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Resumo

Nosso trabalho sera dividido em dois focos. O primeiro foco de estudo é a densidade de folheagoes sem
solucoes algébricas nos planos projetivos com pesos. Nés provamos que uma folhegao genérica com
grau do fibrado normal muito grande nos planos projetivos com pesos nao possui solugao algébrica.

E bem conhecido que as resolugoes minimais de singularidades de um tipo “especial” de planos
projetivos com pesos sao as superficies de Hirzebruch. Neste contexto, nés provamos que uma folhecao
genérica com bigrau do fibrado normal muito grande nas superficies de Hirzebruch nao possui solugao
algébrica.

O segundo foco de estudo é as componentes irredutiveis do espaco de folheagdes de codimensao
um no espaco projetivo 3-dimensional. Nés construimos uma familia de componentes irredutiveis
associadas a uma algebra de Lie afim.

Palavras chaves: Folheagoes nos planos projetivos com pesos. Superficies de Hirzebruch. Com-

ponentes irredutiveis do espaco de folheagoes .






Abstract

Our work is divided into two focus. The first one is study the density of foliations without algebraic
solutions in weighted projective planes. We prove that a generic foliation with very large degree of
the normal bundle in weighted projective planes has no algebraic solution.

It is well known that the minimal resolutions of singularities of a “special” type of weighted
projective planes are the Hirzebruch surfaces. In this context, we prove that a generic foliation with
very large bidegree of normal bundle of Hirzebruch surfaces has no algebraic solution..

The second focus of study is the irreducible components of the space of holomorphic foliations of
codimension one in 3-dimensional projective space. We construct a family of irreducible components
associated with an affine Lie algebra.

Keywords: Foliations in weighted projective planes. Hirzebruch surfaces. Irreducible components

of the space of foliations.
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Introducao

O estudo das folheagoes holomorfas nos espacos projetivos complexos tem suas origens no século
XIX com os trabalhos de G. Darboux, H. Poincaré e P. Painlevé. Muito tempo depois em 1970,
J. P. Jouanolou reformolou e extendeu os trabalhos do Darboux [22] na linguagem da geometria
algébrica fornecida por Grothendieck. Um dos trabalhos mais importantes sobre folheacGes nos espagos
projetivos complexos encontra-se na célebre monografia de Jouanolou [29]. Tal trabalho desenvolveu
duas linhas de pesquisa: densidade de folheagoes sem solugoes algébricas e o problema das componentes
irredutiveis do espaco de folheagoes. Nosso trabalho estd focado nestas duas linhas de pesquisa.

Vejamos um breve resumo histérico de cada uma delas.

Densidade das folheagoes sem solugoes algébricas. Na teoria classica de folheagoes holomorfas
(ou equacdes diferenciais) no plano projetivo complexo P? introduz-se um invariante destas que é o
chamado grau da folheacdo. O problema da densidade de folheacoes sem solucoes algébricas em P?
foi originalmente tratado por Jouanolou em [29]. Neste trabalho foi mostrado que uma folheacao
genérica de grau pelo menos 2 em P2 nao admite solucio algébrica. Aqui genérico significa que o
espago das folheagoes que nao tem curva algébrica invariante é o complemento de uma uniao contavel
de subconjuntos préprios algébricos fechados. A prova de Jouanolou é baseada na construcio de
exemplos, mais especificamente, ele mostra que as folheagoes de grau d induzidas pelos campos de

vetores polinomiais

X = yd(,% + zd(% + xd%,
nao tem solucgao algébrica se d > 2.

Uma generalizacao deste resultado foi obtida por Cerveau e Lins Neto em [12]. Eles mostraram
que, para todo d > 2, existe um aberto e denso U no espago das folheagoes de grau d, tal que toda
folheagao em U nao tem solugao algébrica.

Outras provas foram dadas por Zoladek [42], Ollagnier e Nowicki [34]. Para estes resultados existem
versoes em dimensao superior, por exemplo, veja os artigos de M. Soares [2]], A. Lins-Neto e M. Soares
[39], S. C. Coutinho e J. V. Pereira [17], Zoladek [4I] e Bersntein-Lunts [7].

Neste trabalho serao abordadas as folheagoes nos planos projetivos complexos com pesos, as quais
foram estudadas por Corréa and Soares em [16]. Faremos uma generalizagao da definicao do “grau”
da folheacao. Para tais folheagoes, o invariante é o chamado grau do normal da folheacao, que é
um inteiro canonicamente associado a esta. Primeiro, nosso estudo ird concentrar-se nas folheagoes
nos planos projetivos complexos com pesos dos tipos (lg,l1,02), 1 < Iy < 1y < s, I; coprimos dois a
dois. E possivel perguntar se o resultado de Jouanolou [29] ainda é vdlido para folheagGes nos planos

projetivos com pesos destes tipos. A resposta é sim, e é um dos resultados principais desta tese.
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Teorema 1. Uma folheacao genérica com Q-fibrado normal de grau d em ]P’%lo AT l; coprimos dois

a dois, 1 <lg <1y <ls, ndo possui curva algébrica invariante se d > 0.

Na verdade, a cota obtida é d = lglyls + lpli +2l5. Os resultados nao sao 6timos no sentido que nds
podemos achar exemplos onde o teorema acima ainda é verdadeiro para valores fora das hipdteses.
No caso particular de folheagdes nos planos projetivos com pesos tipos (1,1,1s), lo > 2 temos um

resultado mais preciso para estas perguntas.

Teorema 2. Uma folheacdo genérica com Q-fibrado normal de grau d em ]P’%1 112)7 lo > 2, ndo possui

curva algébrica invariante se d > 2l + 1.

O cota acima é 6tima no sentido que toda folheacao com Q-fibrado normal de grau menor do que
2l5 + 1 admite uma reta invariante.

O préximo objeto de estudo sao as folheagoes nas superficies de Hirzebruch. E bem conhecido que
a resolucao minimal do planos projetivos com pesos P?Ll,lz)’ lo > 2, sao as superficies de Hirzebruch
Fi, = P(Op: @ Op1(l2)) (ver [36]). O invariante destas é o chamado bigrau, que é um par ordenado
(a,b) de nimeros inteiros canonicamente associado & folheagdo. Nosso préximo resultado é uma nova

generalizagdo do teorema de Jouanolou [29] para folheages nas superficies de Hirzebruch.

Teorema 3. Uma folheagao holomorfa de bigrau (a,b) genérica em Fy, ndo possui solug¢io algébrica
sea>bly+2eb>3.

O resultado acima também é o melhor, pois toda folheacao de bigrau (a,b) com b < 3 ou a < bla+2
admite uma curva invariante. Cabe mencionar, pelo dito anteriormente que a resolucao minimal de
P%l,l,lz) é Iy, noés poderiamos pensar que o Teorema 2 implique o Teorema 3, e vice-versa. Isso nao
é verdade pelo seguinte fato: As folheagbes em [y, cuja segao excepcional de FFy,, (isto é, a curva
com auto intersegdo —lz.) é invariante traduz-se via o mapa de resolugdo como uma condi¢ao aberta
nas folheagoes em IP’?I,le), contrariamente as folheagoes em F;, que nao sao invariantes pela segao
excepcional interpreta-se como uma condicao fechada nas folheacoes em ]P?Ll, )" Isto justifica que os

dois problemas sao totalmente diferentes.

Componentes irredutiveis do espago de folheagoes. O segundo foco do nosso trabalho sao as
folheagoes holomorfas de codimensao um em espacos projetivos de dimensao maior ou igual a trés.
E bem conhecido que o espaco de folheagoes holomorfas de codimensao um e grau k em P* n > 3,
denotado por Fol(k,n) é um conjunto algébrico que tem decomposi¢ido em componentes irredutiveis.
Em [29], Jouanolou mostra que Fol(0,n) tem uma sé componente irredutivel e Fol(1,n) tem duas
componentes irredutiveis. Em 1996, D. Cerveau e Lins Neto [I3], mostraram que Fol(2,n) tem seis
componentes irredutveis. Outra nova prova desse resultado foi obtida por Loray, Touzet e Pereira em
[33]. Para k > 3, ainda estd aberto o problema das componentes. Existem construgdes de familias
de componentes irredutiveis, por exemplo, veja os artigos de Calvo-Andrade, Cerveau, Giraldo e Lins
Neto [I1], Cukierman e Pereira [20], Calvo-Andrade [10].

No trabalho de Calvo-Andrade, Cerveau, Giraldo e Lins Neto [I], eles constroem familias de
componentes irredutiveis associadas a uma algebra de Lie afim. Eles introduziram o seguinte conceito:

Para 1 < r < p < ¢ inteiros positivos com mdc(p, g, ) = 1, considere o campo vetorial linear em
(c3

0 0
S = +qy— +rz -,
dy

px% 0z
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e suponha que exista um outro campo vetorial polinomial X em C? tal que [S, X] = AX, para algum

A € Z. Denotemos por F(S, X) a folheagao induzida pela forma w = igixdz A dy A dz. Eles definem
Fol((p, q,7), A\, v) = {F € Fol(v,3)| F = F(S,X) em alguma carta afim}.
E mostram o seguinte:

Teorema (Calvo et al., ’04 ). Seja d > 1 um inteiro. Entao

Fol((d?+d+1,d+1,1),-1,d+ 1)
é uma componente irredutiveil de Fol(d + 1,3).

O objetivo de nosso trabalho é construir novas familias de componentes irredutiveis. O segundo
resultado principal é o teorema a seguir:

Teorema 4. Se lyp > 11, mde(lp, 1) =1,1p >3 eq> 1, entdo

Fol((l(), ll, ll), ll(qlo — 1), qlo + 1)

é uma componente irredutivel de Fol(qlyp +1,3) e

Fol((lo, l1,11),lol14; glo +2)
é uma componente irredutivel de Fol(qly + 2, 3).

Esta tese estd dividida em trés capitulos. No Capitulo 1 nos concentraremos em definir os espagos
projetivos com pesos e as folheacOes nestes espagos. Além disso, fixaremos as notagoes que serao
utilizadas nos Capitulos seguintes.

O Capitulo 2 é voltado para a densidade das folheagbes sem solugoes algébricas. Serao provados
os Teoremas 1, 2 e 3.

O Capitulo 3 é dedicado ao problema das componentes irredutiveis do espago das folheagoes. E
probaremos o Teorema 4.
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Introduction

The study of holomorphic foliations in complex projective spaces has its origins in the 19th century
with the works of G. Darboux, H. Poincaré and P. Painlevé. In the late 1970’s, J. P. Jouanolou
reformulated and extended the work of Darboux [22] in the algebraic geometry framework provided
by Grothendieck. One of the most important works about holomorphic foliations in complex projective
spaces is found in Jouanolou’s celebrated monograph [29]. Such a work developed two lines of research:
the density of algebraic foliations without algebraic solutions and the problem concerning irreducible
components of the space of holomorphic foliations. Our work is focused in this two lines of research.

The reader can see a brief summary of each one of them bellow.

Density of algebraic foliations without algebraic solutions: In the classic theory of holomorphic
foliations or differential equations in the complex projective plane P2, it is introduced an invariant
which is called the degree of the foliation. The issue of the density of algebraic foliations without
algebraic solutions in P? was originally proved by Jouanolou in [29]. In this work it was proved that a
generic foliation of degree at least 2 does not admit any algebraic solution. By generic we mean that
the set of foliations that does not have any invariant curve is the complement of a countable union of
algebraic closed proper subsets. The Jouanolou’s proof is based in the construction of the examples,
more specifically, he has showed that the foliations of degree d that are induced by the polynomial

vector fields

I
X=y Or oy 0z

have no algebraic solutions if d > 2.

A generalization of this result was obtained by Cerveau and Lins Neto in [12]. They have showed
that, for all d > 2, there exists an open and dense subset U in the space of foliations of degree d, such
a foliation in U has no algebraic solutions.

Other proofs have been given by Zoladek [42], Ollagnier and Nowicki [34].For this results there are
versions in dimension greater than 2, for example, see the papers of M. Soares [21], A. Lins-Neto and
M. Soares [39], S. C. Coutinho and J. V. Pereira [I7], Zoladek [41], and Bersntein-Lunts [7].

In this work it will be discussed the foliations in the weighted projective planes. We will consider
a generalization of the definition of “degree” of the foliation. In this case such an invariant is called
the normal degree of the foliation, which is an integer canonically associated to the foliation. Our
study will focus on foliations in the weighted projective planes of types (lg,l1,0l2), 1 <lp < I3 <o,
l; pairwise coprimes. Hence, one can ask naturally if the Jouanolou’s result is still true for foliations
in the weighted projective planes of these types. In this work we provide a positive answer to this

question.
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Theorem 1. A generic foliation with normal Q-bundle of degree d in IP’%IO’ZIJQ), lo, 11,1y pairwise

coprimes, 1 < ly <l <ly, does not admit any invariant algebraic curve if d > 0.

Actually, the bound is d = lglyls + lply + 2l5. The results are not sharp in the sense that we can
find where the above theorem is still true for values outside of the hypothesis.
In the particular case of foliations on the weighted projective planes of types (1,1,13), lo > 2, we

have a more accurate answer to these questions.

Theorem 2. A generic foliation with normal Q-bundle of degree d in IP’%l 12) with ly > 2 has no
algebraic solutions if d > 2l5 + 1.

The above result is sharp in the sense that every foliation with @Q-bundle normal of degree less
than 2[5 + 1 admits an invariant line.

A second issue of our study are the foliations on the Hirzebruch surfaces. It is well known that
the minimal resolution of the weighted projective planes P%l,l,lz), lo > 2, are the Hirzebruch surfaces
Fi, = P(Op: @ Op1(l2)) (see [36]). The invariant of the foliations on Hirzebruch surfaces is called the
bidegree, which is an ordered pair (a, b) of integers numbers canonically associated to them. Our next

result is a generalized version of Jouanolou’s Theorem for foliations in Hirzebruch surfaces.

Theorem 3. A generic foliation with normal bundle of bidegree (a,b) in F, does not admit any

invariant algebraic curve if b > 3 and a > blo + 2.

The above result is also sharp, because every foliation of bidegree (a,b) with b < 3 or a < bly + 2
admits an invariant curve. It should be noted, by the previously discussion the minimal resolution
of P?I’le) is F;,, as such we might think that Theorem 2 implies Theorem 3 and vice versa. This is
not true by the following fact: The foliations in F;, in which the excepcional section of Fy,, (i.e., the
unique curve with selfintersection —lI5,) is invariant by the foliations, are translated via the resolution
map as a open condition for the foliations in P%l,l-,lz)’ conversely the foliations in which excepcional
section of [F, is not invariant by them, are translated as a closed condition for the foliations in P?I,le)‘

This justifies why the two problems are different.

Irreducible components of the space of holomorphic foliations: The second focus are the
holomorphic codimension one foliations on complex projective spaces of dimension greater or equal
than 3. It is known that the space of holomorphic codimension one foliations of degree k on P",
n > 3, which is denoted by Fol(k,n), is an algebraic set. Therefore, it has an unique decomposition
into irreducible components. The second problem is to determinate the irreducible components of the
space of foliations. In [29], Jouanolou shows that Fol(0,n) has only one irreducible component and
Fol(1,n) has two irreducible components. In 1996, D. Cervau and Lins Neto [13], showed that Fol(2, n)
has six irreducible components. Another new proof of this result was obtained by Loray, Touzet e
Pereira in [33]. For k > 3, the problem of the components is still open. There are constructions of
families of irreducible components, for example, Calvo-Andrade, Cerveau, Giraldo and Lins Neto [I1],
Cukierman and Pereira [20], Calvo-Andrade [I0]. In the work of Calvo-Andrade, Cerveau, Giraldo
and Lins Neto [I1], they have constructed families of the irreducible components associated to the
affine Lie algebra. They have introduced the following definition. Let 1 < p < ¢ < r be are positive

integers with ged(p, ¢,r) = 1. Consider the linear vector field on C3
0

S = +qy— +rz
Ay
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Suppose that there is another polynomial vector field X on C? such that [S, X] = AX, for some
A € Z. Denoted by F(S,X), the foliation on C? induced by the 1-form Q = igix(dz A dy A dz),
which is associated to a representation of the affine algebra of polynomial vector fields in C3. It can

be extended to a foliation on P? of certain degree v. They define
Fol((p,q,7), A\, v) :=={F € Fol(v,3)| F = F(S,X) in some affine chart},
And they prove the following:

Theorem (Calvo et al., '04 ). Let d > 1 be an integer. There is an N-dimensional irreducible

component

Fol((d>+d+1,d+1,1),—-1,d+ 1),

of the space Fol(d + 1,3) whose general point corresponds to a GK Klein-Lie foliation with exactly
one quasi-homogeneous singularity, where N = 13 if d = 1 and N = 14 if d > 1. Moreover, this
component is the closure of a PGL(4,C) orbit on Fol(d + 1, 3).

The goal of our work is to construct new families of irreducible components. The third result is

the theorem bellow.

Theorem 4. Ifly > Iy, ged(lp,l1) =1, lp > 3 and g > 1, then

FOZ((ZO’ ll7l1)a ll(qu - 1); qu + 1)7

is an irreducible component of Fol(gly + 1,3) and

Fol((lo,11,11),lol1q, qlo + 2),

is an irreducible component of Fol(qly + 2, 3).

This work is organized in three chapters.

In Chapter 1, we focus on the definition of the weighted projective spaces and the codimension
one foliations on weighted projective spaces. In addition, we fix the notations that will be used in the
following chapters.

Chapter 2 is devoted to the density of algebraic foliations without algebraic solutions on weighted
projective spaces. Theorem 1, Theorem 2 and Theorem 3 are proved in this Chapter.

Chapter 3 is concerned with the problem of the irreducible components of holomorphic foliations.

We prove Theorem 4.
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Chapter 1

Weighted Projective Spaces

In this first chapter, we introduce the weighted projective spaces and present the basic definitions and
properties we shall need in the sequel. See [2], [5], [19] and [23] for more details. Once we understand
these spaces, we will talk about holomorphic foliations on weighted projective spaces and stablish

some index theorems. The main reference for the last part is [9].

Theorem 1.0.1. let

1.1 Definition of weighted projective space

Let ¢ = (I, 11, ...,1,) be a vector of positive integers which is called a weight vector, and set
) =1lo+ -+ L.
Then there is a natural action of the multiplicative group C* on C"*1\{0} given by
(20, -+, xn) = (t0x0, ..., t"x,), forall t € C*.

The set of orbits % under this action is denoted by P} (or P™(¢)) and is called the weighted
projective space of type . It comes equipped with a natural quotient topology: a subset U C P} is
open iff U = V/C* for some C*-invariant open subset of C"*1\{0}.

The class of a nonzero element (zo,...,r,) € C""! is denoted by [zg : ... : x,], and the weight
vector can be omitted if no ambiguity can arise.

For z € C"*1\{0}, the closure of [z], in C"*! is obtained by adding the origin and it is an algebraic

curve.

Remark 1.1.1. When ¢ = (lo,...,l,) = (1,...,1) one obtains the usual complex projective spaces
and the weight vector will always be omitted.
1.2 Analytic structure

As in the classical case, weighted projective spaces can be endowed with an analytic structure.
However, in general they contain cyclic quotient singularities. To understand this structure, con-
sider the decomposition P} = Uy U ... U U,, where U; is the open set consisting of the elements
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[Xo ... i@t ... xp)e with 2; # 0. Let py be the cyclic group of k-th roots of unity in C. Consider

the map
(IR cr = U,
Y1y e s¥Un) = Y1yt liyipr oot Ynle.
It is a surjective map but it is not a chart, since injectivity fails. In fact, [y1 : ... 1 9y; : 1 :yqp1 : 1
Ynle =1[y1 - it 1 iyipg ... yple if and only if there exists g; € py, such that y) = géj_lyj, for

all j=1,...,7and ¢} = géj y;, for all j =i +1,...,n. Hence the above map induces the bijection
(8 Cn//‘li - Uy,
[(y1,--oyn)] = (yi:ecoiyisligizn o Unle

where C™/py, is the quotient of C™ by the action

i, X cr - Cn,
li_ l; n
(gia(yla"'7yn)) — (g'lioyla"'agi 1yi79¢ +1yi+1a"'ag§ yn>

For i < j:

dyton g (UNUy) CCY o, — 7 (UiNT;) € C/puy,

Y1 Yi 1 Yi+1 Yi—1 Yn
[(y17""y )] — ( EEEEE Wik ) ) REEEE - EEERE) )
! y /" gyl g yy ;Y

Since the transition maps are analytic, P} is an analytic space with cyclic quotient singularities as

claimed.

1.3 Interpretation

The weighted projective space can be seen as a quotient of P by a group acting on it. For r € N, let
1 be the finite cyclic group of r-th roots of unity in C, and Gy = py, X --- x py, be the product of
cyclic groups. Consider the action of the group Gy on P given as follows

Gy x P™ — P
(g, [xo: - i xn]) = [goTo: ... gnZnl,
where g = (go,-..,9n) € Go.
For every g € Gy, the map [xg : ... : Zn] = [goxo : ... : gnZy] is an automorphism of P*. We will

also denote it by g. The set of all orbits P™/Gy is isomorphic to the weighted projective space of type

£ and the isomorphism is induced by a surjective natural morphism

Yy : P — ]P’ZL,
[Xo:. .. 2] — [mff:...:;vﬁ{l]g,
This is a branched covering, unramified over
P\ {[zo: ... ixn)e | wowy...zH =0},
and has £ = lem(lo, .. .,1,) sheets. Moreover, the covering respects the coordinate axes.
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Example 1.3.1. P(Ql 11s) ly > 2 is the cone over the rational curve of degree I, in P*> given by the

following embedding

2 l2
P — P
. . la . l2—1 . Coale
[0 w1 @)1,y = [@g rxg Ty @y a).

This surface is obtained by blowing down the exceptional section of the ruled surface F;, = P(Op: &
Op1(l2)), a Hirzebruch surface, see [36, page 29]. In we will check this.

Example 1.3.2. For { = (1,14,...,1,) the space IE”?l o) is a compactification of the affine space
C™, that is, the open set Uy is isomorphic to C™. Its complement coincides with the weighted projective

space PZ?l L)
Example 1.3.3. ]P’?l 5.3) 18 covered by 3 open sets Up =~ C2, Uy ~ C?/py induced by the action
Mo X (CZ — (C2,
(92, (x,9)) = (g2, 92v),
and Us ~ C?/u3 induced by the action
H3 X c - (CQ,
(93, (z,9)) = (937, 93y).
As in the Example we can find an embedding in PS. It suffices to take

Pliog — P

o 6. 4o 23 2.2 c 3 2
[0 : w1 :w2](123) > [w0: wox : 2w wHEY L TeT1X2 1 XY 1 XF).

1.4 Quasi-homogeneous polynomials and divisors on P}

The main reference for this and the next section are [23] and [I9] Chapter 4].
Definition 1.4.1. Let F' € C[xy,...,z,] be a polynomial and ¢ = (ly,...,l,) be a weight vector.

1. The polynomial F' is said to be a quasi-homogeneous polynomial of degree d if for all ¢t € C* we
have
F(tlox, ... ,tl"xn) =t9F (20, ..., Tn).

Note that if [p = ... =1, = 1 then we are in the case of standard homogeneous polynomial.

2. A rational function on P} is a quotient of quasi-homogeneous polynomials of the same degree,
and the field of rational functions of P} is denoted by C(P}).

3. An irreducible subvariety of codimension one on P} is the set of zeros of an irreducible quasi-

homogeneous polynomial.

Remark 1.4.2. The definition of the degree given above induces a natural grading of the coordinate

ring C[zo, ..., x,] and this ring, considered as a graded ring, is denoted by S(¢), that is

S(0) =P S0,

d>0

where S(£)4 denotes the vector space of the quasi-homogeneous polynomials of degree d.
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Definition 1.4.3. 1. Div(P}) is the free abelian group generated by the irreducible subvarieties
of codimension one on P}. A Weil divisor is an element of Div(P}).

2. The divisor of f € C(P})* is

div(f)= > ordp(f)D,

DeDiv(Py)
where ordp : C(P})* — Z is a discrete valuation, see [19, page 155].
3. div(f) is called a principal divisor, and the set of all principal divisors is denoted by Divg(Py).

4. A Weil divisor D on P} is Cartier if it is locally principal, meaning that P} has an open cover
{Ui }ier such that Dly, is principal in U; for every i € I. Tt follows that the Cartier divisors on
P} form a group CDiv(IP}) satisfying

Divg(P}) C CDiv(Py) C Div(Py}).
5. The class group of P} is
CIU(PY) = Div(Py)/Divo(P7 ),
and the Picard group of Py is
Pic(P}) = CDiv(Py)/Divg(Py).
Theorem 1.4.4. If ged(lo,ly,...,1,) = 1. Then the following assertions hold true.

1. The natural map
deg: CUP}) — Z,
{F=0}] — deg(F),

is an isomorphism. Furthermore the natural inclusion Pic(P}) C CI(P}) induces the following
isomorphism

deglpic(p?) : Pic(P}) — mZ,
where m = lem(ly, ..., 1y,).

2. The linear map
Pic(Py) @z Q — Cl(P}) @z Q,

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor D on P} there
always exists k € Z such that kD € Pic(Py). In this case it is said that D is a Q-Cartier divisor
or Q-bundle.

Proof. See [19, page 76 and page 188] and [I, Theorem 4.12]. a

Definition 1.4.5. Let D € Div(P}). We define the sheaf Opr (D) of a Weil divisor D as
U= Oy (D)(U) = {f € C(P7)"[ (div(f) + D)|v = 0} U {0},

where U is any open subset of IP}.
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Note that Opy (D) =~ Opy (D') if deg(D) = deg(D’). Denote Opy (deg(D)) := Opy (D).
The following theorem relates the global sections of a Weil divisor with the quasi-homogeneous

polynomials. One can find it in [23] page 39].

Theorem 1.4.6. For every d € N the following assertions hold true.
1. H(P}, Opy (d)) = S(0)a-
2. H'(P},Opy (d)) = 0 fori#0,n.

Thus we can identify H°(Py,Opx (d)) as the vector space of the quasi-homogeneous polynomials

of degree d. It will convenient to set
h°(n,d, ) := dimc H° (P}, Opy (d)).
Consider the map
@g : Cn+1 — (CnJrl,
(o, ...y Tn) (xf)‘), ool
It induces a branched covering
Wy - P — P%

ER R [Jcé‘):...:xﬁﬂg.

I

If FFe S(¢)q4, then
1. ¢} (F) := F o ¢, is a homogeneous polynomial of degree d.
2. g*(Fo@y) =Fo@, VgéeG.
Therefore, it is natural to give the following definition.
Definition 1.4.7. Let F € C[zo,...,2,] be a polynomial and £ = (ly, .. .,1,) be a weight vector.

1. The polynomial F is said to be Gy-invariant homogeneous polynomial of degree d if it is homo-
geneous of degree d and ¢*F = F, Vg € Gy.

2. The vector space of the Gy-invariant homogeneous polynomials of degree d is denoted by Sg"’ .

Lemma 1.4.8. The natural homomorphism
ei:SWa = S,
F = Foypy,
s a linear isomorphism ¥d > 0, Vn > 1. In particular we have the natural isomorphisms
0 ~ 770 G
HY (P}, Opy (d)) ~ H™(P", Opn (d))™,

where HO(P™, Opx (d))¢ refers to the image of S(?Z by the isomorphism given in the Theorem
item 1 with £ = (1,...,1).

Proof. The application ¢ is clearly linear and injective. To see that it is surjective it is enough
to prove it for monomials. Let F' = x3° ... z% be a monomial such that ¢*F = F, Vg € Gy, that is

agp a ao an __ .00 a
Jdo 97" Ty .- TR =Ty .. T,

50 go°...g9o» =1, Vg € Gy, and then a; = m;l;. Hence we can define F = Yo" ...y such that
©*F = F. This concludes the proof of the lemma. O
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1.4.1 Well-formed weighted projective spaces

For different weight vectors ¢ and ¢’ the corresponding weighted projective spaces Py and P}, can be
isomorphic. Let

d; = ged(loy ..y lictylig1y ooy ln),

a; = lC’n’L(do7 ey difl,dﬂ,l, e ,dn),

a=lem(do,...,dn).

Note that a;|a, ged(a;, d;) =1, ged(d;,d;) =1 for i # j and a;d; = a.

Proposition 1.4.9. Let ¢/ = (I,...,l.) = (fT?)v ...yl The natural morphism
: P? — Py,
® VA J 4 4 (11)
[Zo:...ixple — [mg® ... abn]y,
18 an algebraic isomorphism.
Proof. See [23, page 37] or [I Proposition 2.3]. O

Remark 1.4.10. The isomorphism (|1.1)) induces isomorphisms

¢*  HY(P, Opr (d)) — H°(P}, Oy (ad)),
F — Fop,

for all d > 0.

Remark 1.4.11. In the case n = 2, if ged(lp,l1,l2) = 1, then [,1],15 are two-by-two coprimes
obtained from Proposition

1.5 Quasi-homogeneous k-forms on P}

To define foliations on weighted projective spaces we will need quasi-homogeneous 1-forms. Let us
start to study in a more general way the quasi-homogeneous k-forms. As we shall see there is a natural
identification between quasi-homogeneous k-forms and homogeneous k-forms invariant under a group.

This construction was motived by [23, Chapter 2].

Definition 1.5.1. Let 7 be a polynomial k-form on C"*! and ¢ = (lg,...,l,) be a weight vector.

The k-form n is said to be quasi-homogeneous k-form of degree d if
Yin =1, VteC,

where V4 (zo, ..., z,) = (toxg, ..., tx,).
A polynomial vector field X on C"*! is called quasi-homogeneous vector field of degree r if

(¥)e X = 117" X 04y,
Remark 1.5.2. It follows from the definition that deg(dz;, A...Adx;, ) =1;, +- - +1;,. Moreover if

n= Z Fil,“.,ik(wa~‘7xn)dxi1 /\.../\dil,'ik7

0<i) <---<ipg<n
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is a quasi-homogeneous k-form of degree d, then

vin = Z Fi . (toxg, ... thay)tlatlivdr; A ... Adx;, =tiy,

0<i1 < <ixg<n

therefore,
Filv"wik (th.CC(), e ,tl"In) = tdi(lilJr'“Jrlik)Fil,m’ik_ (1‘0, e ,.Z‘n), Vt € (C*

Briefly, deg(n) = d if only if the polynomials F;, . ; are quasi-homogeneous polynomials of degree
d—(l;y; +--+1;,).

The definition of the degree given above induces a natural S(¢)-grading in the free module of
polynomials k-forms and this S(¢)-module considered as graded S(¢)-module is denoted by Q@(z)v
that is

Qo) = @ Q5 (d),

d>0

where Q’g( @)(d) denotes the vector space of quasi-homogeneous polynomial k-forms of degree d.

According to our convention deg(-2- 35.) = 2 jilj- Furthermore, if

0
X:;Aia—%,

is a quasi-homogeneous vector field of degree r, hence

0
Ztl xo,...,x _tW TZA (toxg, ...t ;vn)a
i

thus,
Ai(thoxg, ... thra,) = 2 lei(Z‘o, cooxy), VEe CF.

That is, deg(X) = r if and only if the polynomials A; are quasi-homogeneous polynomials of degree
r— Z];ﬂ lj.

Eaxterior derivative. Let

d:S) — Q}g(z),

n
oF
Fr— —dx;
i=0 9z; N

be the canonical universal differentiation. The k-linear map d extends to the exterior differentiation
k k
d . QS — QSJFl,
determined uniquely by the condition

dinAn) = dpan +(=Drgpndy, ne Qi 0 €y,

We also have an analogue of Fuler’s formula:

mF = Z zxj, VE € S(0)m
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Using the linearity of both sides of this identity we need to verify this formula only in the case when
F is a monomial i ... zn. But in this case it can be done without any difficulties.

Interior product is the homomorphism of graded S(¢)-modules defined as follows. If X =

n

0

Z Aja— is a quasi-homogeneous vector field of degree r, interior product with X is
%

=0 /

- . Ok k—1

defined by the formula
k

ix(dl‘jl VANIRAN dmjk) = Z(—l)H—lAjidQ?jl VANIRAN da:“ﬁ VANIAN dmjk,
i=1

n
0
In the case R = E lixia— we have the following properties:
. ZT;
1=0

1. ir(dF) =mF, F € S(€)n,
2. ig(dn) +d(ir(n)) =mn, n € Q’é(@(m)
Using the branched covering map

Wy - P — Pg,
[To:--txp] — [ o-iare
induced by the map
gZ?g . Cntl — (Cn+1,

(xoy .-y 2n)

1
.
=
o5
S
33

we see that if 1) € Q, (d) then
1. ¢;(n) :== @} (n) is a homogeneous polynomial k-form of degree d on C"*1.
2. g*(im) = win, Vg€ Ge=pu, X ... X .
Therefore, it is natural to give the following definition.
Definition 1.5.3. Let w be a homogeneous k-form w of degree d on C"*!, i.e., w € Qk(d).
1. The 1-form w is called G¢-invariant if g*w = w, for all g € Gy.
2. The vector space of the Gy-invariant homogeneous k-forms of degree d is denoted by Q’g(d)G“.

Lemma 1.5.4. Under above conditions. The natural homomorphism

</72<3Q]§(4)(d) - Q%(d)%,
n =9,

s a linear isomorphism¥Vd > 0,Vk >0, Vn > 1.

30



Proof. ¢ is clearly linear and injective. To see that it is surjective, by linearity of ¢, we can
assume

_ a;\,ao—1 ap—1 . .
w=( H af )l T drg, AL A dag,,

such that g*w = w, Vg € Gy. This implies that

a; a; apg—1 ap—1 _
Hg};( H i) T drgy AL AN dag, = w,
i i#0,....k

therefore, H g;l =1, and hence a; = m;l;,, Vi. Thus we define

i=1..n
dy dy-,
O | A i s
i=0,...,k Jo T
and we can conclude that p*n = w. (]

Notice that the following sequence

0 Qn+1 iR Qg«(o iR . iR Q%(Z) 0 ’

S(£)
is exact, see [23] page 44].

Definition 1.5.5. Let d > 0 be an integer. The twisted sheaf of Zariski k-forms Qk? (d) is defined as
follow

U . . _ .
Q{;? (d)(U;) = {a:j 1 € ker{ig : Qg (d + jl;)) = Q’g(el)(d—i—yli)}} )

If k =n and d = 0, the sheaf Qﬁ,??, which is called canonical sheaf of P}}.

Proposition 1.5.6. Under the above conditions we have

HO(P}, Q{;? (d)) ~ ker{ig : 5 (d) — Q’g(‘;)(d)}. (1.2)

Furthermore, j. (Qﬁg?\Sing(P?)) = QD";?, where j : PP\Sing(P}) — P} is the natural inclusion.
Proof. See [23] 2.1.5, page 44 and 2.2.4, page 47]. O
By Lemma and the commutativity of the following diagram

4) (d) ’ Qg(el) (d)

Lﬂ?

Q%(d) —— 257 (d)
in which R = Z lzyl x Z xZ , we have the following isomorphism
=0
ker{ip : Qg(z)( ) — Qk 1( )} SELLIN ker{zRO Qk(d)% — Q1 (d)}. (1.3)

Furthermore
HO(P}, Q. () =~ HO(P", Q. (),

where HO(P™, Q. (d))%  HO(P",Qk, (d)) refers to the image of ker{ig, : Q%(d)% — Q%' (d)} given
by the isomorphism (|1.2]).
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Remark 1.5.7. In [ Theorem 12.1., page 38], Batyrev and Cox constructs an exact sequence

0 —— Qpp —— 37 Opp (—1s) _r Opp —— 0,

called the generalized Euler exact sequence of P .

Proposition 1.5.8. If ged(lo,...,l,) = 1, then Q]}??, the canonical sheaf of P}, is isomorphic to

Opr (—|€]). That is, the canonical sheaf is the sheaf associated to a Weil divisor of degree —|{| on Py.

Proof. See [19, Theorem 8.2.3]

1.6 Foliations on Weighted Projective Spaces

O

The purpose of this section is to extend the definition of codimension one foliations on usual projective

spaces to the weighted projective spaces. It is worth noting that M. Corréa and M.G. Soares already

studied the subject in [16].

Definition 1.6.1. A codimension one foliation F on P} is given by n € H(P}, QI},,? (d)) such that

1. n Adn =0 (Integrability condition),

2. codim (Sing(n)) > 2, where Sing(n) = {p € P}|n(p) = 0}.

Remark 1.6.2. If 7; and 7, satisfies condition 2 and define F then n; = Ang, for some A € C*.

Remark 1.6.3. Let F be a foliation on P} given by the quasi-homogeneous 1-form of degree d

n= ZAZ'(:CO, ey T )d T4,
=0

in which Y1 Liz;A; = 0.

In the open set Uy ~ C"/py,, using the map 1/;0(y1, cesyn) =1y :e--

where it is given by

mo=ven =Y ALy, yn)dy;.
i=1

Note that
Agoo = A(go)no, Vg0 € fuy,

where Ay (y1,...,Yn) = (g(l)lyl, . ,g(l)"yn) and A(go) = g¢. In particular
AMgo) = g5, d=a( modlp).
Reciprocally, if 7 is a polynomial 1-form on Clyi, ..., y,] such that
Ayl = gon, a € Z/lZ.
The 1-form polynomial 7 can be write as

N ="k + Ng+1 + -+ Nd,
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in which 7; are quasi-homogeneous 1-forms of degree j with respect to the weight vector (I1,...,15)
and n; # 0, ng # 0. By condition (|1.4]) we have that

N ="+ NMk+i, T+ Nd,

where k = a( mod ly). Hence the foliation on C™ induced by 7 extends to a foliation on P} induced

by a quasi-homogeneous 1-form of degree

d ,if isna =0,
d+lo 7ifi577d7é07

where S = llyla%l 4+ lnyn%. This remark will be used in the next chapter.
Using the change of coordinates we have that

.’,Ud/lo
n; = %7707 in U] m[JO7 .] > 07
x; J

1/

d
where gjo = (I‘}/ZJ) and g;o is multiplicative cocycle that defines the following Q-bundle
T .

J

NF = Opy(d),

called the normal Q-bundle of the foliation F.
The space of codimension one foliations with normal Q-bundle of degree d on P} is denoted by
Fol(d,n,¢) C PHO(P?, Q]%,Z (d)).

Note that in the case £ = (1,...,1) the d = deg(n) denotes the degree of the normal bundle of
the foliation F, i.e., deg(NF) = d, and we will denote Fol(d,n) := Fol(d,n, (1,...,1)). The degree of
normal bundle should not be confused with the degree of the foliation on P™ (number of tangencies

with general line). For codimension one foliations on P we have
deg(NF) = deg(F) + 2.

Remark 1.6.4. For the case of n = 2. Let F be a codimension one foliation with normal Q-bundle
of degree d on ]P’?. Since we have the 3-form dxg A dzq A dzs in C3, then the foliation F is given by a
quasi-homogeneous vector field X which is not a multiple of R = loxoa%o + llxla—zl + lgxga—‘zz,
0 0 0
X=By— +B1— + By—,
08330 + 1833‘1 * 28.132
where By, By, By are quasi-homogeneous polynomials of degree d — Iy — s, d —lg — lo, d — g — 11

respectively. The foliation F is also induced by quasi-homogeneous 1-form of degree d

n= ixiR(dQSO AN dl‘l AN dﬂjg) = (lll‘lBg - lQSCQBl)dSCQ + (ZQIQBO - lol‘oBg)dl‘l + (lol’oBl — llxlBO)de.

d—le|
As we saw in the case of forms, it is not difficult to see (g ')« (X|v,) =, Xo, where

l 0 l 0
Xo = (B1(L,y1,12) — *lleo(Lyhyz))f + (B2(1,y1,92) — iyzBo(Lyl,yz))@’

lo oy
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and
iXo, ]>0 in Uj(),

1/1g

d—|¢]
where fjo = (%) and fjo is multiplicative cocycle that defines the following Q-bundle

J

KF = Opz(d — |€]),

called the cotangent or canonical Q-bundle of the foliation F.

Note that canonical and normal Q-bundle of F are related by the formula
K]P’% == K]: ® N*]:,
where N*F is dual sheaf of NF called the conormal Q-bundle of F.

Remark 1.6.5. In [I6], Corréa and Soares introduce the notion of degree of a foliation F on weighted

projective plane which verifies the following relation:
deg(NF) = lplila deg(F) + |I| — 1.
Example 1.6.6. Consider the foliation F with normal Q-bundle of degree 7 on Pf172,3) given by
n = 629 (20 — xox1)drg + 3T (22 — 21)dy + 2(2? — 20TH)dTs.

The singular set of F is
sing(F)={[1:0:0],[1:1:1]}.

In the open set Uy =~ C?, the foliation F|y, is given by

o = 3y2(1 — y1)dyr + 2(y7 — y2)dyo.

In the open set Uy ~ C2? /s, using the map zﬁl (u1,u2) = [ug : 1 : ug] we lift F|y, to C? which is given
by
m = 6ug(us — uq)duy + 2(1 — uyus)dus.
In the open set Uy ~ C2/p3, using the map o (v1,v3) = [v1 : vy : 1] we lift Fy, to C2 which is given
by
72 = 6(1 — vyvg)dvy + 3(1}% — vg)dvs.

Note that {z2 = 0} is F-invariant and using the

‘P(1,273):P2 - P%1,2,3)

[w:y:2] — [v:y?:29,

we have
Pl1,2,3)1 = 22(62(2% — ay?)dx + 6y23(2® — y?)dy + 6(y* — 2°)dz).

As we can see codim Sing(go?‘l 5 3)77) =1, then gp’(*l 2,3)71 induces a foliation on P? with normal degree

five as we need to divide p*n by 22 in order to obtain a 1-form with singular set of codimension 2.
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1.6.1 Foliations on P} and G,-invariant foliations on P"

As we saw in the previous section there is a correspondence between quasi-homogeneous 1-forms and
G-invariant homogeneous 1-forms. In a similar way there is one such correspondence for foliations. It
is important to see that a Gy-invariant homogeneous 1-form w has in general a singular set of codimen-
sion one, see Example Note that ¢, : P} — P™ is unramified covering over P"\{zg ...z, = 0},
therefore if codimSing(w) = 1, then

UJ/

W= —-—
S e
where codim Sing(w’) > 2. Because of that we have the following definitions.
Definition 1.6.7. Fix £ = (lp,...,l,), let I, ={1,...,n} and denote by I/, ={i e I,| ;> 1}.

1. Let F be a foliation on P} given by 0, for i =0, ..., n, the hypersurface {z; = 0} is F-invariant
if there exists a quasi-homogeneous 2-form 6; such that

2. A foliation G on P™ given by w with {z;, ...x;, = 0} invariant by G is called Gy-invariant if
9°G=G,VgeGp=puy X...xXu,, ie.,
g'w=Agw, Vg € G,
where A(9) = giy - - - Gy, -
3. We define

Foly,.... i (d,n,0) = { F e Fol(d,n,l)| {zi, - x; =0} is F-invariant } ,

F eFol(d,n,l)| {xi, -z =0} is F-invariant,
FOZ;U,-- adn ) = {x;; = 0} is not F-invariant,
Vij S [;L — {io,-" ,ik}

In the case of £ = (1,...,1), we recall that
Fol(d,n) = Fol(d,n,¥),
Foly,.... 4, (d,n) =TFol;, ... 5, (d,n, ),
Fol;, ... ; (d,n) =TFol; .. ; (d,n,0).

4. For foliations on P™

Fol, ... i, (d,n)* { G e Fol(d,n)| {zi, - x;, =0} is G-invariant and G is G-invariant. } ,
Fol;, .. ;, (d, = Fol;, .. ; (d,n)NTFol, ... ;. (d, n)Ce.
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Remark 1.6.8. The natural map
wg : P7 — Py
[To - tan] = Yot tynle= [zl ot aln],,
induces the natural isomorphism
i+ H (B, Qpp () — HO(B", Qp (d)) . (1.5)

Let F be a foliation on P} induced by 1. Observe that if {y; = 0} is F-invariant then we can write

n=Ady; +y: (D LiA;dy;),

J#i
in which A; = =37, 1;y;A;. Therefore
* i i lj—
ppn = .’Ei 1Ai0(pgd$i+$i (Zj;éilimj] lAjnggdl‘j),
i— lj—1
= xé‘ I(Az o wedx; + mi(ij&i lix]/ Aj o (pgdl‘j)).

Reciprocally if {y; = 0} is not F-invariant, then {x; = 0} is not invariant by the foliation induced by
@*n on P™. This last and the isomorphism (1.5 induce the natural morphism

o; 2 Foli ., (d,n,l) — TFoli ., (d+k+1—1lj—--— li,m)

Pin (1.6)
[7] = “0_1uk_1]
i ik

io cee

Proposition 1.6.9. The induced natural morphism @ is an isomorphism. In particular, if I, —

{i0, - ,ix} = 0, then the induced natural morphism
Lp;f : Folio,... Jik (d,n,f) — Folio’... Jin (d +k+1-— lio — = lik,n)Gé,
‘2
b 7 xl-iol...xl-i’“_ll 7
0 Tk

s an isomorphism.

Proof. The application ¢j is clearly injective. To see its surjectivity, let us take

GeFoll ., (d+k+1—1;—-—1,,no%,

. ~ in— li, — . ~ ~ .
given by w, so we define & = méo“ ' cay 'w that verify g*@ =@ Vg € Gy. Then by the isomor-

phism || there exist n € HO(PY, Q]%,? (d)) such that

_ ©in
W T -1
P
It follows that 7 induces a foliation F € FOZ;O’___ in (d,n, ). This conclude the proof. O

Example 1.6.10. Let n =2 and £ = (1,1,l3), Iy > 2. Then we have two important isomorphism:

The first isomorphism,

o; 1 Foly(d,2,(1,1,12)) — Fola(d — 1z +1,2)C,
©in
H )
1] [x?_ll
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for any d > Iy + 1.
The second isomorphism,

o :Fol'(d,2,(1,1,13)) — TFol'(d,2)%,
] = el
for any d > 2.

Proposition 1.6.11. Let ¢ = (lp,l1,...,1,) a weighted vector with 1 < Iy <13 <y < ... <,
ged(lo, ..., 0l,) =1 and n > 2. Then the lowest possible normal Q-bundle degree of the codimension

one holomorphic foliations on P} is d =1y + 11 and the folations are pencil of hypersurfaces on IP}.

Proof. We consider two cases:
1L.Ifly=h==l <lp41 <<l and 1 <k < n, then

HO( ?79]11;)?(lo+l1)) = @ Clo(fﬂjd.’bz —{Eidl'j).
0<i<j<k
Thus dime HO(PF, Qb (o + 1)) = “5 and dime Fol(lo + Iy, n, €) = X5 — 1. Let F € Fol(lo +

ly,n, ) given by
k

n = ZO( Z aij(o:jdxi — SCZ‘dSCj), for some [£27] 7é 0.
0<i<j<k

Hence F can be thought of as a foliation on P* of degree 0. So there exists automorphism on P* such
that a foliation is given by
y1dyo — Yody.

2. Ifl()<l1:l2="':lk<lk-+1 <o <l, and 1 < k <n, then
k
HO(]P)?, Q]%u?, (lo + ll)) = @C(Zl$]’d$0 — lo$0d$€j).
j=1

Therefore dimc HO(PY, Q%P? (lo +11)) = k and dim¢ Fol(lo + 11, n,¢) = k — 1. Let F € Fol(lp +11,n,{)
given by

7 11(21-6:1 a;)zidxg — loxo Zle a;dz;,

n = ll(X:f:1 a;)xidrg — loxod(Zle a;x;).

Using the automorphism ¢(zo, ..., z,) = (xo, Zle a;iTi, T, ) = (Yo, .-, Yn), we have

¢*n = Liyrdyo — loyody: .

We conclude the proposition. O

From now on we restrict us to n = 2.

1.7 Intersection formulas for foliations on singular surface

Before specifying the intersection formulas for foliations on weighted projective spaces, we will present
the formulas for more general surfaces. The intersection formulas on singular surfaces has already
studied and results about this topic can be found in [I] and [2]. The focus of this section is in the

intersection formulas for foliations on singular surfaces. The general reference here is [9].
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Definition 1.7.1. Let j, be the cyclic group of 7-roots of unity and (a, b) € Z? be a vector of weights.

1. Consider the action
e x C2 —  C?,

& (z,y) = (£%,8%).

The set of all orbits C? /4 is called a (cyclic) quotient space of type (r;a,b) and it is denoted
by X(r, (a,b)).

2. The space X (r, (a,b)) is written in a normalized form if ged(r,a) = ged(r,b) = 1. It is possible
to convert the general types X (r, (a,b)) into normalized form, see [I, Lemma 1.8, page 4].

3. A singular surface M with only abelian quotient singularities is an analytic surface such that for
all p € Sing(M) there is a neighborhood U of p isomorphic to X (r, (a,b)).

Note that for every & € i, the map A¢(z,y) = (¢%z, £%y) is an automorphism of C2? induced by the

action of p,.

Example 1.7.2. If ¢ = (lo,l1,l2), where lo,l1,ls are two-by-two coprimes then P2, X(lo, (I1,12)),
X (I1, (Lo, 12)), X (l2, (lp,11)) are surfaces with abelian quotient singularities.

Definition 1.7.3. Let M be a surface with only abelian quotient singularities and C' be a curve on
M.

1. A foliation F on M is a foliation on M\Sing(M) that extends to M. That is, if p € Sing(M)
and U ~ X (r,(a,b)) is a neighborhood of p, the foliation can be defined by a 1-form w in C?
such that Afw = A§)w, V& € p, where A : g, — C* is a group homomorphism which is known

as a character of ..
2. A curve C is called F-invariant if the curve C'N (M\Sing(M)) is F-invariant.

Remark 1.7.4. Given a foliation F on a surface M, we can still define its normal sheaf NF in the
following way: the foliation F|yn ging(ar) Will be denoted by Fo, NFp is the normal bundle of 7y and
j: M\Sing(M) — M is the inclusion, then

N]::]*N]:Oa

in which j, is the direct image functor.
Similar considerations also hold for TF, KF, NF* and of course Kj;. We still have the equality

Ky = KF @ NF*,

as sheaves or Q-bundles.

1.7.1 Intersection multiplicity

As before, let M be a surface with only abelian quotient singularities and let F be a foliation on M.
For every p € Sing(F) we can define an index m(F, p) which is called the multiplicity of F at p.

Definition 1.7.5. To define m(F, p) we consider the following two cases:
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1. If p ¢ Sing(M), we take a local holomorphic 1-form n = A(x,y) dx + B(x,y) dy that generates

F around p, and define
Op
(4,B)’

where O, is the local algebra of M at p (germ of holomorphic functions) and (A, B) is the ideal

m(F,p) = dimc

generated by A, B as elements of O,,.

2. If p € Sing(M), we take a neighborhood U ~ X (r, (a,b)) in normalized form, and lift 7|y to
C2? which is denoted by F and then set

(F.p) — ME(0.0))

Now we can define, if X is compact:

m(F) = 3 m(F.p).

pe M
For foliations on P%, we have the following proposition.

Proposition 1.7.6. Let £ = (lg,l1,12) be a weighted vector, l; pairwise coprimes and F be a foliation
with normal degree d on P%. Then

lollom(F) = d? — [€|d + loly + lola + 11l = d(d — |€]) + loly + lola + l11s.
Proof. The foliation F is induced by
n = Ao(xo, 1, 72)dxo + A1(x0, 21, 22)dr1 + Az(20, 21, T2)d22,

such that
loxgAo + lix1 A1 + laxg Ay = 0. (17)

First, we can suppose F € Fol'(d,2,¢), i.e., {xg = 0}, {1 = 0} and {z2 = 0} are not F-invariant. By
Proposition we have a foliation F of normal degree d on P? given by

w = @i = Agdyo + Ardys + Azdys,
where A; (yo, y1,y2) = liyﬁiflAi o . In the case of P?, we have
m(F) = (d—2)*>+(d—2)+ 1. (1.8)

Let us take a local coordinate Uy ~ X (lo, (I1,12)). Then lift F|y,, <pg|¢;1(U0) to C? and denote them
by Fo, ¢o which are given by

no = A1 (1, u,v)du + As(1,u,v)dv,
and
©wo (C2 — C2,
(y,2) = (wv),

where (u,v) = (y", 2!2), respectively and ]:—|<P]1(U0) given by

wo = im0 = A1(1,y, 2)dy + As(1,y, z)dz.
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If we denote by (A;, Ay); = dime Mf?iiiz)’ then we have

o lh—1 lo—1 lh—1)(ls —1
(A1, A2)g = (Arowp, A2°900)q*+(1T)(U03007A20<Po)q+(2T)(UO<P07 Alotﬂo)q-i-%(uosﬁowo%)q-
Taking average over 115,

1 - 1 lh—1 lo—1 Lh—1)(—1
S A= Y (iep o)+ w A+ B 4y, E 2D )
lllg —_—— lllg ll lz lllg

€00 @) Fa )
m(F,q)
(A1,42)4
it is equivalent to
1 ~ lh—1 lo—1 lh—1)(l—1
S mE ) = mFo) + A, + 2y, DD
lllz ll l2 lll2
dc€ ey (@)
Taking average over [y and using the definition of multiplicity at p, we have
1 -~ lh—1 lo—1 lh—1)(ls —1
> m(F, ) =m(F.p)+"— (1, Ay)pt+ (o2 Ayt =2 =D o Vi€ T
lolllz 11 12 1112
a€ ¢, ' (p)
(1.9)
Analogously, we have
1 -~ lop—1 lo—1 lo—1)(ls —1
S m(F 0) = m(F o+ o, gyt 2L (g, A L2 m D (e
lolllz lo 12 1012
a€ ¢, ' (p)
(1.10)
1 ~ lop—1 lh—1 lo—1)(l; —1
ST n(F Q) = mlF )+ g, Ay L g, g L DD (o vpe 1,
lol1lz f lo loly
q€ ¢, (p)
(1.11)
Using the equality (1.7]), we have the following equalities
(21, A2)p = —(21,22)p + (21, 20)p + (21, Ao)p, (1.12)
(72, A2)p = —(21,72)p + (w0, T2)p + (T2, Ao)p, (1.13)
(xo,Az)p = —(mo,mg)p + (1‘0,1‘1)1; + (xo,Al)p. (114)

Adding the equalities (1.9, (1.10)), (1.11) and using the equalities (1.12f), (1.13)), (1.14)) and Bézout’s
Theorem for weighted projective planes see [2, Proposition 8.2, page 23], we have

1 . I —1 Iy — 1 lo—1

m( = m(‘/_'.)‘i’ = (d710712)+ = (d*lo*ll)‘i’ (d*llflg)
lolils l /
=Dl =1 (=1 -1 (o—-1)(2—1)
7 .
Finally, using the equality (1.8) then
lolilom(F) = d* — |6|d + loly + lolo + 1yl = d(d — |£]) + lgly + lola + L1 1a. (1.15)
The other cases are similar. O
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1.7.2 Tangency Index

As before, let F be a foliation on the surface M, not necessarily compact, and C' be a compact
connected curve, possibly singular, and suppose that each irreducible component of C' is not invariant
by F. For every p € C we can define an index T'ang(F,C,p) which measure the tangency order of F

with C' at p (and thus it is 0 for a generic p € C, where we have transversality).
Definition 1.7.7. The definition of tangency index T'ang(F, C,p) is given in the following cases:

1. If p ¢ Sing(M) take a local equation f of C' at p, and a local holomorphic vector field v
generating F around p. Then we define

@)
Tang(F,C,p) = dimc——2—,
(fu(f)
where O, is the local algebra of M at p (germ of holomorphic functions), v(f) is the Lie derivative
of f along v, and (f,v(f)) is the ideal generated by f, v(f) as elements of O,. This index is
finite, because C' is not F-invariant; it is 0 iff p ¢ Sing(F) and F is transverse to C' at p.

2. If p € Sing(M), we take a neighborhood U ~ X(r,(a,b)) in normalized form, lift F|y and
C'NU to C? and denote them by F and C respectively. Then we define

Tang(]},é', (0,0))

r

Tang(F,C,p) =

Note that T'ang(F, C, p) is a nonnegative rational number, and it is 0 if and only if F is transverse
to C at p (in the sense that F is transverse C at 0.)

Now we can set:

Tang(F,C) = Z Tang(F,C,p).
peC

We also introduce the orbifold-arithmetic Euler characteristic xo.(C) of C via the adjunction formula:
Xorb(c) == —KMC -C.C

Proposition 1.7.8. Let M be a surface with only abelian quotient singularities, F be a foliation on

M and C C M be a compact curve, each component of which is not invariant by F. Then

NF.C = Tang(F,C)+ xors(C),
KF.C = Tang(F,C)-C.C.

Proof. See [9, page 4]. O

1.7.3 Vanishing and Camacho-Sad Index

Let us consider now the case where each irreducible component of C' is invariant by F. For every p € C,
we can define the vanishing and Camacho-Sad indices at p denoted by Z(F,C,p) and CS(F,C,p)

respectively.

Definition 1.7.9. The definition of Z(F, C,p) and CS(F,C,p) is given in two cases:
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. If p ¢ Sing(M) take a local equation f of C' at p, and a local holomorphic 1-form w generating
F around p. We can factorize around p (see [40, Chapter V)

gw = hdf + fn,

where 7 is a holomorphic 1-form, g and /A are holomorphic functions, and g and h do not vanish
identically on each local branch of C' at p. Then we define

Z(F,C,p) = vanishing order of §|C at p,

and )
__ L fu
esF.Cn =55 [

where v C C' is a union of small circles around p, one for each local irreducible component C; of

C, oriented as the boundary of a small disc contained in C; and containing p.
. If p € Sing(M), we take a neighborhood U ~ X(r,(a,b)) in normalized form, lift F|y and
C'NU to C? and denote them by F and C respectively. Then we define

Z(F,C,p) =

I

Z(F,C,(0,0))

and

057, 0.) = CSFL.00)

Note that Z(F, C,p) can be a negative rational number. Now we can set:

Z(F,C)= > Z(F,C,p),

peC

CS(F,C)=Y_CS(F,C,p).

peC

Proposition 1.7.10. Let M be a surface with only abelian quotient singularities, F be a foliation on

M and C C M be a compact curve, each component of which is invariant by F. Then

NFC = Z(F,C)+CC,
KFC = Z(]:7 C) - Xorb(c)a
c.C = CS(F,QC).

Proof. See [9, page 5]. O

Example 1.7.11. Consider the foliation F of with normal degree 4 on P?Q,l,l) given by

1
n= —i(xf + 22)dxg + zox1dr) + TowadLs.

Then we have

Sing(F)={[0:1: 1](2)171), 0:—i: 1](27171), [1:0:0]21.1},

and m(F,[0:i:1)@21,1)) =m(F,[0: —i: 1@11) =1, m(F,[1:0:0]2,1,1) = 5. Hence

1 5
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that coincides with multiplicity formula.
The curve C; = {21 = 0} is not F-invariant, it is easy to see that Tang(F,Cy,[1:0:0]) = 1/2,
S0
Tang(F,Cy) =1/2.

The curve Cy = {zg = 0} is F-invariant, so we have
Z(]:,Co, [0 T 1]) = Z(]:,Co, [O -1 1]) = CS(]:,C(), [O S 1]) = CS(]:,(CO,[O =1 1]) = 17

thus
Z(F,Cy) =CS(F,Cy) =2.

1.8 Intersection Numbers and Weighted Blow-ups

In this section we want to study what is happening with intersection formula of foliations by weighted
blow-up. A comprehensive reference for weighted blow-up is [2].

Weighted (lo,11)-blow-up of C2. Let ¢ = (lp,l1) be a weight vector with coprime entries. We
consider the space

C7 = {((x,y). [t,s]e) € C* x P}| (2,9) € [t, s]},

C? is covered by {Up, U1} and the charts are given by

X(l(b(*]-all)) - UO;
[(z,9)] = ((zl,2zhy),[1:y]e).

X(ll, (lo, —1)) — Ul,
(@] = ((@y,y"), [z 1)
We denote by 7y : ((Aj% — C? the natural projection. The exceptional divisor F = 7r[1 (0) is isomorphic
to P}.
Blow-up of X (la, (lo,11)) with respect to £ = (lo,l1). Let X(la, (lo,11)) be a surface with be a

weight vector with ged(la,lp) = 1 and ged(lz,l1) = 1. The action g, on C? extends naturally to an
action on @% as follows,

ga-((2.9), [t 5)0) —2 (9, g5 y), [t : 5]e)

Let X (Iy, (Io, 1)) := (@%/,ub denote the quotient space of this action. Then the induced projection
(I X(ZQa (107 ll)) — X(l27 (107 ll))

is an isomorphism over X (la, (I, 11))\7~1([0]) and the exceptional divisor E := 7—1([0]) is identified
with P}. We cover X (Iz, (lo,11)) = Uy U U; and the charts are given by

X(l()ﬂ(ilQall)) - UO,

[(z'2, )] o (@, 2hy), [1: o). (1.16)

X(lh, (lp,—lz)) — Uy,

[(y)] = (@b, [ 1)), (1.17)
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Proposition 1.8.1. Let M be a surface with abelian quotient singularities. Let m : M — M be the
weighted blow-up at a point p of type (l2;10,11) with respect to (lo,l1). Assume (I2,11) = (I2,lp) = 1.
Consider C' and D two Q-divisors on M, denote by E the exceptional divisor of w, and by C (resp.
ﬁ) the strict transform of C (resp. D). Let u and v be the (lg,l1)-multiplicities of C and D at p.
i.e., x (resp. y) has (lo,l1)-multiplicity lo (resp. l1). Then there are the following equalities:

1. 7%(C)=C + LE,

2. B? = 2,

In addition, if C has compact support then C?=C? - 1

lolila "

Proof. See [2, Proposition 7.3, page 19]. O

1.8.1 Foliations on Weighted Blow-ups

Let us again consider a foliation F on a surface U = X (I2, (lo,11)). Let [(0,0)] € U be a singular point
of F, and let 7 : X(la, (I, 11)) — X(la, (lo,11)) be a blow-up of X (ls, (o, 1)) with respect to (lo, 1),
with exceptional divisor E = 7=1([(0,0)]) ~ ]P)%ZO;II)' Let us explain how can define a foliation F on
X(la, (Ip, 11)). We lift F to C2 and denote it by F generated by a 1-form 7 such that

Vg1 = Ag2)n, (1.18)

where ) is a character of y, and ¢4, (z,y) = (géoas, gély).

The 1-form 7 can be write as

N="Nk+ M1+,

in which 7; are quasi-homogeneous 1-forms of degree j with respect to the weight vector (lo,l;) and
Nk # 0. By condition (1.18) we have that

N="k+ N+, +-+,

and
Ag2) = 9§~
Hence we can write
Mt gl = Akijla—10(T,Y)dT + Biyji,—1, (2, y)dy,

where Apiji,—1,(2,Y), Brtji,—1, (2, y) are quasi-homogeneous polynomials of degree k + jlo — lp and
k 4+ jla — Iy respectively. Under these conditions we say that k is called the (lo,l1)-multiplicity or
algebraic multiplicity of F at p, which is denoted by

multalg, (F).
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In the first chart Uy = X (lo, (=l2,11)) we denote by 7o : C* — X (lg, (—l2,11)) the natural projection.
To define a foliation on X (lg, (—lz2,11)), the natural idea is to define a foliation Fy on C2. Using the

following change of coordinates
l
r—ul?
Iy
y=u'2wv.

w_q1 (1 l &
mn) = ufs ! (z Aty (10) + ;Bkzlu,v)) du -+ s By, (1,v)dv + -

From this last equality, we get

we have that

m(n) = ulon,

where

o k—1s , if ZOIAk—lo + llyBk—l1 7& 0,
k , if leAkflo + llykall = 0.

in addition 1y () = g, “7, this means that 7 induces a foliation F on X(lo, (~l2,11)). In the second
chart similarly can be treated and so we can define a foliation F on X (I3, (lp,11)). Note that

{ k—1, ,if Eis F-invariant
e =

k , if E is not F-invariant
So, we have the following proposition.

Proposition 1.8.2. Let M be a surface with abelian quotient singularities. Let m : M — M be the
weighted blow-up at a point p of type (l2; 1o, 1) with respect to (lo,11). Assume ged(la, 1) = ged(le, lo) =
1. Consider F a foliation on M and C a F-invariant compact curve, denote by E the exceptional
divisor of w, by F=r (F) the foliation induced on M and by C the strict transform of C'. Let u and
k be the (lo,l1)-multiplicities of C and F at p. i.e., x (resp. y) has (lo, l1)-multiplicity ly (resp. 11).
Then the following equalities hold:

1. 7*(NF)=NF + £E,
2. m(KF) = KF 4 <lophtlp,

where

k—ls . if E is F-invariant,
e= .
k , if E is not F-invariant.

Proof. 1. Follow from the construction of F.
2. Notice that the foliation F in C2 is also induced by the vector field

0
v=(Br-i, + -+ Biyjio—1, )% — (Ap—to + -+ Aigjio—io + ) -

Using the following change of coordinates



e—lg—l1+lo

We get (15 )«(v) =u~ = 9, in which the foliation F is induced by #. From this follows the item
2.

O

Proposition 1.8.3. Let F be a foliation of degree d on P%. Let IP% — P2 be the weighted blow-up at
the point p=[0:0: 1], of type (I2;10,11) with respect to (lg,11). Assume ged(la,l1) = ged(lz,lp) = 1.
Denote by E the exceptional divisor of w, by F = 7*(F). Let k be the (lg,11)-multiplicity of F at p.
Then F is a Ricatti foliation with respect to the natural fibration if and only if

1. k=d—1y, if E is f—invarz’ant,
2. k=d—2ly, if E is not F-invariant.

Proof. Let C be a algebraic curve of degree lyly passing by p. Then

~ ol
71'*(0) =C + £E7
P
and for the foliation we have 1|+ 21
n(KF) = KF + —C==E,
2

where

k—l ,if F is F-invariant,
e= .
k , if F is not F-invariant.

Since KF.C = KF.C — bl ll2h) and KF = Opa(d — |1]), thus

KFe=dzcz2
l2

If  is a Ricatti foliation, that is, F is transversal with respect to natural fibration, then we have that
KF.C = 0, therefore e = d — 2l5, this completes the proof. O

Remark 1.8.4. If F is a Ricatti foliation and E is ]:'—invariant, then there exist a curve C invariant
by F. In fact, since F is F-invariant and E.F = ﬁ £ 0, then there exist p € sing(F) N E and a
unique fiber C passing by p. It is not difficult to see that C is F-invariant. In particular, F have
algebraic curves invariant by F.

Example 1.8.5. Consider the weighted projective planes P?l,l,lz)’ lo > 2. The only singular point
of ]P’%l’l,lz) isp=100:0:1 € X(lo,(1,1)). Let 7 : P2 — P? be the weighted blow-up at p of
type (l2,(1,1)) with respect to (1,1) and let E be the exceptional divisor. Since X (I, (1,1)) =
X(1,(—12,1)) U X(1,(1,—12)), P? is smooth and E.E = —l,. This surface is a Hirzebruch surface
F;, = P(Op: ®Op1 (l3)) which has a structure of P1-bundle. Let F be a foliation of degree d on P%Ll,lz)
and F = 7*(F) be a foliation on I@’% induces by F. Let L C ]P’%l’l’lz) be a line which pass through p
and L be the strict transform of L. Let k = k(p) and e = e(p) be defined in the usual way. Then

1. L = 0g(1),
2. NF = Op:(d),

3. TF = Opa(d — |I]),
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4. 7 (L)=L+ LE,

5. NF =dL+ “<E,

6. KF = (d—|I)L+ =22 p,

Note that d — e = 0( mod I).
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Chapter 2

Density of Foliations Without
Algebraic Solutions

One the most important results of Jouanolou’s celebrated monograph [29] states that the set of
holomorphic foliations on the complex projective plane P? of degree at least 2 which do not have
an algebraic solution, is dense in the space of foliations. This result for dimension one holomorphic
foliations on P was proved by Lins Neto - Soares in [3I]. In [I7] the authors prove a generalization
of Jouanolou’s result for one dimensional foliations over any smooth projective variety. On the other
hand, in [35] the author gives a different proof of Jouanolou’s theorem following the ideas of [I7] and
restricting to P2. In [24], one can find versions of Jouanolou’s Theorem for second order differential
equations on P2, for k-webs (first order differential equations) on P? and for webs with sufficiently
ample normal bundle on arbitrary projective surfaces.

The main theorem of this chapter provides a version of Jouanolou’s Theorem for foliations in the

weighted projective planes.

Theorem 1. Let ¢ = (lp,l1,12) be a weighted vector, with lg, 11,1y pairwise coprimes and 1 <lg <1l <
ly. A generic foliation with normal Q-bundle of degree d in P? does not admit any invariant algebraic
curve if d > lolyls + Lol + 2lo.

The bound above is not sharp. When ¢ = (1,1,15), I > 1, we have a more precise version of above

statement which is sharp.

Theorem 2. A generic foliation with normal Q-bundle of degree d in ]P’?l 12) with lo > 2 does not
admit any tmvariant algebraic curve if d > 2ls + 1. Moreover, if d < 2l + 1 any foliation with normal

Q-bundle of degree d in IP’%l 105 admits some invariant algebraic curve.

In both statements, by generic we mean that the set of foliations that does not have any invariant

curve is the complement of a countable union of algebraic closed proper subsets.

2.1 Holomorphic foliations on P?

In P}, we know that Fol(d, () = P(H°(P},Q4,(d))) is the space of holomorphic foliations with normal
£
Q-bundle of the degree d. When the singular set is finite we say that the foliation F is saturated. If we
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denote by Sy C C[zg, 21, x2] the complex vector space formed by the quasi-homogeneous polynomial

of degree k, we see that for each 1 < k < d there is a natural application

ér : P(Sg) x Fol(d — k,0) — TFol(d, ),
((F) ) = [Fn]

The set of the unsaturated foliations with normal Q-bundle of degree d is equal to

U ¢r(P(Sk) x Fol(d — k, £)).

1<k<d

In particular, the set of the saturated foliations with the normal Q-bundle of degree d is an open set
on Fol(d,?) in the Zariski topology. Remark however that this open set can be empty, as illustrated
by the following examples.

Example 2.1.1. In the case £ = (1,1,12), I3 > 2, we have that
Fol(d, (1,1,1)) = ¢a_a(P(Sa_s) x Fol(2,£)) for all 2 < d < lp + 1.

In fact, let F € Fol(d, (1,1,12)) be a foliation on P(21,1,12) induced by 7 a quasi-homogeneous d-form.
Since 2 < d < Iy + 1, it follows that

n= Ad,l(xm xl)dxo + Bdfl(l‘o, $1)d(£1 + Cdl‘g,

where Ay_1, Bg_1 are quasi-homogeneous polynomials of degree d — 1. From this last equality and
the equality xgAq_1 + x1Bg_1 + lax2C = 0, we conclude that

n = Fq_2(z0,z1)(lorodr) — ly71d70),
where F;_o is a quasi-homogeneous polynomials of degree d — 2.

Example 2.1.2. In the case £ = (3,5,11), we have that

Fol(d,(3,5,11)) = @, forall d e {9,10,12} ,
Fol(11,(3,5,11)) = os(B(Ss) x Fol(8,£)),
Fol(13,(3,5,11)) = ¢5(P(S5) x Fol(8,¢)).

For simplicity, here and hereafter we will use Fol(d) to represent Fol(d, {).

2.1.1 Invariant algebraic curves

Let F be a foliation with normal Q-bundle of degree d in P defined by n and C C P? an irreducible
algebraic curve. As in the case of P?, we say that C is F-invariant if i*n = 0, where i is the inclusion
of the smooth part of C into P2\ Sing(P?).

Let us assume that C' is given by the irreducible quasi-homogeneous polynomial F' of degree k.
Then C is F-invariant if and only if there exists a quasi-homogeneous 2-form ©p of degree d such
that

NnAdF — FOp =0. (2.1)
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Remark 2.1.3. An important fact about equation (2.1]) is that it still works for reducible curves,
i.e., if the decomposition of the curve is F = F{"' ... F", then the equation (2.1) holds if and only if

each irreducible factor F}; defines a F-invariant curve.

Definition 2.1.4. Let po:=[1:0:0], p; :=[0:1:0], and pa :=[0: 0 : 1] and consider the following
sets

Cr(d) = {F eFol(d)| there exists an F-invariant algebraic curve of degree k},
{(z,F) € P? x Fol(d)] =z € C for some F-invariant algebraic curve of degree k},

>
=

QU

~—
|

and for each i € {0,1,2}
Cri(d) == {F e Fol(d)| p; e C for some F-invariant algebraic curve of degree k}.

The following lemma will be used in §2.3] and §2:4
Lemma 2.1.5. The sets Cy(d), Dy(d) and C(d) are closed sets for every k and i.
Proof. We consider the following set
2,(d) C P} x P(H®(PF, Q2 (d)) x H° (P, 052 (d))) x P(H"(PF, Oz (k))),
Zp(d) ={(z,[(n,0)],[F])] nAdF —F© =0 and F(z) =0},
and the application

™ P} x P(HO(P], Qpo (d)) x HO(PF, Q5 (d))) x P(HO(PF, Opz (k) --» P} x Fol(d) x P(H(PF, Opz (k)
(@, [(n, O)L, [F]) = (0], [F]).

The restriction of 7 to Zj(d) is regular. Since Zi(d) is a closed algebraic set then 7(Z;(d)) is a closed
algebraic set too. Since Ci(d) is the image of 7(Zx(d)) by the projection

P} x Fol(d) x P(H (P}, Opz(k))) = Fol(d),
we have that Cp(d) is closed algebraic set. Similarly, the image of m(Zy(d)) by the projection
P7 x Fol(d) x P(H"(PZ, Opz(k))) — P} x Fol(d),
is Dk (d) and therefore it is closed set. Let

P? x Fol(d) —— P?

lm

Fol(d)
be the canonical projections. It follows that

€ (d) = ma(my ' ({pi}) N Di(d)),

is closed set in Fol(d), this completes the proof of the lemma. O
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2.2 Existence of algebraic leaves

The following result has been proved (in much more general context) by Bogomolov and McQuillan
[6]. We will give another proof for foliations on the weighted projective planes, which tell us that
the low degree foliations on IF’%ZOJLZ2) have infinitely many algebraic leaves. By technical questions
that we will explain in from now on we make the assumption: ly,l1,ls pairwise coprimes and
lo <y <ls.

Proposition 2.2.1. Let F be a foliation on IP’%. If deg(KF) < 0, then F is a rational fibration.
Proof. Let d = deg(N.F), using Remark and deg(KF) < 0, we see that
d=deg(NF) <|l|=1lo+ 11 + 2.
We have the following cases:
1. If d = ly + l1, then F is induced by n = lyx1dzg — lpxodr:.

2. Iflg+ 11 <d < lp+ s, then F is an unsaturated foliation, that is, F is induced by a quasi-

homegeneous 1-form n = Fy_;,—, (xo,z1)(lix1dzo — lpxzodzy).
3. Iflg+1la<d<ly+lyorly +1s <d<|l, then the foliation F is given by
n= blxg_l(lgl‘gdfo — lol‘odéﬂg) + Ad—lg—h (.%‘0, Il)(llxldl‘o — lol‘odxl),

where lpk + 1y =d, k > 1 and A4_;,—1, is a quasi-homogeneous polynomial of degree d — Iy — {1

in Clzg,z1]. We can write Ag_j,—1, (o, 1) = Z arrbrl. In open set Uy = C?/py,, we lift

I=(i,j)
Flu, to C? which is given by

no = —lobidwy —lgAg—iy—1, (1, 21)dwy,
= d(=lobize — 10Ga—i1,(1, 1)),

where Gg_;,(zo,21) = Z j?lxéx{H. Thus,
I

d—lo+1
Lo )

_ (Cbiag e = Gag) 7 [ (=biag e — Gay)”
n= — .

4. if d = l; + lo, then the foliation F is given by

Alg*lo (l’o,$1)(llxld$0 — loxodfﬂl) + bl(lg.’bgd.’ﬂl - llxldxg) s if lo > ].,
n = Alg*lo (.%‘0,.’131)([1371(1370 — loﬁ?od&?l) + bl(lgxzdl'l — lll'ldxz) s if l() =1.
+b2$6171(l2.132d.130 — xod.ﬁg)

where Aj,_;, is a quasi-homogeneous polynomial of degree I3 — Iy in C[xg, z1]. By Proposition
we see that m(F) = %, then we have two cases: If Iy > 1, then Sing(F) = {[1:0: 0]},
and if lp = 1, then either Sing(F) N {xg = 0} = 0 or Sing(F) = {[0 : 0 : 1]}. In the
case lp = 1 and Sing(F) N {zo = 0} = 0, using a automorphism of P, we can suppose that
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Sing(F) = {[1:0:0]}. Hence in the case iy > 1 and Sing(F) = {[1:0: 0]}, the foliation F is
induced by

n= Al2,lo (xo,.rl)(ll.’l?ldl‘o — lo.’l?od.’l?l) + (lg.%'gdl‘l — lll’ldl'g).

We can write Ay, (xo,21) = Z améx{. Taking the following automorphism
I=(i,5)

.2 2
2K P(lo,lhlz) - ]P)(lmll»h)
[wo 121 :22] — [yo:y1:ye] =[ro:x1: F(xo,21,72)],

where F(zo,x1,22) = z2 + Z —(i+ 1)a1$6+1x{7 thus we have that
I

= ()0 = layadyr — iy dys.
In other case Iy = 1 and Sing(F) = {[0: 0 : 1]}, therefore the foliation F is induced by
n=A,_1(x0,z1)(lix1dre — loxodry) + beérl(ledeo — zodxs).
In open set Uy = C?/uy,, we lift F|y, to C? which is given by

no = —badzy —1loA,—1(1,21)dz1,
= d(=bawa — loGip41,-1(1,71)),

ay
- X
j+1

o
where Gy, —1(%0, 1) = E L™t Thus,
I

n = 1 d <—b2$l0111‘2 - G12+11—1(Io,$1)> .

la+1 la+11—1
Tg Lo

This finishes the proof of the proposition. (]

The following proposition characterizes the low degree foliations on ]P’%1 102) with some algebraic

solution.

Proposition 2.2.2. Any foliation on P%l,l,lz) with normal Q-bundle having degree d satisfying 2 <
d < 2ls admits some invariant algebraic curve. Furthermore

1.

Fol(2) = {xodx1—xz1dx0}, every foliation in Fol(2) admits rational first integral and in particular
admits infinite number of algebraic solutions.

Fol(d), 2 < d < la, has no saturated foliations.
Fol(ly + 1): every foliation in Fol(ly + 1) admits rational first integral.

Fol(ls + 2): the generic element is defined by a logarithmic 1-form with poles on two curves of
degree one and a curve of degree ls.

Fol(d), ifla+3 < d < 2ly: every foliation in Fol(d) is a transversaly projective foliation (Ricatti).
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Proof. If 2 < d < Iy, then F € Fol(d) is given by
n = Aq_2(xo, 1) (x1d20 — Tod21),

where Ag_o is a homogeneous polynomial of degree d — 2 in Clxg,z1]. Therefore {xoz1 = 0} is
F-invariant ¥V F € Fol(d).
If Iy < d < 2ly, let F € Fol(d) be a saturated foliation given by

n = Adq—i,—1(x0, x1)(lax2dro—x0dr2)+Bi—1,—1(T0, 1) (laxedr) —x1d22)+Ca—2(T0, 1) (1dT0—T0dT1),

where Ag_1,—1, Ba—1,—1, Cq—2 are homogeneous polynomials of degree d —ly —1, d—Ily —1 and d —2
respectively. In the open set Uy ~ C?/pu,, we lift |y, to C? which is given by

ne = loAg_1,—1dxo + 19 Bg—i,—1dxy + Cq_o(x1dxg — x0dX1).

Then we have that multalg[():O;l] (F)=d—lyand xgA4—1,—1+x1Bi—1,—1 # 0. Therefore by Proposition
we have that F is Ricatti foliation. Hence by Remark it admits an invariant curve.

1. A foliation F € Fol(2) is induced by A(zodx; — x1dxg), for some A € C*.

2. Since F € Fol(d) is given by

n = Ag_s(xo, 1) (x1d2o — Tod21),

where Ag_5 is a homogeneous polynomial of degree d — 2. We conclude that F is unsaturated.
3. Let F € Fol(lz + 1) be a saturated foliation. We can see that F is induced by

n = (ZQIL’QA()(I’(), I1)+IE1A12_1(’I}0, Il))d$0+(12$2B0 7!17014[2_1(1'0, xl))dzl — (Ivo +I’1B0)d$27 (22)

where Ay, By and A;,_; are homogeneous polynomials of degree 0, 0 and I — 1 respectively. By the
multiplicity formula Proposition we have that m(F) = 1, then there exists a point p € Sing(F).
By the equation 1] and F is a saturated foliation we conclude that p € Sing(}')ﬂ(IP’%M’lz)\[O :0:1)).
Take the line L, that through the points p and p,. Suppose that L, is not invariant by F. Using the
Tangency Formula for 7 and L, we have that

0 < Tang(F,L,) =0,

this is contradiction, then L, is F-invariant. For a suitable choice of coordinates we can assume that
the point p = pg and F is induced by the 1-form

n= —$?A12_2($0, 561)d$0 + (—12372 + 1‘0$1Al2_2(f£0, xl))dxl + x1dxo,
where A, _o(x9,21) = alz,lxllr2 4+ 4 ale)rQ. Taking the following automorphism

ViR, 7 Bl
[wo 121 :22] — [yo:y1:ye] =[ro:x1: F(xo,21,72)],
la—1  Qip—2 2 Is—2 ay lo—1

where F'(zg,%1,%2) = T2 — Q1,—1T0x] 2= xgry oo — o g? T xy. Therefore we have that

i = (™) = —layadyr + y1dyo.
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4. If F € Fol(ly + 2) is a saturated foliation, then by the multiplicity formula Proposition m
we have that m(F) =2 + i, then ps € Sing(F). Take a nonempty open U; in Fol(ls + 2) such that
if 7 € U; thus, Sing(F) consists of three different points and one of them is py. Let F € Uy, then for
a suitable choice of coordinates we can assume that Sing(F) = {po,p1,p2} and F is induced by the

1-form
n = —(laaz1 29 + xx] Ar,_2(w0, 71))dxo + (—lobroms + 2521 AL, _2(20,71))dT1 + (0 + b)Tow1dTy
where A, _o(zo,21) = alz,lxllrz 4+ 4 alxérz. We define the nonempty open

U={neli|(lz—i)a—ib#0, Vi=1,... 1 —1}.
If F € U, take the following automorphism

K ]P)?l,lJz) - ]P)%171,l2)
[wo 121 :2w2] — [yo:y1:ye] =[ro:x1: F(xo,21,72)],

aly—2 2

Al —1 la—1 2,.02—
where F(Iﬂo,Il,IQ) = T9 + (12_271’05612 + md)ol’f

al l2_1
=1 o+ oAt ®c v, therefore

we have that

= (Y1) = —lsayiyadyo — labyoyadyr + (a + b)yoyrdys,

d d d
= Yoy1y2 (_ayo b (at b)y2>
Yo (1 lay2

2.3 Foliations without algebraic leaves on P ;, ;,)

For any positive integers a and b with ged(a,b) = 1, define g(a,b) to be the greatest positive integer
N for which the equation

axy + bxy = N, (2.3)
is not solvable in nonnegative integers.

Lemma 2.3.1. (Sylvester, 1894 [3]) Let a and b be positive integers with ged(a,b) = 1. Then
g(a,b) =ab—a—b.

Proof. Suppose that N > ab — a — b. Note that if (x1,22) = (y1,y2) is a particular solution to
(2.3)), then every integer solution is of the form (z1,2z2) = (y1 + bt,y2 —at), t € Z. Let t be an integer
such that 0 <y, —at < a—1. Then

(1 +bt)a=N—(y2 —at)h >ab—a—b— (a—1)b= —a,

which implies y; + bt > —1, i.e., y; + bt > 0. It follows that in this case the equation ax; + bxe = N
is solvable in nonnegative integers. Thus

g(a,b) <ab—a—b.
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Now we need only to show that the equation ax; + bxy = ab — a — b is not solvable in nonnegative
integers. Otherwise, we have
ab=a(xy + 1)+ bz + 1).
Since ged(a,b) = 1, we see that a|(x2 + 1) and b|(x; + 1), which implies z2 +1 > @ and 21 +1 > b.
Hence
ab=a(zy+1)+b(xa+ 1) > 2ab,
and this contradiction shows that
g(a,b) > ab—a—b.

Therefore g(a,b) = ab—a — b. O
Definition 2.3.2. Let £ = (lp,l1,l2) be a weight vector. Assume that its entries are ordered (

lo <1l <ly) and are pairwise coprime. Let X = P%\Sing(P?). Recall that po = [1 : 0 : 0],
p1=[0:1:0], po =[0:0:1]. We define the following sets

S(d) = {(z,F)e€ P?xTFol(d)) |z € sing(F)},
Sx(d) = {(z,F) e X xFol(d)| z € sing(F)},
Spqt(d) = {(ph]:) € S(d)}v i =0,1,2.

Proposition 2.3.3. For all d > l1ly, Sx(d) is an irreducible subvariety and has codimension two on
X x Fol(d).

Proof. Consider the projection 7 : S(d) — P2. For every = € P2, the fiber m; '(z) is a subvariety
of {z} x Fol(d) contained in S(d) and isomorphic to a projective space, i.e., if two 1-forms 7 and 7’
vanish in = thus the same is true for a linear combination of them.

The automorphism group of PZ has four distinct orbits on PZ. In order to proof the proposition
it suffices to exhibit for each of these orbits, two 1-forms which are linearly independent at a point of
them.

Since d > ;15 we can apply Lemma [2.3.1] to obtain positive integers i12 and ji2 such that 150y +
j12lo = d. Hence

_ d12—1_ji2—1
o = l‘llz Xy (lg(l?gdml — llilildflig)

belongs H°(P?, Q]%,,Q (d)). Similarly, since d > lyly and d > ly,l; we obtain integers g2, 701, Jo1, jo2 such
4
that ig1lg + jo1l1 = t02lo + joole = d, and consequently

o o
B =z el TN (adag — lozoday) and y = 20?2l T (lgzaday — lorodas)

also belong to H°(P?, Q]}J,g (d)).

If p=(1,1,1) then V,, =< a(p), B(p),v(p) >, the vector space generated by the evaluation of «, 3,
and ~ at p has dimension 2.

At the point pg = (0,1, 1), the analogue vector space has dimension one. But we can apply Lemma
to write d — lg = igl1 + jolo witth ig and jo positive integers, and see that

(50 = .133071.%‘%0 (lo.rodxl — llxldﬂfo)

belongs to HO(P?, Q%’? (d)). Now considering the evaluation of dyp and « at py we see that they are C-
linearly independent. Applying the same argument to the others points p; = (1,0, 1) and py = (1,1,0),
we conclude that 77 ' (z) € X xFol(d) always have codimension two. It follows that Sx (d) is projective
bundle over X, and therefore is smooth and irreducible. O
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Proposition 2.3.4. Let d > l1l2 and suppose that Ci(d) = Fol(d) for some k > 0.
1. If dim Sy, (d) = dimFol(d) and C}*(d) = Ci(d) for some i, then Sp,(d) N Dy(d) = Sp,(d).
2. If dim Sy, (d) < dimFol(d) or C.*(d) C Ci(d) for every i, then Sx(d) N Dy(d) = Sx(d).
Proof. We denote by 7 the restriction of the natural projection to Sx (d)
7 : Sx(d) — Fol(d).

For item 1, the condition dim S, (d) = dim Fol(d) implies that Sy, (d) = {p;} x Fol(d). Hence S, (d) N
Dy (d) = Sp, (d). For item 2, since Ci(d) = Fol(d) and C}*(d) < Ci(d) for all ¢, we define the nonempty
open set

Uy = Fol(d)\ U2, (C*(d)).

Let F € Uy, be a foliation saturated. Then there exists a curve C' of degree k invariant by F. Using
Camacho-Sad Theorem in weighted projective planes C? = ZpEXﬂC CS(F,C,p). This implies that
there exists a p € Sing(F) N X. Therefore

7(7~ Y (Ux) N Di(d)) = Us.
By Proposition we have that 771 (Uy) is an irreducible open set and
dim 7~ (Uy,) = dim Fol(d),
and since dim 7(7~1(Uy) N Dk (d) = dim Uy, = dimFol(d) implies that
dim 7~ (Uy,) N Dy (d) = dim 7~ (Uy),

and hence
7 (Up) N Dy(d)) = 71 (Uy).

Taking closure on P? x Fol(d), we get

Sx(d) N Dy(d) = Sx(d).
In particular we have
Sx (d) N Dy(d) = Sx(d).
|

In order to prove our result we will construct examples contradicting the above proposition for
d > 0 in the next subsection.

2.3.1 Existence of singularities without algebraic separatrix

First, we construct a family examples that contradict item 2 of Proposition 2:3.4] for d > 0. The

following example is an adaptation of an example of J. V. Pereira, see [35, page 5].

Let ¢ = (I, 11,12), lp <1y <z, and Fy be a foliation in ]P)%lo,ll,lz) induced by the following 1-form

dxg dxry dzo d(zltz 4 glolz 4 plolz
o = wow1a(zg P +al 4l <)‘l1l2xo + “101271 + JrVZOZQTQ —(A+p+7) ;l?lz n xz;lz n xlill )
0 1 2

o7



Then deg(N]:o) =lolyle + 1o + 11 + I3 and

[1:0:0],[0:1:0],[0:0:1],[0:1:a'"]]al =1,
[1:0:pM00] b0 = -1,
[1:ct/lo.0]|cle = —1,

[z : @1 @ wo] | 2h2 = A, 2l = p, alh = 5

Sing(]—b) =

Notice that the foliation F is induced by 7 admits a multivalued first integral, that is,
Tyl T3

Il lol lol :
('IOI 2 4 xlo 2 4 5820 1)A+p+'y

F(IO,I’l, 'IQ) =

Proposition 2.3.5. If \,u and v are Z-linearly independent, then the previous foliation Fy in P?

which does not have a Fo-invariant algebraic curve passing through the points
Sing(Fo) NP2\ {zoz122 = 0}.

Proof. Let p € Sing(Fo) NP2\{zoz122 = 0}, since A\,u and v are Z-linearly independent we have
that p does not belong none of the curves {zy = 0}, {z; = 0}, {zy = 0}, {z)'"> + "2 + zloh = 0}.
Suppose that there exists a curve C invariant by Fy passing through p. By Bézout’s Theorem for
weighted projective planes we have that C intersects to {xg = 0}. It is clear that the points of
intersection between C and {x¢ = 0} are contained in the singularities of F. Let g one of these points
of intersection between C and {x¢ = 0}. Without loss of generality we can assume ¢ =[0: 0: 1]. The

others case are similar. In a neighborhood of ¢, we can write the first integral F' as
F(xo,21,1) = u(zo, 21)x) 2",

where u is a function non zero and without ramification in a neighborhood of ¢ = (0,0). Again,
because A\, and v are Z-linearly independent we have that A/u ¢ Q. This implies that the unique
separatrices passing through ¢ are {zg = 0} and {7 = 0}. This completes the proof. |

Corollary 2.3.6. For all d > lglils + lgly + Iz, there exists a foliation F with normal Q-bundle of
degree d in ]P’% that does not have a F-invariant algebraic curve passing through the points Sing(F) N
P2\ {zoz122 = 0} # 0.

Proof. Let Fy be the foliation on P? of Lemma induced by n9. Note that the system
ilo + jli = dp always has solution solution in N>o x N> if dy > loly —lp — {1, according Lemma [2.3.1

Therefore, we define a foliation F on P? induced by
n = zhz] o,
in which deg(NF) > lplila + loly + l2. This completes the proof of the corollary. O

Now, we are going to construct a family examples that contradict item 2 of Proposition [2:34] for
d> 0.

For every jo =1,...,1s, let j; be the unique integer satisfying 1 < j; <5 and lyjo = 151 mod Is.
Consider the foliation F in C2, induced by the 1-form

n=(z — Daldeo — a(zl — 1)) day,
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in which a € C\R.
We have to consider two cases:

1. First case: jo = j1 = I3 (nondicrital case).

Lemma 2.3.7. The foliation F does not have a F-invariant algebraic curve passing through the point
(0,0).

Proof. We extend F to a foliation on P? that is denoted by G. The foliation G is induced by

w= (2 —ay)ag wadry — a(ag — oF)ay wada + (aleg — 23)ay — (25 — a3 )ag )das

Thus deg(G) = 2l — 1, and {zy = 0}, {2 — 2% =0}, {22 — 21 = 0} are G-invariant.

Notice that the singularities of G on {z%? — 2% = 0} N {z2 — 25 = 0} are reduced. Also over
each of these lines G has only one extra singularity corresponding to the intersection of the line with
{z2 = 0}.

Suppose there exists an algebraic curve C' invariant by G passing by [0 : 0 : 1]. Bézout’s Theorem
implies that C' must intersect the line {1 — x2 = 0}. Since the singularities of G on this line outside
{z2 = 0} are all reduced and contain two separatrices which do not pass through [0 : 0 : 1] we conclude
the C intersect this line only at the point [1 : 0 : 0]. We proceed to make a blow-up at the point
[1:0:0]. Let 7 : M — P2 be the blow-up of P? at the point [1: 0 : 0], E be the exceptional divisor,
C be the strict transform of C, Ly be the strict transform of {z5 = 0}, F be the strict transform of
{2 —z%2 = 0}, and G = 7*(G) be the foliation on M.

We claim that the singularity at the point [1 : 0 : 0] is nondicritical, the singularities of GonE
are all reduced and are contained in the intersection of E with Ly U F'. In fact, the open set 71 (Up)

is covered by Vy U V; and the first chart is given by

vy Vo — U
(u,v) —  (21,22) = (u, uv).

The foliation Q~ on Vj is induced by
7= —v(1 —v2)du + u(a(l — u'20'2) — (1 — v'2))dv.

We see that F is G-invariant, this implies that the point [1:0: 0] is nondicritical. Also, Sing(G) N
EnVy = {(0, 0) (0 €)] €2 = 1}, and the quotients of eigenvalues of G at the points (0,0) and (0, )

are 1 —a and 1=2. Since a € C\R we conclude that these singularities are all reduced. Similarly to
the second chart. This claim contradicts the fact that C N E is contained in Sing(G). Therefore we
conclude that there is no such curve C' invariant by G passing by [0: 0 : 1]. O

2. Second case: I3 > jo,j1 (dicritical case).

Lemma 2.3.8. The foliation F does not have a F-invariant algebraic curve passing through the point
(0,0).

Proof. Again, we extend F to a foliation on P2 that is denoted by G. Assume, without loss of
generality, that jo > 7. In this case the foliation G is induced by

w = (a =2l T wodry — a(xl — 2)a) T T ey 4 (a(xl — a)a a0 T — (2l — a2 al?))day .
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Thus deg(G) = Iy + jo — 1, and {zq = 0}, {al? — :1:2 =0}, {zl — 22 = 0} are G-invariant.

Notice that the singularities of G on {z? — 2% = 0} N {zl2 — 22 = 0} are reduced. Also over
each of these lines G has only one extra singularity corresponding to the intersection of the line with
{xg = 0}

Suppose there exists an algebraic curve C' invariant by G passing by [0 : 0 : 1]. By the same
procedure as above, we conclude the C intersect at points [1 : 0 : 0] and [0 : 1 : 0]. We proceed to
make a blow-up at the points [1:0:0] and [0: 1:0]. Let 7 : M — P? be the blow-up of P? at the
points [0:1:0] and [1:0: 0], E = E; UF; be the exceptional divisor, C' be the strict transform of C,
Lo be the strict transform of {x5 = 0}, Lo be the strict transform of {x1 — zo = 0}, L; be the strict
transform of {zg — x5 = 0}, and G = 7*(G) the foliation on M.

We claim that the singularities at the points [1: 0: 0] and [0 : 1 : 0] are dicritical, the singularities
of G on E do not belong to the lines Ly and Lo. In fact, the open set 77_1(U0) is covered by Vo UV}
and the first chart is given by

7T|VOZ Vb — U()
(u,v) = (x1,22) = (u,uwv).

The foliation C; on Vj is induced by
il = —vul270 71 —v2)du + (a(1 — u20'2)pdo =0 — g2 70 (1 — o'2))dw.

We see that F; is not G-invariant, this implies that [1:0:0] is dicritical singularity. Also, L1 N Vp =
{1 —v =0} and Sing(G) N ENVy = {(0,0)}. Therefore the singularities of G on E do not belong to
L1. The same argument show that the singularities of G on E do not belong to Lg.

Now we define the following map

¢: Pic(M) — 72
D — (DLo,DLl)

Observe that Ly and Ly generate the image of ¢. From this and Ly € ker(¢), it follows that
ker(¢) = ZLo.

By the last claim, we conclude that C' € ker(:)). We can write C' = bLy in Pic(M) for some b € Z.

Then ~
C.E > 0,

bLs.E > 0.

Hence b > 0. On the other hand C.Ls > 0 and Ls.Ly = —1, thus b < 0. This is a contradiction. This
implies that there is no such curve C' invariant by G passing by [0: 0 : 1]. O

Corollary 2.3.9. For all d > I3l + l3lg + 1o, for all k € N and for every i = 0,1,2, we have
C'(d) # Fol(d).
Iflo =1 =1 and ly > 2, then C;*(d) # Fol(d), for all d > 2l + 1, for all k € N.

Proof. We show that C}”(d) # Fol(d). Same arguments can be used to other cases.
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Take d > lsl1 +1slg+1s, let jg j1 be the unique integers satisfying 1 < jg,j1 < lo and d = lpjo = 171
mod l,. By Lemma and Lemma the foliation F on C? given by

n=(z — D)l Vdao — a(zl — 1)2] day,

does not have a F-invariant algebraic curve passing through the point (0, 0).
By Remark we extend F to a foliation F on P, which is induced by # and

lojo +lila + 1o, if lojo > 11 J1,

deg(NF) =
s {z1j1+1012+12 it L > lojo.

Since d = deg(N]:') mod Iy and d > lyly + l2lg + l2, we can multiply the 1-form 6 by an adequate
power of zo and construct a foliation H on P? with normal Q-bundle of degree d. The foliation H
does not have a H-invariant algebraic curve passing through the point [0: 0 : 1]. Then H ¢ CP*(d).

Iflo =1 =1and d > 2ly + 1, then d = j( mod ls), for an unique integer 1 < j < l. We take
Jj = jo = 71 and the foliation F constructed above satisfies deg(N]:") = 2l3+ 7. By the same procedure
we can construct a foliation H ¢ Cp*(d) for all k € N. O

Proof of Theorem By Lemma Cr(d) is an algebraic closed subset of Fol(d) for all
k € N. We claim that if d > lglily + loly + 2l2, then C(d) # Fol(d), for all k € N. In fact, if we
had Ci(d) = Fol(d) for some k € N, then we could apply Proposition and this would contradict
Corollary and Corollary Hence the complement of Ci(d) in Fol(d) is an dense open set if
d > lplyls+1pli +2l5. We conclude the proof of Jouanolou’s Theorem on IP? applying Baire’s Theorem.
O

2.3.2 Reduction of problem

In this subsection, we only consider saturated foliations and the notations as in Chapter 1. Our goal
is to reduce from the case of foliations on P%, ¢ = (lo,l1,l2) with ged(lo,l1,02) = 1 to the case of
foliations on P%, ¢/ = (I}, 11,15), with [j), 11,1} pairwise coprimes.

Let ¢ = (lp,11,12) be a weighted vector with ged(lo,l1,l2) = 1. We have

A / i
lo = mimaly, i =roraly, lo = rorilsy,

where
ro = ged(ly,l2), r1 = ged(lo, l2), 2 = ged(lo, 1)
Therefore, we have lolyla = 721111}, where r = rorire, £/ = (I),1;,15) and also the natural isomorphism
" HO(P, Qp, (d)) —  HO(PE, Q3 (rd))
U = P,
which is induced by the following isomorphism

P2 — PZ

woimyimle = [ ol = lyo o welen

Note that, in the case k = 1, the isomorphism is valid for any d > min{lj + 11,1, + 15,1} + 15}.
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Remark 2.3.10. Let F € Fol(d, ') given by n, and G = p*F be the foliation on P? induced by w.
Then

N , if {yo = 0}, {y1 =0} and {y2 = 0} are not F-invariant,
;60‘01]1 , if {yo = 0} is F-invariant and {y1 = 0}, {y2 = 0} are not F-invariant,
w= .
# . if {yoyr = 0} is F-invariant and {y2 = 0} is not F-invariant,
' , o
T T if {yoy1y2 = 0} is F-invariant.

Recall that
Fol'(d, ') = {F € Fol(d, )| {yo = 0}, {y1 = 0}, {y2 = 0} are not F-invariant},

Foli(d,¢') = {F € Fol(d,?)|{y; = 0} is F-invariant and {y; = 0}, {yx = 0} are not F-invariant, j # k},
Fol ;(d,t') = {F € Fol(d, ¢')| {yiy; = 0} is F-invariant and {y = 0} is not F-invariant},

]FOZO,LQ(d, 6/) = {.7: S FOl(d, €/)| {yoylyg = O} is f—invariant}.

Proposition 2.3.11. Under the conditions above, we have the following isomorphisms:

1 HOP}, 0, (d) —— HO(P2,Qk (rd)) - ¥, ¥k 0.

2. Fol'(d, ')~ Fol'(rd,¢)  Vd.

3. Foll(d, ') —2 s Foll(rd — li(r; —1),6)  Vd. If I > 1.

4. Fol; ;(d,0') LFolg’j(rd —Li(ri—1)=1i(r; —1),€) Vd. If ;,1; >1 and i #j.

. IFIOZ()J’Q(CZ7 é/) L)Fol()’l’g(?"d - lo('f‘o - 1) - 11(7"1 - 1) - 12(7“2 - 1),l) If 107 117 l2 > 1.

In conclusion, for all G € Fol(ci, 0), d> min{lo + l1,lo + l2,l1 + 12}, G satisfies one of the above items
2,8, 4, or 5.

Proof. 1. Follows from the fact that ¢ is an isomorphism. To prove items 2 and 3, it is sufficient
to prove surjectivity.

2. Let G € Fol'(rd, () given by w. Then by Remark @ there exists n € H°(PF, Q1 (d)) such
that ¢*n = w. We only need to show that codim Sing(n) = /

. To do this, suppose that n - Fn’, then
(¢*F)(¢*n') = ¢*n = w, and since codim Sing(w) = 0, we thus get ¢p*F is a constant, hence F' is a
constant. By Remark we concluded that 7 induces the foliation F € Fol’(d, ¢').

3. Suppose i = 0 and Iy > 1. Let G € Folj(rd — lp(ro — 1), ¢) given by w, we define

@ =zl 'we HO(P?, Qpa (rd)).
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Then by Remark there exists n € H O(IP’%, Q]},,; (d)) such that ¢*n = @. It suffices to prove that
codim Sing(n) = 0. To see this, suppose that 7 = F1, hence (¢*F)(¢*n) = ¢*n = & = {°~'w, thus
zp0~ " divides p* F, then F' = y¥, and hence k = 0. Since G € Fol,(rd — lo(ro — 1), £), Remark
implies that 1 induces the foliation F € Fol((d, ¢').

Items 4 and 5 follow by analogous arguments used in 2 and 3, applying following definitions:

5. For example, for the case i = 0 and j = 1, define & = J:goflx’l’l*lw.

6. Define @ = xf° ' tah2w.

Now let G € Fol(d, /) given by
w = Adxo + Bdx1 + Cdws.

Let us prove that G satisfies one of the items 2, 3, 4 or 5. We will prove two cases, the other cases are
analogous.
First case: Assume that {xg = 0}, {z; = 0}, and {z2 = 0} are not G-invariant. We can always
write
B = 2§ By, (21, 22) + ... + Bg_; (21, 22),

where d — I1 = q1lp + ¢2. Since {zo = 0} is not G-invariant, there exist (i,7) € N> X N>( such that
d — 1y = ily + jlo. That implies ged(ly,ls)|d — Iy, so 7o|d. Analogously for the quasi-homogeneous
polynomials A, B and using the fact that {1 = 0}, {x2 = 0} are not G-invariant respectively, we get
that 1 |d and 75|d. Therefore, we can conclude that rori7s|d Ji.e., d = rd. Hence G € Fol’(rd, £), this
finishes the proof of the first case.

Second case: Suppose that {zg = 0} is G-invariant and {z; = 0}, {x2 = 0} are not G-invariant.
Define ~

d=d+1ly(ro —1).

Because {x; = 0}, {x2 = 0} are not G-invariant, we can apply the first case, then r1r2|ci. Moreover,
r17r2|lp, thus r0r1|d. We can write

A= ;z:glAq2(:E1,x2) +...+ Agilo(l‘l,zg),

since G € Fol(d,1) and {zy = 0} is G-invariant, then there exists (4,4) € N>o x Nxo such that
d — ly = ily + jla, therefore ged(ly, 12)|J— lo. Moreover r0|d— lo and d = (ci— lo) + loro, hence 7"0|cz,
we can conclude that d = rd — lo(ro — 1). Thus G € Folj(rd — lo(ro — 1),1), the proof of second case
is complete. O

Corollary 2.3.12. Let £ = (ly,l1,12) be a weighted vector with ged(ly,l1,12) =1 and F be a foliation
on P2. If deg(KF) <0, then F is a rational fibration.

Proof. Since deg(KF) < 0 we have that deg(NF) < |I| = lp + 11 + 2. Let ¢/ = (I, 1},15) and
¢ : P2 — P as Proposition We claim that if 7 = ¢*G and deg(NF) < ly + l1 + Iz, then
deg(NG) < I + 1 + 5. In fact, by Proposition [2.3.11| we have

rdeg(NQ) - lo(?”o - 1) - 11(7”1 - 1) - l2(7“2 - 1) < deg(Ngo*g)

Using deg(Np*G) < lgp + 11 + l2, we see that rdeg(NG) < roly + lir1 + lars. Since ly = ljrira,
Iy = lirore and Iy = lhror; we conclude that deg(NG) < I + 11 + ;. The corollary follows from
Proposition [2:2.1] O
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Corollary 2.3.13. Under the conditions and notations of Proposition|2.5.11], a generic foliation with

normal Q-bundle of degree rd in P%lo I l2) does not have any invariant algebraic curves if
d > 111y + 11 + 1615 + 115 + 16 + 1) + 15,

Proof. Using the isomorphism ¢* : Fol’(d, ¢') — Fol’(rd, £) of Proposition [2.3.11] and Theorem
the result follows. O

2.4 Foliations without algebraic leaves on PP(;1,,), I> > 1

We first recall of Definition that X =P?, |, \{p2} and the following algebraic sets

Sd) = {(z,F)e P?l,ng) x Fol(d)) | x € sing(F)},
Sx(d) = {(z,F) € X xFol(d)| z € sing(F)},
Spo(d) = {(p2, F) € S(d)}.

The following proposition allows to determine when the algebraic variety S(d) is not irreducible.

Proposition 2.4.1. Let { = (1,1,15) be a weighted vector with lo > 2 and d > la be an integer. The

following assertions hold true:
1. If d=1( mod ly), then S(d) is an irreducible variety of codimension two in P? x Fol(d).

2. If d £ 1( mod ly), then S(d) is not irreducible variety with decomposition in irreducible compo-

nents equal to

Sx(d) U sz (d)
Furthermore dim §(d) = dim Sx (d) = dim S,, (d) = dim Fol(d).

Proof. 1. Consider the projection 7 : S(d) — P2. For every z € P%Ll,lz)’ the fiber 7, ! (x) is a
subvariety of {x} x Fol(d) contained in S(d) isomorphic to a projective space, i.e., if two 1-forms 7 and
1’ vanish in x thus the same is true for a linear combination of them. Since the automorphism group
of P%l’l,lz) acts transitively on X (see [I8, section 4]), it follows that every fiber of m restricted to
Sx(d) € X xTFol(d) is smooth, irreducible and biholomorphic to a projective space of dimension N. It
is clear that 7, ' (p2) = Sp, (d) is smooth and irreducible, but in general it is not true that dimc S,, (d) =
dime 77 ' (po), the condition d = 1( mod I3) is necessary. We claim that under this condition S, (d)
has codimension two on {py} xFol(d) and 7; * (po) has codimension two on {py} xFol(d). The condition
d = 1( mod l3) implies that there exists a quasi-homogeneous polynomials F' of degree d — s — 1 such
that F(p2) # 0, thus the 1-forms ny = F(lazedzy — zodas) and 1y = F(lazedry — x1dxs) are degree
d, and they are such that 71 (po) and 72(pg) are C-linearly independent. Thus any 1-form 7 of degree
d such that n(p2) # 0 can be written as a C-linear combination of 7; and 72. Similarly for the fiber
71 Y (po). Since all the fibers 7, ! (x) for = € P%Ll,lz) are irreducible and of the same dimension, then
8(d) is irreducible, see [38, Theorem 8, page 77].

2. Notice that the condition d # 1( mod l3) implies that Sp,(d) = {p2} x Fol(d). Consider the

following exact sequence

0 —— ker ) ——s HO(B2, 0L (d) © Ox —— QL (d)]x |
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where 1 (z,n) = n(z). We claim that ker is a vector bundle. From the proof of item 1, we have that
all fibers 7r; *(z) for € X are smooth and of dimension dimcFol(d) —2 . This shows that dimc ker ¢,
is constant as a function of z € X. Hence ker is a vector bundle and in particular P(ker¢) = Sx (d)

is a irreducible variety of codimension two on X x Fol(d). Therefore, we have that Sx(d) and S, (d)
are irreducible varieties of dimension equal to dimFol(d) and S(d) = Sx(d) U Sp,(d). We claim that
the varieties Sx (d) and S, (d) are the irreducible components of S(d). By [28 Proposition 1.5, page
5] we only require that Sx (d) 2 Sp,(d). Suppose that S,,(d) C Sx(d). Since dimS,,(d) = dim Sx (d)
we get that Sy, (d) = Sx(d). Hence S, (d) D Sx(d). This contradicts the fact that Sp, (d)NSx (d) = 0.

O

Recall that
C?(d) = {F €Fol(d)| ps € C for some F-invariant algebraic curve of degree k},
is a closed set.
Proposition 2.4.2. Let d > Iy and suppose that Cy(d) = Fol(d) for some k > 0. Then
1. If d=1( mod ly), then S(d) N D(d) = S(d).
2. If d #1( mod lz) and C;*(d) = Ci(d), then Sp,(d) N Dr(d) = Sp,(d).
3. If d# 1( mod ly) and C}*(d) C C(d), then Sx(d) N Dy(d) = Sx.

Proof. Let s : P2 x Fol(d) — Fol(d) be the projection on the second coordinate and 7 : Sx (d) —
Fol(d) be the restriction of w3 to Sx(d).

1. If Cp(d) = Fol(d), then all foliations with normal Q-bundle of degree d admits a invariant
algebraic curve of degree k. Using Camacho-Sad Theorem in weighted projective plane and the
projection 7o, we get that

m2(S(d) N Di(d)) = S(d). (2.4)
By Proposition we have that S§(d) is an irreducible variety and dim S(d) = dim Fol(d). From
it follows that
S(d) N Dy(d) = S(d).

2. Since d # 1( mod ly) implies that Sy, (d) = {p2} x Fol(d) and by the condition C*(d) = Cy(d),
we thus get Sp, (d) N Dy(d) = Sp,(d).

3. We have that Ci(d) = Fol(d) and CY*(d) C Ci(d) is a closed set by Lemma then we define
the nonempty open set

Ui = Fol(d)\C}* (d).

Using Camacho-Sad Theorem in weighted projective plane, we get that
m(7 = (Ur) N Di(d)) = Uy.

By Proposition we have that 7=1(Uy) is an irreducible open set of Sx(d) and
dim 7~ (Uy) = dim Fol(d).

Since dim (7~ (Uy) N Dy(d)) = dim Uy, = dim Fol(d) implies that

dim 7= (Uy) N Dy (d) = dim 7~ H(Uy),
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and hence

7Y (Up) N Di(d) = n~H(UL).

Taking closure on IP%l Lis) X Fol(d), we get

Sx(d) ka(d) = SX(d)

In particular we have

Sx (d) N Dy(d) = Sx(d).
The next subsection, we will construct examples to prove Theorem

2.4.1 Existence of singularities without algebraic separatrix

The following family of examples allow us to obtain the bound of Theorem

Let F; be a foliation in ]P’%1 112) lo > 1 induced by the following 1-form
N = —loxo(xze — xoxlf_l)dxo + lgxoxg(xlf_l — :anclf‘_Q)dxl + xo(x2 — xlf)dxg.

Notice that deg(NFy) = 2lo + 1, Sing(F1) = {[0:1:0},[1:0:0],[1:1:1]} and {zg = 0} N
Sing(F1) ={[0:1:0]}.

Lemma 2.4.3. The foliation F1 does not have a Fi-invariant algebraic curve passing through the
point [1:1:1] .

Proof. Observe that the lines {zg = 0} and {z3 = 0} are Fj-invariant. Suppose there exists an
algebraic curve C invariant by F; passing by [1: 1 : 1]. Since {z¢ = 0} N Sing(F1) = {[0 : 1 : 0]}
and Bézout’s Theorem for weighted projective planes we conclude the {xy = 0} only intersects to C
at the point [0: 1:0]. In the open set Uy ~ C? the foliation J;|y, is induced by

m = —12562(1‘2 — xo)dﬁbo + $0(1?2 — 1)d122.

Note that (0,0) is a saddle-node singularity with only two separatrices, then there no exists the curve
C passing through the point [0: 1 : 0]. |

2.4.2 Proof of Theorem 2

The proof is quite similar to the one presented on Theorem [I} but in contrast to that, in this case
we obtain the best possible bound d > 2l + 1. For this, it is enough to show that Cy(d) # Fol(d),
holds for all k € N and all d > 2l 4+ 1. Since the complement of C(d) in Fol(d) is an dense open set
if d > 2l + 1. Reasoning by contradiction, suppose this does not hold. Then Proposition [2.4.2] and
Corollary would imply Sx (d) N Di(d) = Sx, that contradicts Corollary for d > 2l5 + 1,
and Lemma [2.4.3] for d = 2iy + 1. O
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2.5 Holomorphic foliations on Hirzebruch surfaces

As in Example let Fi, = P(Op1 ® Op1 (l2)) be a Hirzebruch surface, 7 : Fy, — P7, |, be the
weighted blow-up at p =[0: 0 : 1] of type (I2,(1,1)), E be the exceptional divisor, L be a line passing
through p and F' be the strict transform of L. Observe that

Pic(F,,) = ZF + ZE,

in which E.F = —ly, FF=0and F.E =1
We then denote by R(a,b) = PHO(F,,, Q%‘lz ® Op,, (aF + bE)) the space of holomorphic foliations
with normal bundle of bidegree (a,b) in Fy,.

Remark 2.5.1. Let F be a foliation with normal Q-bundle d on P%l 12) and G = 7*F be the foliation
on F;,. We denote by k = k(p) = multalg, (F) and

k—1y ,if E is G-invariant,
e =
k , if F is not G-invariant.

d—
NG = O, <dF+ €E> .
2 ls
Note that d — e = 0( mod I3).
The following proposition characterizes some foliations on Fy,.
Proposition 2.5.2. The following assertions hold true:
1. Ifb=0, then a =2 and G € R(2,0) is a rational fibration.
2. Ifb=2, then G € R(a,b) is a Ricatti foliation.

Proof. See [8, Proposition 1, page 51]. |

Remark 2.5.3. Let F € R(a,b) and suppose that E is not F-invariant. Then by tangency formula
0 <Tang(G,E)=—bla+a—2.

Hence
a > bly + 2. (2.5)

After we will see that this is one of the conditions for a generalization of Jouanolou’s result for

Hirzebruch surfaces.
The following proposition characterizes foliations on F;, with some algebraic solution.

Proposition 2.5.4. If a < bly +2 or b < 3 then any foliation G € R(a,b) admits some invariant
algebraic curve.

Proof. If a < bl; + 2, then by Remark we have that F is G-invariant. We can assume that
a—bly > 2 and 0 < b < 2. Baum-Bott formula implies that Y BB(NG,p) = NG? = (aF + bE)? =
b(a + a — bla) > 0, therefore there exists a point p € Sing(G). Let F be the fiber passing through the
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point p. We claim that F is G-invariant. If we suppose that F' is not G-invariant, then by Tangency
formula we see that
0<Tang(G,F) =NG.F — x(F)=b—-2<0,

this is a contradiction. ]
Let x € Q[t]. Define two subsets of F;, x R(a,b) by

S(a,b) ={(z,G) € F, x R(a,b)|z € Sing(G)},
and
Dy (a,b) = {(z,G) € F;, x R(a,b)| z is in subscheme, invariant by G, of Hilbert polynomial x}.
Proposition 2.5.5. The following statements are true.
1. Ifb> 2 and a > bly + 2, then S(a,b) is a closed irreducible variety of Fi, x R(a,b) and

dime S(a,b) = dime R(a, b).

2. Dy(a,b) is a closed subset of F;, x R(a,b).

Proof. 1. Let us denote by X(a,b) the line bundle O, (aF + bE) on F;,. Consider the following

exact sequence
0 —— ker¢) —— HO(Fy,, 04 ©5(a,h)) ® Op,, ——Qh_©5(a,b) ,

where ¢ (x,n) = n(z). We claim that ker ) is a vector bundle. In fact, since

(F,\E — IEJJ(21,1,12)\{[0 10 1]},

7r|LF,2\E

is an isomorphism and the automorphism group of P?, | ;) acts transitively on Pf, |, \{[0: 0 1]},
then the automorphism group of ]P’%l’l,lz) acts transitively on F),\E. Therefore keri, has same
dimension for all x € F;,\E. We claim that for all x € E, ker v, has dimension dim¢ R(a,b) — 2. In
fact, we take two foliations Fi, F on P?l,l, Ia) with normal Q-bundle of degree a induced by the 1-forms
m = 2541, —2(20, 71) (0, 21)(x1dm0 — Todr1) and n2 = 25 > Ba—piy 11,1 (w0, 71) (law2dz0 — Tod2)
respectively, where A,_p1,—2 and B,_p1,+1,—1 are homogeneous polynomials of degree a — bly — 2 and
a — bly + I3 — 1 respectively in C[zg,21]. Let G = #*(F1) and Gy = 7*(F2) be the foliations on Fy,.
Observe that Gi,Gs € R(a,b). In the chat Uy = X (I, (1,1)) =~ C?/u, we lift Fi|y, and Fa|y, to C2
given by

Mlv, = Aa—bi,—2(z0, 1) (x0, 1) (x1dxo — Tod21),

and

n2|v, = laBa—biy+1,—1(x0, x1)dzo,

respectively. We have that 7=1(Us) is covered by Vo U Vi. The first chart on Vy = X (1, (—ls,1)) ~ C?

is given by
_ 1/l
zo = ul/2,
T = ul/t2y,
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Therefore the foliations G|y, and Gsly, are induced by the 1-forms 77 = Ay—p,—2(1,v)dv and 72 =
By _biy+1,—1(1,v)du respectively. Then for every x € E, we can take 7;(z) and 7j2(x) C-linearly
independent. Thus any 1-form 1 € R(a,b) such that n(x) # 0 can be written as a C-linear combination
of m; and ne. For x € Fy,\E, it sufficient to consider the point w(z) =[1:0:0] € P%Mh) and take
the two foliations Fj and F} with normal Q-bundle of degree a induced by the 1-forms

wy = x‘g*b (x1dxg — xoda1) + xSAa,blz,g(xo, x1) (2o, 21)(x1dxo — 20d21),

and

x5 T

w1 = l2132d£€0 - .Iiod:tl) =+ Jig_QBa_le_Hz_l(ZEo, $1)(lz$2d$0 — ZEoddfg),

respectively. This shows that dimc ker ¢, is constant as a function of z € X. Hence ker v is a vector
bundle and in particular P(ker ) = S(a, b) is a irreducible variety of codimension two on Fj, x R(a,b).

2. Follows directly from [I7, Lemma 5.1, page 9].
([l

Lemma 2.5.6. Let G € R(a,b) be a foliation on Fy, and C be an algebraic curve invariant by G. If
b>3 and a > bly + 2, then
C N Sing(G) # 0.
Proof. We have two cases:
1. If C = E, then by Camacho-Sad formula C? = —Iy, this implies that C N Sing(G) # 0.

2. If C # E, then C = mF + nE in Pic(F,), with m > 0, n > 0. Let us suppose that
C N Sing(G) = 0, then by Camacho-Sad formula C? = 0 and by Vanishing formula

NG.C=C*+2(G,C)=0,

but NG.C = n(a — blz) + bm > 0, this is a contradiction.

We obtain a generalization of Jouanolou’s Theorem for Hirzebruch surfaces.

Theorem 3. A generic foliation with normal bundle of bidegree (a,b) in F, does not admit any

mwvariant algebraic curve if b > 3 and a > bly + 2.

Proof. Consider the second projection 7z : S(a,b) — R(a,b) and fix now a polynomial x € Q[t]
of degree one. Suppose that ma(Dy (a,b)) = R(a,b); that is, every foliation of bidegree (a,b) has an
algebraic invariant curve with Hilbert polynomial y. By Lemma we have that

m2(Dy(a,b) N S(a,b)) = m2(S(a,b)).

Since S(a,b) is an irreducible variety and dim¢ S(a,b) = dim¢ R(a,b) by Proposition we get
S(a,b) N Dy(a,b) = S(a,b).

To conclude the theorem we take the foliation F; on P(21,1,12) of Lemma of degree 2ly + 1
induced by ;. Let F be the foliation on ]P’%l’1 s with normal Q-bunlde of degree a induced by

a_bl2+l2_1$12)73

n=2 -

Then we note that the foliation G = 7*(F) on F;, has bidegree (a,b) and through 7= 1([1 : 1 : 1]),
which is singularity of G we do not have any invariant curve, which is a contradiction. Since there are

only countable many Hilbert polynomials, we conclude the theorem. ]
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Chapter 3
Components on P?

The problem of classifying of holomorphic foliations in projective spaces of dimension greater or equal
than to 3 in the algebraic setting is given through the study of its irreducible components. This
approach was initiated by Jouanolou in [29] who proved that the space of holomorphic codimension
one foliations of degree one on P, n > 3, has two irreducible components. Continuing with this work
Cerveau and Lins-Neto in [I3] have proved that the space of holomorphic codimension one foliations
of degree two on P™ n > 3, has six irreducible components. In [I1] Calvo Andrade, Cerveau, Giraldo
and Lins Neto give a explicit construction of certain components of the space of holomorphic foliations
of codimension one associated to some affine Lie algebra.

The main theorem of the thesis is to construct a family of components irreducible of the holomor-
phic foliations of codimension one associated to the affine Lie algebra on P3. The affine Lie algebra
are induced by the vector fields lom% + llya% + llza%, when [y > [;. Using these vector fields reduce
the problem to the study of foliations holomorphic on weighted projective spaces.

3.1 Irreducible components of the space of foliations associ-

ated to the affine algebra Lie

In this section we will talk about the results that are known of irreducible components of the space of
foliations which are associated to the affine algebra Lie, see [I1] for more details. Let 1 <1y <y <l
be are positive integers with ged(lo, l1,1l2) = 1. Consider the linear vector field on C3

S = lox% + lly% + 122%.
Suppose that there is another polynomial vector field X on C? such that [S, X] = AX, for some \ € Z.
Then the algebraic foliation F = F(S, X) on C? defined by the 1-form Q = igix(dz A dy A dz) is
associated to a representation of the affine algebra of polynomial vector fields in C3, it can be extended
to a foliation on P3 of certain degree v. The following definition is due to Calvo-Andrade, Cervau,
Giraldo, Lins Neto, see [I1].

Fol((lg,11,12),\,v) := {F € Fol(v,3)| F = F(S,X) in some affine chart},
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They show that they are irreducible subvarieties of Fol(v, 3), but not necessarily irreducible com-

ponents.

Definition 3.1.1. Let Q be an integrable 1-form defined in a neighborhood of p € C3. We say that
p is a generalized Kupka (GK) of Q if Q(p) = 0 and either dQ2(p) # 0 or p is an isolated zero of d2. A
codimension one holomorphic foliation F in a complex three manifold M is GK if all the singularities
of F are GK.

We have the following theorem.

Theorem 3.1.2 (Calvo and et al.). Suppose that Fol((lg,l1,l2),\,v) contains some GK foliation.
Then

IFOZ((Z(), ll, lg), )\, l/),
is an irreducible component of Fol(v, 3).

Corollary 3.1.3. Let d > 1 be an integer. There is an N-dimensional irreducible component

Fol((d®>+d+1,d+1,1),—1,d+ 1),

of the space Fol(d + 1,3) whose general point corresponds to a GK Klein-Lie foliation with exactly
one quasi-homogeneous singularity, where N = 13 if d = 1 and N = 14 if d > 1. Moreover, this
component is the closure of a PGL(4,C) orbit on Fol(d + 1,3).

The proof of can be found in [II, Theorem 1 and Corollary 3].

3.2 Foliations on P? tangent to the fields S = loxa%—kllya%+llza%
with [y > [; and ng(lo, ll) =1

First, we study foliations tangent to homogeneous vector field S = loxa% + llya% + llz%. In this
case, the vector field induces a natural rational map with generic fibers equal to orbits of S. In the
affine neighborhood w = 1, we can take composition of the natural quotient map
. 3 2
L ¢ = ]P)(lOallvll)
(x7yuz) — [.’17 Y Z}(lg,h,h)?

with the natural isomorphism

2 2
P(lmll,ll) - ]P(llo,l,l)
[Yo : 1 : yQ](lg,ll,ll) = Yo e y2](zo,1,1)-

We have the following map

: 3 2
© Cc> — P(lo’l’l)
(@,y,2) = [a" 1y 2o,

extending this map to P32, we get the following rational map

P s By
[T:y:z:w] = [phwb~h .y 2)(10,1,1) = [To : @1 1 2] (19,1,1)-

Notice that
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1. The indeterminacy locus of ¢ is composed of two points [1:0:0:0] and [0:0:0: 1].

2. The generic fiber is irreducible.
3. The pre-image of the singular point [1: 0 : 0](,,1,1) is the line {x =y = 0}.

4. The divisorial components of its critical locus are {z = 0}(only when /; > 1) and {w = 0} (only

when Iy —I; > 1). Both components are mapped to the curve {zo = 0}.

The following lemma characterizes the holomorphic foliations on P? tangent to the S via the map
o with the holomorphic foliations on ]P’?lo 11)"

Lemma 3.2.1. Let F be a foliation of degree normal Q-bundle d on ]P’%lo’l’l) giwen by n and F= o F

be a foliation on P3 given by w. Then
©*n , if {zo = 0} is not F-invariant,
w = ' : o Foinvari
TS pyw e , if {xo = 0} is F-invariant.
and has degree equal to

deg(F) = d—2 , if {xzo = 0} is not F-invariant,
© Sl d-l , if {xo = 0} is F-invariant.

Furthermore the following statements are equivalent
1. {x =0} is F-invariant.
2. {w = 0} is F-invariant.
3. {xo = 0} is F-invariant.
Proof. We have two cases: In the first case, if {xo = 0} is not F-invariant, then

1
n= _EAde + Bdxq + Cdxo

with 2gA = 21 B 4+ 22C and x¢ t B, so we have that

l lo—1
w=¢n= —i:clo*lwl"*llA owpdx 4+ Bopdy + C o pdz — %mllwl"*lrlx‘l o pdw.

Therefore 2 { B(zh w!o =y, 2) and w { B(z'*w!o~l1 g, 2). This implies that { = 0} and {w = 0} are
not invariant by F. Then the degree of F is d.
In the other case, if {z¢ = 0} is F-invariant then
A
n= —l—dmo + x9Bdx1 + x9oCdxs,
0
with A = 21B + 22C, so

©'n

l lo—1
w—7:—l—lonsodx—i—:EwBoapdy—i—wa’owdz—(071)
0

zA o pdw,

- pli—lylo—li—1

induces the foliation F of degree d — Iy such that {z = 0} is F-invariant and {w = 0} is F-invariant.
Note that

deg(w) = de (N]:“) d , if {xp = 0} is not F-invariant,
w) = =
: ’ d—1lo+2 , if {zgp = 0} is F-invariant.
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3.3 Foliations with split tangent bundle

We saw that holomorphic foliations on P3 tangent to the vector field S are the same as holomorphic
foliations on ]P’%l0 1,1) via the application ¢. We will now investigate when the tangent bundle of the

foliation on P? tangent to S split as a sum of two line-bundles. For that we need some definitions.
Definition 3.3.1. Let F be a codimension one holomorphic foliation on P3, induced by a 1-form w.

1. The tangent sheaf of F, denoted by TF, is a coherent subsheaf of TP? generated by the germs

of vector fields annihilating w, i.e., for every open set U C P3, we have that
TF(U) = {v e TP*(U)|i,w = 0}.
2. We say that the tangent sheaf of F splits if
TF = Ops(e1) @ Ops(ea),
for some integers e;.

Remark 3.3.2. In general T'F is not locally free, an example can be found in [20].

Note that, when the tangent sheaf of F splits, the inclusion of T'F in TP? induces sections X; €
HO(P3, TP3(—e;)) for i = 1,2. It follows from the Euler sequence that these sections are defined by
homogeneous vector fields of degree 1 —e; > 0 on C*, which we still denote by X;. The foliation F is
induced by the homogeneous 1-form on C*

w=1ix,ix,trdr ANdy Adz A dw.
Let us look at some previous lemmas.

Lemma 3.3.3. Let F be a foliation on P with split tangent bundle i.e., TF=TG®TH, and let C

be an irreducible hypersurfarce. Then
1. If C is G-invariant and H-invariant then C is F-invariant.
2. If C is F-invariant and G-invariant then C is H-invariant.
3. If C is F-invariant and H-invariant then C is G-invariant.

Proof. In an affine chart C?, we suppose that F is given by w, G is given X1, H is given by X
and C is given by f such that w = ix,ix,dx A dy A dz. We see that

wAdf = Xo(f)ix,de ANdy Ndz — X1(f)ix,dx Ady A dz. (3.1)
From the last equality we conclude the lemma. O

Example 3.3.4. Let S = loxa% + llya% + llz% be a homogeneous vector field with Iy > [y and G
the induced foliation. Let F be a foliation on P3 tangent to S with split tangent sheaf. Then there
exists a X homogeneous vector field such that F is given by

w =1igrigixdx ANdy Ndz A dw,
where R is radial vector field in C*. Denote by H the induced foliation by X. Applying Lemma m

we have that {z = 0}(or {w = 0}) is F-invariant if only if {z = 0} (or {w = 0}) is H-invariant.
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Division lemma for the Koszul complex. Let v a singular vector field on C* we denote by QF(C?)
the space of k-forms in C3. The interior product i, by the vector field v of a k-form define a linear
application i, : QF(C3) — QF=1(C3). The Koszul complex of the vector field v is the complex

K(v): 0—— Q3(C3) —2s Q2(C3) —2 Q1(C3) —2 QO(C3) = O(C?) —— 0.

The homology of this complex is the obstruction to the following property: Let n be a k-form in C?
such that i,n = 0 € Q¥~1(C?), then n = i, for some k + 1-form  if only if the class [] € Hy(K(v))
is zero.

The vector field v have the following expression

V=0 ngv 2+v 2
T ox T oy T Por

and the singular set of v is Z = {(z,y,2) € C3| vi(z,y,2) = va(x,y, 2) = v3(x,y,2) = 0}. Now, we
are going to state the Division lemmas where the first one is for Koszul complex.

Lemma 3.3.5. If Z have dimension 0, then
H{(K(v)) =0.

Proof. In fact, let n be a 1-form in C? such that i,m7 = 0. Since the vector field v is not identically
null in U = C3\ Z, then there is a covering U = {U;}; of U by open sets U; such that n = i,6; for
some 0; € Q*(U;). Thus i,(0; — 0x) = 0 in U; N Uy, and therefore there are v;, € Q3(U; N Uy) such
that 0; — 0), = i,vj5. We can write v, = firdx Ady Adz, fj, € O(U; NUy) and {f;} € H'(U,O).
Finally the hypothesis that Z have dimension zero is to apply [27, Theorem 5, page 160] in order to
obtain H'(U,0) = 0. Hence there are f; € O(U;) such that f; — fx = fjx in U; N Uy. Therefore we
can define 6 a 2-form in C? such that n = 4,6 and 0|y, = 0; — i, (f;dz A dy A dz). O

With this Division lemma we can prove the following lemma that it will be used in Proposition
9.9.9)

Lemma 3.3.6. Let G be a one-dimension foliation on P3 of degree one, with a invariant hyperplane
H and isolated singularities on P3\H and F a codimension one foliation of degree d containing G. If
H is F-invariant then TF = TG @ TH, for a suitable one-dimensional foliation H.

Proof. By a change of coordinates we can assume that H = {w = 0}, and in the affine chart
C? ~ P3\ H, we have that F and G are given w and S respectively. Since H is F-invariant we have
that

w=wy+ws+ - +wg ig,wq#0, (3.2)

where w; are homogeneous 1-form and Ry = x% + ya% + Za%. Since igw = 0 and S has isolated
singularities in C3 applying the Division Lemma there exists a polynomial vector field X such
that
w=igix(dx A dy A dz).

We write X = Xo+---+Xg_1 and S = Sp+.51 where X, S; are homogeneous vector fields. Using the
equality we have that wg = is,ix, ,dxAdyAdz. Furthermore ip ig, ix, ,deAdyAdz = ig,wq # 0.
This implies that X;_1 is not multiple of Ry, i.e., Xq-1 A Ry # 0. So, X induces to a foliation H of
degree d — 1 in P? such that {w = 0} is H-invariant. Since {w = 0} is H-invariant and F we have
that TF ~ TG @ TH. This concludes the proof. O
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Remark 3.3.7. Note that if F is a holomorphic codimension one foliation of degree d, G and H are
one-dimension foliations of degree one and d — 1 on P? given by w, S and X respectively, then the

following statements are equivalent:
1. TF ~ TG & TH is splits.
2. w=igigix(dz Ady A dz A dw), where R is radial vector field in C*.

Note also that any of these equivalent statements implies that there exist a generator Y of the
foliation H and an integer A such that [S,Y] = AY.

Lemma 3.3.8. Under the notations of Remark[3.3.7, any of the equivalent statements[1] and[3 implies
that there exist a generatorY of the foliation H and an integer X such that [S,Y] = A\Y.

Proof. By the integrability of w one deduces that
[S, X] =MX + F1S+ FyR,

for some A € C and Fi, Fy € Sg_1. Recall that S;_1 denotes the space of homogeneous polynomials
of degree d — 1. Since, for arbitrary a € C,

igisix(dx ANdy Adz N dw) = irisiarix(dx Ady A dz A dw),
we can suppose that the linear map

Y:Si—1 — Sq
G = AG-S(Q)

is invertible.
If weset Y = X + ¢~ 1(F)S + ¢~ (Fy)R, then

(S, Y] =[S, X]+[S,% " (F1)S] + [S,9~ ' (F2))R],

AX + 1S+ BR+ S~ Y (F))S + S(~ ()R,
AX + (Fy + S F))S + (Fy + S(y~ ()R,
NG

Notice that igisix (dx Ady Adz Adw) = igigiy (dx Ady Adz Adw) to conclude the proof of the lemma.
O

The following proposition characterizes codimension one holomorphic foliations with splits tangent
sheaf.

Proposition 3.3.9. Assume the notations and conditions of Lemma|3.2.1. Suppose that deg(J:") >1

and G is the induced foliation by S on P3. Then the following statements are equivalent:

1. There exists H a one-dimension foliation on P3such that

TF ~TG o TH.

2. {x = 0} (or {w = 0}) is F-invariant.

3. {xo = 0} is F-invariant
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Proof. 1) = 2) By Remark we have that w = igigix(dz A dy A dz A dw) and [S, X] = AX
for some A € Z, where H is the induced one-dimension foliation by X. Suppose that {x = 0} is not
F-invariant then by the Example we have that {z = 0} is not H-invariant. We write

0 0 0 0
XfA%+Ba—y+C£+D%,

where A = A, (y,z,w) + -+ Agz®, D = D.(z,y,w) + - - - + Dow®. Since {x = 0} is not H-invariant,
then A, # 0, i.e., there exists non zero monomial a;,j,k,y" z7°w*?, such that ig + jo + ko = e. Since
[S, X] = AX, then:

g 0 i g 0
[S’ aiojokoyzozmw 07] Aaiojokoymz]ow ’ =,

ox ox
(l1(io + jo) — lO)aiojokoyiOZjoka% = )\aiojokoyiozjowko%’
therefore
X =1y (io + jo) — lo = lie — ko) — lo. (3.3)
Note that D, = Z dijkixiyjzk, again using [S, X] = AX we have
i+jth=c
(S, dijex'y? 2F 2] = Ndyjpaty’zF 2
(ilo + (j + k)l )dijra'y? 282 = Ndypa'y? 22,
therefore
diji(ilo + (j + k)lp — X) = 0. (3.4)

Using (3.3) and i + j + k = e we have that
tlo + (] + k)ll — A= ’i(lo — l1) + 1o + koly > 0. (3.5)

Using in the equality we conclude that d;j, =0, Vi + j + k = e, that is D, = 0 therefore,
{w = 0} is H-invariant then by Example we have that {w = 0} is F-invariant and by Lemma
we have that {z = 0} is F-invariant. This is a contradiction.

2) = 1) It is immediate using Lemma [3.3.6]

2) < 3) Follows from Lemma [3.2.1] O

Now we will only be interested in holomorphic foliations with split tangent sheaf. The main idea

to construct components is to use stability theorems for splits tangent sheaf following bellow.

Theorem 3.3.10. Let n > 3, d > 0 and F € Fol(d,n) be a singular holomorphic foliation on P"
given by w. If codim Sing(dw) > 3 and

n—1
TF =P Opn(ei), e €,
i=1
then there exist a Zariski-open neighborhood U C Fol(d,n) of F such that TF' = @?;fopn(ei) for
every F' € U.

The proof can be found in [20].
Observe that for applying the above theorem it is necessary a condition in the codimension of the
singular set of dw. Therefore, we are going to study the codimension of the singular set of dw.
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3.4 Codimension of the singular set of dw

Through the following lemma we can characterize the singular set dw.

Lemma 3.4.1. Let F be a foliation with normal Q-bundle of degree d > lo + 1 on P(Qlo 1,1) given by
n and let F= ©*F be a codimension one holomorphic foliation on P? with split tangent bundle given
by w. Then

1. If (lo, 1) = (2,1) then {x = w = 0} C Sing(w) N Sing(dw).
2. If multialgyg.0)(F) > 3 then {y = z = 0} C Sing(w) N Sing(dw).

Proof. By Proposition we have that {xo = 0} is F-invariant. Therefore, we can write

A
n= —Edmo + x9Bdx + x9oCdxs,

such that A = 1B + 22C. Since deg(B) = deg(C) =d—1lp—1=gqlp+r, 0<r <ly, we can express
B and C as

B = a{ 'Biyir(z1,12) + !Egi(iH)B(iH)lﬁr(ﬁ,562) + -+ 2o Bg—1)ig4+r (21, 72) + Bgig4r (71, 72),
—i —(i+1
C = 2" Cuypr(z1,22) + 2§ &+ )C(i+1)lo+r(9€1, wa) + -+ 20Cg—1)1g4r (21, T2) + Bgrgyr (21, 22),

where Bj, C; are homogeneous polynomial of degree j and
multialgpy..)(F) = ilo + 7 + 1.
Applying Lemma we have that

. l
2l — _LuAopdr +zwB o pdy + zwC o pdz —

_ (lo — 1)
w = pla—lylo—li—1 lo T:cA o pdw,
where ‘ ‘
Ao = ah@ Dyl Ay, o (y,2) + - + Agig (3, 2),
Bop = ah@ul-DBy 40 (y,2) + - + Byyr(y:2),
Cop = mll(q—i)w(lo—ll)(q_i)cilo_"_r(y, 2) 4+ Cyrgrr (Y, 2).

Then {z = w =0} C Sing

—~

w). If ilg + 7 > 2 we have that {y = z = 0} C Sing(w).

dw =

/N

+ +
~°

é—lw(A 0p)y +wBop+zw(Bo ga)m> dx N dy

%w(A 0p), +wCop+zw(Co 90)1) dx N dz

2lllo—loA oo+ %w(A 0 Q) — (l()l—oll)x<A o <p)$) dx N dw
+aw ((Cog)y — (Boy),)dy Adz

—x Bo<p+w(Bocp)w+%(Aoga)y dy N dw

—x Cogp—i—w(Cogp)w—&—lOl;lll(Aogp)z dz N\ dw

Lastly, note that if (lo, 1) = (2,1) we see that {z = w = 0} C Sing(dw). If ily + r > 2 we have that
{y = z = 0} C Sing(dw). This concludes the lemma. O

In the case multialg(;.p.0)(F) < 2, it is possible to find examples of foliations induced by w such
that dw has isolated singularities, as we see below.
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Example 3.4.2. In the case multialg[;.o.o)(F) = 1. Let F be the foliation on P%lo’l’l) given by
n=—(zdx1 — 2xdzs + a:lxglo — m(i’loxg)dxo + loxo(zd + xglo)dml + lowo(—2xf — x‘flo)dmg,

where deg(NF) = (¢+ 1lop+1,g> 1,1lp > 13 > 1 and [y > 3.
Let F = ¢*F be the foliation on P? given by

_ ©'n
R s g g
w = 7llw(qulywq(l0*ll) _ 2qulzwq(10*l1) 4 qulO _ yqloz)dx 4 loxw(qulwq(l()*h) 4 quo)dy

Hlozw(—2z8wito—l) _ yaloygy — (1g — I} )a(xth ywilo—h) — 2g:0h zqpallo=h) 4y zalo _ galo 5)dap,

where deg(NF) = glo + 3 and deg(F) = qlo + 1.
We calculate

do = w ((l1 + (¢ + 1)lo)qulwq(lofll) + (I +11) 2% — lly‘”fflz) dx A dy
4w (—2(11 + lo(gly + 1)) z8rwelo=h) 4 glolyz2o=t — (Ig + ll)yqlo) dx N dz
+(201 — o) (qulywquo_ll) — 224 zqpallo—l1) 4 g palo yaoz) do A dw
—qlzw(z9lo—t — yalo=L)dy A dz
o (= (2o — )21 + gloy®o~tz — (o — 1) (glo + 1) + lp)aowtCo=12)) dy A duw
+z (2(lo(q(lo — 1) + 1) + lo — ly)z@rwalo=) 4 (205 — 1y)y?o — gly(ly — l)yz? 1) dz A dw,

and
Sing(dw) ={[0:0:0:1],[1:0:0:0],[0:&:1:0]] &%t =1},

Furthermore by Proposition we have that
w =1ipgigixdr Ady A dz N\ dw,

where R = x% + ya% + z% + w%, S = lom% + llya% + llz%, and

0 0
X = — (98 qpa(o—l) _ 4 alo _ (p@l1,,a(o—11) _ alo )
(229" w y )3y (z" w z )82
It verifies that

[S, X] = ll(qlo - 1)X
Example 3.4.3. Now the case multialg};,g.o)(F) = 2. Let F be the foliation on ]P’%lo’l’l) given by

:L,e+1 +xe+1
n= f(llioz)d:co + zo(—2zdae + 27)dzy + zo(zdzr + 25)dzs,
where deg(NF) = (¢+ )lp+2,e=qlo+1,¢> 1,lo>1; > 1 and [y > 3.

Let F = ¢*F be the foliation on P? given by

)
W hiTgle—li—1
l
w = —l—lw(ye+1 + 25T de + zw(—z 9wt~ 2 4y dy

Frw(xhdwilo—ly 4 2€)dz + —7@”1_0[1)95(3;”1 + z¢t ) dw.
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where deg(NF) = gl + 4 and deg(F) = qlo + 2.
Hence we calculate
do = w (%(e + 1)y +y° — (hg+ l)xllqwq(lofll)z) dz A dy

+w (%(e +1)2¢ + 2+ (lig + 1)xl1qwq”0l1)y) dz A dz
+2xllq+1wQ(ZO_ll)+1dy Adz
—a (Yo (e 4 1) + 1)y° — (qllo — L) + Ll 9w 0o~ 2) dy A dw
—x (7(101?1) (e4+ 1)+ 1)2° + (q(lo — l) + 1)zl wilo=hly ) dz A dw
+(2l1l0—l0) (ye+1 + Ze+1)d$ A dw,

and

Sing(dw) ={[0:0:0:1],[1:0:0:0],[0: =& :1:0] & =1}.
Also by Proposition [3.3.9 we have that

w =1irigitxdx Ndy NAdz A dw,
where R = x% era% + z% + wg, S = lox% + l1y3% + 112’%, and

gthtlyalo=l) g5 b g 4e 9

X=- —
ll 8I lo 8y ZO 82’7

and verify that
[S, X] = lolqu

3.5 Automorphism of a foliation

Let F be a codimension one foliation on P? given by w. The automorphism group of F, Aut(F), is
the subgroup of Aut(P3) = P(GL(C,4)) formed by automorphisms of P? which send F to itself. In
other words

Aut(F) = {¢ € Aut(P?)| ¢*w Aw = 0}.

Aut(F) is clearly a closed subgroup of Aut(P?), and therefore the connected component of the identity
is a finite dimensional connected Lie group. We will denote by aut(F) its Lie algebra, which can be
identified with a subalgebra of aut(P3) = s[(4), more specifically,

aut(F) = {v € aut(P?)| Lyw A w = 0},
where L is the Lie derivative. We define the fir(F) as the subalgebra of aut(F) annihilating w, i.e.,
fir(F) = {v € aut(F)|i,w = 0}.

Notice that fir(F) is nothing more than HY(P3, TF). We also point out that fix(F) is an ideal of
aut(F), and the subgroup Fiz(F) C Aut(F) generated by fir(F) is not necessarily closed.

We have now the following lemma. The proof is an adaption of an argument of Cerveau and
Mattei, see [14], page 35-36].

Lemma 3.5.1. The following assertions hold true:
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1. If fig(F) = aut(F) then F is tangent to an algebraic action.

2. If fix(F) # aut(F) then F is generated by a closed rational 1-form without divisorial components
i its zero set.

Proof. The connected component of the identity of Aut(F) is closed. If fix(F) = aut(F) then
Fix(F) is also closed and therefore correspond to an algebraic subgroup of Aut(P3). Item 1 follows.
To prove Item 2, let v be a vector field in aut(F) — fig(F). If w € H°(P3, Qs (d + 2)), where d is the
degree of the foliation F, then F is defined by the closed meromorphic 1-form over P3

w

W= -

Ty
It is sufficient to show that @ is closed 1-form. In fact

wA dw(v) — w(v)dw

do = W(0)2 (3.6)

Since v € aut(F) we have that
Ly(w) Aw =0,
where L, = di, + i,d is the Lie derivative. Therefore
dw(v) A dw + i, (dw) Aw = 0.
By the integrability of w we obtain
w(v)dw + (iydw)w = 0.
From this last equality we derive that
wA dw(v) —w(v)dw = 0. (3.7)

Replacing by we conclude that di = 0. O

3.6 Irreducible components on P? tangent to S = loxa%—l—llyé%—k
9
llzaz
For the foliations of higher degree, we have the following theorem.

Theorem 4. Ifly > Iy, ged(lp,l1) =1, lop > 3 and g > 1, then

Fol((lo, ll,ll), ll(qlo — 1), qlo + 1),

is an irreducible component of Fol(gly + 1,3) and

Fol((lo,11,11),lol1q, qlo + 2),

is an irreducible component of Fol(qly + 2, 3).
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Proof. Let F be the foliation of the Example or given by w which is generated by
two one-dimensional foliations on P3, say G and H, the foliations defined by the homogeneous vector
fields S and X respectively, furthermore its tangent bundle TF splits as the sum of two line bundles
TF=TG&TH.

Now, let {Fi}tes, 0 € ¥ C C be a holomorphic family of foliations such that F = Fy. Since dw
has isolated singularities, applying the Theorem we have that for small |¢|,

T.Ft == Tgt EB THt

Then F; is generated by two one-dimension foliations G; and H;. As as consequence, G, is generated
by a global vector field S; on P? with zeros of codimension at least two. Notice that CS; C fix(F).

Suppose fir(F;) # aut(F;). Lemma implies that F; is given by a closed meromorphic 1-form
with zero set of codimension at least two, then by [33, Lemma 5.4] implies that F; can be deformed to
a foliation defined by a logarithmic 1-form. Thus F; belongs to irreducible components of type rational
or logarithmic. On the other hand [2I, Theorem 3| that says the generic element of the logarithmic
foliation of degree greater than or equal 3 on P? has isolated singularity and thus its tangent sheaf is
not split, this is a contradiction.

If we assume fix(F;) = aut(F;) with dim fig(F;) > 1 then, as S; has no divisorial components in
its zero set, any two elements in it will generate T'F;. Thus TF; ~ Ops @ Ops, this is a contradiction
with deg(F;) = deg(F) > 3.

Finally, we have that fiz(F;) = aut(F;) = CS;. Lemma F; is tangent to action of one-
dimension Lie group. We can see S; as a deformation of S by automorphisms of P3. In open set
Us = C? we can write

Se=(A(t)x +a1(t)y + ag(t)z)a% + (Aa2(t)y + ag(t)z)a% + )\3@)2%,
such that Sp = S = lo% +1; 8% + 11%. Notice that we can take S; sufficiently close to S and similarly
A1, A2 and Ag sufficiently close to Iy, [; and [ respectively. Hence A1 AaA3 # 0. Since the solutions
of foliation induced by S; are algebraic, we have two possibilities: Either a; = as = a3 = 0 and
A1, A2, A3 € Z, or A\ = Ay = A3 = 0. We conclude that a; = as = a3 = 0 and A1, A2, A3 € Z. Using
the conditions A1 (0) = lp, A2(0) = I3, A3(0) = {3 it follows that A\ = Iy, Ao =1, A3 = I1. This proves
the theorem. O
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