XN(t)) .

Fix 1 ≤ m ≤ n. We introduce some notation to define the asymptotic dynamics

of the process Xm
N(t). The time scale in which the process Xm

N evolves, denoted by

βm = βm(N), is given by

βm = 2πN eθmN .

For a, b in Sm, let

cm(a, b) =
1

2

{
capG({a}, Sm\{a}) + capG({b}, Sm\{b})−capG({a, b}, Sm\{a, b})

}
.

(2.2.8)

Note that cm(a, b) represents the conductance between a and b for the electrical

circuit obtained from G by removing the vertices in Scm. In particular, c1(a, b) =

c(a, b) for a, b ∈ Sm. Let

rm(a, b) =

{
cm(a, b)/µ(a) a ∈ Tm , b ∈ Sm ,

0 a ∈ Sm+1 , b ∈ Sm .
(2.2.9)

Recall from [33] the definition of the soft topology.

Theorem 2.2.4. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i, 1 ≤ m ≤ ni,j, a ∈ Sm and a

sequence of configurations xN in EaN . Under PxN , the time re-scaled projection

Xm
N(t) = Xm

N(tβm) converges in the soft topology to a Sm-valued continuous-time

Markov chain Xm(t) whose jump rates are given by (2.2.9). In particular, the points

in Sm+1 are absorbing for the chain Xm(t).

Remark 2.2.5. Theorem 2.2.4 states that the weighted graph G, the measure µ and

the sequence βm(N) describe the evolution of the chain XN(t) in the connected com-

ponent Ω. The weighted graph with multiple edges would describe more accurately

the chain XN(t), providing the probability that the chain leaves a well Wa through a

mesoscopic neighborhood of a saddle point z ∈ S. This statement is made precise

in Theorem 2.2.7 below.

Remark 2.2.6. Nothing prevent two time-scales at different levels to be equal, or

two time scales in different connected components of the same level to be equal. It

is possible that θi,jm = θi
′,j′

m′ for some i 6= i′ or that θi,jm = θi,j
′

m′ for some j 6= j′.
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D. Exit points from a well. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i, and recall that we

denote by Wa = W i
j,a, a ∈ S = {1, . . . , `ij}, the wells which form the connected

component Ωi
j. The last result of this article states that the chain XN(t) leaves the

set Wa through a neighborhood of a saddle point z in the boundary of Wa with

probability ω(z)/
∑

z′ ω(z′), where the summation is carried over all saddle points

in the boundary of Wa and where

ω(z) =
µ(z)√

− det HessF (z)
· (2.2.10)

Let δN be a sequence such that δN � N−3/4, Nd+1 exp{−NδN} → 0. Denote by

ΩN = Ωi
j,N the connected component of the set {x ∈ Ξ : F (x) ≤ Hi + δN} which

contains Ωi
j. Since δN ↓ 0, for N large enough, Ωi

j,N ∩ Ωi
j′,N = ∅ for all j′ 6= j. In

particular, for N large enough there is a one-to-one correspondance between Ωi
j and

Ωi
j,N .

Fix a ∈ S and let Sa be the set of saddle points in the boundary of Wa,

Sa = ∪b∈S,b6=a Sa,b. Denote by ∂ΩN the boundary of ΩN and by Bε(x) the open

ball of radius ε > 0 around x ∈ Ξ. We modify the set ∂ΩN around each saddle

point z ∈ Sa to obtain a closed manifold Da ⊂ ΩN .

Fix a saddle point z ∈ Sa and recall condition (H3) on F . Denote by −µ < 0 <

λ2 ≤ · · · ≤ λd the eigenvalues of HessF (z), and by v, wi, 2 ≤ i ≤ d, an associated

orthonormal basis of eigenvectors. Let H = Hz be the (d−1)-dimensional hyperplane

generated by the vectors wi, 2 ≤ i ≤ d. By a Taylor expansion, there exists ε > 0

such that

F (x) ≥ Hi +
λ2

4
‖x− z‖2 (2.2.11)

for x ∈ z + H = {z + y : y ∈ H} such that ‖x− z‖ ≤ ε. Let

Dz =
{
y ∈ (z + H) ∩Bε(z) : F (y) ≤ Hi + δN

}
. (2.2.12)

z + H
ΩN

vz

Figure 2.3: In gray the set Dz.

We intersected the set z + H with the set Bε(z) to avoid including in Dz points

which are far from z.
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The set Da = DN
a is defined as follows. For each z ∈ Sa, remove from ∂ΩN the

set (z + H) ∩ ∂ΩN ∩ Bε(z). As before, the set Bε(z) has been introduced to avoid

removing from ∂ΩN points which are far from z. Denote by Ω1
N the set obtained

after this operation, which is a finite union of connected sets. Remove from Ω1
N all

connected component which contain a point close to some saddle point which does

not belong to Sa. Denote this new set by Ω2
N . Da is the union of Ω2

N with all set

Dz, z ∈ Sa:

Da =
⋃

z∈Sa

Dz ∪ Ω2
N .

Denote by Da, Dz ⊂ ΞN the discretizations of the sets Da and Dz, that is

Da = {x ∈ ΞN : d(x, Da) ≤ 1/N}, where d stands for the Euclidean distance,

d(x, A) = infy∈A ‖x− y‖.

Theorem 2.2.7. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i, and a ∈ S = {1, . . . `ij}. Let . For all

z ∈ Sa, and all sequences {xN : N ≥ 1}, xN ∈ EaN ,

lim
N→∞

PxN

[
HDa = HDz

]
=

ω(z)∑
z′∈Sa ω(z′)

·

The proof of Lemma 2.7.1 yields the last result.

Proposition 2.2.8. Let D ⊂ Ξ be a domain with a smooth boundary, and let m =:

infy∈∂D F (y). Fix a sequence {εN : N ≥ 1} of positive numbers such that limN N
d+1

exp{−NεN} = 0, and let DN = ΞN ∩D, BN = {x ∈ ∂DN : F (x) ≤ m+ 2εN}. Fix

a point x ∈ D such that F (x) < m and for which there exists a continuous path

x(t), 0 ≤ t ≤ 1, from BN to x such that F (x(t)) ≤ m+ εN for all 0 ≤ t ≤ 1. Then,

lim
N→∞

PxN

[
H∂DN = HBN

]
= 1 ,

where xN ∈ DN , ‖xN − x‖ ≤ 1/N .

We conclude this section with some comments. Bianchi, Bovier and Ioffe [10, 11]

examined the metastable behavior of the Curie-Weiss model with random external

fields. In this case the potential F becomes a sequence of potentials FN which

converges to some function F∞. The authors assumed that the parameter of the

model, the distribution of the external field, were chosen to guarantee that all wells

do not have saddle points at the same height. In this case, the metastable behavior

of the chain consists in staying for an exponential time in some well and then to

jump to a deeper well in which the chain remains trapped for ever.

To observe a metastable behavior similar to the one described in Theorem 2.2.4,

one has to tune the distribution of the external field in a way that the wells associated

to F∞ have more than one saddle point at the same height. In this case, however,

the metastable behavior might depend on the subsequence of N .
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To illustrate this possibility, consider the following one-dimensional example. Let

FN be a sequence of potentials which converge uniformly to a potential F∞. Fix

two local maxima of F∞, supposed to be at the same height, F∞(z) = F∞(z′), and

assume that the interval (z, z′) is a well, F∞(x) < F∞(z) for z < x < z′. Suppose

also that FN has two local maxima zN , z′N such that zN → z, z′N → z′, that

(zN , z
′
N) is a well for FN , and that there exists subsequences N ′ and N ′′ such that

N ′
[
FN ′(z

′
N ′)− FN ′(zN ′)

]
≤ −ε , N ′′

[
FN ′′(z

′
N ′′)− FN ′′(zN ′′)

]
≥ ε

for some ε > 0. In this case, in view of the results presented in this section, starting

from a local minima in (zN , z
′
N), along the subsequence N ′, almost surely the chain

will escape from (zN , z
′
N) through a neighborhood of z′N , while along the subse-

quence N ′′ almost surely it will escape from (zN , z
′
N) through a neighborhood of

zN .

This is what happens for the Curie-Weiss model with an external field, random or

not, if there exist saddle points at the same height. For the metastable behavior not

to depend on particular subsequences, one needs to impose some strong conditions

on the asymptotic behavior of the sequence FN .

The article is divided as follows. In Section 2.3 we prove the upper bound for

the capacities appearing in the statement of Theorem 2.2.1 and in Section 2.4 the

lower bound. In Section 2.5 we prove Theorem 2.2.2, in Section 2.6, Theorem 2.2.4,

and in Section 2.7, Theorem 2.2.7.

2.3 Upper bound for the capacities

We prove in this section the upper bound of Theorem 2.2.1. The proof is based

on ideas of [17, 10, 11] and on the Dirichlet principle [30, Proposition 3.1.3] which

expresses the capacity between two sets as an infimum of the Dirichlet form: for two

disjoint subsets A, B of ΞN ,

capN(A,B) = inf
f
DN(f) ,

where the infimum is carried over all functions f : ΞN → R such that f(x) = 1,

x ∈ A, f(y) = 0, y ∈ B, and where DN(f) stands for the Dirichlet form of f ,

DN(f) =
∑
x∈ΞN

f(x) (−LNf)(x)µN(x) =
1

2

∑
x,y∈ΞN

µN(x)RN(x,y)[f(y)− f(x)]2 .

Proposition 2.3.1. For every proper subset A of {1, . . . , `},

lim sup
N→∞

ZN
(2πN)d/2

2πN eNF (z) capN(EN(A),EN(Ac)) ≤
∑

z∈S(A)

µ(z)√
− det HessF (z)

·
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The proof of this proposition is divided in several lemmas. The main point is

that the capacities depend on the behavior of the function F around the saddle

points of F .

Fix a saddle point z of F and denote by M = (HessF )(z) the Hessian of F at z.

Denote by −µ the negative eigenvalue of M and by 0 < λ2 ≤ · · · ≤ λd the positive

eigenvalues. Let v, wi, 2 ≤ i ≤ d, be orthonormal eigenvectors associated to the

eigenvalues −µ, λi, respectively. We sometimes denote v by w1 and −µ by λ1.

Let V the (d× d)-matrix whose j-th column is the vector wj and denote by V∗

its transposition. Denote by D the diagonal matrix whose diagonal entries are λi
so that M = VDV∗. Let D? be the matrix D in which we replaced the negative

eigenvalue λ1 by its absolute value µ and let

M? = VD?V∗ . (2.3.1)

Clearly, detM = − detM?.

Let BN = Bz
N be a mesoscopic neighborhood of z:

BN =
{
x ∈ ΞN : |(x− z) · v| ≤ εN , max

2≤j≤d
|(x− z) ·wj| ≤ 2

√
µ/λjεN

}
, (2.3.2)

where N−1 � εN � 1 is a sequence of positive numbers to be chosen later. Unless

needed, we omit the index z from the notation Bz
N . Denote by ∂BN the outer

boundary of BN defined by

∂BN = {x ∈ ΞN \BN : ∃y ∈ BN s.t. ‖y − x‖ = N−1} , (2.3.3)

and let ∂−BN , ∂+BN be the pieces of the outer boundary of BN defined by

∂−BN = {x ∈ ∂BN : (x− z) · v < −εN} ,
∂+BN = {x ∈ ∂BN : (x− z) · v > εN} .

The Dirichlet forms in the sets BN

Denote by DN(f ;BN) the piece of the Dirichlet form of a function f : ΞN → R
corresponding to the edges in the set BN :

DN(f ;BN) =
d∑
i=1

∑
x∈BN

µN(x)RN(x,x+ ei) [f(x+ ei)− f(x)]2 ,

where {e1, . . . , ed} is the canonical basis of Rd and ei = N−1ei.

Let µz
N be the measure on BN given by

µz
N(x) =

1

ZN
e−NF (z) e−(1/2)N(y·My) ,
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where y = x− z, and where v ·w represents the scalar product between v and w.

Denote by Dz
N the Dirichlet form defined by

Dz
N(f) =

d∑
i=1

∑
x∈BN

µz
N(x) [f(x+ ei)− f(x)]2 . (2.3.4)

The next assertion follows from an elementary computation and from assumption

(H1).

Assertion 2.3.A. For every function f : ΞN → R,

DN(f ;BN) =
[
1 +O(εN) +O(Nε3

N)
]
Dz
N(f) .

The equilibrium potential

We introduce in this subsection an approximation in the set BN of the solution to the

Dirichlet variational problem for the capacity. To explain the choice, consider a one-

dimensional random walk on the interval IN = {−KN/N, . . . , (KN − 1)/N,KN/N}
whose Dirichlet form DN is given by

DN(f) =
∑
k

eµNk
2

[f(k +N−1)− f(k)]2 ,

where the sum is performed over k ∈ IN , k 6= KN/N . An elementary computation

shows that the equilibrium potential V (k/N) = Pk/N [HKN/N < H−KN/N ] is given by

V (k/N) =

∑(k−1)/N
j=−KN/N e

−µNj2∑(KN−1)/N
j=−KN/N e

−µNj2
∼
∫ k/N
−∞ e−µNr

2
dr∫∞

−∞ e
−µNr2 dr

,

where the last approximation holds provided
√
N � KN � N .

In view of the previous observation, let f : R→ R+ be given by

fN(r) =

∫ r
−∞ e

−(1/2)Nµs2 ds∫∞
−∞ e

−(1/2)Nµs2 ds
=

√
Nµ

2π

∫ r

−∞
e−(1/2)Nµs2 ds .

The function VN defined below is an approximation on the set BN for the equilibrium

potential between ∂−BN and ∂+BN :

VN(x) = V z
N (x) = fN([x− z] · v) . (2.3.5)

Assertion 2.3.B. Assume that N−1/2 � εN � N−1/3. Then,

ZN
(2πN)d/2

2πN eNF (z) DN(VN ;BN) = [1 + oN(1)]
µ√

− det HessF (z)
·
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Proof. By Assertion 2.3.A, it is enough to estimate Dz
N(VN). By definition of the

Dirichlet form Dz
N ,

ZN e
NF (z) Dz

N(VN) =
d∑
i=1

∑
x∈BN

e−(1/2)N (y·My) [VN(x+ ei)− VN(x)]2 ,

where y = x − z. Denote by v1, . . . ,vd the coordinates of the vector v and recall

that ‖v‖ = 1. Recall the definition of the matrix M? introduced in (2.3.1). Since

(y ·My) =
∑

1≤j≤d λj(y ·wj)2, by definition of VN this sum is equal to

[1 + oN(1)]
µ

2πN

d∑
i=1

v2
i

∑
x∈BN

e−(1/2)N (y·My) e−µN(y·v)2

= [1 + oN(1)]
µ

2πN

∑
x∈BN

e−(1/2)N (y·M? y) .

Let w =
√
Ny =

√
N [x− z] so that w ∈ N−1/2Zd, to rewrite the previous sum as

[1 + oN(1)]
µ

2πN

∑
w

e−(1/2) (w·M?w) ,

where the sum is performed over w such that |w · v| ≤ N1/2εN and |w · wj| ≤
2
√
µ/λjN

1/2εN , 2 ≤ j ≤ d. Since, by assumption, N1/2εN ↑ ∞, this expression is

equal to

[1 + oN(1)]
µ

2πN
Nd/2

∫
Rd
e−(1/2) (w·M?w)dw .

The previous integral is equal to (2π)d/2{detM?}−1/2 = (2π)d/2{− detM}−1/2, which

completes the proof of the assertion.

We conclude the proof of Proposition 2.3.1 extending the definition of VN to

the entire set ΞN and estimating its Dirichlet form. We denote by ∂inBN the inner

boundary of BN , the set of points in BN which have a neighbor in ΞN \ BN . Let

B∗N , ∂in
±BN be the (d− 1)-dimensional sections of the boundary ∂BN , ∂inBN :

B∗N =
⋃

2≤j≤d

{
x ∈ ∂BN : |(x− z) ·wj| > 2

√
µ/λjεN

}
,

∂in
±BN = {x ∈ ∂inBN : ∃y ∈ ∂±BN s.t. ‖y − x‖ = N−1} .

Assertion 2.3.C. For all N sufficiently large,

inf
x∈B∗N

F (x) ≥ F (z) + µ ε2
N .
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Proof. Indeed, by a Taylor expansion of F around z, for x ∈ B∗N ,

F (x) = F (z) + (1/2)(x− z) ·M (x− z) + O(ε3
N) .

The second term on the right hand side is equal to (1/2)
∑

1≤j≤d λj [(x− z) ·wj]2.

Since λ1 = −µ, λj > 0 for 2 ≤ j ≤ d, and x belongs to B∗N , for N sufficiently large

the previous expression is bounded below by

F (z) +
3µ

2
ε2
N + O(ε3

N) ≥ F (z) + µ ε2
N ,

which proves the claim.

Let ϑ = min{µ(z) : z ∈ S(A)}. Denote by U the connected component of

the set {x ∈ Ξ : F (x) < F (z) + ϑ ε2
N} which contains a set Wa, a ∈ A, and let

UN = U∩ΞN . The set UN may be decomposed in disjoint sets. Let Bz
N = UN ∩Bz

N ,

z ∈ S(A), VN = UN \ ∪z∈S(A)B
z
N so that

UN = VN ∪
⋃

z∈S(A)

Bz
N .

Figure 2.4 represents the sets UN and Bz
N . By Assertion 2.3.C, the set VN is formed

by several connected components separated by the sets Bz
N , z ∈ S(A). In Figure 2.4,

for example, the set VN is composed of 4 connected components. Let VAN be the

union of all connected components of VN which contains a point in Wa, a ∈ A, and

let VBN = VN \ VAN .

Figure 2.4: In red the boundary of the set UN . In dark gray the wells W ε
b , b ∈ A. In blue

the boxes Bz
N , z ∈ S(A).

For each z ∈ S(A), choose an orthonormal basis of (HessF )(z) in such a way

that the eigenvector v(z) points to the direction of EN(A). Define V A
N : ΞN → [0, 1]
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by

V A
N (x) =

{
0 x ∈ VBN ,

1 x ∈ VAN ,
V A
N (x) =

{
V z
N (x) x ∈ Bz

N ,

(1/2) otherwise,

where V z
N is the function defined in (2.3.5).

Assertion 2.3.D. Let εN be a sequence such that Nε3
N → 0, exp{−Nε2

N} converges

to 0 faster than any polynomial. Then,

ZN
(2πN)d/2

2πN eNF (z) DN(V A
N ) ≤ [1 + oN(1)]

∑
z∈S(A)

µ(z)√
− det HessF (z)

·

Proof. We estimate the Dirichlet form of V A
N inside the sets Bz

N , z ∈ S(A), at the

boundary of UN , and at the boundary of Bz
N which is contained in UN .

Denote by ∂UN the outer boundary of UN . The contribution to the Dirichlet

form DN(V A
N ) of the edges in ∂UN is less than or equal to

d∑
i=1

∑
x∈∂UN

µN(x)[RN(x,x+ ei) +RN(x,x− ei)] ≤
C0

ZN
e−NF (z)

∑
x∈∂UN

e−ϑNε
2
N ,

where C0 denotes a finite constant which does not depend on N and whose value

may change from line to line. The sum on the right hand side is bounded by

C0N
d−1e−ϑNε

2
N , which vanishes as N ↑ ∞ in view of our choice of εN .

Let R±N(z) = ∂in
±B

z
N ∩ UN , z ∈ S(A). we estimate the contribution to the

Dirichlet form DN(V A
N ) of the edges in R−N(z), the one of R+

N(z) being analogous.

By the definition of V A
N this contribution is bounded by

d∑
i=1

∑
x∈R−N (z)

µN(x) [RN(x,x+ ei) +RN(x,x− ei)]V z
N (x)2 ,

≤ C0

ZN
e−NF (z)

∑
x∈R−N (z)

e−(1/2)N(y·Mzy)V z
N (x)2 ,

(2.3.6)

where y = x− z. In the remainder of this paragraph we omit the dependence on z

in the notation. Since x belongs to BN , exp{−(1/2)N(y ·My)} is less than or equal

to exp{(1/2)µNε2
N} exp{−(1/2)N

∑
2≤j≤d λj(y · wj)2}. On the other hand, by a

change of variables,

VN(x)2 =
( 1√

2π

∫ (Nµ)1/2(y·v)

−∞
e−r

2/2 dr
)2

.

Since x belongs to ∂in
−BN , y ·v ≤ −εN+C0N

−1. The previous expression is therefore

less than or equal to (C0/Nε
2
N) exp{−µNε2

N} because
∫

(−∞,A]
exp{−(1/2)r2}dr ≤
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|A|−1 exp{−(1/2)A2} for A < 0. This proves that the sum appearing in (2.3.6) is

less than or equal to C0N
d−1 exp{−(1/2)µNε2

N}, which vanishes as N ↑ ∞, in view

of the definition of εN .

Since, for each z ∈ S(A), the set Bz
N is contained in Bz

N , the contribution to

the Dirichlet form of the bonds in the set Bz
N is less than or equal to DN(VN ;Bz

N).

To conclude the proof it remains to recall Assertion 2.3.B.

2.4 Lower bound for the capacities

We prove in this section the lower bound of Theorem 2.2.1. The proof is based on

the arguments presented in [10, 11].

Proposition 2.4.1. For every proper subset A of {1, . . . , `},

lim inf
N→∞

ZN
(2πN)d/2

2πN eNF (z) capN(EN(A),EN(Ac)) ≥
∑

z∈S(A)

µ(z)√
− det HessF (z)

·

The idea of the proof is quite simple. It is based on Thomson’s principle [30,

Proposition 3.2.2] which expresses the inverse of the capacity as an infimum over

divergence free, unitary flows. The construction of a unitary flow from EN(A) to

EN(Ac) will be done in two steps. We first construct a unitary flow from EN(A) to

EN(Ac) for each saddle point z ∈ S(A). Then, we define a unitary flow from EN(A)

to EN(Ac) as a convex combination of the unitary flows defined in the first step.

Step 1: Flows associated to saddle points. The main difficulty of the proof of

Proposition 2.4.1 consists in defining unitary flows associated to saddle points. Fix

z ∈ S(A) and two wells Wa, Wb such that a ∈ A, b ∈ Ac, z ∈ Wa ∩Wb. Assume,

without loss of generality, that all coordinates of the vector v are non-negative. Let

BN be the subset defined by

BN =
{
x ∈ ΞN : |(x− z) · v| ≤ εN , max

2≤j≤d
|(x− z) ·wj| ≤ εN

}
,

where εN is a sequence such that Nε3
N → 0, exp{−Nε2

N} converges to 0 faster than

any polynomial. Note that the definition of the set BN changed with respect to the

one of the previous section.

Keep in mind that we assumed v to be a vector with non-negative coordinates.

Denote by N(v) the set of positive coordinates of v, N(v) = {j : vj > 0}. Let Qo
N

be the cone Qo
N = {x ∈ N−1Zd : xj ≥ 0 , j ∈ N(v) and xj = 0 , j 6∈ N(v)}, and let

Qx
N , x ∈ N−1Zd, be the cone Qo

N translated by x, Qx
N = {x+ x′ : x′ ∈ Qo

N}.
Denote by ∂in

−BN the inner boundary of BN , defined as ∂in
−BN = {x ∈ BN :

∃ j s.t. [x − z − ej] · v < −εN}. Denote by Q+
N the set of all cones with root in

∂in
−BN , Q+

N = ∪x∈∂in−BNQ
x
N , and let

QN =
{
x ∈ Q+

N : (x− z) · v ≤ εN
}
.
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Note that BN ⊂ QN . Figure 2.5 represents the sets BN , QN .

QN

v

BN

z

Figure 2.5: The vector v, the set BN in dark gray, and the set QN in light gray.

There exists a finite constant C0, independent of N , such that for all N ≥ 1,

max
2≤k≤d

max
x∈QN

| (x− z) ·wk | ≤ C0 εN . (2.4.1)

Indeed, if x belongs to QN , x = x′ + x′′, where x′ ∈ ∂in
−BN and x′′ ∈ Qo

N . On the

one hand, x′ ∈ BN so that | (x′ − z) · wk | ≤ εN for all k and N . On the other

hand, x′′ · v = [x − z] · v − [x′ − z] · v. The first term is bounded by εN because

x belongs to QN . As x′ ∈ BN , the second term is absolutely bounded by εN . This

proves that x′′j ≤ C0 εN for all j ∈ N(v). The inequality holds trivially for j 6∈ N(v)

from what we conclude that there exists C0 such that x′′j ≤ C0 εN for all j and N .

Assertion (2.4.1) follows from this bound and from the bounds obtained on x′.

Denote by ∂BN the external boundary of the set BN , the set of sites which do

not belong to BN and which have a neighbor in BN : ∂BN = {x 6∈ BN : ∃ j s.t. x+

ej or x− ej ∈ BN}. Two pieces of the external boundary of BN play an important

role in the proof of the lower bound for the capacity. Denote by ∂±BN the sets

∂−BN =
{
x ∈ ∂BN : (x−z)·v < −εN

}
, ∂+BN =

{
x ∈ ∂BN : (x−z)·v > εN

}
.

Denote by ∂+QN the outer boundary of QN defined by ∂+QN = {x ∈ ΞN :

[x − z] · v > εN and ∃ j s.t. x − ej ∈ QN}. We shall construct a divergence free,

unitary flow from EaN to ∂−BN , one from ∂−BN to ∂+QN and a third one from ∂+QN

to EbN . The more demanding one is the flow from ∂−BN to ∂+QN .

1.A. Sketch of the proof. To explain the idea of the proof of this part, we first

consider the case where the eigenvector v associated to the negative eigenvalue of

(HessF )(z) is e1, the first vector of the canonical basis. In this case the cone Qo
N

introduced in the previous section is just a “straight line”: Qo
N = {(k/N, 0, . . . , 0) :

k ≥ 0} and ∂+QN coincides with ∂+BN .

We know that the optimal unitary flow from ∂−BNto ∂+BN is given by Φ̂(x,y) =

c(x,y)[V̂ (x) − V̂ (y)]/cap(∂−BN , ∂+BN), where c(x,y) = µN(x)RN(x,y) is the

conductance between the vertices x and y and V̂ is the equilibrium potential between

∂−BN and ∂+BN . We introduced in (2.3.5) an approximation V of the equilibrium
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potential V̂ . A calculation shows that the flow Φ(x,y) = c(x,y)[V (x) − V (y)] is

almost constant along the v direction. Hence, in the case where v = e1, a natural

candidate is a flow constant along the e1 direction. Denote a point x ∈ ΞN as

(x̂, x̌) where x̂ ∈ N−1Z and x̌ ∈ N−1Zd−1, and let B̌N = {x̌ ∈ N−1Zd−1 : ∃x ∈
N−1Z s.t. (x, x̌) ∈ BN},

Φ(x,y) =

{
Φ(x̌) if y = x+ e1, x ∈ BN ∪ ∂−BN ,

0 otherwise,

where Φ : B̌N → R+ is such that
∑

x∈B̌N Φ(x̌) = 1.

By Thomson’s principle, the inverse of the capacity is bounded above by the

energy dissipated by the flow Φ:

1

capN(∂−BN , ∂+BN)
≤ ‖Φ‖2 :=

∑
x∈BN∪∂−BN

1

c(x,x+ e1)
Φ(x,x+ e1)2 , (2.4.2)

By definition of the flow and by a second order Taylor expansion, the previous sum

is equal to

[1 + oN(1)]ZN e
NF (z)

∑
x∈BN∪∂−BN

e(N/2) (y·My) Φ(x̌)2 ,

provided Nε3
N → 0. In this equation, y = x− z. Recall from (2.3.1) the definition

of the matrices V, D. Let Ď be the diagonal matrix in which the entry λ1 = −µ has

been replaced by 0, and let M̌ be the symmetric matrix M̌ = VĎV∗. In particular,

for any vector y, y · M̌y =
∑

2≤k≤d λk(y ·wk)2, and y ·My = y · M̌y − µŷ2. With

this notation, and since y ·M̌y depends on y only as a function of y̌, we may rewrite

the previous sum as

[1 + oN(1)]ZN e
NF (z)

∑
x̌∈B̌N

e(N/2) (y·M̌y) Φ(x̌)2
∑
k

e−µ(N/2)k2 ,

where the second sum is performed over all k ∈ N−1Z such that −εN −N−1 ≤ k ≤
εN . The optimal choice of Φ satisfying

∑
x∈B̌N Φ(x̌) = 1 is

Φ(x̌) = e−(N/2) (y·M̌y)/
∑
x∈B̌N

e−(N/2) (y·M̌y) .

With this choice the previous sum becomes

[1 + oN(1)]ZN e
NF (z)

∑
k e
−µ(N/2)k2∑

x̌∈B̌N e
−(N/2) (y·M̌y)

·

At this point we may repeat the arguments presented at the end of the proof of

Assertion 2.3.B to conclude that the previous expression is equal to

[1+oN(1)]ZN e
NF (z) (2πN)

√
− detM/µ

(2πN)d/2
√
µ

= [1+oN(1)]ZN e
NF (z) (2πN)

√
− detM

(2πN)d/2µ
,
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In conclusion, we constructed a divergence free, unitary flow Φ from ∂−BN to

∂+BN whose dissipated energy, ‖Φ‖2, defined in (2.4.2) satisfies

lim
N→∞

(2πN)d/2

ZN

1

2πN
e−NF (z) ‖Φ‖2 =

√
− det[(HessF )(z)]

µ
·

1.B. A unitary flow from ∂−BN to ∂+QN . We turn now to the general case. We

learned from the previous example that the optimal flow is

Φ(x,y) = M−1
N c(x,y)[V (x)− V (y)],

where V is the function introduced in (2.3.5) and MN a constant which turns the

flow unitary. We thus propose the flow

Φ(x,x+ ej) =

√
− detM/µ

(2πN)(d−1)/2
vj e

−(N/2)y·M̌y . (2.4.3)

We claim that Φ is an essentially unitary flow:

d∑
j=1

∑
x∈∂j,−BN

Φ(x,x+ ej) = [1 + oN(1)] , (2.4.4)

where ∂j,−BN represents the set of points x ∈ ∂−BN such that x + ej ∈ BN . We

have to show that

d∑
j=1

vj
∑

x∈∂j,−BN

e−(N/2)y·M̌y = [1 + oN(1)]
(2πN)(d−1)/2√µ
√
− detM

· (2.4.5)

Fix 1 ≤ j ≤ d, and let V = {x ∈ Rd : [x − z] · v = −εN}. Denote by δ(x),

x ∈ ∂j,−BN , the amount needed to translate x in the ej-direction for x to belong to

V : x+δ(x)ej ∈ V . Observe that δ(x) ∈ (0, 1]. Let T (x) = x+δ(x)ej, x ∈ ∂j,−BN .

Since δ(x) is absolutely bounded by 1,

∑
x∈∂j,−BN

e−(N/2)y·M̌y = [1 + oN(1)]
∑

x∈∂j,−BN

exp
{
− (N/2)

d∑
k=2

λk{[T (x)− z] ·wk}2
}

Replacing x by
√
Nx, and approximating the sum appearing on the right hand side

by a Riemann integral, the previous term becomes

[1 + oN(1)]vj N
(d−1)/2

d∏
k=2

∫ √NεN
−
√
NεN

e−(1/2)λkr
2

dr

= [1 + oN(1)]vj (2πN)(d−1)/2

√
µ

√
− detM

,
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where vj appeared to take into account the tilt of the hypersurface V . Multiplying

the last term by vj and summing over j we get (2.4.5) because ‖v‖ = 1. This proves

that the flow Φ is essentially unitary, as stated in (2.4.4).

1.C. Turning the flow divergence free. In this subsection, we add a correction R

to the flow Φ to turn it divergence free. We start with an estimate on the divergence

of the flow Φ. Denote by (div Φ)(x) the divergence of the flow Φ at x:

(div Φ)(x) =
d∑
j=1

{Φ(x,x+ ej)− Φ(x− ej,x)} .

We claim that there exists a finite constant C0, independent of N , such that

max
i∈N(v)

max
x∈QN

∣∣∣ (div Φ)(x)

Φ(x,x+ ei)

∣∣∣ ≤ C0ε
2
N . (2.4.6)

Fix i ∈ N(v), x ∈ QN , and recall the definition of the flow Φ. By (2.4.1),

by definition of the matrix M̌ and by a second order Taylor expansion, for each

1 ≤ i ≤ d,

d∑
j=1

Φ(x,x+ ej)− Φ(x− ej,x)

Φ(x,x+ ei)
=

d∑
j=1

vj
vi

d∑
k=2

λk(ej ·wk)([x− z] ·wk) +O(ε2
N)

=
1

vi

d∑
k=2

λk(v ·wk)([x− z] ·wk) +O(ε2
N) .

The first term on the right hand side vanishes because v is orthogonal to wk, which

proves (2.4.6).

We now define a correction R to the flow Φ to turn it divergence free. Let

G0 = ∂−BN , G for generation. Define recursively the sets Gk, k ≥ 1, by

Gk+1 =
{
x ∈ QN : x− ej ∈

k⋃
`=0

G` ∪Qc
N for all j ∈ N(v)

}
, k ≥ 0 .

The first three generations are illustrated in Figure 2.6. Denote by KN the smallest

integer k such that QN ⊂ ∪1≤`≤kG`. Clearly, KN ≤ C0ε
−1
N for some finite constant

C0.

The flow R is also defined recursively. For all x ∈ G1, define R(x − ej,x) = 0,

1 ≤ j ≤ d, and let

R(x,x+ ej) = pj

{ d∑
i=1

R(x− ei,x) − (div Φ)(x)
}
, (2.4.7)

where pj = vj/
∑

1≤i≤d vi. Note that R(x,x + ej) = 0 if j 6∈ N(v) and that we

may restrict the sum over i to the set N(v). On the other hand, by construction,

(div R)(x) = −(div Φ)(x) for all x ∈ ∪1≤`≤KNG`.
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Figure 2.6: The first three generations. The red line represents the boundary of the

set QN , and the numbers the generation of each point.

There exists a finite constant C0 such that

max
i∈N(v)

max
x∈Gk

∣∣∣ R(x,x+ ei)

Φ(x,x+ ei)

∣∣∣ ≤ C0 k ε
2
N (2.4.8)

for all 1 ≤ k ≤ KN . This assertion is proved by induction. Since R(x − ej,x) = 0

for x ∈ G1, by (2.4.6), maxi∈N(v) maxx∈G1 |R(x,x + ei)/Φ(x,x + ei) | ≤ C1 ε
2
N ,

where C1 is the constant C0 appearing on the right hand side of (2.4.6).

Suppose that maxi∈N(v) maxx∈Gj |R(x,x + ei)/Φ(x,x + ei)| ≤ Cj ε
2
N for all

1 ≤ j ≤ k, where Cj is an increasing sequence. Fix i ∈ N(v) and x ∈ Gk+1. By

definition of R, by (2.4.6), and by the induction hypothesis,∣∣∣ R(x,x+ ei)

Φ(x,x+ ei)

∣∣∣ ≤ Ck ε
2
N pi

∑
j∈N(v)

Φ(x− ej,x)

Φ(x,x+ ei)
+ C0 ε

2
N .

The computations performed to prove (2.4.6) yield that the first term on the right

hand side is bounded by

Ck ε
2
N pi

∑
j∈N(v)

vj
vi

{
1 +

d∑
m=2

λm(ej ·wm)(y ·wm) + C0ε
2
N

}
= Ck ε

2
N

{
1 + C0ε

2
N

}
≤ Ck ε

2
N e

C0ε2N .

The identity has been derived using the definition of pj, the orthogonality of v and

wk, and summing first over j. We have thus obtained the recursive relation Ck+1 ≤
[C0 + Cke

C0ε2N ] from which it follows that Ck ≤ C0ke
C0kε2N . Since k ≤ KN ≤ C0ε

−1
N ,

(2.4.8) holds.
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1.D. A divergence free unitary flow. We construct in this subsection a divergence-

free, unitary flow from ∂−BN to ∂+QN whose energy dissipated is given by the right

hand side of (2.4.9).

Let Ψ be the flow from ∂−BN to ∂+QN defined by Ψ = Φ + R, where Φ is

introduced in (2.4.3) and R in (2.4.7). By (2.4.4) and by construction of R, Ψ

is a unitary flow. Since (div R)(x) = −(div Φ)(x) for all x ∈ ∪0≤`≤KNG`, Ψ is

divergence-free. It remains to show that the energy dissipated by Ψ satisfies

d∑
j=1

∑
x

1

c(x,x+ ej)
Ψ(x,x+ ej)

2

= [1 + oN(1)]
ZN

(2πN)d/2
2πN eNF (z)

√
− det[(HessF )(z)]

µ
·

(2.4.9)

A second order expansion of F (x) at z taking advantage of (2.4.1) and of the

fact that Nε3
N → 0 permits to write the left hand side of the previous equation as

[1 + oN(1)]ZN e
NF (z)

d∑
j=1

∑
x

e(N/2)(y·M·y) Ψ(x,x+ ej)
2 ,

where, as before, y = x−z. We may bound Ψ(x,x+ej)
2 by (1+εN)Φ(x,x+ej)

2 +

(1+ε−1
N )R(x,x+ej)

2, and apply (2.4.8) together with the fact that k ≤ KN ≤ C0ε
−1
N

to estimate the previous sum by [1 + O(εN)]Φ(x,x + ej)
2. The previous displayed

equation is therefore equal to the same sum with Ψ replaced by Φ. Replacing

Φ(x,x+ ej) by its value (2.4.3) the previous sum becomes

[1 + oN(1)]ZN e
NF (z) 1

(2πN)d−1

detM
−µ

d∑
j=1

v2
j

∑
x

e−(N/2)(y·M?·y) ,

where M? is the matrix introduced in (2.3.1). At this point it remains to recall that

v is a normal vector and to repeat the calculations performed in the proof of the

upper bound of the capacity to retrieve (2.4.9).

1.E. A unitary flow from EaN to ∂−BN . We extend in this section the flow Ψ

from ∂−BN to EaN . The same arguments permit to extend the flow Ψ from ∂+QN to

EbN . The idea is quite simple. For each bond (x,x+ej), x ∈ ∂−BN , x+ej ∈ BN , we

construct a path of nearest neighbor sites (x = x0,x1, . . . ,xn), xn ∈ EaN , from x to

EaN , and we define the flow Ψx,ej from x to EaN by Ψx,ej(x
k,xk+1) = −Ψ(x,x+ ej).

Adding all flows Ψx,ej we obtain a divergence free, unitary flow from ∂−BN to EaN
whose dissipated energy is easily estimated.

We start defining the paths. For y ∈ Rd, denote by [y] the vector whose j-th

coordinate is [yjN ]/N , where [a] stands for the largest integer less than or equal to

a ∈ R. Fix x ∈ ∂−BN . Denote by x(t) the solution of the ODE ẋ(t) = −∇F (x(t))
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with initial condition x(0) = x. Since [x − z] · v < 0, x(t) converges, as t → ∞,

to one of the local minima of F in Wa. Let T = inf{t > 0 : x(t) ∈ W o
a}, where W o

a

is an open set whose closure is contained in W ε
a , the set introduced in (2.2.2). Let

y0 = x,y1, . . . ,ym be the sequence of points in ΞN visited by the trajectory [x(t)],

0 ≤ t ≤ T . If necessary, add points to this sequence in order to obtain a sequence

x0 = x,x1, . . . ,xm
′

such that ‖xk − xk+1‖ = N−1. Remove from this sequence the

loops and denote by n the length of the path. Since F (x(t)) does not increase in

time, and since for all k there exists some 0 ≤ t ≤ T such that ‖xk − x(t)‖ ≤ d/N ,

there exists a finite constant C0 such that

F (xk) ≤ F (x) +
C0

N
for all 0 ≤ k ≤ n . (2.4.10)

Fix a bond (x,x + ej), x ∈ ∂−BN , x + ej ∈ BN . Define the flow Ψx,ej from x

to EaN by Ψx,ej(x
k,xk+1) = −Ψ(x,x + ej), 0 ≤ k < n. We claim that there exists

a finite constant C0 and a positive constant c0 such that

‖Ψx,ej‖2 ≤ C0NZNe
NF (z)e−c0Nε

2
N . (2.4.11)

The proof of this assertion is simple. Since Ψ(x,x+ ej) = Φ(x,x+ ej) is given by

(2.4.3), by (2.4.10) and by definition of the set A1
N ,

‖Ψx,ej‖2 ≤ C0ZN

n−1∑
k=0

eNF (xk)Φ(x,x+ ej)
2 ≤ C0ZNn

Nd−1
eNF (x)e−N(y·M̌y) .

By a second order Taylor expansion, expN{F (x)−(y ·M̌y)} is less than or equal to

C0 exp{NF (z)} exp{−(1/2)µNε2
N} because Nε3

N → 0 and [x− z] · v < −εN . This

proves (2.4.11) because n ≤ |ΞN |.
Let Ψ =

∑
x,j Ψx,ej , where the sum is carried over all x, j such that x ∈ ∂−BN ,

x + ej ∈ BN . Ψ is a unitary, divergence free flow from ∂−BN to EaN . Moreover, by

Schwarz inequality and by (2.4.11),

‖Ψ‖2 ≤ M
∑
x,j

‖Ψx,ej‖2 ≤ C0N
d+1ZNe

NF (z)e−c0Nε
2
N ,

where M represents the number of flows Ψx,ej .

Choosing εN appropriately and juxtaposing the flow just constructed with the

one obtained in Section 1.D and a flow from ∂+QN to EbN , similar to the one described

in this section, yields a divergence free, unitary flow from EaN to EbN , denoted by Φz,

such that

lim
N→∞

(2πN)d/2

ZN

1

2πN
e−NF (z) ‖Φz‖2 =

√
− det[(HessF )(z)]

µ(z)
. (2.4.12)

Step 2. Conclusion. Up to this point, for each saddle point z separating EN(A)

from EN(Ac) we constructed a divergence free, unitary flow Φz from EN(A) to EN(Ac)

Instituto de Matemática Pura e Aplicada 75 2014



CHAPTER 2. METASTABILITY OF REVERSIBLE RANDOM WALKS IN POTENTIAL FIELDS

for which (2.4.12) holds. Denote the right hand side of (2.4.12) by a(z) and observe

that F (z) is constant for z ∈ S(A).

Let Φ be a convex combination of the previous flows: Φ =
∑

z∈S(A) θzΦz, where

θz ≥ 0,
∑

z∈S(A) θz = 1. By construction, Φ is a flow from EN(A) to EN(Ac). On

the other hand, since the saddle points are isolated and since the main contribution

of the flow Φz occurs in a small neighborhood of z

lim sup
N→∞

(2πN)d/2

ZN

1

2πN
e−NF (z) ‖Φ‖2 ≤

∑
z∈S(A)

θ2
z a(z) .

The optimal choice for θ is θz = a(z)−1/
∑

z′ a(z′)−1. With this choice the right

hand side of the previous equation becomes (
∑

z∈S(A) a(z)−1)−1. Proposition 2.4.1

follows from Thomson’s principle and from the previous bound for the flow Φ.

2.5 Proof of Theorem 2.2.2

Theorem 2.2.2 follows from Propositions 2.5.1 and 2.5.2 below. Throughout this

section 1 ≤ i ≤ i0 and 1 ≤ j ≤ `i are fixed and dropped from the notation.

Proposition 2.5.1. For every disjoint subsets A, B of S,

capN(EN(A),EN(B)) ≤ [1 + oN(1)]
(2πN)d/2

ZN

e−NHi

2πN
capG(A,B) .

The proof of this proposition is similar to the one of Proposition 2.3.1 up to

Assertion 2.3.C. Recall the definition of the set UN . Denote by Si,j the set of all

saddle points in Ωi
j, and let Bz

N = UN ∩Bz
N , z ∈ Si,j, VN = UN \∪z∈Si,jBz

N so that

UN = VN ∪
⋃

z∈Si,j

Bz
N .

In contrast with Section 2.3, we define a set Bz
N around each saddle point z. By

Assertion 2.3.C, the set VN is formed by several connected components separated by

the sets Bz
N , z ∈ Si,j. Let VaN be the connected component of VN which contains a

point in Wa, a ∈ S.

Fix two disjoint subsets A, B of S and denote by VA,B the equilibrium potential

between A and B for the graph G. Fix a saddle point z ∈ Si,j and assume that

z ∈ Wa ∩Wb. Recall the definition of the function V z
N introduced in (2.3.5) and

assume without loss of generality that ∂−BN ∩Wa 6= ∅ so that ∂+BN ∩Wb 6= ∅.

Define W z
N : Bz

N → [0, 1] as

W z
N(x) = VA,B(a) + [VA,B(b)− VA,B(a)]V z

N (x) .
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Let V A,B
N : ΞN → [0, 1] by

V A,B
N (x) =


VA,B(a) x ∈ VaN ,

W z
N(x) x ∈ Bz

N ,

(1/2) otherwise.

Assertion 2.5.A. Let εN be a sequence such that Nε3
N → 0, exp{−Nε2

N} converges

to 0 faster than any polynomial. Then,

ZN
(2πN)d/2

2πN eNF (z) DN(V A,B
N ) ≤ [1 + oN(1)]DG(VA,B) ,

where DG(VA,B) represents the Dirichlet form of VA,B with respect to the graph G.

The proof of this assertion is similar to the one of Assertion 2.3.D. Proposi-

tion 2.5.1 follows from the last assertion and from the fact that capG(A,B) =

DG(VA,B).

We conclude the section with the proof of the lower bound.

Proposition 2.5.2. For every disjoint subsets A, B of S,

capN(EN(A),EN(B)) ≥ [1 + oN(1)]
(2πN)d/2

ZN

e−NHi

2πN
capG(A,B) .

Proof. Fix two disjoint subsets A, B of S. We construct below a divergence-free,

unitary flow Ψ from EN(A) to EN(B).

Recall that we denote by VA,B the equilibrium potential between A and B in

the graph G. Denote by ϕ = ϕA,B the flow from A to B in the graph G given by

ϕ(a, b) = c(a, b)[VA,B(a)− VA,B(b)]/capG(A,B), and observe that ϕ(a, b) = 0 if a, b

belong to A or if a, b belong to B. By [30, Proposition 3.2.2],

1

capG(A,B)
=

1

2

∑
a,b∈S

1

c(a, b)
ϕA,B(a, b)2 =: ‖ϕA,B‖2 . (2.5.1)

Assume first that each pair of wells has at most one saddle point separating

them, that is, assume that the sets Wa ∩Wb are either empty or singletons. In this

case, each edge (a, b) of the graph G corresponds to a unique saddle point z.

Denote by Φa,b, a 6= b ∈ S, c(a, b) > 0, the flow Φz constructed just above

(2.4.12) from EaN to EbN , where z ∈ Wa ∩Wb is the saddle point separating Wa and

Wb. Note that Φa,b 6= −Φb,a. We may assume that the flow Φa,b is a flow from xa to

xb, where xc, c ∈ S, are points in EcN . Define the flow Ψ by

Ψ(x,y) =
∑
a,b

ϕ(a, b) Φa,b(x,y) , x , y ∈ ΞN ,
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where the sum is carried out over all a 6= b ∈ S such that ϕ(a, b) > 0. We claim

that Ψ is a unitary, divergence-free flow from EN(A) to EN(B).

Clearly, ∑
x∈EN (A),y 6∈EN (A)

Ψ(x,y) =
∑
a,b

ϕ(a, b)
∑

x∈EN (A),y 6∈EN (A)

Φa,b(x,y) .

The flows Φa,b which cross EN(A) are the ones starting or ending at EN(A). Since,

in addition, ϕ(a, b) = 0 if a, b ∈ A, and ϕ(a, b) < 0 if a 6∈ A, b ∈ A, the previous

expression is equal to∑
a∈A,b 6∈A

ϕ(a, b)
∑

x∈EN (A),y 6∈EN (A)

Φa,b(x,y) =
∑

a∈A,b 6∈A

ϕ(a, b) ,

where the last identity follows from the fact that Φa,b is a unitary flow from EaN to

EbN . As ϕ is a unitary flow from A to B, the last sum is equal to 1, proving that Ψ

is unitary.

To prove that Ψ is divergence-free, fix a site x 6∈ {xc : c ∈ A ∪ B}. If x 6∈ {xc :

c ∈ S \ [A ∪B]}, Ψ has no divergence at x because it is the convex combination of

flows which have no divergence at x. If x = xc, c 6∈ A ∪ B, the flows Φa,b, a, b 6= c,

have no divergence at xc, while the divergence of Φa,c (resp. Φc,a) at xc is equal to

−1 (resp. 1) because these flows are unitary and end (resp. start) at xc. Therefore,

the divergence of Ψ at xc is equal to

(div Ψ)(xc) =
∑
a,b

ϕ(a, b) (div Φa,b)(x
c) = −

∑
a:ϕ(a,c)>0

ϕ(a, c) +
∑

a:ϕ(c,a)>0

ϕ(c, a) .

Since ϕ is a divergence-free flow in the graph G, this sum vanishes, which proves

that Ψ is also divergence-free at xc, c ∈ S \ [A ∪B].

We claim that the energy dissipated by the flow Ψ is given by

‖Ψ‖2 = [1 + oN(1)]
ZN

(2πN)d/2
2πN eNHi

1

capG(A,B)
. (2.5.2)

Indeed, by definition,

‖Ψ‖2 =
d∑
j=1

∑
x

1

c(x,x+ ej)
Ψ(x,x+ ej)

2 ,

where the second sum is performed over all x ∈ ΞN such that x + ej ∈ ΞN . By

definition of the flow Ψ, the previous sum is equal to∑
a,b

ϕ(a, b)2

d∑
j=1

∑
x

1

c(x,x+ ej)
Φa,b(x,y)2 (2.5.3)

+
∑

(a,b)6=(a′,b′)

ϕ(a, b)ϕ(a′, b′)
d∑
j=1

∑
x

1

c(x,x+ ej)
Φa,b(x,x+ ej)Φa′,b′(x,x+ ej) .
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By (2.4.9), the first line is equal to

[1 + oN(1)]
ZN

(2πN)d/2
2πN eNHi

∑
a,b

ϕ(a, b)2

√
− det[(HessF )(za,b)]

µ(za,b)
,

where za,b stands for the saddle point in Wa ∩ Wb and −µ(za,b) for the negative

eigenvalue of (HessF )(za,b). By (2.2.4) and by (2.5.1), the previous sum is equal to∑
a,b

1

c(a, b)
ϕ(a, b)2 =

1

capG(A,B)
·

We turn to the second line of (2.5.3). We have seen in the proof of Proposi-

tion 2.2.4 that the contribution of the bonds which do not belong to a mesoscopic

neighborhood of the saddle point za,b to the total energy dissipated by the flow Φa,b

is negligible. We may therefore restrict our attention in the second line of (2.5.3)

to the points x which belong to one of these neighborhoods. Since the flow Φz van-

ishes in a neighborhood of a saddle point z′ 6= z, the product Φa,b(x,y)Φa′,b′(x,y)

vanishes for all for (a, b) 6= (a′, b′) and all x in a neighborhood of some saddle point

z. In particular, the second line of (2.5.3) is of order

oN(1)
ZN

(2πN)d/2
2πN eNHi .

Assertion (2.5.2) follows from the estimates of the two lines of (2.5.3).

Since Ψ is a divergence-free unitary flow from EN(A) to EN(B), by Thomson’s

principle, and by (2.5.2),

1

capN(EN(A),EN(B))
≤ ‖Ψ‖2 = [1 + oN(1)]

ZN
(2πN)d/2

2πN eNHi
1

capG(A,B)
·

This completes the proof of the proposition in the case where there is at most one

saddle point between two wells.

In the general case, one has to change the definition of Ψ as follows. For each a,

b ∈ S such that ϕ(a, b) > 0, denote by z1
a,b, . . . ,z

n
a,b the set of saddle points between

Wa and Wb: Wa ∩Wb = {z1
a,b, . . . ,z

n
a,b}, where n = na,b. Set

Ψ =
∑
a,b

ϕ(a, b)
n∑
k=1

θk(a, b) Φzka,b
,

where the sum is carried out over all a 6= b ∈ S such that ϕ(a, b) > 0, where Φzka,b
is

the flow constructed just above (2.4.12) from EaN to EbN passing through the saddle

point zka,b, and where

θk(a, b) =
µ(zka,b)√

− det[(HessF )(zka,b)]

1

c(a, b)
.
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Note that
∑

k θk(a, b) = 1. The arguments presented above for the case where there

is at most one saddle point separating the wells can be easily adapted to the present

case.

2.6 Proof of Theorem 2.2.4

According to [33, Theorem 5.1], Theorem 2.2.4 follows from Proposition 2.6.1 below.

Recall the notation introduced in Section 2.2. Fix 1 ≤ i ≤ i0 and 1 ≤ j ≤ `i,

which are dropped out from the notation. Fix a connected component Ω = Ωi
j,

1 ≤ m ≤ n = ni,j and denote by Em,N the union of the wells EaN , a ∈ Sm, Em,N =

∪a∈SmEaN . As m is fixed throughout this section, it will sometimes be omitted from

the notation.

Denote by {Tm,N(t) : t ≥ 0} the additive functional

Tm,N(t) =

∫ t

0

1{XN(s) ∈ Em,N} ds ,

and by Sm,N(t) its generalized inverse: Sm,N(t) = sup{s ≥ 0 : Tm,N(s) ≤ t}. The

time-change process Xm,T
N (t) := XN(Sm,N(t)) is called the trace process of XN(t)

on Em,N . The process Xm,T
N (t) is a Em,N -valued, continuous-time Markov chain. We

refer to [3] for a summary of its properties.

Denote by Rm,T
N (x,y), x, y ∈ EN , the jump rates of the trace process. According

to [3, Proposition 6.1],

Rm,T
N (x,y) = λN(x) Px

[
H+

Em,N
= Hy

]
, x , y ∈ Em,N , x 6= y .

Denote by rmN (a, b) the average rate at which the trace process jumps from EaN to

EbN , a, b ∈ Sm:

rmN (a, b) :=
1

µN(EaN)

∑
x∈EaN

µN(x)
∑
y∈EbN

Rm,T
N (x,y) . (2.6.1)

Recall the definition of the projection Ψm
N introduced in (2.2.7). Denote by

Xm,T
N (t) the projection by Ψm

N of the trace process Xm,T
N (t), Xm,T

N (t) = Ψm
N(XT

N(t)).

Proposition 2.6.1. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i, 1 ≤ m ≤ ni,j, a ∈ Sm and

a sequence of configurations xN in EaN . Under PxN , the time re-scaled projection

of the trace Xm,T
N (t) = Xm,T

N (tβm) converges in the Skorohod topology to a Sm-

valued continuous-time Markov chain Xm(t) whose jump rates are given by (2.2.9).

Moreover, in the time scale βm, the time spent by the original chain XN(t) outside

Em,N is negligible: for all t > 0,

lim
N→∞

ExN

[ ∫ t

0

1{XN(sβm) 6∈ Em,N} ds
]

= 0 . (2.6.2)

Instituto de Matemática Pura e Aplicada 80 2014



CHAPTER 2. METASTABILITY OF REVERSIBLE RANDOM WALKS IN POTENTIAL FIELDS

Proof. By [3, Theorem 2.7], the first assertion of the proposition follows by Lemmata

2.6.2 and 2.6.3 below. We turn to the proof of the second assertion of the proposition.

Fix δ > 0 such that δ < Hi+1−Hi and let Ω̃i
δ = {x ∈ Ξ : F (x) ≤ Hi+δ}. Denote

by Ω̃δ = Ω̃i,j
δ the connected component which contains Ωi

j and let AN = Ω̃δ ∩ ΞN .

By the large deviations principle for the chain XN(t), for every T > 0 and every

sequence xN ∈ E1,N ,

lim
N→∞

PxN

[
HAcN

≤ Tβm
]

= 0 .

This statement can be proved as Theorem 4.2 of Chapter 4, or Theorem 6.2 of

Chapter 6 in [28]. It is therefore enough to prove (2.6.2) for the chain XN(t) reflected

at AN , the chain obtained by removing all jumps between AN and AcN .

Denote the reflected chain by X̃N(t), by µ̃N its stationary state, and by P̃x the

measure on the path space D(R+, AN) induced by the chain X̃N(t) starting from

x ∈ AN . Expectation with respect to P̃x is represented by Ẽx. We have to prove

(2.6.2) with XN(t), ExN replaced by X̃N(t), Ẽx, respectively. Equation (2.6.2) with

these replacements is represented as (2.6.2 ∗).
Let ∆m,N = AN\Em,N . By definition of the sets EaN , for a ∈ S1, µ̃N(∆1,N)/µ̃N(EaN)

is at most of the order exp{−N(θ1 − ε)}, where ε has been introduced right before

(2.2.2). For each fixed 1 < m ≤ n, a ∈ Sm, µ̃N(∆m,N)/µ̃N(EaN) is at most of the

order exp{−N(θm − θm−1 − ε)}. Therefore, for every 1 ≤ m ≤ n, a ∈ Sm,

lim
N→∞

µ̃N(∆m,N)

µ̃N(EaN)
= 0 . (2.6.3)

Fix 1 ≤ m < n, a ∈ Sm+1 and a sequence xN ∈ EaN . By the large deviations

principle for the chain X̃N(t), for every T > 0,

lim
N→∞

P̃xN

[
H(EaN )c ≤ Tβm

]
= 0 . (2.6.4)

By [3, Theorem 2.7], assertion (2.6.2 ∗) follows from the first part of this proposition

and from (2.6.3), (2.6.4), which concludes the proof.

Recall that we denoted by {ma,1, . . . ,ma,q}, q = qa, the deepest local minima of

F which belong to Wa.

Lemma 2.6.2. Under the hypotheses of Proposition 2.6.1, for every a ∈ Sm,

lim
N→∞

sup
y∈EaN

capN(EaN ,∪b∈Sm,b 6=aEbN)

capN({y}, {ma,1})
= 0 .

Proof. Fix a ∈ Sm, y ∈ EaN . We estimate capN({y, {ma,1}) through Thomson’s

principle. Let (y = x0,x1, . . . ,xm = ma,1) be a path γ from y to ma,1 so that

‖xi − xi+1‖ = 1/N . By Thomson’s principle,

1

capN({y}, {ma,1})
≤

m−1∑
j=0

1

µN(xj)RN(xj,xj+1)
·
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In view of the explicit formulas for the measure µN and the rates RN , there exists

a finite constant C0 such that

1

µN(xj)RN(xj,xj+1)
≤ C0 ZN e

NF (xi) .

It follows from the definition (2.2.2) of the set W ε
a that the path γ can be chosen

in such a way that F (xj) ≤ Hi − ε. The previous sum is thus bounded above by

C0 ZN N expN{Hi − ε}, where N has been introduced to take care of the length

of the path. This estimate is uniform over y ∈ EaN . To conclude the proof of the

lemma, it remains to recall the assertion of Theorem 2.2.2.

Lemma 2.6.3. Under the hypotheses of Proposition 2.6.1, for every a, b ∈ Sm,

lim
N→∞

βm r
m
N (a, b) = rm(a, b) ,

where the rates rm(a, b) are given by (2.2.9).

Proof. By [3, Lemma 6.8],

rmN (a, b) =
1

2

1

µN(EaN)

{
capN(EaN ,Em,N \ EaN) + capN(EbN ,Em,N \ EbN)

− capN(EaN ∪ EbN ,Em,N \ [EaN ∪ EbN ])
}
.

By (2.2.3),

µN(EaN) = [1 + oN(1)]
(2πN)d/2

ZN

e−NHi

2πN
βmµ(a) .

The assertion of the lemma follows from this equation, Theorem 2.2.2 and the defi-

nition of cm given just above (2.2.9).

We conclude this section with a calculation which provides an estimation for the

measure of the wells. Denote by m1, . . . ,mr the global minima of F on Ξ. We

claim that

lim
N→∞

eNF (m1)

(2πN)d/2
ZN =

r∑
k=1

1√
det[(HessF )(mk)]

· (2.6.5)

A similar argument yields (2.2.3).

Indeed, fix a sequence εN such that limN→∞Nε
3
N = 0 and for which exp{−Nε2

N}
vanishes faster than any polynomial. Fix 1 ≤ k ≤ r and denote by w1, . . . ,wd the

eigenvectors of (HessF )(mk) and by 0 < λ1 ≤ · · · ≤ λd the eigenvalues. Consider

the neighborhood BN of mk defined by

BN =
{
x ∈ ΞN : |(x−mk) ·wi| ≤ εN , 1 ≤ i ≤ d} .
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It follows from the assumptions on εN and on F , from a second-order Taylor expan-

sion of F around mk, and from a simple calculation that

lim
N→∞

eNF (m1)

(2πN)d/2

∑
x∈BN

e−NF (x) =
1√

det[(HessF )(mk)]
·

Denote by B
(2)
N the neighborhood of mk defined by

B
(2)
N =

{
x ∈ ΞN : ‖x−mk‖ ≤ λ1/(4C1)} ,

where C1 is the Lipschitz constant introduced in assumption (H1). Clearly, on B
(2)
N ,

F (x)−F (m1) ≥ (1/2)λ1‖x−mk‖2−C1‖x−mk‖3 ≥ (λ1/4)‖x−mk‖2. Therefore,

as ‖x−mk‖2 ≥ ε2
N on Bc

N and as N ε2
N →∞,

lim
N→∞

eNF (m1)

(2πN)d/2

∑
x∈B(2)

N \BN

e−NF (x) = 0 .

On the complement of the union of all B
(2)
N -neighborhoods of the global minima mk,

F (x)−F (m1) ≥ δ for some δ > 0. In particular the contribution to ZN of the sum

over this set is negligible. Putting together all previous estimates we obtain (2.6.5).

2.7 Proof of Theorem 2.2.7

We prove in this section Theorem 2.2.7. Recall the notation introduced in Subsection

2.2.D. Herafter, C0 represents a finite constant independent of N which may change

from line to line. We start with some preliminary results.

Lemma 2.7.1. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i, and a ∈ S = {1, . . . `ij}. Let Ba =

∪z∈SaDz. For any sequence {xN : N ≥ 1}, xN ∈ EaN ,

lim
N→∞

PxN

[
HDa = HBa

]
= 1 .

Proof. By [7, Lemma 4.3],

PxN [HDa < HBa ] ≤
capN(xN ,Da \Ba)

capN(xN ,Da)
·

Let V : ΞN → [0, 1] be the indicator of the set Da \ Ba. By the Dirichlet principle

and a straightforward computation,

capN(xN ,Da \Ba) ≤ DN(V ) ≤ C0Z
−1
N Nd exp{−N(Hi + δN)}.

On the other hand, it is not difficult to construct a divergence-free, unitary flow Φ

from Ba to xN , similar to the one presented in the proof of Lemma 2.6.2, such that

‖Φ‖2 ≤ C0ZNN exp{NHi}. Therefore, by Thomson’s principle, capN(xN ,Da)
−1 is

bounded by C0ZNN exp{NHi}, which proves the lemma in view of the definition of

the sequence δN .

Instituto de Matemática Pura e Aplicada 83 2014



CHAPTER 2. METASTABILITY OF REVERSIBLE RANDOM WALKS IN POTENTIAL FIELDS

Fix z ∈ Sa and recall that we denote by v = w1, wj, 2 ≤ j ≤ d, a basis

of eigenvectors of HessF (z), where v is the one associated to the unique negative

eigenvalue −µ. Let BN = Bz
N be a mesoscopic neighborhood of z:

BN =
{
x ∈ ΞN : |(x− z) · v| ≤ a εN , max

2≤j≤d
|(x− z) ·wj| ≤ εN

}
, (2.7.1)

where a = max{1, µ−1(1 +
∑

2≤j≤d λj)}, and εN is a sequence of positive numbers

such that N−2 � ε4
N � N−3/2, ε2

N � δN . The sets Dz, z ∈ Sa, are contained in

BN because, by (2.2.11) and (2.2.12),

sup
x∈Dz

‖x− z‖2 ≤ (4/λ2) δN . (2.7.2)

Recall from (2.3.3) the definition of the outer boundary ∂BN of BN , and let

∂−BN , ∂+BN be the pieces of the outer boundary of BN defined by

∂−BN = {x ∈ ∂BN : (x− z) · v < −a εN} ,
∂+BN = {x ∈ ∂BN : (x− z) · v > a εN} .

A Taylor expansion of F around z shows that

max
x∈∂−BN∪∂+BN

F (x) ≤ Hi −
1

2
ε2
N

(
1 +O(εN)

)
. (2.7.3)

Denote by HN the hitting time of the boundary ∂BN , and by H±N the hitting

time of the sets ∂±BN .

Proposition 2.7.2. For every z ∈ Sa,

lim
N→∞

max
x∈Dz

∣∣∣Px

[
HN = H±N

]
− 1

2

∣∣∣ = 0 .

Corollary 2.7.3. Let {xcN : N ≥ 1}, c ∈ S, be a sequence of points in EcN and let

Ŝ = ŜN = {xcN : c ∈ S}. Fix a 6= b ∈ S and z ∈ Sa,b. Then,

lim
N→∞

max
x∈Dz

∣∣∣Px

[
HŜ = HxcN

]
− q(c)

∣∣∣ = 0 ,

where q(a) = q(b) = 1/2 and q(c) = 0 for c ∈ S \ {a, b}.

Proof. Fix a 6= b ∈ S, c ∈ S, z ∈ Sa,b and x ∈ Dz. Since HN ≤ HŜ, by the strong

Markov property,

Px

[
HŜ = HxcN

]
= Ex

[
PXN (HN )

[
HŜ = HxcN

] ]
.

By the proposition, the previous expression is equal to∑
y∈∂±BN

Px

[
XN(HN) = y

]
Py

[
HŜ = HxcN

]
+ RN(x) ,
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where limN→∞maxx∈Dz |RN(x)| = 0.

Let x(t), 0 ≤ t ≤ 1, be a continuous path from xaN to xbN for which there exists

0 < t0 < 1 such that F (x(t)) < Hi for all t 6= t0 and x(t0) = z. Assume that this

path crosses BN only at ∂±BN and assume, without loss of generality, that it crosses

∂−BN before ∂+BN . In this case, an argument similar to the one presented in the

proof of Lemma 2.7.1 yields that

lim
N→∞

min
y∈∂+BN

Py

[
HŜ = HxbN

]
= 1 , lim

N→∞
min

y∈∂−BN
Py

[
HŜ = HxaN

]
= 1 .

In the proof of this assertion, instead of using an indicator function to bound from

above the capacity, as we did in the proof of Lemma 2.7.1, we use the function

constructed in Section 2.3. Note also that if the continuous path from xaN to xbN
crosses first ∂+BN and then ∂−BN , one has to interchange a and b in the previous

displayed formula.

Up to this point we showed that

Px

[
HŜ = HxcN

]
= Px

[
HN = H−N

]
1{c = a} + Px

[
HN = H+

N

]
1{c = b} + R′N(x) ,

where R′N(x) is a new sequence with the same properties as the previous one. To

complete the proof it remains to recall the statement of the proposition.

The proof of Proposition 2.7.2 is based on the fact that in a neighborhood of

radius N−1/2 around a saddle point z the re-scaled chain
√
NXN(tN) behaves as a

diffusion. More precisely, let g : Rd → R be a three times continuously differentiable

function and let G(x) = g(
√
N(x−z)·w1, . . . ,

√
N(x−z)·wd). A Taylor expansion

of the potential F around z gives that for x ∈ BN ,

(LNG)(x) =
1

N

d∑
j=1

{
− λjuj (∂xjg)(u) + (∂2

xj
g)(u)

}
+

RN

N
, (2.7.4)

where uj =
√
N(x− z) ·wj, and RN is an error term satisfying

|RN | ≤ C0Nε
2
N

{C1(g)√
N

+
C2(g)

N

}
+ C0

C3(g)√
N

.

In this formula, C1(g) = max1≤j≤d supu,‖u‖≤a
√
NεN
|(∂xjg)(u)|, with a similar def-

inition for C2(g) and C3(g), replacing first derivates by second and thirds. Iden-

tity (2.7.4) asserts that the process (
√
N(XN(tN)−z)·w1, . . . ,

√
N(XN(tN)−z)·wd)

is close to a diffusion whose coordinates evolve independently. The first coordinate

has a drift towards ±∞ proportional to its distance to the origin, while the other

coordinates are Ornstein-Uhlenbeck processes.

Lemma 2.7.4. There exists a finite constant C0 such that for every z ∈ Sa,

max
x∈Dz

Ex

[
HN

]
≤ C0N

3/2εN .
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Proof. Let g : R→ R be given by g(x) =
∫ x

0
exp{−µy2/2}

∫ y
0

exp{µz2/2}dzdy. It is

clear that g solves the differential equation µxg′(x)+g′′(x) = 1, x ∈ R. By Dynkin’s

formula, for every t > 0, x ∈ Dz,

Ex

[
G
(
XN(t ∧HN)

)
−G(x) −

∫ t∧HN

0

(LNG)(XN(s)) ds
]

= 0 , (2.7.5)

where G(x) = g(N1/2[x − z] · v). By (2.7.4) and since |g′(x)| ≤ C0, |g′′(x)| ≤
C0|x|, |g′′′(x)| ≤ C0x

2, on BN , N(LNG)(x)− 1 is absolutely bounded by C0

√
Nε2

N .

Therefore, (
1− C0

√
Nε2

N

)
Ex

[
t ∧HN

]
≤ N Ex

[
G
(
XN(t ∧HN)

)]
.

Since |g(x)| ≤ C0|x|, supx∈BN |G(x)| ≤ C0

√
NεN . To complete the proof of the

lemma, it remains to observe that
√
Nε2

N → 0 and to let t ↑ ∞.

Lemma 2.7.5. For every z ∈ Sa,

lim
N→∞

max
x∈Dz

Px

[
HN < H+

N ∧H
−
N

]
= 0 .

Proof. The proof is similar to the one of the previous lemma. Fix 2 ≤ j ≤ d and let

g : R → R be given by g(x) = x2. By Dynkin’s formula, for every t > 0, x ∈ Dz,

(2.7.5) holds with G(x) = g(N1/2[x−z] ·wj). By (2.7.4), (LNG)(x) ≤ (2 +RN)/N

and RN/N ≤ C0ε
3
N . Therefore, letting t ↑ ∞, by Lemma 2.7.4 we get that

Ex

[
G
(
XN(HN)

)]
≤ G(x) +

( 2

N
+ C0ε

3
N

)
Ex

[
HN

]
≤ G(x) + C0

( 1

N
+ C0ε

3
N

)
N3/2εN .

The event AN = {| (XN(HN)−z) ·wj | > εN} corresponds to the event that the

process XN(t) reaches the boundary of BN by hitting the set {x ∈ BN : [x−z]·wj =

±εN}. On this event the function G is equal to Nε2
N . Since G is nonnegative,

Nε2
N Px[AN ] ≤ Ex

[
G
(
XN(HN)

)]
.

On the other hand, by Schwarz inequality and by (2.7.2), on the set Dz, G(x) is

absolutely bounded by C0NδN . Putting together the previous two estimates, we get

that

max
x∈Dz

Px[AN ] ≤ C0

(δN
ε2
N

+
1√
N εN

+
√
N ε2

N

)
.

This completes the proof of the lemma in view of the definition of the sequence εN .
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Proof of Proposition 2.7.2. The proof is similar to the one of the two previous lem-

mas. Let g(x) =
∫ x

0
exp{−µy2/2}dy. By Dynkin’s formula, for every t > 0, x ∈ Dz,

(2.7.5) holds for G(x) = g(N1/2[x−z] ·v). Since g′′(x) +µxg′(x) = 0, and since the

first three derivative of g are uniformly bounded, by Lemma 2.7.4 and by (2.7.4),

max
x∈Dz

∣∣∣Ex

[
G
(
XN(HN)

)]
−G(x)

∣∣∣ ≤ C0 ε
3
N N → 0 .

On Dz, the function G vanishes. On the other hand, on the event {HN = H±N},
G(XN(HN)) = ±(2π/µ)1/2 + oN(1). Therefore, by Lemma 2.7.5,

lim
N→∞

max
x∈Dz

∣∣∣Px

[
HN = H+

N

]
− Px

[
HN = H−N

] ∣∣∣ = 0 .

This completes the proof of the proposition in view of Lemma 2.7.5.

Proof of Theorem 2.2.7. Fix 1 ≤ i ≤ i0, 1 ≤ j ≤ `i. For each a ∈ S, fix a sequence

{xNa : N ≥ 1} of points in EaN . Denote by R̂N(a, b), a 6= b ∈ S, the jump rates of

the trace of XN(t) on the set {xaN : a ∈ S}. By [3, Lemma 6.8],

µN(xaN) R̂N(a, b) =
1

2

{
capN({xaN}, Ŝ \ {xaN}) + capN({xbN}, Ŝ \ {xbN})

− capN({xaN ,xbN}, Ŝ \ {xaN ,xbN})
}
,

where Ŝ = {xcN : c ∈ S}. By Remark 2.2.3, equation (2.2.8), and the fact that

c1(a′, b′) = c(a′, b′), for a 6= b ∈ S,

lim
N→∞

R̂N(a, b)∑
c∈S,c6=a R̂N(a, c)

= p(a, b) ,

where p(a, b) has been introduced in (2.2.6).

On the other hand, by [3, Proposition 6.1], for a 6= b ∈ S,

R̂N(a, b) = λN(xaN) PxaN

[
HxbN

= H+

Ŝ

]
,

and by the strong Markov property,

PxaN
[HxbN

= H+

Ŝ
] = PxaN

[HxbN
= HŜ\{xaN}

] PxaN
[H+

Ŝ
< H+

xaN
] .

It follows from the last three displayed equations that

lim
N→∞

PxaN
[HxbN

= HŜ\{xaN}
] = p(a, b) , a 6= b ∈ S . (2.7.6)

Since any continuous path from xaN to Ŝ \ {xaN} must cross Da, HDa < HŜ\{xaN}
PxaN

-almost surely. Hence, by the strong Markov property,

PxaN
[HxbN

= HŜ\{xaN}
] = ExaN

[
PXN (HDa )

[
HxbN

= HŜ\{xaN}
] ]

.
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By Lemma 2.7.1,

lim
N→∞

PxaN
[HDa < HBa ] = 0 . (2.7.7)

Therefore,

lim
N→∞

PxaN
[HxbN

= HŜ\{xaN}
]

= lim
N→∞

∑
z∈Sa

∑
y∈Dz

PxaN

[
HDa = Hy

]
Py

[
HxbN

= HŜ\{xaN}
]
.

By the strong Markov property at time HŜ, the previous expression is equal to

lim
N→∞

∑
z∈Sa

∑
y∈Dz

∑
c∈S

PxaN

[
HDa = Hy

]
Py

[
HxcN

= HŜ

]
PxcN

[
HxbN

= HŜ\{xaN}
]
.

By Corollary 2.7.3, this limit is equal to

1

2
lim
N→∞

PxaN

[
HxbN

= HŜ\{xaN}
]
PxaN

[
HDa = HBa

]
+

1

2
lim
N→∞

∑
z∈Sa,b

PxaN

[
HDa = HDz

]
.

By (2.7.7), we may replace in the first line PxaN
[HDa = HBa ] by 1.

In conclusion, in view of (2.7.6), we have shown that

p(a, b) = lim
N→∞

PxaN
[HxbN

= HŜ\{xaN}
] = lim

N→∞

∑
z∈Sa,b

PxaN

[
HDa = HDz

]
.

This completes the proof of the theorem in the case where the set Sa,b is a singleton.

It is not difficult to modify this argument to handle the case with more than one

saddle point between two wells. Indeed, since the proof does not depend on the

behavior of the function F on W c
a , we can modify F on W c

a \ [∪z∈SaBε(z)], for some

ε > 0, creating new wells of height Hi, and turning each saddle point z ∈ Sa the

unique saddle point between the well Wa and new well W ′
z.
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Instituto de Matemática Pura e Aplicada 91 2014

http://arxiv.org/abs/0901.3053
http://arxiv.org/abs/1310.3646
http://arxiv.org/abs/1408.6704


BIBLIOGRAPHY
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