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Abstract

This work contains essentially two rigidity results.
For compact surfaces Σ with boundary properly embedded in a Rie-

mannian three-manifold (M, g) with mean convex boundary that are local
minima for the free boundary problem for the area, we prove that a geomet-
ric invariant constructed from the infimum of the scalar curvature of M , the
infimum of the mean curvature of ∂M , the area of Σ and the length of ∂Σ is
bounded from above by a constant which depends only on the topology of
Σ, with equality (under additional hypotheses) if and only if Σ has constant
Gaussian curvature, ∂Σ has constant geodesic curvature and (M, g) locally
splits as a product ((−ε, ε) × Σ, dt2 + gΣ) in a neighborhood of Σ. This
generalizes previous results about locally area-minimizing surfaces without
boundary.

For asymptotically hyperbolic three-manifolds (M, g) that have a min-
imal boundary, scalar curvature greater than or equal to −6 and that are
sufficiently small perturbations of the Anti-de Sitter-Schwarzschild spaces of
positive mass, we prove that the Hawking mass of ∂M (which is a function
of the area of ∂M only) is bounded from above by the mass of (M, g) (which
depends only on the geometry at infinity), with equality if and only if (M, g)
is isometric to the Anti-de Sitter-Schwarzschild space of same mass. This
proves the Penrose Conjecture for this class of asymptotically hyperbolic
manifolds.

In the proofs of these results, the construction of foliations of (M, g) by
constant mean curvature surfaces and the monotonicity of suitable function-
als along these families play a fundamental role.

Keywords: Minimal surfaces, free boundary surfaces, area-minimizing
surfaces, CMC foliations, asymptotically hyperbolic manifolds, Penrose Con-
jecture, scalar curvature, rigidity.
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Resumo

Este trabalho contém essencialmente dois resultados de rigidez.
Considerando superf́ıcies compactas Σ, com bordo, propriamente mer-

gulhadas em uma variedade Riemanniana (M3, g) com bordo convexo em
média e que são pontos de mı́nimo local para o problema de minimização de
área em M com bordo livre em ∂M , provamos que um invariante geométrico
constrúıdo a partir do ı́nfimo da curvatura escalar de M , do ı́nfimo da cur-
vatura média de ∂M , da área de Σ e do comprimento de ∂Σ é limitado
superiormente por uma constante que depende apenas da topologia de Σ,
valendo a igualdade (com hipóteses adicionais) se, e somente se, Σ tem cur-
vatura Gaussiana constante, ∂Σ tem curvatura geodésica constante e (M, g)
se decompõe localmente em produto ((−ε, ε) × Σ, dt2 + gΣ) em vizinhança
de Σ. Isto generaliza resultados anteriores sobre superf́ıcies sem bordo lo-
calmente minimizantes de área.

Considerando variedades assintoticamente hiperbólicas (M3, g) que têm
bordo mı́nimo, curvatura escalar maior que ou igual a −6 e que são per-
turbações suficientemente pequenas dos espaços Anti-de Sitter-Schwarzschild
de massa positiva, provamos que a massa de Hawking de ∂M (que é função
apenas de sua área) é limitada superiormente pela massa de (M, g) (que
depende apenas de sua geometria no infinito), valendo a igualdade se, e
somente se, (M, g) é isométrica ao espaço Anti-de Sitter-Schwarzschild de
mesma massa. Isto demonstra a Conjectura de Penrose para esta classe de
variedades assintoticamente hiperbólicas.

Nas demonstrações destes resultados, a construção de folheações de (M, g)
por superf́ıcies com curvatura média constante e a monotonicidade de fun-
cionais apropriados ao longo dessas famı́lias tem um papel fundamental.

Palavras-chave: Superf́ıcies mı́nimas, superf́ıcies com bordo livre, su-
perf́ıcies minimizantes de área, folheaçoes CMC, variedades assintoticamente
hiperbólicas, Conjectura de Penrose, curvatura escalar, rigidez.
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Introduction

This thesis is based on our papers [1] and [2], in which we studied very dif-
ferent problems. As a general introduction to the present work, we would
like to explain very briefly a common background in which our results can
be understood.

The underlying question is to understand the relations between the scalar
curvature of a Riemannian manifold (M, g) and the other geometric invari-
ants of (M, g). In particular, one finds situations where it is impossible to
increase the scalar curvature of a given Riemannian manifold (M0, g0) with-
out changing some of its geometric invariants. In this case, one might talk
about rigidity of the model space (M0, g0).

A prototypical example of this phenomenon is the following beautiful
result about the Euclidean space (Rn, δ).

Theorem. Let g be a Riemannian metric on Rn that coincides with the
Euclidean metric δ outside a compact set. If the scalar curvature of g is
nonnegative, then (Rn, g) is isometric to (Rn, δ).

This result is a consequence of the celebrated Positive Mass Theorem
(proven by R. Schoen and S.T. Yau [31] and E. Witten [35]). The Rieman-
nian manifolds (Rn, g) above are asymptotically flat manifolds with zero
mass, where, loosely speaking, the mass of an asymptotically flat manifold
is a geometric invariant determined by the behavior of the metric near the
infinity in comparison to the Euclidean metric. The Positive Mass Theorem
says that all asymptotically flat manifolds with nonnegative scalar curvature
have nonnegative mass, and the only one with zero mass is, up to isometries,
the Euclidean space (Rn, δ). The theorem follows.

There are many other examples of rigidity and also non-rigidity phenom-
ena involving the scalar curvature, and many results on the subject can be
found in recent literature. We refer the reader to the survey [7]. Some of
them inspired our work, and our contribution in [1] and [2] was to prove
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some new scalar curvature rigidity results for three-manifolds.
Regarding the proofs of our results, we can also point out a common

important step: the construction of smooth foliations by constant mean
curvature surfaces. This is done with the aid of the inverse function the-
orem. A remarkable utilization of these families of surfaces in relation to
scalar curvature rigidity problems can be found in the work of H. Bray [3],
where a fundamental idea was that, if the scalar curvature is bounded from
below, one can get monotonicity of certain functionals along these families
and use this monotonicity to conclude rigidity. Our proofs were also guided
by this beautiful idea.

This work is organized as follows. After fixing the terminology and no-
tations in a preliminary chapter, we present with minor modifications and
no substantial addition the contents of [1] and [2] in two separated chapters.
Chapter 1 contains the rigidity results for area-minimizing free boundary
surfaces in mean convex three-manifolds. Chapter 2 contains the rigidity
results for small perturbations of the Anti-de Sitter-Schwarzschild spaces of
positive mass. Both chapters contain an introductory material explaining
the context and the statements of our main results – Theorems A, B and C
in Chapter 1, and Theorem D in Chapter 2. Finally, some calculations can
be found in the Appendix.

Instituto de Matemática Pura e Aplicada 2 2014



Basic material

The aim of this chapter is to fix the terminology and the notations by re-
calling some basic facts about the geometry of surfaces in a Riemannian
three-manifold.

Throughout this work, (M3, g) will denote a Riemannian three-manifold
manifold with boundary ∂M , which we allow to be empty. In case ∂M is
not empty, we denote by X its outward pointing unit normal vector field.

Let ∇ denote the Levi-Civita connection of (M, g). We follow the most
usual conventions regarding the definition of the Riemann tensor of (M, g).
Ric will denote the Ricci tensor and R the scalar curvature of g.

Let Σ2 be a compact connected surface. Σ is said to be properly im-
mersed (respect., embedded) in M when there is a smooth immersion (re-
spect., embedding) i : Σ → M such that i(Σ) ∩ ∂M = i(∂Σ). When Σ is
closed, i.e., when Σ has no boundary, this condition only means that Σ is
immersed (or embedded) in M \ ∂M . All surfaces considered in this work
will be properly immersed compact surfaces. Therefore we will sometimes
simply say that Σ is a surface in M .

We always consider the surfaces Σ in (M, g) with the induced metric.
Regarding the intrinsic geometry, let K denote the Gaussian curvature of
(Σ, g) and let k denote the geodesic curvature of ∂Σ in (Σ, g). Let ν be the
co-normal of ∂Σ, i.e., the unit vector field along ∂Σ that is tangent to Σ,
normal to ∂Σ and points outward Σ. If T is a unit vector field tangent to
∂Σ, we have k = g(∇T ν, T ).

A fundamental result about the geometry of compact surfaces (Σ, g) is,
of course, the

Gauss-Bonnet Theorem.∫
Σ
KdA+

∫
∂Σ
kdL = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ.

3
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A surface Σ in (M, g) is said to be two-sided when its normal bundle is
trivial. This topological condition is always verified, for example, by simply
connected surfaces. In any case, in this work we consider only two-sided
surfaces in (M, g). A unit vector field normal to a surface Σ in (M, g) will
be denoted by N , and we always choose it pointing toward the unbounded
component of M \ Σ (whenever this condition makes sense).

The extrinsic geometry of Σ in (M, g) is encoded in the second funda-
mental form B, which is the two-tensor on Σ defined by

B(Y,W ) = g(∇YN,W )

for every pair of vectors Y,W tangent to Σ. If ∇Σ is the Levi-Civita con-
nection of (Σ, g), then ∇YW = ∇Σ

YW −B(Y,W )N for every pair of vectors
Y,W tangent to Σ.

The norm of the second fundamental form will be denoted by |B|, its
trace by H and its traceless part by B̊. H is called the mean curvature of Σ.
We say that the ambient manifold (M, g) has mean convex boundary when
H∂M ≥ 0.

The equations relating the geometry of (M, g) and Σ ⊂ M used in this
work are listed bellow.

Fundamental equations. Let Σ be surface in (M3, g). Then

1) (Contracted Gauss equation)

2K = R− 2Ric(N,N) +H2 − |B|2. (0.1)

2) (Contracted Codazzi equation)

divΣB − dH = Ric(N,−). (0.2)

3) Let {T, T⊥, X} be an orthonormal referential along ∂Σ ⊂ ∂M , where
T is tangent to ∂Σ and X is the outward normal to ∂M . Then

H∂M = B∂M (T, T ) +B∂M (T>, T>)

= g(X, ν)k + g(X,N)BΣ(T, T ) +B∂M (T⊥, T⊥). (0.3)

A surface Σ in M is called minimal when H = 0, totally umbilic when
B̊ = 0 and totally geodesic when B = 0. Σ is called a free boundary surface
when ∂Σ meets ∂M orthogonally, i.e., when ν = X along ∂Σ. In particular,
on a free boundary surface Σ its normal N is tangent to ∂M along ∂Σ.

Given a surface Σ in (M, g), let |Σ| denote its area and |∂Σ| denote the
length of its boundary. The above definitions of minimal and free boundary
surfaces are related to the variational theory of the area functional.

An admissible variation of Σ is a smooth map f : Σ× (−ε, ε)→M such

Instituto de Matemática Pura e Aplicada 4 2014
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that ft : Σ → M is a proper immersion in (M, g) for every t ∈ (−ε, ε) and
f0(Σ) = Σ. Sometimes we will forget the function f and simply say that
{Σt := ft(Σ)} is a variation of Σ = Σ0. The variational vector field V = ∂tf
will be usually decomposed in its normal and tangent part on Σ,

V = V > + ρN.

The function ρ is called the lapse function or the normal velocity of the
variation. When each Σt is properly embedded and ρ has a sign, the family
of surfaces {Σt} gives a foliation of a region of M .

Given these definitions, we have the following formula for the first deriva-
tive of the area of the surfaces along a variation.

First variation of area. Given a variation {Σt} of Σ,

d

dt |t=0
|Σt| =

∫
Σ
HρdA+

∫
∂Σ
g(ν, V )dL.

Since the admissible variations we consider are such that the variational
vector field V is tangent to ∂M along ∂Σ, a surface Σ in M is a critical
point of the area under all admissible variations if and only if Σ is a free
boundary minimal surface.

The operator
LΣ = ∆Σ +Ric(N,N) + |BΣ|2

is called the Jacobi operator of Σ, where ∆Σ denotes the Laplace-Beltrami
operator of (Σ, g). The Jacobi operator is related to the first variation of
the mean curvature of the surfaces of a variation.

First variation of the mean curvature. Given a variation {Σt} of Σ,

(∂tHt)|t=0 = dH(V >)− LΣ(ρ). (0.4)

Another useful formula describes the variation of the normal vectors to
the surfaces Σt.

First variation of the unit normal field. Given a variation {Σt} of Σ,

(∇∂tNt)|t=0 = ∇V >N −∇Σρ, (0.5)

where ∇Σρ denotes the gradient on Σ of the lapse function ρ.

Given a critical point of the area functional, i.e., given a free boundary
minimal surface Σ, one can use the above formulas to calculate the second
derivative of area along variations for which V > = 0 along Σ.

Instituto de Matemática Pura e Aplicada 5 2014
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Second variation of area. Let Σ be a free boundary minimal surface. For
every admissible variation {Σt} of Σ with V = ρN on Σ,

d2

d2t |t=0
|Σt| = −

∫
Σ
LΣ(ρ)ρdA+

∫
∂Σ

(
∂ρ

∂ν
−B∂M (N,N)ρ

)
ρdL

=

∫
Σ
|∇Σρ|2 − (Ric(N,N) + |BΣ|2)ρ2dA−

∫
∂Σ
B∂M (N,N)ρ2dL.

Given a free boundary minimal surface Σ in (M, g), we consider the
quadratic form Q on C∞(Σ) associated to the second variation of area,

Q(φ, ψ) = −
∫

Σ
LΣ(φ)ψdA+

∫
∂Σ

(
∂φ

∂ν
−B∂M (N,N)φ

)
ψdL.

A free boundary minimal surface Σ in (M, g) is called free boundary
stable when the second variation of area is nonnegative for all admissible
variations. In view of the second variation of area formula, this is equivalent
to the analytical definition that the quadratic form Q is nonnegative. In the
case of closed surfaces, in particular, a minimal surface Σ is called stable if
and only if its Jacobi operator LΣ has only nonnegative eigenvalues.

A properly immersed surface Σ in (M, g) will be called locally area-
minimizing when every nearby properly immersed surface has area greater
than or equal to the area of Σ. In particular, locally area-minimizing surfaces
are free boundary stable minimal surfaces.

A closed surface Σ with constant mean curvature is said to be weakly
stable when

−
∫

Σ
LΣ(φ)φdΣ ≥ 0 for all φ ∈ C∞(Σ) such that

∫
Σ
φdΣ = 0.

This analytical condition has also a geometric interpretation. For exam-
ple, if Σ is a constant mean curvature closed surface enclosing a bounded
domain in (M, g), Σ is weakly stable if and only if the second variation of
its area is nonnegative for all variations preserving the amount of volume
enclosed by Σ. A good example of such surfaces is given by an equator S2

of the round three-sphere (S3, g0) of constant sectional curvature 1. It is a
totally geodesic surface, its Jacobi operator is ∆0 + 2 and the eigenvalues of
the Laplace-Beltrami operator ∆0 of (S2, g0) are precisely 0, 2, 6, . . .

The calculations that lead to the above variation formulas can be found
in the Appendix.

Instituto de Matemática Pura e Aplicada 6 2014



CHAPTER 1

Rigidity of area-minimizing free boundary surfaces in mean
convex three-manifolds

1.1 Introduction

Let M be a Riemannian manifold with boundary ∂M . Free boundary min-
imal submanifolds arise as critical points of the area functional when one
restricts to variations that preserve ∂M (but not necessarily leave it fixed).
Many beautiful known results about closed minimal surfaces could guide the
formulation of analogous interesting questions about free boundary mini-
mal surfaces. Inspired by the rigidity theorems for area-minimizing closed
surfaces proved in [5], [8], [25] and [29], we investigate rigidity of area-
minimizing free boundary surfaces in Riemannian three-manifolds.

R. Schoen and S.T. Yau, in their celebrated joint work, discovered inter-
esting relations between the scalar curvature of a three-dimensional manifold
and the topology of stable minimal surfaces inside it, which emerge when
one uses the second variation formula for the area, the Gauss equation and
the Gauss-Bonnet theorem. An example is given by the following

Theorem 1 (R. Schoen and S.T. Yau). Let M be an oriented Riemannian
three-manifold with positive scalar curvature. Then M contains no immersed
orientable closed stable minimal surface of positive genus.

They used this result to prove that any Riemannian metric with non-
negative scalar curvature on the three-torus must be flat. More generally,
they proved the following theorem (see [32]).

Theorem 2 (R. Schoen and S.T. Yau). Let M be a closed oriented three-
manifold. If the fundamental group of M contains a subgroup isomorphic to

7
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the fundamental group of the two-torus, then any Riemannian metric on M
with nonnegative scalar curvature must be flat.

The hypothesis on the fundamental group implies that there exists a
continuous map f from the two-torus to M that induces an injective ho-
momorphism f∗ on the fundamental groups. Then the idea is to apply a
minimization procedure among maps that induce the same homomorphism
f∗ in order to obtain an immersed stable minimal two-torus in (M, g) for
any Riemannian metric g. Since any non-flat Riemannian metric with non-
negative scalar curvature on a closed three-manifold can be deformed to a
metric with positive scalar curvature (see [18]), the theorem follows.

In [12], D. Fischer-Colbrie and R. Schoen observed that an immersed,
two-sided, stable minimal two-torus in a Riemannian three-manifold with
nonnegative scalar curvature must be flat and totally geodesic, and conjec-
tured that Theorem 2 would hold true if one merely assume the existence
of an area-minimizing two-torus. This conjecture was established by M.
Cai and G. Galloway [8]. More precisely, they proved that if M is a closed
Riemannian three-manifold which contains a two-sided embedded two-torus
that minimizes the area in its isotopy class, then M is flat. The fundamental
step was the following local result.

Theorem 3 (M. Cai and G. Galloway). If a Riemannian three-manifold
with nonnegative scalar curvature contains an embedded, two-sided, locally
area-minimizing two-torus Σ, then the metric is flat in some neighborhood
of Σ.

In recent years, some similar results were proven for closed surfaces other
than tori under different scalar curvature hypotheses. In particular, we
mention the theorems of H. Bray, S. Brendle and A. Neves [5] and I. Nunes
[29].

Theorem 4 (H. Bray, S. Brendle and A. Neves). Let (M, g) be a three-
manifold with scalar curvature greater than or equal to 2. If Σ is an embedded
two-sphere that is locally area-minimizing, then Σ has area less than or equal
to 4π. Moreover, if equality holds, then Σ with the induced metric gΣ has
constant Gaussian curvature equal to 1 and there is a neighborhood of Σ in
M that is isometric to ((−ε, ε)× Σ, dt2 + gΣ).

Theorem 5 (I. Nunes). Let (M, g) be a three-manifold with scalar curvature
greater than or equal to −2. If Σ is an embedded, two-sided, locally area-
minimizing closed surface with genus γ greater than 1, then Σ has area
greater than or equal to 4π(γ − 1). Moreover, if equality holds, then Σ with
the induced metric gΣ has constant Gaussian curvature equal to −1 and there
is a neighborhood of Σ in M that is isometric to ((−ε, ε)× Σ, dt2 + gΣ).

These local splitting theorems also imply interesting global theorems (see
[5] and [29]).

Instituto de Matemática Pura e Aplicada 8 2014
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Let us give a sketch of the proof of Theorems 4 and 5. In order to prove
the inequalities for the area of the respective Σ in the statements above,
one can follow R. Schoen and S.T. Yau, using the stability of Σ, the Gauss
equation and the Gauss-Bonnet theorem. These inequalities also appeared
in the work of Y. Shen and S. Zhu [33]. When the area of Σ achieves the
equality stated in the respective theorems, there are more restrictions on
the intrinsic and extrinsic geometries of Σ (recall D. Fischer-Colbrie and
R. Schoen remark) which allow to construct a foliation of M around Σ by
constant mean curvature surfaces. After this point, they prove that the
leaves of the foliation have area not greater than that of Σ. This is achieved
by very different means in [5] and [29]. Since Σ is area-minimizing, it follows
that each leaf is area-minimizing and its area satisfies the equality stated in
the respective theorems, an information that can be used to conclude the
local splitting of (M, g) around Σ.

We remark that the use of foliations by constant mean curvature surfaces
in relation to scalar curvature problems had already appeared in the work
of G. Huisken and S.T. Yau [17] and H. Bray [3].

A very interesting unified approach to Theorems 3, 4 and 5 was provided
by M. Micallef and V. Moraru [25], also based on foliations by constant
mean curvature surfaces. Based on their method, we prove an analogous
local rigidity theorem for free boundary surfaces.

When the scalar curvature of (M, g) and the mean curvature of ∂M are
bounded from below, one can consider the following functional in the space
of properly immersed compact surfaces Σ in (M, g):

I(Σ) =
1

2
inf
x∈M

RM |Σ|+ inf
x∈∂M

H∂M |∂Σ|.

The next proposition gives an upper bound to I(Σ) when one assumes
that Σ is a free boundary stable minimal surface:

Proposition 6. Let (M, g) be a Riemannian three-manifold with boundary.
Assume RM and H∂M are bounded from below. If Σ is a properly immersed,
two-sided, free boundary stable minimal surface, then

I(Σ) ≤ 2πχ(Σ), (1.1)

where χ(Σ) is the Euler characteristic of Σ. Moreover, the equality holds if,
and only if, Σ satisfies the following properties:

a) Σ is totally geodesic in M and ∂Σ consists of geodesics of ∂M ;
b) The scalar curvature RM is constant along Σ and equal to inf RM ,

and the mean curvature H∂M is constant along ∂Σ and equal to inf H∂M ;
c) The normal vector field of Σ is in the nullity of Ric along Σ and in

the nullity of B∂M along ∂Σ.
In particular, a), b) and c) imply that Σ has constant Gaussian curvature

inf RM/2 and ∂Σ has constant geodesic curvature inf H∂M in Σ.

Instituto de Matemática Pura e Aplicada 9 2014
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Inequality (1.1) relates the scalar curvature of M , the mean curvature
of ∂M and the topology of the free boundary stable Σ, as in R. Schoen and
S.T. Yau’s Theorem 1. This connection has also been studied by J. Chen,
A. Fraser and C. Pang [10].

For further reference, we will call infinitesimally rigid any properly em-
bedded, two-sided, free boundary surface Σ in M that satisfies properties
a), b) and c).

Example. It is interesting to have in mind the following model situation. In
the Riemannian three-manifolds (R×Σ2, dt2+g0), where (Σ, g0) is a compact
Riemannian surface with constant Gaussian curvature whose boundary has
constant geodesic curvature, all the slices {t} × Σ satisfy the hypotheses of
Proposition 6 and are infinitesimally rigid. They also have two additional
properties: they are in fact area-minimizing and each connected component
of their boundary has the shortest possible length in its homotopy class
inside the boundary of R×Σ. These properties are immediate consequences
of the Maximum Principle.

Given an infinitesimally rigid surface Σ0 we construct a foliation {Σt}t∈I
around Σ0 by free boundary constant mean curvature surfaces and then
analyze the behavior of the area of the surfaces Σt following the unified
approach of [25]. We prove that |Σ0| ≥ |Σt| for every t ∈ I (maybe for some
smaller interval I) in two cases, depending on inf H∂M being zero or positive.
As a consequence, we obtain a local rigidity theorem for area-minimizing
free boundary surfaces in Riemannian three-manifolds with mean convex
boundary.

Theorem A. Let (M, g) be a Riemannian three-manifold with mean convex
boundary. Assume that RM is bounded from below.

Let Σ be a properly embedded, two-sided, locally area-minimizing free
boundary surface such that I(Σ) = 2πχ(Σ). Assume that one of the follow-
ing hypotheses holds:

i) each component of ∂Σ is locally length-minimizing in ∂M ; or
ii) inf H∂M = 0.
Then there exists a neighborhood of Σ in (M, g) that is isometric to

((−ε, ε)×Σ, dt2+gΣ), where (Σ, gΣ) has constant Gaussian curvature 1
2 inf RM

and ∂Σ has constant geodesic curvature inf H∂M in Σ.

Remark. We emphasize that the meaning of hypothesis i) is that each com-
ponent of ∂Σ has the smallest length compared to every nearby closed curve
in ∂M . Since we already know from Proposition 6 that the components of
∂Σ are geodesics of ∂M , this hypothesis makes sense, but is stronger. We
do not know if this hypothesis can be removed from Theorem A without
affecting the result.

Theorem A can be used to prove some global rigidity results.
Let FM be the set of all immersed disks in M whose boundaries are
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curves in ∂M that are homotopically non-trivial in ∂M . If FM is non-empty,
we define

A(M, g) = inf
Σ∈FM

|Σ| and L(M, g) = inf
Σ∈FM

|∂Σ|.

Our first global rigidity theorem involves a combination of these geomet-
ric invariants.

Theorem B. Let (M, g) be a compact Riemannian three-manifold with
mean convex boundary. Assume that FM is non-empty. Then

1

2
inf RMA(M, g) + inf H∂ML(M, g) ≤ 2π. (1.2)

Moreover, if equality holds, then the universal covering of (M, g) is isometric
to (R×Σ0, dt

2+g0), where (Σ0, g0) is a disk with constant Gaussian curvature
inf RM/2 and ∂Σ0 has constant geodesic curvature inf H∂M in (Σ0, g0).

The case inf RM = 0 and inf H∂M > 0, which includes in particular
mean convex domains of the Euclidean space, was treated by M. Li (see his
preprint [20]). His approach is similar to the one in [5].

Our proof relies on the fact that A(M, g) can be realized as the area
of a properly embedded free boundary minimal disk Σ0, by a classical re-
sult of W. Meeks and S.T. Yau [23]. Since H∂M ≥ 0, we can compare the
invariant and I(Σ0), and hence inequality (1.2) follows from Proposition 6.
When equality holds, Σ0 must be infinitesimally rigid and the additional hy-
potheses of the local splitting Theorem A are verified. Using a continuation
argument we conclude the global splitting of the universal covering.

When inf RM is negative, we also prove a rigidity theorem for solutions
of the Plateau problem, which is an immediate consequence of Theorem B.

As before, assume that (M, g) is a compact Riemannian three-manifold
with mean convex boundary. Another classical result of W. Meeks and S.T.
Yau [24] says that the Plateau problem has a properly embedded solution
in M for any given closed embedded curve in ∂M that bounds a disk in M .

In particular, by considering solutions to the Plateau problem for ho-
motopically non-trivial curves in ∂M that bound disks in M and have the
shortest possible length among such curves, we prove the following

Theorem C. Let (M, g) be a compact Riemannian three-manifold such that
inf RM = −2 and inf H∂M > 0. Assume that FM is non-empty.

If Σ̂ is a solution to the Plateau problem for a homotopically non-trivial
embedded curve in ∂M that bounds a disk in M and has length L(M, g),
then

|Σ̂| ≥ inf H∂ML(M, g)− 2π. (1.3)

Moreover, if equality holds in (1.3) for some Σ̂, then the universal covering
of (M, g) is isometric to (R × Σ0, dt

2 + g0), where (Σ0, g0) is a disk with
constant Gaussian curvature −1 and ∂Σ0 has constant geodesic curvature
inf H∂M in Σ0.
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1.2 Infinitesimal rigidity

In begin by deducing some topological and geometrical consequences of the
free boundary stability assumption, recall Proposition 6 in the Introduc-
tion. Inequality (1.1) follows from the second variation formula of area for
free boundary minimal surfaces, the Gauss equation and the Gauss-Bonnet
theorem.

Proof of Proposition 6. Let Σ be a properly immersed, two-sided, free bound-
ary stable minimal surface. The free boundary stability hypothesis means
that, for every φ ∈ C∞(Σ),

Q(φ, φ) =

∫
Σ
|∇Σφ|2−(Ric(N,N)+|BΣ|2)φ2dA−

∫
∂Σ
B∂M (N,N)φ2dL ≥ 0.

By evaluating Q on the constant function 1, we get the inequalities

0 ≥
∫

Σ
(Ric(N,N) + |BΣ|2)dA+

∫
∂Σ
B∂M (N,N)dL

=
1

2

∫
Σ

(RM + |BΣ|2)dA−
∫

Σ
KdA−

∫
∂Σ
kdL+

∫
∂Σ
H∂MdL

≥ 1

2
inf RM |Σ|+ inf H∂M |∂Σ| − 2πχ(Σ).

where we used the Gauss equation (0.1) and equation (0.3) for the free
boundary minimal surface Σ and the Gauss-Bonnet theorem. This proves
inequality (1.1).

When the equality holds in (1.1), every inequality above is in fact an
equality. One immediately sees that Σ must be totally geodesic, b) holds and
Q(1, 1) = 0. By elementary considerations about bilinear forms, Q(1, 1) = 0
and Q(φ, φ) ≥ 0 for every φ ∈ C∞(Σ) imply Q(1, φ) = 0 for every φ ∈
C∞(Σ). Choosing appropriately the arbitrary test function φ, we conclude
that Ric(N,N) = 0 and B∂M (N,N) = 0.

Since Σ is totally geodesic, the Codazzi equation (0.2) then implies that
in fact Ric(N,Y ) is zero for all vectors Y tangent to M along Σ. Moreover,
∇TT and ∇TX = ∇T ν must be tangent to Σ. Hence, the geodesic curvature
of ∂Σ in ∂M given by g(N,∇TT ) vanishes, and since∇TX is also orthogonal
to X we conclude that ∇TX is proportional to T , which means that T and
therefore N are eigenvectors of ∇X along ∂Σ. The second part of a) and c)
follow.

The final statement is then a consequence of the Gauss equation (0.1) and
equation (0.3). The converse is immediate from the Gauss-Bonnet theorem.
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1.3 CMC foliation near an infinitesimally rigid sur-
face

Given a properly embedded infinitesimally rigid surface Σ in M , there are
smooth vector fields Z on M such that Z(p) = N(p) ∀p ∈ Σ and Z(p) ∈
Tp∂M ∀p ∈ ∂M . We fix φ = φ(x, t) the flow of one of these vector fields
and α a real number between zero and one.

The next proposition gives a family of free boundary constant mean
curvature surfaces around any infinitesimally rigid surface.

Proposition 7. Let (M, g) be a Riemannian three-manifold with boundary.
Assume RM and H∂M are bounded from below. Let Σ be a properly embed-
ded, two-sided, free boundary surface in (M, g).

If Σ is infinitesimally rigid, then there exists ε > 0 and a function
w : Σ× (−ε, ε)→ R such that, for every t ∈ (−ε, ε), the set

Σt := {φ(x,w(x, t)); x ∈ Σ}

is a free boundary surface with constant mean curvature H(t). Moreover,
for every x ∈ Σ and every t ∈ (−ε, ε),

w(x, 0) = 0,

∫
Σ

(w(x, t)− t) dA = 0 and
∂

∂t
w(x, t)

∣∣∣
t=0

= 1.

In particular, for some smaller ε, {Σt}t∈(−ε,ε) gives a foliation of a neigh-
borhood of Σ0 = Σ in M .

Proof. Given a function u in the Hölder space C2,α(Σ), we define Σu =
{φ(x, u(x));x ∈ Σ}, which is a properly embedded surface if the norm of u
is small enough. We use the subscript u to denote the quantities associated
to Σu. For example, Hu will denote the mean curvature of Σu, Nu will
denote the unit normal vector field of Σu and Xu will denote the restriction
of X to ∂Σu. In particular, Σ0 = Σ, H0 = 0 (since Σ is totally geodesic)
and g(N0, X0) = 0 (since Σ0 is free boundary).

Consider the Banach spaces

E = {u ∈ C2,α(Σ);

∫
Σ
udA = 0} and F = {u ∈ C0,α(Σ);

∫
Σ
udA = 0}.

Given small δ > 0 and ε > 0, we can define the map Φ : (−ε, ε) ×
(B(0, δ) ⊂ E)→ F × C1,α(∂Σ) given by

Φ(t, u) = ( Ht+u −
1

|Σ|

∫
Σ
Ht+udA, g(Nt+u, Xt+u) ).

We claim that DΦ(0,0) is an isomorphism when restricted to 0× E.
In fact, for each v ∈ E, the map f : (x, s) ∈ Σ× (−ε, ε) 7→ φ(x, sv(x)) ∈
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M gives a variation with variational vector field ∂f
∂s = vZ = vN on Σ. Since

Σ is infinitesimally rigid, from the variation formulas (0.4) and (0.5) we get

DΦ(0,0)(0, v) =
d

ds

∣∣∣
s=0

Φ(0, sv) = (−∆Σv +
1

|Σ|

∫
∂Σ

∂v

∂ν
dL, −∂v

∂ν
).

The claim follows from classical results for Neumann type boundary
conditions for the Laplace operator (see for example [19], page 137). A
Freedholm alternative holds true and the kernel of the restriction of DΦ(0,0)

to 0 × E is trivial, since it consists of zero mean value functions satisfying
the homogeneous Neumann problem on Σ.

Now we apply the implicit function theorem: for some smaller ε, there
exists a function t ∈ (−ε, ε) 7→ u(t) ∈ B(0, δ) ⊂ E such that u(0) = 0 and
Φ(t, u(t)) = Φ(0, 0) = (0, 0) for every t. In other words, the surfaces

Σt+u(t) = {φ(x, t+ u(t)(x)); x ∈ Σ}

are free boundary constant mean curvature surfaces.
Let w : (x, t) ∈ Σ × (−ε, ε) 7→ t + u(t)(x) ∈ R. By definition, w(x, 0) =

u(0)(x) = 0 for every x ∈ Σ and w(−, t) − t = u(t) belongs to B(0, δ) ⊂ E
for every t ∈ (−ε, ε). Observe that the map G : (x, s) ∈ Σ × (−ε, ε) 7→
φ(x,w(x, s)) ∈ M gives a variation with variational vector field on Σ given
by
(
∂w
∂t |t=0

)
N . Since for every t we have

0 = Φ(t, u(t)) = ( Hw(−,t) −
1

|Σ|

∫
Σ
Hw(−,t)dA , g(Nw(−,t), Xw(−,t)) ),

by taking the derivative at t = 0 we conclude that ∂w
∂t |t=0 satisfies the

homogeneous Neumann problem. Therefore it must be constant on Σ. Since∫
Σ (w(x, t)− t) dA =

∫
Σ u(t)(x)dA = 0 for every t, by differentiating at t = 0

we conclude that
∫

Σ

(
∂w
∂t |t=0

)
dA = |Σ|. Hence, ∂w

∂t |t=0 = 1, as claimed.

Since G0(x) = φ(x, 0) = x, ∂tG(x, 0) = ∂w
∂t |t=0N(x) = N(x) for every

x ∈ Σ and Σ is properly embedded, by taking a smaller ε, if necessary, we
can assume that G parametrizes a foliation of M around Σ. This finishes
the proof of the proposition.

1.4 Local rigidity

We consider infinitesimally rigid surfaces in a Riemannian three-manifold
with mean convex boundary and scalar curvature bounded from below. First
we analyze the behavior of the area of the surfaces in the family constructed
in the previous section. This analysis is based on [25].

Proposition 8. Let (M, g) be a Riemannian three-manifold with mean con-
vex boundary and scalar curvature bounded from below. Let Σ0 be a properly
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embedded, two-sided, free boundary, infinitesimally rigid surface.
Assume that one of the following hypotheses holds:
i) each component of ∂Σ0 is locally length-minimizing in ∂M ; or
ii) inf H∂M = 0.
Let {Σt}t∈(−ε,ε) be as in Proposition 7. Then |Σ0| ≥ |Σt| for every

t ∈ (−ε, ε) (maybe for a smaller ε).

Proof. Following the notation of Proposition 7, let G : Σ0 × (−ε, ε) → M
given by Gt(x) = φ(x,w(x, t)) parametrize the foliation {Σt}t∈(−ε,ε) around
the infinitesimally rigid Σ0. After this point, we will use the subscript t to
denote the quantities associated to Σt = Gt(Σ0).

For each t ∈ (−ε, ε), the lapse function of the variation {Σt} on Σt given
by ρt = g(∂tG,Nt) satisfies the equations

−H ′(t) = ∆Σtρt + (Ric(Nt, Nt) + |Bt|2)ρt, (1.4)

∂ρt
∂νt

= B∂M (Nt, Nt)ρt, (1.5)

that follows from the general formulas (0.4) and (0.5) since we have a vari-
ation by free boundary constant mean curvature surfaces.

Furthermore, since ∂tG(x, 0) = N0(x) for every x ∈ Σ0, we have ρ0 = 1.
Hence, we can assume ρt > 0 for all t ∈ (−ε, ε). From equation (1.4) we
have

H ′(t)
1

ρt
= −(∆Σtρt)

1

ρt
− (Ric(Nt, Nt) + |Bt|2).

Using the Gauss equation (0.1), we rewrite

H ′(t)
1

ρt
= −(∆Σtρt)

1

ρt
+Kt −

1

2
(RMt +H(t)2 + |Bt|2).

Recalling that H(t) is constant on Σt, we integrate by parts and use
equation (1.5) in order to get

H ′(t)

∫
Σt

1

ρt
dAt = −

∫
Σt

|∇Σtρt|2

ρ2
t

dAt −
∫
∂Σt

B∂M (Nt, Nt)dLt

+

∫
Σt

KtdAt −
1

2

∫
Σt

(RMt +H(t)2 + |Bt|2)dAt.

Since each Σt is free boundary, equation (0.3) and the Gauss-Bonnet
theorem imply

H ′(t)

∫
Σt

1

ρt
dAt = −

∫
Σt

|∇Σtρt|2

ρ2
t

dAt −
1

2

∫
Σt

(RMt +H(t)2 + |Bt|2)dAt

−
∫
∂Σt

H∂M
t dLt + 2πχ(Σ0).
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Finally, since Σ0 is infinitesimally rigid, the Gauss-Bonnet theorem im-
plies that I(Σ0) = 2πχ(Σ0). Hence, we have the following inequality:

H ′(t)

∫
Σt

1

ρt
dAt ≤ I(Σ0)− I(Σt)

=
1

2
inf RM (|Σ0| − |Σt|) + inf H∂M (|∂Σ0| − |∂Σt|).

By hypothesis, inf H∂M ≥ 0. If each boundary component is locally
length-minimizing, the second term in the right hand side is less than or
equal to zero, and in case inf H∂M = 0, it is obviously zero. Therefore

H ′(t)

∫
Σt

1

ρt
dAt ≤

1

2
inf RM (|Σ0| − |Σt|) = −1

2
inf RM

∫ t

0

d

ds
|Σs|ds.

Since each Σt is free boundary, the first variation formula of area gives

d

dt
|Σt| =

∫
Σt

ρtH(t)dAt = H(t)

∫
Σt

ρtdAt. (1.6)

Therefore

H ′(t)

∫
Σt

1

ρt
dAt ≤ −

1

2
inf RM

∫ t

0
H(s)

(∫
Σs

ρsdAs

)
ds. (1.7)

Claim: there exists ε > 0 such that H(t) ≤ 0 for every t ∈ [0, ε).

We consider three cases:

a) inf RM = 0.
Then it follows immediately from (1.7) that H ′(t) ≤ 0 for every t ∈ [0, ε).

Since H(0) = 0, the claim follows.

b) inf RM > 0.
Let ϕ(t) =

∫
Σt

1
ρt
dAt and ξ(t) =

∫
Σt
ρtdAt. Inequality (1.7) can be

rewritten as

H ′(t) ≤ −1

2
inf RM

1

ϕ(t)

∫ t

0
H(s)ξ(s)ds. (1.8)

By continuity, we can assume that there exists a constant C > 0 such
that 1

ϕ(t)

∫ t
0 ξ(s)ds ≤ 2C for every t ∈ [0, ε].

Choose ε > 0 such that C inf RM ε < 1. Then H(t) ≤ 0 for every
t ∈ [0, ε). In fact, suppose that there exists t+ ∈ (0, ε) such that H(t+) > 0.
By continuity, there exists t− ∈ [0, t+] such that H(t) ≥ H(t−) for every
t ∈ [0, t+]. Notice that H(t−) ≤ H(0) = 0. By the mean value theorem,
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there exists t1 ∈ (t−, t+) such that H(t+)−H(t−) = H ′(t1)(t+−t−). Hence,
since inf RM > 0, inequality (1.8) gives

H(t+)−H(t−)

t+ − t−
= H ′(t1) ≤ 1

2
inf RM

1

ϕ(t1)

∫ t1

0
(−H(s))ξ(s)ds

≤ 1

2
inf RM (−H(t−))

(
1

ϕ(t1)

∫ t1

0
ξ(s)ds

)
≤ inf RM (−H(t−))C.

It follows that H(t+) ≤ H(t−)(1− C inf RM ε), which is a contradiction
since H(t+) > 0 and H(t−) ≤ 0.

c) inf RM < 0.
Choose ε > 0 such that −C inf RM ε < 1, where C > 0 is the same

constant that appears in case b). Then H(t) ≤ 0 for every t ∈ [0, ε). In fact,
suppose that there exists t0 ∈ (0, ε) such that H(t0) > 0. Let

P = {t ∈ [0, t0]; H(t) ≥ H(t0)}.

Let t∗ ∈ [0, ε] be the infimum of P . Observe that, by the definition of t∗,
H(t) ≤ H(t0) = H(t∗) for every t ∈ [0, t∗].

If t∗ > 0, then the mean value theorem implies that there exists t1 ∈
(0, t∗) such that H(t∗) = H ′(t1)t∗, since H(0) = 0. Hence, since inf RM < 0,
inequality (1.8) gives

H(t∗)

t∗
= H ′(t1) ≤ −1

2
inf RM

1

ϕ(t1)

∫ t1

0
H(s)ξ(s)ds

≤ −1

2
inf RMH(t∗)

(
1

ϕ(t1)

∫ t1

0
ξ(s)ds

)
≤ − inf RMH(t∗)C.

It follows that H(t∗)(1 + C inf RMH(t∗)ε) ≤ 0. This is a contradiction
since H(t∗) = H(t0) > 0.

Hence t∗ = 0, which is again a contradiction since in this case H(0) ≥
H(t0) > 0.

This proves the claim. By equation (1.6), we conclude that |Σ0| ≥ |Σt|
for every t ∈ [0, ε). The proof that |Σ0| ≥ |Σt| for every t ∈ (−ε, 0] is
analogous.

We are now ready to prove the main result (recall Theorem A in the
Introduction).

Proof of Theorem A. Since Σ is locally area-minimizing and I(Σ) = 2πχ(Σ),
Σ is infinitesimally rigid. From Propositions 7 and 8 we obtain a foliation
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{Σt}t∈(−ε,ε) around Σ0 = Σ such that |Σ0| ≥ |Σt| for every t ∈ (−ε, ε).
Therefore |Σt| = |Σ0| and each Σt is also locally area-minimizing (at least if
we take a possibly smaller ε).

It is immediate to see that when inf H∂M = 0 or when the connected
components of ∂Σ0 are locally length-minimizing in ∂M ,

2π = I(Σ0) ≤ I(Σt) ≤ 2π,

which implies that each Σt is infinitesimally rigid. From equations (1.4) and
(1.5) in Proposition 8, one sees that for each t the lapse function ρt satisfies
the homogeneous Neumann problem. Hence ρt is a constant function on Σt.

Since we have a foliation, the normal fields of Σt define a vector field on
M near Σ0. Because all surfaces Σt are totally geodesic and ρt is constant,
using the variation formula (0.5) one concludes that this field is parallel.
In particular, its flow is a flow by isometries and therefore provides the
local splitting: a neighborhood of Σ0 is in fact isometric to the product
((−ε, ε)×Σ0, dt

2 + gΣ0). Since Σ0 is infinitesimally rigid, (Σ0, gΣ0) has con-
stant Gaussian curvature inf RM/2 and ∂Σ0 has constant geodesic curvature
inf HM in Σ0.

1.5 Global rigidity

We begin this section with the precise statement of the result of W. Meeks
and S.T. Yau about the existence of area-minimizing free boundary disks
that we want to use in order to prove global results. Given a three-manifold
M , recall that we have denoted by FM the set of immersed disks in M whose
boundaries are curves in ∂M that are homotopically non-trivial in ∂M .

Theorem 9 (W. Meeks and S.T. Yau, [23]). Let (M, g) be a compact Rie-
mannian three-manifold with mean convex boundary. If FM is non-empty,
then:

1) There exists an immersed minimal disk Σ0 in M such that ∂Σ0 rep-
resents a homotopically non-trivial curve in ∂M and |Σ0| = infΣ∈FM |Σ|.

2) Any such least area immersed disk is in fact a properly embedded free
boundary disk.

We are now ready to prove our global results (recall Theorems B and C
in the Introduction).

Proof of Theorem B. Since FM is non-empty, Theorem 9 says that there
exists a properly embedded free boundary minimal disk Σ0 ∈ FM such
that |Σ0| = A(M, g). Since Σ0 is two-sided and free boundary stable, the
inequality follows from Proposition 6:

1

2
inf RMA(M, g) + inf H∂ML(M, g) ≤ I(Σ0) ≤ 2π.
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Assume the equality holds. In case inf H∂M is not zero, ∂Σ0 must have
length L(M, g), therefore it is length-minimizing. In any case, we can apply
Theorem A to get a local splitting of (M, g) around Σ0.

Let exp denote the exponential map of (M, g). Let S be the set all t > 0
such that the map Ψ : [−t, t]×Σ0 →M given by Ψ(s, x) = expx(sN0(x)) is
well-defined, Ψ([−t, t]×∂Σ0) is contained in ∂M and Ψ : ((−t, t)×Σ0, ds

2 +
gΣ0)→ (M, g) is a local isometry.

We claim that S = [0,+∞). In order to prove this, first observe that
S is non-empty, since we have the local splitting around Σ0. From the
definition of S, it is also clear that S must contain all the interval [−t, t] if
t belongs to S. Moreover, if {tn} is an increasing sequence in S converging
to t ∈ [0,+∞), then t ∈ S. Therefore the claim will follow if we prove that
supS = +∞.

If t∗ = supS < +∞, since S contains t∗ we can consider the immersed
disks Σ±t∗ = {Ψ±t∗(x); x ∈ Σ0} in M . Notice that ∂Σ±t∗ are homotopically
non-trivial curves in ∂M and that |Σ±t∗ | = |Σ0| = A(M, g). It follows
from Theorem 9 that Σ±t∗ are properly embedded free boundary minimal
disks. Comparing as before I(Σ0) and I(Σ±t∗) we verify that we can apply
the local rigidity Theorem A and then conclude that S contains t′ > t∗, a
contradiction.

Therefore we have a well-defined local isometry,

Ψ : (t, x) ∈ (R× Σ0, dt
2 + gΣ0) 7→ expx(tN0(x)) ∈ (M, g),

such that Ψ(R× ∂Σ0) is contained in ∂M . Such Ψ is a covering map. This
finishes the proof of Theorem B.

In order to prove Theorem C (see the Introduction), consider any Σ̂ as
in its statement. Σ̂ has area at least A(M, g) and ∂Σ̂ has length L(M, g).
When inf RM is negative,

I(Σ̂) =
1

2
inf RM |Σ̂|+ inf H∂M |∂Σ̂| ≤ 1

2
inf RMA(M, g) + inf H∂ML(M, g).

and therefore Theorem C is an immediate corollary of Theorem B.
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CHAPTER 2

On perturbations of the Anti-de Sitter-Schwarzschild spaces
of positive mass

2.1 Introduction

Let (M3, g) be a complete Riemannian three-manifold, possibly with bound-
ary, with exactly one end. Assume that the complement of a compact subset
of M is diffeomorphic to R3 minus a ball. Roughly speaking, if the metric
g decays sufficiently fast to the hyperbolic metric when expressed in the
spherical coordinates induced by this chart, (M, g) is called asymptotically
hyperbolic. If an asymptotically hyperbolic manifold (M, g) has scalar curva-
ture R ≥ −6 and its boundary ∂M is empty or has mean curvature H ≤ 2,
it is well-defined a geometric invariant called the total mass of (M, g), a
nonnegative number m that is zero if and only if (M, g) is isometric to
the hyperbolic space. This is the content of the Positive Mass Theorem in
the asymptotically hyperbolic setting, proved with spinorial methods by X.
Wang [34] when ∂M is empty and in general by P. Chruściel and M. Herzlich
[11] under weaker asymptotic conditions.

If an asymptotically hyperbolic manifold (M, g) has scalar curvature
R ≥ −6 and its boundary ∂M is a connected minimal surface that is out-
ermost, i.e., if there are no other closed minimal surfaces in M , then it is
conjectured that the total mass m of (M, g) is related to the area of ∂M by
the following inequality:(

|∂M |
16π

) 1
2

+ 4

(
|∂M |
16π

) 3
2

≤ m. (2.1)

This statement is known as the Penrose Conjecture in the asymptotically
hyperbolic setting. We refer the reader to the surveys [6] and [21], where he
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will find a comprehensive discussion on these types of inequalities in various
settings. In the original asymptotically flat setting, the corresponding Pen-
rose Conjecture has been proved with different techniques by G. Huisken
and T. Ilmanen [16] and by H. Bray [4].

The Penrose Conjecture contains also a rigidity statement. There are
important models, known as the Anti-de Sitter-Schwarzschild spaces of pos-
itive mass, that satisfy equality in (2.1). They are obtained as spherically
symmetric metrics gm on M = [0,+∞)× S2 with constant scalar curvature
−6, where the parameter m is a positive real number that coincides with
the total mass of (M, gm) above discussed (see Section 2.2 for more details).
The Penrose Conjecture also asserts that the Anti-de Sitter-Schwarzschild
spaces of positive mass are the unique asymptotically hyperbolic manifolds,
with scalar curvature R ≥ −6 and an outermost minimal boundary, that
satisfy the equality in (2.1).

A special feature of the Anti-de Sitter-Schwarzschild spaces of positive
mass is that they are foliated by constant mean curvature spheres which
are weakly stable. This kind of foliation of an asymptotically hyperbolic
manifold is interesting, among other reasons, because of a monotonicity re-
sult observed by H. Bray in [3]: if R ≥ −6, the so-called Hawking mass
functional, defined for closed surfaces Σ in (M, g) by

mH(Σ) :=

√
|Σ|
16π

(
1− 1

16π

∫
Σ

(H2 − 4)dΣ

)
,

is monotone non-decreasing along these foliations in the direction of increas-
ing area of the leaves.

If ∂M is a minimal surface in (M, g), its Hawking mass is exactly the
left-hand side of (2.1). This suggests an approach to prove the Penrose in-
equality (2.1), at least for the class of asymptotically hyperbolic manifolds
(M, g), with R ≥ −6 and an outermost minimal boundary, admitting this
kind of foliation starting at ∂M and sweeping out all M : inequality (2.1)
would follow if the Hawking mass of the leaves near the infinity converges
to the total mass of (M, g).

In [27] and [28], A. Neves and G. Tian proved existence and uniqueness
results for foliations by weakly stable CMC spheres of the complement of
a compact set of certain asymptotically hyperbolic manifolds. See also the
works of R. Rigger [30] and R. Mazzeo and F. Pacard [22] for other results
of this nature in asymptotically hyperbolic settings. For the original asymp-
totically flat setting, see the pioneering work of G. Huisken and S.T. Yau
[17].

We will consider metrics on M = [0,+∞)×S2 that are small global per-
turbations of the Anti-de Sitter-Schwarzschild metric gm in a suitable sense
and show that the foliation constructed in [28] outside a compact set can be
extended up to ∂M . Following the argument outlined above, we then show
the Penrose inequality is true for these asymptotically hyperbolic manifolds.
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In order to state our results more precisely, let us introduce some ter-
minology. Given m > 0, the perturbations of gm we consider belong to
the space M(M,m) of Riemannian metrics g on M := {p = (s, x) ∈
[0,+∞)× S2} such that ∂M is a minimal surface in (M, g) and

d(g, gm) := sup
p∈M

(
3∑
i=0

exp(−4s)‖(∇m)i(g − gm)‖gm(p)

)
< +∞.

See Section 2.2 for the details. All these metrics are asymptotically hyper-
bolic with well-defined total mass m in the sense of [34] and [11].

Our main results can be summarized as follows (see Theorem 7 and
Theorem 8):

Theorem D. Let m > 0. Then there exists ε > 0 such that for every metric
g ∈M(M,m) with d(g, gm) < ε the following statements hold:

i) There exists a foliation {Σt}t∈[0,+∞) of (M, g) by weakly stable CMC
spheres such that Σ0 = ∂M is an outermost minimal surface.

ii) (The Penrose inequality). If the scalar curvature of g is greater than
or equal to −6, then(

|∂M |
16π

) 1
2

+ 4

(
|∂M |
16π

) 3
2

≤ lim
t→+∞

mH(Σt) = m,

with equality if and only if (M, g) is isometric to the Anti-de Sitter-
Schwarzschild space of mass m.

We remark that in the asymptotically hyperbolic setting there is also
another form of the Penrose Conjecture where the boundary corresponds to
some H = 2 surface (see [6] and [21]). In the end of this chapter we briefly
discuss it and explain the immediate modifications of the previous results
that establish it for small perturbations (see Theorem 9 and Theorem 10).

The approach to the Penrose Conjecture involving the monotonicity of
the Hawking mass for a family of surfaces that interpolates the outermost
boundary and the infinity was originally suggested in the asymptotically
flat setting by R. Geroch [13], who proposed the inverse mean curvature
flow to produce such family. This program was sucessfully implemented by
G. Huisken and T. Ilmanen [16]. In the asymptotically hyperbolic setting,
however, there are serious difficulties in using this approach, see the work of
A. Neves [26].

In the asymptotically hyperbolic setting, the Penrose Conjecture in its
full generality is still an open problem. Using Bray’s monotonicity as in
[3], J. Corvino, A. Gerek, M. Greenberg and B. Krummel [9] proved it for
asymptotically hyperbolic manifolds that are isometric to an Anti-de Sitter-
Schwarzschild space of positive mass outside a compact set under restrictive
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hypotheses on the behavior of its isoperimetric surfaces. F. Girão and L. L.
de Lima proved both cases and the higher dimensional analogues of them for
another class of asymptotically hyperbolic manifolds, those that are certain
graphical hypersurfaces of the hyperbolic space (see [14] and [15]).

2.2 The Anti-de Sitter-Schwarzschild spaces and
its perturbations

Let m be a real number. Let ρm : (r0,+∞) → R be the function given by
ρm(r) =

√
1 + r2 − 2m/r, where r0 = r0(m) is the unique positive zero of

ρm (if m > 0) or 0 (if m ≤ 0). Let (S2, g0) be the round sphere of constant
Gaussian curvature 1 and let dS2 denote its volume element.

We call Anti-de Sitter-Schwarzschild space of mass m the metric com-
pletion of the Riemannian manifold ((r0,+∞) × S2, gm), where using the
natural r-coordinate the metric gm is written as

gm =
dr2

1 + r2 − 2m
r

+ r2g0.

Although the expression of gm in this coordinate system becomes singular
at r0, it can be proved that when m > 0 the metric gm extends to a smooth
Riemannian metric on M = [r0,∞) × S2. On the other hand a smooth
extension is not possible if m < 0. Notice also that if we let the parameter
m to be zero we recover the hyperbolic space (this can be easily seen by
performing the coordinate change r = sinh s).

We will call coordinate spheres the surfaces Sr = {r} × S2 ⊂ M . The
following proposition describes the geometry of (M, gm) and of its coordinate
spheres.

Proposition 1. (Geometry of the Anti-de Sitter-Schwarzschild space of
mass m)

i) The Ricci curvature of gm is given by

Ricm = (−2− 2m

r3
)

1

ρ2
m(r)

dr2 + (−2 +
m

r3
)r2g0.

ii) The scalar curvature of gm is constant and equal to −6.

iii) The coordinate spheres Sr are totally umbilic surfaces with constant
mean curvature given by

Hm(r) =
2

r

√
1 + r2 − 2m

r
.

iv) The Hawking mass of all coordinate spheres is m.
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v) The Jacobi operator of the coordinate sphere Sr is given by

Lr =
1

r2

(
∆0 +

(
2− 6m

r

))
,

where ∆0 is the Laplacian operator of the round sphere (S2, g0).

Proof. A calculation in coordinates (see also the Appendix).

Remark. Notice that when m > 0 the Jacobi operator of Sr is invertible
except at r = 3m. In any case, it is invertible when restricted to the space
of zero mean value functions. However, a degeneration occurs when r goes to
infinity: up to normalization, it becomes ∆0 +2, which is no more invertible
in this restricted space.

From now on we assume m > 0. Let s be the function that gives the
distance of a point on (M, gm) to ∂M . Using s ∈ [0,+∞) as coordinate, one
can write

gm =
dr2

1 + r2 − 2m
r

+ r2g0 = ds2 + sinh2(s)vm(s)g0, (2.2)

where vm is a positive function defined on [0,+∞) that has the following
expansion as s goes to infinity:

vm(s) = 1 +
2m

3 sinh3 s
+O(exp(−5s)).

Although we have explicit formulas as in Proposition 1 only when we
use the r-coordinate, it will be more convenient to use the s-coordinate. We
will then consider gm to be defined on M = [0,+∞) × S2 by formula (2.2)
above, and as a small abuse of notation we use s both for the first coordinate
of a point p ∈ M and for the function r ∈ (r0,+∞) 7→ s(r) ∈ (0,+∞) that
gives the coordinate change described above. It worths noticing that, as a
function of s, the r coordinate expands as r = sinh(s)(1 + O(exp(−3s)))
as s goes to infinity. In particular, for example, the mean curvature of the
coordinate spheres Ss := Sr(s) behaves as

Hm(s) = 2
cosh s

sinh s
− 2m

sinh3 s
+O(exp(−5s)) as s goes to infinity.

Now we define the class of metrics on M = [0,+∞) × S2 we are going
to work with. Fix some α ∈ (0, 1).

Definition 1. Given m > 0, letM(M,m) be the set of Riemannian metrics
g on M = [0,+∞)× S2 such that

a) ∂M is a minimal surface in (M, g); and
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b) There exists a constant C > 0 such that for every p = (s, x) ∈M ,(
‖g − gm‖+ ‖∇mg‖+ ‖(∇m)2g‖+ ‖(∇m)3g‖

)
(p) ≤ C exp(−4s).

Here the norm is the C0,α-norm calculated with respect to the metric
gm and ∇m denotes the Levi-Civita connection of gm.

The space M(M,m) has a distance function

d(g1, g2) := sup
p∈M

(
3∑
i=0

exp(−4s)‖(∇m)i(g1 − g2)‖(p)

)
.

We remark that each metric in M(M,m) is asymptotically hyperbolic
with total mass m, according to the definitions of [11] and even [34]. Observe
also that we do not assume a priori that ∂M is outermost.

Given g ∈M(M,m) one can calculate the expansions of its Ricci tensor,
its scalar curvature and the mean curvature of the coordinate spheres in
(M, g) as follows: one adds terms of order O(exp(−4s)) to the expansion of
the corresponding quantities of (M, gm) in s-coordinate.

We finish this section by discussing surfaces in (M, g), g ∈ M(M,m).
All surfaces we consider are closed surfaces Σ ⊂ M = [0,+∞) × S2 such
that M \Σ has two connected components, one of them containing ∂M . We
define the inner radius and the outer radius of such Σ to be

s = inf{s(x);x ∈ Σ} and s = sup{s(x);x ∈ Σ},

respectively. We will frequently consider surfaces in (M, g) that are graphical
over coordinate spheres Ss. Given some function f on S2, we write

Ss(f) := {(s+ f(x), x) ∈M ;x ∈ S2}.

2.3 CMC foliations of compact regions

For metrics g ∈ M(M,m) that are close enough to gm, we use the implicit
function theorem to construct a family of weakly stable CMC spheres on
compact regions of (M, g) containing ∂M .

Theorem 2. Let m > 0. Given S > 0, there exists ε > 0 and η > 0 with
the following properties:

For every g ∈ M(M,m) with d(g, gm) < ε and for every s ∈ [0, S]
there exists a unique function u(s, g) ∈ C2,α(S2) with ‖u(s, g)‖C2,α < η and∫
S2 u(s, g)dS2 = 0 such that the surface

Σs(g) := Ss(u(s, g)) = {(s+ u(s, g)(x), x) ∈M ;x ∈ S2}
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has constant mean curvature with respect to the metric g.
Moreover, for every g ∈ M(M,m) with d(g, gm) < ε, Σ0(g) = ∂M and

the family {Σs(g)}s∈[0,S] gives a foliation of a compact region of (M, g) by
weakly stable CMC spheres, with positive mean curvature if s ∈ (0, S].

Finally, when S > s(3m), given any constant κ > 0 and any compact
interval I ⊂ (s(3m), S], it is possible to choose the ε above in such way that
for every g ∈M(M,m) with d(g, gm) < ε the mean curvature Hg(s) of Σs(g)
in (M, g) is monotone decreasing on I and satisfies |Hg(s)−Hm(s)| < κ for
every s ∈ I.

Proof. For a minor technical reason, we fix some small a > 0 and consider
M ⊂ M̃ = (−a,+∞) × S2. For each metric g ∈ M(M,m) we use the
Taylor expansion of g in normal exponential coordinates based on ∂M to
define an extension of g to M̃ . This space of metrics inherits the distance
of M(M,m). For simplicity we keep using the same notation M(M,m) for
this space of metrics.

Consider the Banach spaces

E = {u ∈ C2,α(S2);

∫
S2

udS2 = 0} and F = {u ∈ C0,α(S2);

∫
S2

udS2 = 0}.

Given s ∈ [0, S] and u ∈ E sufficiently small, we consider the surfaces

Ss(u) = {(s+ u(x), x) ∈ M̃ ;x ∈ S2}.

Denote by H(s, u, g) the mean curvature of Ss(u) with respect to a metric
g ∈ M(M,m). Given a sufficiently small η > 0, we consider the map
Φ : [0, S]×M(M,m)× (B(0, η) ⊂ E)→ F given by

Φ(s, g, u) = H(s, u, g)− 1

4π

∫
S2

H(s, u, g)dS2.

By definition, Φ(s, g, u) = 0 if and only if Ss(u) is a CMC surface in
(M̃, g). In particular, Φ(s, gm, 0) = 0 for all s ∈ [0, S].

We claim that, for every s ∈ [0, S], DΦ(s,gm,0) is an isomorphism when
restricted to E. In fact, for every v ∈ E, the family t 7→ Ss(tv) is a normal
variation of the coordinate sphere Ss in (M, gm) with speed v. Therefore, if
Ls is the Jacobi operator of Ss with respect to gm, we have

DΦ(s,gm,0)(0, 0, v) =
d

dt |t=0

Φ(s, gm, tv) = −Ls(v)+
1

4π

∫
S2

Ls(v)dS2 = −Ls(v).

The last equality follows because Ls(v) = (1/r2)(∆0 + (2 − 6m/r))(v)
(see Proposition 1, considering the coordinate change r = r(s)) and v has
zero mean value. Since m > 0, ∆0 + (2 − 6m/r) is an invertible operator
from E to F for all s ∈ [0, S] and the claim follows.

Therefore we can apply the implicit function theorem: there exists a
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small ball B around (s, gm) in [0, S]×M(M,m), some possibly smaller η > 0
and a function (s̃, g) ∈ B 7→ u(s̃, g) ∈ B(0, η) ⊂ E such that u(s, gm) = 0
and u(s̃, g) is uniquely defined in B(0, η) by the equation Φ(s̃, g, u(s̃, g)) = 0
for all (s̃, g) ∈ B.

By compactness, we can choose sufficiently small η > 0 and ε > 0 such
that u is uniquely defined on [0, S] × {g ∈ M(M,m); d(g, gm) < ε} and
takes values on B(0, η) ⊂ E. Therefore for each metric g ∈ M(M,m) with
d(g, gm) < ε we have constructed a family

{Σs(g)}s∈[0,S] := {Ss(u(s, g))}s∈[0,S]

of CMC spheres in (M̃, g), where u(s, g) ∈ E has norm ‖u(s, g)‖C2,α < η.
Notice that {Σs(gm)} is precisely the foliation of M by coordinate spheres.

Since ∂M = S0(0) is minimal for all metrics g ∈ M(M,m), the unique-
ness of the function u above constructed implies that u(0, g) = 0, i.e.,
Σ0(g) = ∂M for every g ∈M(M,m) with d(g, gm) < ε.

In order to prove that {Σs(g)} is a foliation of some region of M , we have
to analyze the sign of its lapse function, that is, its normal speed. Since for
gm the constructed family {Σs(gm)} is a foliation, its lapse function is pos-
itive on [0, S], hence the lapse function of {Σs(g)}s∈[0,S] with respect to all
g ∈ M(M,m) with d(g, gm) < ε is also positive, at least when we choose a
possibly smaller ε. Since each of these families starts at ∂M = {0}×S2 ⊂ M̃ ,
the families {Σs(g)}s∈[0,S] foliate a compact region of M .

To see that Σg(s) has positive mean curvature in (M, g) for all s ∈ (0, S],
observe that this is true for {Σs(gm)} in (M, gm), and also that, by Propo-
sition 1, H ′m(0) = −(1/r2

0)(2 − 6m/r0) > 0. Hence, by continuity we can
arrange ε in such way that for every g ∈ M(M,m) with d(g, gm) < ε the
surface Σs(g) has positive mean curvature in (M, g) for all s ∈ (0, S].

Now we argue that the leaves are weakly stable. In fact, since m > 0,
for every s ∈ [0, S] the Jacobi operator Ls of Σs(gm) in (M, gm) satisfies

−
∫

Σs(gm)
Ls(φ)φdΣs(gm) =

∫
S2

|∇0φ|2−
(

2− 6m

r(s)

)
φ2dS2 ≥ 6m

r(S)

∫
S2

φ2dS2

for every φ ∈ C∞(Σs(gm)) with
∫
φdΣs(gm) = 0. Arguing by contradiction

we then conclude that for a possibly smaller ε there exists a constant c > 0
such that for every g ∈M(M,m) with d(g, gm) < ε and every s ∈ [0, S] the
Jacobi operator L(s,g) of the surface Σs(g) in (M, g) is such that

−
∫

Σs(g)
L(s,g)(φ)φdΣs(g) ≥ c

∫
Σs(g)

φ2dΣs(g) ≥ 0

for every φ ∈ C∞(Σs(g)) with
∫
φdΣs(g) = 0, i.e., Σs(g) is weakly stable.

The last statement of the theorem also follows by continuity, since H ′m(s)
< 0 on (s(3m),+∞).
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Having in mind the gluing argument (see Section 2.6), we finish this
section showing the existence and uniqueness of small graphs over coordinate
spheres Ss with prescribed mean curvature Hm(s) in (M, g), g ∈M(M,m),
at least when d(g, gm) is small enough and s is large enough. More precisely,
we have:

Theorem 3. Let m > 0. Given a compact interval I ⊂ (s(3m),+∞), there
exists ε > 0 and η > 0 with the following properties:

For every g ∈ M(M,m) with d(g, gm) < ε and for every s ∈ I there
exists a unique function h(s, g) ∈ C2,α(S2) with ‖h(s, g)‖C2,α < η such that
the surface

Ss(h(s, g)) = {(s+ h(s, g)(x), x) ∈M ;x ∈ S2}

has constant mean curvature Hm(s) in (M, g).
Moreover, the family {Ss(h(s, g))}s∈I gives a foliation of a compact re-

gion of (M, g) by weakly stable CMC spheres.

Proof. Following the notations of Theorem 2, given η > 0 sufficiently small
we consider the map Φ : I ×M(M,m) × (B(0, η) ⊂ C2,α(S2)) → C0,α(S2)
given by Φ(s, g, u) = H(s, u, g). Notice that Φ(s, gm, 0) = Hm(s) for all
s ∈ I.

Given s ∈ I and g ∈M(M,m), we want to solve the equation Φ(s, g, u) =
Hm(s) for some small u ∈ C2,α(S2). The linearization of Φ at (s, gm, 0) is
such that, for every v ∈ C2,α(S2),

DΦ(s,gm,0)(0, 0, v) = −Ls(v) = − 1

r2
(∆0 + (2− 6m

r
)),

where we use the coordinate r = r(s), see Proposition 1. Since I ⊂
(s(3m),+∞), the map v ∈ C2,α(S2) 7→ Ls(v) ∈ C0,α(S2) is an isomor-
phism for all s ∈ I. Hence, we can apply the implicit function theorem. The
last statement follows by the same arguments of Theorem 2.

2.4 CMC foliation near the infinity

The next theorem is the version of the existence and uniqueness theorem
of A. Neves and G. Tian [28] adapted to the asymptotically hyperbolic
manifolds (M, g) where g belongs to the space of metrics M(M,m) (we
refer the reader to Theorem 2.2 and the proof of Theorem 8.2 in [28]).

Theorem 4 (A. Neves and G. Tian). Let m > 0. Given ε0 > 0, there exists
δ > 0, C > 0 and s0 > s(3m) with the following properties:

1) Given g ∈ M(M,m) with d(g, gm) < ε0, for all l ∈ (2, 2 + δ), there
exists a unique sphere Σl = Σl(g) ⊂M such that
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a) M \ Σl has two connected components, one of them containing
∂M ;

b) Σl is a weakly stable constant mean curvature sphere in (M, g)
with mean curvature H = l; and

c) The inner radius sl and the outer radius sl of Σl satisfy

sl ≥ s0 and sl − sl ≤ 1.

2) The family {Σl}l∈(2,2+δ) gives a smooth foliation of the complement of
a compact set of M and liml→2 sl = +∞.

3) Given g ∈ M(M,m) with d(g, gm) < ε0 and l ∈ (2, 2 + δ), if for the
above surface Σl in (M, g) we define ŝl by the equality

|Σl| = 4π sinh2 ŝl,

then:

a) If we set wl(p) = s(p)− ŝl for p ∈ Σl, then

sup
Σl

|wl| ≤ C exp(−sl) and

∫
Σl

|∂>s |2dΣl ≤ C exp(−2sl).

b) ∫
Σl

|B̊l|2dΣl ≤ C exp(−4sl).

c) There exists a function f ∈ C2(S2) with ‖f‖C2 ≤ C such that

Σl = Sŝl(f) = {(ŝl + f(x), x) ∈M ;x ∈ S2}.

Remark. Theorem 4 is proven by the continuity method. Two points are
important for the gluing argument. First, for metrics g ∈ M(M,m), the
a priori estimates are uniform in d(g, gm). Second, for a fixed compact
interval I ⊂ (s0,+∞), there exists ε ∈ (0, ε0) and η > 0 with the following
property: for every g ∈ M(M,m) with d(g, gm) < ε and for every s ∈ I,
there exists a unique function h ∈ C2,α(S2) with ‖h‖C2,α < η such that the
surface Σl in (M, g) with l = Hm(s) given by Theorem 4 can be written
as Σl = Ss(h) = {(s + h(x), x) ∈ M ;x ∈ S2}. In other words, for a
given compact interval I contained in (s(3m),+∞), all the surfaces of the
foliation {Σl} of (M, g) with mean curvature l = Hm(s) for s ∈ I are
obtained by using the implicit function theorem as in Theorem 3, at least
for g ∈M(M,m) sufficiently close to gm.
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2.5 Limit of the Hawking mass

Let g be a metric in M(M,m) with scalar curvature R ≥ −6. Recall that
the Hawking mass of a closed surface Σ in (M, g) is

mH(Σ) =

√
|Σ|
16π

(
1− 1

16π

∫
Σ

(H2 − 4)dΣ

)
.

We want to calculate the limit of the Hawking mass of the weakly stable
CMC spheres Σl in (M, g) given by Theorem 4 as they approach the infinity.
In order to do this, we need the following consequence of Gauss equation
(0.1), see [27].

Lemma 5. Given g ∈M(M,m), let {Σt}t>t0 be a family of constant mean
curvature spheres in (M, g) such that st → +∞ as t goes to infinity. Then

(H2
t −4)|Σt| = 16π−

∫
Σt

8m− 12m|∂>s |2

sinh3 s
dΣt+2

∫
Σt

|B̊t|dΣt+|Σt|O(exp(−4st)).

Proof. The Gauss equation (0.1) for Σt in (M, g) can be written as

2Kt = (R+ 6)− 2(Ric(Nt, Nt) + 2) +
H2
t − 4

2
− |B̊t|2.

By Proposition 1, for metrics g ∈ M(M,m), if {∂s, e1, e2} is a gm-
orthonormal referential, then

Ric(∂s, ∂s) = −2− 2m

sinh3 s
+O(exp(−4s)),

Ric(ei, ej) = (−2 +
m

sinh3 s
)δij +O(exp(−4s)),

Ric(∂s, ei) = O(exp(−4s)), and

R+ 6 = O(exp(−4s)).

Considering the gm-orthogonal decomposition Nt = a∂s + X, it follows
that

4Kt = (H2
t − 4) +

(
8m− 12m|X|2gm

sinh3 s

)
− 2|B̊t|2 +O(exp(−4s)). (2.3)

Observe that if ν is the unit normal of a coordinate sphere in (M, g),
then ∂s = ν +W , where g(ν,W ) = O(exp(−4s)) and |W |g = O(exp(−4s)).
Hence, the g-orthogonal decomposition Nt = bν + Y is such that |X|2gm =

|Y |2g+O(exp(−4s)). On the other hand, if ν = bNt+ν
> is the g-orthonormal

decomposition of ν corresponding to the tangent space of Σt and its g-normal
Nt, we have |Y |2g = |ν>|2g. Therefore one can change |X|2gm by |∂>s |2g in (2.3).

Since Σt is a sphere of constant mean curvature, the lemma follows after
integration of (2.3).
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Proposition 6. Let m > 0. Given g ∈ M(M,m) a metric with scalar
curvature R ≥ −6, the family {Σl}l∈(2,2+δ) in (M, g) given by Theorem 4 is
such that

lim
sl→+∞

mH(Σl) = lim
sl→+∞

√
|Σl|
16π

(
1− 1

16π

∫
Σl

(H2
l − 4)dΣl

)
= m.

Proof. Let ŝl be defined by |Σl| = 4π sinh2 ŝl. We use the informations given
by Theorem 4, item 3), and calculate all expansions as sl goes to infinity.

Lemma 5 and the estimates of Theorem 4, item 3) on the behavior of
|∂>s | and |B̊l| implies

mH(Σl) =
|Σl|1/2

8π3/2

(∫
Σl

m

sinh3 s
dΣl + |Σt|O(exp(−4sl)) +O(exp(−4sl))

)
.

(2.4)
In order to analyze (2.4), observe first that |sl− ŝl| = |minx∈S2{f(x)}| ≤

C for all l. Hence

|Σl| = 4π sinh2 ŝl = O(exp(2sl)). (2.5)

On the other hand, for every p = (s, x) ∈ Σl, since |wl(p)| ≤ C exp(−sl),

sinh ŝl
sinh s

=
sinh(s− wl(p))

sinh s
= coshwl(p)−

cosh s

sinh s
sinhwl(p) = 1+O(exp(−sl)).

Therefore∫
Σl

|Σl|1/2

sinh3(s)
dΣl =

(4π)3/2

|Σl|

∫
Σl

(
sinh ŝ

sinh s

)3

dΣl = 8π3/2(1 +O(exp(−sl))).

(2.6)
Combining (2.4), (2.5) and (2.6) we have limsl→+∞mH(Σl) = m.

2.6 Gluing argument and properties of the global
foliation

We now argue that when a metric g ∈ M(M,m) is sufficiently close to gm
it is possible to glue together the foliations of (M, g) obtained in Theorems
2 and 4.

Theorem 7. Let m > 0. There exists ε > 0 with the following property:
If g ∈ M(M,m) is such that d(g, gm) < ε, then there exists a foliation

{Σt}t∈[0,+∞) of M such that:

i) Each Σt is a weakly stable CMC sphere in (M, g), with positive mean
curvature when t > 0; and
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ii) Σ0 = ∂M is an outermost minimal surface in (M, g).

Moreover, if g has scalar curvature greater than or equal to −6, then

iii) limt→+∞mH(Σt) = limt→+∞

√
|Σt|
16π

(
1− 1

16π

∫
Σt

(H2
t − 4)dΣt

)
= m.

Proof. Given an arbitrary ε0 > 0, let δ > 0, C > 0 and s0 > s(3m) be given
by Theorem 4. Recall that the function Hm(s) is monotone decreasing on
the interval (s(3m),+∞) and converges to 2 as s goes to infinity. Let s0 > s0

be such that Hm(s0) < 2 + δ.
Let S > s0 + 1. Given this choice of S, we can choose ε ∈ (0, ε0)

and η < 1 sufficiently small in such way that Theorem 2 holds for S and
Theorem 3 holds for the interval [S − 1, S] for every metric g ∈ M(M,m)
with d(g, gm) < ε.

In particular, we can assume that for every metric g ∈ M(M,m) with
d(g, gm) < ε and for every s ∈ [S − 1, S] the surface Σl = Σl(g) in (M, g)
described in Theorem 4 with l = Hm(s) is given by

Σl = Ss(h),

where h is the unique function in C2,α(S2) with norm < η such that its
graph over Ss has constant mean curvature Hm(s), see the remark after
Theorem 4.

Given κ ∈ (0, η), let [c, d] be the image of the interval [S − 3κ/4, S −
κ/4] under the map Hm(s). We can moreover assume that ε ∈ (0, ε0) is
sufficiently small in such way that for every g ∈M(M,m) with d(g, gm) < ε
the foliation {Σ1

s(g)}s∈[0,S] constructed in Theorem 2 has in particular the
following properties:

a) For every s ∈ [S−1, S], there exists a function u(s, g) ∈ C2,α(S2) with
‖u(s, g)‖C2,α < η/2 such that

Σ1
s(g) = Ss(u(s, g)).

b) The mean curvature Hg(s) of Σ1
s(g) in (M, g) is a decreasing function

on the interval [S − 1, S] with

|Hg(s)−Hm(s)| < (d− c)/4

for all s ∈ [S − 1, S]. Hence, there exists an interval (a, b) ⊂ [S −
3κ/4, S − κ/4] such that for every s ∈ (a, b) there exists a unique
s̃ ∈ (S − 3κ/4, S − κ/4) with Hg(s) = Hm(s̃). This defines s̃ as a
function of s.

We now prove that the theorem is true for this choice of ε.
In fact, fix some g ∈ M(M,m) with d(g, gm) < ε. By item a) and b)
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above, given s ∈ (a, b), if we define the function h̃ = s − s̃(s) + u(s, g) ∈
C2,α(S2), then

‖h̃‖C2,α ≤ |s− s̃(s)|+ ‖u‖C2,α < κ/2 + η/2 < η

and the graph
Ss̃(s)(h̃) = Ss(u(s, g)) = Σ1

s(g)

has constant mean curvature Hg(s) = Hm(s̃(s)). These are the conditions
that uniquely characterize the function that gives Σl in (M, g) with l =
Hm(s̃(s)) as a graph over Ss̃(s). Therefore Σ1

s(g) = Σl(g) where l = Hm(s̃(s))
for all s ∈ (a, b).

This proves that the foliations {Σ1
s(g)} and {Σl(g)} given by Theorems

2 and 4, respectively, glue together. The obtained foliation, {Σt}t∈[0,+∞), is
a foliation of (M, g) by weakly stable CMC spheres, starting at the minimal
Σ0 = ∂M , such that each Σt has positive mean curvature for t > 0, and
such that limt→+∞mH(Σt) = m when g has scalar curvature R ≥ −6 (see
Theorem 2, Theorem 4 and Proposition 6). It remains only to prove that
∂M is an outermost minimal surface in (M, g). This is a consequence of the
Maximum Principle, since we showed that M \ ∂M is foliated by surfaces
with positive mean curvature.

2.7 The Penrose inequality

Using the foliation by weakly stable CMC spheres constructed above on
(M, g), g ∈ M(M,m) sufficiently close to gm, and the remark of H. Bray
that the Hawking mass is monotone non-decreasing in such families (see [3]),
we prove the Penrose inequality for this class of asymptotically hyperbolic
manifolds.

Theorem 8. Given m > 0, let ε > 0 be given by Theorem 7. If g ∈
M(M,m) with d(g, gm) < ε has scalar curvature R ≥ −6, then(

|∂M |
16π

) 1
2

+ 4

(
|∂M |
16π

) 3
2

≤ m. (2.7)

Moreover, equality holds if and only if (M, g) is isometric to (M, gm).

Proof. Let {Σt}t≥0 be the foliation of (M, g) by weakly stable CMC spheres
constructed in Theorem 7. We assume g has scalar curvature R ≥ −6, so
that {Σt} has all the properties i), ii) and iii) described there.

We claim that the Hawking mass of Σt,

mH(Σt) =

√
|Σt|
16π

(
1− 1

16π

∫
Σt

(H2
t − 4)dΣt

)
,
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is monotone non-decreasing in t. In fact, we can be more precise:

Claim: m
′
H(Σt) ≥ 0. Moreover, m

′
H(Σt) is zero at t > 0 if and only if Σt

satisfies the following properties:

a) R is constant and equal to −6 along Σt;

b) Σt is totally umbilic; and

c) Σt has constant Gaussian curvature.

The proof of the claim goes as follows. Choose a parametrization of
this foliation by some function G : [0,+∞) × S2 → M such that for each
t ∈ [0,+∞), Gt : S2 → M is a parametrization of Σt and ∂tG does not
vanish. Let ρt be the lapse function, i.e., ρt = g(Nt, ∂tG) where Nt is the
normal pointing toward infinity. Since we have a foliation, ρt > 0 on Σt for
all t. We also define the mean value ρt =

∫
ρtdΣt/|Σt|.

By the first variation formula of the Hawking mass (see the Appendix),
we have

(16π)
3
2m

′
H(Σt) = 2|Σt|

1
2

∫
Σt

(∆tHt +QtHt)ρtdΣt,

where

Qt =
1

2
(R+ 6) +

(
4π

|Σt|
−Kt

)
+

1

2

(
|Bt|2 −

1

2|Σt|

∫
Σt

H2
t dΣt

)
.

Since Ht is constant for each t,

(16π)
3
2m

′
H(Σt) = 2|Σt|

1
2Ht

∫
Σt

QtρtdΣt

= 2|Σt|
1
2Ht

∫
Σt

(∆t +Qt)(ρt − ρt)dΣt + 2|Σt|
1
2Htρt

∫
Σt

QtdΣt

= 2|Σt|
1
2Ht

∫
Σt

Lt(ρt − ρt)dΣt + 2|Σt|
1
2Htρt

∫
Σt

QtdΣt.

In the last line, we used the Gauss equation (0.1) to see that ∆t + Qt
and the Jacobi operator of Σt differ by a constant.

Since ∂M = Σ0 is minimal, the derivative of mH(Σt) is zero at t = 0.
When t > 0, Σt has positive mean curvature. Observe also that

∫
Σt
QtdΣt ≥

0, by Gauss-Bonnet Theorem and since R ≥ −6. Therefore

(16π)
3
2m

′
H(Σt) ≥ 2|Σt|

1
2Ht

∫
Σt

Lt(ρt − ρt)dΣt.

Now we use the weak stability of Σt. Since Ht is constant for each t,
Lt(ρt) = −∂tHt is also constant on Σt. Hence the stability inequality gives

0 ≤ −
∫

Σt

Lt(ρt−ρt)(ρt−ρt)dΣt =

∫
Σt

Lt(ρt)(ρt−ρt)dΣt = ρt

∫
Σt

Lt(ρt−ρt)dΣt.
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This implies that m
′
H(Σt) is nonnegative.

If m
′
H(Σt) = 0 at t > 0, then∫

Σt

QtdΣt = 0 and

∫
Σt

Lt(ρt − ρt)(ρt − ρt)dΣt = 0.

The first equality implies that Σt satisfies a) and b). By the weak sta-
bility, the second equality implies that Lt(ρt − ρt) is constant, for it must
be orthogonal to every function on Σt with zero mean value. Since Lt(ρt) is
constant, this implies that Lt(ρt) is also constant. Then c) follows from a),
b) and the Gauss equation (0.1).

Once we proved the claim, inequality (2.7) follows immediately:(
|∂M |
16π

) 1
2

+ 4

(
|∂M |
16π

) 3
2

= mH(Σ0) ≤ lim
t→+∞

mH(Σt) = m.

Now we analyze the equality. In this case mH(Σt) must be constant
and equal to m. By the second part of the claim, we conclude that each
Σt satisfies a), b) and c) for all t > 0. Hence, possibly after a change of
the parametrization G : [0,+∞) × S2 → M , G∗g is a metric on M =
[0,+∞) × S2 that can be written in the form ds2 + ξ2(s)g0, has constant
scalar curvature R = −6, and is such that all slices {s} × S2 have Hawking
mass m. These conditions uniquely characterize the metric gm (see the
Appendix). This finishes the proof.

Another Penrose inequality. In Proposition 1, we saw that the mean cur-
vature of the coordinates spheres in the Anti-de Sitter-Schwarzschild spaces
of mass m > 0 is given by the function Hm(r) = (2/r)

√
1 + r2 − 2m/r. Ob-

serve that Hm(2m) = 2 and that Hm(r) > 2 for all r > 2m. In particular,
the Maximum Principle implies that there are no other closed surfaces with
constant mean curvature 2 in ([2m,+∞)× S2, gm).

Let (M, g) be an asymptotically hyperbolic three-manifold with con-
nected boundary ∂M . Assume that (M, g) has scalar curvature R ≥ −6
and that ∂M is an outermost H = 2 surface, meaning that are no closed
surfaces in M with constant mean curvature H = 2 other than ∂M . In this
setting, the Penrose Conjecture is that the area of ∂M and the total mass
m of (M, g) are related by the inequality(

|∂M |
16π

) 1
2

≤ m,

and that equality holds if and only if (M, g) is isometric to the piece of the
Anti-de Sitter-Schwarzschild space of mass m outside the domain bounded
by the coordinate sphere of mean curvature 2.
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Given m > 0, we analogously define the space M(M2,m) of metrics g
on M2 := [s(2m),+∞)× S2 such that ∂M2 has constant mean curvature 2
in (M2, g) and d(g, gm) < +∞. The analogous versions of Theorem 7 and
Theorem 8 follows immediately by the same arguments.

Theorem 9. Let m > 0. There exists ε > 0 with the following property:
If g ∈ M(M2,m) is such that d(g, gm) < ε, then there exists a foliation

{Σt}t∈[0,+∞) of M2 such that:

i) Each Σt is a weakly stable CMC sphere in (M2, g), with mean curvature
Ht > 2 when t > 0; and

ii) Σ0 = ∂M2 is an outermost H = 2 surface in (M2, g).

Moreover, if g has scalar curvature R ≥ −6, then

iii) limt→+∞mH(Σt) = m.

Theorem 10. Given m > 0, let ε > 0 be given by Theorem 9. If g ∈
M(M2,m) with d(g, gm) < ε has scalar curvature R ≥ −6, then(

|∂M2|
16π

) 1
2

≤ m.

Moreover, equality holds if and only if (M2, g) is isometric to (M2, gm).
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Appendix

For completeness, we present in this Appendix the relevant calculations. In
particular, we prove the variation formulas contained in the basic material
chapter, we deduce the first variation formula for the Hawking mass and
we describe all warped product metrics on I × S2 of the form dt2 + ξ2(t)g0,
where (S2, g0) is the standard round sphere of constant curvature 1, that
have constant scalar curvature −6.

Variation formulas: We work in the general setting. Let (Mn+1, g) be a
Riemannian manifold with boundary ∂M and let X denote the unit normal
vector field of ∂M that points outside M . Let Σn be a manifold with
boundary ∂Σ and assume Σ is immersed in M in such way that ∂Σ is
contained in ∂M . The outward pointing unit co-normal of ∂Σ in Σ is denoted
by ν. Let N be a local unit vector field normal to Σ, let B denote its
second fundamental form defined by B(Y,W ) = g(∇YN,W ) for every pair
of vectors Y , W tangent to Σ and let H = trB denote its mean curvature.

We consider variations of Σ given by smooth maps f : Σ× (−ε, ε)→M
with Σ = f0(Σ) such that ft : x ∈ Σ 7→ f(x, t) ∈M is an immersion of Σ in
M and ft(∂Σ) is contained in ∂M for every t ∈ (−ε, ε) .

The subscript t will be used to denote quantities associated to Σt =
ft(Σ). For example, Nt will denote a local unit vector field normal to Σt

and Ht will denote the mean curvature of Σt.
It will be useful for the computations to introduce local coordinates

x1, . . . , xn in Σ. We will also use the simplified notation

∂t =
∂f

∂t
and ∂i =

∂f

∂xi
,

where i runs from 1 to n. Regarding the indexes, we use the usual summation
and notational conventions. For example, the mean curvature of Σ is given
by H = gijBij , where Bij = B(∂i, ∂j) for every 1 ≤ i, j,≤ n.
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We decompose the variational vector field V = ∂t in its tangent and
normal components along Σt,

∂t = ∂>t + ρtNt,

where ρt is the lapse function on Σt defined by ρt = g(∂t, Nt).

Proposition 1.

∂tgij = g(∇∂i∂t, ∂j) + g(∂i,∇∂j∂t),
∂tg

ij = −2gikgjlg(∇∂k∂t, ∂l),
∂t det[gij ] = (gij∂tgij) det[gij ].

Proof. The first equation is straightforward. The second follows from dif-
ferentiating gikgkl = δil . The last equation is a consequence of the general
formula for the derivative of the determinant at an invertible matrix U ,
D(det)(U)W = tr(U−1W ) det(U) for all matrices W .

Proposition 2.

d

dt
|Σt| =

∫
Σt

HtρtdAt +

∫
∂Σt

g(νt, ∂t)dLt.

Proof. In local coordinates x1, . . . , xn, the area element of Σ is given by
dAt =

√
det[gij ]dx

1...dxn. By Proposition 1,

∂t

√
det[gij ] =

1

2
(gij∂tgij)

√
det[gij ]

= gijg(∇∂i∂t, ∂j)
√

det[gij ]

= (gijg(∇∂i∂
>
t , ∂j) + gijg(∇∂iNt, ∂j)ρt)

√
det[gij ]

= (divΣt∂
>
t +Htρt)

√
det[gij ].

The first variation formula of area follows then by the divergence theo-
rem.

Proposition 3.

∇∂iNt = gklBil∂k,

∇∂tNt = ∇∂>t Nt −∇Σtρt.

where ∇Σρt is the gradient of the function ρt on Σt.
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Proof. Since g(Nt, Nt) = 1, ∇∂iNt and ∇∂tNt are tangent to Σt. The first
equation is just the expression of ∇∂iNt in the basis {∂k}. On the other
hand, since g(Nt, ∂i) = 0, we have

∇∂tNt = gikg(∇∂tNt, ∂k)∂i = −gikg(Nt,∇∂t∂k)∂i = −gikg(Nt,∇∂k∂t)∂i.

In local coordinates, the gradient of ρt in Σt is given by∇Σtρt = (gij∂jρt)∂i.
Therefore

∇∂tNt = −gikg(Nt,∇∂k∂
>
t )∂i − gikg(Nt,∇∂k(ρtNt))∂i

= gikBt(∂k, ∂
>
t )− (gik∂kρt)∂i

= ∇∂>t Nt −∇Σtρt

Proposition 4.
∂tHt = dHt(∂

>
t )− LΣtρt.

where LΣt = ∆Σt +Ric(Nt, Nt) + |Bt|2 is the Jacobi operator of Σt.

Proof. Since Ht = gijg(∇∂iNt, ∂j),

∂tHt = ∂tg
ijg(∇∂iNt, ∂j) + gijg(∇∂t∇∂iNt, ∂j) + gijg(∇∂iNt,∇∂t∂j)

= −2gikgjlg(∇∂k∂t, ∂l)g(∇∂iNt, ∂j) + gijg(R(∂t, ∂i)Nt, ∂j)

+gijg(∇∂i∇∂tNt, ∂j) + gijg(∇∂iNt,∇∂j∂t)
= −2gikg(∇∂k∂t,∇∂iNt)−Ric(∂t, Nt)

+gijg(∇∂i∇∂tNt, ∂j) + gijg(∇∂iNt,∇∂j∂t)
= −gijg(∇∂iNt,∇∂j∂t)−Ric(∂t, Nt)

+gijg(∇∂i(∇∂>t Nt), ∂j)− gijg(∇∂i(∇
Σtρt), ∂j).

Now we use the contracted Codazzi equation (0.2):

Ric(∂Tt , Nt) = gij(∇Σt
∂i
B)(∂>t , ∂j)− dH(∂>t )

= gij∂ig(∇∂>t Nt, ∂j)− gijg(∇(∇∂i∂
>
t )>Nt, ∂j)

−gijg(∇∂>t Nt, (∇∂i∂j)
>)− dH(∂>t )

= gij(∂ig(∇∂>t Nt, ∂j)− g(∇∂>t Nt,∇∂i∂j))

−gijg(∇∂jNt, (∇∂i∂
>
t )>)− dH(∂>t )

= gijg(∇∂i(∇∂>t Nt), ∂j)− gijg(∇∂jNt,∇∂i∂
>
t )− dH(∂>t ).

Canceling out the corresponding terms, we have

∂tHt =− gijg(∇∂iNt,∇∂jNt)ρt −Ric(Nt, Nt)ρt

+ dH(∂>t )− gijg(∇∂i(∇
Σtρt), ∂j).

The proposition follows.
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Proposition 5. Let Σ be a free boundary minimal surface. For all varia-
tions of Σ with variational vector field ∂t|t=0 = ρN along Σ,

d2

dt2 |t=0
|Σt| = −

∫
Σ
LΣ(ρ)ρdA+

∫
∂Σ

(
∂ρ

∂ν
−B∂M (N,N)ρ

)
ρdL.

Proof. By assumption, Ht = 0 and g(νt, ∂t) = 0 at t = 0. From Proposition
4, if we differentiate the first variation formula of area at t = 0 for a variation
with ∂>t = 0 along Σ0 = Σ we get

d2

dt2 |t=0
|Σt| = −

∫
Σ
LΣ(ρ)ρdA+

∫
∂Σ

(∂tg(νt, ∂t))|t=0 dL.

To analyze the boundary integral, observe that

g(νt, Nt) = 0 ⇒ g(∇∂tνt, Nt) = −g(νt,∇∂tNt).

Since X = ν and ∂t|t=0 = vN is tangent to ∂M along ∂Σ, from Propo-
sition 3 we get

(∂tg(νt, ∂t))|t=0 = g((∇∂tνt)|t=0, N)ρ+ g(X, (∇∂t∂t)|t=0)

= g(ν,∇Σρ)ρ−B∂M (N,N)ρ2.

The Hawking mass: Let (M3, g) be a Riemannian manifold with inf R >
−∞. Given a closed surface Σ in M , we define its Hawking mass to be

mH(Σ) =

√
|Σ|
16π

(
1− 1

16π

∫
Σ

(H2 +
2

3
inf R)dΣ

)
.

Remark. Since the scalar curvature of asymptotically hyperbolic manifolds
converges to −6 at infinity, in general one has inf R ≤ −6. Therefore, when
such manifolds have scalar curvature greater than or equal to −6, the above
formula coincides with the one used in Chapter 2.

Proposition 6. Given a variation {Σt} of Σ with variational vector field
V on Σ,

(16π)3/2 d

dt |t=0
mH(Σt) = 2|Σ|1/2

∫
Σ

(∆ΣH +QΣH)g(V,N)dΣ, (2.8)

where

QΣ =
1

2
(R− inf R) +

(
4π

|Σ|
−K

)
+

1

2

(
|B|2 − 1

2|Σ|

∫
Σ
H2dΣ

)
.
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Proof. Since the functional is invariant under reparametrizations of Σ we
only need to consider variations with V = ρN on Σ. Using Propositions 1,
2 and 4 and Gauss equation (0.1), we calculate:

(16π)3/2 d

dt |t=0
mH(Σt) =

=
1

2|Σ|1/2

∫
Σ
HρdΣ

(
16π −

∫
Σ

(
H2 +

2

3
inf R

)
dΣ

)
+ |Σ|1/2

(∫
Σ

2HLΣ(ρ)dΣ−
∫

Σ

(
H2 +

2

3
inf R

)
HρdΣ

)
= |Σ|1/2

(∫
Σ

2H∆ΣρdΣ +

∫
Σ

(
R+ |B|+H2 − 2K

)
HρdΣ

)
− |Σ|1/2

∫
Σ

(
H2 +

2

3
inf R

)
HρdΣ

+ |Σ|1/2
∫

Σ

(
8π

|Σ|
− 1

2|Σ|

∫
Σ
H2dΣ− 1

3
inf R

)
HρdΣ.

After this point, formula (2.8) follows immediately.

Using Gauss-Bonnet theorem, we conclude that
∫

ΣQΣdΣ ≥ 0. More-
over, equality holds if and only if Σ is a topological sphere, is totally umbilic
and R is constant and equal to inf R along Σ.

Spherically symmetric metrics of constant scalar curvature −6: Let
(S2, g0) be the round sphere of constant curvature 1. Given an open interval
I ⊂ (0,+∞), we want to consider metrics g on I × S2 that can be written
as

g = ρ−2(r)dr2 + r2g0 (2.9)

for some positive function ρ : r ∈ I 7→ ρ(r) ∈ (0,+∞). After a coordinate
change t = t(r) we can write this metric as a warped product dt2 + ξ2(t)g0,
and reciprocally.

We calculate the scalar curvature of these metrics. This can be done
with the aid of the Gauss equation (0.1).

The Gaussian curvature of Sr is given by r−2, since gSr is a rescaling
of the round metric g0 by the factor r2. By the spherical symmetry, every
coordinate sphere Sr is umbilical and has constant mean curvature Hr. Since
|Sr| = 4πr2 and Nr = ρ(r)∂r, the first variation formula of area gives

Hr =
2

r
ρ(r).

Using these informations in Gauss equation (0.1) we get

R = 2
(1− ρ2(r))

r2
+ 2Ric(∂r, ∂r)ρ

2(r). (2.10)

Instituto de Matemática Pura e Aplicada 41 2014



Lucas C. Ambrozio CMC foliations and scalar curvature rigidity

To calculate Ric(∂r, ∂r), we introduce local coordinates x1, x2 on S2 and
use the coordinates x0 = r, x1, x2 on I × S2. Let us also make the useful
convention that capital letters runs over the set {0, 1, 2} and small letters
runs over the set {1, 2}. For example, if we set gij := g0(∂i, ∂j) we can write

g0A = ρ−2δ0A and gij = r2gij .

Now we calculate the Christoffel symbols of the metric g,

Γ
C
AB =

1

2
gCD(∂AgBD + ∂BgAD − ∂DgAB).

Observe that ΓCAB vanishes when exactly two indexes equal 0 and

Γ
0
00 = −ρ−1ρ′, Γ

k
i0 = r−1δki , Γ

0
ij = −rρ2gij and Γ

k
ij = Γkij ,

where Γkij are the Christoffel symbols of g0.
The Ricci tensor is given in coordinates by

RCB = ∂AΓ
A
BC − ∂BΓ

A
AC + Γ

P
BCΓ

A
AP − Γ

P
ACΓ

A
BP .

In particular,

R00 = −∂0Γ
i
i0 + Γ

0
00Γ

i
i0 − Γ

p
i0Γ

i
p0

= 2r−2 + (−ρ−1ρ′)(2r−1)− (r−1δpi )(r−1δip)

= −2r−1ρ−1ρ′.

Going back to equation (2.10) we deduce a formula for the scalar curva-
ture R of g in terms of ρ,

R

2
=

1− ρ2

r2
− 2

r
ρρ′. (2.11)

The problem we want to solve is to find all metrics g as in (2.9) with
constant scalar curvature −6. From equation (2.11), this is equivalent to
the requirement that the function ρ must satisfy the first order ODE

2rρρ′ = 1− ρ2 + 3r2. (2.12)

We will be able to completely solve this ODE. In fact, consider the
function

m(r) =
r

2
(1− ρ2 + r2).

Observe that this function would give precisely the Hawking mass of the
coordinate sphere Sr with respect to g if we knew this metric had constant
scalar curvature equal to −6. Differentiating it,

2m′(r) = (1− ρ2 + r2) + r(−2ρρ′ + 2r) = (1− ρ2 + 3r2)− 2rρρ′
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Therefore ρ satisfy equation (2.12) if and only if m(r) = m is a constant
function, in which case we can write

ρ(r) = 1 + r2 − 2m

r

and then conclude that (I × S2, g) must be a piece of the Anti-de Sitter-
Schwarzschild space of mass m.
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[11] P. Chruściel and M. Herzlich, The mass of asymptotically hyperbolic
Riemannian manifolds, Pacific J. Math. 212 (2003), no 2, 231-264.

[12] D. Fischer-Colbrie and R. Schoen, The structure of complete sta-
ble minimal surfaces in 3-manifolds of nonnegative scalar curvature,
Comm. Pure Appl. Math. 33 (1980), no 2, 199-211.

[13] R. Geroch, Energy extraction, Ann. New York Acad. Sci. 224 (1973)
108-117.

[14] F. Girão and L. L. de Lima, Positive mass and Penrose type inequali-
ties for asymptotically hyperbolic hypersurfaces, arXiv:1201.4991.

[15] F. Girão and L. L. de Lima, An Alexandrov-Fenchel-type inequal-
ity in hyperbolic space with an application to a Penrose inequality,
arXiv:1209.0438.

[16] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the
Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no.
3, 353-437.

[17] G. Huisken and S.-T. Yau, Definition of center of mass for isolated
physical systems and unique foliations by stable spheres with constant
mean curvature, Invent. Math. 124 (1996), no. 1-3, 281-311.

[18] J. Kazdan and F. Warner, Prescribing curvatures, Differential Geome-
try, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence,
R.I. (1975) 309-319.

[19] O. Ladyzhenskaia and N. Uralt’seva, Linear and quasilinear elliptic
equations, Academic Press, New York (1968) 495 pp.

[20] M. Li, Rigidity of area-minimizing disks in three-manifolds with bound-
ary, preprint.

[21] M. Mars, Present status of the Penrose inequality, Classical and Quan-
tum Gravity 26 (2009), no. 19, 193001, 59 pp.

[22] R. Mazzeo and F. Pacard, Constant curvature foliations in asymptoti-
cally hyperbolic spaces, Rev. Mat. Iberoam. 27 (2011), no. 1, 303-333.
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