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Abstract

We explicitly define a family of seminorms on the space of all
bounded real sequence l∞. This family gives rise to a Hausdorff lo-
cally convex topology which is not equivalent to the usual ones: the
weak topology σ(l∞, l1), the norm topology τ∞, the Mackey topology
m(l∞, l1) and the strict topology β. We show that this new topology,
denoted by βh, is weaker than the norm topology, τ∞. Finally, we show
that the dual of l∞ with respect to βh, called hyperopic strict dual,
is not l1 anymore but rather, is identified with the set of all purely
finitely additive measures.
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1 Introduction

On l∞, the set of bounded real-valued sequences, many topolo-
gies have been defined. Among the most well-known we find:
the weak topology σ(l∞, l1), the norm topology τ∞, the Mackey
toplogy m(l∞, l1) and the strict topology β. All these topologies
on l∞, as well as their respective duals are important mathe-
matical objects in their own right and have been studied by
influential mathematicians like Mackey [8], Buck [1,2] , Conway
[6], and Collins [5], among others.

Our concern in this paper is with the topologies defined on l∞

which are defined by families of semi-norms indexed by a subset
A ⊂ l1, the set of all summable sequences a ∈ l1 such that
an 6= 0 for all but finitely many n. Thus,

∑
n≥N |an| is always

non zero. Any element of that family, pa : l∞ → R, is defined
by

pa(x) = lim sup
N→∞

∑
n≥N |anxn|∑
n≥N |an|

This topology will be called strict because it is obtained from
a family of semi-norms indexed by A ⊂ l1 and because it also
recalls Buck [2], who defined it for first time. In order to dis-
tinguish it from strict topology1, introduced by Buck, we call it
hyperopic. This name will be justified in Proposition 2 below.

Our topology is shown to not be equivalent to the topology
introduced by Buck [2] since it has mathematical properties2

completely opposed to the strict topology. For instance, the
strict dual of l∞ is l1 which is well-known to be equivalent to
the set of all countably additive measures. While the dual of l∞

1It is defined by the family indexed by all sequences converging to zero: pa(x) =
supk≥1 |akxk| with ak → 0 as k →∞.

2For other non mathematical properties see, for instance, Lewis [7].
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with respect to our topology is proven to be equivalent to the
set of all purely finitely additive measures.

The paper is organized in the following way: Section 2 deals
with the existence of hyperopic strict topologies. Section 3 de-
fines hyperopic preferences and from them hyperopic topologies
are defined and characterized in Section 4. In Section 5, we es-
tablish a representation theorem which allows us to prove that
the hyperopic strict dual of l∞ is the set of all bounded pure
charges. Finally, in Section 6, we give a short conclusion.

2 Hyperopic strict topologies

Let Γ = {pa : a ∈ A} be the family of semi-norms on l∞ indexed
by A. Any pa ∈ Γ satisfies the following properties that define
semi-norms

1. Positivity
pa(x) ≥ 0

2. Homogeneity

pa(αx) = lim sup
N→∞

∑
n≥N |an(αxn|)∑

n≥N |an|
= |α|pa(x)

3. Triangle Inequality

pa(x+ y) = lim sup
N→∞

∑
n≥N |an(xn + yn)|∑

n≥N |an|
≤ pa(x) + pa(y)

Definition 1. The hyperopic strict topology βh on l∞ is the lo-
cally convex topology defined by the family Γ of semi-norms on
l∞.

In what follows we will guarantee the existence of βh, and
will offer some of its properties.
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2.1 Existence

Let A ⊂ A be a finite subset of A and ε > 0 be a positive
number real. For each x ∈ l∞, define VA,ε(x) as

VA,ε(x) = {y ∈ l∞ : pa(y − x) < ε, a ∈ A}

Define V : l∞ → 2l
∞

so that for each x ∈ l∞, V(x) consists of
all sets V ⊂ l∞ such that there exists VA,ε(x) ⊂ V. We have the
following theorem.

Theorem 1. Let V(x) be the collection of subsets defined above.
Then the following holds:

(1) The collection V(x) is a fundamental system of neighbor-
hoods of x ∈ l∞.

(2) There is a unique topology βh on l∞ such that for each
x ∈ l∞, V(x) is a fundamental system of neighborhoods
of x. In addition, the members of βh are characterized in
the following way: O of l∞ is open in βh if and only if
O = ∪arbitraryVA,ε(x).

(3) Let {xn} be a sequence in l∞. Then xn → x (in βh) if and
only if pa(x

n − x)→ 0,∀a ∈ A.

(4) (l∞, βh) is a topological vector space (TVS) which is locally
convex.

(5) βh ⊂ τ∞.

Proof. We will prove these items separately.
Proof of (1). Clearly V(x) satisfies the following properties:

a) x ∈ V, for all V ∈ V(x); b)If V ∈ V(x) and V ⊂ W, then
W ∈ V(x); c) If V,W ∈ V(x), then V ∩ W ∈ V(x) and d)

4



If V ∈ V(x), there exists U ∈ V(x) such that y ∈ U, then
V ∈ V(y). These conditions define a fundamental system of
neighborhoods of x.

Proof of (2). This item follows from Proposition 2, §1, no2 of
Bourbaki [4].

Proof of (3). For every O ∈ βh containing x, there exists
no ∈ N such that n > no implies that xn ∈ O. This in turn is
equivalent to stating that pa(x

n − y)→ 0,∀a ∈ A.
Proof of (4). The vector space operations are βh−continuous.

This follows from properties b) and c) of the definition of βh.
The local convexity of (l∞, βh) follows from the fact that each
member, VA,ε(x), of the generating family is convex.

Proof of (5). We will prove that any open set in βh contains
an open ball in τ∞. It is sufficient to prove that any V (x, ε, A) =
{y ∈ l∞ : ρa(y − x) < ε, a ∈ A} ⊃ B∞(x, ε) = {y ∈ l∞ :
supk |yk − xk| < ε

2}. Let y ∈ B∞(x, ε). This implies that |yk −
xk| < ε

2 ,∀k. Computing ρa(y − x) with a ∈ A ⊂ A ⊂ l1 with A

finite, one has

ρa(y−x) = lim sup
N→∞

∑
n≥N |an(yn − xn)|∑

n≥N |an|
≤ ε

2
lim sup

N→∞

∑
n≥N |an|∑
n≥N |an|

therefore ρa(y − x) < ε.

3 Hyperopic preferences

Myopia via preference relations on l∞, which is nothing else
but a complete transitive binary relation on l∞, has been stud-
ied by Brown and Lewis [3]. By following the spirit of these
authors, who studied myopic preferences, we define hyperopic
preferences.
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Definition 2. A preference relation on l∞ is a binary relation
on l∞ satisfying the following properties:

1. Complete: ∀x, y ∈ l∞, either x � y or y � x

2. Transitive: ∀x, y, z ∈ l∞, x � y, y � z ⇒ x � z

By x � y we mean that x � y and ¬(y � x), and x ∼ y
means x � y and y � x.

For any x ∈ l∞, we define its n−head denoted by xhn to be

xhn(k) =

{
xk, 1 ≤ k ≤ n
0, k > n

and its n−tail as xtn = x− xhn.
Now we are ready to define hyperopic preferences.

Definition 3. The preference relation � on l∞ is said to be
hyperopic if and only if it satisfies the following condition.

∀x, y, z ∈ l∞+ , if x � y then x � y + zhn,∀n. (1)

Definition 4. Let � be a preference relation on l∞+ .

1. � is said to be weakly hyperopic ⇔ for all x, y ∈ l∞+ and c a
constant sequence in l∞+ , if x � y then there exists N such
that x � y + chn for all n ≥ N.

2. � is said to be strongly hyperopic ⇔ for all x, y, z ∈ l∞+ if
x � y then there exists N such that x � y + zhn for all
n ≥ N.

3. � is said to be monotonically hyperopic⇔ for all x, y ∈ l∞+ ,
if x � y then there exists N such that xtn � ytn for all n ≥ N,
where xtn = x− xhn.
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For any two x, y ∈ l∞ let us define x ≥ y if and only if
xn ≥ yn,∀n. Thus, � is said to be monotonic in the classic sense
if x ≥ y implies x � y.

The following results follow directly from the definition.

Proposition 1.

1. Hyperopia implies strong hyperopia which in turn implies
weak hyperopia.

2. Under classic monotonicity, strong hyperopia and hyperopia
are equivalent.

Proof.

1. Item 1 directly follows from the definition.

2. Strong hyperopia implies that there exists N such that x �
y + zhn,∀n ≥ N. This fact together with the monotonicity,
imply that for all n ≤ N, x � y + zhN � y + zhn.

The following definition is usual in the literature

Definition 5. Let τ be a topology on l∞. A preference relation
� is said to be τ−continuous if for all x ∈ l∞+ the sets {y ∈ l∞+ :
y � x} and {y ∈ l∞+ : x � y} are closed in the topology τ.

Remark 1: If we only have that for all x ∈ l∞+ the set
{y ∈ l∞+ : y � x}({y ∈ l∞+ : x � y}), then � would τ− upper
semi continuous ( lower semi continuous).

Example 1. We consider preferences represented3 by the utility
function u : l∞+ → R defined by

u(x) = lim sup
n→∞

xn,∀x ∈ l∞+ .
3� on X is represented by u : X → R if and only if x � y ⇔ u(x) ≥ u(y).
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We claim that this preference is βh− upper semi continuous.
Let xn →βh y. Then, pa(x

n − y) → 0,∀a ∈ A. This implies
that there exists No such that for all N ≥ No one has∑

k≥N |ak(xnk − yk)|∑
k≥N |ak|

≤ ε,∀n ≥ no

Therefore,

|xnk − yk| ≤
||a||1ε

inf{ak : ak 6= 0}
,∀n ≥ no

On the other hand, one has

u(xn)− u(y) = lim sup
k→∞

xnk − lim sup
k→∞

yk ≤ lim sup
k→∞

(xnk − yk).

Then there exists a subsequence (xnkm−ykm) of (xnk−yk) for which
we have that

u(xn)− u(y) ≤ (xnkm − ykm) < 2|xnkm − ykm|,∀m

Choose mo such that km ≥ max{No, kmo
}. Then,

2|xnkm − ykm| ≤
2||a||1ε

inf{akm : akm 6= 0}
,∀n ≥ no

and therefore

u(xn)− u(y) <
2||a||1ε

inf{akm : akm 6= 0}
,∀n ≥ no

Since ε is small enough, we have that

lim sup
n→∞

u(xn) ≤ u(y)

and therefore the preference represented by u is βh− upper semi
continuous.
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Remark 2: An argument similar to the one above shows
that the preference relation represented by u : l∞+ → R defined
by

u(x) = lim inf
n→∞xn,∀x ∈ l

∞
+

is βh−lower semi-continuous. That is, if xn →βh y, then
lim infn→∞ u(xn) ≥ u(y).

4 Hyperopic topologies

Once the hyperopic preferences have been defined we are ready
to define hyperopic topologies. We offer three degrees of hyper-
opia:

Definition 6. A topology τ on l∞ is said to be weakly (strongly)
hyperopic if and only if every preference relation, �, which is
τ−continuous, is weakly (strongly) hyperopic.

The following proposition shows that βh, the one defined by
Γ, is strongly hyperopic.

Proposition 2. The topology βh is strongly hyperopic in the
sense of Item 2 of Definition 4. This property justifies its name.
Namely, hyperopic strict topology.

Proof. We pick out any βh−continuous � on l∞ . Let x, y, z ∈
l∞. Suppose that x � y.

Computing pa(zhn) we have that pa(zhn) = 0,∀n. This implies
that

pa(y + zhn − y) = 0,∀n, (2)

and therefore
y + zhn →βh y (3)
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From the continuity of� one has that (3) implies that x � y+zn,
for any large enough n, implying strongly hyperopic � .

Example 2. The preference defined in Example 1 is strongly
hyperopic. This follows directly from Proposition 2 and from the
βh− upper semi continuity of u(x) = lim supn→∞ xn,∀x ∈ l∞+ .

Remark 3: We can show that u(x) = lim supn→∞ xn is
strongly hyperopic without using the fact that it is βh− up-
per semicontinuous. This follows from the following fact: for
all y, z ∈ l∞+ and for all n, one has lim supk→∞(yk + zhn(k)) =
lim supk→∞ yk. That is, u(y+zhn) = u(y),∀n. Therefore, u(x) >
u(y) implies u(x) > u(y+ zhn),∀n. Thus, from Item 2 of Propo-
sition 1 the strong hyperopia of u follows since u is clearly mono-
tonic.

Brown and Lewis [3] have characterized myopic topologies via
convergence to zero of the sequence of the tails of any bounded
sequence. Here, we obtain a characterization for hyperopic topolo-
gies, but instead of using the sequence of tails we use the se-
quence of the heads of any bounded sequence.

Theorem 2. If τ is a Hausdorff locally convex topology on l∞

then τ is strongly hyperopic if and only if for all z ∈ l∞, zhn →τ 0

Proof. In a general way the proof of this theorem follows the
proof of an theorem in Brown and Lewis [3] and may carry over
to the present context with little changes.

Corollary 1. Let τ be a Hausdorff locally convex topology on l∞

which is strongly hyperopic. Then τ is monotonically hyperopic.
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Proof. Suppose that x � y. Strong hyperopia implies that xhn →τ

0 and yhn →τ 0. It then follows that xtn = x − xhn →τ x and
ytn = y− yhn →τ y. Hence, there exists no, such that xtn � ytn for
all n ≥ no.

5 The hyperopic strict dual of l∞

We begin by characterizing the βh−continuous linear function-
als. That is, (l∞, βh)

′.

Lemma 1. A linear functional f : (l∞, βh)→ R is βh−continuous
if and only if f(xhn)→ 0.

Proof. Lemma 1 readily follows from the fact that βh is strongly
hyperopic, see Theorem 2, and from the βh− continuity of the
linear functionals.

A linear functional f : l∞ → R is said to be countably addi-
tive if f(x) =

∑∞
k=1 bkxk, for some b = {bk}∞K=1 ∈ l1.

Lemma 2. A countably additive linear functional on l∞ is βh−
continuous if and only if it is the zero functional.

Proof. Let x be any element of l∞ and f be a countably additive
linear functional on l∞ which is βh− continuous. Thus,

f(x) =
∑
k≥1

akxk for some a ∈ l1.

For all n one has that

|f(x− xhn)| = |
∑

k≥n+1

akxk| ≤
∑

k≥n+1

|ak||xk| ≤ ||x||∞
∑

k≥n+1

|ak|.

Since f is βh− continuous and a ∈ l1, then Lemma 1 implies
that f(x) = 0. Because x is arbitrary, the functional f must be
the zero functional. Thus, Lemma 2 follows.
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5.1 A representation theorem

Any pure charge (positive) µ ∈ ba(N) induces a βh− continuous
linear functional (positive). So, let µ ∈ pa(N) be a pure charge.
Define the following linear functional Hµ : (l∞, βh)→ R to be

Hµ(x) = D
∫
N
x(n)dµ,∀x ∈ l∞

where the integral on the right hand is known as the Dunford-
Schwartz integral.

For any x ∈ l∞ the sequence of n−heads of x is defined to be

xhn(m) = x(m), 1 ≤ m ≤ n, and xhn(m) = 0,m > n.

Thus

Hµ(xhn) = D
∫
Nn

x(n)dµ ≤ ||x||∞µ(Nn), where Nn = {1, . . . , n}

From Theorem 3.2 and Theorem 5.7 (pages: 189 and 193 respec-
tively) in Olubummo [9] , it follows that µ(Nn) = 0. Therefore
Hµ(xhn) = 0 since µ is positive. Therefore, by using Lemma 1
above, it follows that Hµ is βh−continuous.

Hence, from the Jordan Decomposition theorem, see for in-
stance Theorem 2.2.2(1) in Rao and Rao [10], we can then state
that any µ ∈ pa(N) induces a βh− continuous linear functional.

Theorem 3. For all F ∈ (l∞, βh)
′, there exists a unique bounded

pure charge, µ, such that

F (x) = D
∫
N
x(n)dµ

Proof. From Item 5 of Theorem 1 it follows that F ∈ (l∞, τ∞)′ =
ba(N). From Theorem 4.7.4 in Rao and Rao [10], one has that
there exists a unique bounded charge µ ∈ ba(N) such that:

F (x) = D
∫
N
x(n)dµ(n),∀x ∈ l∞.
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where the integral on the right hand is known as the Dunford-
Schwartz integral.

From Theorem 1.23 in Yosida and Hewitt [12] there exists a
unique decomposition for µ = µc+µp with µc countably additive
and µp purely finitely additive. Thus

F (x) = D
∫
N
x(n)dµc(n) +D

∫
N
x(n)dµp(n).

Since ca(N) ≡ l1, we have that there exists a ∈ l1 defined by
an = µc(n),∀n, such that the first integral can be written as a
series. Thus F can be rewritten as:

F (x) =
∞∑
n
xnan +D

∫
N
xdµp(n)

Lemma 2 implies that the only continuous linear functional
Fµc

(x) =
∑∞
n xnan with respect to topology βh is zero. Thus,

µc = 0. So,
F (x) = D

∫
N
x(n)dµp(n)

Thus, we have shown that for any F defined on l∞ which is
linear and βh−continuous, there is a unique pure charge µ which
represents F.

Now, the following corollary is straightforward.

Corollary 2.

(l∞, βh)
′ = {µ ∈ ba(N) : µ is a bounded pure charge}

6 Concluding remarks

We have defined a new topology on l∞ and have also charac-
terized its dual. All results in this paper have been obtained
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without invoking any interpretation of any kind. Naturally, our
results can be applied to capture behaviors of economic agents
opposed to those obtained by Brown and Lewis [3] and Raut
[11]. Interpretations, applications and extensions, for more gen-
eral spaces, of our results will be subjects of other papers.
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