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(a) Input image and detail (b) Blu et al. [2001] (O-MOMS) (c) Condat et al. [2005] (d) Our result

Figure 1: Comparison between state-of-the-art quadratic quasi-interpolators with similar computational cost. The test consists of applying 40
cumulative translations to the input. The net effect brings the image back in alignment with the input, so we can compare them. Our new
quadratic is better at preserving detail. SSIM: (a) 1.0, (b) 0.977, (c) 0.987, (d) 0.995. PSNR: (a)∞, (b) 32.938, (c) 34.149, (d) 36.443.

Abstract

We obtain new quasi-interpolators for continuous reconstruction of
sampled images by minimizing a new objective function that takes
into account the approximation error over the full Nyquist interval.
To achieve this goal, we optimize with respect to all possible degrees
of freedom in the approximation scheme. We consider three study
cases offering different trade-offs between quality and computational
cost: a linear, a quadratic, and a cubic scheme. Experiments with
compounded rotations and translations confirm that our new quasi-
interpolators perform better than the state-of-the-art for a similar
computational cost.

1 Introduction

The problem of obtaining an estimate for the value of a function at an
arbitrary point, when given only a discrete set of sampled values, has
a long history in applied mathematics [Meijering 2002]. A variety of
operations commonly performed on images, such as rotations, trans-
lations, warps, and resolution change, require resampling. Efficient,
high-quality reconstruction is therefore of fundamental importance
in computer graphics and image processing applications.

In this paper, we leverage recent results from the intersection of
image processing and approximation theory to optimize for a new
family of reconstruction schemes. Figure 1 shows a typical bench-
mark used to evaluate reconstruction quality. An input image is
repeatedly translated so as to accumulate the errors due to multiple
compound reconstruction steps. The figure compares the two best
performing quadratic reconstruction schemes with the result of our
method. Visual inspection suggests our method is better at preserv-
ing high-frequency content, and this is confirmed quantitatively by
the perceptual SSIM [Wang et al. 2004] metric as well as the PSNR
metric. This success is the result of the greater number of degrees
of freedom and the more realistic objective function we use in our
optimization framework.

Figure 2 shows the modern approach to sampling and reconstruc-
tion [Blu et al. 1999]. The precise definition of each stage in the
pipeline is given in section 2. Intuitively, an approximation f̃T to f
is obtained as follows. In the first two stages, f is subjected to a
continuous convolution with an analysis filter ψ (a.k.a. prefilter),
and then sampled with constant sample spacing T . The traditional
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Figure 2: The sampling pipeline. The input f is first convolved with
a scaled prefilter ψ and then sampled on a grid with fixed spacing
T . We assume the image is available to us after sampling and we
optimize for the quality of the reconstruction f̃T using all the degrees
of freedom of the digital filter q and of the generator ϕ.

role of the prefiltering stage is to eliminate from f frequencies above
the Nyquist rate 0.5

T
so as to avoid aliasing in the sampled sequence.

In the applications we discuss in this paper, we assume no knowl-
edge or control over the prefilter ψ. In other words, either there was
no prefilter (equivalently, ψ = δ, the Dirac delta) or our goal is to
approximate a previously prefiltered signal f ∗ψ∨ instead of f itself.

The remaining stages apply a digital filter q to the samples (by dis-
crete convolution), and then build f̃T by combining shifted copies of
a generating function ϕ, each scaled by a filtered sample. The digital
filtering stage q is a recent addition to the sampling pipeline [Unser
2000]. It brings several advantages: it increases the range of approx-
imation techniques that can be expressed, and gives more freedom to
the design of generators ϕ with desirable approximation properties.
Furthermore, it incurs no significant performance penalty.

The ideal sampling of Shannon [1949] is represented in the sampling
pipeline by setting both the prefilter and generating function to the
ideal low-pass filter (i.e., ψ = ϕ = sinc, the sinus cardinalis), and
omitting the digital filtering stage (or equivalently, setting q = δ,
the Kronecker delta). For reasons that include its wide support
even when windowed, its high computational cost, and results with
an excessive amount of ringing, sinc has progressively lost favor
to narrowly supported piecewise polynomial kernels, which bring
performance and quality advantages [Meijering et al. 2001].

A typical use for the digital filtering stage is in interpolation. Ab-
sent q, the interpolation property eliminates degrees of freedom
from ϕ that could be used for better purposes. These constraints
can be moved to q instead [Thévenaz et al. 2000], as in the case of
interpolation by B-splines [Unser et al. 1991]. Another use for the
digital filtering stage is in obtaining the best approximation of f
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for a given choice of generator ϕ. Since the functions of inter-
est in many applications have considerable bandwidth outside the
Nyquist interval (− 0.5

T
, 0.5
T

), there is no hope of reaching an exact
reconstruction. The goal is instead to minimize the L2 norm of
the residual ‖f − f̃T ‖L2 , and this goal uniquely determines both ψ
and q. Setting q∨∗ ψ = ϕ̊, the dual of the generator ϕ, we obtain
the orthogonal projection of f into the space of functions spanned
by shifted copies of the generator ϕ.
The order with which the residual of the orthogonal projection van-
ishes as we progressively reduce the sample spacing T is a property
of the generating function ϕ [Strang and Fix 1971]. Piecewise poly-
nomial generators with minimal support and optimal approximation
order were completely characterized by Blu et al. [2001]. To achieve
the same approximation order as the orthogonal projection without
access to ψ, as is our assumption, we must wisely select q [de Boor
1990; Blu and Unser 1999a]. The results are quasi-interpolators.
Optimal order digital filters q for a given ϕ have also been ob-
tained [Blu and Unser 1999b; Condat et al. 2005; Dalai et al. 2006].
Previous work has either assumed orthogonal projection and opti-
mized for the generator, or assumed a given generator and optimized
for the digital filter. As far as we know, our work is the first to
jointly optimize all degrees of freedom in q and ϕ for the best quasi-
interpolating scheme. Furthermore, inspired by Schaum [1993], our
optimization framework takes into account the entire Nyquist inter-
val. This is in contrast to the dominant strategy of focusing on the
asymptotic behavior of the residual in the limit as T → 0.
Our work results in a new family of piecewise polynomial quasi-
interpolating schemes. Each scheme is given by a combination of
digital filter q and generating function ϕ, and is optimal with regard
to our metric. We run a variety of empirical tests to demonstrate that
the resulting schemes yield superior reconstruction quality in typical
tasks, when compared to the state-of-the-art, while maintaining
competitive performance.
The remainder of the paper is structured in layers to help readers
unfamiliar with the topic. Section 2 details our notation. In addition
to a historical review of related work, section 3 presents important
concepts from approximation theory and the motivation for our work.
Section 4 delves deeper into theory and substantiates our motiva-
tion with concrete examples. Section 5 presents our optimization
framework. The resulting interpolators and comparisons against the
state-of-the-art appear in section 6. We conclude in section 7 with
directions for future research on this topic.

2 Notation
Let f : R→ C be a function. We say that f ∈ L2 if∫ ∞

-∞

∣∣f(x)
∣∣2 dx <∞. (1)

In this case, we denote the quantity in (1) by ‖f‖L2 . The Fourier
transform of f and its inverse are given by

f̂(ω) =

∫ ∞
-∞

f(x)e−2πixω dx, and (2)

f(x) =
1

2π

∫ ∞
-∞

f̂(ω)e2πixω dω. (3)

A sequence q : Z → C belongs to `2 if
∑
k∈Z |qk|

2 < ∞. The
discrete-time Fouriter transform (DTFT) of q is defined by

q̂(ω) =
∑
k∈Z

qke
−2πiωk. (4)

For a given real number r > 0 we define the Sobolev space Wr
2 as

the set of functions f that satisfy
∫∞
-∞(1 + ω2)r|f̂(ω)|2 dω <∞.

Sampling f on a grid with spacing T amounts to obtaining

JfKT :=
[
. . . , f(−T ), f(0), f(T ), . . .

]
. (5)

The flip of a function f and of a digital filter
q = [. . . , q-1, q0, q1, . . .] are defined as

f∨(x) = f(−x) and (q∨)i = q-i (6)

Given functions f and g, and sequences c and q, the continuous,
discrete, and mixed convolutions are given respectively by

(f ∗ g)(x) =

∫ ∞
-∞

f(t)g(x− t) dt, (7)

(c ∗ q)n =
∑
k∈Z

ck qn−k, and (8)

(q ∗T f)(x) =
∑
k∈Z

qk f(x− kT ). (9)

With these notations, we can conveniently express the output of the
pipeline described in figure 2:

f̃T = Jf ∗ ψ∨(·/T)KT ∗ q ∗T ϕ(·/T) (10)

The auto-correlation of a function ϕ can be written equivalently as

aϕ(x) = (ϕ ∗ ϕ∨)(x) =

∫ ∞
-∞

ϕ(t)ϕ(t− x) dt. (11)

It is frequently sampled into a discrete sequence

aϕ = JaϕK. (12)

The convolution inverse of q, when it exists, is another sequence
denoted by q-1 such that

q ∗ q-1 = δ = [. . . , 0, 0, 1, 0, 0, . . .]. (13)

The digital filter q is said do be FIR (for Finite Impulse Response)
if it has a finite number of non-zero entries. It is said to be IFIR
(for Inverse of Finite Impulse Response) if it is the inverse of a FIR
digital filter. Finally, q is said to be FIR-IFIR if it can be written as
q = q1 ∗ q2, where q1 is FIR and q2 is IFIR.
The subspace of functions generated by shifted copies of the genera-
tor ϕ widened to match the grid with spacing T is defined by

Vϕ,T =
{
f̃ = c ∗T ϕ(·/T)

∣∣ ∀c ∈ `2}. (14)

To have the orthogonal projection of any function f ∈ L2 on Vϕ,T
well-defined, we require the latter to be a closed subspace of L2.
This is equivalent to imposing the existence of constants A,B > 0
such that A 6 âϕ(ω) 6 B, where aϕ = JaϕK is the sampled
auto-correlation of ϕ [Aldroubi 1996]. In this case, the orthogonal
projection of f on Vϕ,T has the following expression:

Pϕ,T (f) = Jf ∗ ϕ∨(·/T)K ∗ JaϕK-1∗T ϕ(·/T). (15)

The generator ϕ has approximation order L if L is the greatest
positive integer for which there exists a constants C > 0 such that

‖f − Pϕ,T (f)‖L2 6 C · TL · ‖f (L)‖L2 ,∀f ∈WL
2 . (16)

Intuitively, this means that as T goes to zero, the “distance” between
f and its closest function in Vϕ,T decays to zero as fast as TL. The
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same concept extends to any operator in the form of (10). We say an
operator has approximation order L̃ (necessarily 6 L) if

‖f − f̃T ‖L2 6 C̃ · T L̃ · ‖f (L̃)‖L2 , ∀f ∈WL
2 . (17)

The B-spline family of generators can be recursively defined as

β0(x) =


1, |x| < 0.5

0.5, |x| = 0.5

0, |x| > 0.5

, and

βn = βn−1 ∗ β0, n > 1.

(18)

We use several concepts when describing a generator ρ : R → R.
It is symmetric if ρ∨ = ρ; it has support W > 0 if W is the
length of the smallest interval I for which ρ(x) = 0, ∀x /∈ I; it
is interpolating if JρK = δ; it has regularity R if R is the greatest
integer for which f ∈ CR. Finally, if ρ is a piecewise polynomial
function, its degree N is the greatest degree of its polynomial pieces.

3 Related work

The classic result by Shannon [1949] states that the scheme de-
scribed in figure 2 can result in f̃T = f when f ’s bandwidth is
restricted to the Nyquist interval (- 0.5

T
, 0.5
T

) when we select ψ = δ,
q = δ and ϕ = sinc. In the practical setting, when input functions
are not necessarily band-limited and ϕ is required to be piecewise
polynomial and compactly supported, Shannon’s result does not
apply and f 6= f̃T .
For such cases, Strang and Fix [1971] established conditions under
which the error ‖f − f̃T ‖L2 goes to zero as a power of the sampling
spacing T , when f̃T is the orthogonal projection of f into Vϕ. They
prove that f̃T has approximation order L if and only if Vϕ contains
all polynomials up to degreeL−1. They also prove that interpolating
f in Vϕ has the same approximation order. Unser [1996] proved that
if ψ is q ∗ ϕ are bi-orthogonal then the scheme in figure 2 has the
same approximation order of ϕ. Blu and Unser [1999a] completed
the characterization of approximation order L by proving it to be
equivalent to ψ and q ∗ ϕ being quasi-biorthonormal of order L.
Over the years, many different approaches have been proposed for
designing good generators ϕ. When only samples of f are available
(ψ = δ), the typical choice is to design interpolating generators ϕ,
with the claim that this would lead to better approximations [Keys
1981; Schaum 1993; Dodgson 1997; German 1997]. These early
works did not include the digital filter q in the approximation scheme
(equivalent to taking q = δ).
Interpolation has the same approximation order L as
ϕ [Strang and Fix 1971]. Unser et al. [1991] and Blu et al. [1999]
advocate that the interpolation condition f̃T (k) = f(k),∀k ∈ Z is
best enforced by the introduction of a digital filter q = JϕK-1 to the
sampling pipeline. This digital filtering stage can be performed very
efficiently [Unser et al. 1991; Nehab et al. 2011]. The addition of
the digital filtering stage leaves more freedom to design ϕ for in-
creased approximation quality [Thévenaz et al. 2000]. The popular
example is interpolation using B-splines (ϕ = βn). B-splines have
high approximation order, short support, and high regularity [Unser
1999]. The cardinal B-splines βnint = JβnK-1∗ βn converge to sinc
as n goes to infinity [Aldroubi and Unser 1994]. Additionally, they
are very efficient to use as pre-filters [Heckbert 1986], digital filters
[Unser et al. 1993], and generators [Sigg and Hadwiger 2005].

Explicit formulas for the approximation constant C̃ in (17), asso-
ciated with an approximation scheme were developed [Möller et al.
1997; Blu and Unser 1999a]. Blu et al. [2001] parametrized all gen-
erators with minimum support and optimal approximation order in

terms of B-splines and their derivatives. Using this parametrization,
they obtained excellent generators that minimize the asymptotic con-
stant of the orthogonal projection scheme (the O-MOMS). Although
designed to be optimal for orthogonal projection, the O-MOMS
were shown to be good cardinal interpolators as well [Thévenaz et al.
2000]. Blu et al. [2003] later provided a complete parametrization
for generators ϕ in terms of their degreeR, supportW , regularityR,
and order L. The general expression is a linear combination of
B-splines and their convolution with certain distributions. Along
this line of research, Blu et al. [2004] determined an optimal shift in
the linear interpolation scheme such that it reaches the asymptotic
constant of the orthogonal projection.

Interpolation is too strong a constraint. It completely defines the
digital filter q = JϕK-1. Giving up interpolation allows us to use the
digital filter to improve reconstruction quality even further. These
so called quasi-interpolation schemes were shown to have approx-
imation order L whenever they exactly reproduce polynomials up
to degree L− 1 (i.e., f̃T (x) = f(x),∀x ∈ R if f is a polynomial
of degree less than L) [de Boor 1990; Chui and Diamond 1990].
This in turn will be true whenever the combination of prefilter and
digital filter ψ∨ ∗ q have the same moments as the dual ϕ̊∨ up to or-
der L− 1 [Blu and Unser 1999a]. This equivalence was explored in
the design of digital filters for quasi-interpolators based on B-spline
generators ϕ = βn: Condat et al. [2005] proposes an IFIR design,
Dalai et al. [2006] an FIR design, and Blu and Unser [1999b] pro-
pose a combination of FIR and IFIR filters.

The approximation order L and constant C describe the asymptotic
behavior of the residual as T → 0. In practice, this will be the dom-
inant effect only when we are able to reduce T arbitrarily, or when
the input signal has a narrow band around zero. The main motiva-
tion for our work is our belief that neither of these conditions apply
in typical image processing and computer graphics applications.
A better goal is to minimize the residual under some appropriate
metric. Although a perceptual metric would be ideal in some applica-
tions [Zhang and Wandell 1996; Wang et al. 2004], more powerful
tools are available to work with the L2 metric.

Error kernels E(ω) allow us to separate, in the computation of the
value of the residual ‖f − f̃T ‖L2 , the influence of the input f and
the influence of the approximation scheme. The general result states

‖f − f̃T ‖
2
L2
≈
∫ ∞
-∞

∣∣f̂(ω)
∣∣2E(ω) dω. (19)

Park and Schowengerdt [1983] obtained an expression for the error
kernel when ψ = δ, q = δ, and used it to determine optimal genera-
tors ϕ in the family of interpolating cubics. Schaum [1993] obtained
a similar expression, but searched for more general generators ϕ
and considered different classes of input spectra f̂ . A complete
result in the form (19) for arbitrary ψ, q, ϕ and f̂ was obtained by
Blu and Unser [1999a] using multiple generators, proving the equiv-
alence between approximation order and quasi-biorthonormality. A
version of (19) for a single generator ϕ (the case of interest in our
work) was further detailed and analyzed by Blu and Unser [1999b].

Different works have had some success in optimizing for high ap-
proximation order L and low approximation constant C (which
control the behavior of the residual in the limit T → 0) as a
proxy for lowering the magnitude of the error kernel in (19) (e.g.,
[Thévenaz et al. 2000; Blu et al. 2004]). In our work (see section 4)
we provide concrete examples that show there is no direct connection
between these goals. This is why we define our objective functions
to minimize the expression in (19).

Unlike previous work, we obtain optimal quasi-interpolators by
optimizing for, in addition to the degrees of freedom in the gen-
erator parametrization by [Blu et al. 2003], all degrees of freedom
in the digital filter. In other words, we jointly optimize for both
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Figure 3: Comparison between the quadratic O-MOMS, a 3rd-order
interpolator proposed by [Blu et al. 2001], and a 4th-order cubic
by Schaum [1993]. Even with its lower order, O-MOMS’s error
kernel shows a better behavior overall in most of the Nyquist inter-
val (top left). Detail (top right) shows that Schaum’s is only better
for a tiny portion of the spectrum near the origin. Comparison of 30
consecutive rotations confirm the better approximation qualities of
the O-MOMS interpolator.
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Figure 4: Comparison between a quadratic interpolator proposed
by Dodgson [1997] and the cubic by Mitchell and Netravali [1988]
(not interpolating), both with approximation order 2. Error kernels
show the overall better behaviour of Dodgson’s interpolator in the
full Nyquist interval. This is despite its poorer behaviour near the
origin (top right), as predicted by its higher asymptotic constant.
Comparison of 15 consecutive translations show the higher quality
achieved by Dodgson’s interpolator.

ϕ and q. Our generators and digital filters do not change depend-
ing on the input f , nor on the image-processing operation being
performed. Interpolation schemes that are input-dependent include
[El-Khamy et al. 2005; Kopf et al. 2013].

4 Theory and motivation
We base our optimization problem on the following theorem due to
Blu and Unser [1999a]. It quantifies the L2-error between the input
and output functions in the approximating scheme of figure 2:
Theorem 1: For all f ∈Wr

2 with r > 1
2

, the approximation error
is given by

‖f − f̃T ‖L2 =

(∫ ∞
-∞
|f̂(ω)|2E(Tω) dω

) 1
2

+ e(f, T ), (20)

where e(f, T ) = o(T r) and

E(ω) = 1−
∣∣ϕ̂(ω)

∣∣2
âϕ(ω)

+ âϕ(ω)

∣∣∣∣q̂(ω)ψ̂(ω)− ϕ̂(ω)

âϕ(ω)

∣∣∣∣2 . (21)

Proof: See appendix C in [Blu and Unser 1999a].
The residual term e(f, T ) vanishes in many situations such as in the
case where f is band-limited in the Nyquist interval [Blu and Unser
1999b]. Setting this term aside, formula (20) tells us that when most
of the energy of the input is concentrated at low frequencies relative
to the sampling spacing (i.e., for frequencies such that Tω → 0),
we can obtain a small residual by simply requiring the error kernel
E to vanish near Tω → 0.
This condition is satisfied by schemes with L > 0. Indeed, approx-
imation order L is equivalent to all derivatives of E up to degree
2L−1 vanishing at zero [Blu and Unser 1999b]. In turn, this causes
the error kernel to behave as a polynomial of degree 2L near ω = 0.
This intuition led to significant effort being devoted towards the de-
velopment of high approximation order schemes [Keys 1981; Unser
1996; German 1997; Blu et al. 2001].
When two different schemes have the same approximation order, the
same intuition suggests using the asymptotic constant C̃ that appears
in (17) to select the best ones [Blu et al. 2001; Thévenaz et al. 2000;
Blu et al. 2004]. This can again be related to the error kernel (21),

since this constant is proportional to the coefficient of the leading
(2L)th power of the polynomial approximation of the error kernel
around ω = 0 [Blu and Unser 1999b].

We agree that a higher approximation order and small asymptotic
constant can be important in many applications. However, as we
show in figures 3 and 4, it is possible to find counter-examples for
both criteria for exactly the applications that are typically used to
showcase the approximation quality achieved by following them.

Figure 3 compares the 3rd-order (cardinal) quadratic interpolator
OMOMS-2 [Blu et al. 2001] with the 4th-order cubic local La-
grangian interpolator [Schaum 1993] in an experiment that consists
of 30 compounded rotations. At each rotation step, the input image
is interpolated, and sampled at a 360o

30
= 12o angle. The result is

used as input for next rotation step and so on until the image is back
to its initial position, at which point it is compared to the original
input. The PSNR and SSIM [Wang et al. 2004] measures are higher
(meaning higher quality) for the result with OMOMS-2 (Figure 3b),
that has a lower order. The plot of the error kernels for both ap-
proximation schemes (Figure 3 top left) show that OMOMS-2 has a
smaller value overall in the full Nyquist interval although it is worse
for low frequencies (Figure 3 top right), the latter behavior being
expected since it has lower approximation order.

In figure 4, we compare the performance of the quadratic interpolator
designed by Dodgson [1997] with the (non-interpolating) cubic
proposed by Mitchell and Netravali [1988]. Both these kernels have
approximation order 2, so we would expect the one with smaller
asymptotic constant to be better (the formula the constant is provided
in [Blu and Unser 1999a]). In this case the constant for Dodgson’s
interpolator is slightly larger than Mitchell-Netravali’s cubic’s (by
about 0.0004). Nevertheless, the compounded 15-translations in
figure 4 show that Dodgson’s interpolator generates a better result
(Figure 4b). This is again due to a better behaviour in the full
Nyquist interval (Figure 4 top left), although it is a bit worse for low
frequencies (Figure 4 top right).

These counter-examples exist because the benchmarks violate the
underlying assumption that the input frequency content is concen-
trated around Tω → 0. As is obvious from the images, they have
significant frequency content away from ω → 0. Indeed, the input
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power spectrum for natural images tend to behave as∣∣f̂(ω)
∣∣2 ≈ 1

ωp
, (22)

where p varies from 1.6 to 3.0 [Field and Brady 1997; Ruderman
1997; Hsiao and Millane 2005]. A photograph taken underwater
tends to be blurrier, so p will be higher. A photograph taken in
the woods, where foliage produces high-frequency content, will
have a smaller p. While the idea of taking T → 0 is valid for
numerical analysis applications that control the sampling spacing,
we are not afforded the same freedom in most image-processing
applications: we must therefore analyze the error kernel E over the
entire frequency domain.
Recall we assume we only have access to the samples of f . If f
was filtered by a good prefilter prior to sampling, the frequency
content outside the Nyquist interval is close to zero. If not, whatever
frequencies were outside the Nyquist interval have already been
aliased back into it when the image was sampled. Therefore, rather
than integrating on the real line as in (20), we focus on the Nyquist
interval:

‖f − f̃T ‖
2
L2
≈
∫ 0.5

T

− 0.5
T

∣∣f̂(ω)
∣∣2E(Tω) dω. (23)

Since T is fixed, we may assume T = 1 with no loss of generality
(see appendix B for proof).
We can now define our minimization problem:

arg min

∫ 0.5

−0.5

∣∣f̂(ω)
∣∣2E(ω) dω. (24)

Assuming f̂ known (to be detailed in section 5) and no prefiltering
in the quasi-interpolation scheme (ψ = δ or ψ̂ ≡ 1), the degrees of
freedom lie in the definitions of the digital filter q and the genera-
tor ϕ.
We explore three options for the form of digital filter q, FIR, IFIR,
and FIR-IFIR. Formally,

FIR : q = [. . . , 0, d-j , . . . , d0, . . . , dj , 0, . . .], (25)
IFIR : q = [. . . , 0, e-k, . . . , e0, . . . , ek, 0, . . .]

-1, and (26)
FIR-IFIR : q = d ∗ e. (27)

These formulations provide us with 2j+1, 2k+1, and 2(j+k+1)
degrees of freedom, respectively.
To isolate the degrees of freedom in the generator in a meaningful
way, we use the parametrization by Blu et al. [2003] in terms of its
degree N , support W , regularity R, and approximation order L (for
simplicity, we write ϕ ∈ {N,W,L,R}).
Theorem 2: Given W > N, ϕ ∈ {N,W,R,L} if and only if there
exists a unique set of coefficients ak,`, bk,`, and ck,` such that

ϕ
(
x− W

2

)
=

M∑
`=1

N-L-`∑
k=0

ak,`
(
βL+k-1
nc ∗ γN-L-k

`

)
(x)

+

M∑
`=0

W -N+`-1∑
k=0

bk,` β
N-`
nc (x− k)

+
W -L∑
k=0

L-R-2∑
`=0

ck,` ∆∗` βL-`-1
nc (x− k),

(28)

where M = N −max(R+ 1, L).
Proof: See [Blu et al. 2003].

In the formulas above,

βnnc(x) = βn
(
x− n+1

2

)
, (29)

is the non-centered B-spline, ∆∗` is the `th-order finite difference,
and γn` are distributions (e.g., derivatives and shifts).

For example, setting N = 1, W = 2, R = −1 (meaning ϕ is
bounded), and L = 1 in the decomposition theorem produces

ϕ(x) = b0,0β
1(x) + c0,0β

0(x+ 1
2

)
+ c1,0β

0
(
x− 1

2

)
(30)

This gives us 3 additional degrees of freedom, relative to the common
choice of ϕ = β1(x) [Condat et al. 2005; Dalai et al. 2006], with
which we minimize our objective function.

5 Optimization

We now state the minimization problem that will result in optimal
quasi-interpolators. Before the objective function itself, we detail
the constraints.

Degree and width of ϕ The degreeN is the guiding parameter in
our method. We set the width to W = N + 1 to match the run-time
efficiency of generators such as B-splines and O-MOMS.

Regularity of ϕ The only restriction we impose is boundedness
(R = −1). Several authors have observed that regularity is not fun-
damental for good approximation quality Schaum [1993]; Blu et al.
[2001]. Our results confirm this. Applications requiring more reg-
ularity (e.g., for derivatives) can change this parameter in the opti-
mization.

Approximation order of ϕ In stark contrast to previous work,
we only first-order approximation (L = 1). This means that fre-
quency ω = 0 (i.e., DC or the average input value) will be preserved,
but nothing else. In analogy to the regularity constraint, our results
show that these additional degrees of freedom are better left to the
discretion of the optimizer.

These constraints determine the coefficients in (28) that are available
for minimization. We encapsulate them into lists of coefficients A,
B and C:

A = {ak,`}, B = {bk,`}, C = {ck,`}. (31)

Symmetry of ϕ and q To guarantee linear phase, we require
our quasi-interpolators q ∗ ϕ to be symmetric. The condition im-
poses simple linear relationships between the coefficients ak,`, bk,`,
and ck,`, and sets di = d-i, and ei = e-i, for all i.

Unit scale for ϕ and q There is a scale ambiguity within the
remaining degrees of freedom. Scaling ϕ by s and q by 1

s leaves the
quasi-interpolator q ∗ ϕ unchanged. We therefore impose∫ ∞

-∞
ϕ(x) dx = 1, and

∑
i∈Z

di =
∑
i∈Z

ei = 1. (32)

Approximation order of the scheme We also require the scheme
as a whole to have first order of approximation. The generator ϕ
satisfies the restriction by construction, but a misguided choice of q
could ruin it. The equivalent condition on the error kernel is

E(0) = 0. (33)

See [Blu and Unser 1999b] for the proof.
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(a) DTFT (Jf ∗ ψ∨K)(ω) (b) ϕ̂qi(ω) (c) DTFT (Jf ∗ ψ∨K)(ω) · ϕ̂qi(ω) (d) DTFT (
qJf ∗ ψ∨K ∗ ϕqi

y
)(ω)

Figure 5: By imposing ϕ̂qi(ω) 6 1.0025, ∀ω ∈ [−0.5, 0.5] and |ϕ̂qi(ω)| 6 0.025, ∀ω ∈ [−∞,−0.75] ∪ [0.75,∞] we control overshoot
and aliasing in the re-sampled image. The DTFT of the input Jf ∗ψ∨K (a) is multiplied by ϕ̂qi (b) and results in a spectrum with small out-band
(aliasing) spectrum and non-amplified in-band spectrum (c). Resampling it leads to

qJf ∗ ψ∨K ∗ ϕqi
y

(whose DTFT is shown in figure d) with
controlled frequency amplification.

Objective function Recall the spectrum of natural images tend to
follow (22). Since we seek input-independent quasi-interpolators,
we set p to the intermediate value of p = 2:∣∣f̂(ω)

∣∣2 ≈ 1

ω2
. (34)

This choice has an extra advantage in our formulation. Since we are
imposing E(0) = 0 and since E′(0) = 0 is automatically satisfied
due to the symmetry of the error kernel, we have E(ω) proportional
to ω2 near the origin. This causes the integrand in (24) to converge
to a finite value at the origin.

The optimization problem Given a degree N :

arg min
q,A,B,C

F (d) :=

∫ d

0

1

ω2
E(ω) dω (35)

subject to ϕ ∈ {N,N + 1,−1, 1}, (36)

ϕ∨ = ϕ, q∨ = q, (37)∫
ϕ(x)dx = 1,

∑
qk = 1, (38)

E(0) = 0. (39)

(We can restrict the integral to positive ω because of symmetry.)

Controlling overshoot and aliasing The natural choice for the
integration limit d in (35) is 0.5, since we only have access to sam-
ples of f . Unfortunately, this often results in quasi-interpolators with
highly oscillating spectra, such as the one presented in figure 6c.
By minimizing (35) with d = 0.5 we are requiring the error kernel
to be small near ω = 0.5, say E(0.5 − ε) ≈ 0. As shown in
appendix B, this implies

ϕ̂qi(0.5− ε) ≈ 1, ϕ̂qi(0.5 + ε) ≈ 0,

ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0.
(40)

Thus E(0.5 − ε) ≈ 0 leads to ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) that approxi-
mates a function with discontinuities near ω = ±0.5. Since ϕ̂(ω)
cannot oscillate much (see [Blu et al. 2003] for the expression), q̂(ω)
is responsible for approximating the discontinuities near ω = ±0.5.
Since the filter has a finite support in the form of (4) or its reciprocal,
this leads to the Gibbs phenomenon in q̂(ω), which is modulated by
ϕ̂(ω) and manifests itself as ringing in the reconstructed images (fig-
ure 6b).
To prevent this issue, we only consider quasi-interpolators that satisfy
the following admissibility conditions:

ϕ̂qi(ω) 6 1.0025, ∀ω ∈ [−0.5, 0.5] and (41)
|ϕ̂qi(ω)| 6 0.025, ∀ω ∈ [−∞,−0.75] ∪ [0.75,∞] . (42)

Intuitively, condition (41) prevents overshoot and condition (42) pre-
vents aliasing. The values 1.0025, 0.025 and 0.75 were empirically

determined. To solve the optimization problem, we relax the ob-
jective function by performing a binary search for the largest value
of d ∈ [0, 0.5] in (35) that leads to an admissible quasi-interpolator.

Figure 5 illustrates the importance of conditions (41) and (42) by
following the effects of each stage of the sampling pipeline, in the
frequency domain. The DTFT of the input Jf ∗ ψ∨K is modulated
by the spectrum of the quasi-interpolator ϕ̂qi. The resampling step
then replicates this spectrum. Conditions (41) and (42) control
magnification of both in-band and out-band spectra.

Note that condition (42) skips interval (0.5, 0.75). In fact, for N =
1, even this relaxed condition is too restrictive. We therefore test
only condition (41). Degrees N = 2 and 3 have larger parameter
spaces, and we can find a value for d that satisfies both constraints.

The practical effect of the admissibility conditions can be seen in
the example of figure 6. There, the quasi-interpolator that results
from the optimization with d = 0.5 leads to overshoot in high
frequencies (note ringing surrounding thorns). The binary search
finds the value d ≈ 0.34. The resulting quasi-interpolator is softer,
but is still sharp enough. The overshooting is mostly gone.

Length and type of q We solve (35)–(39) using FIR, IFIR and
FIR-IFIR digital filters. FIR filters led to the worst results, both w.r.t.
the objective function (24) and our interpolation experiments. Since
IFIR and FIR-IFIR formulations lead to similar results, we prefer the
lower cost IFIR. The wider q is (i.e., the more degrees of freedom it
offers), the lower objective function values are obtained. However,
very little is gained for widths greater than 5. All our results assume
a width 5 and an IFIR formulation for the digital filter.

6 Results and discussion

We have implemented this optimization framework in Mathematica,
selecting the optimization method by Nelder and Mead [1965]. This
method is suitable for constrained non-linear problems, and worked
best in practice with our objective function. To reduce the risk of
finding poor local minima, we solve each optimization problem
40 times and select the best result.

The objective function is somewhat brittle, due to the integrand
in (35) being unstable near the origin. We were careful to keep the
error kernel in its simplest possible form to avoid numerical round-
off errors. All calculations were performed with 20-digit precision.
The Quasi-Monte Carlo method gave the most robust results for the
numerical integration of (35).

The values for all arguments in the solution to the optimization
problem of degrees 1, 2, and 3 are given in appendix A. For con-
venience, we also provide the source-code for the generators in the
supplemental materials and the digital filter entries. We compare
the practical performance of our reconstruction schemes against
previous quasi-interpolators by performing a variety of experiments.

Figure 7 shows a plot of our quadratic generator ϕ (a) and the quasi-
interpolator ϕqi = q ∗ ϕ (b). As has been observed in previous work,
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Input Image Without overshoot avoidance

 0

 0.25

 0.5

 0.75

 1

-1.5 -1 -0.5  0  0.5  1  1.5
ω

ϕ∧

q
i(

ω
)

With overshoot avoidance

 0

 0.25

 0.5

 0.75

 1

-1.5 -1 -0.5  0  0.5  1  1.5
ω

ϕ∧

q
i(

ω
)

(a) PSNR =∞, SSIM =1.0 (b) PSNR = 34.662, SSIM = 0.995 (c) Frequency response (d) PSNR = 43.812, SSIM = 0.999 (e) Frequency response

Figure 6: Quadratic interpolation result for 20 compounded translations. Minimizing F (0.5) leads to a quasi-interpolator ϕqi that overshoots
high frequencies (b). This problem is avoided by minimizing F (0.34) (d), where d = 0.34 is automatically obtained by a binary search. Plots
in figures (c) and (e) show the frequency response of the associated quasi-interpolators compared with the frequency response of the ideal
interpolator.
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(c) Frequency responses (d) Error kernels

Figure 7: Impulse responses of our quadratic generator (a) and
quasi-interpolator (b). We compare the frequency response of our
quasi-interpolator with the best quadratics (c), showing ours to be
closer to the ideal interpolator. Plot in (d) shows that the error
kernel associated to our method is smaller in most of the Nyquist
interval.

regularity is not fundamental for achieving good approximation qual-
ity. Like the local Lagrangian interpolators of Schaum [1993] and
the OMOMS-2 of Blu et al. [2001], our quadratic quasi-interpolator
is not even continuous. The figure also shows a comparison be-
tween the frequency response ϕ̂qi of our quasi-interpolator with
the state-of-the art in quadratics (c). It is clear our interpolator is
sharper. Furthermore, the error kernel plots (d) show that our quasi-
interpolator has a lower error overall in the Nyquist interval. Figure 8
shows the same analysis, this time for our cubic quasi-interpolator.
Similar conclusions can be drawn. Please note that the improve-
ments due to our new quasi-interpolators is more marked than the
quality differences between the previous state-of-the-art.

Figure 9 shows results for our linear quasi-interpolator. The tests
add a random perturbation to each compounded translation offset in
order to rule out the possibility of errors being cancelled by negative
correlations. Our results are significantly sharper than those obtained
by state-of-the art linear quasi-interpolator proposed by Condat et al.
[2005]. In fact, our results compare favourably even against the
cardinal quadratic B-spline.

The example in figure 10 shows that our quadratic quasi-interpolator
performs better than the one proposed by Condat et al. [2005].
In fact, our quadratic compares favourably against the cardinal
cubic O-MOMS, which is the state-of-the-art in cubic interpola-
tion [Thévenaz et al. 2000].
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(a) Our generator (b) The quasi-interpolator
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Cardinal B-Spline3
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Condat3
Our cubic

(c) Frequency responses (d) Error kernels

Figure 8: Impulse responses of our cubic generator (a) and quasi-
interpolator (b). Its frequency response compared with best cubics
(c) and the associated error kernels are shown in (d).

Figure 13 tests the performance of our cubic quasi-interpolator with
a challenging task of rotating a high-frequency pattern consisting
of parallel lines. Our result shows almost perfect reconstruction.
The cubic quasi-interpolator proposed by Blu and Unser [1999b]
(which uses a wider FIR-IFIR formulation) and, to a lesser extent,
the quintic cardinal B-spline, show aliasing in the form of spurious
slanted lines. This final example helps emphasize one of the key
points in our paper: the quintic cardinal B-spline has approximation
order 6, and our cubic has only approximation order 1. Nevertheless,
our cubic performs better.

To put all these results in context, we ran an additional experiment.
We applied 90 randomized translations to the images in [Kodak
2010] in such a way that after every 3 translations it goes back to
the initial position. At these points, we can measure PSNR against
the input. To obtain a single number, we average the PSNR results
over the 24 input images. Results can be seen in figure 11. Our
cubic quasi-interpolator performs best, even when compared to quin-
tic quasi-interpolators. Our quadratic quasi-interpolator performed
better than any other quadratic and cubic.

We recommend the use of our solutions for degrees 2 and 3, given
their superior performance and moderate computational cost. Tasks
requiring even more speed can use the degree 1 solution, which we
take as a proof-of-concept. We refer the reader to the supplemental
material for full resolution images of all these experiments. We also
provide additional videos containing other interpolation sequences.
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Input Linear [Condat et al. 2005] Cardinal Quadratic B-spline Our linear

(a) PSNR =∞, SSIM = 1.0 (b) PSNR = 25.873, SSIM = 0.862 (c) PSNR = 27.000, SSIM = 0.898 (d) PSNR = 27.642, SSIM = 0.913

Figure 9: Result of 9 repeated (randomized) translations. Our linear quasi-interpolator (d) produces a result sharper than the one produced
by one of the best linear quasi-interpolators [Condat et al. 2005] (b). The output by our method is also slightly better than the one produced
with the cardinal quadratic B-spline (c).

Input Quadratic [Condat et al. 2005] Cardinal Cubic O-MOMS Our quadratic

(a) PSNR =∞, SSIM =1.0 (b) PSNR = 30.429, SSIM = 0.932 (c) PSNR = 32.221, SSIM = 0.951 (d) PSNR = 33.291, SSIM = 0.960

Figure 10: Comparison of 30 (randomized) rotations for different quasi-interpolators. The quadratic proposed by Condat et al. [2005] distorts
the vertical aspect of the fence, while ours better preserves the geometry of the scene. Our result is competitive even if compared with the one
produces by the cardinal cubic O-MOMS (considered the best cubic in the literature).

 27

 30

 33

 36

 39

 0  10  20  30  40  50  60  70  80  90
Number of cumulative translations

P
S

N
R

Cardinal Bspline2
Condat2 (quadratic)
Dalai2 (quadratic)
Cardinal Bspline3

Condat3 (cubic)
Dalai3 (cubic)
Cubic O-MOMS
Blu FIR-IFIR (cubic)

Cardinal Bspline5
Quintic O-MOMS
Our new quadratic
Our new cubic

Figure 11: Average PSNR of applying 90 randomized translations to
24 input images. Translations were applied in a way that after every
3 translations, the image was back to its initial position and we could
measure PSNR. The best quasi-interpolators in the literature were
compared. Our new cubic quasi-interpolator (solid red) reaches the
best quality, better than the quintic O-MOMS (dashed purple). Our
new quadratic (dotted red) reaches higher quality than any other
quadratic and cubic.

6.1 Limitations

One limitation of our method can be seen in figure 12, which uses
our linear quasi-interpolator (b). The figure shows the result of
4 compound translations by exactly half a pixel. It is clear that
high-frequencies have been excessively magnified. This limitation
is not specific to to our approach (c). The plots in figure 12 explain
the problem: for each translation τ , the shaded region illustrates
the minimum and maximum possible frequency amplitude scaling.
The worst behavior happens in the unfortunate case τ = 0.5. This
problem practically disappears when random translations are applied.

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

τ

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

τ

(a) Input (b) Our linear (c) Condat et al. [2005]

Figure 12: Result of 4 repeated translations by exactly half
pixel. Our linear quasi-interpolator (b) and the one proposed
by Condat et al. [2005] magnify frequencies too much. Shaded
regions in the plots show the range of frequency amplitude scaling
for each translation τ . The worst case is τ = 0.5.

As future work, we will incorporate new criteria in our optimization
framework to reduce this effect.

We have also noticed that the sharpness of our results comes at
the cost additional mild ringing (for instance, see figure 1d). For
hundreds of repeated translations, our linear and quadratic quasi-
interpolators showed excessive ringing. In this extreme case, other
methods presented either a similar behavior or excessive blurring.

7 Conclusion and future work

We have presented a new class of quasi-interpolators for image
processing that are optimal with respect to a non-asymptotic criterion.
In contrast, previous strategies focused on making them optimal
only around ω = 0. Additionally, we used all available degrees of
freedom in the approximation problem to reach higher quality.
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Input Cubic [Blu and Unser 1999b] Quintic Cardinal B-spline Our cubic

(a) PSNR =∞, SSIM = 1.0 (b) PSNR = 13.013, SSIM = 0.749 (c) PSNR = 13.047, SSIM = 0.775 (d) PSNR = 13.044, SSIM = 0.784

Figure 13: 40 compounded rotations. The result produced by one of the best cubic quasi-interpolators [Blu and Unser 1999b] has aliasing of
high frequencies. Using the cardinal quintic B-spline presents the same problem at a smaller magnitude. Our cubic almost completely removes
the artefacts, while keeping the result sharp.

An improvement to our optimization would be to consider a metric
other than L2. On one hand, it could lead to a more natural treatment
for the overshoot problem, but it could also add additional difficulties
to the optimization.
In this work we have considered a 1D formulation of the approxi-
mation problem, but applied it to images in a separable fashion. We
believe that considering non-separable 2D quasi-interpolators will
increase approximation quality, and we also consider this direction
for future work.

A Quasi-Interpolators
Linear d = 0.5.

b0,0 = 0.79076352 c0,0 = c1,0 = 0.10461824,

e0 = 0.77412669, e1 = e-1 = 0.11566267,

e2 = e-2 = −0.00272602

Quadratic d ≈ 0.34.

a0,1 = 0, b0,0 = 0.75627421,

b0,1 = b1,1 = 0.11798097, c0,0 = c2,0 = 0.01588197,

c1,0 = −0.02400002, e0 = 0.65314970,

e1 = e-1 = 0.17889730, e2 = e-2 = −0.00547216

Cubic d ≈ 0.35.

a0,1 = 0.07922533, a0,2 = 0,

a1,1 = −2.25 a0,1 = −0.17825701, b0,0 = 0.53954836,

b0,1 = 0.32092636, b0,2 = b2,2 = 0.02593862,

b1,1 = −1.5 a0,1 + b0,1 = 0.20208835, b1,2 = −0.01871558,

c0,0 = c3,0 = 0.001940114, c1,0 = c2,0 = −0.00028665,

e0 = 0.56528428, e1 = e-1 = 0.21523558,

e2 = e-2 = 0.00212228.

B Proofs
We can take T = 1 in (23) because, for any fixed T > 0, and
assuming input spectra as (22):

‖f − f̃T ‖
2
L2
≈
∫ 0.5/T

−0.5/T

∣∣f̂(ω)
∣∣2E(Tω) dω

= T
∫ 0.5

−0.5

∣∣f(ω/T)
∣∣2E(ω) dω

= T p+1
∫ 0.5

−0.5
1/ωpE(ω) dω

= T p+1
∫ 0.5

−0.5

∣∣f̂(ω)
∣∣2E(ω) dω.

(43)

To see whyE(0.5−ε) ≈ 0 implies ϕ̂qi(0.5−ε) ≈ 1, ϕ̂qi(0.5+ε) ≈
0, ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0, recall ψ̂ = 1, and both q̂
and ϕ̂ are real due to symmetry. The error kernel simplifies to:

E(ω) = 1− ϕ(ω)2

âϕ(ω)
+âϕ(ω)

(
q̂(ω)2−2

q̂(ω)ϕ̂(ω)

âϕ(ω)
+
ϕ̂(ω)2

âϕ(ω)2

)
= 1−2q̂(ω)ϕ̂(ω)+q̂(ω)2âϕ(ω)

=
(
1−q̂(ω)ϕ̂(ω)

)2−q̂(ω)2ϕ̂(ω)2+q̂(ω)2
∑
n

ϕ̂(ω+n)2

=
(
1−q̂(ω)ϕ̂(ω)

)2
+
∑
n6=0

q̂(ω+n)2ϕ̂(ω+n)2

=
(
1−ϕ̂qi(ω)

)2
+
∑
n 6=0

ϕ̂qi(ω+n)2.

(44)

Above, we used the following equalities

ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) (45)
q̂(ω) = q̂(ω + n),∀n ∈ N, and (46)

âϕ(ω) =
∑
n

ϕ̂(ω + n)2. (47)

The sum of non-negative terms in (44) shows us that

E(0.5− ε) ≈ 0⇒ ϕ̂qi(0.5− ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0. (48)

The symmetry of E implies E(-0.5 + ε) ≈ 0. From (44), we have

E(-0.5 + ε) ≈ 0⇒ ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(0.5 + ε) ≈ 0. (49)
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