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Abstract. In the previous work, the existence of travelling waves was proven for a system
of three evolutionary parital differential equations modelling combustion of light porous
foam under air injection. The wave sequences appearing in the Riemann solutions were
also identified. In order to simplify the analysis, distinctions between some sequences were
neglected. The analysis presented in this work leads to a re-classification and re-enumeration
of the possible generic wave sequences in the solution of the combustion problem in light
porous foam. We also studied numerically the hypotheses for existence of the fast combustion
waves. This analysis leads to a description of a manifold in parameter space which separates
different types of combustion.

1. Introduction

This paper is part of long-term research project to identify waves that arise in one-
dimensional models of flow in porous media, and to understand how the waves fit together
in solutions of Riemann problems; see [4, 5, 6, 12, 13, 14, 15, 18, 7], and references therein.
Such flows give rise to reaction-convection-diffusion equations in which the three aspects are
of roughly equal importance.

The paper performs a careful numerical analysis of waves arising in a model for the injec-
tion of air into a porous medium that contains a solid fuel. The model was proposed in [1]
and further studied in [5, 6], and in [7], where it was simplified by ignoring the dependence of
gas density on temperature. This simplification facilitates the study of traveling waves and
the identification of the wave sequences that can occur as solutions of Riemann problems.

The model, which is reviewed in Section 2 and derived in [7], consists of three equations
that express energy, oxygen, and fuel balance laws. We use a shifted Arrhenius law for which
combustion begins at a threshold temperature. We analyze the case in which the thermal
capacity of the medium is negligible compared to that of air. A consequence is that oxygen
and heat are both transported at the velocity of the moving gas. The thermal capacity
assumption is not correct for oil recovery, but is approximately valid for polyurethane foam
such as that used in furniture.

In [7] four types of combustion waves were found that approach their end states expo-
nentially, two that propagate faster than oxygen and temperature, and two that propagate
more slowly. Fast combustion waves represent “premixed combustion”: combustion, once it
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starts, races, in the form of a burning front, into a region where both solid fuel and oxy-
gen are present. Behind the front either oxygen or fuel is exhausted. The slow combustion
waves found have been called “reaction-trailing smolder waves” [19] and “coflow (or forward)
filtration combustion waves” [2] in the context of more complicated models of injection of
air into a porous medium. The moving gas brings oxygen into a region where solid fuel is
present. The oxygen is consumed in the reaction. Since the gas velocity is greater than that
of the flame front, a region of high temperature and no oxygen is swept ahead of the front.
Properties of both fast and slow combustion waves are reviewed in Section 3.

As discussed in [7], for initial-boundary value problems on an infinite interval with constant
boundary data, one expects the solution to resolve into combustion waves and intervals
in which combustion does not occur. On these intervals the equations decouple, so one
expects to observe standing solid fuel concentration patterns, convected oxygen concentration
patterns, and temperature waves. Viewed from a distance, these waves resemble contact
discontinuities. In Section 4 we show that only certain contact discontinuities can occur in
generic wave sequences.

In Section 5 we present the generic wave sequences that could be observed for large time.
For some boundary conditions, several different wave sequences are possible; they are ex-
pected to be observed for different initial data. The most complicated of the wave sequences
include both a slow and a fast combustion wave. We present numerical simulations in which
the expected wave sequences occur.

Since we only consider generic boundary data, we do not consider the possibility that
at one end, combustion fails to occur for more than one reason. For example, we do not
consider the possibility that at the right, there is both no oxygen and a low temperature.
Some such boundary value problems are of course physically important, and will be the
subject of future research.

Our system can be rewritten as one balance law coupled to two conservation laws, which
allow reduction of the traveling wave system to two dimensions. In Section 6 we perform
this reduction and study equilibria of the traveling wave system. In Sections (7) and (8) of
[7] existence of the various combustion waves was proved.

2. Model

The system we consider is

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (2.1)

∂tρ = −ρY Φ, (2.2)

∂tY + a∂xY = −ρY Φ, (2.3)

Φ =

{
exp (−1/θ) , θ > 0

0, θ ≤ 0.
(2.4)

There are three dependent dimensionless variables: temperature θ, solid fuel concentration
ρ, and oxygen concentration Y . The oxygen is a component of a gas that is moving with
velocity a > 0. Both oxygen and heat are assumed to be transported with this velocity. An
exothermic chemical reaction involving oxygen and the solid fuel can occur only when the
temperature is above a threshold temperature, which we normalize to be θ = 0. Because of
this convention, the temperature is allowed to be negative. The unit reaction rate is given as
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Arrhenius law in (2.4) by Φ(θ). Equation (2.1) represents transport and diffusion of temper-
ature, and generation of thermal energy by the chemical reaction. Equation (2.2) represents
consumption of the solid fuel, which of course does not diffuse and is not transported by
the gas. Equation (2.3) represents transport of oxygen and consumption of oxygen in the
chemical reaction. Diffusion of oxygen is ignored as in [1]. A derivation of the model, and
discussion of its range of validity, can be found in Appendix A of [7].

We are of course interested in solutions with ρ ≥ 0 and Y ≥ 0 everywhere. We consider
(2.1)–(2.2) on −∞ < x <∞, t ≥ 0, with the constant boundary conditions

(θ, ρ, Y )(−∞) = (θL, ρL, Y L), (θ, ρ, Y )(∞) = (θR, ρR, Y R). (2.5)

As usual, we assume that the reaction does not occur at the boundaries, i.e., the reaction
terms in (2.1)–(2.3) vanish. There are three reasons the reaction terms can vanish:

(1) Temperature control (TC) – reaction ceases due to low temperature θ ≤ 0;
(2) Fuel control (FC) – reaction ceases due to lack of fuel ρ = 0;
(3) Oxygen control (OC) – reaction ceases due to lack of oxygen Y = 0.

Of course, two or all three of these conditions can occur simultaneously. As in [7], we limit
ourselves to generic boundary conditions:

(L) Exactly one of the following conditions holds: θL ≤ 0, or ρL = 0, or Y L = 0. The
other two numbers are positive.

(R) Exactly one of the following conditions holds: θR ≤ 0, or ρR = 0, or Y R = 0. The
other two numbers are positive.

3. Combustion waves

In this section we review nomenclature and some results obtained in [7]. We denote by

(θ−, ρ−, Y −)
c−→ (θ+, ρ+, Y +) a wave of velocity c that connects (θ−, ρ−, Y −) at the left to

(θ+, ρ+, Y +) at the right. At the end states of the wave, the reaction terms in (2.1)–(2.3)
vanish.

States at which the reaction terms vanish were classified as TC, FC, OC, TC ∩ FC,
TC ∩ OC, FC ∩ OC, or TC ∩ FC ∩ OC. The type of the state indicates exactly which
conditions hold at that state; for example, a TC ∩ FC state has θ ≤ 0, ρ = 0, and Y > 0.
A wave of velocity c from a state of type FC ∩ OC to one of type TC, for example, would
be indicated FC ∩ OC c−→ TC. States other than TC, FC, and OC cannot be the first or
last state of a wave sequence because of assumptions (L) and (R). However, as seen in [7],
they cannot be ignored as possible intermediate states.

By a “combustion wave” we shall mean a continuous nontrivial traveling wave with velocity
c > 0, c 6= a. We do not consider waves with velocity c < 0, since we have in mind injecting
air into one end of a porous medium. Thus the spatial domain would be 0 ≤ x <∞, so waves
with negative velocity would not be supported. Waves with velocity c = 0 and c = a, the
characteristic velocities of the system, were considered separately in [7]; we quickly review
their properties.

We are concerned especially with combustion waves that approach both end states expo-
nentially. This limitation allows us to ignore certain waves that exist only when θ+ = 0, but
approach the right state more slowly than exponentially. The consequence is that we can
treat right states with θ+ = 0 exactly like right states with θ+ < 0. The limitation would
also allow us to ignore traveling waves with θ− = 0, since it turns out that they necessarily
approach the left state more slowly than exponentially. However, in this case, the traveling
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waves represent bifurcations that we find it helpful to understand. For other approaches see
[1, 2, 5, 10, 19, 21].

In Theorem 3.1 of [7] it was established that there are exactly four types of combustion
waves that approach both end states exponentially, two fast (wave velocity cf > a) and two

slow (positive wave velocity cs < a): FC
cf−→ TC, OC

cf−→ TC, FC
cs−→ OC, TC

cs−→ OC.
In a fast combustion wave, the burning front moves toward a low-temperature region with

both solid fuel and oxygen; this is often called “premixed combustion.” The heat produced
remains behind the combustion front because the moving gas that could transport it has lower

velocity. Behind the front the reaction stops because the fuel is exhausted (FC
cf−→ TC), the

oxygen is exhausted (OC
cf−→ TC), or both (FC ∩ OC

cf−→ TC). These fronts are studied in
Section (7) of [7], where the following result was proved.

Theorem 3.1. Fast Combustion Waves. Fix a > 0. Let (θ+, ρ+, Y +) be a state of type TC,
i.e., θ+ ≤ 0, ρ+ > 0, Y + > 0. Assume in addition that θ+ + Y + > 0. Then there exists a

state (θ−, ρ−, Y −) and a velocity cf > a such that there is a combustion wave (θ−, ρ−, Y −)
cf−→

(θ+, ρ+, Y +) that approaches its right state exponentially. It has θ− > 0, and ρ− or Y − or
both equal to 0. More precisely, for fixed (θ+, ρ+), there is a unique Y +

∗ with θ+ + Y +
∗ > 0

such that

(1) if −θ+ < Y + < Y +
∗ , then there exists a combustion wave of type OC

cf−→ TC;

(2) if Y + = Y +
∗ , then there exists a combustion wave of type FC ∩OC

cf−→ TC;

(3) if Y + > Y +
∗ , then there exists a combustion wave of type FC

cf−→ TC.

In all cases, θ+ + Y + = θ− + Y − and cf = aY +−aY −

Y +−Y −+ρ−−ρ+
. In the first and third cases the

wave also approaches its left state exponentially; in the second case it does not. There are
no combustion waves with c > a and θ+ + Y + ≤ 0.

Theorem 3.1 says that if the right state has too little oxygen (i.e., if θ++Y + ≤ 0), then the
reaction cannot occur; if it has a moderate amount of oxygen, then there exists a combustion
wave in which all the oxygen is used up in the reaction; and if it has lots of oxygen, then
there exists a combustion wave in which all the fuel is used up in the reaction.

We conjecture that the combustion waves described in Theorem 3.1 are unique and depend
smoothly on the right state, i.e., given a > 0, θ+ ≤ 0, ρ+ > 0, and Y + > −θ+, there is a
unique c > a, given by a smooth function of (θ+, ρ+, Y +), such that there is a combustion
wave with velocity c and left state (θ+, ρ+, Y +). In Section (9) of [7] we present numerical
evidence for the uniqueness.

When the right state of a combustion wave is temperature-controlled, the oxygen concen-
tration there, Y +, is typically O(1). Thus the assumption θ+ + Y + > 0 holds whenever
the temperature θ+ at the right state is not too far below ignition temperature 0. This
assumption is reasonable; in engineering it is often assumed that the two are equal.

In a slow combustion wave, a gas bringing oxygen flows into a region in which solid fuel
is present but oxygen is not. Combustion occurs behind the incoming gas; it cannot occur
ahead since there is no oxygen. Thus the speed of the combustion front c cannot be greater
than a. In fact c < a, so heat produced by combustion, which also moves with speed a, is
swept head of the combustion front. Hence the high-temperature region is ahead of the front.
The oxygen is entirely consumed in the reaction. These fronts have been called “reaction-
trailing smolder waves” [19] and “coflow (or forward) filtration combustion waves” [2]. They
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were studied in Section (8) of [7], where the following results about the combustion waves
were established.

Theorem 3.2. Slow Combustion Waves.

(1) FC
cs−→ OC and FC∩TC cs−→ OC Waves. Fix a > 0. Let (θ−, 0, Y −) have θ− ≥ 0 and

Y − > 0. Then for each ρ+ > 0, there are unique numbers θ+ > 0 and cs, 0 < cs < a,
such that there exists a combustion wave of velocity cs from (θ−, 0, Y −) to (θ+, ρ+, 0).
In fact,

θ+ = θ− + Y −, cs =
Y −

ρ+ + Y −a. (3.1)

These waves approach their right state exponentially, and approach their left state
exponentially if and only if θ− > 0, i.e., if and only if the left state is of type FC.

(2) TC
cs−→ OC Waves. Fix a > 0. Let θ− < 0, Y − with θ− + Y − > 0, and ρ+ > 0 be

given. Then there are numbers ρ− > 0, θ+ > 0, and cs, 0 < cs < a, such that there
exists a combustion wave of velocity cs from (θ−, ρ−, Y −) to (θ+, ρ+, 0). Moreover
θ+ = θ− + Y −, and the quantities cs and ρ− are related by the formula

cs =
aY −

Y − − ρ− + ρ+
.

These waves approach both end states exponentially.
(3) There are no other combustion waves 0 < c < a. In particular, there are no slow

combustion waves with θ− + Y − ≤ 0.

Theorem 3.2 (1) says that for each left state of type FC, and for the left state (0, 0, Y −)
with Y − > 0, there is a one-parameter family of right states of type OC to which the left
state can be connected by a slow combustion wave.

On the other hand, Theorem 3.2 (2) says that to have a slow combustion wave of speed cs
from a left state (θ−, ρ−, Y −) of type TC to a right state (θ+, ρ+, 0) of type OC, the triple
(θ−, Y −, ρ+) may be chosen arbitrarily, and then a corresponding triple (ρ−, θ+, cs) can be
found. Section (9) of [7] presents numerical evidence that the triple (ρ−, θ+, cs) is unique.

The set of points in (θ−, ρ−, Y −, θ+, ρ+, cs)-space that corresponds to TC
cs−→ OC waves

should be a three-dimensional manifold. We have not shown this, but if it is true, then by
Sard’s Theorem, almost every left state corresponds to a set of isolated right states (which
may be empty). We conjecture that in fact every left state corresponds to a unique right
state.

4. Contact discontinuities

In the absence of reaction and diffusion terms, the characteristic velocities of (2.1)–(2.3)
are 0 for the solid fuel and a for temperature and oxygen. Contact discontinuity waves
therefore have velocity 0 or a. The solid fuel concentration can change across a contact
discontinuity of velocity 0, while temperature or oxygen concentration or both can change
across a contact discontinuity of velocity a. Contact discontinuities must separate intervals
on which the reaction does not occur (since (θ, ρ, Y ) is constant).

The waves must occur in order of increasing velocity. It is easy to see that there is at most
one slow combustion wave and one fast combustion waves. We may also assume:

(O) There is at most one wave of velocity 0 and one of velocity a.
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The reason is that a sequence of two contact discontinuities with the same velocity could be
combined into one.

The dimension number of a contact discontinuity is the dimension of the set of right states
that can be reached from a fixed left state by a contact discontinuity of the given type. For
example, for a contact discontinuity of speed 0, the ρ-component of the right state can be
varied (dimension 1) unless it is 0 (dimension 0). For a contact discontinuity of speed a,
both the the θ- and Y -components of the right state can be varied (dimension 2), unless the
Y -component of the right state is 0 (dimension 1). The following was proven in [7]:

Theorem 4.1. With assumptions (L), (R), and (O), the contact discontinuities that occur
in generic wave sequences are those given in Table 4.1.

Table 4.1. Contact discontinuities

Contact discontinuity Dimension number

TC
0−→ TC 1

TC
0−→ TC ∩ FC 0

OC
0−→ OC 1

OC
0−→ FC ∩OC 0

TC
a−→ TC 2

TC
a−→ OC 1

FC
a−→ FC 2

OC
a−→ OC 1

OC
a−→ TC 2

TC ∩ FC
a−→ FC 2

FC ∩OC
a−→ FC 2

We remark that four of the these contact discontinuities begin or end at states of type
TC ∩FC or OC ∩FC. By assumptions (L) and (R), these states cannot be the first or last
in the wave sequence. They can, however, be intermediate states in generic wave sequences.
In the paper, it was shown that contact discontinuities other than the given types cannot
occur in generic wave sequences.

As shown in the paper, there remain fifteen possible contact discontinuities of speed a:
five possible left states (TC, FC, OC, TC ∩ FC, FC ∩OC) and three possible right states
(TC, FC, OC). Eight cannot occur because a wave of speed a cannot remove or create the

condition FC: FC
a−→ TC, FC

a−→ OC, TC∩FC a−→ TC, TC∩FC a−→ OC, FC∩OC a−→ TC,
FC ∩OC a−→ OC, TC

a−→ FC, TC
a−→ OC. The remaining seven are listed in the table.

5. Wave Sequences

Table 5.1 lists the four types of combustion waves in Theorem 3.1 of [7], together with
their dimension numbers, which were explained in Section 3.

An obvious necessary condition for a wave sequence to be generic is that it begins at a
state SL of type TC, FC, or OC, and ends at a state SR of type TC, FC, or OC. If SR

is of type FC (ρR = 0), there is a two-parameter family of states of the same type nearby
obtained by varying θR and Y R. Similarly, if SR is of type OC, there is a two-parameter
family of states of the same type nearby obtained by varying θR and ρR; and if SR is of type
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Table 5.1. Combustion waves

Combustion wave Dimension number

FC
cf−→ TC 1

OC
cf−→ TC 1

FC
cs−→ OC 1

TC
cs−→ OC 0

TC, there is a three-parameter family of states of the same type nearby, since θR can be
varied along with ρR and Y R.

Thus a second necessary condition for a wave sequence from a left state SL to a right state
SR to be generic is that for left states of the same type near SL, the intermediate states of
the wave sequence can be varied to arrive at

• a two-parameter family of states near SR if SR is of type FC or OC;
• a three-parameter family of states near SR if SR is of type TC.

It follows that for a wave sequence to be generic, the wave dimension numbers must sum to
at least 2 if the right state is of type FC or OC, and to at least 3 if the right state is of type
TC.

Figure 5.1 shows all possible sequences of the waves in Theorems 3.1 [7] and 4.1 with (1)
left state of type TC, FC, or OC, (2) increasing wave speed, and (3) sequences extended as
far as possible. Wave dimension numbers are also indicated. From this figure one can read
off all wave sequences with (1) left state of type TC, FC, or OC, (2) right state of type TC,
FC, or OC, and (3) correct sum of the wave numbers. These 18 sequences are listed below;
by giving the intermediate states explicitly we verify that they are in fact generic. Generic
wave sequences ending at states of type FC or OC (respectively TC) all have dimension
number sum 2 (respectively 3). Wave sequences with higher dimension number sum do not
exist.

TC

TC

TC

0

c
S

0

TC FCh

a

c
F

OC

0

0

OC FCh

FC
a c

F

FC

a

a

a

OC
c

S

OC

a

a

Figure 5.1. All possible sequences of the waves in Tables 4.1 and 5.1 with
(1) left state of type TC, FC, or OC, (2) increasing wave speed, and (3)
sequences extended as far as possible. Red arrow: dimension number 0. Black
arrow: dimension number 1. Green arrow: dimension number 2.
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There are nine types of boundary value problems, depending on whether the left and right
states are temperature controlled (TC), fuel controlled (FC), or oxygen controlled (OC). We
first give a brief summary the possible wave sequences, followed by a detailed account for
the interested reader.

1. Fuel-controlled right state. A combustion wave moving right cannot occur because
there is no fuel at the right and no mechanism to bring fuel to the right. Each possible
left state gives rise to a unique sequence of contact discontinuities. Notice that this wave
sequence represents the asymptotic state of the system. Combustion may occur for a while in
certain regions (for example, regions where fuel, oxygen, and high temperature are initially
present), but it eventually stops.

2. Oxygen-controlled right state. Each possible left state again gives rise to a unique
sequence of contact discontinuities, in which there are no combustion waves. In addition,
fuel-controlled and temperature controlled left states allow a wave sequence with a slow
combustion wave (smoldering). When there is an oxygen-controlled right state, combustion
must eventually die out unless oxygen is constantly brought to the right; this can only happen
when the left state has a positive oxygen concentration.

3. Temperature-controlled right state. Again each possible left state again gives rise to
a unique sequence of contact discontinuities, in which there are no combustion waves. In
addition, there is a rich set of other possibilities.

• Each possible left state allows a wave sequence consisting of one or two contact dis-
continuities followed by a fast combustion wave. This is not surprising: the right
state is “premixed,” in that both oxygen and fuel are present. If combustion starts
anywhere in the premixed region (because, for example, a high temperature is ini-
tially present there), then the combustion process itself produces a wave of high
temperature moving further into the premixed.

• A temperature-controlled left state allows a wave sequence in which there is a single
slow combustion wave surrounded by contact discontinuities. The oxygen arriving
from the left leads to a slow combustion wave preceded by a region of no oxygen:
the oxygen arriving from the left all burned in the reaction, and the oxygen initially
present at the right is carried away before the flame can reach it. Thus we have
smoldering despite a premixed right state.

• Finally, temperature-controlled and oxygen-controlled left states each allow a wave
sequence that includes both a slow and a fast combustion wave.

6. Reduced traveling wave equation

In order to most conveniently find the combustion waves of the system (2.1)–(2.3), we
replace (2.2) by the sum of (2.2) and (2.1), and we replace (2.3) by the difference of (2.3)
and (2.2). We obtain

∂tθ + a∂xθ = ∂xxθ + ρY Φ(θ), (6.1)

∂t(θ + ρ) + a∂xθ = ∂xxθ, (6.2)

∂t(Y − ρ) + a∂xY = 0. (6.3)

In (6.1)–(6.3), we replace the spatial coordinate x with one ξ that is moving with velocity
c: ξ = x− ct. To obtain the stationary solutions, we neglect d

dt
terms ..........
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In (??), we set v1 = ∂ξθ, and we integrate (??)–(??). Using dot to denote derivative with
respect to ξ, we obtain the system

θ̇ = v1, (6.4)

v̇1 = (a− c)v1 − ρY Φ(θ), (6.5)

w1 = (c− a)θ + v1 + cρ, (6.6)

w2 = (c− a)Y − cρ, (6.7)

where w1 and w2 are constants.
We assume c 6= a. Then we can solve for Y using (6.7), and we solve for v1 using (6.6).

Substituting into (6.4)–(6.5) and dividing the second equation by c (we recall the standing
assumption hat c > 0), we obtain the reduced traveling wave system

θ̇ = (a− c)θ − cρ+ w1, (6.8)

ρ̇ =
cρ+ w2

c(c− a)
ρΦ(θ), (6.9)

in which (w1, w2) is a vector of parameters. Because of (6.7), for the system (6.8)–(6.9),

the point (θ, ρ) has Y =
cρ+ w2

c− a
. (6.10)

The system (6.8)–(6.9) has the invariant lines

ρ = 0 and ρ = −w2

c
;

the latter corresponds to Y = 0.
The physically relevant part of the phase space for (6.8)–(6.9), which we denote P , has

ρ ≥ 0 and Y ≥ 0. From (6.10),

if 0 < c < a, Y ≥ 0 if and only if ρ ≤ −w2

c
; (6.11)

if c > a, Y ≥ 0 if and only if ρ ≥ −w2

c
. (6.12)

In the first case, P is nonempty if w2 ≤ 0; P = {(θ, ρ) : 0 ≤ ρ ≤ −w2

c
}. In the second case,

P = {(θ, ρ) : ρ ≥ max(0,−w2

c
)}. In both cases P is invariant.

6.1. Equilibria. The set of equilibria of (6.8)–(6.9) is the union of three subsets:

FC = {(θ, ρ) : θ > 0, ρ = 0, cρ+ w2 > 0, and (a− c)θ − cρ+ w1 = 0},
OC = {(θ, ρ) : θ > 0, ρ > 0, cρ+ w2 = 0, and (a− c)θ − cρ+ w1 = 0},

FC ∩OC = {(θ, ρ) : θ > 0, ρ = 0, cρ+ w2 = 0, and (a− c)θ − cρ+ w1 = 0}.
TC∗ = {(θ, ρ) : θ ≤ 0 and (a− c)θ − cρ+ w1 = 0}.

FC, OC, and FC∩OC consist of equilibria of those types only (recall (6.10)). TC∗ includes
equilibria of types TC, TC ∩ FC, TC ∩OC, and TC ∩ FC ∩OC, i.e., all low-temperature
equilibria.

All equilibria lie on the line H defined by (a− c)θ − cρ+ w1 = 0. H has positive slope if
0 < c < a and negative slope if c > a. In terms of the natural variables (θ, v1, ρ, Y ), with

v1 = θ̇, H corresponds to v1 = 0. The portion of H in θ ≤ 0 is TC; the portion in θ > 0 is
the disjoint union of FC (ρ = 0 only), OC (Y = 0 only), and FC ∩OC (ρ = Y = 0).



10 G. CHAPIRO1, L. FURTADO2, D. MARCHESIN3, AND S. SCHECTER4

The linearization of (6.8)–(6.9) at a point (θ, ρ) has the matrix a− c −c
cρ+ w2

c(c− a)
ρΦ′(θ)

2cρ+ w2

c(c− a)
Φ(θ)

 . (6.13)

If (θ, ρ) ∈ TC∗, (6.13) becomes (
a− c −c
0 0

)
. (6.14)

Proposition 6.1. At an equilibrium in TC∗, one eigenvalue is a−c, with eigenvector (1, 0);
the other eigenvalue is 0.

If (θ, ρ) ∈ FC or FC ∩OC, (6.13) becomes(
a− c −c
0

w2

c(c− a)
Φ(θ)

)
. (6.15)

We have ρ = 0. In FC, Y > 0, so

w2 = (c− a)Y − cρ = (c− a)Y has the sign of c− a.

In FC ∩OC, Y = 0, so w2 = 0. Therefore:

Proposition 6.2. At an equilibrium in FC or FC∩OC, one eigenvalue is a−c, with eigen-
vector (1, 0). This eigenvector points along the invariant line ρ = 0. The other eigenvalue is
positive in FC and 0 in FC ∩OC. Its eigenvector is transverse to the invariant line.

If (θ, ρ) ∈ OC, (6.13) becomes (
a− c −c
0

w2

c(a− c)
Φ(θ)

)
. (6.16)

Since ρ > 0 and cρ+ w2 = 0, we have w2 < 0. Therefore:

Proposition 6.3. An equilibrium in OC is a saddle. One eigenvalue is a−c, with eigenvector
(1, 0). This eigenvector points along the invariant line ρ = −w2/c, which corresponds to
Y = 0. The other eigenvector is transverse to the invariant line.

The invariant lines ρ = −w2

c
and ρ = 0 each contain just one equilibrium, so they do not

contain traveling waves with finite limits at both ends. Therefore, from the propositions of
this section we conclude that to find solutions of (6.8)–(6.9) that approach their end states
exponentially, only the following cases need be considered:

• 0 < a < c, left state in FC or OC, right state in TC∗.
• 0 < c < a, left state in FC or TC∗, right state in OC.

7. Numerically determining the wave sequences

In this section, we describe a way to numerically determine a (θ−, ρ−, Y −) and cf , given
(θ+, ρ+, Y +) in accordance with the hypotheses of Theorem 3.1. The method, which was
implemented in MATLAB, begins by determining the type of combustion wave that will
occur, for specified (θ+, ρ+, Y +). By Theorem 3.1, the problem of determining the type of
combustion wave translates to that of finding the value of Y +

∗ for each (θ+, ρ+, a). The next
section describes the procedure by which this was done.
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7.1. Finding Y +
∗ Numerically and a Numerical Analysis Thereof. Assume ρ− =

Y − = 0 so that θ− = θ++Y + and the left state is of type FC ∩OC, in which case Y +
∗ = Y +

and cf = aY +/(Y + − ρ+). For a given fixed (θ+, ρ+, a), look for a value of Y + that will give
a combustion wave from the left state (which in this case is FC ∩OC and unique and of the
form (θ−, ρ−, Y −) = (θ+ + Y +, 0, 0)) to the right state (θ+, ρ+, Y +).

Specifically, for each given value of (θ+, ρ+, Y +, a), substitute into (6.8)–(6.9) the values

w1 = (a− c)θ+ + cρ+, w2 = (c− a)Y + − cρ+, c = cf = aY +/(Y + − ρ+). (7.1)

Then define
ψ(θ+,ρ+,Y +) : t ∈ R 7→ (θ(t), ρ(t)) ∈ R2 (7.2)

to be the solution of (6.8)–(6.9) (with w1, w2, and c as already mentioned) whose α-limit is
the equilibrium point FC ∩OC described in Section 6.1.

The integration is done numerically— it is possible to only approximately find this orbit.
This approximation is done by linearizing (6.8)–(6.9), (see matrix (6.13)) and plotting an
orbit beginning a short distance from the equilibrium point FC ∩ OC, in the direction of
the eigenvector corresponding to the eigenvalue λ = 0 (the other eigenvector is negative: see
Proposition 6.1).

Let t̃ ∈ R be the time such that

ψ(θ+,ρ+,Y +)(t̃) = (0, ρ̃), (7.3)

i.e., the time when the orbit crosses the ρ-axis. Finally, define Fθ+,ρ+ as the function that
takes

Y + 7→ (ρ+ − ψ(θ+,ρ+,Y +)(ρ̃)) = ρ+ − ρ̃. (7.4)

Then Y +
∗ is a zero of Fθ+,ρ+ , namely,

Fθ+,ρ+(Y
+
∗ ) = ρ+ − ψ(θ+,ρ+,Y +

∗ )(ρ̃) = ρ+ − ρ̃ = 0 (7.5)

because Y +
∗ is defined to be the value of Y + for which there is a combustion wave (θ−, ρ−, Y −) =

(−w1

a−c
, 0, 0)

cf−→ (θ+, ρ+, Y +) of type FC∩OC
cf−→ TC. In other words, Y +

∗ is the value of Y + for

which there exists an orbit of (6.8)-(6.9) with α-limit (θ−, ρ−, Y −) and ω-limit (θ+, ρ+, Y +),
so that

ψ(θ+,ρ+,Y +
∗ )(ρ̃) = ψ(θ+,ρ+,Y +

∗ )(+∞) = ρ+. (7.6)

Note that the first equality holds because for values of θ ≤ 0, ρ̇ vanishes in (6.9). This
is why we may stop the numerical integration of (6.8)-(6.9) at θ = 0, without having to go
further for values of θ < 0. Lastly, the method of bisection was used to find the zero of
Fθ+,ρ+ .

7.2. Numerical Analysis of the Relationship Between Y +
∗ and (θ+, ρ+, a). Using the

procedure described above, we found and plotted in (θ+, ρ+, Y +)-space the corresponding
value of Y +

∗ (θ+, ρ+, a). Here we consider Y +
∗ as a function of (θ+, ρ+, a), for various values

of (θ+, ρ+, a).
Fixed a, the graph of the function Y +

∗ is a 2-dimensional level-surface in (θ+, ρ+, Y +)-
space (see Figure 7.1). We found that these level surfaces do not intersect on the interval
(−10, 0.2, 0.1) ≤ (θ+, ρ+, Y +

∗ ) ≤ (−0.2, 10, 10). They do appear to intersect in the limit
ρ+ → 0 (see Figure 7.2). Furthermore, for 0.1 ≤ a ≤ 10, as ρ+ → 0 it appears that
Y ∗
+ → θ+. For very large values of a however either this does not appear to be the case, or
Y ∗
+ → θ+ so slowly that the simulation is not capable to distinguish sufficiently small values

of ρ+ > 0.
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Figure 7.1. The graph of Y +
∗ (θ+, ρ+, a) for a = 0.1 (below) and a = 4 (above).
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Figure 7.2. For fixed θ+ and ρ+ small. The curves, from bottom to top,
have increasing values of a equal to 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

8. Numerical Stability of Wave Sequences

In this section we study the stability of the generic sequences discussed in [7].
Theorem 3.2 states that if θ− + Y − < 0, then slow combustion will not exist; Theorem

3.1 states that if θ+ + Y + < 0, then fast combustion will not exist. When an end state is
of type TC>, combustion waves arriving at or coming from temperature controlled regions
may occur, by Theorems 3.1 and 3.2. Therefore, we distinguish states of type TC according
to whether they do or do not fit these conditions. We subdivide TC into two subsets:
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TC> = {(θ, ρ, Y ) ∈ TC : θ + Y > 0}, TC< = {(θ, ρ, Y ) ∈ TC : θ + Y ≤ 0},

and continue writing TC to mean the union of TC< and TC>.
There are 9 combinations of left and right states. We denote such a combination by an

ordered pair (SL, SR), where SL and SR are 2 or 3 dimensional vectors corresponding to left
and right boundary states of either type FC, OC, or TC.

Referring to the results of [7], which are summarized in Section 5, we notice that 5 of these
pairs have unique wave sequences connecting their left and right boundary states:

(1) (FC, FC): FC
a−→ FC

(2) (TC, FC): TC
0−→ TC ∩ FC a−→ FC

(3) (OC,FC): OC
0−→ OC ∩ FC a−→ FC

(4) (OC,OC): OC
0−→ OC

a−→ OC

(5) (FC,OC): FC
cs−→ OC

a−→ OC

Sequences (1)-(5) either do not contain combustion waves or contain only slow combustion

waves of type FC
cs−→ OC. These sequences may be computed explicitly, as described in

Section 3. Simulations indicated that sequences (1)-(5) are indeed stable.
The remaining 4 pairs of end states give rise to the 13 other generic wave sequences

described in [7]. Specifically, the pair (TC,OC) gives rise to 2 wave sequences, (6)-(7);
(FC, TC) and (OC, TC) each give rise to wave sequences (8)-(10) and (11)-(13); and (TC, TC)
gives rise to 5 wave sequences, (14)-(18). The remainder of this section is dedicated to the
study of the stability of these 13 sequences, which we subdivide into 21 subsequences, listed
below:

(6.1) TC> 0−→ TC> a−→ OC

(6.2) TC< 0−→ TC< a−→ OC

(7) TC> 0−→ TC> cs−→ OC
a−→ OC

(8.1) FC
cs−→ OC

a−→ TC>, Y R > Y ∗

(8.2) FC
cs−→ OC

a−→ TC>, Y R < Y ∗

(8.3) FC
cs−→ OC

a−→ TC<

(9) FC
a−→ FC

cf−→ TC>

(10) FC
cs−→ OC

a−→ OC
cf−→ TC>

(11.1) OC
0−→ OC

a−→ TC>, Y + > Y ∗

(11.2) OC
0−→ OC

a−→ TC>, Y + < Y ∗

(11.3) OC
0−→ OC

a−→ TC<

(12) OC
0−→ OC ∩ FC a−→ FC

cf−→ TC

(13) OC
0−→ OC

a−→ OC
cf−→ TC

(14) TC
0−→ TC

a−→ TC

(15.1) TC> 0−→ TC> cs−→ OC
a−→ TC<

(15.2) TC> 0−→ TC> cs−→ OC
a−→ TC>

(16.1) TC< 0−→ TC< a−→ OC
cf−→ TC>

(16.2) TC> 0−→ TC> a−→ OC
cf−→ TC>

(17.1) TC< 0−→ TC< ∩ FC a−→ FC
cf−→ TC>

(17.2) TC> 0−→ TC> ∩ FC a−→ FC
cf−→ TC>

(18) TC> 0−→ TC> cs−→ OC
a−→ OC

cf−→ TC>

In what follows, the speed of the contact discontinuity was always taken to be a = 0.1.

8.1. Sequences with boundary conditions (TC,OC).

8.1.1. SL ∈ TC<. Combustion of type TC< cs−→ OC will not occur, by Theorem 3.2. Indeed,
it was verified by the simulations that the sequence (6.2) connecting (TC<, OC) is indeed
stable.
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Figure 8.1. Sequence (7); Behavior 1

8.1.2. SL ∈ TC>. When SL ∈ TC>, slow combustion of type TC> cs−→ OC is shown to
exist by Theorem 3.2. For the pair (TC>, OC) it is possible to construct, in addition to
a sequence of type (6.1), a sequence of type (7), using the numerical procedure described
in Section 7. Different behaviors were observed, which depended on the end states given.
The behavior also seems to depend on the distance between the waves of the given wave
sequence. Namely, in the simulations performed, sequences (6.1) and (7) with the same end
states always evolved into the same sequence but sequences with different end states evolved
into different sequences. Hence we will explain the behavior when a sequence of type (6.1)
is given as the initial condition, noting that the same behavior occurs when a sequence with
the same end states of type (7) is given as the initial condition.

Three different behaviors were observed during intermediate times which in turn converge
into two apparently stable sequences. The intermediate behaviors are:

(1) The initial condition quickly evolves into a sequence of type (7); a slow combustion

wave of type TC> cs−→ OC forms that burns increasing amounts of fuel until a time
when the temperature becomes high enough, giving rise to a violent combustion that
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Figure 8.2. Sequence (7); Behavior 2

burns all of the fuel but extinguishes shortly afterwards, becoming a sequence of type
(6.1) (see plots in Figure 8.1).

(2) The initial condition quickly evolves into a sequence of type (7) that burns in in-
creasing amounts in a manner similar to behavior (1). The violent combustion does
not burn all of the fuel and instead of quickly extinguishing evolves into a milder
combustion that appears to be stable (or very slowly extinguishing itself) (see plots
in Figure 8.2).

(3) The initial condition quickly evolves into a sequence of type (7) in a manner similar
to behavior (1), eventually giving rise to a violent combustion that burns all of the
fuel. Instead of extinguishing itself as in (1), this combustion continues, and appears
to be stable (see plots in Figure 8.3).

Behavior (1) suggests that for certain end states slow combustion of type TC> cs−→ OC is
unstable. However, during intermediate times, slow combustion is present in behaviors (1)-
(3). Although behavior (2) displays left and right states for which an apparently persistent
slow combustion occurs, whether this combustion is stable or very slowly extinguishing
is unclear through the simulation. Behavior (3) suggests that slow combustion of type

TC> cs−→ OC can also be stable, for certain boundary states. Theorem 3.2 proves the
existence of slow combustion when SL ∈ TC>; these simulations suggest that this combustion
may be unstable or stable, if in fact behavior (2) displays a stable slow combustion wave.
Behavior (3), in which a slow combustion appears that burns all of the fuel, is an example

of a stable sequence of type TC
0−→ TC ∩FC cs−→ OC

a−→ OC. This sequence does not appear
as one of the 18 possibe generic wave sequences described in Figure 5.1. Simulation (3) is
evidence that this sequence is physically present. Finally, while only end states with exactly
one control condition was considered, it might be beneficial to in addition consider those end
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Figure 8.3. Sequence (7); Behavior 3

states that are both TC and either OC or FC. This is because the subsets TC ∩ OC and
TC ∩ FC both have codimension 1 in (θ, ρ, Y )-space, and so should be considered generic.

8.2. Sequences with boundary conditions (FC, TC).

8.2.1. SR ∈ TC<. Fast combustion will not occur, by Theorem 3.1. It was verified by the
simulations that the sequence (8.3) connecting (FC, TC<) is indeed stable.

8.2.2. SR ∈ TC>. Theorem 3.1 shows that fast combustion exists. The Theorem also
distinguishes two types of generic fast combustion waves: OC

cf−→ TC> and FC
cf−→ TC>.

As stated in Theorem 3.1, the type of wave is determined by the values of the right state.

Specifically, for Y + > Y ∗(θ+, ρ+) the fast combustion wave is of type FC
cf−→ TC and for

Y + < Y ∗(θ+, ρ+) it is of type OC
cf−→ TC>. Recall that we described how to determine

numerically the type of fast combustion wave in Section 7.
When Y + > Y ∗, simulations with initial data without combustion (sequence (8.1)) quickly

evolved into sequence (9) (see Figure 8.4). This is an indication that when Y + > Y ∗, fast
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Figure 8.4. Sequence 8.1
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Figure 8.5. Sequence 9

combustion of type FC
cf−→ TC> exists and is stable. In fact, the simulations suggest that

when Y + > Y ∗, among (8.1) and (9), the latter is the only stable sequence.
When Y + < Y ∗, different behaviors were observed, which suggest that both sequences,

(8.2) and (10), may be stable for large time. Similar to Subsection 8.1.2, for the simulations
performed the different behaviors depended on the given end states but not on the type of
sequence given as initial condition. Hence, we will explain the behavior when a sequence of
type (8.2) is given as initial condition, noting that the same behavior occurs when a sequence
with the same boundary states of type (10) is given as the initial condition. Two different
behaviors were observed during intermediate times, which in turn converge to two apparently
stable sequences. These behaviors are:

(1) Periodic violent bursts of fast combustion occur; the period of the combustion in-
creases over time. In the time intervals between the bursts of combustion, the se-
quence has a small fast combustion wave that decreases in magnitude before slowly
increasing again in magnitude until the combustion burst (Figures 8.6 and 8.7).

(2) The initial conditions quickly evolve into a stable sequence of type (10) (Figure 8.8).

8.3. Sequences with boundary conditions (OC, TC).

8.3.1. SR ∈ TC<. The hypotheses of Theorem 3.1 are not satisfied, so that fast combus-
tion will not occur. It was verified by the simulations that the sequence (11.3) connecting
(OC, TC<) is indeed stable.

8.3.2. SR ∈ TC>. When Y + > Y ∗, simulations with initial data without fast combustion
(sequence (11.1)) quickly evolved into sequence (9) (Figure 8.13). Simulations with initial
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Figure 8.6. Sequence (10); Behavior 1, example 1

data with fast combustion (Sequence (12)) continued to display combustion (Figure 8.14).

This is an indication that when Y + > Y ∗, fast combustion of type FC
cf−→ TC> exists and

is stable. In fact, the simulations suggest that when Y + > Y ∗, among (11.1) and (12), the
latter is the only stable sequence.

When Y + < Y ∗, three different behaviors were seen, depending on the boundary conditions
but not on the type of sequence given as intial condition. Therefore, we will explain the
behavior when a sequence of type (11.2) is given as initial condition, noting that the same
behavior occurs when a sequence with the same boundary states of type (13) is given as
the initial condition. The different behaviors observed mimic those seen in Subsection 8.2.2.
Note that sequence (1), which was studied in Subsection 8.2.2, and sequence (13) both have

a fast combustion wave of type OC
cf−→ TC. The different behaviors are:

(1) The sequence of type (11.2) quickly develops a fast combustion wave of type OC
cf−→

TC, hence evolving into sequence (13). The fast combustion wave quickly decreases
in magnitude until it becomes imperceptible, at which point the sequence of type
(11.2) appears to evolve stably (Figure 8.9).
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Figure 8.7. Sequence (10); Behavior 1, example 2

(2) The sequence of type (11.2) quickly develops a fast combustion wave. The fast
combustion wave experiences periodic bursts in magnitude; the period of the bursts
increases over time. This behavior is similar to behavior (1) in section 8.2.2 (Figures
8.10 and 8.11).

(3) The sequence of type (11.2) quickly evolves into a sequence of type (13). This se-
quence then remains stable (Figure 8.12).

The period of the bursts of fast combustion in behavior (2) seems inversely proportional
to the magnitude of the sum θ+ + Y +). Namely, as θ+ < 0 decreases and its magnitude
approaches the value of Y +, the period of the bursts decreases. This suggests that, for fixed
boundary conditions, there exists a value of θ+, say θ̃+ such that for θ+ < θ̃+ the sequence
will exhibit behavior (1) and for θ+ > θ̃+ the sequence will exhibit behavior (2).

8.4. Sequences with boundary conditions (TC, TC).
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Figure 8.8. Sequence 10; Behavior 2
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Figure 8.9. Sequence (11.2); Behavior 1

8.4.1. Sequences of type (14). The temperature in all wave sequences of type (14) is never
positive (i.e., all states in the sequence are of type TC). It is therefore clear that no com-
bustion can occur. It was verified by simulations that all sequences of type (14), namely
sequences (14.1)-(14.4.2), are indeed stable.

8.4.2. SL ∈ TC>, SR ∈ TC<. The hypotheses of Theorem 3.2 are satisfied but the hy-
potheses of Theorem 3.1 are not satisfied. Theorem 3.2 shows that slow combustion of type
TC

cs−→ OC exists. Therefore, it is possible to construct a sequence of type (14.2) and a
sequence of type (15.1).

All simulations in which a sequence of type (15.1) was given as initial condition evolved
stably. This suggests that sequence (15.1) is indeed stable (see Figure 8.15).

8.4.3. SL ∈ TC<, SR ∈ TC>. The hypotheses of Theorem 3.1 are satisfied but the hy-
potheses of Theorem 3.2 are not satisfied. Theorem 3.1 shows that fast combustion exists.
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(c) Simulation at time 75
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(d) Simulation at time 125

Figure 8.10. Sequence (11.2); Behavior 2, example 1

Furthermore, two types of fast combustion waves are possible: FC
cf−→ TC if Y + > Y ∗ and

OC
cf−→ TC if Y + < Y ∗.

If Y + > Y ∗, it is possible to construct a sequence of type (14.3.1) or (16.1).
All simulations in which a sequence of type (16.1) was given as initial condition evolved

stably. This suggests that sequence (16.2) is indeed stable (see Figure 8.16).
If Y + < Y ∗, it is possible to construct a sequence of type (14.3.2) or (17.1). Two types

of behavior were observed when a sequence of type (17.1) was given as initial condition. If
the spacing between the waves was large, the sequence (17.1) evolved stably, so that the

fast combustion of type OC
cf−→ TC persisted (see Figure 8.17). If the spacing between the

waves is small, the fast combustion wave quickly extinguishes; the sequence evolves into a
sequence of type (14.3.2). The extinguishing of the fast combustion wave could possibly be
due to the interaction of the low temperature region in the left boundary with the region
in which combustion occurs, this interaction being a consequence of diffusion of the heat
being generated by the combustion and the heat transported by the contact discontinuity of
velocity a (see Figure 8.18).

8.4.4. SL, SR ∈ TC>. The hypotheses of Theorem 3.1 and 3.2 are both satisfied. Theorem
3.2 shows that slow combustion of type TC

cs−→ OC exists. Theorem 3.1 shows that two type

of fast combustion wave are possible: FC
cf−→ TC if Y + > Y ∗ and OC

cf−→ TC if Y + < Y ∗.
If Y + > Y ∗, three types of wave sequence are possible: (14.4.1), (15.2), and (16.2). All

simulations in which a sequence of type (16.2) was given as initial condition evolved stably.
This suggests that sequence (16.2) is indeed stable. The simulations run thus far suggest that
sequence (15.2) quickly evolves into a sequence of type (16.2). In other words, when both
sequence (15.2) and (16.2) are possible, it appears that sequence (16.2) is stable, whereas
sequence (15.2) is unstable.
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(c) Simulation at time: 25
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(d) Simulation at time: 50
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(e) Simulation at time: 100
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(f) Simulation at time: 150

Figure 8.11. Sequence (11.2); Behavior 2, example 2
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(b) Simulation at time: 75

Figure 8.12. Sequence (11.2); Behavior 3

If Y + < Y ∗, four types of wave sequence are possible: (14.4.2), (15.2), (17.2), and (18).

9. Conclusion

The analysis presented in this work leads to the re-classification and re-enumeration of the
possible generic wave sequences in the solution of the combustion problem in light porous
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Figure 8.13. Sequence (11.1)
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Figure 8.14. Sequence (12)
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Figure 8.15. Sequence (15.1)
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Figure 8.16. Sequence (16.1)

foam. We also studied numerically the hypotheses for existence of the fast combustion waves.
This analysis leads to a description of a manifold in parameter space which separates different
types of combustion.
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Figure 8.17. Sequence (17.1), large spacing
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Figure 8.18. Sequence (17.1), small spacing
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