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Abstract. In this work we present and analyze a Kaczmarz version of the iterative
regularization scheme REGINN-Landweber for nonlinear ill-posed problems in Banach
spaces [Jin, Inverse Problems 28(2012), 065002]. Kaczmarz methods are designed for
problems which split into smaller subproblems which are then processed cyclically during
each iteration step. Under standard assumptions on the Banach space and on the
nonlinearity we prove stability and (norm-)convergence as the noise level tends to zero.
Further, we test our scheme on the inverse problem of 2D electric impedance tomography
not only to illustrate our theoretical findings but also to study the influence of different
Banach spaces on the reconstructed conductivities.

1. Introduction

Our goal is to solve the nonlinear ill-posed problem

(1) F (x) = y

where F : D(F ) ⊂ X → Y operates between the Banach spaces X and Y with domain
of definition D(F ). This kind of inverse problem gained a lot of interest over the last
years because several applications and constraints are formulated quite naturally in a
Banach space framework: sparsity, uniform and impulsive noise, preserving discontinuities
(edges) etc. In parameter identification tasks, for instance, the searched-for parameter
often appears in the governing partial differential equations as an L∞-coefficient, e.g.,
electrical impedance tomography [2, 4, 5] (see our numerical experiment section below).

A variety of techniques for solving (1) in Banach spaces is on the market and the
field has meanwhile reached a considerable level of maturity. For an overview, examples,
and references we point to the monograph [26], to the special section Tackling inverse
problems in a Banach space environment (Inverse Problems, 28(10), 2012) and to the
topical review article [13].

In the present work we contribute to the analysis of iterative solvers where we combine
the Kaczmarz approach for ill-posed problems as introduced by [22, 23, 18, 3, 8] with
an inexact Newton iteration due to [9, 24]. Both concepts, which we now put together,
have already been investigated separately in a Banach space setting: See [25, 16, 12] for
Landweber regularization methods; [21, 15] for Landweber-Kaczmarz methods; [14] for
inexact Newton type methods.

Algorithm REGINN (REGularization based on INexact Newton iteration) [24] for solving
(1) in Hilbert spaces is a Newton-type algorithm which updates the actual iterate xn by
adding a correction step

(2) xn+1 = xn + sn.
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To find the Newton update sn, we assume F to be continuously Fréchet differentiable
with derivative F ′ : D(F )→ L(X, Y ) and solve approximately the linearized equation

(3) Ans = bn

where An := F ′(xn) and bn := y − F (xn). In fact, for a fixed µ ∈ ]0, 1[, sn is picked such
that

(4) ‖Ansn − bn‖ < µ ‖bn‖ .
Typically we apply an iterative regularization method to (3) to find an sn satisfying (4).
This iteration is called inner iteration and iteration (2) is called outer iteration.

To formulate a Kaczmarz version of REGINN we further assume that problem (1) splits
into d ∈ N ’smaller’ subproblems, that is, Y factorizes into Banach spaces Y0, . . . , Yd−1:
Y = Y0 × Y1 × · · · × Yd−1. Accordingly, F = (F0, F1, . . . , Fd−1)>, Fj : D(F ) ⊂ X → Yj,
and y = (y0, y2, . . . , yd−1)>. Thus, (1) can be written as: find x ∈ D(F ) such that

(5) Fj(x) = yj, j = 0, . . . , d− 1.

The idea is to solve the large-scale system (1) by a cyclic iteration where at each step
REGINN is applied to only one of the equations (5). This approach breaks the large system
down into d smaller subproblems and thus permits use of the full information contained
in the data while avoiding a large system.

Here is a short outline of the paper: in Section 2 we recall from [6, 26] needed no-
tation and results concerning the geometry of Banach spaces and Bregman distances.
The experienced Banach space user may skip this section. Then, in Sections 3 and 4 we
introduce the K-REGINN-Landweber method and prove convergence as well as stability
properties. Our results generalize and complement the investigations of [14] and [21]. No-
tably we verify strong convergence of the method from [14] where only weak convergence
was established. In the final section we present a variety of numerical experiments for the
inverse problem of 2D electric impedance tomography. Here we study the performance
of K-REGINN-Landweber, compare Hilbert and Banach space settings as well as different
noise models.

2. Basic facts about the geometry of Banach spaces

If the context is clear, we use always a generic constant C > 0 even it takes different
values, avoiding the unnecessary index enumeration. Sometimes we use also the notation
.. This symbol means: a (x) . b (x) if and only if there exists a positive constant C
independent on x such that a (x) ≤ C b (x) for all x.

Next we collect needed facts about the geometry of Banach spaces. For proofs and
more details we refer to [6].

We define the modulus of smoothness of the Banach space X as

ρX (τ) :=
1

2
sup {‖x+ τy‖+ ‖x− τy‖ − 2 : ‖x‖ = ‖y‖ = 1} , τ ≥ 0,

and the modulus of convexity as

δX (ε) := inf

{
1− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
, 0 ≤ ε ≤ 2.

The space X is called uniformly smooth if limτ→0+
ρX(τ)
τ

= 0 and uniformly convex if
δX (ε) > 0 for all 0 < ε ≤ 2. Let 1 < s <∞ be fixed. We callX s−smooth if ρX (τ) ≤ C1τ

s

for all τ ≥ 0 and we call it s−convex if δX (ε) ≥ C2ε
s for all 0 ≤ ε ≤ 2, where C1, C2 > 0
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are constants. Of course X s−convex implies X uniformly convex and X s−smooth
implies X uniformly smooth.

A continuous and strictly increasing function ϕ : R+ → R+ such that ϕ (0) = 0 and
limt→∞ ϕ (t) = ∞ is called a gauge function. The duality mapping associated with the
gauge function ϕ is the mapping Jϕ : X → 2X

∗
defined by

Jϕ (x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖ and ‖x∗‖ = ϕ (‖x‖)}
where 〈·, ·〉 : X∗ ×X → R is the duality pairing.

The duality mapping associated with the gauge function t 7−→ tp−1 for some p > 1 has
the special notation Jp

Jp (x) :=
{
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖ and ‖x∗‖ = ‖x‖p−1} .

The duality mapping J2 is called the normalized duality mapping. For any two gauge
functions ϕ1 and ϕ2 and x ∈ X we have the relation ϕ1 (‖x‖) Jϕ2 (x) = ϕ2 (‖x‖) Jϕ1 (x).
In particular

(6) Jr (x) = ‖x‖r−t Jt (x) , t, r > 1.

A selection jϕ : X → X∗ of the duality mapping Jϕ is a mapping which satisfies jϕ (x) ∈
Jϕ (x) for all x ∈ X. IfX is uniformly smooth, then it is reflexive. In this case, each duality
mapping is single valued and continuous. If X is also uniformly convex, then each duality
mapping is bijective with continuous inverse J−1

ϕ = J∗ϕ−1 , where J∗ϕ−1 : X∗ → X∗∗ ∼= X

is the duality mapping associated with the gauge function ϕ−1. In the particular case
ϕ (t) = tp−1 we have J−1

p = J∗p∗ , where J∗p∗ : X∗ → X is the duality mapping associated

with the gauge function ϕ (t) = tp
∗−1 and p∗ is the conjugate of p, i.e., 1

p
+ 1

p∗
= 1.

Suppose that X is uniformly smooth. Then Jp is single valued and we can define the
Bregman distance ∆p : X ×X → [0,∞[ as

∆p (x, y) :=
1

p
‖y‖p − 1

p
‖x‖p − 〈Jp (x) , y − x〉 .

A straightforward calculation shows that

(7) ∆p (x, y) = ∆p (x, z)−∆p (y, z)− 〈Jp (y)− Jp (x) , z − y〉 ,
for all x, y, z ∈ X. Moreover, ∆p (x, y) = 0 iff x = y and

(∆p (xn, x))n∈N uniformly bounded =⇒ (xn)n∈N uniformly bounded.

If X is additionally uniformly convex then

(8) lim
n→∞

‖xn − x‖ = 0 ⇐⇒ lim
n→∞

∆p (xn, x) = 0

for sequences (xn)n∈N ⊂ X and x ∈ X.
For an s−smooth Banach space we have that, see [14, inequality (2.2)],

(9) ∆p (x, y) ≤ Cp,s ‖x− y‖s
(
‖y‖p−s + ‖x− y‖p−s

)
for all p > 1, where Cp,s > 0 is a constant dependent only on p and s.

If X is an s−convex Banach space and p ≤ s then

∆p (x, y) ≥ C ‖x− y‖s (‖x‖+ ‖y‖)p−s

for all x, y ∈ X; C > 0 is again a constant dependent only on p and s, see, e.g., [26,
Corollary 2.61(a)]. In this case,

(10) ∆p (x, y) ≥ C ‖x− y‖s
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for all x, y ∈ BR (0, ‖·‖) := {z ∈ X : ‖z‖ ≤ R} where C > 0 depends only on p, s and R.

3. The K-REGINN-Landweber Method: Definition and first results

Jin [14] considered REGINN using the Landweber regularization as inner iteration in
a Banach space framework. The main goal of this section is to define and analyze a
Kaczmarz version of his algorithm. As a byproduct of our analysis we improve Jin’s
convergence result, see Remark 14 below.

We first introduce some notation and main assumptions. By [n] := nmod d we denote
the remainder of integer division. Furthermore, we slightly change the notation from the
previous sections:

bn := y[n] − F[n](xn) and An := F ′[n](xn).

Assumption 1. The right hand side of (1) and (5) is achievable: there is an x+ ∈ D (F )
with y = F (x+).

(a) There exists some ρ > 0 such that

Bρ

(
x+,∆p

)
:=
{
v ∈ X : ∆p

(
v, x+

)
≤ ρ
}
⊂ D (F ) .

(b) There exists a constant M ≥ 0 such that∥∥F ′j(v)
∥∥ ≤M for all v ∈ Bρ

(
x+,∆p

)
and j = 0, . . . , d− 1.

(c) (Tangential Cone Condition): There exists a constant 0 ≤ η < 1 such that∥∥Fj(v)− Fj(w)− F ′j(w) (v − w)
∥∥ ≤ η ‖Fj(v)− Fj(w)‖ ,

for all v, w ∈ Bρ (x+,∆p) and j = 0, . . . , d− 1.
(d) The Banach space X is uniformly smooth and uniformly convex.

As the spaces Yj are arbitrary for now, the duality mapping Jr, r > 1, might not be
single valued. Then, jr : Yj → Y ∗j denotes one selection of Jr. Under Assumption 1 we
define the K-REGINN-Landweber method which consists of two iterative schemes. Let
x0 ∈ D (F ) be our starting guess and suppose that the n-th iterate xn ∈ D (F ) is
already defined. Then, xn is updated to xn+1 in the outer iteration as in (2) by adding
the Newton step sn,kn determined in the inner iteration, i.e., xn+1 := xn + sn,kn . The
increment sn,kn is obtained by the Landweber method applied to the linearized system
(3): Set un,0 := 0 ∈ X∗ and suppose that un,k is already defined. Then,

(11) un,k+1 := un,k + ωn,kA
∗
njr (bn − Ansn,k)

where

sn,k := zn,k − xn and zn,k := J∗p∗(Jp (xn) + un,k).

Further, ωn,k is a scale factor which might depend on n as well as k, and A∗n : Y ∗[n] → X∗

is the adjoint operator of An. Thus,

(12) xn+1 = xn + sn,kn = zn,kn = J∗p∗(Jp (xn) + un,kn)

where the final (inner) index kn is determined as follows: choose kmax ∈ N and µ ∈ ]0, 1[,
set

(13) kREG := min {k ∈ {1, . . . , kmax} : ‖bn − Ansn,k‖ < µ ‖bn‖} ,
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using min ∅ =∞. Then,

(14) kn =


0 : bn = 0,

kREG : kREG ≤ kmax,

kmax : kREG > kmax.

Observe that kn = 0 if and only if bn = 0 in which case xn+1 = xn. In the unlikely
event that bn+i = 0 for i = 0, . . . , d − 1 we can conclude that xn is a solution of (5) as
yj = Fj (xn) for j = 0, . . . , d − 1. In any case we will prove that (xn)n∈N converges to a
solution (see Theorem 5 below).

Remark 2. If kmax = 1, then kn ∈ {0, 1} for all n ∈ N and the method assumes the form

xn+1 = J∗p∗
(
Jp (xn) + ωnA

∗
njr
(
y[n] − F[n] (xn)

))
,

where ωn := ωn,0, which is a kind of Kaczmarz-Landweber iteration applied to (1) (in [21]
the authors suggested a special way to define the step size ωn).

If kn = kREG and µ < 1− 2η we have a qualified decrease in the nonlinear residual by
at least the factor Λ = (µ + η)/(1 − η) < 1. Indeed, standard arguments, see, e.g., [9]
and [24, Proof of Lemma 4.1], lead to

(15) ‖y[n] − F[n](xn+1)‖ < Λ‖y[n] − F[n](xn)‖.
It is this property which accounts for the efficiency of inexact Newton methods and which
motivates the definition of kn. Generically, kn = kREG (provided kmax sufficiently large),
however, we had to introduce kmax because we need an upper bound for kn in our following
analysis.1 Nevertheless, the important relation

(16) µ‖bn‖ ≤ ‖bn − Ansn,k‖ k = 0, . . . , kn − 1,

remains true which allows us to rely on some results of Jin [14].
In the next two theorems we prove that K-REGINN-Landweber (12) is well defined and

converges.

Theorem 3. Let X and Y be Banach spaces where X is s−convex for some s > 1. Choose
1 < p ≤ s and r > 1. Let Assumption 1 hold true and start with x0 ∈ Bρ (x+,∆p). If
η < µ < 1 and

ωn,k := min
{
ω

(1)
n,k, ω

(2)
n,k

}
with

ω
(1)
n,k := θ1 ‖An‖−p ‖bn − Ansn,k‖p−r , ω(2)

n,k := θ2 ‖An‖−s ‖zn,k‖p−s ‖bn − Ansn,k‖s−r ,(17)

for some positive constants θ1 and θ2 such that

C0 := 1− η

µ
− Cp∗,s∗

(
θp

∗−1
1 + θs

∗−1
2

)
> 0

where Cp∗,s∗ is the constant from (9) , then the method is well-defined and all iterations
remain in Bρ (x+,∆p). Moreover,

(18) ∆p

(
xn+1, x

+
)
≤ ∆p

(
xn, x

+
)

for all n ∈ N.

1In case d = 1 we can actually cope with kmax =∞, cf. Remark 14 below.
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Proof. We use an inductive argument. Assume that xn ∈ Bρ (x+,∆p) is well-defined. As
kn is then well defined we have xn+1 ∈ X. In view of (16) we can argue exactly as in [14,
Theorem 3.1] to show that

∆p

(
zn,k+1, x

+
)
−∆p

(
zn,k, x

+
)
≤ −C0ωn,k ‖bn − Ansn,k‖r

for all k = 0, . . . , kn − 1. Summing up yields

(19) C0

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r ≤ ∆p

(
xn, x

+
)
−∆p

(
xn+1, x

+
)

which first implies (18) and then xn+1 ∈ Bρ (x+,∆p) . �

By (18) we find that

(20) ∆p

(
xn, x

+
)
≤ ∆p

(
x0, x

+
)
.

Hence, (xn)n∈N is uniformly bounded.

Lemma 4. Adopt all the hypotheses from Theorem 3. Then,

(21) ∆p (xn+1, xn) ≤ C
(
∆p

(
xn, x

+
)
−∆p

(
xn+1, x

+
))
,

for all n ∈ N.

Proof. By (7),

(22) ∆p (xn+1, xn) ≤ ∆p

(
xn+1, x

+
)
−∆p

(
xn, x

+
)

+
∣∣〈Jp (xn)− Jp (xn+1) , x+ − xn

〉∣∣ .
Further,∣∣〈Jp (xn)− Jp (xn+1) , x+ − xn

〉∣∣ =
∣∣〈Jp (xn)− (Jp (xn) + un,kn) , x+ − xn

〉∣∣
=
∣∣〈un,kn , xn − x+

〉∣∣ =

∣∣∣∣∣
kn−1∑
k=0

〈
un,k+1 − un,k, xn − x+

〉∣∣∣∣∣
=

∣∣∣∣∣
kn−1∑
k=0

ωn,k
〈
jr (bn − Ansn,k) , An

(
xn − x+

)〉∣∣∣∣∣
≤

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1
∥∥An (xn − x+

)∥∥
≤ (η + 1)

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1 ‖bn‖

where we have used the tangential cone condition from Assumption 1 in the last inequality.
By (16) and (19),

∣∣〈Jp (xn)− Jp (xn+1) , x+ − xn
〉∣∣ ≤ η + 1

µ

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r

≤ η + 1

µC0

(
∆p

(
xn, x

+
)
−∆p

(
xn+1, x

+
))
.

Inserting this bound into (22), we arrive at (21) with C = η+1
µC0
− 1 > 0. �
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Theorem 5. Again, let the assumptions of Theorem 3 hold true where 1 < p ≤ s ≤ r
and

(23) ωn,k := min
{
ω

(1)
n,k, ω

(2)
n,k, ω

}
with a constant ω > 0. Then, the sequence (xn)n∈N ⊂ X converges strongly to a solution
of (1). If x+ is the unique solution in Bρ (x+,∆p) , then xn → x+ as n→∞.

Proof. Theorem 3 remains true under (23). We will prove that the sequence (xn)n∈N
is a Cauchy sequence. Let m, l ∈ N with m ≤ l and write m = m0d + m1 as well as
l = l0d + l1 where m0, l0 ∈ N and m1, l1 ∈ {0, . . . , d− 1} . Of course m0 ≤ l0. Choose
z0 ∈ {m0, . . . , l0} such that

(24)
d−1∑
j=0

(‖yj − Fj (xz0d+j)‖+ ‖xz0d+j+1 − xz0d+j‖)

≤
d−1∑
j=0

(‖yj − Fj (xn0d+j)‖+ ‖xn0d+j+1 − xn0d+j‖)

for all n0 ∈ {m0, . . . , l0} , and define z := z0d+z1 where z1 = l1 for z0 = l0 and z1 = d−1,
otherwise. This setting guarantees that m ≤ z ≤ l. By (20) , the sequence (xn)n∈N is
uniformly bounded. It follows, see (10), that

‖xm − xl‖s ≤ 2s (‖xm − xz‖s + ‖xz − xl‖s) . (∆p (xm, xz) + ∆p (xl, xz)) .

In view of (7) we obtain

(25) ‖xm − xl‖s .
(
∆p

(
xm, x

+
)
−∆p

(
xz, x

+
))

+
(
∆p

(
xl, x

+
)
−∆p

(
xz, x

+
))

+
∣∣〈Jp (xz)− Jp (xm) , x+ − xz

〉∣∣+
∣∣〈Jp (xz)− Jp (xl) , x

+ − xz
〉∣∣ .

Due to the monotonicity (18) the first two terms in the right hand side converge to zero
as m, l→∞. We estimate the last two:

∣∣〈Jp (xz)− Jp (xm) , x+ − xz
〉∣∣ =

∣∣∣∣∣
z−1∑
n=m

〈
Jp (xn+1)− Jp (xn) , x+ − xz

〉∣∣∣∣∣
≤

z−1∑
n=m

∣∣〈un,kn , xz − x+
〉∣∣ .

Analogously,

∣∣〈Jp (xz)− Jp (xl) , x
+ − xz

〉∣∣ ≤ l−1∑
n=z

∣∣〈un,kn , xz − x+
〉∣∣ .

Then, the last two terms in (25)

f (z,m, l) :=
∣∣〈Jp (xz)− Jp (xm) , xz − x+

〉∣∣+
∣∣〈Jp (xz)− Jp (xl) , xz − x+

〉∣∣
are estimated by

(26) f (z,m, l) ≤
l−1∑
n=m

∣∣〈un,kn , xz − x+
〉∣∣ .
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We proceed as in the proof of the Lemma 4 and get∣∣〈un,kn , xz − x+
〉∣∣ ≤ kn−1∑

k=0

∣∣〈un,k+1 − un,k, xz − x+
〉∣∣(27)

=
kn−1∑
k=0

∣∣ωn,k 〈jr (bn − Ansn,k) , An
(
xz − x+

)〉∣∣
≤

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1
∥∥An (xz − x+

)∥∥ .
Employing Assumption 1 (c) yields∥∥An (xz − x+

)∥∥ ≤ ∥∥An (xn − x+
)∥∥+ ‖An (xz − xn)‖(28)

≤ ‖bn‖+
∥∥bn − An (x+ − xn

)∥∥+
∥∥F[n] (xz)− F[n] (xn)

∥∥
+
∥∥F[n] (xz)− F[n] (xn)− F ′[n] (xn) (xz − xn)

∥∥
≤ (η + 1)

(
‖bn‖+

∥∥F[n] (xz)− F[n] (xn)
∥∥)

≤ (η + 1)
(
2 ‖bn‖+

∥∥y[n] − F[n] (xz)
∥∥) .

Further,∥∥y[n] − F[n] (xz)
∥∥ =

∥∥y[n] − F[n] (xz0d+d−1)
∥∥

≤
∥∥y[n] − F[n]

(
xz0d+[n]

)∥∥+
d−2∑
j=[n]

∥∥F[n] (xz0d+j+1)− F[n] (xz0d+j)
∥∥

≤
∥∥y[n] − F[n]

(
xz0d+[n]

)∥∥+
1

1− η

d−2∑
j=[n]

∥∥F ′[n] (xz0d+j) (xz0d+j+1 − xz0d+j)
∥∥

≤
(

1 +
M

1− η

) d−1∑
j=0

(‖yj − Fj (xz0d+j)‖+ ‖xz0d+j+1 − xz0d+j‖) .

We write n = n0d + n1 for some n0 ∈ {m0, . . . , l0} and n1 ∈ {0, . . . , d− 1} . Then, from
the definition of z0 (24),

(29)
∥∥y[n] − F[n] (xz)

∥∥ ≤ (1 +
M

1− η

) d−1∑
j=0

(‖yj − Fj (xn0d+j)‖+ ‖xn0d+j+1 − xn0d+j‖) .

Recalling (16), inserting (29) in (28), (28) in (27) and (27) in (26), we arrive at

(30) f (z,m, l) .

(
l−1∑
n=m

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r
)

+ g (z,m, l) + h (z,m, l)

with the abbreviations

g (z,m, l) :=
l−1∑
n=m

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1
d−1∑
j=0

‖yj − Fj (xn0d+j)‖ ,

h (z,m, l) :=
l−1∑
n=m

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1
d−1∑
j=0

‖xn0d+j+1 − xn0d+j‖ .
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The first term in the right hand side of (30) can be estimated by (19).
We estimate the last two terms. By

‖bn‖ ≤
M

1− η
∥∥x+ − xn

∥∥
we see that (bn)n∈N is uniformly bounded because (xn)n∈N is uniformly bounded. From
the definition of ωn,k ((23) and (17)), Assumption 1 (b), 1 < p ≤ s ≤ r, sn,0 = 0, and
zn,0 = xn we deduce that

ω
1
r−1

n,0 = min
{
θ1 ‖An‖−p ‖bn‖p−r , θ2 ‖An‖−s ‖xn‖p−s ‖bn‖s−r , ω

} 1
r−1 ≥ C1 > 0

for all n ∈ N. Moreover,

(31) ‖bn‖ ≤
1

C1

ω
1
r−1

n,0 ‖bn‖ =
1

C1

ω
1
r−1

n,0 ‖bn − Ansn,0‖ ≤
1

C1

vn,

where vn :=
kn−1∑
k=0

ω
1
r−1

n,k ‖bn − Ansn,k‖ . As kn ≤ kmax,

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r−1 =
kn−1∑
k=0

(
ω

1
r−1

n,k ‖bn − Ansn,k‖
)r−1

≤ kmaxv
r−1
n .

Then, we estimate the second term in the right hand side of (30) using (31) according to

g (z,m, l) ≤ kmax

C1

l0∑
n0=m0

(
d−1∑
n1=0

vr−1
n0d+n1

d−1∑
j=0

vn0d+j

)
(32)

.
l0∑

n0=m0

(
d−1∑
n1=0

vrn0d+n1

)
=

l0d+d−1∑
n=m0d

vrn =

l0d+d−1∑
n=m0d

(
kn−1∑
k=0

ω
1
r−1

n,k ‖bn − Ansn,k‖

)r

.
l0d+d−1∑
n=m0d

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r

where we have used ωn,k ≤ ω in the last step to establish ω
r
r−1

n,k . ωn,k.
Similarly, we bound the rightmost term in (30):

h (z,m, l) ≤ kmax

l0∑
n0=m0

(
d−1∑
n1=0

vr−1
n0d+n1

d−1∑
j=0

‖xn0d+j+1 − xn0d+j‖

)
(33)

.
l0∑

n0=m0

d−1∑
n1=0

(
vrn0d+n1

+ ‖xn0d+n1+1 − xn0d+n1‖
r)

=

l0d+d−1∑
n=m0d

(vrn + ‖xn+1 − xn‖r)

.
l0d+d−1∑
n=m0d

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r +

l0d+d−1∑
n=m0d

‖xn+1 − xn‖r .

Now concentrate on the sum on the right. Using (10) and Lemma 4 we obtain

‖xn+1 − xn‖s . ∆p (xn, xn+1) .
(
∆p

(
xn, x

+
)
−∆p

(
xn+1, x

+
))
.
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As r ≥ s > 1, we have for m, l large enough that

l0d+d−1∑
n=m0d

‖xn+1 − xn‖r ≤
l0d+d−1∑
n=m0d

‖xn+1 − xn‖s .
(
∆p

(
xm0d, x

+
)
−∆p

(
xl0d+d, x

+
))
.

Using this fact, inserting (33) and (32) in (30), (30) in (25), taking (19) into account we
finally end up with

‖xm − xl‖s .
(
∆p

(
xm, x

+
)
−∆p

(
xz, x

+
))

+
(
∆p

(
xl, x

+
)
−∆p

(
xz, x

+
))

+
(
∆p

(
xm0d, x

+
)
−∆p

(
xl0d+d, x

+
))
.

By monotonicity (18), we conclude that ∆p (xq, x
+)→ β ≥ 0 as q →∞. Then, the right

side of the above inequality converges to zero as m, l → ∞, which proves (xn)n∈N to be
a Cauchy sequence. As X is complete, it converges to some a ∈ X. From (31) and (19)
we obtain

(34)
∞∑
n=0

‖bn‖r .
∞∑
n=0

vrn .
∞∑
n=0

kn−1∑
k=0

ωn,k ‖bn − Ansn,k‖r <∞,

that is,
∥∥y[n] − F[n] (xn)

∥∥ = ‖bn‖ → 0 as n → ∞. Since the Fj’s are continuous, yj =
Fj (a) and a is a solution of (5) and (1). If (1) has only one solution in Bρ (x+,∆p) , then
a = x+. �

Remark 6. The hypothesis s ≤ r is a technicality needed in our proof of Theorem 5.
It is not necessary for d = 1 (this is Jin’s method [14]). However, s ≤ r is not a
strong requirement anyway. Indeed, we can realize the duality mapping Jr by (6), see
Section 5 below. Moreover, as r ≥ s we can bound the scale factors ωn,k (11) from below
by a positive constant which facilitates the implementation of the K-REGINN-Landweber
method, see Remark 15 below.

4. The K-REGINN-Landweber Method: Regularization property

4.1. Noise in the data. We suppose now that the right hand sides yj = Fj(x
+) in (5)

are not available but noisy versions satisfying

(35) ‖yj − y
δj
j ‖ ≤ δj.

The nonnegative noise levels δj, j = 0, . . . , d − 1, are assumed to be known. Moreover,
following [14] we even allow the operators Fj and their derivatives F ′j to be perturbed

(thus modeling, for instance, discretization errors). Their perturbed versions are F h
j and

Gh
j , respectively, where

(36)
∥∥F h

j (x)− Fj (x)
∥∥ ≤ βh,j and

∥∥Gh
j (x)− F ′j (x)

∥∥ ≤ πh,j

for all x ∈ Bρ (x+,∆p) and j = 0, . . . ., d − 1. Further, all βh,j’s and πh,j’s converge to
zero as h → 0. In principle we could perform a convergence analysis with respect to δ
and h independent of each other. For the ease of presentation, however, we couple h to
δ such that h→ 0 whenever δ → 0. Here,

(37) δ := max {δj : j = 0, . . . , d− 1} > 0.

To formulate the method for noisy data, we introduce new notation

Aδn := Gh
[n]

(
xδn
)

and bδn := y
δ[n]
[n] − F

h
[n]

(
xδn
)
.
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With this notation the method is defined exactly as in (12) but all quantities are replaced
by their respective noisy counterparts (indicated by a superscript δi or δ):

xδn+1 = xδn + sδn,kδn = zδn,kδn = J∗p∗(Jp
(
xδn
)

+ uδn,kδn), xδ0 = x0 ∈ D(F ),

where

(38) uδn,k+1 := uδn,k + ωδn,kA
δ,∗
n jr

(
bδn − Aδnsδn,k

)
, uδn,0 = 0.

with Aδ,∗n =
(
Aδn
)∗

. For the definition of kδn see (14) where we modify the case bn = 0 to
a discrepancy principle to avoid noise amplification in the outer iteration: Choose R > 0
such that

(39) Bρ

(
x+,∆p

)
⊂ BR

(
x+, ‖·‖

)
and fix τ > 1. If for some n ∈ N we have

(40)
∥∥bδn∥∥ ≤ τ

(
δ[n] + βh,[n] +Rπh,[n]

)
then we define kδn := 0 resulting in xδn+1 = xδn. We stop the outer iteration as soon as
(40) is satisfied d consecutively times. Our approximate solution of (1) is then xδN where
N = N (δ) is the smallest number2 which satisfies

(41)
∥∥∥yδjj − F h

j

(
xδN
)∥∥∥ ≤ τ (δj + βh,j +Rπh,j) , j = 0, . . . , d− 1,

see Algorithm 1 for an implementation in pseudocode. The monotone decrease of the
residuals (15) applies accordingly in the noisy setting of this section.

This method is well defined and terminates: A result similar to Theorem 3 holds true.

Theorem 7. Let X and Y be Banach spaces where X is s−convex for some s > 1. Choose
1 < p ≤ s and r > 1. Let Assumption 1 hold true and start with x0 ∈ Bρ (x+,∆p).

If η < µ < 1, τ > 1+η
µ−η , and

ωδn,k := min
{
ω
δ,(1)
n,k , ω

δ,(2)
n,k

}
,

where

(42) ω
δ,(1)
n,k := θ1

∥∥Aδn∥∥−p ∥∥bδn − Aδnsδn,k∥∥p−r, ωδ,(2)
n,k := θ2

∥∥Aδn∥∥−s ∥∥zδn,k∥∥p−s ∥∥bδn − Aδnsδn,k∥∥s−r,
for some positive constants θ1 and θ2 satisfying

c0 := 1− η

µ
− 1 + η

µτ
− Cp∗,s∗

(
θp

∗−1
1 + θs

∗−1
2

)
> 0,

with Cp∗,s∗ from (9), then the method is well-defined and all iterations remain in Bρ (x+,∆p) .
Moreover, the algorithm terminates with some number N = N (δ) ∈ N and

(43) ∆p

(
xδn+1, x

+
)
≤ ∆p

(
xδn, x

+
)

for all n ≤ N − 1. Furthermore,

(44)
∥∥xδn∥∥ ≤ C for all n ≤ N,

with C > 0 independent on n,N and δ.

2The number N is chosen by a posteriori strategy, it thus depends actually on δ and yδ: N = N
(
δ, yδ

)
.

But we stick to the simpler notation N = N (δ).
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Algorithm 1 K-REGINN-Landweber

Input: xδN ; (yδi , δi): F
h
i ; βh,i; G

h
i ; πh,i, i = 0, . . . , d− 1; µ; kmax; R; τ ;

Output: xδN with ‖yδii − Fi(xδN)‖ ≤ τ(δi + βh,i +Rπh,i), i = 0, . . . , d− 1;

` := 0; x0 := xδN ; c := 0;

while c < d do
for i = 0 : d− 1 do
n := `d+ i;

bδn := yδii − F h
i (xδn); Aδn := Gh

i (x
δ
n);

if ‖bδn‖ ≤ τ(δi + βh,i +Rπh,i) then
xδn+1 := xδn; c := c+ 1;

else
k := 0; uδn,0 := 0; sδn,0 := 0;

repeat
choose ωδn,k; uδn,k+1 := uδn,k + ωδn,kA

δ,∗
n jr

(
bδn − Aδnsδn,k

)
;

k := k + 1; sδn,k := J∗p∗
(
Jp
(
xδn
)

+ uδn,k
)
− xδn;

until
∥∥bδn − Aδnsδn,k∥∥ < µ

∥∥bδn∥∥ or k = kmax

xδn+1 := xδn + sδn,k; c := 0;

end if

end for

` := `+ 1;

end while

xδN := xδ`d−c;

Proof. We use an inductive argument again. Suppose that xδn is well defined inBρ (x+,∆p)
while the stopping criterion (41) is not met yet, that is, there is a k ∈ {1, . . . , d} such
that xδn−k 6= xδn. We will show that xδn+1 is well defined in Bρ (x+,∆p).

If xδn satisfies (40), then xδn+1 = xδn is well-defined and belongs to Bρ (x+,∆p) . Of course
in this case the inequality (43) trivially holds. If xδn does not satisfy (40), then kδn ≥ 1
and xδn+1 is well-defined in X. We follow again [14, Theorem 3.2] to validate

∆p

(
zδn,k+1, x

+
)
−∆p

(
zδn,k, x

+
)
≤ −c0ω

δ
n,k

∥∥bδn − Aδnsδn,k∥∥r ,
for all k = 0, . . . , kδn − 1. Then

c0

kδn−1∑
k=0

ωδn,k
∥∥bδn − Aδnsδn,k∥∥r ≤ ∆p

(
xδn, x

+
)
−∆p

(
xδn+1, x

+
)
,

which proves (43). Hence, xδn+1 ∈ Bρ (x+,∆p). As in the proof of Theorem 3.2 in [14] we

obtain that ωδn,k
∥∥bδn − Aδnsδn,k∥∥r ≥ C for those xδn which do not satisfy (40). The constant

C > 0 is independent of n and k. In this case,

c0C k
δ
n ≤ c0

kδn−1∑
k=0

ωδn,k
∥∥bδn − Aδnsδn,k∥∥r ≤ ∆p

(
xδn, x

+
)
−∆p

(
xδn+1, x

+
)
.
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If xδn satisfies (40), then kδn = 0 and above inequality holds trivially true. Assume that
Algorithm 1 does not terminate. Then, we sum up above inequality from n = 0 to
n = l − 1 for arbitrary l ∈ N to yield

c0C
l−1∑
n=0

kδn ≤ ∆p

(
xδ0, x

+
)
−∆p

(
xδl , x

+
)
< ∆p

(
xδ0, x

+
)
.

Thus,
∑∞

n=0 k
δ
n < ∞ which is true if and only if the sequence (kδn)n is finite. Therefore

the termination index N = N (δ) is well defined.
From (43),

∆p

(
xδn, x

+
)
≤ ∆p

(
x0, x

+
)
<∞, n ≤ N,

which implies that
∥∥xδn∥∥ ≤ C for all n ≤ N, with some C > 0 independent of n, N ,

and δ. �

Weak convergence is now a matter of standard arguments, see, e.g., [20, Corollary 3.5].

Theorem 8. Let all the assumptions of Theorem 7 hold true. If the operators Fj, j =

0, . . . , d − 1, are weakly sequentially closed then for any sequences
(
y

(δj)i
j

)
i∈N

,
(
F hi
j

)
i∈N

and
(
Ghi
j

)
i∈N with δ(i) = max

{
(δj)i : j = 0, . . . , d− 1

}
→ 0 (consequently hi → 0) as

i → ∞, the sequence
(
xδ

(i)

N(δ(i))

)
i∈N

contains a subsequence that converges weakly to a

solution of (1) in Bρ (x+,∆p) . If x+ is the unique solution of (1) in Bρ (x+,∆p) , then(
xδN(δ)

)
δ>0

converges weakly to x+ as δ = max {δj : j = 0, . . . , d− 1} → 0.

4.2. Strong convergence. Here we investigate norm convergence of the family
(
xδN(δ)

)
δ>0

when the noise level δ (37) tends to zero. To reduce the notational burden we will not
use the δj’s in the their original meaning (35) anymore. From now on we denote by (δi)
a sequence of noise levels as defined in (37) , i.e., δi := max

{
(δj)i : j = 0, . . . , d− 1

}
.

We prove strong convergence along the line of arguments from [10], see also [20, Sec-
tion 3.2]. To this end we suppose subsequently that x+ is the unique solution of (1) in

Bρ (x+,∆p) and we define the sets X̃n.

Definition 9. Set X̃0 := {x0}. Suppose that the set X̃n is already defined and that it is

finite. We define X̃n+1 by the following procedure: for each ξn ∈ X̃n, define σn,0 := 0 ∈ X∗
and σn,k+1 like un,k+1 in (11) but with ξn in place of xn and σn,k in place of un,k, i.e.,

σn,k+1 := σn,k + ωξnn,kF
′
[n] (ξn)∗ jr

[
b̃n − F ′[n] (ξn) sξnn,k

]
,

where b̃n := y[n] − F[n] (ξn) , sξnn,k := J∗p∗ (Jp (ξn) + σn,k) − ξn and ωξnn,k as defined in (23)
and (17) (with ξn and σn,k in place of xn and un,k, respectively).

Define

(45) kREG (ξn) := min
{
k ∈ {1, . . . , kmax} :

∥∥∥b̃n − F ′[n] (ξn) sξnn,k

∥∥∥ < µ
∥∥∥b̃n∥∥∥} ,

and

(46) kn (ξn) :=


0 : b̃n = 0,

kREG (ξn) : kREG (ξn) ≤ kmax,

kmax : kREG (ξn) > kmax.
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Then, ξn + sξnn,kn(ξn) ∈ X̃n+1. Furthermore, if

(47)
∥∥∥b̃n − F ′[n] (ξn) sξnn,kn(ξn)−`

∥∥∥ = µ
∥∥∥b̃n∥∥∥ for ` = 1, . . . , `n (ξn) < kn (ξn) ,

then the elements ξn + sξnn,kn(ξn)−`, ` = 1, . . . , `n (ξn), belong to the set X̃n+1 as well.

We call ξn ∈ X̃n the predecessor of ξn + sξnn,kn(ξn)−` ∈ X̃n+1 for ` = 0, 1, . . . , `n (ξn) , and

these ones successors of ξn.

Of course xn ∈ X̃n and X̃n is finite for all n ∈ N. Moreover, from (18),

(48) ∆p

(
ξn+1, x

+
)
≤ ∆p

(
ξn, x

+
)

whenever ξn+1 ∈ X̃n+1 is as successor of ξn ∈ X̃n.

In a certain sense the sequence
(
xδin
)
i∈N converges to the set X̃n provided the image

spaces Yj share further properties.

Lemma 10. Let all the assumptions of Theorem 7 hold true where

ωδn,k := min
{
ω
δ,(1)
n,k , ω

δ,(2)
n,k , ω

}
,

with a constant ω > 0. Additionally, let all Yj’s be uniformly smooth.
If δi → 0 as i → ∞, then for n ≤ N(δi) with δi > 0 sufficiently small, the sequence(
xδin
)
i∈N splits into convergent subsequences, all of which converge to an element of X̃n.

Proof. We prove the statement by induction. For n = 0, xδi0 = x0 → x0 ∈ X̃0 as i→∞.
Now, suppose that for some n ∈ N with n+ 1 ≤ N (δi) for i large enough,

(
xδin
)
i∈N splits

into convergent subsequences, all of which converge to an element of X̃n. To simplify the

notation, let
(
xδin
)
i∈N itself be a subsequence which converges to an element of X̃n:

(49) lim
i→∞

xδin = ξn where ξn ∈ X̃n.

We have to prove that the sequence
(
xδin+1

)
i∈N splits in convergent subsequences, each

one converging to an element of X̃n+1. To this end, we verify by induction with respect
to k that

(50) uδin,k → σn,k as i→∞ for all k ≤ kn (ξn) .

In fact, for k = 0, uδin,0 = 0 = σn,0 → σn,0 as i→∞. If we suppose for some k < kn (ξn)−1

that uδin,k → σn,k as i → ∞, then, as Yj is uniformly smooth, the selection jr : Yj → Y ∗j
is unique and continuous. Further the mappings Jp, J

∗
p∗ , Fj, and F ′j are also continuous

which implies together with (36) and limi→∞ x
δi
n = ξn that sδin,k → sξnn,k and ωδin,k → ωξnn,k

as i→∞. Thus,

uδin,k+1

i→∞−−−→ σn,k + ωξnn,kF
′
[n] (ξn)∗ jr

[
b̃n − F ′[n] (ξn) sξnn,k

]
= σn,k+1

yielding (50). With a similar argument,

(51) sδin,k
i→∞−−−→ sξnn,k for all k ≤ kn (ξn)

resulting in

(52) lim
i→∞

∥∥bδin − F ′[n]

(
xδin
)
sδin,k
∥∥ =

∥∥∥b̃n − F ′[n] (ξn) sξnn,k

∥∥∥ for all k ≤ kn (ξn) .
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Now we have to differ three cases.
Case 1: 1 ≤ kn (ξn) = kREG (ξn). From the definition (45) of kREG (ξn) we have∥∥∥b̃n − F ′[n] (ξn) sξnn,kn(ξn)

∥∥∥ < µ
∥∥∥b̃n∥∥∥ .

It follows from (52) that for i large enough∥∥∥bδin − F ′[n]

(
xδin
)
sδin,kn(ξn)

∥∥∥ < µ
∥∥bδin ∥∥ ,

which implies in view of (14) that kδin ≤ kn (ξn) . Now, if

(53)
∥∥∥b̃n − F ′[n] (ξn) sξnn,kn(ξn)−1

∥∥∥ > µ
∥∥∥b̃n∥∥∥

then, for i large enough, ∥∥∥bδin − F ′[n]

(
xδin
)
sδin,kn(ξn)−1

∥∥∥ > µ
∥∥bδin ∥∥ ,

which implies that kn (ξn)− 1 < kδin and then kδin = kn (ξn) . It follows from (51) that

(54) lim
i→∞

xδin+1 = lim
i→∞

(
xδin + sδi

n,k
δi
n

)
= ξn + lim

i→∞
sδin,kn(ξn) = ξn + sξnn,kn(ξn) ∈ X̃n+1.

But, if (53) is not true, let `n (ξn) be the largest number such that (47) holds. Then,∥∥∥b̃n − F ′[n] (ξn) sξnn,kn(ξn)−(`n(ξn)+1)

∥∥∥ > µ
∥∥∥b̃n∥∥∥

and so, we have kn (ξn)−`n (ξn) ≤ kδin which implies kδin ∈ {kn (ξn)− `n (ξn) , . . . , kn (ξn)} .
This means that the sequence

(
kδin
)
i∈N has the limit points kn (ξn) − `n (ξn) , . . . , kn (ξn)

and accordingly the sequence
(
xδin+1

)
i∈N splits into `n (ξn) + 1 convergent subsequences,

each one converging to an element of X̃n+1 by definition of this set.
Case 2: kn (ξn) = kmax. In this case,

(55)
∥∥∥b̃n − F ′[n] (ξn) sξnn,kn(ξn)

∥∥∥ ≥ µ
∥∥∥b̃n∥∥∥ .

If this inequality is strict, due to (52) , for i large enough we have∥∥∥bδin − F ′[n]

(
xδin
)
sδin,kn(ξn)

∥∥∥ > µ
∥∥bδin ∥∥

which implies that kδin ≥ kn (ξn) = kmax and then kδin = kmax. As in (54), limi→∞ x
δi
n+1 ∈

X̃n+1.
If equality holds in (55) we consider again the number `n (ξn) of (47) to validate kn (ξn)−

`n (ξn) ≤ kδin and then that kδin ∈ {kmax − `n (ξn) , . . . , kmax} . As before, we conclude that(
xδin+1

)
i∈N splits into `n (ξn) + 1 convergent subsequences, each one converging to a point

of X̃n+1.

Case 3: kn (ξn) = 0. This case comes with b̃n = 0, that is, F[n](ξn) = y[n]. Then,

ξn ∈ X̃n+1. By an inductive argument using (49) we obtain from the definition of sδin,k
(see the repeat-loop of Algorithm 1) that limi→∞ s

δi
n,k = 0 for each k. As kδin ≤ kmax,

the sequence (xδin + sδi
n,k

δi
n

) splits into kmax + 1 subsequences at most as i→∞. All these

subsequences converge to ξn ∈ X̃n+1. �

The next lemma and its corollary establish uniform convergence of (X̃n)n to x+.
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Lemma 11. Under the assumptions of Theorem 5 there is, for any ε > 0, a constant
M = M (ε) ∈ N such that

∆p

(
ξn, x

+
)
< ε for all n ≥M (ε) and all ξn ∈ X̃n.

Proof. See Appendix A. �

Corollary 12. Let all assumptions of Theorem 5 hold true. Then, Lemma 11 is true
with the norm in X: for any ε > 0 there is a constant M = M (ε) ∈ N such that∥∥x+ − ξn

∥∥ < ε for all n ≥M (ε) and all ξn ∈ X̃n.

Proof. From Lemma 11 we conclude that the sequence (ξn)n∈N is uniformly bounded.
Then the result is a consequence of (10). �

We are able to prove strong convergence.

Theorem 13. Let all the assumptions of Theorem 7 hold true with 1 < p ≤ s ≤ r and

ωδn,k := min
{
ω
δ,(1)
n,k , ω

δ,(2)
n,k , ω

}
where ω > 0 is a constant. Additionally, let all Yj’s be uniformly smooth. Then,

lim
δ→0

∥∥xδN(δ) − x+
∥∥ = 0

where x+ is the solution of (1) which we assumed to be unique in Bρ(x
+,∆p).

Proof. Let δi → 0 as i → ∞. The cases N (δi) → n ∈ N as i → ∞ and N (δi) bounded
can be dealt with as in the proof of Theorem 3.7 in [20]. Now, let N (δi)→∞ as i→∞
and let ε > 0 be given. From (44) and (10) we conclude that there exists some positive
constant C1 > 0 such that∥∥xδin − x+

∥∥s ≤ C1∆p

(
xδin , x

+
)

for all n ≤ N (δi) .

But for all n ∈ N fixed, we have N (δi) ≥ n provided i is large enough. It follows from
(43) that ∥∥∥xδiN(δi)

− x+
∥∥∥s ≤ C1∆p

(
xδiN(δi)

, x+
)
≤ C1∆p

(
xδin , x

+
)
,

for each n fixed and i large enough. Therefore, it is sufficient to prove that

(56) ∆p

(
xδin , x

+
)
≤ εs

C1

for some n ∈ N fixed and i sufficiently large. From the definition of ∆p,

∆p

(
xδin , x

+
)
≤
∣∣∣∣1p ∥∥xδin ∥∥p − 1

p

∥∥x+
∥∥p∣∣∣∣+

∣∣〈Jp (xδin ) , x+ − xδin
〉∣∣ .

As the norm is a continuous function, there is a γ1 = γ1 (ε) > 0 such that∣∣∣∣1p ∥∥xδin ∥∥p − 1

p

∥∥x+
∥∥p∣∣∣∣ ≤ εs

2C1

whenever
∥∥x+ − xδin

∥∥ ≤ γ1. Moreover, from (44), if
∥∥x+ − xδin

∥∥ ≤ γ2 = γ2 (ε) := εs

2Cp−1C1
,

we have from the properties of Jp,∣∣〈Jp (xδin ) , x+ − xδin
〉∣∣ ≤ ∥∥xδin ∥∥p−1 ∥∥x+ − xδin

∥∥ ≤ εs

2C1

,
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which implies that (56) is satisfied whenever

(57)
∥∥x+ − xδin

∥∥ ≤ γ = γ (ε) := min {γ1, γ2} ,

for some n ∈ N fixed and i large enough. To validate (57), we follow again ideas of [20].
According to Corollary 12 we find an n ∈ N such that∥∥x+ − ξn

∥∥ ≤ γ

2
for all ξn ∈ X̃n.

According to Lemma 10 there is an I(γ) ∈ N such that for all integers i ≥ I(γ) there

exists a ξ
(i)
n ∈ X̃n with ∥∥xδin − ξ(i)

n

∥∥ ≤ γ

2
.

Then, for all i ≥ I(γ) we can find an appropriate ξ
(i)
n ∈ X̃n with∥∥x+ − xδin

∥∥ ≤ ∥∥x+ − ξ(i)
n

∥∥+
∥∥ξ(i)

n − xδin
∥∥ ≤ γ.

This is (57) and completes the proof. �

Remark 14. If the number d of equations is equal to 1 and if we set kmax = ∞ then
Algorithm 1 coincides with the REGINN-Landweber method presented and analyzed by Jin
in [14] where, however, only weak convergence was established, cf. [14, Remark 3.4]. In
view of the proof of Lemma 10 we are able to prove strong convergence with little additional
effort. In fact, from [14] we know that kδn (or kn in the noiseless situation) and N(δ) are
well defined (in other words: the repeat and while loops of Algorithm 1 terminate).
Further, strong convergence in the noiseless situation is also provided. In this situation,
only Cases 1 and 3 in the proof of Lemma 10 need to be considered. The proof of Case 1
remains the same, however, we need to modify the arguments for kn(ξn) = 0 (Case 3)
because we are not allowed to assume kδn ≤ kmax <∞ uniformly in δ. To this end let (xδin )
converge to ξn with kn(ξn) = 0 which yields F (ξn) = y (F consists of only 1 component)

and ξn = x+ by the uniqueness assumption on x+ in Bρ(x
+,∆p). Hence, x+ ∈ X̃n+1.

Assume that (xδin+1) does not converge to x+ as i → ∞. Then, there are an ε > 0 and a
subsequence (δim)m such that

ε < ‖xδimn+1 − x+‖s
(10)

. ∆p(x
δim
n+1, x

+)
(43)

. ∆p(x
δim
n , x+)

m→∞−−−→ ∆p(x
+, x+) = 0,

which contradicts the assumption. As a consequence, strong convergence of Jin’s method
is a byproduct of our analysis.

Relying on a variational source condition Kaltenbacher and Tomba [17] could recently
validate strong convergence with rates of an iteratively regularized Gauss-Newton version
of Jin’s method.

Remark 15. Observe that the sequences
(
bδn
)

and
(
zδn,k
)

are uniformly bounded and

because
∥∥Aδn∥∥ ≤ M, we have that

∥∥bδn − Aδnsδn,k∥∥ is also uniformly bounded. As 1 < p ≤
s ≤ r, we conclude that (see (42)) min

{
ω
δ,(1)
n,k , ω

δ,(2)
n,k

}
≥ C where the constant C > 0 is

independent of n, k, and δ. If ω ≤ C then

ωδn,k = min
{
ω
δ,(1)
n,k , ω

δ,(2)
n,k , ω

}
= ω

which allows us to use a small constant step size for our numerical experiments in the
following section.
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5. Numerical Experiments

To demonstrate its strengths and weaknesses we apply K-REGINN-Landweber to the
inverse problem of EIT (Electric Impedance Tomography) introduced by Calderón [4]. We
give a rough explanation of EIT; for more details concerning modeling and mathematical
results see, e.g., both overview articles [2, 5].

Let Ω ⊂ R2 be a bounded and simply connected Lipschitz domain. We apply some
electric currents g : ∂Ω→ R on its boundary and record the resulting potentials f : ∂Ω→
R on its boundary as well. The goal is to reconstruct the electric conductivity γ : Ω→ R
in the whole of Ω.

The governing equation of the continuum model in weak formulation is the elliptic
variational problem: Find u ∈ H1

♦ (Ω) :=
{
v ∈ H1 (Ω) :

∫
∂Ω
v = 0

}
such that

(58)

∫
Ω

γ∇u∇ϕ =

∫
∂Ω

gϕ for all ϕ ∈ H1
♦ (Ω) .

If γ ∈ L∞+ (Ω) := {v ∈ L∞ (Ω) : v ≥ C a.e.} for a positive constant C and g ∈ H−1/2
♦ (∂Ω) =

H
1/2
♦ (∂Ω)∗ where H

1/2
♦ (∂Ω) :=

{
v ∈ H1/2 (∂Ω) :

∫
∂Ω
v = 0

}
then due to standard ellip-

tic theory there exists a unique solution of (58). Furthermore, its trace f = u|∂Ω is in

H
1/2
♦ (∂Ω) and the mapping Λγ : H

−1/2
♦ (∂Ω) 3 g 7→ f ∈ H1/2

♦ (∂Ω) is a linear homeomor-
phism called Neumann-to-Dirichlet map (in short NtD).

The forward operator F : D (F ) ⊂ L∞ (Ω)→ L(H
−1/2
♦ (∂Ω), H

1/2
♦ (∂Ω)) associated with

EIT is defined by

(59) F (γ) := Λγ

where D (F ) := L∞+ (Ω) . Solving (59) for γ given Λγ is the EIT inverse problem which is
uniquely solvable [1].

In practice the full NtD map is not completely available, only d ∈ N potentials Λγgj,

j = 0, . . . , d−1, can be observed which are induced by the currents gj ∈ H−1/2
♦ (∂Ω). This

fact leads us to introduce the operators Fj : D(F ) ⊂ L∞(Ω)→ H
1/2
♦ (∂Ω), Fj(γ) := Λγgj,

j = 0, . . . , d− 1. We are now in the situation (5). Moreover, Fj is Fréchet differentiable,
see, e.g. [19]. Unfortunately, L∞(Ω) is not a Banach space covered by our analysis of K-
REGINN-Landweber (it is not s−convex). Since L∞ (Ω) ⊂ Lp (Ω) (Ω is bounded) we could

redefine the mappings Fj as Fj : D(F ) ⊂ Lp(Ω)→ H
1/2
♦ (∂Ω). Indeed, Lp(Ω), 1 < p <∞,

is q−smooth and s−convex for q := min {p, 2} and s := max {p, 2}, see, e.g., [6]. The
duality mapping Jp : Lp(Ω)→ Lp

∗
(Ω) is given by

(60) Jp(f) = |f |p−1 sign(f).

We are, however, in trouble again because Fj is certainly not Fréchet differentiable with
respect to the Lp-topology (D(F ) contains no interior points). We suggest a pragmatic
approach as remedy: restrict the searched-for conductivity to a finite dimensional space
V ⊂ L∞(Ω), that is, consider

(61) Fj : V+ ⊂ Vp → L2(∂Ωj), γ 7→ Λγgj, V+ = D(F ) ∩ V,

where ∂Ωj is this part of the boundary where the measurements are actually taken. We
write Vp = (V, ‖ · ‖Lp(Ω)) to emphasize that V = span{v1, . . . , vM} is equipped with the
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Lp-norm.3 This model is reasonable for two reasons: 1. Only finitely many degrees of
freedom of the conductivity can be determined from finitely many measurements. 2. From
a computational point of view we are bound to a finite dimensional setting anyway.

The operators (61) have Fréchet derivatives F ′j : int(V+) → L(Vp, L
2(∂Ωj)), F

′
j (γ)h =

wj|∂Ωj
, where wj ∈ H1

♦ (Ω) is the unique solution of

(62)

∫
Ω

γ∇wj∇ϕ = −
∫

Ω

h∇uj∇ϕ for all ϕ ∈ H1
♦ (Ω)

with uj solving (58) for g = gj. The associated adjoint is F ′j(γ)∗ : L2 (∂Ωj) → Vp∗ ,

F ′j(γ)∗z =
∑

i λi(z)vi where λ = (λ1 (z) , . . . , λM (z))> ∈ RM uniquely solves

Aλ = b where A ∈ RM×M and b ∈ RM with Ai,j =

∫
Ω

vi vj and bi =

∫
∂Ωj

z F ′j(γ)vi.

Let ψz and wi,j ∈ H1
♦ (Ω) be the unique solutions of (58) for g = z and (62) for h = vi,

respectively. Then,

bi =

∫
∂Ωj

z F ′j(γ)vi =

∫
∂Ωj

z wi,j =

∫
Ω

γ∇ψz∇wi,j = −
∫

Ω

vi∇uj∇ψz.

Now we introduce our test environment: Ω is the unit square (0, 1)2 and we feed in the
d = 4m (m ∈ N) independent currents

gj(x, y) :=

{
cos (2j0πx) cos (2j0πy) : (x, y) ∈ Γj1 ,

0 : otherwise,

where j = 4 (j0 − 1) + (j1 − 1), j0 = 1, . . . ,m, j1 = 1, . . . , 4. Further, Γ1 := [0, 1]× {1} ,
Γ2 := {1}× [0, 1] , Γ3 := [0, 1]×{0}, and Γ4 := {0}× [0, 1] are the faces of Ω. We operate
with ∂Ωj = ∂Ω\Γj1 (we do not take measurements where we apply currents).

The basis functions vi of the conductivity space V are constructed by a Delaunay
triangulation T = {Ti : i = 1, . . . ,M} provided by Matlab’s pde toolbox4 where M =
3066. Set vi = χTi , i = 1, . . . ,M (χB denotes the indicator function of the set B). For
this basis, A reduces to diagonal matrix A = diag (|Ti|) , where |Ti| represents the area
of triangle Ti and then λi (z) = bi/ |Ti| .
Remark 16. Above choice of V guarantees injectivity of F ′j(γ), γ ∈ int(V+). Moreover,
Fj satisfies the tangential cone condition (Assumption 1), see [19, Section 3].

The exact solution γ+ =
∑M

i=1 αivi models a constant background conductivity 0.1 and
two ball-like inclusions with conductivity 1: Denoting the centroid of Ti by ξi we set

(63) γ+ =
M∑
i=1

αivi with αi =

{
1 : ξi ∈ B1 ∪B2,

0.1 : otherwise,

where B1 and B2 are (open) balls with radii 0.15 about the centers (0.35, 0.35) and
(0.65, 0.65), respectively. Figure 1 displays γ+. The corresponding data Λγ+gj have been
computed by the finite element method (FEM). We assume to know the background
conductivity and, thus, start with initial iterate γ0 ≡ 0.1. The other input parameters of
Algorithm 1 are τ = 1.5, kmax = 106, µ = 0.8, and ωn,k = 0.001, see Remark 15. Further,

3The vi’s are naturally assumed to be linearly independent and chosen such that V+ has a non-empty
interior: int(V+) 6= ∅.

4Matlab is a trademark of The MathWorks, Inc.
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Figure 1. The searched-for conductivity γ+ (63) superimposed by the
corresponding triangulation T of Ω.
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Figure 2. Some iterates of K-REGINN-Landweber for d = 4. Below each
plot the iteration index, the relative error, and the overall number of inner
iterations are given (The plots actually do not show γn =

∑
αni vi but

smoothed versions which are obtained by piecewise linearly interpolating
the coefficients (αni )).

βh,j = πh,j = 0. During the iteration the elliptic problems (58) and (62) have been solved
by FEM also, however, using a different and coarser discretization mesh as for generating
the data to avoid the most obvious inverse crime.

The relative L2−error of the n−th iterate γn is denoted by

en := 100
‖γn − γ+‖L2(Ω)

‖γ+‖L2(Ω)

.

Our initial error is e0 ≈ 87.4%. As Yj = L2 (∂Ωj) is a Hilbert space, the normalized
duality mapping is the identity operator. For this reason, we have chosen r = 2 and then
jr (f) = f for all f ∈ Yj. Due to the restriction 1 < p ≤ s ≤ r, (see, e.g., Theorem 13) we
have that 1 < p ≤ 2.

In our first experiments we work with the Hilbert space X = V2, i.e., p = 2 to illustrate
the convergence results of Theorems 5 and 13. Figure 2 shows different iterations where
d = 4 and no noise (other than noise from discretization) is present (δ = 0). The slow
convergence of the inner (Landweber) iteration can be observed when looking at the
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δ (%) 8.0 4.0 2.0 1.0 0.5

N(δ) 8 22 58 104 248

kall 20 267 1 491 3 871 18 381

eN(δ) (%) 87.1 85.6 82.9 81.7 80.4

Table 1. Relative L2−error of γδN(δ) for decreasing noise level δ. Here, d = 4.

number kall of overall inner iterations (sweeps through the repeat-loop of Algorithm 1).
The locations of the inclusions appear clearly after only a few (outer) iterations. This
observation is quite remarkable as only one current per face was applied. For a possible
analytic explanation we refer to [11].

The convergence γδN(δ) → γ+ as δ → 0 (Theorem 13) is somewhat illustrated in Table 1.
To this end we corrupted the simulated exact data by artificial random noise of relative
noise level δ, that is, the perturbed data are

(64) Λγ+g
δ
j = Λγ+gj + δ ‖Λγ+gj‖L2(∂Ωj) perj, j = 0, . . . , d− 1,

where perj is a uniformly distributed random variable such that ‖perj‖L2(∂Ωj) = 1. In
contrast to the previous sections δ denotes here a relative noise level.

Remark 17. We emphasize that kmax = 106 is never reached in all our experiments: The
repeat-loop terminates as ‖bδn − Aδnsδn,k‖ < µ

∥∥bδn∥∥ happens for a k < kmax. If, however,
we reduce kmax to a much smaller value, say kmax = 50, then the repeat-loop is stopped
predominantly because k = kmax is reached. In the experimental setting underlying Table 1
K-REGINN-Landweber terminates then with even smaller kall’s. The price to pay is worse
accuracy (larger reconstruction error).

With our next experiments we highlight the mode of operation of Algorithm 1. One
advantage of Kaczmarz over classical methods is that not all equations are active in one
cycle.5 An equation is inactive in a cycle if the then-branch of the if-block is executed.
Figure 3 displays the number of inactive equations as a function of the cycle number
(which is the variable ` in Algorithm 1). Here, d = 8, δ = 1%, and all other input
parameters including the spaces remain the same as before. Notice that whereas at the
beginning the algorithm works with all equations in each cycle, a considerable number of
them is not used towards the end.

As a complement to Figure 3 we present Table 2 where more internal information is
available: the number of inner iterations per equation and per cycle is listed. Also the
number of inactive equations is noted. Here, d = 4, τ = 2, and δ = 2%.

Regularization in appropriate Banach spaces is known to foster sparsity and steep
gradients. This feature is demonstrated in Figure 4 which collects reconstructions with
respect to different spaces X = V2 (p = 2) and X = V1.1 (p = 1.1), different noise levels δ,
and different numbers of equations d. All other parameters remain as before and τ is
reset to 1.5. The Banach space norm p = 1.1 separates the two inclusion sharper than the
Hilbert space norm independently of the noise level. If the available information increases
this separation becomes even better (last row).

5A cycle is one sweep through all equations in (5). More precisely: one run of the for-loop of
Algorithm 1.
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Figure 3. Number of inactive equations per cycle for d = 8.

no. of cycle

no. of eqn. 1 2 3 4 5 6 7 8 9 10

1 2 8 14 19 20 22 24 25 49 0

2 2 7 18 25 29 32 35 0 31 0

3 2 7 15 22 28 36 43 0 0 −
4 4 11 19 24 29 34 41 0 0 −

# iter./cycle 10 33 66 90 106 124 143 25 80 0

# inactive eqns. 0 0 0 0 0 0 0 3 2 2

Table 2. Number of inner iterations per equation and per cycle.

Finally we illustrate L1−fitting which is well suited to cope with impulsive noise, see,
e.g., [7]. To this end we set Yj = Lt(∂Ωj) for some t > 1 but close to 1 and consider

Fj : V+ ⊂ Vp → Lt(∂Ωj), 1 < t ≤ 2.

As ‖g‖Lt(∂Ωj)
. ‖g‖L2(∂Ωj)

the new Fj is Fréchet differentiable with the same derivative.

If we choose p = 2, i.e., X = V2 (⊂ L2 (Ω)) then s = 2 and due to the restriction s ≤ r
(see Theorem 13), we cannot use directly the duality mapping Jr for r = t in the space
Lt (∂Ωj) for t < 2. However, in view of (6) and (60) , we obtain the normalized duality
mapping J2 in Lt (∂Ωj) as

J2 (f) = ‖f‖2−t
Lt(∂Ωj)

Jt (f) = ‖f‖2−t
Lt(∂Ωj)

|f |t−1 sign(f)

which allows us to use r = 2.
To test the performance of K-REGINN-Landweber under impulsive noise we superim-

posed standard uniform noise with some highly inconsistent data points. These outliers
may arise from procedural measurement errors in practical applications. Figure 5 shows
a plot of such kind of noise. In our experiments we scaled both kinds of noise such that
the relative L2-noise is 1% in each case, cf. (64). See Figure 6 for a visual impression of
the reconstructed conductivities. Below each image we note the relative error eN(δ), the
number of outer iterations N(δ), and the overall number of inner iterations kall. Under
uniform noise the L2-setting yields visually the best reconstruction. As expected, if the
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δ = 2.0% δ = 1.0% δ = 0.5%

p = 2

d = 4

p = 1.1

d = 4

p = 1.1

d = 8

0.05 0.1 0.15 0.2

Figure 4. Reconstructed conductivities with respect to different spaces,
number of equations, and noise levels. The color scale is the same for all
images and ranges from 0.018 (darkest blue) to 0.23 (darkest red).

noise is impulsive, the L1.01-approach is best from a qualitative as well as a quantitative
point of view.

Remark 18. For the last experiment we have equipped K-REGINN-Landweber with a strat-
egy to choose the tolerance µ (13) adaptively. The scheme suggested by [24, Sec. 6] works
as expected provided each equation is treated separately: the overall number of inner iter-
ations is greatly reduced.
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Figure 5. Left: uniform noise. Right: impulsive noise. Both noise signals
are scaled to have the same L2−norm.

t = 2 t = 1.1 t = 1.01

uniform
noise

N(δ) = 168, eN(δ) = 82.1%,

kall = 2 846

N(δ) = 192, eN(δ) = 82.3%,

kall = 1 602
N(δ) = 160, eN(δ) = 82.3%,

kall = 1 438

impulsive
noise

N(δ) = 199, eN(δ) = 82.0%,

kall = 3 031

N(δ) = 422, eN(δ) = 81.1%,

kall = 4 956

N(δ) = 567, eN(δ) = 80.4%,

kall = 8 867

Figure 6. Reconstructed conductivities for d = 4 with respect to different
noises and different data fitting norms. The relative L2-noise level is 1%
for each type of noise. The used color scale is as in Figure 4.

Appendix A. Proof of Lemma 11

Here we provide a proof of Lemma 11 by a more general result. The technique of proof
is adapted from Hanke [10, Propsition 4.3].

Proposition 19. Let all assumptions of Theorem 5 hold true. Let
(
x

(l)
n

)
n

be a sequence

generated by a run of K-REGINN-Landweber using the arbitrary sequence
(
k

(l)
n

)
n

of stopping

indices in the inner iteration, that is, x
(l)
n+1 = x

(l)
n + s

n,k
(l)
n

, x
(l)
0 = x0. Each stopping index



KACZMARZ-REGINN-LANDWEBER IN BANACH SPACES 25

must satisfy k
(l)
n ∈ {1, . . . , kn} and k

(l)
n = 0 only if kn = 0 where kn is the stopping index

from (14). Then, for each ε > 0, there exists a number M(ε) ∈ N independent on l such
that

∆p

(
x(l)
n , x

+
)
≤ ε for all n ≥M (ε) and all sequences

(
k(l)
n

)
n
.

Proof. As ‖Ansn,k − bn‖ ≥ µ ‖bn‖ holds for any k = 0, . . . , k
(l)
n − 1, Theorem 5 holds and

all sequences
(
x

(l)
n

)
n

converge to x+. Assume that the proposition is not true. Then, there
exists some ε > 0 and strictly increasing sequences (nj)j , (lj)j ⊂ N such that

∆p

(
x(lj)
nj
, x+

)
> ε for all j ∈ N

where
(
x

(lj)
n

)
n

represents the sequence generated by the sequence of stopping indices(
k

(lj)
n

)
n
. The iterates x

(lj)
nj must be generated by infinitely many different sequences of

stopping indices (otherwise, as x
(l)
nj → x+ as j → ∞ for each l fixed and as the lj’s have

only a finite number of values, we would have ∆p

(
x

(lj)
nj , x

+
)
< ε for nj large enough).

Next we reorder the numbers lj (excluding some iterates if necessary) such that

(65) ∆p

(
x(l)
nl
, x+

)
> ε for all l ∈ N.

Now, as k0 < ∞, there exists k̂0 ∈ {0, . . . , k0} such that k̂0 = k
(l)
0 for infinitely many

l ∈ N. Let £0 ⊂ N be the set of those indices l. Next, fix k̂0 as stopping index for the first
inner iteration and consider the second outer iteration: again, k1 < ∞, and there is a

k̂1 ∈ {0, . . . , k1} such that k̂1 = k
(l)
1 for infinitely many l ∈ £0\ {1} . Those l are collected

in £1 and so on. It follows that there exists a sequence of stopping indices
(
k̂n
)
n

and
unbounded sets £n ⊂ N\ {1, . . . , n} , n ∈ N0 ,with £0 ⊃ £1 ⊃ £2 ⊃ . . . , such that

(66) k̂n = k(l)
n for all l ∈ £n, n ∈ N0.

Denote by (x̂n)n the sequence corresponding to the sequence
(
k̂n
)
n

of stopping indices.

Observe that, if l ∈ £0 then from (66) x
(l)
1 = x

(l)
0 + s

0,k
(l)
0

= x̂0 + s0,k̂0
= x̂1. Similarly,

if l ∈ £1 (⊂ £0) then x
(l)
2 = x

(l)
1 + s

1,k
(l)
1

= x̂1 + s1,k̂1
= x̂2. By induction,

(67) l ∈ £n =⇒ x
(l)
n+1 = x̂n+1 for all n ∈ N0.

Furthermore, x̂n → x+ as n → ∞ which implies that there exists M = M (ε) ∈ N such
that

(68) ∆p

(
x̂n, x

+
)
≤ ε for all n ≥M.

Finally, for l ∈ £M fixed, the errors ∆p

(
x

(l)
n , x+

)
are monotonically decreasing with n,

see (18). In particular, nl ≥ l ≥M + 1 (because l ∈ £M ⊂ N\ {1, . . . ,M}) which implies
in view of (67) and (68)

∆p

(
x(l)
nl
, x+

)
≤ ∆p

(
x(l)
M+1

, x+
)

= ∆p

(
x̂M+1, x

+
)
≤ ε

contradicting (65) . �

As each element of X̃n has the form x
(l)
n for some l, Lemma 11 is an immediate conse-

quence of the above proposition.
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