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e Maŕıa Monje, a meu irmão

Rafael, a minha irmã Olinda e a
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Resumo

Nosso trabalho será dividido em dois focos. O primeiro foco de estudo é a densidade de folheações sem

soluções algébricas nos planos projetivos com pesos. Nós provamos que uma folheção genérica com

grau do fibrado normal muito grande nos planos projetivos com pesos não possui solução algébrica.

É bem conhecido que as resoluçoes minimais de singularidades de um tipo “especial” de planos

projetivos com pesos são as superf́ıcies de Hirzebruch. Neste contexto, nós provamos que uma folheção

genérica com bigrau do fibrado normal muito grande nas superf́ıcies de Hirzebruch não possui solução

algébrica.

O segundo foco de estudo é as componentes irredut́ıveis do espaço de folheações de codimensão

um no espaço projetivo 3-dimensional. Nós construimos uma famı́lia de componentes irredut́ıveis

associadas à uma álgebra de Lie afim.

Palavras chaves: Folheações nos planos projetivos com pesos. Superf́ıcies de Hirzebruch. Com-

ponentes irredut́ıveis do espaço de folheações .





Abstract

Our work is divided into two focus. The first one is study the density of foliations without algebraic

solutions in weighted projective planes. We prove that a generic foliation with very large degree of

the normal bundle in weighted projective planes has no algebraic solution.

It is well known that the minimal resolutions of singularities of a “special” type of weighted

projective planes are the Hirzebruch surfaces. In this context, we prove that a generic foliation with

very large bidegree of normal bundle of Hirzebruch surfaces has no algebraic solution..

The second focus of study is the irreducible components of the space of holomorphic foliations of

codimension one in 3-dimensional projective space. We construct a family of irreducible components

associated with an affine Lie algebra.

Keywords: Foliations in weighted projective planes. Hirzebruch surfaces. Irreducible components

of the space of foliations.
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Introdução

O estudo das folheações holomorfas nos espaços projetivos complexos tem suas origens no século

XIX com os trabalhos de G. Darboux, H. Poincaré e P. Painlevé. Muito tempo depois em 1970,

J. P. Jouanolou reformolou e extendeu os trabalhos do Darboux [22] na linguagem da geometria

algébrica fornecida por Grothendieck. Um dos trabalhos mais importantes sobre folheações nos espaços

projetivos complexos encontra-se na célebre monografia de Jouanolou [29]. Tal trabalho desenvolveu

duas linhas de pesquisa: densidade de folheações sem soluções algébricas e o problema das componentes

irredut́ıveis do espaço de folheações. Nosso trabalho está focado nestas duas linhas de pesquisa.

Vejamos um breve resumo histórico de cada uma delas.

Densidade das folheações sem soluções algébricas. Na teoria clássica de folheações holomorfas

(ou equacões diferenciais) no plano projetivo complexo P2 introduz-se um invariante destas que é o

chamado grau da folheação. O problema da densidade de folheações sem soluções algébricas em P2

foi originalmente tratado por Jouanolou em [29]. Neste trabalho foi mostrado que uma folheação

genérica de grau pelo menos 2 em P2 não admite solução algébrica. Aqui genérico significa que o

espaço das folheações que não tem curva algébrica invariante é o complemento de uma união contável

de subconjuntos próprios algébricos fechados. A prova de Jouanolou é baseada na construção de

exemplos, mais especificamente, ele mostra que as folheações de grau d induzidas pelos campos de

vetores polinomiais

X = yd
∂

∂x
+ zd

∂

∂y
+ xd

∂

∂z
,

não tem solução algébrica se d ≥ 2.

Uma generalização deste resultado foi obtida por Cerveau e Lins Neto em [12]. Eles mostraram

que, para todo d ≥ 2, existe um aberto e denso U no espaço das folheações de grau d, tal que toda

folheação em U não tem solução algébrica.

Outras provas foram dadas por Zoladek [42], Ollagnier e Nowicki [34]. Para estes resultados existem

versões em dimensão superior, por exemplo, veja os artigos de M. Soares [21], A. Lins-Neto e M. Soares

[39], S. C. Coutinho e J. V. Pereira [17], Zoladek [41] e Bersntein-Lunts [7].

Neste trabalho serão abordadas as folheações nos planos projetivos complexos com pesos, as quais

foram estudadas por Corrêa and Soares em [16]. Faremos uma generalização da definição do “grau”

da folheação. Para tais folheações, o invariante é o chamado grau do normal da folheação, que é

um inteiro canonicamente associado a esta. Primeiro, nosso estudo irá concentrar-se nas folheações

nos planos projetivos complexos com pesos dos tipos (l0, l1, l2), 1 ≤ l0 ≤ l1 ≤ l2, li coprimos dois a

dois. É possivel perguntar se o resultado de Jouanolou [29] ainda é válido para folheações nos planos

projetivos com pesos destes tipos. A resposta é sim, e é um dos resultados principais desta tese.
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Teorema 1. Uma folheação genérica com Q-fibrado normal de grau d em P2
(l0,l1,l2), li coprimos dois

a dois, 1 ≤ l0 ≤ l1 ≤ l2, não possui curva algébrica invariante se d� 0.

Na verdade, a cota obtida é d = l0l1l2 + l0l1 +2l2. Os resultados não são ótimos no sentido que nós

podemos achar exemplos onde o teorema acima ainda é verdadeiro para valores fora das hipóteses.

No caso particular de folheações nos planos projetivos com pesos tipos (1, 1, l2), l2 ≥ 2 temos um

resultado mais preciso para estas perguntas.

Teorema 2. Uma folheação genérica com Q-fibrado normal de grau d em P2
(1,1,l2), l2 ≥ 2, não possui

curva algébrica invariante se d ≥ 2l2 + 1.

O cota acima é ótima no sentido que toda folheação com Q-fibrado normal de grau menor do que

2l2 + 1 admite uma reta invariante.

O próximo objeto de estudo são as folheações nas superf́ıcies de Hirzebruch. É bem conhecido que

a resolução minimal do planos projetivos com pesos P2
(1,1,l2), l2 ≥ 2, são as superf́ıcies de Hirzebruch

Fl2 = P(OP1 ⊕ OP1(l2)) (ver [36]). O invariante destas é o chamado bigrau, que é um par ordenado

(a, b) de números inteiros canonicamente associado à folheação. Nosso próximo resultado é uma nova

generalização do teorema de Jouanolou [29] para folheações nas superf́ıcies de Hirzebruch.

Teorema 3. Uma folheação holomorfa de bigrau (a, b) genérica em Fl2 não possui solução algébrica

se a ≥ bl2 + 2 e b ≥ 3.

O resultado acima também é o melhor, pois toda folheação de bigrau (a, b) com b < 3 ou a < bl2 +2

admite uma curva invariante. Cabe mencionar, pelo dito anteriormente que a resolução minimal de

P2
(1,1,l2) é Fl2 , nós podeŕıamos pensar que o Teorema 2 implique o Teorema 3, e vice-versa. Isso não

é verdade pelo seguinte fato: As folheações em Fl2 cuja seção excepcional de Fl2 , (isto é, a curva

com auto interseção −l2.) é invariante traduz-se via o mapa de resolução como uma condição aberta

nas folheações em P2
(1,1,l2), contrariamente as folheações em Fl2 que não são invariantes pela seção

excepcional interpreta-se como uma condição fechada nas folheações em P2
(1,1,l2). Isto justifica que os

dois problemas são totalmente diferentes.

Componentes irredut́ıveis do espaço de folheações. O segundo foco do nosso trabalho são as

folheações holomorfas de codimensão um em espaços projetivos de dimensão maior ou igual a três.

É bem conhecido que o espaço de folheações holomorfas de codimensão um e grau k em Pn, n ≥ 3,

denotado por Fol(k, n) é um conjunto algébrico que tem decomposição em componentes irredut́ıveis.

Em [29], Jouanolou mostra que Fol(0, n) tem uma só componente irredut́ıvel e Fol(1, n) tem duas

componentes irredut́ıveis. Em 1996, D. Cerveau e Lins Neto [13], mostraram que Fol(2, n) tem seis

componentes irredutv́eis. Outra nova prova desse resultado foi obtida por Loray, Touzet e Pereira em

[33]. Para k ≥ 3, ainda está aberto o problema das componentes. Existem construções de famı́lias

de componentes irredut́ıveis, por exemplo, veja os artigos de Calvo-Andrade, Cerveau, Giraldo e Lins

Neto [11], Cukierman e Pereira [20], Calvo-Andrade [10].

No trabalho de Calvo-Andrade, Cerveau, Giraldo e Lins Neto [11], eles constroem famı́lias de

componentes irredut́ıveis associadas à uma álgebra de Lie afim. Eles introduziram o seguinte conceito:

Para 1 ≤ r < p < q inteiros positivos com mdc(p, q, r) = 1, considere o campo vetorial linear em

C3

S = px
∂

∂x
+ qy

∂

∂y
+ rz

∂

∂z
,
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e suponha que exista um outro campo vetorial polinomial X em C3 tal que [S,X] = λX, para algum

λ ∈ Z. Denotemos por F(S,X) a folheação induzida pela forma ω = iSiXdx ∧ dy ∧ dz. Eles definem

Fol((p, q, r), λ, ν) = {F ∈ Fol(ν, 3)| F = F(S,X) em alguma carta afim}.

E mostram o seguinte:

Teorema (Calvo et al., ’04 ). Seja d ≥ 1 um inteiro. Então

Fol((d2 + d+ 1, d+ 1, 1),−1, d+ 1)

é uma componente irredutiveil de Fol(d+ 1, 3).

O objetivo de nosso trabalho é construir novas famı́lias de componentes irredut́ıveis. O segundo

resultado principal é o teorema a seguir:

Teorema 4. Se l0 > l1, mdc(l0, l1) = 1, l0 ≥ 3 e q ≥ 1, então

Fol((l0, l1, l1), l1(ql0 − 1), ql0 + 1)

é uma componente irredut́ıvel de Fol(ql0 + 1, 3) e

Fol((l0, l1, l1), l0l1q, ql0 + 2)

é uma componente irredut́ıvel de Fol(ql0 + 2, 3).

Esta tese está dividida em três caṕıtulos. No Caṕıtulo 1 nos concentraremos em definir os espaços

projetivos com pesos e as folheações nestes espaços. Além disso, fixaremos as notações que serão

utilizadas nos Caṕıtulos seguintes.

O Caṕıtulo 2 é voltado para a densidade das folheações sem soluções algébricas. Serão provados

os Teoremas 1, 2 e 3.

O Caṕıtulo 3 é dedicado ao problema das componentes irredut́ıveis do espaço das folheações. E

probaremos o Teorema 4.
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Introduction

The study of holomorphic foliations in complex projective spaces has its origins in the 19th century

with the works of G. Darboux, H. Poincaré and P. Painlevé. In the late 1970’s, J. P. Jouanolou

reformulated and extended the work of Darboux [22] in the algebraic geometry framework provided

by Grothendieck. One of the most important works about holomorphic foliations in complex projective

spaces is found in Jouanolou’s celebrated monograph [29]. Such a work developed two lines of research:

the density of algebraic foliations without algebraic solutions and the problem concerning irreducible

components of the space of holomorphic foliations. Our work is focused in this two lines of research.

The reader can see a brief summary of each one of them bellow.

Density of algebraic foliations without algebraic solutions: In the classic theory of holomorphic

foliations or differential equations in the complex projective plane P2, it is introduced an invariant

which is called the degree of the foliation. The issue of the density of algebraic foliations without

algebraic solutions in P2 was originally proved by Jouanolou in [29]. In this work it was proved that a

generic foliation of degree at least 2 does not admit any algebraic solution. By generic we mean that

the set of foliations that does not have any invariant curve is the complement of a countable union of

algebraic closed proper subsets. The Jouanolou’s proof is based in the construction of the examples,

more specifically, he has showed that the foliations of degree d that are induced by the polynomial

vector fields

X = yd
∂

∂x
+ zd

∂

∂y
+ xd

∂

∂z
,

have no algebraic solutions if d ≥ 2.

A generalization of this result was obtained by Cerveau and Lins Neto in [12]. They have showed

that, for all d ≥ 2, there exists an open and dense subset U in the space of foliations of degree d, such

a foliation in U has no algebraic solutions.

Other proofs have been given by Zoladek [42], Ollagnier and Nowicki [34].For this results there are

versions in dimension greater than 2, for example, see the papers of M. Soares [21], A. Lins-Neto and

M. Soares [39], S. C. Coutinho and J. V. Pereira [17], Zoladek [41], and Bersntein-Lunts [7].

In this work it will be discussed the foliations in the weighted projective planes. We will consider

a generalization of the definition of “degree” of the foliation. In this case such an invariant is called

the normal degree of the foliation, which is an integer canonically associated to the foliation. Our

study will focus on foliations in the weighted projective planes of types (l0, l1, l2), 1 ≤ l0 ≤ l1 ≤ l2,

li pairwise coprimes. Hence, one can ask naturally if the Jouanolou’s result is still true for foliations

in the weighted projective planes of these types. In this work we provide a positive answer to this

question.
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Theorem 1. A generic foliation with normal Q-bundle of degree d in P2
(l0,l1,l2), l0, l1, l2 pairwise

coprimes, 1 ≤ l0 ≤ l1 ≤ l2, does not admit any invariant algebraic curve if d� 0.

Actually, the bound is d = l0l1l2 + l0l1 + 2l2. The results are not sharp in the sense that we can

find where the above theorem is still true for values outside of the hypothesis.

In the particular case of foliations on the weighted projective planes of types (1, 1, l2), l2 ≥ 2, we

have a more accurate answer to these questions.

Theorem 2. A generic foliation with normal Q-bundle of degree d in P2
(1,1,l2) with l2 ≥ 2 has no

algebraic solutions if d ≥ 2l2 + 1.

The above result is sharp in the sense that every foliation with Q-bundle normal of degree less

than 2l2 + 1 admits an invariant line.

A second issue of our study are the foliations on the Hirzebruch surfaces. It is well known that

the minimal resolution of the weighted projective planes P2
(1,1,l2), l2 ≥ 2, are the Hirzebruch surfaces

Fl2 = P(OP1 ⊕OP1(l2)) (see [36]). The invariant of the foliations on Hirzebruch surfaces is called the

bidegree, which is an ordered pair (a, b) of integers numbers canonically associated to them. Our next

result is a generalized version of Jouanolou’s Theorem for foliations in Hirzebruch surfaces.

Theorem 3. A generic foliation with normal bundle of bidegree (a, b) in Fl2 does not admit any

invariant algebraic curve if b ≥ 3 and a ≥ bl2 + 2.

The above result is also sharp, because every foliation of bidegree (a, b) with b < 3 or a < bl2 + 2

admits an invariant curve. It should be noted, by the previously discussion the minimal resolution

of P2
(1,1,l2) is Fl2 , as such we might think that Theorem 2 implies Theorem 3 and vice versa. This is

not true by the following fact: The foliations in Fl2 in which the excepcional section of Fl2 , (i.e., the

unique curve with selfintersection −l2,) is invariant by the foliations, are translated via the resolution

map as a open condition for the foliations in P2
(1,1,l2), conversely the foliations in which excepcional

section of Fl2 is not invariant by them, are translated as a closed condition for the foliations in P2
(1,1,l2).

This justifies why the two problems are different.

Irreducible components of the space of holomorphic foliations: The second focus are the

holomorphic codimension one foliations on complex projective spaces of dimension greater or equal

than 3. It is known that the space of holomorphic codimension one foliations of degree k on Pn,

n ≥ 3, which is denoted by Fol(k, n), is an algebraic set. Therefore, it has an unique decomposition

into irreducible components. The second problem is to determinate the irreducible components of the

space of foliations. In [29], Jouanolou shows that Fol(0, n) has only one irreducible component and

Fol(1, n) has two irreducible components. In 1996, D. Cervau and Lins Neto [13], showed that Fol(2, n)

has six irreducible components. Another new proof of this result was obtained by Loray, Touzet e

Pereira in [33]. For k ≥ 3, the problem of the components is still open. There are constructions of

families of irreducible components, for example, Calvo-Andrade, Cerveau, Giraldo and Lins Neto [11],

Cukierman and Pereira [20], Calvo-Andrade [10]. In the work of Calvo-Andrade, Cerveau, Giraldo

and Lins Neto [11], they have constructed families of the irreducible components associated to the

affine Lie algebra. They have introduced the following definition. Let 1 ≤ p < q < r be are positive

integers with gcd(p, q, r) = 1. Consider the linear vector field on C3

S = px
∂

∂x
+ qy

∂

∂y
+ rz

∂

∂z
.
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Suppose that there is another polynomial vector field X on C3 such that [S,X] = λX, for some

λ ∈ Z. Denoted by F(S,X), the foliation on C3 induced by the 1-form Ω = iSiX(dx ∧ dy ∧ dz),
which is associated to a representation of the affine algebra of polynomial vector fields in C3. It can

be extended to a foliation on P3 of certain degree ν. They define

Fol((p, q, r), λ, ν) := {F ∈ Fol(ν, 3)| F = F(S,X) in some affine chart},

And they prove the following:

Theorem (Calvo et al., ’04 ). Let d ≥ 1 be an integer. There is an N -dimensional irreducible

component

Fol((d2 + d+ 1, d+ 1, 1),−1, d+ 1),

of the space Fol(d + 1, 3) whose general point corresponds to a GK Klein-Lie foliation with exactly

one quasi-homogeneous singularity, where N = 13 if d = 1 and N = 14 if d > 1. Moreover, this

component is the closure of a PGL(4,C) orbit on Fol(d+ 1, 3).

The goal of our work is to construct new families of irreducible components. The third result is

the theorem bellow.

Theorem 4. If l0 > l1, gcd(l0, l1) = 1, l0 ≥ 3 and q ≥ 1, then

Fol((l0, l1, l1), l1(ql0 − 1), ql0 + 1),

is an irreducible component of Fol(ql0 + 1, 3) and

Fol((l0, l1, l1), l0l1q, ql0 + 2),

is an irreducible component of Fol(ql0 + 2, 3).

This work is organized in three chapters.

In Chapter 1, we focus on the definition of the weighted projective spaces and the codimension

one foliations on weighted projective spaces. In addition, we fix the notations that will be used in the

following chapters.

Chapter 2 is devoted to the density of algebraic foliations without algebraic solutions on weighted

projective spaces. Theorem 1, Theorem 2 and Theorem 3 are proved in this Chapter.

Chapter 3 is concerned with the problem of the irreducible components of holomorphic foliations.

We prove Theorem 4.
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Chapter 1

Weighted Projective Spaces

In this first chapter, we introduce the weighted projective spaces and present the basic definitions and

properties we shall need in the sequel. See [2], [5], [19] and [23] for more details. Once we understand

these spaces, we will talk about holomorphic foliations on weighted projective spaces and stablish

some index theorems. The main reference for the last part is [9].

Theorem 1.0.1. let

1.1 Definition of weighted projective space

Let ` = (l0, l1, . . . , ln) be a vector of positive integers which is called a weight vector, and set

|`| = l0 + · · ·+ ln.

Then there is a natural action of the multiplicative group C∗ on Cn+1\{0} given by

(x0, . . . , xn) 7→ (tl0x0, . . . , t
lnxn), for all t ∈ C∗.

The set of orbits Cn+1\{0}
C∗ under this action is denoted by Pn` (or Pn(`)) and is called the weighted

projective space of type `. It comes equipped with a natural quotient topology: a subset U ⊆ Pn` is

open iff U = V/C∗ for some C∗-invariant open subset of Cn+1\{0}.
The class of a nonzero element (x0, . . . , xn) ∈ Cn+1 is denoted by [x0 : . . . : xn]` and the weight

vector can be omitted if no ambiguity can arise.

For x ∈ Cn+1\{0}, the closure of [x]` in Cn+1 is obtained by adding the origin and it is an algebraic

curve.

Remark 1.1.1. When ` = (l0, . . . , ln) = (1, . . . , 1) one obtains the usual complex projective spaces

and the weight vector will always be omitted.

1.2 Analytic structure

As in the classical case, weighted projective spaces can be endowed with an analytic structure.

However, in general they contain cyclic quotient singularities. To understand this structure, con-

sider the decomposition Pn` = U0 ∪ . . . ∪ Un, where Ui is the open set consisting of the elements
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[x0 : . . . : xi : . . . : xn]` with xi 6= 0. Let µk be the cyclic group of k-th roots of unity in C. Consider

the map

ψ̃i : Cn → Ui,

(y1, . . . , yn) 7→ [y1 : . . . : yi : 1 : yi+1 : . . . : yn]` .

It is a surjective map but it is not a chart, since injectivity fails. In fact, [y1 : . . . : yi : 1 : yi+1 : 1 :

yn]` = [y′1 : . . . : y′i : 1 : y′i+1 : . . . : y′n]` if and only if there exists gi ∈ µli such that y′j = g
lj−1

i yj , for

all j = 1, . . . , i and y′j = g
lj
i yj , for all j = i+ 1, . . . , n. Hence the above map induces the bijection

ψi : Cn/µli → Ui,

[(y1, . . . , yn)] 7→ [y1 : . . . : yi : 1 : yi+1 : . . . : yn]`,

where Cn/µli is the quotient of Cn by the action

µli × Cn → Cn,
(gi, (y1, . . . , yn)) 7→ (gl0i y1, . . . , g

li−1

i yi, g
li+1

i yi+1, . . . , g
ln
i yn).

For i < j:

ψ−1
j ◦ ψi : ψ−1

i (Ui ∩ Uj) ⊆ Cn/µli → ψ−1
j (Ui ∩ Uj) ⊆ Cn/µlj ,

[(y1, . . . , yn)] 7→

[
(
y1

y
l1/lj
j

, . . . ,
yi

y
li/lj
j

,
1

y
1/lj
j

,
yi+1

y
li+1/lj
j

, . . . ,
yj−1

y
lj−1/lj
j

, . . . ,
yn

x
ln/lj
j

)

]
.

Since the transition maps are analytic, Pn` is an analytic space with cyclic quotient singularities as

claimed.

1.3 Interpretation

The weighted projective space can be seen as a quotient of Pn by a group acting on it. For r ∈ N, let

µr be the finite cyclic group of r-th roots of unity in C, and G` = µl0 × · · · × µln be the product of

cyclic groups. Consider the action of the group G` on Pn given as follows

G` × Pn → Pn,
(g, [x0 : . . . : xn]) 7→ [g0x0 : . . . : gnxn],

where g = (g0, . . . , gn) ∈ G`.
For every g ∈ G`, the map [x0 : . . . : xn] → [g0x0 : . . . : gnxn] is an automorphism of Pn. We will

also denote it by g. The set of all orbits Pn/G` is isomorphic to the weighted projective space of type

` and the isomorphism is induced by a surjective natural morphism

ϕ` : Pn → Pn` ,
[x0 : . . . : xn] 7→ [xl00 : . . . : xlnn ]` ,

This is a branched covering, unramified over

Pn` \ {[x0 : . . . : xn]` | x0x1 . . . xn = 0},

and has ¯̀= lcm(l0, . . . , ln) sheets. Moreover, the covering respects the coordinate axes.
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Example 1.3.1. P2
(1,1,l2), l2 ≥ 2 is the cone over the rational curve of degree l2 in Pl2 given by the

following embedding

P2
(1,1,l2) → Pl2 ,

[x0 : x1 : x2](1,1,l2) 7→ [xl20 : xl2−1
0 x1 : . . . : xl21 : x2].

This surface is obtained by blowing down the exceptional section of the ruled surface Fl2 = P(OP1 ⊕
OP1(l2)), a Hirzebruch surface, see [36, page 29]. In §1.8 we will check this.

Example 1.3.2. For ` = (1, l1, . . . , ln) the space Pn(1,l1,...,ln) is a compactification of the affine space

Cn, that is, the open set U0 is isomorphic to Cn. Its complement coincides with the weighted projective

space Pn−1
(l1,...,ln).

Example 1.3.3. P2
(1,2,3) is covered by 3 open sets U0 ' C2, U1 ' C2/µ2 induced by the action

µ2 × C2 → C2,

(g2, (x, y)) 7→ (g2x, g2y),

and U2 ' C2/µ3 induced by the action

µ3 × C2 → C2,

(g3, (x, y)) 7→ (g3x, g
2
3y).

As in the Example 1.3.1 we can find an embedding in P6. It suffices to take

P2
(1,2,3) → P6,

[x0 : x1 : x2](1,2,3) 7→ [x6
0 : x4

0x1 : x3
0x2 : x2

0x
2
1 : x0x1x2 : x3

1 : x2
2].

1.4 Quasi-homogeneous polynomials and divisors on Pn`
The main reference for this and the next section are [23] and [19, Chapter 4].

Definition 1.4.1. Let F ∈ C[x0, . . . , xn] be a polynomial and ` = (l0, . . . , ln) be a weight vector.

1. The polynomial F is said to be a quasi-homogeneous polynomial of degree d if for all t ∈ C∗ we

have

F (tl0x0, . . . , t
lnxn) = tdF (x0, . . . , xn).

Note that if l0 = . . . = ln = 1 then we are in the case of standard homogeneous polynomial.

2. A rational function on Pn` is a quotient of quasi-homogeneous polynomials of the same degree,

and the field of rational functions of Pn` is denoted by C(Pn` ).

3. An irreducible subvariety of codimension one on Pn` is the set of zeros of an irreducible quasi-

homogeneous polynomial.

Remark 1.4.2. The definition of the degree given above induces a natural grading of the coordinate

ring C[x0, . . . , xn] and this ring, considered as a graded ring, is denoted by S(`), that is

S(`) =
⊕
d≥0

S(`)d,

where S(`)d denotes the vector space of the quasi-homogeneous polynomials of degree d.
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Definition 1.4.3. 1. Div(Pn` ) is the free abelian group generated by the irreducible subvarieties

of codimension one on Pn` . A Weil divisor is an element of Div(Pn` ).

2. The divisor of f ∈ C(Pn` )∗ is

div(f) =
∑

D∈Div(Pn
` )

ordD(f)D,

where ordD : C(Pn` )∗ → Z is a discrete valuation, see [19, page 155].

3. div(f) is called a principal divisor, and the set of all principal divisors is denoted by Div0(Pn` ).

4. A Weil divisor D on Pn` is Cartier if it is locally principal, meaning that Pn` has an open cover

{Ui}i∈I such that D|Ui is principal in Ui for every i ∈ I. It follows that the Cartier divisors on

Pn` form a group CDiv(Pn` ) satisfying

Div0(Pn` ) ⊆ CDiv(Pn` ) ⊆ Div(Pn` ).

5. The class group of Pn` is

Cl(Pn` ) = Div(Pn` )/Div0(Pn` ),

and the Picard group of Pn` is

Pic(Pn` ) = CDiv(Pn` )/Div0(Pn` ).

Theorem 1.4.4. If gcd(l0, l1, . . . , ln) = 1. Then the following assertions hold true.

1. The natural map

deg : Cl(Pn` ) → Z,
[{F = 0}] 7→ deg(F ),

is an isomorphism. Furthermore the natural inclusion Pic(Pn` ) ⊂ Cl(Pn` ) induces the following

isomorphism

deg|Pic(Pn
` ) : Pic(Pn` )→ mZ,

where m = lcm(l0, . . . , ln).

2. The linear map

Pic(Pn` )⊗Z Q→ Cl(Pn` )⊗Z Q,

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor D on Pn` there

always exists k ∈ Z such that kD ∈ Pic(Pn` ). In this case it is said that D is a Q-Cartier divisor

or Q-bundle.

Proof. See [19, page 76 and page 188] and [1, Theorem 4.12]. �

Definition 1.4.5. Let D ∈ Div(Pn` ). We define the sheaf OPn
`
(D) of a Weil divisor D as

U 7→ OPn
`
(D)(U) = {f ∈ C(Pn` )∗| (div(f) +D)|U ≥ 0} ∪ {0},

where U is any open subset of Pn` .
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Note that OPn
`
(D) ' OPn

`
(D′) if deg(D) = deg(D′). Denote OPn

`
(deg(D)) := OPn

`
(D).

The following theorem relates the global sections of a Weil divisor with the quasi-homogeneous

polynomials. One can find it in [23, page 39].

Theorem 1.4.6. For every d ∈ N the following assertions hold true.

1. H0(Pn` ,OPn
`
(d)) ' S(`)d.

2. Hi(Pn` ,OPn
`
(d)) = 0 for i 6= 0, n.

Thus we can identify H0(Pn` ,OPn
`
(d)) as the vector space of the quasi-homogeneous polynomials

of degree d. It will convenient to set

h0(n, d, `) := dimCH
0(Pn` ,OPn

`
(d)).

Consider the map

ϕ̃` : Cn+1 → Cn+1,

(x0, . . . , xn) 7→ (xl00 , . . . , x
ln
n ).

It induces a branched covering

ϕ` : Pn → Pn` ,
[x0 : . . . : xn] 7→ [xl00 : . . . : xlnn ]`.

If F ∈ S(`)d, then

1. ϕ∗` (F ) := F ◦ ϕ̃` is a homogeneous polynomial of degree d.

2. g∗(F ◦ ϕ̃`) = F ◦ ϕ̃`, ∀ g ∈ G`.

Therefore, it is natural to give the following definition.

Definition 1.4.7. Let F̃ ∈ C[x0, . . . , xn] be a polynomial and ` = (l0, . . . , ln) be a weight vector.

1. The polynomial F̃ is said to be G`-invariant homogeneous polynomial of degree d if it is homo-

geneous of degree d and g∗F̃ = F̃ , ∀ g ∈ G`.

2. The vector space of the G`-invariant homogeneous polynomials of degree d is denoted by SG`

d .

Lemma 1.4.8. The natural homomorphism

ϕ∗` : S(`)d → SG`

d ,

F 7→ F ◦ ϕ` ,

is a linear isomorphism ∀ d ≥ 0, ∀n ≥ 1. In particular we have the natural isomorphisms

H0(Pn` ,OPn
`
(d)) ' H0(Pn,OPn(d))G` ,

where H0(Pn,OPn(d))G` refers to the image of SG`

d by the isomorphism given in the Theorem 1.4.6

item 1 with ` = (1, . . . , 1).

Proof. The application ϕ∗` is clearly linear and injective. To see that it is surjective it is enough

to prove it for monomials. Let F = xa00 . . . xann be a monomial such that g∗F = F, ∀ g ∈ G`, that is

ga00 . . . gann xa00 . . . xann = xa00 . . . xann ,

so ga00 . . . gann = 1, ∀ g ∈ G`, and then ai = mili. Hence we can define F̃ = ym0
0 . . . ymn

n such that

ϕ∗F̃ = F . This concludes the proof of the lemma. �
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1.4.1 Well-formed weighted projective spaces

For different weight vectors ` and `′ the corresponding weighted projective spaces Pn` and Pn`′ can be

isomorphic. Let

di = gcd(l0, . . . , li−1, li+1, . . . , ln),

ai = lcm(d0, . . . , di−1, di+1, . . . , dn),

a = lcm(d0, . . . , dn).

Note that ai|a, gcd(ai, di) = 1, gcd(di, dj) = 1 for i 6= j and aidi = a.

Proposition 1.4.9. Let `′ = (l′0, . . . , l
′
n) = ( l0a0 , . . . ,

ln
an

). The natural morphism

ϕ : Pn` → Pn`′ ,
[x0 : . . . : xn]` 7→ [xd00 : . . . : xdnn ]`′ ,

(1.1)

is an algebraic isomorphism.

Proof. See [23, page 37] or [1, Proposition 2.3]. �

Remark 1.4.10. The isomorphism (1.1) induces isomorphisms

ϕ∗ : H0(Pn`′ ,OPn
`′

(d)) → H0(Pn` ,OPn
`
(ad)),

F 7→ F ◦ ϕ ,

for all d ≥ 0.

Remark 1.4.11. In the case n = 2, if gcd(l0, l1, l2) = 1, then l′0, l
′
1, l
′
2 are two-by-two coprimes

obtained from Proposition 1.4.9.

1.5 Quasi-homogeneous k-forms on Pn`
To define foliations on weighted projective spaces we will need quasi-homogeneous 1-forms. Let us

start to study in a more general way the quasi-homogeneous k-forms. As we shall see there is a natural

identification between quasi-homogeneous k-forms and homogeneous k-forms invariant under a group.

This construction was motived by [23, Chapter 2].

Definition 1.5.1. Let η be a polynomial k-form on Cn+1 and ` = (l0, . . . , ln) be a weight vector.

The k-form η is said to be quasi-homogeneous k-form of degree d if

ψ∗t η = tdη, ∀t ∈ C∗,

where ψt(x0, . . . , xn) = (tl0x0, . . . , t
lnxn).

A polynomial vector field X on Cn+1 is called quasi-homogeneous vector field of degree r if

(ψt)∗X = t|`|−rX ◦ ψt.

Remark 1.5.2. It follows from the definition that deg(dxi1 ∧ . . .∧ dxik) = li1 + · · ·+ lik . Moreover if

η =
∑

0≤i1<···<ik≤n

Fi1,...,ik(x0, . . . , xn)dxi1 ∧ . . . ∧ dxik ,
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is a quasi-homogeneous k-form of degree d, then

ψ∗t η =
∑

0≤i1<···<ik≤n

Fi1,...,ik(tl0x0, . . . , t
lnxn)tli1+...lik dxi1 ∧ . . . ∧ dxik = tdη,

therefore,

Fi1,...,ik(tl0x0, . . . , t
lnxn) = td−(li1+···+lik )Fi1,...,ik(x0, . . . , xn), ∀t ∈ C∗.

Briefly, deg(η) = d if only if the polynomials Fi1,...,ik are quasi-homogeneous polynomials of degree

d− (li1 + · · ·+ lik).

The definition of the degree given above induces a natural S(`)-grading in the free module of

polynomials k-forms and this S(`)-module considered as graded S(`)-module is denoted by ΩkS(`),

that is

ΩkS(`) =
⊕
d≥0

ΩkS(`)(d),

where ΩkS(`)(d) denotes the vector space of quasi-homogeneous polynomial k-forms of degree d.

According to our convention deg( ∂
∂xi

) =
∑
j 6=i lj . Furthermore, if

X =

n∑
i=0

Ai
∂

∂xi
,

is a quasi-homogeneous vector field of degree r, hence

(ψt)∗X =
∑
i=0

tliAi(x0, . . . , xn)
∂

∂yi
= t|`|−r

n∑
i=0

Ai(t
l0x0, . . . , t

lnxn)
∂

∂yi
,

thus,

Ai(t
l0x0, . . . , t

lnxn) = tr−
∑

j 6=i ljAi(x0, . . . , xn), ∀t ∈ C∗.

That is, deg(X) = r if and only if the polynomials Ai are quasi-homogeneous polynomials of degree

r −
∑
j 6=i lj .

Exterior derivative. Let

d : S(`) −→ Ω1
S(`),

F 7−→
n∑
i=0

∂F

∂xi
dxj .

be the canonical universal differentiation. The k-linear map d extends to the exterior differentiation

d : ΩkS → Ωk+1
S ,

determined uniquely by the condition

d(η ∧ η′) = dη ∧ η′ + (−1)kη ∧ dη′, η ∈ ΩkS(`), η′ ∈ ΩjS(`),

We also have an analogue of Euler’s formula:

mF =

n∑
i=0

∂F

∂xi
lixj , ∀F ∈ S(`)m.
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Using the linearity of both sides of this identity we need to verify this formula only in the case when

F is a monomial xi00 . . . xinn . But in this case it can be done without any difficulties.

Interior product is the homomorphism of graded S(`)-modules defined as follows. If X =
n∑
j=0

Aj
∂

∂xj
is a quasi-homogeneous vector field of degree r, interior product with X is

iX : ΩkS(`) → Ωk−1
S(`), k ≥ 1,

defined by the formula

iX(dxj1 ∧ . . . ∧ dxjk) =

k∑
i=1

(−1)i+1Ajidxj1 ∧ . . . ∧ ˆdxji ∧ . . . ∧ dxjk ,

In the case R =

n∑
i=0

lixi
∂

∂xi
we have the following properties:

1. iR(dF ) = mF , F ∈ S(`)m,

2. iR(dη) + d(iR(η)) = mη, η ∈ ΩkS(`)(m).

Using the branched covering map

ϕ` : Pn → Pn` ,
[x0 : · · · : xn] 7→ [xl00 : · · · : xlnn ]`.

induced by the map

ϕ̃` : Cn+1 → Cn+1,

(x0, . . . , xn) 7→ (xl00 , . . . , x
ln
n ),

we see that if η ∈ ΩkS(`)(d) then

1. ϕ∗` (η) := ϕ̃∗` (η) is a homogeneous polynomial k-form of degree d on Cn+1.

2. g∗(ϕ∗`η) = ϕ∗`η, ∀ g ∈ G` = µl0 × . . .× µln .

Therefore, it is natural to give the following definition.

Definition 1.5.3. Let ω be a homogeneous k-form ω of degree d on Cn+1, i.e., ω ∈ ΩkS(d).

1. The 1-form ω is called G`-invariant if g∗ω = ω, for all g ∈ G`.

2. The vector space of the G`-invariant homogeneous k-forms of degree d is denoted by ΩkS(d)G` .

Lemma 1.5.4. Under above conditions. The natural homomorphism

ϕ∗` : ΩkS(`)(d) → ΩkS(d)G` ,

η 7→ ϕ∗`η,

is a linear isomorphism ∀ d ≥ 0, ∀ k ≥ 0, ∀n ≥ 1.
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Proof. ϕ∗` is clearly linear and injective. To see that it is surjective, by linearity of ϕ∗` , we can

assume

ω = (
∏

i 6= 0,...,k

xaiji )xa0−1
j0

. . . xak−1
jk

dxj0 ∧ . . . ∧ dxjk ,

such that g∗ω = ω, ∀ g ∈ G`. This implies that∏
i

gaiji (
∏

i 6=0,...,k

xaiji )xa0−1
j0

. . . xak−1
jk

dxj0 ∧ . . . ∧ dxjk = ω,

therefore,
∏

i=1...n

gaiji = 1, and hence ai = milji , ∀ i. Thus we define

η = (
∏

i=0,...,k

ymi
ji

)ym0−1
j0

. . . ymk−1
jk

dyj0
lj0
∧ . . . ∧ dyjk

ljk
,

and we can conclude that ϕ∗η = ω. �

Notice that the following sequence

0 // Ωn+1
S(`)

iR // ΩnS(`)

iR // · · · iR // Ω0
S(`)

// 0 ,

is exact, see [23, page 44].

Definition 1.5.5. Let d ≥ 0 be an integer. The twisted sheaf of Zariski k-forms ΩkPn
`
(d) is defined as

follow

ΩkPn
`
(d)(Ui) =

{
η

xji
| η ∈ ker{iR : ΩkS(`)(d+ jli))→ Ωk−1

S(`)(d+ jli)}

}
.

If k = n and d = 0, the sheaf ΩnPn
`

which is called canonical sheaf of Pn` .

Proposition 1.5.6. Under the above conditions we have

H0(Pn` ,ΩkPn
`
(d)) ' ker{iR : ΩkS(`)(d)→ Ωk−1

S(`)(d)}. (1.2)

Furthermore, j∗(Ω
k
Pn
` \Sing(P

n
` )) = ΩkPn

`
, where j : Pn` \Sing(Pn` )→ Pn` is the natural inclusion.

Proof. See [23, 2.1.5, page 44 and 2.2.4, page 47]. �

By Lemma 1.5.4 and the commutativity of the following diagram

ΩkS(`)(d)
iR //

ϕ∗`

��

Ωk−1
S(`)(d)

ϕ∗`
��

ΩkS(d)
iR0 // Ωk−1

S (d)

in which R =

n∑
i=0

liyi
∂

∂yi
, R0 =

n∑
i=0

xi
∂

∂xi
, we have the following isomorphism

ker{iR : ΩkS(`)(d)→ Ωk−1
S(`)(d)}

ϕ∗` // ker{iR0 : ΩkS(d)G` → Ωk−1
S (d)}. (1.3)

Furthermore

H0(Pn` ,ΩkPn
`
(d)) ' H0(Pn,ΩkPn(d))G` ,

where H0(Pn,ΩkPn(d))G` ⊂ H0(Pn,ΩkPn(d)) refers to the image of ker{iR0 : ΩkS(d)G` → Ωk−1
S (d)} given

by the isomorphism (1.2).
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Remark 1.5.7. In [4, Theorem 12.1., page 38], Batyrev and Cox constructs an exact sequence

0 // Ω1
Pn
`

//
∑n
i=0OPn

`
(−li)

iR // OPn
`

// 0 ,

called the generalized Euler exact sequence of Pn` .

Proposition 1.5.8. If gcd(l0, . . . , ln) = 1, then ΩnPn
`

, the canonical sheaf of Pn` , is isomorphic to

OPn
`
(−|`|). That is, the canonical sheaf is the sheaf associated to a Weil divisor of degree −|`| on Pn` .

Proof. See [19, Theorem 8.2.3] �

1.6 Foliations on Weighted Projective Spaces

The purpose of this section is to extend the definition of codimension one foliations on usual projective

spaces to the weighted projective spaces. It is worth noting that M. Corrêa and M.G. Soares already

studied the subject in [16].

Definition 1.6.1. A codimension one foliation F on Pn` is given by η ∈ H0(Pn` ,Ω1
Pn
`
(d)) such that

1. η ∧ dη = 0 (Integrability condition),

2. codim (Sing(η)) ≥ 2, where Sing(η) = {p ∈ Pn` | η(p) = 0}.

Remark 1.6.2. If η1 and η2 satisfies condition 2 and define F then η1 = λη2, for some λ ∈ C∗.

Remark 1.6.3. Let F be a foliation on Pn` given by the quasi-homogeneous 1-form of degree d

η =

n∑
i=0

Ai(x0, . . . , xn)dxi,

in which
∑n
i=0 lixiAi = 0.

In the open set U0 ' Cn/µl0 , using the map ψ̃0(y1, . . . , yn) = (1 : y1 : · · · : yn) we lift F|U0 to Cn

where it is given by

η0 = ψ̃∗0η =

n∑
i=1

Ai(1, y1, . . . , yn)dyi.

Note that

λ∗g0η0 = λ(g0)η0, ∀g0 ∈ µl0 ,

where λg0(y1, . . . , yn) = (gl10 y1, . . . , g
ln
0 yn) and λ(g0) = gd0 . In particular

λ(g0) = gα0 , d ≡ α ( mod l0).

Reciprocally, if η is a polynomial 1-form on C[y1, . . . , yn] such that

λ∗g0η = gα0 η, α ∈ Z/l0Z. (1.4)

The 1-form polynomial η can be write as

η = ηk + ηk+1 + · · ·+ ηd,
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in which ηj are quasi-homogeneous 1-forms of degree j with respect to the weight vector (l1, . . . , ln)

and ηk 6= 0, ηd 6= 0. By condition (1.4) we have that

η = ηk + ηk+l0 + · · ·+ ηd,

where k ≡ α( mod l0). Hence the foliation on Cn induced by η extends to a foliation on Pn` induced

by a quasi-homogeneous 1-form of degree{
d , if iSηd = 0,

d+ l0 , if iSηd 6= 0,

where S = l1y1
∂
∂y1

+ · · ·+ lnyn
∂
∂yn

. This remark will be used in the next chapter.

Using the change of coordinates we have that

ηj =
x
d/l0
0

x
d/lj
j

η0, in Uj ∩ U0, j > 0,

where gj0 =

(
x
1/l0
0

x
1/lj
j

)d
and gj0 is multiplicative cocycle that defines the following Q-bundle

NF = OPn
`
(d),

called the normal Q-bundle of the foliation F .

The space of codimension one foliations with normal Q-bundle of degree d on Pn` is denoted by

Fol(d, n, `) ⊆ PH0(Pn` ,Ω1
Pn
`
(d)).

Note that in the case ` = (1, . . . , 1) the d = deg(η) denotes the degree of the normal bundle of

the foliation F , i.e., deg(NF) = d, and we will denote Fol(d, n) := Fol(d, n, (1, . . . , 1)). The degree of

normal bundle should not be confused with the degree of the foliation on Pn (number of tangencies

with general line). For codimension one foliations on Pn we have

deg(NF) = deg(F) + 2.

Remark 1.6.4. For the case of n = 2. Let F be a codimension one foliation with normal Q-bundle

of degree d on P2
` . Since we have the 3-form dx0 ∧ dx1 ∧ dx2 in C3, then the foliation F is given by a

quasi-homogeneous vector field X which is not a multiple of R = l0x0
∂
∂x0

+ l1x1
∂
∂x1

+ l2x2
∂
∂x2

,

X = B0
∂

∂x0
+B1

∂

∂x1
+B2

∂

∂x2
,

where B0, B1, B2 are quasi-homogeneous polynomials of degree d − l1 − l2, d − l0 − l2, d − l0 − l1
respectively. The foliation F is also induced by quasi-homogeneous 1-form of degree d

η = iX iR(dx0 ∧ dx1 ∧ dx2) = (l1x1B2 − l2x2B1)dx0 + (l2x2B0 − l0x0B2)dx1 + (l0x0B1 − l1x1B0)dx2.

As we saw in the case of forms, it is not difficult to see (ψ−1
0 )∗(X|U0

) = x
d−|`|

l0
0 X0, where

X0 = (B1(1, y1, y2)− l1
l0
y1B0(1, y1, y2))

∂

∂y1
+ (B2(1, y1, y2)− l2

l0
y2B0(1, y1, y2))

∂

∂y2
,
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and

Xj =
x

d−|`|
l0

0

x
d−|`|

lj

j

X0, j > 0 in Uj0,

where fj0 =

(
x
1/l0
0

x
1/lj
j

)d−|`|
and fj0 is multiplicative cocycle that defines the following Q-bundle

KF = OP2
`
(d− |`|),

called the cotangent or canonical Q-bundle of the foliation F .

Note that canonical and normal Q-bundle of F are related by the formula

KP2
`

= KF ⊗N∗F ,

where N∗F is dual sheaf of NF called the conormal Q-bundle of F .

Remark 1.6.5. In [16], Corrêa and Soares introduce the notion of degree of a foliation F on weighted

projective plane which verifies the following relation:

deg(NF) = l0l1l2 deg(F) + |l| − 1.

Example 1.6.6. Consider the foliation F with normal Q-bundle of degree 7 on P2
(1,2,3) given by

η = 6x2(x2 − x0x1)dx0 + 3x2(x2
0 − x1)dx1 + 2(x2

1 − x0x2)dx2.

The singular set of F is

sing(F) = {[1 : 0 : 0], [1 : 1 : 1]}.

In the open set U0 ' C2, the foliation F|U0
is given by

η0 = 3y2(1− y1)dy1 + 2(y2
1 − y2)dy2.

In the open set U1 ' C2/µ2, using the map ψ̃1(u1, u2) = [u1 : 1 : u2] we lift F|U1
to C2 which is given

by

η1 = 6u2(u2 − u1)du1 + 2(1− u1u2)du2.

In the open set U2 ' C2/µ3, using the map ψ̃2(v1, v2) = [v1 : v2 : 1] we lift F|U2
to C2 which is given

by

η2 = 6(1− v1v2)dv1 + 3(v2
1 − v2)dv2.

Note that {x2 = 0} is F-invariant and using the

ϕ(1,2,3) : P2 → P2
(1,2,3)

[x : y : z] 7→ [x : y2 : z3],

we have

ϕ∗(1,2,3)η = z2(6z(z3 − xy2)dx+ 6yz3(x2 − y2)dy + 6(y4 − xz3)dz).

As we can see codimSing(ϕ∗(1,2,3)η) = 1, then ϕ∗(1,2,3)η induces a foliation on P2 with normal degree

five as we need to divide ϕ∗η by z2 in order to obtain a 1-form with singular set of codimension 2.
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1.6.1 Foliations on Pn
` and G`-invariant foliations on Pn

As we saw in the previous section there is a correspondence between quasi-homogeneous 1-forms and

Gl-invariant homogeneous 1-forms. In a similar way there is one such correspondence for foliations. It

is important to see that a G`-invariant homogeneous 1-form ω has in general a singular set of codimen-

sion one, see Example 1.6.6. Note that ϕ` : Pn` → Pn is unramified covering over Pn\{x0 . . . xn = 0},
therefore if codimSing(ω) = 1, then

ω =
ω′

xi00 . . . xinn
,

where codimSing(ω′) ≥ 2. Because of that we have the following definitions.

Definition 1.6.7. Fix ` = (l0, . . . , ln), let In = {1, . . . , n} and denote by I ′n = {i ∈ In | li > 1}.

1. Let F be a foliation on Pn` given by η, for i = 0, . . . , n, the hypersurface {xi = 0} is F-invariant

if there exists a quasi-homogeneous 2-form θi such that

η ∧ dxi = xiθi.

2. A foliation G on Pn given by ω with {xi0 . . . xik = 0} invariant by G is called G`-invariant if

g∗G = G, ∀ g ∈ G` = µl0 × . . .× µln , i.e.,

g∗ω = λ(g)ω, ∀ g ∈ G`,

where λ(g) = gi0 . . . gik .

3. We define

Foli0,··· ,ik(d, n, `) =
{
F ∈ Fol(d, n, `) | {xi0 · · ·xik = 0} is F-invariant

}
,

Fol′i0,··· ,ik(d, n, `) =


F ∈ Fol(d, n, `) | {xi0 · · ·xik = 0} is F-invariant,

{xij = 0} is not F-invariant,

∀ ij ∈ I ′n − {i0, · · · , ik}

 .

In the case of ` = (1, . . . , 1), we recall that

Fol(d, n) = Fol(d, n, `),

Foli0,··· ,ik(d, n) = Foli0,··· ,ik(d, n, `),

Fol
′

i0,··· ,ik(d, n) = Fol
′

i0,··· ,ik(d, n, `).

4. For foliations on Pn

Foli0,··· ,ik(d, n)G` =
{
G ∈ Fol(d, n) | {xi0 · · ·xik = 0} is G-invariant and G is G`-invariant.

}
,

Fol′i0,··· ,ik(d, n)G` = Fol′i0,··· ,ik(d, n) ∩ Foli0,··· ,ik(d, n)G` .
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Remark 1.6.8. The natural map

ϕ` : Pn → Pn`
[x0 : · · · : xn] 7→ [y0 : · · · : yn]` = [xl00 : · · · : xlnn ]`,

induces the natural isomorphism

ϕ∗` : H0(Pn` ,Ω1
Pn
`
(d))→ H0(Pn,Ω1

Pn(d))G` . (1.5)

Let F be a foliation on Pn` induced by η. Observe that if {yi = 0} is F-invariant then we can write

η = Aidyi + yi(
∑
j 6=i

liAjdyj),

in which Ai = −
∑
j 6=i ljyjAj . Therefore

ϕ∗`η = xli−1
i Ai ◦ ϕ`dxi + xlii (

∑
j 6=i lix

lj−1
j Aj ◦ ϕ`dxj),

= xli−1
i (Ai ◦ ϕ`dxi + xi(

∑
j 6=i lix

lj−1
j Aj ◦ ϕ`dxj)).

Reciprocally if {yi = 0} is not F-invariant, then {xi = 0} is not invariant by the foliation induced by

ϕ∗η on Pn. This last and the isomorphism (1.5) induce the natural morphism

ϕ∗` : Fol′i0,··· ,ik(d, n, `) → Fol′i0,··· ,ik(d+ k + 1− li0 − · · · − lik , n)G`

[η] 7→

[
ϕ∗`η

x
li0−1
i0

. . . x
lik−1

ik

]
(1.6)

Proposition 1.6.9. The induced natural morphism (1.6) is an isomorphism. In particular, if I ′n −
{i0, · · · , ik} = ∅, then the induced natural morphism

ϕ∗` : Foli0,··· ,ik(d, n, `) → Foli0,··· ,ik(d+ k + 1− li0 − · · · − lik , n)G` ,

[η] 7→

[
ϕ∗`η

x
li0−1
i0

. . . x
lik−1

ik

]
,

is an isomorphism.

Proof. The application ϕ∗` is clearly injective. To see its surjectivity, let us take

G ∈ Fol′i0,··· ,ik(d+ k + 1− li0 − · · · − lik , n)G` ,

given by ω, so we define ω̃ = x
li0−1
i0

. . . x
lik−1

ik
ω that verify g∗ω̃ = ω̃ ∀ g ∈ G`. Then by the isomor-

phism (1.3) there exist η ∈ H0(Pn` ,Ω1
Pn
`
(d)) such that

ω =
ϕ∗`η

x
li0−1
i0

. . . x
lik−1

ik

.

It follows that η induces a foliation F ∈ Fol′i0,··· ,ik(d, n, `). This conclude the proof. �

Example 1.6.10. Let n = 2 and ` = (1, 1, l2), l2 ≥ 2. Then we have two important isomorphism:

The first isomorphism,

ϕ∗l : Fol2(d, 2, (1, 1, l2)) → Fol2(d− l2 + 1, 2)G` ,

[η] 7→

[
ϕ∗`η

xl2−1
2

]
,
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for any d ≥ l2 + 1.

The second isomorphism,

ϕ∗` : Fol′(d, 2, (1, 1, l2)) → Fol′(d, 2)G` ,

[η] 7→ [ϕ∗`η],

for any d ≥ 2.

Proposition 1.6.11. Let ` = (l0, l1, . . . , ln) a weighted vector with 1 ≤ l0 ≤ l1 ≤ l2 ≤ . . . ≤ ln,

gcd(l0, . . . , ln) = 1 and n ≥ 2. Then the lowest possible normal Q-bundle degree of the codimension

one holomorphic foliations on Pn` is d = l0 + l1 and the folations are pencil of hypersurfaces on Pn` .

Proof. We consider two cases:

1. If l0 = l1 = · · · = lk < lk+1 ≤ · · · ≤ ln and 1 ≤ k ≤ n, then

H0(Pn` ,Ω1
Pn
`
(l0 + l1)) =

⊕
0≤i<j≤k

C l0(xjdxi − xidxj).

Thus dimCH
0(Pn` ,Ω1

Pn
`
(l0 + l1)) = k(k+1)

2 and dimC Fol(l0 + l1, n, `) = k(k+1)
2 − 1. Let F ∈ Fol(l0 +

l1, n, `) given by

η = l0(

k∑
0≤i<j≤k

aij(xjdxi − xidxj), for some aij 6= 0.

Hence F can be thought of as a foliation on Pk of degree 0. So there exists automorphism on Pk such

that a foliation is given by

y1dy0 − y0dy1.

2. If l0 < l1 = l2 = · · · = lk < lk+1 ≤ · · · ≤ ln and 1 ≤ k ≤ n, then

H0(Pn` ,Ω1
Pn
`
(l0 + l1)) =

k⊕
j=1

C(l1xjdx0 − l0x0dxj).

Therefore dimCH
0(Pn` ,Ω1

Pn
`
(l0 + l1)) = k and dimC Fol(l0 + l1, n, `) = k− 1. Let F ∈ Fol(l0 + l1, n, `)

given by

η = l1(
∑k
i=1 ai)xidx0 − l0x0

∑k
i=1 aidxi,

η = l1(
∑k
i=1 ai)xidx0 − l0x0d(

∑k
i=1 aixi).

Using the automorphism φ(x0, . . . , xn) = (x0,
∑k
i=1 aixi, x2, · · · , xn) = (y0, . . . , yn), we have

φ∗η = l1y1dy0 − l0y0dy1.

We conclude the proposition. �

From now on we restrict us to n = 2.

1.7 Intersection formulas for foliations on singular surface

Before specifying the intersection formulas for foliations on weighted projective spaces, we will present

the formulas for more general surfaces. The intersection formulas on singular surfaces has already

studied and results about this topic can be found in [1] and [2]. The focus of this section is in the

intersection formulas for foliations on singular surfaces. The general reference here is [9].
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Definition 1.7.1. Let µr be the cyclic group of r-roots of unity and (a, b) ∈ Z2 be a vector of weights.

1. Consider the action
µr × C2 → C2,

(ξ, (x, y)) 7→ (ξax, ξby).

The set of all orbits C2/µd is called a (cyclic) quotient space of type (r; a, b) and it is denoted

by X(r, (a, b)).

2. The space X(r, (a, b)) is written in a normalized form if gcd(r, a) = gcd(r, b) = 1. It is possible

to convert the general types X(r, (a, b)) into normalized form, see [1, Lemma 1.8, page 4].

3. A singular surface M with only abelian quotient singularities is an analytic surface such that for

all p ∈ Sing(M) there is a neighborhood U of p isomorphic to X(r, (a, b)).

Note that for every ξ ∈ µr, the map λξ(x, y) = (ξax, ξby) is an automorphism of C2 induced by the

action of µr.

Example 1.7.2. If ` = (l0, l1, l2), where l0, l1, l2 are two-by-two coprimes then P2
` , X(l0, (l1, l2)),

X(l1, (l0, l2)), X(l2, (l0, l1)) are surfaces with abelian quotient singularities.

Definition 1.7.3. Let M be a surface with only abelian quotient singularities and C be a curve on

M .

1. A foliation F on M is a foliation on M\Sing(M) that extends to M . That is, if p ∈ Sing(M)

and U ' X(r, (a, b)) is a neighborhood of p, the foliation can be defined by a 1-form ω in C2

such that λ∗ξω = λ(ξ)ω, ∀ ξ ∈ µr where λ : µr → C∗ is a group homomorphism which is known

as a character of µr.

2. A curve C is called F-invariant if the curve C ∩ (M\Sing(M)) is F-invariant.

Remark 1.7.4. Given a foliation F on a surface M , we can still define its normal sheaf NF in the

following way: the foliation F|M\Sing(M) will be denoted by F0, NF0 is the normal bundle of F0 and

j : M\Sing(M)→M is the inclusion, then

NF = j∗NF0,

in which j∗ is the direct image functor.

Similar considerations also hold for TF , KF , NF∗ and of course KM . We still have the equality

KM = KF ⊗NF∗,

as sheaves or Q-bundles.

1.7.1 Intersection multiplicity

As before, let M be a surface with only abelian quotient singularities and let F be a foliation on M .

For every p ∈ Sing(F) we can define an index m(F , p) which is called the multiplicity of F at p.

Definition 1.7.5. To define m(F , p) we consider the following two cases:
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1. If p /∈ Sing(M), we take a local holomorphic 1-form η = A(x, y) dx+B(x, y) dy that generates

F around p, and define

m(F , p) = dimC
Op
〈A,B〉

,

where Op is the local algebra of M at p (germ of holomorphic functions) and 〈A,B〉 is the ideal

generated by A, B as elements of Op.

2. If p ∈ Sing(M), we take a neighborhood U ' X(r, (a, b)) in normalized form, and lift F|U to

C2 which is denoted by F̃ and then set

m(F , p) =
m(F̃ , (0, 0))

r
.

Now we can define, if X is compact:

m(F) =
∑
p∈M

m(F , p).

For foliations on P2
` , we have the following proposition.

Proposition 1.7.6. Let ` = (l0, l1, l2) be a weighted vector, li pairwise coprimes and F be a foliation

with normal degree d on P2
` . Then

l0l1l2m(F) = d2 − |`|d+ l0l1 + l0l2 + l1l2 = d(d− |`|) + l0l1 + l0l2 + l1l2.

Proof. The foliation F is induced by

η = A0(x0, x1, x2)dx0 +A1(x0, x1, x2)dx1 +A2(x0, x1, x2)dx2,

such that

l0x0A0 + l1x1A1 + l2x2A2 = 0. (1.7)

First, we can suppose F ∈ Fol′(d, 2, `), i.e., {x0 = 0}, {x1 = 0} and {x2 = 0} are not F-invariant. By

Proposition 1.6.9 we have a foliation F̃ of normal degree d on P2 given by

ω = ϕ∗l η = Ã0dy0 + Ã1dy1 + Ã2dy2,

where Ãi(y0, y1, y2) = liy
li−1
i Ai ◦ ϕ`. In the case of P2, we have

m(F̃) = (d− 2)2 + (d− 2) + 1. (1.8)

Let us take a local coordinate U0 ' X(l0, (l1, l2)). Then lift F|U0
, ϕ`|ϕ−1

` (U0) to C2 and denote them

by F0, ϕ0 which are given by

η0 = A1(1, u, v)du+A2(1, u, v)dv,

and
ϕ0 : C2 → C2,

(y, z) 7→ (u, v),

where (u, v) = (yl1 , zl2), respectively and F̃ |ϕ−1
` (U0) given by

ω0 = ϕ∗0η0 = Ã1(1, y, z)dy + Ã2(1, y, z)dz.
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If we denote by (Ã1, Ã2)q̃ = dimC
Oq̃

〈Ã1,Ã2〉
, then we have

(Ã1, Ã2)q̃ = (A1◦ϕ0, A2◦ϕ0)q̃+(
l1 − 1

l1
)(u◦ϕ0, A2◦ϕ0)q̃+(

l2 − 1

l2
)(v◦ϕ0, A1◦ϕ0)q̃+

(l1 − 1)(l2 − 1)

l1l2
(u◦ϕ0, v◦ϕ0)q̃.

Taking average over l1l2,

1

l1l2

∑
q̃∈ϕ−1

0 (q)

(Ã1, Ã2)q̃︸ ︷︷ ︸
m(F̃,q̃)

=
1

l1l2

∑
q̃∈ϕ−1

0 (q)

(A1 ◦ ϕ,A2 ◦ ϕ)q̃

︸ ︷︷ ︸
(A1,A2)q

+
l1 − 1

l1
(u,A2)q+

l2 − 1

l2
(v,A1)q+

(l1 − 1)(l2 − 1)

l1l2
(u, v)q,

it is equivalent to

1

l1l2

∑
q̃∈ϕ−1

0 (q)

m(F̃ , q̃) = m(F0, q) +
l1 − 1

l1
(u,A2)q +

l2 − 1

l2
(v,A1)q +

(l1 − 1)(l2 − 1)

l1l2
(u, v)q.

Taking average over l0 and using the definition of multiplicity at p, we have

1

l0l1l2

∑
q∈ϕ−1

` (p)

m(F̃ , q) = m(F , p)+ l1 − 1

l1
(x1, A2)p+

l2 − 1

l2
(x2, A1)p+

(l1 − 1)(l2 − 1)

l1l2
(x1, x2)p, ∀ p ∈ U0.

(1.9)

Analogously, we have

1

l0l1l2

∑
q∈ϕ−1

` (p)

m(F̃ , q) = m(F , p)+ l0 − 1

l0
(x0, A2)p+

l2 − 1

l2
(x2, A0)p+

(l0 − 1)(l2 − 1)

l0l2
(x0, x2)p, ∀ p ∈ U1.

(1.10)
1

l0l1l2

∑
q∈ϕ−1

` (p)

m(F̃ , q) = m(F , p)+ l0 − 1

l0
(x0, A1)p+

l1 − 1

l1
(x1, A0)p+

(l0 − 1)(l1 − 1)

l0l1
(x0, x1)p, ∀ p ∈ U2.

(1.11)

Using the equality (1.7), we have the following equalities

(x1, A2)p = −(x1, x2)p + (x1, x0)p + (x1, A0)p, (1.12)

(x2, A2)p = −(x1, x2)p + (x0, x2)p + (x2, A0)p, (1.13)

(x0, A2)p = −(x0, x2)p + (x0, x1)p + (x0, A1)p. (1.14)

Adding the equalities (1.9), (1.10), (1.11) and using the equalities (1.12), (1.13), (1.14) and Bézout’s

Theorem for weighted projective planes see [2, Proposition 8.2, page 23], we have

1

l0l1l2
m(F̃) = m(F) +

l1 − 1
¯̀ (d− l0 − l2) +

l2 − 1
¯̀ (d− l0 − l1) +

l0 − 1
¯̀ (d− l1 − l2)

− (l1 − 1)(l2 − 1)
¯̀ − (l0 − 1)(l1 − 1)

¯̀ − (l0 − 1)(l2 − 1)
¯̀ .

Finally, using the equality (1.8) then

l0l1l2m(F) = d2 − |`|d+ l0l1 + l0l2 + l1l2 = d(d− |`|) + l0l1 + l0l2 + l1l2. (1.15)

The other cases are similar. �
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1.7.2 Tangency Index

As before, let F be a foliation on the surface M , not necessarily compact, and C be a compact

connected curve, possibly singular, and suppose that each irreducible component of C is not invariant

by F . For every p ∈ C we can define an index Tang(F , C, p) which measure the tangency order of F
with C at p (and thus it is 0 for a generic p ∈ C, where we have transversality).

Definition 1.7.7. The definition of tangency index Tang(F , C, p) is given in the following cases:

1. If p /∈ Sing(M) take a local equation f of C at p, and a local holomorphic vector field v

generating F around p. Then we define

Tang(F , C, p) = dimC
Op

〈f, v(f)〉
,

whereOp is the local algebra of M at p (germ of holomorphic functions), v(f) is the Lie derivative

of f along v, and 〈f, v(f)〉 is the ideal generated by f , v(f) as elements of Op. This index is

finite, because C is not F-invariant; it is 0 iff p /∈ Sing(F) and F is transverse to C at p.

2. If p ∈ Sing(M), we take a neighborhood U ' X(r, (a, b)) in normalized form, lift F|U and

C ∩ U to C2 and denote them by F̃ and C̃ respectively. Then we define

Tang(F , C, p) =
Tang(F̃ , C̃, (0, 0))

r
.

Note that Tang(F , C, p) is a nonnegative rational number, and it is 0 if and only if F is transverse

to C at p (in the sense that F̃ is transverse C̃ at 0.)

Now we can set:

Tang(F , C) =
∑
p∈C

Tang(F , C, p).

We also introduce the orbifold-arithmetic Euler characteristic χorb(C) of C via the adjunction formula:

χorb(C) = −KM .C − C.C

Proposition 1.7.8. Let M be a surface with only abelian quotient singularities, F be a foliation on

M and C ⊂M be a compact curve, each component of which is not invariant by F . Then

NF .C = Tang(F , C) + χorb(C),

KF .C = Tang(F , C)− C.C.

Proof. See [9, page 4]. �

1.7.3 Vanishing and Camacho-Sad Index

Let us consider now the case where each irreducible component of C is invariant by F . For every p ∈ C,

we can define the vanishing and Camacho-Sad indices at p denoted by Z(F , C, p) and CS(F , C, p)
respectively.

Definition 1.7.9. The definition of Z(F , C, p) and CS(F , C, p) is given in two cases:
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1. If p /∈ Sing(M) take a local equation f of C at p, and a local holomorphic 1-form ω generating

F around p. We can factorize around p (see [40, Chapter V])

gω = hdf + fη,

where η is a holomorphic 1-form, g and h are holomorphic functions, and g and h do not vanish

identically on each local branch of C at p. Then we define

Z(F , C, p) = vanishing order of h
g |C at p,

and

CS(F , C, p) = − 1

2πi

∫
γ

η

h
,

where γ ⊂ C is a union of small circles around p, one for each local irreducible component Ci of

C, oriented as the boundary of a small disc contained in Ci and containing p.

2. If p ∈ Sing(M), we take a neighborhood U ' X(r, (a, b)) in normalized form, lift F|U and

C ∩ U to C2 and denote them by F̃ and C̃ respectively. Then we define

Z(F , C, p) =
Z(F̃ , C̃, (0, 0))

r
,

and

CS(F , C, p) =
CS(F̃ , C̃, (0, 0))

r
.

Note that Z(F , C, p) can be a negative rational number. Now we can set:

Z(F , C) =
∑
p∈C

Z(F , C, p),

CS(F , C) =
∑
p∈C

CS(F , C, p).

Proposition 1.7.10. Let M be a surface with only abelian quotient singularities, F be a foliation on

M and C ⊂M be a compact curve, each component of which is invariant by F . Then

NF .C = Z(F , C) + C.C,

KF .C = Z(F , C)− χorb(C),

C.C = CS(F , C).

Proof. See [9, page 5]. �

Example 1.7.11. Consider the foliation F of with normal degree 4 on P2
(2,1,1) given by

η = −1

2
(x2

1 + x2
2)dx0 + x0x1dx1 + x0x2dx2.

Then we have

Sing(F) = {[0 : i : 1](2,1,1), [0 : −i : 1](2,1,1), [1 : 0 : 0]2,1,1},

and m(F , [0 : i : 1](2,1,1)) = m(F , [0 : −i : 1](2,1,1)) = 1, m(F , [1 : 0 : 0]2,1,1) = 1
2 . Hence

m(F) = 1 + 1 +
1

2
=

5

2
,
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that coincides with multiplicity formula.

The curve C1 = {x1 = 0} is not F-invariant, it is easy to see that Tang(F , C1, [1 : 0 : 0]) = 1/2,

so

Tang(F , C1) = 1/2.

The curve C0 = {x0 = 0} is F-invariant, so we have

Z(F , C0, [0 : i : 1]) = Z(F , C0, [0 : −i : 1]) = CS(F , C0, [0 : i : 1]) = CS(F ,C0, [0 : −i : 1]) = 1,

thus

Z(F , C0) = CS(F , C0) = 2.

1.8 Intersection Numbers and Weighted Blow-ups

In this section we want to study what is happening with intersection formula of foliations by weighted

blow-up. A comprehensive reference for weighted blow-up is [2].

Weighted (l0, l1)-blow-up of C2. Let ` = (l0, l1) be a weight vector with coprime entries. We

consider the space

Ĉ2
` := {((x, y), [t, s]`) ∈ C2 × P1

` | (x, y) ∈ [t, s]`},

Ĉ2
` is covered by {U0, U1} and the charts are given by

X(l0, (−1, l1)) → U0,

[(x, y)] 7→ ((xl0 , xl1y), [1 : y]`).

X(l1, (l0,−1)) → U1,

[(x, y)] 7→ ((xyl0 , yl1), [x : 1]).

We denote by π` : Ĉ2
` → C2 the natural projection. The exceptional divisor E = π−1

` (0) is isomorphic

to P1
` .

Blow-up of X(l2, (l0, l1)) with respect to ` = (l0, l1). Let X(l2, (l0, l1)) be a surface with be a

weight vector with gcd(l2, l0) = 1 and gcd(l2, l1) = 1. The action µl2 on C2 extends naturally to an

action on Ĉ2
` as follows,

g2.((x, y), [t, s]`)
� µl2 // ((gl02 x, g

l1
2 y), [t : s]`)

Let X̂(l2, (l0, l1)) := Ĉ2
`/µl2 denote the quotient space of this action. Then the induced projection

π : X̂(l2, (l0, l1))→ X(l2, (l0, l1))

is an isomorphism over X̂(l2, (l0, l1))\π−1([0]) and the exceptional divisor E := π−1([0]) is identified

with P1
` . We cover X̂(l2, (l0, l1)) = Û0 ∪ Û1 and the charts are given by

X(l0, (−l2, l1)) → Û0,

[(xl2 , y)] 7→ ((xl0 , xl1y), [1 : y]`).
(1.16)

X(l1, (l0,−l2)) → Û1,

[(x, yl2)] 7→ ((xyl0 , yl1), [x : 1]).
(1.17)
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Proposition 1.8.1. Let M be a surface with abelian quotient singularities. Let π : M̂ → M be the

weighted blow-up at a point p of type (l2; l0, l1) with respect to (l0, l1). Assume (l2, l1) = (l2, l0) = 1.

Consider C and D two Q-divisors on M , denote by E the exceptional divisor of π, and by Ĉ (resp.

D̂) the strict transform of C (resp. D). Let µ and ν be the (l0, l1)-multiplicities of C and D at p.

i.e., x (resp. y) has (l0, l1)-multiplicity l0 (resp. l1). Then there are the following equalities:

1. π∗(C) = Ĉ + µ
l2
E,

2. E2 = − l2
l0l1

,

3. E.Ĉ = µ
l0l1

,

4. Ĉ.D̂ = C.D − µν
l0l1l2

.

In addition, if C has compact support then Ĉ2 = C2 − µ2

l0l1l2
.

Proof. See [2, Proposition 7.3, page 19]. �

1.8.1 Foliations on Weighted Blow-ups

Let us again consider a foliation F on a surface U = X(l2, (l0, l1)). Let [(0, 0)] ∈ U be a singular point

of F , and let π : X̂(l2, (l0, l1)) → X(l2, (l0, l1)) be a blow-up of X(l2, (l0, l1)) with respect to (l0, l1),

with exceptional divisor E = π−1([(0, 0)]) ' P1
(l0,l1). Let us explain how can define a foliation F̂ on

X̂(l2, (l0, l1)). We lift F to C2 and denote it by F̃ generated by a 1-form η such that

ψ∗g2η = λ(g2)η, (1.18)

where λ is a character of µl2 and ψg2(x, y) = (gl02 x, g
l1
2 y).

The 1-form η can be write as

η = ηk + ηk+1 + · · · ,

in which ηj are quasi-homogeneous 1-forms of degree j with respect to the weight vector (l0, l1) and

ηk 6= 0. By condition (1.18) we have that

η = ηk + ηk+l2 + · · · ,

and

λ(g2) = gk2 .

Hence we can write

ηk+jl2 = Ak+jl2−l0(x, y)dx+Bk+jl2−l1(x, y)dy,

where Ak+jl2−l0(x, y), Bk+jl2−l1(x, y) are quasi-homogeneous polynomials of degree k + jl2 − l0 and

k + jl2 − l1 respectively. Under these conditions we say that k is called the (l0, l1)-multiplicity or

algebraic multiplicity of F at p, which is denoted by

multalgp(F).
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In the first chart Ũ0 = X(l0, (−l2, l1)) we denote by π0 : C2 → X(l0, (−l2, l1)) the natural projection.

To define a foliation on X(l0, (−l2, l1)), the natural idea is to define a foliation F0 on C2. Using the

following change of coordinates {
x = u

l0
l2 ,

y = u
l1
l2 v.

we have that

π∗0(η) = u
k
l2
−1

(
l0
l2
Ak−l0(1, v) +

l1
l2
Bk−l1(1, v)

)
du+ u

k
l2Bk−l1(1, v)dv + · · · .

From this last equality, we get

π∗0(η) = u
e
l0 η̃,

where

e =

{
k − l2 , if l0xAk−l0 + l1yBk−l1 6= 0,

k , if l0xAk−l0 + l1yBk−l1 = 0.

in addition ψ∗g0(η̃) = g−e0 η̃, this means that η̃ induces a foliation F̂ on X(l0, (−l2, l1)). In the second

chart similarly can be treated and so we can define a foliation F̂ on X̂(l2, (l0, l1)). Note that

e =

{
k − l2 , if E is F̂-invariant

k , if E is not F̂-invariant

So, we have the following proposition.

Proposition 1.8.2. Let M be a surface with abelian quotient singularities. Let π : M̂ → M be the

weighted blow-up at a point p of type (l2; l0, l1) with respect to (l0, l1). Assume gcd(l2, l1) = gcd(l2, l0) =

1. Consider F a foliation on M and C a F-invariant compact curve, denote by E the exceptional

divisor of π, by F̂ = π∗(F) the foliation induced on M̂ and by Ĉ the strict transform of C. Let µ and

k be the (l0, l1)-multiplicities of C and F at p. i.e., x (resp. y) has (l0, l1)-multiplicity l0 (resp. l1).

Then the following equalities hold:

1. π∗(NF) = N F̂ + e
l2
E,

2. π∗(KF) = KF̂ + e−l0−l1+l2
l2

E,

where

e =

{
k − l2 , if E is F̂-invariant,

k , if E is not F̂-invariant.

Proof. 1. Follow from the construction of F̃ .

2. Notice that the foliation F̃ in C2 is also induced by the vector field

v = (Bk−l1 + · · ·+Bk+jl2−l1 · · · )
∂

∂x
− (Ak−l0 + · · ·+Ak+jl2−l0 + · · · ) ∂

∂y
.

Using the following change of coordinates {
x = u

l0
l2 ,

y = u
l1
l2 v.
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We get (π−1
0 )∗(v) = u

e−l0−l1+l2
l2 ṽ, in which the foliation F̂ is induced by ṽ. From this follows the item

2.

�

Proposition 1.8.3. Let F be a foliation of degree d on P2
` . Let π : P̂2

` → P2
` be the weighted blow-up at

the point p = [0 : 0 : 1]` of type (l2; l0, l1) with respect to (l0, l1). Assume gcd(l2, l1) = gcd(l2, l0) = 1.

Denote by E the exceptional divisor of π, by F̂ = π∗(F). Let k be the (l0, l1)-multiplicity of F at p.

Then F̂ is a Ricatti foliation with respect to the natural fibration if and only if

1. k = d− l2, if E is F̂-invariant,

2. k = d− 2l2, if E is not F̂-invariant.

Proof. Let C be a algebraic curve of degree l0l1 passing by p. Then

π∗(C) = Ĉ +
l0l1
l2
E,

and for the foliation we have

π∗(KF) = KF̂ +
e− |l|+ 2l2

l2
E,

where

e =

{
k − l2 , if E is F̂-invariant,

k , if E is not F̂-invariant.

Since KF̂ .Ĉ = KF .C − l0l1(e−|l|+2l2)
l0l1l2

and KF = OP2
l
(d− |l|), thus

KF̂ .Ĉ =
d− e− 2l2

l2
.

If F̂ is a Ricatti foliation, that is, F̂ is transversal with respect to natural fibration, then we have that

KF̂ .Ĉ = 0, therefore e = d− 2l2, this completes the proof. �

Remark 1.8.4. If F̂ is a Ricatti foliation and E is F̂-invariant, then there exist a curve Ĉ invariant

by F̂ . In fact, since E is F̂-invariant and E.E = −l2
l0l1
6= 0, then there exist p̂ ∈ sing(F̂) ∩ E and a

unique fiber Ĉ passing by p̂. It is not difficult to see that Ĉ is F̂-invariant. In particular, F have

algebraic curves invariant by F .

Example 1.8.5. Consider the weighted projective planes P2
(1,1,l2), l2 ≥ 2. The only singular point

of P2
(1,1,l2) is p = [0 : 0 : 1] ∈ X(l2, (1, 1)). Let π : P̂2

` → P2
l be the weighted blow-up at p of

type (l2, (1, 1)) with respect to (1, 1) and let E be the exceptional divisor. Since X̂(l2, (1, 1)) =

X(1, (−l2, 1)) ∪ X(1, (1,−l2)), P̂2
` is smooth and E.E = −l2. This surface is a Hirzebruch surface

Fl2 = P(OP1⊕OP1(l2)) which has a structure of P1-bundle. Let F be a foliation of degree d on P2
(1,1,l2)

and F̂ = π∗(F) be a foliation on P̂2
` induces by F . Let L ⊂ P2

(1,1,l2) be a line which pass through p

and L̂ be the strict transform of L. Let k = k(p) and e = e(p) be defined in the usual way. Then

1. L = OP2
l
(1),

2. NF = OP2
l
(d),

3. TF = OP2
l
(d− |l|),
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4. π∗(L) = L̂+ 1
l2
E,

5. N F̂ = dL̂+ d−e
l2
E,

6. KF̂ = (d− |l|)L̂+ (d−e−2l2)
l2

E.

Note that d− e ≡ 0( mod l2).
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Chapter 2

Density of Foliations Without

Algebraic Solutions

One the most important results of Jouanolou’s celebrated monograph [29] states that the set of

holomorphic foliations on the complex projective plane P2 of degree at least 2 which do not have

an algebraic solution, is dense in the space of foliations. This result for dimension one holomorphic

foliations on Pn was proved by Lins Neto - Soares in [31]. In [17] the authors prove a generalization

of Jouanolou’s result for one dimensional foliations over any smooth projective variety. On the other

hand, in [35] the author gives a different proof of Jouanolou’s theorem following the ideas of [17] and

restricting to P2. In [24], one can find versions of Jouanolou’s Theorem for second order differential

equations on P2, for k-webs (first order differential equations) on P2 and for webs with sufficiently

ample normal bundle on arbitrary projective surfaces.

The main theorem of this chapter provides a version of Jouanolou’s Theorem for foliations in the

weighted projective planes.

Theorem 1. Let ` = (l0, l1, l2) be a weighted vector, with l0, l1, l2 pairwise coprimes and 1 ≤ l0 ≤ l1 ≤
l2. A generic foliation with normal Q-bundle of degree d in P2

` does not admit any invariant algebraic

curve if d ≥ l0l1l2 + l0l1 + 2l2.

The bound above is not sharp. When ` = (1, 1, l2), l2 > 1, we have a more precise version of above

statement which is sharp.

Theorem 2. A generic foliation with normal Q-bundle of degree d in P2
(1,1,l2) with l2 ≥ 2 does not

admit any invariant algebraic curve if d ≥ 2l2 + 1. Moreover, if d < 2l2 + 1 any foliation with normal

Q-bundle of degree d in P2
(1,1,l2) admits some invariant algebraic curve.

In both statements, by generic we mean that the set of foliations that does not have any invariant

curve is the complement of a countable union of algebraic closed proper subsets.

2.1 Holomorphic foliations on P2
`

In P2
` , we know that Fol(d, `) = P(H0(P2

` ,Ω
1
P2
`
(d))) is the space of holomorphic foliations with normal

Q-bundle of the degree d. When the singular set is finite we say that the foliation F is saturated. If we
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denote by Sk ⊂ C[x0, x1, x2] the complex vector space formed by the quasi-homogeneous polynomial

of degree k, we see that for each 1 ≤ k ≤ d there is a natural application

φk : P(Sk)× Fol(d− k, `) → Fol(d, `),
([F ], [η]) 7→ [Fη].

The set of the unsaturated foliations with normal Q-bundle of degree d is equal to⋃
1≤k≤d

φk(P(Sk)× Fol(d− k, `)).

In particular, the set of the saturated foliations with the normal Q-bundle of degree d is an open set

on Fol(d, `) in the Zariski topology. Remark however that this open set can be empty, as illustrated

by the following examples.

Example 2.1.1. In the case ` = (1, 1, l2), l2 ≥ 2, we have that

Fol(d, (1, 1, l2)) = φd−2(P(Sd−2)× Fol(2, `)) for all 2 < d < l2 + 1.

In fact, let F ∈ Fol(d, (1, 1, l2)) be a foliation on P2
(1,1,l2) induced by η a quasi-homogeneous d-form.

Since 2 < d < l2 + 1, it follows that

η = Ad−1(x0, x1)dx0 +Bd−1(xo, x1)dx1 + Cdx2,

where Ad−1, Bd−1 are quasi-homogeneous polynomials of degree d − 1. From this last equality and

the equality x0Ad−1 + x1Bd−1 + l2x2C = 0, we conclude that

η = Fd−2(x0, x1)(l0x0dx1 − l1x1dx0),

where Fd−2 is a quasi-homogeneous polynomials of degree d− 2.

Example 2.1.2. In the case ` = (3, 5, 11), we have that

Fol(d, (3, 5, 11)) = ∅, for all d ∈ {9, 10, 12} ,
Fol(11, (3, 5, 11)) = φ3(P(S3)× Fol(8, `)),
Fol(13, (3, 5, 11)) = φ5(P(S5)× Fol(8, `)).

For simplicity, here and hereafter we will use Fol(d) to represent Fol(d, `).

2.1.1 Invariant algebraic curves

Let F be a foliation with normal Q-bundle of degree d in P2
` defined by η and C ⊂ P2

` an irreducible

algebraic curve. As in the case of P2, we say that C is F-invariant if i∗η ≡ 0, where i is the inclusion

of the smooth part of C into P2
`\Sing(P2

`).

Let us assume that C is given by the irreducible quasi-homogeneous polynomial F of degree k.

Then C is F-invariant if and only if there exists a quasi-homogeneous 2-form ΘF of degree d such

that

η ∧ dF − FΘF = 0. (2.1)
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Remark 2.1.3. An important fact about equation (2.1) is that it still works for reducible curves,

i.e., if the decomposition of the curve is F = Fn1
1 . . . Fnr

r , then the equation (2.1) holds if and only if

each irreducible factor Fj defines a F-invariant curve.

Definition 2.1.4. Let p0 := [1 : 0 : 0], p1 := [0 : 1 : 0], and p2 := [0 : 0 : 1] and consider the following

sets

Ck(d) := {F ∈ Fol(d)| there exists an F-invariant algebraic curve of degree k},
Dk(d) := {(x,F) ∈ P2

` × Fol(d)| x ∈ C for some F-invariant algebraic curve of degree k},

and for each i ∈ {0, 1, 2}

Cpik (d) := {F ∈ Fol(d)| pi ∈ C for some F-invariant algebraic curve of degree k}.

The following lemma will be used in §2.3 and §2.4.

Lemma 2.1.5. The sets Ck(d), Dk(d) and Cpik (d) are closed sets for every k and i.

Proof. We consider the following set

Zk(d) ⊂ P2
` × P(H0(P2

` ,Ω
1
P2
`
(d))×H0(P2

` ,Ω
2
P2
`
(d)))× P(H0(P2

` ,OP2
`
(k))),

Zk(d) = {(x, [(η,Θ)], [F ])| η ∧ dF − FΘ = 0 and F (x) = 0},

and the application

π : P2
` × P(H0(P2

` ,Ω
1
P2
`
(d))×H0(P2

` ,Ω
2
P2
`
(d)))× P(H0(P2

` ,OP2
`
(k))) 99K P2

` × Fol(d)× P(H0(P2
` ,OP2

`
(k)))

(x, [(η,Θ)], [F ]) 7→ (x, [η], [F ]).

The restriction of π to Zk(d) is regular. Since Zk(d) is a closed algebraic set then π(Zk(d)) is a closed

algebraic set too. Since Ck(d) is the image of π(Zk(d)) by the projection

P2
` × Fol(d)× P(H0(P2

` ,OP2
`
(k)))→ Fol(d),

we have that Ck(d) is closed algebraic set. Similarly, the image of π(Zk(d)) by the projection

P2
` × Fol(d)× P(H0(P2

` ,OP2
`
(k)))→ P2

` × Fol(d),

is Dk(d) and therefore it is closed set. Let

P2
` × Fol(d)

π1 //

π2

��

P2
`

Fol(d)

be the canonical projections. It follows that

Cpik (d) = π2(π−1
1 ({pi}) ∩ Dk(d)),

is closed set in Fol(d), this completes the proof of the lemma. �
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2.2 Existence of algebraic leaves

The following result has been proved (in much more general context) by Bogomolov and McQuillan

[6]. We will give another proof for foliations on the weighted projective planes, which tell us that

the low degree foliations on P2
(l0,l1,l2) have infinitely many algebraic leaves. By technical questions

that we will explain in §2.3.2, from now on we make the assumption: l0, l1, l2 pairwise coprimes and

l0 < l1 < l2.

Proposition 2.2.1. Let F be a foliation on P2
` . If deg(KF) < 0, then F is a rational fibration.

Proof. Let d = deg(NF), using Remark 1.6.4 and deg(KF) < 0, we see that

d = deg(NF) < |l| = l0 + l1 + l2.

We have the following cases:

1. If d = l0 + l1, then F is induced by η = l1x1dx0 − l0x0dx1.

2. If l0 + l1 < d < l0 + l2, then F is an unsaturated foliation, that is, F is induced by a quasi-

homegeneous 1-form η = Fd−lo−l1(x0, x1)(l1x1dx0 − l0x0dx1).

3. If l0 + l2 ≤ d < l1 + l2 or l1 + l2 < d < |l|, then the foliation F is given by

η = b1x
k−1
0 (l2x2dx0 − l0x0dx2) +Ad−l0−l1(x0, x1)(l1x1dx0 − l0x0dx1),

where l0k + l2 = d, k ≥ 1 and Ad−l0−l1 is a quasi-homogeneous polynomial of degree d− l0 − l1
in C[x0, x1]. We can write Ad−l0−l1(x0, x1) =

∑
I=(i,j)

aIx
i
0x
j
1. In open set U0 = C2/µl0 , we lift

F|U0
to C2 which is given by

η0 = −l0b1dx2 − l0Ad−l0−l1(1, x1)dx1,

= d(−l0b1x2 − l0Gd−l0(1, x1)),

where Gd−l0(x0, x1) =
∑
I

aI
j + 1

xi0x
j+1
1 . Thus,

η =
(−b1xk−1

0 x2 −Gd−l0)l0−1

xd−l0+1
0

d

(
(−b1xk−1

0 x2 −Gd−l0)l0

xd−l00

)
.

4. if d = l1 + l2, then the foliation F is given by

η =


Al2−l0(x0, x1)(l1x1dx0 − l0x0dx1) + b1(l2x2dx1 − l1x1dx2) , if l0 > 1,

Al2−l0(x0, x1)(l1x1dx0 − l0x0dx1) + b1(l2x2dx1 − l1x1dx2) , if l0 = 1.

+b2x
l1−1
0 (l2x2dx0 − x0dx2)

where Al2−l0 is a quasi-homogeneous polynomial of degree l2 − l0 in C[x0, x1]. By Proposition

1.7.6 we see that m(F) = 1
l0

, then we have two cases: If l0 > 1, then Sing(F) = {[1 : 0 : 0]},
and if l0 = 1, then either Sing(F) ∩ {x0 = 0} = ∅ or Sing(F) = {[0 : 0 : 1]}. In the

case l0 = 1 and Sing(F) ∩ {x0 = 0} = ∅, using a automorphism of P2
` , we can suppose that
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Sing(F) = {[1 : 0 : 0]}. Hence in the case l0 ≥ 1 and Sing(F) = {[1 : 0 : 0]}, the foliation F is

induced by

η = Al2−l0(x0, x1)(l1x1dx0 − l0x0dx1) + (l2x2dx1 − l1x1dx2).

We can write Al2−l0(x0, x1) =
∑

I=(i,j)

aIx
i
0x
j
1. Taking the following automorphism

ψ : P2
(l0,l1,l2) → P2

(l0,l1,l2)

[x0 : x1 : x2] 7→ [y0 : y1 : y2] = [x0 : x1 : F (x0, x1, x2)],

where F (x0, x1, x2) = x2 +
∑
I

−(i+ 1)aIx
i+1
0 xj1, thus we have that

η̃ = (ψ−1)∗η = l2y2dy1 − l1y1dy2.

In other case l0 = 1 and Sing(F) = {[0 : 0 : 1]}, therefore the foliation F is induced by

η = Al2−1(x0, x1)(l1x1dx0 − l0x0dx1) + b2x
l1−1
0 (l2x2dx0 − x0dx2).

In open set U0 = C2/µl0 , we lift F|U0
to C2 which is given by

η0 = −b2dx2 − l0Al2−1(1, x1)dx1,

= d(−b2x2 − l0Gl2+l1−1(1, x1)),

where Gl2+l1−1(x0, x1) =
∑
I

aI
j + 1

xi0x
j+1
1 . Thus,

η =
1

xl2+l1
0

d

(
−b2xl1−1

0 x2 −Gl2+l1−1(x0, x1)

xl2+l1−1
0

)
.

This finishes the proof of the proposition. �

The following proposition characterizes the low degree foliations on P2
(1,1,l2) with some algebraic

solution.

Proposition 2.2.2. Any foliation on P2
(1,1,l2) with normal Q-bundle having degree d satisfying 2 ≤

d ≤ 2l2 admits some invariant algebraic curve. Furthermore

1. Fol(2) = {x0dx1−x1dx0}, every foliation in Fol(2) admits rational first integral and in particular

admits infinite number of algebraic solutions.

2. Fol(d), 2 < d ≤ l2, has no saturated foliations.

3. Fol(l2 + 1): every foliation in Fol(l2 + 1) admits rational first integral.

4. Fol(l2 + 2): the generic element is defined by a logarithmic 1-form with poles on two curves of

degree one and a curve of degree l2.

5. Fol(d), if l2+3 ≤ d ≤ 2l2: every foliation in Fol(d) is a transversaly projective foliation (Ricatti).
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Proof. If 2 ≤ d ≤ l2, then F ∈ Fol(d) is given by

η = Ad−2(x0, x1)(x1dx0 − x0dx1),

where Ad−2 is a homogeneous polynomial of degree d − 2 in C[x0, x1]. Therefore {x0x1 = 0} is

F-invariant ∀F ∈ Fol(d).

If l2 < d ≤ 2l2, let F ∈ Fol(d) be a saturated foliation given by

η = Ad−l2−1(x0, x1)(l2x2dx0−x0dx2)+Bd−l2−1(x0, x1)(l2x2dx1−x1dx2)+Cd−2(x0, x1)(x1dx0−x0dx1),

where Ad−l2−1, Bd−l2−1, Cd−2 are homogeneous polynomials of degree d− l2 − 1, d− l2 − 1 and d− 2

respectively. In the open set U2 ' C2/µl2 , we lift F|U2
to C2 which is given by

η2 = l2Ad−l2−1dx0 + l2Bd−l2−1dx1 + Cd−2(x1dx0 − x0dx1).

Then we have that multalg[0:0:1](F) = d−l2 and x0Ad−l2−1+x1Bd−l2−1 6= 0. Therefore by Proposition

1.8.3 we have that F is Ricatti foliation. Hence by Remark 1.8.4 it admits an invariant curve.

1. A foliation F ∈ Fol(2) is induced by λ(x0dx1 − x1dx0), for some λ ∈ C∗.
2. Since F ∈ Fol(d) is given by

η = Ad−2(x0, x1)(x1dx0 − x0dx1),

where Ad−2 is a homogeneous polynomial of degree d− 2. We conclude that F is unsaturated.

3. Let F ∈ Fol(l2 + 1) be a saturated foliation. We can see that F is induced by

η = (l2x2A0(x0, x1)+x1Al2−1(x0, x1))dx0 +(l2x2B0−x0Al2−1(x0, x1))dx1−(x0A0 +x1B0)dx2, (2.2)

where A0, B0 and Al2−1 are homogeneous polynomials of degree 0, 0 and l2 − 1 respectively. By the

multiplicity formula Proposition 1.7.6, we have that m(F) = 1, then there exists a point p ∈ Sing(F).

By the equation (2.2) and F is a saturated foliation we conclude that p ∈ Sing(F)∩(P2
(1,1,l2)\[0 : 0 : 1]).

Take the line Lp that through the points p and p2. Suppose that Lp is not invariant by F . Using the

Tangency Formula for F and Lp we have that

0 < Tang(F , Lp) = 0,

this is contradiction, then Lp is F-invariant. For a suitable choice of coordinates we can assume that

the point p = p0 and F is induced by the 1-form

η = −x2
1Al2−2(x0, x1)dx0 + (−l2x2 + x0x1Al2−2(x0, x1))dx1 + x1dx2,

where Al2−2(x0, x1) = al2−1x
l2−2
1 + · · ·+ a1x

l2−2
0 . Taking the following automorphism

ψ : P2
(1,1,l2) → P2

(1,1,l2)

[x0 : x1 : x2] 7→ [y0 : y1 : y2] = [x0 : x1 : F (x0, x1, x2)],

where F (x0, x1, x2) = x2 − al2−1x0x
l2−1
1 − al2−2

2 x2
0x
l2−2
1 − · · · − a1

l2−1x
l2−1
0 x1. Therefore we have that

η̃ = (ψ−1)∗η = −l2y2dy1 + y1dy2.
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4. If F ∈ Fol(l2 + 2) is a saturated foliation, then by the multiplicity formula Proposition 1.7.6,

we have that m(F) = 2 + 1
l2

, then p2 ∈ Sing(F). Take a nonempty open U1 in Fol(l2 + 2) such that

if F ∈ U1 thus, Sing(F) consists of three different points and one of them is p2. Let F ∈ U1, then for

a suitable choice of coordinates we can assume that Sing(F) = {p0, p1, p2} and F is induced by the

1-form

η = −(l2ax1x2 + x0x
2
1Al2−2(x0, x1))dx0 + (−l2bx0x2 + x2

0x1Al2−2(x0, x1))dx1 + (a+ b)x0x1dx2

where Al2−2(x0, x1) = al2−1x
l2−2
1 + · · ·+ a1x

l2−2
0 . We define the nonempty open

U = {[η] ∈ U1| (l2 − i)a− ib 6= 0, ∀ i = 1, . . . , l2 − 1}.

If F ∈ U , take the following automorphism

ψ : P2
(1,1,l2) → P2

(1,1,l2)

[x0 : x1 : x2] 7→ [y0 : y1 : y2] = [x0 : x1 : F (x0, x1, x2)],

where F (x0, x1, x2) = x2 +
al2−1

(l2−1)a−bx0x
l2−1
1 +

al2−2

a(l2−2)−2bx
2
0x
l2−2
1 + · · · + a1

a+(1−l2)bx
l2−1
0 x1, therefore

we have that

η̃ = (ψ−1)∗η = −l2ay1y2dy0 − l2by0y2dy1 + (a+ b)y0y1dy2,

η̃ = y0y1y2

(
−ady0

y0
− bdy1

y1
+ (a+ b)

dy2

l2y2

)
�

2.3 Foliations without algebraic leaves on P(l0,l1,l2)

For any positive integers a and b with gcd(a, b) = 1, define g(a, b) to be the greatest positive integer

N for which the equation

ax1 + bx2 = N, (2.3)

is not solvable in nonnegative integers.

Lemma 2.3.1. (Sylvester, 1894 [3]) Let a and b be positive integers with gcd(a, b) = 1. Then

g(a, b) = ab− a− b.

Proof. Suppose that N > ab − a − b. Note that if (x1, x2) = (y1, y2) is a particular solution to

(2.3), then every integer solution is of the form (x1, x2) = (y1 + bt, y2 − at), t ∈ Z. Let t be an integer

such that 0 ≤ y2 − at ≤ a− 1. Then

(y1 + bt)a = N − (y2 − at)b > ab− a− b− (a− 1)b = −a,

which implies y1 + bt > −1, i.e., y1 + bt ≥ 0. It follows that in this case the equation ax1 + bx2 = N

is solvable in nonnegative integers. Thus

g(a, b) ≤ ab− a− b.
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Now we need only to show that the equation ax1 + bx2 = ab − a − b is not solvable in nonnegative

integers. Otherwise, we have

ab = a(x1 + 1) + b(x2 + 1).

Since gcd(a, b) = 1, we see that a|(x2 + 1) and b|(x1 + 1), which implies x2 + 1 ≥ a and x1 + 1 ≥ b.

Hence

ab = a(x1 + 1) + b(x2 + 1) ≥ 2ab,

and this contradiction shows that

g(a, b) ≥ ab− a− b.

Therefore g(a, b) = ab− a− b. �

Definition 2.3.2. Let ` = (l0, l1, l2) be a weight vector. Assume that its entries are ordered (

l0 ≤ l1 ≤ l2 ) and are pairwise coprime. Let X = P2
`\Sing(P2

`). Recall that p0 = [1 : 0 : 0],

p1 = [0 : 1 : 0], p2 = [0 : 0 : 1]. We define the following sets

S(d) := {(x,F) ∈ P2
` × Fol(d)) |x ∈ sing(F)},

SX(d) := {(x,F) ∈ X × Fol(d)|x ∈ sing(F)},
Spi(d) := {(pi,F) ∈ S(d)}, i = 0, 1, 2.

Proposition 2.3.3. For all d > l1l2, SX(d) is an irreducible subvariety and has codimension two on

X × Fol(d).

Proof. Consider the projection π1 : S(d)→ P2
` . For every x ∈ P2

` , the fiber π−1
1 (x) is a subvariety

of {x} × Fol(d) contained in S(d) and isomorphic to a projective space, i.e., if two 1-forms η and η′

vanish in x thus the same is true for a linear combination of them.

The automorphism group of P2
` has four distinct orbits on P2

` . In order to proof the proposition

it suffices to exhibit for each of these orbits, two 1-forms which are linearly independent at a point of

them.

Since d > l1l2 we can apply Lemma 2.3.1 to obtain positive integers i12 and j12 such that i12l1 +

j12l2 = d. Hence

α = xi12−1
1 xj12−1

2 (l2x2dx1 − l1x1dx2)

belongs H0(P2
` ,Ω

1
P2
`
(d)). Similarly, since d > l0l2 and d > l0, l1 we obtain integers i02, i01, j01, j02 such

that i01l0 + j01l1 = i02l0 + j02l2 = d, and consequently

β = xi01−1
0 xj01−1

1 (l1x1dx0 − l0x0dx1) and γ = xi02−1
0 xj02−1

2 (l2x2dx0 − l0x0dx2)

also belong to H0(P2
` ,Ω

1
P2
`
(d)).

If p = (1, 1, 1) then Vp =< α(p), β(p), γ(p) >, the vector space generated by the evaluation of α, β,

and γ at p has dimension 2.

At the point p0 = (0, 1, 1), the analogue vector space has dimension one. But we can apply Lemma

2.3.1 to write d− l0 = i0l1 + j0l2 witth i0 and j0 positive integers, and see that

δ0 = xi0−1
1 xj02 (l0x0dx1 − l1x1dx0)

belongs to H0(P2
` ,Ω

1
P2
`
(d)). Now considering the evaluation of δ0 and α at p0 we see that they are C-

linearly independent. Applying the same argument to the others points p1 = (1, 0, 1) and p2 = (1, 1, 0),

we conclude that π−1
1 (x) ⊂ X×Fol(d) always have codimension two. It follows that SX(d) is projective

bundle over X, and therefore is smooth and irreducible. �
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Proposition 2.3.4. Let d > l1l2 and suppose that Ck(d) = Fol(d) for some k > 0.

1. If dimSpi(d) = dimFol(d) and Cpik (d) = Ck(d) for some i, then Spi(d) ∩ Dk(d) = Spi(d).

2. If dimSpi(d) < dimFol(d) or Cpik (d) ( Ck(d) for every i, then SX(d) ∩ Dk(d) = SX(d).

Proof. We denote by π the restriction of the natural projection to SX(d)

π : SX(d)→ Fol(d).

For item 1, the condition dimSpi(d) = dimFol(d) implies that Spi(d) = {pi}×Fol(d). Hence Spi(d)∩
Dk(d) = Spi(d). For item 2, since Ck(d) = Fol(d) and Cpik (d) ( Ck(d) for all i, we define the nonempty

open set

Uk = Fol(d)\ ∪2
i=0 (Cpik (d)).

Let F ∈ Uk be a foliation saturated. Then there exists a curve C of degree k invariant by F . Using

Camacho-Sad Theorem in weighted projective planes C2 =
∑
p∈X∩C CS(F , C, p). This implies that

there exists a p ∈ Sing(F) ∩X. Therefore

π(π−1(Uk) ∩ Dk(d)) = Uk.

By Proposition 2.3.3 we have that π−1(Uk) is an irreducible open set and

dimπ−1(Uk) = dimFol(d),

and since dimπ(π−1(Uk) ∩ Dk(d) = dimUk = dimFol(d) implies that

dimπ−1(Uk) ∩ Dk(d) = dimπ−1(Uk),

and hence

π−1(Uk) ∩ Dk(d)) = π−1(Uk).

Taking closure on P2
` × Fol(d), we get

SX(d) ∩ Dk(d) = SX(d).

In particular we have

SX(d) ∩ Dk(d) = SX(d).

�

In order to prove our result we will construct examples contradicting the above proposition for

d� 0 in the next subsection.

2.3.1 Existence of singularities without algebraic separatrix

First, we construct a family examples that contradict item 2 of Proposition 2.3.4 for d � 0. The

following example is an adaptation of an example of J. V. Pereira, see [35, page 5].

Let ` = (l0, l1, l2), l0 ≤ l1 ≤ l2, and F0 be a foliation in P2
(l0,l1,l2) induced by the following 1-form

η0 = x0x1x2(xl1l20 +xl0l21 +xl0l12 )

(
λl1l2

dx0

x0
+ µl0l2

dx1

x1
+ +γl0l2

dx2

x2
− (λ+ µ+ γ)

d(xl1l20 + xl0l21 + xl0l22 )

xl1l20 + xl0l21 + xl0l12

)
.
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Then deg(NF0) = l0l1l2 + l0 + l1 + l2 and

Sing(F0) =


[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [0 : 1 : a1/l1 ] | al0 = −1,

[1 : 0 : b1/l0 ] | bl1 = −1,

[1 : c1/l0 : 0] | cl2 = −1,

[x0 : x1 : x2] |xl1l20 = λ, xl0l21 = µ, xl0l12 = γ

 .

Notice that the foliation F0 is induced by η admits a multivalued first integral, that is,

F (x0, x1, x2) =
xλ0x

µ
1x

γ
2

(xl1l20 + xl0l21 + xl0l12 )λ+µ+γ
.

Proposition 2.3.5. If λ,µ and γ are Z-linearly independent, then the previous foliation F0 in P2
`

which does not have a F0-invariant algebraic curve passing through the points

Sing(F0) ∩ P2
`\{x0x1x2 = 0}.

Proof. Let p ∈ Sing(F0) ∩ P2
`\{x0x1x2 = 0}, since λ,µ and γ are Z-linearly independent we have

that p does not belong none of the curves {x0 = 0}, {x1 = 0}, {x2 = 0}, {xl1l20 + xl0l21 + xl0l12 = 0}.
Suppose that there exists a curve C invariant by F0 passing through p. By Bézout’s Theorem for

weighted projective planes we have that C intersects to {x0 = 0}. It is clear that the points of

intersection between C and {x0 = 0} are contained in the singularities of F . Let q one of these points

of intersection between C and {x0 = 0}. Without loss of generality we can assume q = [0 : 0 : 1]. The

others case are similar. In a neighborhood of q, we can write the first integral F as

F (x0, x1, 1) = u(x0, x1)xλ0x
µ
1 ,

where u is a function non zero and without ramification in a neighborhood of q = (0, 0). Again,

because λ,µ and γ are Z-linearly independent we have that λ/µ /∈ Q. This implies that the unique

separatrices passing through q are {x0 = 0} and {x1 = 0}. This completes the proof. �

Corollary 2.3.6. For all d > l0l1l2 + l0l1 + l2, there exists a foliation F with normal Q-bundle of

degree d in P2
` that does not have a F-invariant algebraic curve passing through the points Sing(F)∩

P2
`\{x0x1x2 = 0} 6= ∅.

Proof. Let F0 be the foliation on P2
` of Lemma 2.3.5 induced by η0. Note that the system

il0 + jl1 = d0 always has solution solution in N≥0×N≥0 if d0 > l0l1− l0− l1, according Lemma 2.3.1.

Therefore, we define a foliation F on P2
` induced by

η = xi0x
j
1η0,

in which deg(NF) > l0l1l2 + l0l1 + l2. This completes the proof of the corollary. �

Now, we are going to construct a family examples that contradict item 2 of Proposition 2.3.4 for

d� 0.

For every j0 = 1, . . . , l2, let j1 be the unique integer satisfying 1 ≤ j1 ≤ l2 and l0j0 ≡ l1j1 mod l2.

Consider the foliation F in C2, induced by the 1-form

η = (xl21 − 1)xj0−1
0 dx0 − a(xl20 − 1)xj1−1

1 dx1,
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in which a ∈ C\R.

We have to consider two cases:

1. First case: j0 = j1 = l2 (nondicrital case).

Lemma 2.3.7. The foliation F does not have a F-invariant algebraic curve passing through the point

(0, 0).

Proof. We extend F to a foliation on P2 that is denoted by G. The foliation G is induced by

ω = (xl21 − x
l2
2 )xl2−1

0 x2dx0 − a(xl20 − x
l2
2 )xl2−1

1 x2dx1 + (a(xl20 − x
l2
2 )xl21 − (xl22 − x

l2
2 )xl20 )dx2 .

Thus deg(G) = 2l2 − 1, and {x2 = 0}, {xl21 − x
l2
2 = 0}, {xl20 − x

l2
2 = 0} are G-invariant.

Notice that the singularities of G on {xl21 − x
l2
2 = 0} ∩ {xl20 − x

l2
2 = 0} are reduced. Also over

each of these lines G has only one extra singularity corresponding to the intersection of the line with

{x2 = 0}.
Suppose there exists an algebraic curve C invariant by G passing by [0 : 0 : 1]. Bézout’s Theorem

implies that C must intersect the line {x1 − x2 = 0}. Since the singularities of G on this line outside

{x2 = 0} are all reduced and contain two separatrices which do not pass through [0 : 0 : 1] we conclude

the C intersect this line only at the point [1 : 0 : 0]. We proceed to make a blow-up at the point

[1 : 0 : 0]. Let π : M → P2 be the blow-up of P2 at the point [1 : 0 : 0], E be the exceptional divisor,

C̃ be the strict transform of C, L2 be the strict transform of {x2 = 0}, F be the strict transform of

{xl21 − x
l2
2 = 0}, and G̃ = π∗(G) be the foliation on M .

We claim that the singularity at the point [1 : 0 : 0] is nondicritical, the singularities of G̃ on E

are all reduced and are contained in the intersection of E with L2 ∪ F . In fact, the open set π−1(U0)

is covered by V0 ∪ V1 and the first chart is given by

π|V0
: V0 → U0

(u, v) 7→ (x1, x2) = (u, uv).

The foliation G̃ on V0 is induced by

η̃ = −v(1− vl2)du+ u(a(1− ul2vl2)− (1− vl2))dv.

We see that E is G̃-invariant, this implies that the point [1 : 0 : 0] is nondicritical. Also, Sing(G̃) ∩
E ∩ V0 = {(0, 0), (0, ξ)| ξl2 = 1}, and the quotients of eigenvalues of G̃ at the points (0, 0) and (0, ξ)

are 1 − a and 1−a
l2

. Since a ∈ C\R we conclude that these singularities are all reduced. Similarly to

the second chart. This claim contradicts the fact that C̃ ∩ E is contained in Sing(G). Therefore we

conclude that there is no such curve C invariant by G passing by [0 : 0 : 1]. �

2. Second case: l2 > j0, j1 (dicritical case).

Lemma 2.3.8. The foliation F does not have a F-invariant algebraic curve passing through the point

(0, 0).

Proof. Again, we extend F to a foliation on P2 that is denoted by G. Assume, without loss of

generality, that j0 ≥ j1. In this case the foliation G is induced by

ω = (xl21 −x
l2
2 )xj0−1

0 x2dx0−a(xl20 −x
l2
2 )xj1−1

1 xj0−j1+1
2 dx1 +(a(xl20 −x

l2
2 )xj11 x

j0−j1
2 − (xl21 −x

l2
2 x

j0
0 ))dx2 .
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Thus deg(G) = l2 + j0 − 1, and {x2 = 0}, {xl21 − x
l2
2 = 0}, {xl20 − x

l2
2 = 0} are G-invariant.

Notice that the singularities of G on {xl21 − x
l2
2 = 0} ∩ {xl20 − x

l2
2 = 0} are reduced. Also over

each of these lines G has only one extra singularity corresponding to the intersection of the line with

{x2 = 0}.
Suppose there exists an algebraic curve C invariant by G passing by [0 : 0 : 1]. By the same

procedure as above, we conclude the C intersect at points [1 : 0 : 0] and [0 : 1 : 0]. We proceed to

make a blow-up at the points [1 : 0 : 0] and [0 : 1 : 0]. Let π : M → P2 be the blow-up of P2 at the

points [0 : 1 : 0] and [1 : 0 : 0], E = E1∪E2 be the exceptional divisor, C̃ be the strict transform of C,

L2 be the strict transform of {x2 = 0}, L0 be the strict transform of {x1 − x2 = 0}, L1 be the strict

transform of {x0 − x2 = 0}, and G̃ = π∗(G) the foliation on M .

We claim that the singularities at the points [1 : 0 : 0] and [0 : 1 : 0] are dicritical, the singularities

of G̃ on E do not belong to the lines L1 and L2. In fact, the open set π−1(U0) is covered by V0 ∪ V1

and the first chart is given by

π|V0
: V0 → U0

(u, v) 7→ (x1, x2) = (u, uv).

The foliation G̃ on V0 is induced by

η̃ = −vul2−j0−1(1− vl2)du+ (a(1− ul2vl2)vj0−j1 − ul2−j0(1− vl2))dv.

We see that E1 is not G̃-invariant, this implies that [1 : 0 : 0] is dicritical singularity. Also, L1 ∩ V0 =

{1− v = 0} and Sing(G̃) ∩ E ∩ V0 = {(0, 0)}. Therefore the singularities of G̃ on E do not belong to

L1. The same argument show that the singularities of G̃ on E do not belong to L0.

Now we define the following map

φ : Pic(M) → Z2

D 7→ (D.L0, D.L1)

Observe that L0 and L1 generate the image of φ. From this and L2 ∈ ker(φ), it follows that

ker(φ) = ZL2.

By the last claim, we conclude that C̃ ∈ ker(ψ). We can write C̃ = bL2 in Pic(M) for some b ∈ Z.

Then
C̃.E > 0,

bL2.E > 0.

Hence b > 0. On the other hand C̃.L2 ≥ 0 and L2.L2 = −1, thus b ≤ 0. This is a contradiction. This

implies that there is no such curve C invariant by G passing by [0 : 0 : 1]. �

Corollary 2.3.9. For all d ≥ l2l1 + l2l0 + l2, for all k ∈ N and for every i = 0, 1, 2, we have

Cpik (d) 6= Fol(d).

If l0 = l1 = 1 and l2 ≥ 2, then Cp2k (d) 6= Fol(d), for all d ≥ 2l2 + 1, for all k ∈ N.

Proof. We show that Cp2k (d) 6= Fol(d). Same arguments can be used to other cases.
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Take d ≥ l2l1+l2l0+l2, let j0 j1 be the unique integers satisfying 1 ≤ j0, j1 ≤ l2 and d ≡ l0j0 ≡ l1j1
mod l2. By Lemma 2.3.7 and Lemma 2.3.8 the foliation F on C2 given by

η = (xl21 − 1)xj0−1
0 dx0 − a(xl20 − 1)xj1−1

1 dx1,

does not have a F-invariant algebraic curve passing through the point (0, 0).

By Remark 1.6.3 we extend F to a foliation F̂ on P2
` , which is induced by θ and

deg(N F̂) =

{
l0j0 + l1l2 + l2 , if l0j0 ≥ l1j1,

l1j1 + l0l2 + l2 , if l1j1 > l0j0.

Since d ≡ deg(N F̂) mod l2 and d ≥ l2l1 + l2l0 + l2, we can multiply the 1-form θ by an adequate

power of x2 and construct a foliation H on P2
` with normal Q-bundle of degree d. The foliation H

does not have a H-invariant algebraic curve passing through the point [0 : 0 : 1]. Then H /∈ Cp2k (d).

If l0 = l1 = 1 and d ≥ 2l2 + 1, then d ≡ j( mod l2), for an unique integer 1 ≤ j ≤ l2. We take

j = j0 = j1 and the foliation F̂ constructed above satisfies deg(N F̂) = 2l2 +j. By the same procedure

we can construct a foliation H /∈ Cp2k (d) for all k ∈ N. �

Proof of Theorem 1. By Lemma 2.1.5 Ck(d) is an algebraic closed subset of Fol(d) for all

k ∈ N. We claim that if d ≥ l0l1l2 + l0l1 + 2l2, then Ck(d) 6= Fol(d), for all k ∈ N. In fact, if we

had Ck(d) = Fol(d) for some k ∈ N, then we could apply Proposition 2.3.4 and this would contradict

Corollary 2.3.9 and Corollary 2.3.6. Hence the complement of Ck(d) in Fol(d) is an dense open set if

d ≥ l0l1l2 + l0l1 +2l2. We conclude the proof of Jouanolou’s Theorem on P2
` applying Baire’s Theorem.

�

2.3.2 Reduction of problem

In this subsection, we only consider saturated foliations and the notations as in Chapter 1. Our goal

is to reduce from the case of foliations on P2
` , ` = (l0, l1, l2) with gcd(l0, l1, l2) = 1 to the case of

foliations on P2
`′ `
′ = (l′0, l

′
1, l
′
2), with l′0, l

′
1, l
′
2 pairwise coprimes.

Let ` = (l0, l1, l2) be a weighted vector with gcd(l0, l1, l2) = 1. We have

l0 = r1r2l
′
0, l1 = r0r2l

′
1, l2 = r0r1l

′
2,

where

r0 = gcd(l1, l2), r1 = gcd(l0, l2), r2 = gcd(l0, l1).

Therefore, we have l0l1l2 = r2l′0l
′
1l
′
2, where r = r0r1r2, `′ = (l′0, l

′
1, l
′
2) and also the natural isomorphism

ϕ∗ : H0(P2
`′ ,Ω

k
P2
`′

(d)) → H0(P2
` ,Ω

k
P2
`
(rd))

η 7→ ϕ∗η,

which is induced by the following isomorphism

ϕ : P2
` → P2

`′

[x0 : x1 : x2]` 7→ [xr00 : xr11 : xr22 ]`′ = [y0 : y1 : y2]`′ .

Note that, in the case k = 1, the isomorphism is valid for any d ≥ min{l′0 + l′1, l
′
0 + l′2, l

′
1 + l′2}.
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Remark 2.3.10. Let F ∈ Fol(d, `′) given by η, and G = ϕ∗F be the foliation on P2
l induced by ω.

Then

ω =



ϕ∗η , if {y0 = 0}, {y1 = 0} and {y2 = 0} are not F-invariant,

ϕ∗η

xr0−1
0

, if {y0 = 0} is F-invariant and {y1 = 0}, {y2 = 0} are not F-invariant,

ϕ∗η

xr0−1
0 xr1−1

1

, if {y0y1 = 0} is F-invariant and {y2 = 0} is not F-invariant,

ϕ∗η

xr0−1
0 xr1−1

1 xr2−1
2

, if {y0y1y2 = 0} is F-invariant.

Recall that

Fol′(d, `′) = {F ∈ Fol(d, `′)| {y0 = 0}, {y1 = 0}, {y2 = 0} are not F-invariant},

Fol′i(d, `′) = {F ∈ Fol(d, `′)| {yi = 0} is F-invariant and {yj = 0}, {yk = 0} are not F-invariant, j 6= k},

Fol′i,j(d, `′) = {F ∈ Fol(d, `′)| {yiyj = 0} is F-invariant and {yk = 0} is not F-invariant},

Fol0,1,2(d, `′) = {F ∈ Fol(d, `′)| {y0y1y2 = 0} is F-invariant}.

Proposition 2.3.11. Under the conditions above, we have the following isomorphisms:

1. H0(P2
`′ ,Ω

k
P2
`′

(d))
ϕ∗
// H0(P2

` ,Ω
k
P2
`
(rd)) ∀ d, ∀ k ≥ 0.

2. Fol′(d, `′)
ϕ∗
// Fol′(rd, `) ∀ d.

3. Fol′i(d, `′)
ϕ∗
// Fol′i(rd− li(ri − 1), `) ∀ d. If li > 1.

4. Fol′i,j(d, `′)
ϕ∗
// Fol′i,j(rd− li(ri − 1)− lj(rj − 1), `) ∀ d. If li, lj > 1 and i 6= j.

5. Fol0,1,2(d, `′)
ϕ∗
// Fol0,1,2(rd− l0(r0 − 1)− l1(r1 − 1)− l2(r2 − 1), l) If l0, l1, l2 > 1.

In conclusion, for all G ∈ Fol(d̃, `), d̃ ≥ min{l0 + l1, l0 + l2, l1 + l2}, G satisfies one of the above items

2, 3, 4, or 5.

Proof. 1. Follows from the fact that ϕ is an isomorphism. To prove items 2 and 3, it is sufficient

to prove surjectivity.

2. Let G ∈ Fol′(rd, `) given by ω. Then by Remark 2.3.10 there exists η ∈ H0(P2
`′ ,Ω

1
P2
`′

(d)) such

that ϕ∗η = ω. We only need to show that codimSing(η) = 0. To do this, suppose that η = Fη′, then

(ϕ∗F )(ϕ∗η′) = ϕ∗η = ω, and since codimSing(ω) = 0, we thus get ϕ∗F is a constant, hence F is a

constant. By Remark 2.3.10, we concluded that η induces the foliation F ∈ Fol′(d, `′).
3. Suppose i = 0 and l0 > 1. Let G ∈ Fol′0(rd− l0(r0 − 1), `) given by ω, we define

ω̃ = xr0−1
0 ω ∈ H0(P2

` ,Ω
1
P2
`
(rd)).

62



Then by Remark 2.3.10 there exists η ∈ H0(P2
`′ ,Ω

1
P2
`′

(d)) such that ϕ∗η = ω̃. It suffices to prove that

codimSing(η) = 0. To see this, suppose that η = Fη′, hence (ϕ∗F )(ϕ∗η′) = ϕ∗η = ω̃ = xr0−1
0 ω, thus

xr0−1
0 divides ϕ∗F , then F = yk0 , and hence k = 0. Since G ∈ Fol′0(rd− l0(r0 − 1), `), Remark 2.3.10

implies that η induces the foliation F ∈ Fol′0(d, `′).

Items 4 and 5 follow by analogous arguments used in 2 and 3, applying following definitions:

5. For example, for the case i = 0 and j = 1, define ω̃ = xr0−1
0 xr1−1

1 ω.

6. Define ω̃ = xr0−1
0 xr1−1

1 xr2−1
2 ω.

Now let G ∈ Fol(d̃, `) given by

ω = Adx0 +Bdx1 + Cdx2.

Let us prove that G satisfies one of the items 2, 3, 4 or 5. We will prove two cases, the other cases are

analogous.

First case: Assume that {x0 = 0}, {x1 = 0}, and {x2 = 0} are not G-invariant. We can always

write

B = xq10 Bq2(x1, x2) + . . .+Bd̃−l1(x1, x2),

where d̃− l1 = q1l0 + q2. Since {x0 = 0} is not G-invariant, there exist (i, j) ∈ N≥0 × N≥0 such that

d̃ − l1 = il1 + jl2. That implies gcd(l1, l2)|d̃ − l1, so r0|d̃. Analogously for the quasi-homogeneous

polynomials A, B and using the fact that {x1 = 0}, {x2 = 0} are not G-invariant respectively, we get

that r1|d̃ and r2|d̃. Therefore, we can conclude that r0r1r2|d̃ ,i.e., d̃ = rd. Hence G ∈ Fol′(rd, `), this

finishes the proof of the first case.

Second case: Suppose that {x0 = 0} is G-invariant and {x1 = 0}, {x2 = 0} are not G-invariant.

Define
˜̃
d = d̃+ l0(r0 − 1).

Because {x1 = 0}, {x2 = 0} are not G-invariant, we can apply the first case, then r1r2|d̃. Moreover,

r1r2|l0, thus r0r1| ˜̃d. We can write

A = xq10 Aq2(x1, x2) + . . .+Ad̃−l0(x1, x2),

since G ∈ Fol(d̃, l) and {x0 = 0} is G-invariant, then there exists (i, j) ∈ N≥0 × N≥0 such that

d̃ − l0 = il1 + jl2, therefore gcd(l1, l2)|d̃ − l0. Moreover r0|d̃ − l0 and
˜̃
d = (d̃ − l0) + l0r0, hence r0| ˜̃d,

we can conclude that d̃ = rd− l0(r0 − 1). Thus G ∈ Fol′0(rd− l0(r0 − 1), l), the proof of second case

is complete. �

Corollary 2.3.12. Let ` = (l0, l1, l2) be a weighted vector with gcd(l0, l1, l2) = 1 and F be a foliation

on P2
` . If deg(KF) < 0, then F is a rational fibration.

Proof. Since deg(KF) < 0 we have that deg(NF) < |l| = l0 + l1 + l2. Let `′ = (l′0, l
′
1, l
′
2) and

ϕ : P2
` → P2

`′ as Proposition 2.3.11. We claim that if F = ϕ∗G and deg(NF) < l0 + l1 + l2, then

deg(NG) < l′0 + l′1 + l′2. In fact, by Proposition 2.3.11 we have

r deg(NG)− l0(r0 − 1)− l1(r1 − 1)− l2(r2 − 1) ≤ deg(Nϕ∗G).

Using deg(Nϕ∗G) < l0 + l1 + l2, we see that r deg(NG) < r0l0 + l1r1 + l2r2. Since l0 = l′0r1r2,

l1 = l′1r0r2 and l2 = l′2r0r1 we conclude that deg(NG) < l′0 + l′1 + l′2. The corollary follows from

Proposition 2.2.1. �
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Corollary 2.3.13. Under the conditions and notations of Proposition 2.3.11, a generic foliation with

normal Q-bundle of degree rd in P2
(l0,l1,l2) does not have any invariant algebraic curves if

d ≥ l′0l′1l′2 + l′0l
′
1 + l′0l

′
2 + l′1l

′
2 + l′0 + l′1 + l′2.

Proof. Using the isomorphism ϕ∗ : Fol′(d, `′)→ Fol′(rd, `) of Proposition 2.3.11 and Theorem 1,

the result follows. �

2.4 Foliations without algebraic leaves on P(1,1,l2), l2 > 1

We first recall of Definition 2.3.2 that X = P2
(1,1,l2)\{p2} and the following algebraic sets

S(d) = {(x,F) ∈ P2
(1,1,l2) × Fol(d)) |x ∈ sing(F)},

SX(d) = {(x,F) ∈ X × Fol(d)|x ∈ sing(F)},
Sp2(d) = {(p2,F) ∈ S(d)}.

The following proposition allows to determine when the algebraic variety S(d) is not irreducible.

Proposition 2.4.1. Let ` = (1, 1, l2) be a weighted vector with l2 ≥ 2 and d > l2 be an integer. The

following assertions hold true:

1. If d ≡ 1( mod l2), then S(d) is an irreducible variety of codimension two in P2
` × Fol(d).

2. If d 6≡ 1( mod l2), then S(d) is not irreducible variety with decomposition in irreducible compo-

nents equal to

SX(d) ∪ Sp2(d).

Furthermore dimS(d) = dimSX(d) = dimSp2(d) = dimFol(d).

Proof. 1. Consider the projection π1 : S(d) → P2
` . For every x ∈ P2

(1,1,l2), the fiber π−1
1 (x) is a

subvariety of {x}×Fol(d) contained in S(d) isomorphic to a projective space, i.e., if two 1-forms η and

η′ vanish in x thus the same is true for a linear combination of them. Since the automorphism group

of P2
(1,1,l2) acts transitively on X (see [18, section 4]), it follows that every fiber of π1 restricted to

SX(d) ⊂ X×Fol(d) is smooth, irreducible and biholomorphic to a projective space of dimension N . It

is clear that π−1
1 (p2) = Sp2(d) is smooth and irreducible, but in general it is not true that dimC Sp2(d) =

dimC π
−1
1 (p0), the condition d ≡ 1( mod l2) is necessary. We claim that under this condition Sp2(d)

has codimension two on {p2}×Fol(d) and π−1
1 (p0) has codimension two on {p0}×Fol(d). The condition

d ≡ 1( mod l2) implies that there exists a quasi-homogeneous polynomials F of degree d− l2−1 such

that F (p2) 6= 0, thus the 1-forms η1 = F (l2x2dx0 − x0dx2) and η2 = F (l2x2dx1 − x1dx2) are degree

d, and they are such that η1(p0) and η2(p0) are C-linearly independent. Thus any 1-form η of degree

d such that η(p2) 6= 0 can be written as a C-linear combination of η1 and η2. Similarly for the fiber

π−1
1 (p0). Since all the fibers π−1

1 (x) for x ∈ P2
(1,1,l2) are irreducible and of the same dimension, then

S(d) is irreducible, see [38, Theorem 8, page 77].

2. Notice that the condition d 6≡ 1( mod l2) implies that Sp2(d) = {p2} × Fol(d). Consider the

following exact sequence

0 // kerψ
i // H0(P2

` ,Ω
1
P2
`
(d))⊗OX

ψ
// Ω1

P2
`
(d)|X ,
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where ψ(x, η) = η(x). We claim that kerψ is a vector bundle. From the proof of item 1, we have that

all fibers π−1
1 (x) for x ∈ X are smooth and of dimension dimCFol(d)−2 . This shows that dimC kerψx

is constant as a function of x ∈ X. Hence kerψ is a vector bundle and in particular P(kerψ) = SX(d)

is a irreducible variety of codimension two on X × Fol(d). Therefore, we have that SX(d) and Sp2(d)

are irreducible varieties of dimension equal to dimFol(d) and S(d) = SX(d) ∪ Sp2(d). We claim that

the varieties SX(d) and Sp2(d) are the irreducible components of S(d). By [28, Proposition 1.5, page

5] we only require that SX(d) + Sp2(d). Suppose that Sp2(d) ⊂ SX(d). Since dimSp2(d) = dimSX(d)

we get that Sp2(d) = SX(d). Hence Sp2(d) ⊃ SX(d). This contradicts the fact that Sp2(d)∩SX(d) = ∅.
�

Recall that

Cp2k (d) = {F ∈ Fol(d) | p2 ∈ C for some F-invariant algebraic curve of degree k},

is a closed set.

Proposition 2.4.2. Let d > l2 and suppose that Ck(d) = Fol(d) for some k > 0. Then

1. If d ≡ 1( mod l2), then S(d) ∩ Dk(d) = S(d).

2. If d 6≡ 1( mod l2) and Cp2k (d) = Ck(d), then Sp2(d) ∩ Dk(d) = Sp2(d).

3. If d 6≡ 1( mod l2) and Cp2k (d) ( Ck(d), then SX(d) ∩ Dk(d) = SX .

Proof. Let π2 : P2
` ×Fol(d)→ Fol(d) be the projection on the second coordinate and π : SX(d)→

Fol(d) be the restriction of π2 to SX(d).

1. If Ck(d) = Fol(d), then all foliations with normal Q-bundle of degree d admits a invariant

algebraic curve of degree k. Using Camacho-Sad Theorem in weighted projective plane and the

projection π2, we get that

π2(S(d) ∩ Dk(d)) = S(d). (2.4)

By Proposition 2.4.1 we have that S(d) is an irreducible variety and dimS(d) = dimFol(d). From

(2.4) it follows that

S(d) ∩ Dk(d) = S(d).

2. Since d 6≡ 1( mod l2) implies that Sp2(d) = {p2}×Fol(d) and by the condition Cp2k (d) = Ck(d),

we thus get Sp2(d) ∩ Dk(d) = Sp2(d).

3. We have that Ck(d) = Fol(d) and Cp2k (d) ( Ck(d) is a closed set by Lemma 2.1.5, then we define

the nonempty open set

Uk = Fol(d)\Cp2k (d).

Using Camacho-Sad Theorem in weighted projective plane, we get that

π(π−1(Uk) ∩ Dk(d)) = Uk.

By Proposition 2.4.1 we have that π−1(Uk) is an irreducible open set of SX(d) and

dimπ−1(Uk) = dimFol(d).

Since dimπ(π−1(Uk) ∩ Dk(d)) = dimUk = dimFol(d) implies that

dimπ−1(Uk) ∩ Dk(d) = dimπ−1(Uk),
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and hence

π−1(Uk) ∩ Dk(d) = π−1(Uk).

Taking closure on P2
(1,1,l2) × Fol(d), we get

SX(d) ∩ Dk(d) = SX(d).

In particular we have

SX(d) ∩ Dk(d) = SX(d).

�

The next subsection, we will construct examples to prove Theorem 2.

2.4.1 Existence of singularities without algebraic separatrix

The following family of examples allow us to obtain the bound of Theorem 2.

Let F1 be a foliation in P2
(1,1,l2), l2 > 1 induced by the following 1-form

η = −l2x2(x2 − x0x
l2−1
1 )dx0 + l2x0x2(xl2−1

1 − x0x
l2−2
1 )dx1 + x0(x2 − xl21 )dx2.

Notice that deg(NF1) = 2l2 + 1, Sing(F1) = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]} and {x0 = 0} ∩
Sing(F1) = {[0 : 1 : 0]}.

Lemma 2.4.3. The foliation F1 does not have a F1-invariant algebraic curve passing through the

point [1 : 1 : 1] .

Proof. Observe that the lines {x0 = 0} and {x2 = 0} are F1-invariant. Suppose there exists an

algebraic curve C invariant by F1 passing by [1 : 1 : 1]. Since {x0 = 0} ∩ Sing(F1) = {[0 : 1 : 0]}
and Bézout’s Theorem for weighted projective planes we conclude the {x0 = 0} only intersects to C

at the point [0 : 1 : 0]. In the open set U1 ' C2 the foliation F1|U1
is induced by

η1 = −l2x2(x2 − x0)dx0 + x0(x2 − 1)dx2.

Note that (0, 0) is a saddle-node singularity with only two separatrices, then there no exists the curve

C passing through the point [0 : 1 : 0]. �

2.4.2 Proof of Theorem 2

The proof is quite similar to the one presented on Theorem 1, but in contrast to that, in this case

we obtain the best possible bound d ≥ 2l2 + 1. For this, it is enough to show that Ck(d) 6= Fol(d),

holds for all k ∈ N and all d ≥ 2l2 + 1. Since the complement of Ck(d) in Fol(d) is an dense open set

if d ≥ 2l2 + 1. Reasoning by contradiction, suppose this does not hold. Then Proposition 2.4.2 and

Corollary 2.3.9 would imply SX(d) ∩ Dk(d) = SX , that contradicts Corollary 2.3.6, for d > 2l2 + 1,

and Lemma 2.4.3, for d = 2l2 + 1. �
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2.5 Holomorphic foliations on Hirzebruch surfaces

As in Example 1.8.5, let Fl2 = P(OP1 ⊕ OP1(l2)) be a Hirzebruch surface, π : Fl2 → P2
(1,1,l2) be the

weighted blow-up at p = [0 : 0 : 1] of type (l2, (1, 1)), E be the exceptional divisor, L be a line passing

through p and F be the strict transform of L. Observe that

Pic(Fl2) = ZF + ZE,

in which E.E = −l2, F.F = 0 and F.E = 1

We then denote by R(a, b) = PH0(Fl2 ,Ω1
Fl2
⊗OFl2

(aF + bE)) the space of holomorphic foliations

with normal bundle of bidegree (a, b) in Fl2 .

Remark 2.5.1. Let F be a foliation with normal Q-bundle d on P2
(1,1,l2) and G = π∗F be the foliation

on Fl2 . We denote by k = k(p) = multalgp(F) and

e =

{
k − l2 , if E is G-invariant,

k , if E is not G-invariant.

NG = OFl2

(
dF +

d− e
l2

E

)
.

Note that d− e ≡ 0( mod l2).

The following proposition characterizes some foliations on Fl2 .

Proposition 2.5.2. The following assertions hold true:

1. If b = 0, then a = 2 and G ∈ R(2, 0) is a rational fibration.

2. If b = 2, then G ∈ R(a, b) is a Ricatti foliation.

Proof. See [8, Proposition 1, page 51]. �

Remark 2.5.3. Let F ∈ R(a, b) and suppose that E is not F-invariant. Then by tangency formula

0 ≤ Tang(G, E) = −bl2 + a− 2.

Hence

a ≥ bl2 + 2. (2.5)

After we will see that this is one of the conditions for a generalization of Jouanolou’s result for

Hirzebruch surfaces.

The following proposition characterizes foliations on Fl2 with some algebraic solution.

Proposition 2.5.4. If a < bl2 + 2 or b < 3 then any foliation G ∈ R(a, b) admits some invariant

algebraic curve.

Proof. If a < bl2 + 2, then by Remark 2.5.3 we have that E is G-invariant. We can assume that

a − bl2 ≥ 2 and 0 < b ≤ 2. Baum-Bott formula implies that
∑
BB(NG, p) = NG2 = (aF + bE)2 =

b(a+ a− bl2) > 0, therefore there exists a point p ∈ Sing(G). Let F be the fiber passing through the
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point p. We claim that F is G-invariant. If we suppose that F is not G-invariant, then by Tangency

formula we see that

0 < Tang(G, F ) = NG.F − χ(F ) = b− 2 ≤ 0,

this is a contradiction. �

Let χ ∈ Q[t]. Define two subsets of Fl2 ×R(a, b) by

S(a, b) = {(x,G) ∈ Fl2 ×R(a, b)|x ∈ Sing(G)},

and

Dχ(a, b) = {(x,G) ∈ Fl2 ×R(a, b)| x is in subscheme, invariant by G, of Hilbert polynomial χ}.

Proposition 2.5.5. The following statements are true.

1. If b ≥ 2 and a ≥ bl2 + 2 , then S(a, b) is a closed irreducible variety of Fl2 ×R(a, b) and

dimC S(a, b) = dimCR(a, b).

2. Dχ(a, b) is a closed subset of Fl2 ×R(a, b).

Proof. 1. Let us denote by Σ(a, b) the line bundle OFl2
(aF + bE) on Fl2 . Consider the following

exact sequence

0 // kerψ
i // H0(Fl2 ,Ω1

Fl2
⊗ Σ(a, b))⊗OFl2

ψ
// Ω1

Fl2
⊗ Σ(a, b) ,

where ψ(x, η) = η(x). We claim that kerψ is a vector bundle. In fact, since

π|Fl2\E
: Fl2\E → P2

(1,1,l2)\{[0 : 0 : 1]},

is an isomorphism and the automorphism group of P2
(1,1,l2) acts transitively on P2

(1,1,l2)\{[0 : 0 : 1]},
then the automorphism group of P2

(1,1,l2) acts transitively on Fl2\E. Therefore kerψx has same

dimension for all x ∈ Fl2\E. We claim that for all x ∈ E, kerψx has dimension dimCR(a, b)− 2. In

fact, we take two foliations F1, F2 on P2
(1,1,l2) with normal Q-bundle of degree a induced by the 1-forms

η1 = xb2Aa−bl2−2(x0, x1)(x0, x1)(x1dx0 − x0dx1) and η2 = xb−2
2 Ba−bl2+l2−1(x0, x1)(l2x2dx0 − x0dx2)

respectively, where Aa−bl2−2 and Ba−bl2+l2−1 are homogeneous polynomials of degree a− bl2 − 2 and

a − bl2 + l2 − 1 respectively in C[x0, x1]. Let G1 = π∗(F1) and G2 = π∗(F2) be the foliations on Fl2 .

Observe that G1,G2 ∈ R(a, b). In the chat U2 = X(l2, (1, 1)) ' C2/µl2 we lift F1|U2
and F2|U2

to C2

given by

η1|U2 = Aa−bl2−2(x0, x1)(x0, x1)(x1dx0 − x0dx1),

and

η2|U2 = l2Ba−bl2+l2−1(x0, x1)dx0,

respectively. We have that π−1(U2) is covered by V0 ∪V1. The first chart on V0 = X(1, (−l2, 1)) ' C2

is given by {
x0 = u1/l2 ,

x1 = u1/l2v.
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Therefore the foliations G1|V0
and G2|V0

are induced by the 1-forms η̃1 = Aa−bl2−2(1, v)dv and η̃2 =

Ba−bl2+l2−1(1, v)du respectively. Then for every x ∈ E, we can take η̃1(x) and η̃2(x) C-linearly

independent. Thus any 1-form η ∈ R(a, b) such that η(x) 6= 0 can be written as a C-linear combination

of η1 and η2. For x ∈ Fl2\E, it sufficient to consider the point π(x) = [1 : 0 : 0] ∈ P2
(1,1,l2) and take

the two foliations F ′1 and F ′2 with normal Q-bundle of degree a induced by the 1-forms

ω1 = xa−l20 (x1dx0 − x0dx1) + xb2Aa−bl2−2(x0, x1)(x0, x1)(x1dx0 − x0dx1),

and

ω1 = x
a−(l2+1)
0 (l2x2dx0 − x0dx1) + xb−2

2 Ba−bl2+l2−1(x0, x1)(l2x2dx0 − x0dx2),

respectively. This shows that dimC kerψx is constant as a function of x ∈ X. Hence kerψ is a vector

bundle and in particular P(kerψ) = S(a, b) is a irreducible variety of codimension two on Fl2×R(a, b).

2. Follows directly from [17, Lemma 5.1, page 9].

�

Lemma 2.5.6. Let G ∈ R(a, b) be a foliation on Fl2 and C be an algebraic curve invariant by G. If

b ≥ 3 and a ≥ bl2 + 2, then

C ∩ Sing(G) 6= ∅.

Proof. We have two cases:

1. If C = E, then by Camacho-Sad formula C2 = −l2, this implies that C ∩ Sing(G) 6= ∅.
2. If C 6= E, then C = mF + nE in Pic(Fl2), with m > 0, n ≥ 0. Let us suppose that

C ∩ Sing(G) = ∅, then by Camacho-Sad formula C2 = 0 and by Vanishing formula

NG.C = C2 + Z(G, C) = 0,

but NG.C = n(a− bl2) + bm > 0, this is a contradiction.

�

We obtain a generalization of Jouanolou’s Theorem for Hirzebruch surfaces.

Theorem 3. A generic foliation with normal bundle of bidegree (a, b) in Fl2 does not admit any

invariant algebraic curve if b ≥ 3 and a ≥ bl2 + 2.

Proof. Consider the second projection π2 : S(a, b) → R(a, b) and fix now a polynomial χ ∈ Q[t]

of degree one. Suppose that π2(Dχ(a, b)) = R(a, b); that is, every foliation of bidegree (a, b) has an

algebraic invariant curve with Hilbert polynomial χ. By Lemma 2.5.6 we have that

π2(Dχ(a, b) ∩ S(a, b)) = π2(S(a, b)).

Since S(a, b) is an irreducible variety and dimC S(a, b) = dimCR(a, b) by Proposition 2.5.5, we get

S(a, b) ∩ Dχ(a, b) = S(a, b).

To conclude the theorem we take the foliation F1 on P2
(1,1,l2) of Lemma 2.4.3 of degree 2l2 + 1

induced by η1. Let F be the foliation on P2
(1,1,l2) with normal Q-bunlde of degree a induced by

η = xa−bl2+l2−1
0 xb−3

2 η1.

Then we note that the foliation G = π∗(F) on Fl2 has bidegree (a, b) and through π−1([1 : 1 : 1]),

which is singularity of G we do not have any invariant curve, which is a contradiction. Since there are

only countable many Hilbert polynomials, we conclude the theorem. �
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Chapter 3

Components on P3

The problem of classifying of holomorphic foliations in projective spaces of dimension greater or equal

than to 3 in the algebraic setting is given through the study of its irreducible components. This

approach was initiated by Jouanolou in [29] who proved that the space of holomorphic codimension

one foliations of degree one on Pn, n ≥ 3, has two irreducible components. Continuing with this work

Cerveau and Lins-Neto in [13] have proved that the space of holomorphic codimension one foliations

of degree two on Pn, n ≥ 3, has six irreducible components. In [11] Calvo Andrade, Cerveau, Giraldo

and Lins Neto give a explicit construction of certain components of the space of holomorphic foliations

of codimension one associated to some affine Lie algebra.

The main theorem of the thesis is to construct a family of components irreducible of the holomor-

phic foliations of codimension one associated to the affine Lie algebra on P3. The affine Lie algebra

are induced by the vector fields l0x
∂
∂x + l1y

∂
∂y + l1z

∂
∂z , when l0 > l1. Using these vector fields reduce

the problem to the study of foliations holomorphic on weighted projective spaces.

3.1 Irreducible components of the space of foliations associ-

ated to the affine algebra Lie

In this section we will talk about the results that are known of irreducible components of the space of

foliations which are associated to the affine algebra Lie, see [11] for more details. Let 1 ≤ l0 < l1 < l2

be are positive integers with gcd(l0, l1, l2) = 1. Consider the linear vector field on C3

S = l0x
∂

∂x
+ l1y

∂

∂y
+ l2z

∂

∂z
.

Suppose that there is another polynomial vector field X on C3 such that [S,X] = λX, for some λ ∈ Z.

Then the algebraic foliation F̃ = F̃(S,X) on C3 defined by the 1-form Ω = iSiX(dx ∧ dy ∧ dz) is

associated to a representation of the affine algebra of polynomial vector fields in C3, it can be extended

to a foliation on P3 of certain degree ν. The following definition is due to Calvo-Andrade, Cervau,

Giraldo, Lins Neto, see [11].

Fol((l0, l1, l2), λ, ν) := {F̃ ∈ Fol(ν, 3)| F̃ = F(S,X) in some affine chart},
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They show that they are irreducible subvarieties of Fol(ν, 3), but not necessarily irreducible com-

ponents.

Definition 3.1.1. Let Ω be an integrable 1-form defined in a neighborhood of p ∈ C3. We say that

p is a generalized Kupka (GK) of Ω if Ω(p) = 0 and either dΩ(p) 6= 0 or p is an isolated zero of dΩ. A

codimension one holomorphic foliation F in a complex three manifold M is GK if all the singularities

of F are GK.

We have the following theorem.

Theorem 3.1.2 (Calvo and et al.). Suppose that Fol((l0, l1, l2), λ, ν) contains some GK foliation.

Then

Fol((l0, l1, l2), λ, ν),

is an irreducible component of Fol(ν, 3).

Corollary 3.1.3. Let d ≥ 1 be an integer. There is an N -dimensional irreducible component

Fol((d2 + d+ 1, d+ 1, 1),−1, d+ 1),

of the space Fol(d + 1, 3) whose general point corresponds to a GK Klein-Lie foliation with exactly

one quasi-homogeneous singularity, where N = 13 if d = 1 and N = 14 if d > 1. Moreover, this

component is the closure of a PGL(4,C) orbit on Fol(d+ 1, 3).

The proof of can be found in [11, Theorem 1 and Corollary 3].

3.2 Foliations on P3 tangent to the fields S = l0x
∂
∂x+l1y

∂
∂y+l1z

∂
∂z

with l0 > l1 and gcd(l0, l1) = 1

First, we study foliations tangent to homogeneous vector field S = l0x
∂
∂x + l1y

∂
∂y + l1z

∂
∂z . In this

case, the vector field induces a natural rational map with generic fibers equal to orbits of S. In the

affine neighborhood w = 1, we can take composition of the natural quotient map

ϕ : C3 → P2
(l0,l1,l1)

(x, y, z) 7→ [x : y : z](l0,l1,l1),

with the natural isomorphism

P2
(l0,l1,l1) → P2

(l0,1,1)

[y0 : y1 : y2](l0,l1,l1) 7→ [yl10 : y1 : y2](l0,1,1).

We have the following map

ϕ : C3 → P2
(l0,1,1)

(x, y, z) 7→ [xl1 : y : z](l0,1,1),

extending this map to P3, we get the following rational map

ϕ : P3 99K P2
(l0,1,1)

[x : y : z : w] 7→ [xl1wl0−l1 : y : z](l0,1,1) = [x0 : x1 : x2](l0,1,1).

Notice that
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1. The indeterminacy locus of ϕ is composed of two points [1 : 0 : 0 : 0] and [0 : 0 : 0 : 1].

2. The generic fiber is irreducible.

3. The pre-image of the singular point [1 : 0 : 0](l0,1,1) is the line {x = y = 0}.

4. The divisorial components of its critical locus are {z = 0}(only when l1 > 1) and {w = 0} (only

when l0 − l1 > 1). Both components are mapped to the curve {x0 = 0}.

The following lemma characterizes the holomorphic foliations on P3 tangent to the S via the map

ϕ with the holomorphic foliations on P2
(l0,1,1).

Lemma 3.2.1. Let F be a foliation of degree normal Q-bundle d on P2
(l0,1,1) given by η and F̃ = ϕ∗F

be a foliation on P3 given by ω. Then

ω =

 ϕ∗η , if {x0 = 0} is not F-invariant,
ϕ∗η

xl1−1wl0−l1−1
, if {x0 = 0} is F-invariant.

and has degree equal to

deg(F̃) =

{
d− 2 , if {x0 = 0} is not F-invariant,

d− l0 , if {x0 = 0} is F-invariant.

Furthermore the following statements are equivalent

1. {x = 0} is F̃-invariant.

2. {w = 0} is F̃-invariant.

3. {x0 = 0} is F-invariant.

Proof. We have two cases: In the first case, if {x0 = 0} is not F-invariant, then

η = − 1

l0
Adx0 +Bdx1 + Cdx2

with x0A = x1B + x2C and x0 - B, so we have that

ω = ϕ∗η = − l1
l0
xl0−1wl0−l1A ◦ ϕdx+B ◦ ϕdy + C ◦ ϕdz − (l0 − l1)

l0
xl1wl0−l1−1A ◦ ϕdw.

Therefore x - B(xl1wl0−l1 , y, z) and w - B(xl1wl0−l1 , y, z). This implies that {x = 0} and {w = 0} are

not invariant by F̃ . Then the degree of F̃ is d.

In the other case, if {x0 = 0} is F-invariant then

η = −A
l0
dx0 + x0Bdx1 + x0Cdx2,

with A = x1B + x2C, so

ω =
ϕ∗η

xl1−1wl0−l1−1
= − l1

l0
wA ◦ ϕdx+ xwB ◦ ϕdy + xwC ◦ ϕdz − (l0 − l1)

l0
xA ◦ ϕdw,

induces the foliation F̃ of degree d− l0 such that {x = 0} is F̃-invariant and {w = 0} is F̃-invariant.

Note that

deg(ω) = deg(N F̃) =

{
d , if {x0 = 0} is not F-invariant,

d− l0 + 2 , if {x0 = 0} is F-invariant.

�
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3.3 Foliations with split tangent bundle

We saw that holomorphic foliations on P3 tangent to the vector field S are the same as holomorphic

foliations on P2
(l0,1,1) via the application ϕ. We will now investigate when the tangent bundle of the

foliation on P3 tangent to S split as a sum of two line-bundles. For that we need some definitions.

Definition 3.3.1. Let F̃ be a codimension one holomorphic foliation on P3, induced by a 1-form ω.

1. The tangent sheaf of F̃ , denoted by T F̃ , is a coherent subsheaf of TP3 generated by the germs

of vector fields annihilating ω, i.e., for every open set U ⊂ P3, we have that

T F̃(U) = {v ∈ TP3(U)| ivω = 0}.

2. We say that the tangent sheaf of F̃ splits if

T F̃ = OP3(e1)⊕OP3(e2),

for some integers ei.

Remark 3.3.2. In general T F̃ is not locally free, an example can be found in [20].

Note that, when the tangent sheaf of F̃ splits, the inclusion of T F̃ in TP3 induces sections Xi ∈
H0(P3, TP3(−ei)) for i = 1, 2. It follows from the Euler sequence that these sections are defined by

homogeneous vector fields of degree 1− ei ≥ 0 on C4, which we still denote by Xi. The foliation F̃ is

induced by the homogeneous 1-form on C4

ω = iX1iX2iR dx ∧ dy ∧ dz ∧ dw.

Let us look at some previous lemmas.

Lemma 3.3.3. Let F̃ be a foliation on P3 with split tangent bundle i.e., T F̃ = TG ⊕ TH, and let C

be an irreducible hypersurfarce. Then

1. If C is G-invariant and H-invariant then C is F̃-invariant.

2. If C is F̃-invariant and G-invariant then C is H-invariant.

3. If C is F̃-invariant and H-invariant then C is G-invariant.

Proof. In an affine chart C3, we suppose that F̃ is given by ω, G is given X1, H is given by X2

and C is given by f such that ω = iX1
iX2

dx ∧ dy ∧ dz. We see that

ω ∧ df = X2(f)iX1
dx ∧ dy ∧ dz −X1(f)iX2

dx ∧ dy ∧ dz. (3.1)

From the last equality we conclude the lemma. �

Example 3.3.4. Let S = l0x
∂
∂x + l1y

∂
∂y + l1z

∂
∂z be a homogeneous vector field with l0 > l1 and G

the induced foliation. Let F̃ be a foliation on P3 tangent to S with split tangent sheaf. Then there

exists a X homogeneous vector field such that F̃ is given by

ω = iRiSiXdx ∧ dy ∧ dz ∧ dw,

where R is radial vector field in C4. Denote by H the induced foliation by X. Applying Lemma 3.3.3

we have that {x = 0}(or {w = 0}) is F̃-invariant if only if {x = 0}(or {w = 0}) is H-invariant.
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Division lemma for the Koszul complex. Let v a singular vector field on C3 we denote by Ωk(C3)

the space of k-forms in C3. The interior product iv by the vector field v of a k-form define a linear

application iv : Ωk(C3)→ Ωk−1(C3). The Koszul complex of the vector field v is the complex

K(v) : 0 // Ω3(C3)
iv // Ω2(C3)

iv // Ω1(C3)
iv // Ω0(C3) = O(C3) // 0 .

The homology of this complex is the obstruction to the following property: Let η be a k-form in C3

such that ivη = 0 ∈ Ωk−1(C3), then η = ivθ for some k + 1-form θ if only if the class [η] ∈ Hk(K(v))

is zero.

The vector field v have the following expression

v = v1
∂

∂x
+ v2

∂

∂y
+ v3

∂

∂z
,

and the singular set of v is Z = {(x, y, z) ∈ C3| v1(x, y, z) = v2(x, y, z) = v3(x, y, z) = 0}. Now, we

are going to state the Division lemmas where the first one is for Koszul complex.

Lemma 3.3.5. If Z have dimension 0, then

H1(K(v)) = 0.

Proof. In fact, let η be a 1-form in C3 such that ivη = 0. Since the vector field v is not identically

null in U = C3\Z, then there is a covering U = {Uj}j of U by open sets Uj such that η = ivθj for

some θj ∈ Ω2(Uj). Thus iv(θj − θk) = 0 in Uj ∩ Uk and therefore there are νjk ∈ Ω3(Uj ∩ Uk) such

that θj − θk = ivνjk. We can write νjk = fjkdx ∧ dy ∧ dz, fjk ∈ O(Uj ∩ Uk) and {fjk} ∈ H1(U ,O).

Finally the hypothesis that Z have dimension zero is to apply [27, Theorem 5, page 160] in order to

obtain H1(U ,O) = 0. Hence there are fj ∈ O(Uj) such that fj − fk = fjk in Uj ∩ Uk. Therefore we

can define θ a 2-form in C3 such that η = ivθ and θ|Uj = θj − iv(fjdx ∧ dy ∧ dz). �

With this Division lemma we can prove the following lemma that it will be used in Proposition

3.3.9.

Lemma 3.3.6. Let G be a one-dimension foliation on P3 of degree one, with a invariant hyperplane

H and isolated singularities on P3\H and F̃ a codimension one foliation of degree d containing G. If

H is F̃-invariant then T F̃ ∼= TG
⊕
TH, for a suitable one-dimensional foliation H.

Proof. By a change of coordinates we can assume that H = {w = 0}, and in the affine chart

C3 ' P3\H, we have that F̃ and G are given ω and S respectively. Since H is F̃-invariant we have

that

ω = ω0 + ω1 + · · ·+ ωd, iR0
ωd 6= 0, (3.2)

where ωj are homogeneous 1-form and R0 = x ∂
∂x + y ∂

∂y + z ∂
∂z . Since iSω = 0 and S has isolated

singularities in C3 applying the Division Lemma 3.3.5, there exists a polynomial vector field X such

that

ω = iSiX(dx ∧ dy ∧ dz).

We write X = X0 + · · ·+Xd−1 and S = S0 +S1 where Xj , Sj are homogeneous vector fields. Using the

equality (3.2) we have that ωd = iS1
iXd−1

dx∧dy∧dz. Furthermore iR0
iS1
iXd−1

dx∧dy∧dz = iR0
ωd 6= 0.

This implies that Xd−1 is not multiple of R0, i.e., Xd−1 ∧ R0 6= 0. So, X induces to a foliation H of

degree d − 1 in P3 such that {w = 0} is H-invariant. Since {w = 0} is H-invariant and F̃ we have

that T F̃ ' TG ⊕ TH. This concludes the proof. �
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Remark 3.3.7. Note that if F̃ is a holomorphic codimension one foliation of degree d, G and H are

one-dimension foliations of degree one and d − 1 on P3 given by ω, S and X respectively, then the

following statements are equivalent:

1. T F̃ ' TG ⊕ TH is splits.

2. ω = iRiSiX(dx ∧ dy ∧ dz ∧ dw), where R is radial vector field in C4.

Note also that any of these equivalent statements implies that there exist a generator Y of the

foliation H and an integer λ such that [S, Y ] = λY .

Lemma 3.3.8. Under the notations of Remark 3.3.7, any of the equivalent statements 1 and 2 implies

that there exist a generator Y of the foliation H and an integer λ such that [S, Y ] = λY .

Proof. By the integrability of ω one deduces that

[S,X] = λX + F1S + F2R,

for some λ ∈ C and F1, F2 ∈ Sd−1. Recall that Sd−1 denotes the space of homogeneous polynomials

of degree d− 1. Since, for arbitrary α ∈ C,

iRiSiX(dx ∧ dy ∧ dz ∧ dw) = iRiS+αRiX(dx ∧ dy ∧ dz ∧ dw),

we can suppose that the linear map

ψ : Sd−1 → Sd−1

G → λG− S(G)

is invertible.

If we set Y = X + ψ−1(F1)S + ψ−1(F2)R, then

[S, Y ] = [S,X] + [S, ψ−1(F1)S] + [S, ψ−1(F2))R],

= λX + F1S + F2R+ S(ψ−1(F1))S + S(ψ−1(F2))R,

= λX + (F1 + S(ψ−1(F1)))S + (F2 + S(ψ−1(F2)))R,

= λY.

Notice that iRiSiX(dx∧dy∧dz∧dw) = iRiSiY (dx∧dy∧dz∧dw) to conclude the proof of the lemma.

�

The following proposition characterizes codimension one holomorphic foliations with splits tangent

sheaf.

Proposition 3.3.9. Assume the notations and conditions of Lemma 3.2.1. Suppose that deg(F̃) > 1

and G is the induced foliation by S on P3. Then the following statements are equivalent:

1. There exists H a one-dimension foliation on P3such that

T F̃ ' TG ⊕ TH.

2. {x = 0}(or {w = 0}) is F̃-invariant.

3. {x0 = 0} is F-invariant
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Proof. 1) ⇒ 2) By Remark 3.3.7 we have that ω = iRiSiX(dx ∧ dy ∧ dz ∧ dw) and [S,X] = λX

for some λ ∈ Z, where H is the induced one-dimension foliation by X. Suppose that {x = 0} is not

F̃-invariant then by the Example 3.3.4 we have that {x = 0} is not H-invariant. We write

X = A
∂

∂x
+B

∂

∂y
+ C

∂

∂z
+D

∂

∂w
,

where A = Ae(y, z, w) + · · ·+A0x
e, D = De(x, y, w) + · · ·+D0w

e. Since {x = 0} is not H-invariant,

then Ae 6= 0, i.e., there exists non zero monomial ai0j0k0y
i0zj0wk0 , such that i0 + j0 + k0 = e. Since

[S,X] = λX, then:

[S, ai0j0k0y
i0zj0wk0

∂

∂x
] = λai0j0k0y

i0zj0wk0
∂

∂x
,

(l1(i0 + j0)− l0)ai0j0k0y
i0zj0wk0

∂

∂x
= λai0j0k0y

i0zj0wk0
∂

∂x
,

therefore

λ = l1(i0 + j0)− l0 = l1(e− k0)− l0. (3.3)

Note that De =
∑

i+j+k=e

dijkix
iyjzk, again using [S,X] = λX we have

[S, dijkx
iyjzk ∂

∂w ] = λdijkx
iyjzk ∂

∂w ,

(il0 + (j + k)l1)dijkx
iyjzk ∂

∂w = λdijkx
iyjzk ∂

∂w ,

therefore

dijk(il0 + (j + k)l1 − λ) = 0. (3.4)

Using (3.3) and i+ j + k = e we have that

il0 + (j + k)l1 − λ = i(l0 − l1) + l0 + k0l1 > 0. (3.5)

Using (3.5) in the equality (3.4) we conclude that dijk = 0, ∀ i+ j + k = e, that is De = 0 therefore,

{w = 0} is H-invariant then by Example 3.3.4 we have that {w = 0} is F̃-invariant and by Lemma

3.2.1 we have that {x = 0} is F̃-invariant. This is a contradiction.

2)⇒ 1) It is immediate using Lemma 3.3.6.

2)⇔ 3) Follows from Lemma 3.2.1. �

Now we will only be interested in holomorphic foliations with split tangent sheaf. The main idea

to construct components is to use stability theorems for splits tangent sheaf following bellow.

Theorem 3.3.10. Let n ≥ 3, d ≥ 0 and F ∈ Fol(d, n) be a singular holomorphic foliation on Pn

given by ω. If codimSing(dω) ≥ 3 and

TF ∼=
n−1⊕
i=1

OPn(ei), ei ∈ Z,

then there exist a Zariski-open neighborhood U ⊂ Fol(d, n) of F such that TF ′ ∼= ⊕n−1
i=1 OPn(ei) for

every F ′ ∈ U .

The proof can be found in [20].

Observe that for applying the above theorem it is necessary a condition in the codimension of the

singular set of dω. Therefore, we are going to study the codimension of the singular set of dω.
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3.4 Codimension of the singular set of dω

Through the following lemma we can characterize the singular set dω.

Lemma 3.4.1. Let F be a foliation with normal Q-bundle of degree d > l0 + 1 on P2
(l0,1,1) given by

η and let F̃ = ϕ∗F be a codimension one holomorphic foliation on P3 with split tangent bundle given

by ω. Then

1. If (l0, l1) = (2, 1) then {x = w = 0} ⊂ Sing(ω) ∩ Sing(dω).

2. If multialg[1:0:0](F) ≥ 3 then {y = z = 0} ⊂ Sing(ω) ∩ Sing(dω).

Proof. By Proposition 3.3.9 we have that {x0 = 0} is F-invariant. Therefore, we can write

η = −A
l0
dx0 + x0Bdx1 + x0Cdx2,

such that A = x1B + x2C. Since deg(B) = deg(C) = d− l0 − 1 = ql0 + r, 0 ≤ r < l0, we can express

B and C as

B = xq−i0 Bil0+r(x1, x2) + x
q−(i+1)
0 B(i+1)l0+r(x1, x2) + · · ·+ x0B(q−1)l0+r(x1, x2) +Bql0+r(x1, x2),

C = xq−i0 Cil0+r(x1, x2) + x
q−(i+1)
0 C(i+1)l0+r(x1, x2) + · · ·+ x0C(q−1)l0+r(x1, x2) +Bql0+r(x1, x2),

where Bj , Cj are homogeneous polynomial of degree j and

multialg[1:0:0](F) = il0 + r + 1.

Applying Lemma 3.2.1 we have that

ω =
ϕ∗η

xl2−1wl0−l1−1
= − l1

l0
wA ◦ ϕdx+ xwB ◦ ϕdy + xwC ◦ ϕdz − (l0 − l1)

l0
xA ◦ ϕdw,

where
A ◦ ϕ = xl1(q−i)w(l0−l1)(q−i)Ail0+r(y, z) + · · ·+Aql0+r(y, z),

B ◦ ϕ = xl1(q−i)w(l0−l1)(q−i)Bil0+r(y, z) + · · ·+Bql0+r(y, z),

C ◦ ϕ = xl1(q−i)w(l0−l1)(q−i)Cil0+r(y, z) + · · ·+ Cql0+r(y, z).

Then {x = w = 0} ⊂ Sing(ω). If il0 + r ≥ 2 we have that {y = z = 0} ⊂ Sing(ω).

dω =
(
l1
l0
w(A ◦ ϕ)y + wB ◦ ϕ+ xw(B ◦ ϕ)x

)
dx ∧ dy

+
(
l1
l0
w(A ◦ ϕ)z + wC ◦ ϕ+ xw(C ◦ ϕ)x

)
dx ∧ dz

+
(

2l1−l0
l0

A ◦ ϕ+ l1
l0
w(A ◦ ϕ)w − (l0−l1)

l0
x(A ◦ ϕ)x

)
dx ∧ dw

+xw ((C ◦ ϕ)y − (B ◦ ϕ)z) dy ∧ dz
−x
(
B ◦ ϕ+ w(B ◦ ϕ)w + l0−l1

l0
(A ◦ ϕ)y

)
dy ∧ dw

−x
(
C ◦ ϕ+ w(C ◦ ϕ)w + l0−l1

l1
(A ◦ ϕ)z

)
dz ∧ dw

Lastly, note that if (l0, l1) = (2, 1) we see that {x = w = 0} ⊂ Sing(dω). If il0 + r ≥ 2 we have that

{y = z = 0} ⊂ Sing(dω). This concludes the lemma. �

In the case multialg[1:0:0](F) ≤ 2, it is possible to find examples of foliations induced by ω such

that dω has isolated singularities, as we see below.
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Example 3.4.2. In the case multialg[1:0:0](F) = 1. Let F be the foliation on P2
(l0,1,1) given by

η = −(xq0x1 − 2xq0x2 + x1x
ql0
2 − xql01 x2)dx0 + l0x0(xq0 + xql02 )dx1 + l0x0(−2xq0 − x

ql0
1 )dx2,

where deg(NF) = (q + 1)l0 + 1, q ≥ 1, l0 > l1 ≥ 1 and l0 ≥ 3.

Let F̃ = ϕ∗F be the foliation on P3 given by

ω =
ϕ∗η

xl1−1wl0−l1−1
,

ω = −l1w(xql1ywq(l0−l1) − 2xql1zwq(l0−l1) + yzql0 − yql0z)dx+ l0xw(xql1wq(l0−l1) + zql0)dy

+l0xw(−2xql1wq(l0−l1) − yql0)dz − (l0 − l1)x(xql1ywq(l0−l1) − 2xql1zwq(l0−l1) + yzql0 − yql0z)dw,

where deg(N F̃) = ql0 + 3 and deg(F̃) = ql0 + 1.

We calculate

dω = w
(
(l1 + (q + 1)l0)xql1wq(l0−l1) + (l0 + l1)zql0 − l1yql0−1z

)
dx ∧ dy

+w
(
−2(l1 + l0(ql1 + 1))xql1wq(l0−l1) + ql0l1yz

ql0−1 − (l0 + l1)yql0
)
dx ∧ dz

+(2l1 − l0)
(
xql1ywq(l0−l1) − 2xql1zwq(l0−l1) + yzql0 − yql0z

)
dx ∧ dw

−ql20xw(zql0−1 − yql0−1)dy ∧ dz
+x
(
−(2l0 − l1)zql0 + ql0y

ql0−1z − ((l0 − l1)(ql0 + 1) + l0)xql0wq(l0−l1)
)
dy ∧ dw

+x
(
2(l0(q(l0 − l1) + 1) + l0 − l1)xql1wq(l0−l1) + (2l0 − l1)yql0 − ql0(l0 − l1)yzql0−1

)
dz ∧ dw,

and

Sing(dω) = {[0 : 0 : 0 : 1], [1 : 0 : 0 : 0], [0 : ξ : 1 : 0] | ξql0−1 = 1}.

Furthermore by Proposition 3.3.9 we have that

ω = iRiSiXdx ∧ dy ∧ dz ∧ dw,

where R = x ∂
∂x + y ∂

∂y + z ∂
∂z + w ∂

∂w , S = l0x
∂
∂x + l1y

∂
∂y + l1z

∂
∂z , and

X = −(2xql1wq(l0−l1) − yql0)
∂

∂y
− (xql1wq(l0−l1) − zql0)

∂

∂z
.

It verifies that

[S,X] = l1(ql0 − 1)X.

Example 3.4.3. Now the case multialg[1:0:0](F) = 2. Let F be the foliation on P2
(l0,1,1) given by

η = − (xe+1
1 + xe+1

2 )

l0
dx0 + x0(−xq0x2 + xe1)dx1 + x0(xq0x1 + xe2)dx2,

where deg(NF) = (q + 1)l0 + 2, e = ql0 + 1, q ≥ 1, l0 > l1 ≥ 1 and l0 ≥ 3.

Let F̃ = ϕ∗F be the foliation on P3 given by

ω =
ϕ∗η

xl1−1wl0−l1−1
,

ω = − l1
l0
w(ye+1 + ze+1)dx+ xw(−xl1qwq(l0−l1)z + ye)dy

+xw(xl1qwq(l0−l1)y + ze)dz +− (l0−l1)
l0

x(ye+1 + ze+1)dw.
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where deg(N F̃) = ql0 + 4 and deg(F̃) = ql0 + 2.

Hence we calculate

dω = w
(
l1
l0

(e+ 1)ye + ye − (l1q + 1)xl1qwq(l0−l1)z
)
dx ∧ dy

+w
(
l1
l0

(e+ 1)ze + ze + (l1q + 1)xl1qwq(l0l1)y
)
dx ∧ dz

+2xl1q+1wq(l0−l1)+1dy ∧ dz
−x
(

( (l0−l1)
l0

(e+ 1) + 1)ye − (q(l0 − l1) + 1)xl1qwq(l0−l1)z
)
dy ∧ dw

−x
(

( (l0−l1)
l0

(e+ 1) + 1)ze + (q(l0 − l1) + 1)xl1qwq(l0−l1)y
)
dz ∧ dw

+ (2l1−l0)
l0

(ye+1 + ze+1)dx ∧ dw,

and

Sing(dω) = {[0 : 0 : 0 : 1], [1 : 0 : 0 : 0], [0 : −ξ : 1 : 0] | ξe+1 = 1}.

Also by Proposition 3.3.9 we have that

ω = iRiSiXdx ∧ dy ∧ dz ∧ dw,

where R = x ∂
∂x + y ∂

∂y + z ∂
∂z + w ∂

∂ , S = l0x
∂
∂x + l1y

∂
∂y + l1z

∂
∂z , and

X = −x
ql1+1wq(l0−l1)

l1

∂

∂x
+
zl1

l0

∂

∂y
− ye

l0

∂

∂z
,

and verify that

[S,X] = l0l1qX.

3.5 Automorphism of a foliation

Let F be a codimension one foliation on P3 given by ω. The automorphism group of F , Aut(F), is

the subgroup of Aut(P3) = P(GL(C, 4)) formed by automorphisms of P3 which send F to itself. In

other words

Aut(F) = {φ ∈ Aut(P3)|φ∗ω ∧ ω = 0}.

Aut(F) is clearly a closed subgroup of Aut(P3), and therefore the connected component of the identity

is a finite dimensional connected Lie group. We will denote by aut(F) its Lie algebra, which can be

identified with a subalgebra of aut(P3) = sl(4), more specifically,

aut(F) = {v ∈ aut(P3)|Lvω ∧ ω = 0},

where L is the Lie derivative. We define the fix(F) as the subalgebra of aut(F) annihilating ω, i.e.,

fix(F) = {v ∈ aut(F)| ivω = 0}.

Notice that fix(F) is nothing more than H0(P3, TF). We also point out that fix(F) is an ideal of

aut(F), and the subgroup Fix(F) ⊂ Aut(F) generated by fix(F) is not necessarily closed.

We have now the following lemma. The proof is an adaption of an argument of Cerveau and

Mattei, see [14, page 35-36].

Lemma 3.5.1. The following assertions hold true:
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1. If fix(F) = aut(F) then F is tangent to an algebraic action.

2. If fix(F) 6= aut(F) then F is generated by a closed rational 1-form without divisorial components

in its zero set.

Proof. The connected component of the identity of Aut(F) is closed. If fix(F) = aut(F) then

Fix(F) is also closed and therefore correspond to an algebraic subgroup of Aut(P3). Item 1 follows.

To prove Item 2, let v be a vector field in aut(F)− fix(F). If ω ∈ H0(P3,Ω1
P3(d+ 2)), where d is the

degree of the foliation F , then F is defined by the closed meromorphic 1-form over P3

ω̃ =
ω

ivω
.

It is sufficient to show that ω̃ is closed 1-form. In fact

dω̃ =
ω ∧ dω(v)− ω(v)dω

(ω(v))2
. (3.6)

Since v ∈ aut(F) we have that

Lv(ω) ∧ ω = 0,

where Lv = div + ivd is the Lie derivative. Therefore

dω(v) ∧ dω + iv(dω) ∧ ω = 0.

By the integrability of ω we obtain

ω(v)dω + (ivdω)ω = 0.

From this last equality we derive that

ω ∧ dω(v)− ω(v)dω = 0. (3.7)

Replacing (3.7) by (3.6) we conclude that dω̃ = 0. �

3.6 Irreducible components on P3 tangent to S = l0x
∂
∂x+ l1y

∂
∂y+

l1z
∂
∂z

For the foliations of higher degree, we have the following theorem.

Theorem 4. If l0 > l1, gcd(l0, l1) = 1, l0 ≥ 3 and q ≥ 1, then

Fol((l0, l1, l1), l1(ql0 − 1), ql0 + 1),

is an irreducible component of Fol(ql0 + 1, 3) and

Fol((l0, l1, l1), l0l1q, ql0 + 2),

is an irreducible component of Fol(ql0 + 2, 3).
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Proof. Let F̃ be the foliation of the Example 3.4.2 or 3.4.3 given by ω which is generated by

two one-dimensional foliations on P3, say G and H, the foliations defined by the homogeneous vector

fields S and X respectively, furthermore its tangent bundle T F̃ splits as the sum of two line bundles

T F̃ ∼= TG ⊕ TH.

Now, let {Ft}t∈Σ, 0 ∈ Σ ⊂ C be a holomorphic family of foliations such that F̃ = F0. Since dω

has isolated singularities, applying the Theorem 3.3.10 we have that for small |t|,

TFt = TGt ⊕ THt.

Then Ft is generated by two one-dimension foliations Gt and Ht. As as consequence, Gt is generated

by a global vector field St on P3 with zeros of codimension at least two. Notice that CSt ⊂ fix(Ft).
Suppose fix(Ft) 6= aut(Ft). Lemma 3.5.1 implies that Ft is given by a closed meromorphic 1-form

with zero set of codimension at least two, then by [33, Lemma 5.4] implies that Ft can be deformed to

a foliation defined by a logarithmic 1-form. Thus Ft belongs to irreducible components of type rational

or logarithmic. On the other hand [21, Theorem 3] that says the generic element of the logarithmic

foliation of degree greater than or equal 3 on P3 has isolated singularity and thus its tangent sheaf is

not split, this is a contradiction.

If we assume fix(Ft) = aut(Ft) with dim fix(Ft) > 1 then, as St has no divisorial components in

its zero set, any two elements in it will generate TFt. Thus TFt ' OP3 ⊕OP3 , this is a contradiction

with deg(Ft) = deg(F̃) > 3.

Finally, we have that fix(Ft) = aut(Ft) = CSt. Lemma 3.5.1 Ft is tangent to action of one-

dimension Lie group. We can see St as a deformation of S by automorphisms of P3. In open set

U3 = C3 we can write

St = (λ1(t)x+ a1(t)y + a2(t)z)
∂

∂x
+ (λ2(t)y + a3(t)z)

∂

∂y
+ λ3(t)z

∂

∂z
,

such that S0 = S = l0
∂
∂x + l1

∂
∂y + l1

∂
∂z . Notice that we can take St sufficiently close to S and similarly

λ1, λ2 and λ3 sufficiently close to l0, l1 and l1 respectively. Hence λ1λ2λ3 6= 0. Since the solutions

of foliation induced by St are algebraic, we have two possibilities: Either a1 = a2 = a3 = 0 and

λ1, λ2, λ3 ∈ Z, or λ1 = λ2 = λ3 = 0. We conclude that a1 = a2 = a3 = 0 and λ1, λ2, λ3 ∈ Z. Using

the conditions λ1(0) = l0, λ2(0) = l1, λ3(0) = l1 it follows that λ1 = l0, λ2 = l1, λ3 = l1. This proves

the theorem. �
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em Matemática)-Instituto Nacional de Matemática Pura e Aplicada-IMPA, Rio de Janeiro, 2010.

Dispońıvel em: www.impa.br/opencms/en/ensino/downloads/teses_de_doutorado/teses_

2010/Hernan_Maycol_Falla_Luza.pdf

[25] W. Fulton, Algebraic curves, An introduction to algebraic geometry, Third Edition, 2008.

[26] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, 1993.

[27] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables , Volume III: Homo-

logical Theory, Wadsworth & Brooks/Cole, 1990.

[28] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin Heidelberg New York, 1977.
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