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Abstract

We consider the filtration combustion for configuration where air is
injected behind the wave into a porous medium containing a solid fuel.
The simplest flow contains planar combustion and thermal waves, each
propagating with its own speed. In this work, we study such a flow,
in the case that the porous medium contains initially also some amount
of liquid; therefore vaporization and condensation occur too, giving rise
to a wave structure richer than in dry combustion. We find two possible
sequences of waves, and we characterize the internal structure of all waves.
In an example for typical parameters of in-situ combustion, we compare
the analytical results with direct numerical simulations.

Keywords: filtration combustion, traveling wave, porous medium, evapo-
ration, condensation, conservation law

1 Introduction

Combustion of solid fuel in porous medium when the oxidizer (air) is injected
has numerous applications in technology and nature (self-propagating high-
temperature synthesis, smolder waves etc.). In this paper we study the case
when some liquid is initially present in the porous medium, which occurs in coal
gasification and in-situ combustion in oil recovery. The liquid gets vaporized
by the combustion front, it moves with the injected gas, and condenses when
it reaches the cold zone ahead of the combustion wave. The heat necessary for
liquid vaporization is generated by the combustion, and the liquid concentra-
tion ahead of the combustion front increases due to the vapor condensation.
Therefore, combustion, vaporization and condensation are coupled.
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Analysis of the reaction layer represents the main mathematical difficulty
in the study of filtration combustion. We follow the approach developed in
[12, 13, 15] for various combustion conditions, see also the application of this
method for filtration combustion of coke in [1]. In this approach, it is assumed
that the reaction layer is thin and that the reaction stops due to low temperature
on one side of this layer, which is called cold boundary condition. Since the
reaction does not stop completely at low temperatures, the resulting solution is
of transient type. However, it represents a slowly varying ”traveling wave” that
is observed in many practical applications. In this case, classical conservation
law theory, the method of characteristics, fractional flow theory, or rigorous
traveling wave analysis cannot be applied directly. In our study, we consider
only waves traveling with constant speed. Stability of the obtained solution is
checked numerically for specific problem parameters. Of course, for different
system parameters, this solution may become unstable, extinguishing or giving
rise to many interesting phenomena such as periodic or chaotic regimes, see
e.g. [11, 3].

A related problem when the water is injected together with air into a dry
reservoir was studied by Dietz and Weijdema [6]. They showed the existence of a
steam zone between the combustion and condensation waves. With the increase
of the water/air injection ratio, the evaporation wave and combustion wave start
to coincide, leading to the process called partially quenched combustion. The
partially quenched combustion was demonstrated in the laboratory. In our case,
rather than injected, the water is initially present in the reservoir, yielding a
different wave structure.

In our problem, we assume that the region swept by the combustion front
contains initially a small amount of liquid that is immobile. This can be water,
or even a combustible liquid. Thus, besides regular combustion, the main effect
taken into account is the liquid evaporation and condensation. Two types of
wave sequence solutions arise depending on initial reservoir and injection pa-
rameters. These solutions are characterized by complete consumption of either
fuel or oxygen. The condition for liquid vapor to be completely expelled from
the reaction area is derived. It is crucial for our analysis to apply when the
liquid is combustible.

We describe the model in Section 2. In Section 3, we investigate the case of
complete fuel consumption in the combustion. The analytic solution is obtained,
determining the temperature changes in thermal, combustion-vaporization and
condensation waves. Here the combustion-vaporization wave is the traveling
wave with an intermediate layer of heat conduction. Combustion and vapor-
ization occur in thin layers of this wave. In Section 4, we present a numerical
example for typical parameters of in-situ combustion, and compare the ana-
lytical results with numerical simulation. In Section 5, we study the case of
complete oxygen consumption in the combustion. In this case the analytic solu-
tion includes separate vaporization, combustion and condensation waves. Here
we also perform numerical analysis for typical parameters of in-situ combustion.
The results are discussed in the conclusion.
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2 Model

Consider a porous rock cylinder thermally insulated on the side and filled with
inert gas, vaporizable liquid and combustible solid fuel. An oxidizer (air) is
injected. The liquid can be water or light oil, and the combustible solid can be
coke. We assume that the amount of liquid is small, so its mobility is negligible.
We assume that only a small part of the available space is occupied by solid
fuel and liquid, so that we can neglect changes of rock porosity in the reaction,
evaporation and condensation processes. We assume that the solid, liquid and
gas are in local thermal equilibrium, so they have the same temperature.

A one-dimensional model with time t and space coordinate x is considered.
The heat transport equation is

∂C(T − Tres)

∂t
+

∂cgρu(T − Tres)

∂x
= λ

∂2T

∂x2
+QrWr −QeWe, (1)

where T [K] is the temperature and Tres is the initial reservoir temperature, ρ
[mole/m3] is the molar density of gas, u [m/s] is the Darcy velocity of gas, C
[J/m3K] is the heat capacity per unit volume, cg [J/moleK] is the heat capacity
of gas per mole, λ [W/mK] is the thermal conductivity of the porous medium,
Qr, Qe [J/mole] are, respectively, the heats (enthalpies) of combustion and
evaporation of the solid and the liquid at reservoir temperature Tres, and Wr,
We [mole/m3s] are the reaction and evaporation rates per unit volume of porous
medium.

Note that the form of the left-hand side of (1) corresponds to constant en-
thalpies Qr, Qe taken at reservoir temperature Tres. If these enthalpies are
evaluated at the actual temperature T , the left-hand side becomes C∂T/∂t +
cgρu∂T/∂x, as one can show using the mass balance equations given below. We
take C equal to the heat capacity of the rock matrix per unit volume of porous
medium Cm (disregarding the heat capacity of solid fuel, liquid and gas in the
pores).

We consider a single component liquid (e.g., water), and denote by X its
vapor molar fraction in the gas phase (mole of vapor/mole of gas). The gas has
several components: vapor, oxygen and passive (inert and combusted) gas. We
denote the molar fractions of oxygen and passive gas in the gas-phase by Y and
Z respectively. Then, we write the mass balance equations for the components
X, Y , Z as (see, e.g. [5])

φ
∂Xρ

∂t
+

∂Xρu

∂x
= DXφ

∂

∂x
ρ
∂X

∂x
+We, (2)

φ
∂Y ρ

∂t
+

∂Y ρu

∂x
= DY φ

∂

∂x
ρ
∂Y

∂x
− µoWr, (3)

φ
∂Zρ

∂t
+

∂Zρu

∂x
= DZφ

∂

∂x
ρ
∂Z

∂x
+ µgWr, (4)

where φ is the porosity, and DX , DY , DZ [m2/s] are the diffusion coefficients for
vapor, oxygen and passive gas in the gaseous phase. As a first approximation we
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assume that DX = DY = DZ = D (however, see the Stefan-Maxwell relations
in [4] for the full composition dependence). Using that the sum of mole fractions
X + Y + Z is equal to one, we obtain the mass balance equation for the total
gas

φ
∂ρ

∂t
+

∂ρu

∂x
= (µg − µo)Wr +We. (5)

As the solid fuel and the liquid do not move, their concentrations satisfy the
equations for reaction and evaporation, respectively

∂nf

∂t
= −µfWr, (6)

∂nl

∂t
= −We, (7)

where nf , nl [mole/m3 of porous medium] are the molar concentrations of solid
fuel and liquid. In the combustion reaction, µf moles of solid fuel react with µo

moles of oxygen and generate µg moles of gaseous products. Below we assume
that the stoichiometric coefficients are µf = µo = µg = 1, as in the reaction
C +O2 → CO2.

The ideal gas law for the gaseous phase has the form

Ptot = ρRT (8)

with the ideal gas constant R = 8.314 [J/moleK] and the prevailing pressure
Ptot [Pa]. Assuming that the variation of pressure in the flow is small, we take
Ptot = const. The vapor pressure in thermodynamic equilibrium with the liquid
is described by the Clausius-Clapeyron relation

PX = Patm exp

(
−Qe

R

(
1

T
− 1

Tb

))
(9)

valid in the region containing liquid, where Tb is the boiling temperature of the
liquid at atmospheric pressure Patm and PX = XeqPtot is the partial pressure
of vapor in equilibrium with its liquid at the temperature T . With the ideal gas
law we can express the equilibrium mole fraction of vapor Xeq in the gas as

Xeq(T ) =
PX

Ptot
=

Patm

Ptot
exp

(
−Qe

R

(
1

T
− 1

Tb

))
. (10)

The evaporation (condensation) rate can be taken as

We = knl(Xeq(T )−X), (11)

where the equilibrium vapor fraction Xeq(T ) is computed by (10). The coeffi-
cient k can be different for X < Xeq (evaporation) and X > Xeq (condensation).
Below we will assume that k is large, so that liquid and vapor are always in equi-
librium: X ≈ Xeq(T ).
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We use the Arrhenius law and the first order law of mass action in the
reaction rate

Wr = KrY nf exp

(
− Er

RT

)
(12)

with the constant activation energy Er [J/mole] and the pre-exponential pa-
rameter Kr [1/s], which is also assumed to be constant.

The variables to be found are the temperature T , the molar concentrations
of solid fuel nf and liquid nl, the molar fractions of oxygen and vapor Y , X,
and the Darcy velocity u. The quantities Cm, cg, λ, D, Qr, Qe are assumed to
be constant (neglecting the dependence on temperature and gas composition).

2.1 Dimensionless equations

The equations are non-dimensionalized by introducing dimensionless dependent
and independent variables (denoted by tildes) as a ratio of the dimensional
quantities and reference quantities (denoted by stars):

t̃ =
t

t∗
, x̃ =

x

x∗ , θ =
T − Tres

T ∗ , ρ̃ =
ρ

ρ∗
, ñf,l =

nf,l

n∗
f,l

, ũ =
u

u∗ . (13)

Let us take v∗ = cgρ
∗uinj/Cm, which turns out to be the speed of the thermal

wave (a wave where temperature changes with no reaction). Then we introduce
the reference length and time as x∗ = λ/(Cmv∗) and t∗ = x∗/v∗, which are
appropriate for the thermal wave. The temperature change for combustion
under adiabatic conditions can be used as the characteristic temperature T ∗ =
Qrn

∗
f/Cm. Thus, our choice for reference quantities is

t∗ =
x∗

v∗
, x∗ =

λ

Cmv∗
, v∗ =

cgρ
∗uinj

Cm
, T ∗ =

Qrn
∗
f

Cm
, ρ∗ =

Ptot

RTres
,

n∗
f = nres

f , n∗
l = nres

l , u∗ = uinj .

(14)

where Tres and nres
f,l are the initial reservoir temperature and fuel, liquid con-

centrations, respectively, and uinj is the injected gas velocity. Using (13), (14)
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and omitting the tildes, equations (1)–(10) are written in dimensionless form as

∂θ

∂t
+

∂ρuθ

∂x
=

∂2θ

∂x2
+ wr − βwe, (15)

∂ρ

∂t
+ σ

∂ρu

∂x
= γlwe, (16)

∂Y ρ

∂t
+ σ

∂Y ρu

∂x
=

1

Le

∂

∂x
ρ
∂Y

∂x
− γfwr, (17)

∂Xρ

∂t
+ σ

∂Xρu

∂x
=

1

Le

∂

∂x
ρ
∂X

∂x
+ γlwe, (18)

∂nf

∂t
= −wr, (19)

∂nl

∂t
= −we, (20)

ρ(θ + θ0) = θ0, (21)

Xeq = α exp

(
− h

θ + θ0

)
(22)

with dimensionless constants

Le =
λ

CmD
, NDa = Krt

∗, γf,l =
n∗
f,l

φρ∗
, σ =

u∗

φv∗
, β =

Qen
∗
l

Qrn∗
f

, h =
Qe

RT ∗ ,

E =
E

RT ∗ , κ = t∗k, θ0 =
Tres

T ∗ , α =
Patm

Ptot
exp

(
Qe

RTb

)
.

(23)
Here Le is the Lewis number; NDa is the Damkohler number; γf and γl char-
acterize the initial fuel and liquid concentrations relative to the gas density; σ
is the interstitial gas velocity relative to the thermal wave velocity; β gives the
ratio of evaporation and combustion heats for total amounts of liquid and fuel.
We omitted the dimensionless form of equation (4) as Z = 1−X − Y .

The dimensionless reaction and evaporation rates are given by wr = t∗Wr/n
∗
f

and we = t∗We/n
∗
l . The evaporation rate (11) takes the form

we = κnl(Xeq(θ)−X). (24)

For the reaction rate (12), we get the dimensionless expression

wr = NDaY nf exp

(
− E
θ + θ0

)
. (25)

3 Wave sequence for complete fuel consumption

In this section, we study the solution having a structure shown in Fig. 1. The
solution consists of three waves along which the temperature varies, besides a
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Figure 1: Wave sequence for complete fuel consumption.

much faster wave with constant temperature. These waves are separated by
zones with constant states.

The slowest (first from left to right) is a thermal wave, where the temperature
raises to a high value θh. Ahead of this wave, there is a constant hot zone.
The second is a combustion-vaporization wave, which consists of reaction and
vaporization layers (RL and VL) joined by an intermediate heating layer (HL).
Behind the reaction layer, the reaction stops due to lack of fuel (complete fuel
consumption). Ahead of the reaction layer, the reaction does not start because
the reaction rate is negligible at low temperature. We will see that, under
rather general conditions (explicitly specified), all the liquid vaporizes in the
vaporization layer, and none of its vapor remains in the reaction area. For
such flows, it makes no difference whether the liquid is combustible or not. For
example, the liquid initially present in the reservoir can be water or light oil.

The zone ahead of the combustion-vaporization wave contains liquid in equi-
librium with its vapor in the transported gas. This zone ends at a condensation
wave. There is also a composition wave that travels with the speed of the gas,
which is much larger than the speeds of the other waves, so that this wave does
not fit in Fig. 1. Along this wave, the concentrations of unburned oxygen and of
combusted gases drop to zero, while the temperature and total gas flux do not
change. To the right of this wave, there is gas at initial reservoir composition,
as well as initial reservoir liquid.

The boundary conditions at the left injection side determine the tempera-
ture, gas flux and oxygen concentration:

x = 0, t ≥ 0 : θ = 0, ρ = u = 1, Yinj , X = 0, (26)

where we assumed that the injected gas temperature is equal to the initial
reservoir temperature. The last condition in (26) means that there is no vapor
in the injected gas. The initial data in the reservoir determine the temperature,
fuel and liquid concentrations

x ≥ 0, t = 0 : θ = 0, nf = nl = 1, Xres = α exp(−h/θ0). (27)

where Xres is determined by (22) by replacing θ by zero.
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Complete fuel consumption implies that the condition nf = 0 holds behind
the combustion-vaporization wave. Complete consumption of oxygen in the
injected gas when it seeps through the RL is not required, and the concentration
of the unburned oxygen ahead of the combustion-vaporization wave is denoted
by Yunb. Neither liquid nor vapor are left behind this wave: nl = X = 0.

3.1 Thermal wave

The first wave is described by the equations (15) and (16) in the absence of
reaction and evaporation

∂θ

∂t
+

∂ρuθ

∂x
=

∂2θ

∂x2
, (28)

∂ρ

∂t
+ σ

∂ρu

∂x
= 0. (29)

Since neither vapor, liquid nor fuel are left behind the combustion-vaporization
wave, we have X = nl = nf = 0. The oxygen concentration Y = Yinj does
not change in the thermal wave (the corresponding equation (17) is trivially
satisfied). The rock and gas heat capacities are very different, so σ = u∗/(φv∗) =
Cm/(φcgρ

∗) ≫ 1 and we can neglect the first term in (29). This shows that
the flux ρu is independent of x. Using the boundary conditions (26), we find
ρu ≡ 1. Then equation (28) takes the form

∂θ

∂t
+

∂θ

∂x
=

∂2θ

∂x2
. (30)

In the solution of (30), the temperature θ tends to zero as x → −∞ and to θh
as x → ∞:

θ(t, x) =
θh
2

+
θh
2

erf

(
x− xT − vT t

2
√
t

)
, vT = 1, (31)

where xT is the wave position at t = 0, and erf(x) = (2/
√
π)
∫ x

0
e−ξ2dξ; recall

that erf(∞) = −erf(−∞) = 1. The wave travels with speed vT = 1. Thus, the
dimensional speed v∗ given in (14) is indeed the thermal wave speed. The width
of the wave grows proportionally to

√
t due to heat conduction.

The state in the hot zone (ahead of the thermal wave) is:

Hot zone : θ = θh, ρu = 1, Y = Yinj , X = nf = nl = 0, (32)

where θh is unknown. By using (21), we also find ρ = 1/u = θ0/(θh + θ0).

3.2 Combustion-vaporization wave

According to the wave structure in Fig. 1, we conjecture that the reaction and
vaporization take place in a single traveling wave. The wave travels with speed

8



vR and consists of a reaction layer and a vaporization layer, joined by an inter-
mediate heating layer. In the RL, the solid fuel reacts with oxygen: wr > 0,
we = 0. In the VL, the liquid vaporizes: wr = 0, we > 0. Finally, in the HL
we have wr = we = 0. The combustion-vaporization wave is faster than the
thermal wave, which implies

vR > 1. (33)

Let us introduce the traveling coordinate ξ = x − xR − vRt, where xR is
the wave position at t = 0. We choose the origin so that the RL, HL and VL
correspond to ξ < 0, 0 < ξ < L and ξ > L, respectively. All the state variables
in the wave depend only on ξ; prime will denote the derivative with respect to
ξ. At the ends of the wave (ξ → ±∞), the derivatives with respect to ξ vanish.

3.2.1 Reaction layer

In the RL, there is neither liquid nor vapor (nl = X = we = 0), and equations
(15)–(20) in the traveling coordinate yield

(ρuθ − vRθ)
′ = θ′′ + wr, (34)

(σρu− vRρ)
′ = 0, (35)

(σY ρu− vRY ρ)′ =
(ρY ′)′

Le
− γfwr, (36)

vRn
′
f = wr; (37)

equation (18) is satisfied trivially as X = we = 0. Assuming that

vR ≪ σu (38)

(typically vR ∼ vT = 1, u ∼ 1 and σ ≫ 1), we neglect the term with vR in (35)
and (36). Then (35) yields constant flux, which is ρu ≡ 1 because of (32). We
substitute wr from (37) into (34), (36) and integrate taking into account the
boundary conditions (32) and θ′ = Y ′ = 0 at ξ → −∞, yielding

θ′ + (vR − 1)(θ − θh) + vRnf = 0, (39)

ρY ′

Le
+ σ(Yinj − Y )− vRγfnf = 0. (40)

We obtained the system of ordinary differential equations (37), (39), (40) gov-
erning the RL. Its analytical study requires further simplifications.

Since the activation energy is usually very large (E ≫ 1), the reaction rate
(25) is determined mainly by the exponential factor, and the reaction occurs for
θ close to its upper limit θh, where the exponent is large. Thus, the exponential
expression can be written approximately as

− E
θ + θ0

≈ − E
θ + θh

+
E δθ

(θ + θ0)2
, δθ = θ − θh. (41)
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The characteristic change of temperature in the RL, corresponding to change
by 1 in the exponential expression (41), is

δθR =
(θh + θ0)

2

E
. (42)

This quantity is assumed to be small; its dimensional expression according to
(14) and (23) is

δθR =
RT 2

h

T ∗E
≪ 1, (43)

where Th is the dimensional temperature of combustion. Note that δθR repre-
sents the inverse Zeldovich number, which is the ratio of the total temperature
change and the temperature change in the RL.

Using (43), we can neglect the second term in (39) compared to the third
term: (vR − 1)(θ− θh) . vRδθR ≪ vR ∼ vRnf , see (33). So equation (39) reads

θ′ = −vRnf . (44)

The effective length of the RL can be found by taking θ′ ≈ −δθR/lR in (44)
with nf ∼ 1/2 and using (42) as

lR =
2δθR
vR

=
2(θh + θ0)

2

vRE
. (45)

Let us consider equation (40). The magnitude of the first term is estimated
as ρY ′/Le ∼ δY/(lRLe), where δY is the change of Y in the RL (recall that the
dimensionless dependent variables ρ, θ, nf , nl are of order 1). We can distinguish
two extreme cases that allow analytical study: (a) when the diffusion term in
(40) is small, and (b) when it is dominant:

(a) : Le lRσ ≫ 1, (b) : Le lRσ ≪ 1. (46)

Using (14), (23), we express Le lRσ in terms of dimensional parameters as
lRuinj/φD (with dimensional length lR); this is the mass diffusion Péclet num-
ber for the RL.

We assume that the reaction does not start ahead of the RL because the
temperature is low (despite the presence of both fuel and oxygen). Strictly
speaking, the RL does not have a sharp border, but rather there is a continuous
passage from the RL to the HL. The assumptions (43), (46) allow finding an
approximate analytical solution for the RL, that later must be patched with the
solution in the HL.

First, consider case (a), see Fig. 2. The diffusion term in (40) is small and
can be neglected. Expression (40) takes the form

Y = Yinj − vRγfnf/σ. (47)

Dividing θ′ from (44) by n′
f from (37), using (25) and (47), we obtain

exp

(
− E
θ + θ0

)
dθ = − v2R

NDa

dnf

Yinj − vRγfnf/σ
. (48)
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Figure 2: Structure of the reaction layer (RL) for small diffusion (a) and domi-
nant diffusion (b).

This equation can be integrated from the left-hand side of the RL (θ = θh,
nf = 0) to its right-hand side (θ = θ2 < θh, nf = 1):∫ θh

θ2

exp

(
− E
θ + θ0

)
dθ =

v2R
NDa

∫ 1

0

dnf

Yinj − vRγfnf/σ
. (49)

The main contribution to the integral in the left-hand side is given by θ close
to the upper limit θh, when the exponent is large. We compute this integral
approximately using (41) and integrating with respect to δθ from −∞ to 0:∫ θh

θ2

exp

(
− E
θ + θ0

)
dθ ≈ (θh + θ0)

2

E
exp

(
− E
θh + θ0

)
. (50)

Integrating the right-hand side in (49), we obtain

(θh + θ0)
2

E
exp

(
− E
θh + θ0

)
=

vRσ

NDaγf
log

Yinj

Yunb
. (51)

Here the fraction of unburned oxygen in the gas ahead of the RL is found from
(47) by taking nf = 1. It is

Yunb = Yinj − vRγf/σ. (52)

Now consider case (b) in (46), see Fig. 2. The magnitude of the first term in
(40) is ρY ′/Le ∼ δY/(lRLe). Comparing this expression with the second term
and using the condition (b) in (46), we find δY ≪ Yinj − Y . Thus, we can take
Y = const approximately in the RL; this constant must be equal to the amount
of unburned oxygen Yunb ahead of the RL. Yunb is given by the same equation
(52), which just reflects the reaction equation (vRγf/σ is the amount of oxygen
necessary for complete fuel combustion). As there is no reaction behind the RL,
the concentration Y increases exponentially to the value Yinj behind the RL,
as determined by the equation (ρY )′/Le− σ(Y − Yinj) = 0. Thus, in case (b),
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we substitute the denominator Yinj − vRγfnf/σ in (48) by Yunb. The analysis
now leads to the following equation instead of (51):

(θh + θ0)
2

E
exp

(
− E
θh + θ0

)
=

v2R
NDaYunb

. (53)

We set the traveling coordinate origin ξ = 0 at the right-hand side of the
RL. As the temperature variation is small across the RL, we can take θ ≈ θh at
ξ = 0. So, we have

ξ = 0 : θ = θh, θ′ = −vR, ρu = 1,

X = 0, Yunb = Yinj − vRγf/σ, nf = 1, nl = 0.
(54)

Here we used expressions (44) and (52). The condition nl = 0 (no liquid) follows
from the assumption that θ > θb. For ξ > 0 we will neglect the oxidation
reaction, as its rate is very small at low temperatures.

3.2.2 Intermediate layer

The HL lies in the interval 0 < ξ < L. In the HL, there is neither reaction nor
vaporization: wr = we = 0, and the gas flux is constant ρu ≡ 1. The main
phenomenon is heat transfer. The traveling wave is determined by the heat
equation (15) as

(1− vR)θ
′ = θ′′, (55)

which is the same as (34) with wr = 0. The general solution of this equation
has the form

θ = α0 + α1 exp(−Aξ), A = vR − 1 > 0. (56)

The values of θ and θ′ at ξ = 0 are given in (54), yielding

α0 = θh − α1, α1 = vR/A. (57)

Let us denote the values of θ, θ′ at ξ = L by θL, θ
′
L. Using (56), (57),

θL = θh − vR
A

(1− e−AL), θ′L = −vRe
−AL. (58)

The traveling wave form of equation (18) in the HL is

σX ′ =
(ρX ′)′

Le
, (59)

where we used (38) and the conditions we = 0 and ρu = 1. Under the assump-
tion (verified in Section 3.2.4) that the vapor concentration becomes very small
at ξ = 0, so that X ≈ 0 and X ′ ≈ 0, we integrate (59) and obtain

X ′ = LeσX/ρ. (60)

A second integration of (60) with the condition X = XL at ξ = L yields

X = XL exp

(
−
∫ L

ξ

σ Le

ρ
dξ

)
, (61)

where ρ = θ0/(θ + θ0) according to (21), see Fig. 3.
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Figure 3: Structure of the vaporization layer (VL).

3.2.3 Vaporization layer

The VL starts at ξ = L, see Fig. 3. In the VL, we have we > 0 and wr = 0.
Equations (15), (16), (18), (20) in the traveling wave coordinate ξ = x−xR−vRt
take the form

(ρuθ − vRθ)
′ = θ′′ − βwe, (62)

σ(ρu)′ = γlwe, (63)

σ(Xρu)′ =
(ρX ′)′

Le
+ γlwe, (64)

vRn
′
l = we. (65)

In the derivation of (63) and (64) we neglected the terms with vR according to
(38); equation (19) is trivially satisfied.

First, let us estimate the VL structure parameters, assuming that the two
terms on the right-hand side of each of equations (62) and (64) are of same
order. Comparing these terms and using (24), we find δθV /l

2
V ∼ βκ δXV and

1/(l2V Le) ∼ γlκ, where δXV denotes the change of X in the VL, and lV is the
effective length of the VL. From (65) we obtain vR/lV ∼ κ δXV . Expressing
lV from the second relation, and then δXV and δθV from the third and first
relations, respectively, we derive the estimates

δθV ∼ βvR√
Le γlκ

, lV ∼ 1√
Le γlκ

, δXV ∼ vR

√
Le γl
κ

. (66)

We assume that the vaporization process is fast, i.e., κ is large. According
to (66), this means that both δθV and lV are small. Under this assumption, we
take θ ≈ θvap. We also neglect the term in the left-hand side of (62) compared
to the large term θ′′ ∼ δθV /l

2
V proportional to κ1/2. (Quantitative conditions

for these simplifications, obtained by comparing the corresponding terms in the
equations, are δθV ≪ 1 and cg(Tvap − Tres)/Qe ≪ 1.) Substituting we from
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(65) into (62)–(64) and integrating over the VL yields

[θ′]− βvRn
vap
l = 0, (67)

σ[ρu]− γlvRn
vap
l = 0, (68)

ρvap
Le

[X ′]− σ[Xρu] + γlvRn
vap
l = 0, (69)

where ρvap = θ0/(θvap + θ0) and the square brackets denote the change of the
quantity across the layer; we took into account that [nl] = nvap

l is the liquid
concentration ahead of the wave, see Fig. 3.

Ahead of the VL (in the vapor zone) we have θ′ = 0, ρu = (ρu)vap, X = Xvap

and X ′ = 0. Behind the VL, θ′ = θ′L, ρu = 1, X = XL and X ′ = X ′
L.

Expression (60) gives X ′
L = LeσXL/ρvap. Along the VL we have θ ≈ θvap.

Using all these conditions in (67)–(69), elementary calculations yield behind
the VL (at ξ = L):

θL = θvap, θ′L = −βvRn
vap
l ; (70)

and ahead of the VL (in the vapor zone):

(ρu)vap = 1 + γlvRn
vap
l /σ, Xvap = (1 + σ/(γlvRn

vap
l ))−1. (71)

Using (70) with A = vR − 1 in (58) yields the expression for θvap

θvap = θh −
vR(1− βnvap

l )

vR − 1
, (72)

and the HL length

L = −
log(βnvap

l )

vR − 1
. (73)

The equilibrium condition (22) in the vapor zone reads

Xvap = α exp

(
− h

θvap + θ0

)
. (74)

Since we neglect the oxidation in the HL and VL, the oxygen flux is con-
stant in the traveling frame within these layers: (σu− vR)Y ρ ≈ σY ρu = const,
see (38). Thus, the mole fraction of oxygen in the vapor zone ahead of the
combustion-vaporization wave can be computed from the condition Yvap(ρu)vap =
Yunb, where (ρu)vap is given in (71).

3.2.4 Defining equations

Here we summarize the equations for the combustion-vaporization wave. There
are six defining equations: (52), (71), (72), (74) and, depending on the case,
(51) or (53). They relate the values of seven unknown variables: θh, θvap, Xvap,
Yunb, n

vap
l , (ρu)vap and the wave speed vR. According to the classification of

the conservation law theory, the combustion-vaporization wave is a so-called

14



transitional, or undercompressive wave, as it possesses one extra free variable
compared to classical Lax waves, see [7, 10].

The following conditions are necessary for the existence of the combustion-
vaporization wave. Using (33) and (52) in the inequality Yunb ≥ 0, we obtain
the condition

Yinjσ/γf ≥ 1. (75)

This inequality coincides with the condition for complete fuel consumption in
the absence of liquid given in [15]. The equality Yinjσ/γf = 1 corresponds
to the resonant combustion regime, when both the fuel and oxygen are totally
consumed in the reaction. As Yinj → γf/σ and Yunb → 0, (52) yields vR → 1.
In this case, the denominator in (72) tends to zero. This implies that the
combustion temperature θh becomes very large. The study of the resonant
combustion regime done in [2] shows that the combustion temperature increases
in time proportionally to

√
t. Our analysis is not applicable to the case of

resonance: for high temperatures, heat losses must be taken into account.
Another condition is obtained by using (73) in the inequality L > 0, viz.

βnvap
l < 1. (76)

Since β gives the ratio between the evaporation and combustion heats, see (23),
this inequality requires that the heat of combustion must be sufficient to evap-
orate all the liquid.

Finally, we assumed that the vapor does not enter the RL. This assumption is
crucial when the vapor is combustible; otherwise the solution would be different.
The vapor concentration in the HL is given by (61). The assumption that the
vapor does not enter the RL is equivalent to the conditionX ≪ 1 at ξ = 0. Since
ρ > 1 and XL < Xvap in the vaporization process, the condition is satisfied if

Xvap exp (−σLeL) ≪ 1. (77)

Using (14), (23), we see that the exponent σLeL in dimensional form is Luinj/φD
(with dimensional L); this is the mass diffusion Péclet number for the HL. Thus,
condition (77) is satisfied if this number is large. Note that if the vapor is com-
bustible, it can also react with oxygen in the vapor zone, where the temperature
is higher than the initial reservoir temperature. Our solution is valid only under
the assumption that this reaction is negligible.

3.3 Condensation wave

The vapor zone between the combustion-vaporization wave and condensation
wave contains liquid with concentration nl = nvap

l in equilibrium with vapor at
concentration Xvap, which is related to θvap by (22).

The condensation wave travels with speed vC . Equations (15)–(20) for the
traveling wave yield (62)–(65) with vR substituted by vC . They are the same
as for the vaporization layer in Section 3.2.3, but the derivative is taken with

15



respect to the new traveling coordinate ξ = x− xC − vCt. Substituting n′
l from

(65) into (62)–(64) and integrating over the condensation wave gives

[ρuθ]− vC [θ]− βvC(n
vap
l − 1) = 0, (78)

σ[ρu] + γlvC(n
vap
l − 1) = 0, (79)

σ[Xρu] + γlvC(n
vap
l − 1) = 0, (80)

where we used that θ′ = X ′ = 0 on both sides, and [nl] = 1 − nvap
l , since the

reservoir initial liquid concentration is nl = 1. Using expression (71) for the gas
flux behind the wave (ρu)vap in (79), the gas flux ahead of the wave is

ρu = 1 + γlvRn
vap
l /σ − γlvC(n

vap
l − 1)/σ. (81)

Ahead of the wave X = Xres and ρu is given by (81); behind the wave
X = Xvap and ρu are given by (71). Thus, (80) takes the form

σXres + γl(vRn
vap
l − vC(n

vap
l − 1))Xres − γlvRn

vap
l + γlvC(n

vap
l − 1) = 0. (82)

Then we find

nvap
l =

γlvC − σXres/(1−Xres)

γl(vC − vR)
. (83)

Since ahead of the wave θ = 0, behind the wave θ = θvap and ρu is given by
(71), equation (78) takes the form

θvap (vC − 1− γlvRn
vap
l /σ) = βvC(n

vap
l − 1). (84)

The oxygen flux does not change in the condensation wave. Similarly to
the vaporization layer, this yields the condition Y ρu = const = Yunb. Thus,
the oxygen fraction ahead of the combustion wave is Y = Yunb/ρu, where ρu is
given in (81).

In the above analysis we assumed that nvap
l > 1, i.e., the liquid concentration

in the vapor zone is higher than in the initial reservoir. If nvap
l < 1, the structure

of the solution changes. This is the case when the initial liquid concentration is
so small that vaporization at low temperatures (unrelated to combustion front)
becomes dominant. We do not study this case in the paper.

3.4 Defining system of equations for the wave sequence

The wave sequence is determined by a system of nonlinear algebraic equations
(51)–(53) and (72), (84):

(θh + θ0)
2

E
exp

(
− E
θh + θ0

)
=


vRσ

NDaγf
log

Yinj

Yinj − vRγf/σ
, case (a);

v2R
NDa(Yinj − vRγf/σ)

, case (b);

(85)
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θvap = θh − vR(1− βnvap
l )/(vR − 1); (86)

θvap (vC − 1− γlvRn
vap
l /σ) = βvC(n

vap
l − 1), (87)

In (86) and (87) one should use θvap obtained from (74), (71) as

θvap = h
/
log(α/Xvap)− θ0, Xvap = (1 + σ/(γlvRn

vap
l ))−1, (88)

and substitute nvap
l from (83). Therefore, (85)–(87) contains three unknowns:

the combustion temperature θh and the wave speeds vR, vC . This nonlinear
system must be solved numerically. In numerical calculations, it is useful to
know that vR < Yinjσ/γf , which follows from (52) with Yunb > 0. Having
found θh, vR and vC , expressions (52), (71)–(74), (81) and (83) determine the
other solution parameters.

Remark When there is no vaporizable liquid in the porous medium, the
vaporization layer and the condensation wave disappear. The combustion wave
is characterized by equations (85), (86) with θvap and nvap

l replaced by zero.
Substituting θh from the second resulting equation into the first one, we obtain
a single transcendental equation for the wave speed, which lies in the interval
1 < vR < Yinjσ/γf . This equation corresponds to the studies [2, 15] in the case
(a), and to the studies [1, 12] in the case (b). Our results complement these
studies by giving appropriate conditions (46), (45) distinguishing the cases when
diffusion is negligible in the reaction layer, (a), and when diffusion is dominant,
(b).

Necessary conditions for the existence of the solution with wave sequence
described above include the inequalities (75) and (76) for the combustion-
vaporization wave. An extra condition follows from the assumption nvap

l ≥ 1
necessary for the existence of a separate condensation wave.

4 Numerical results for typical reservoir data

Numerical computations were carried out for typical parameters of in-situ com-
bustion with petroleum coke fuel and water, see [1, 14]. The dimensional pa-
rameters are given in Table 1. The corresponding reference quantities and di-
mensionless parameters are

t∗ = 2.62 days, x∗ = 0.314m, T ∗ = 197.5K, v∗ = 0.120m/day,

Le = 2.175× 10−2, NDa = 2.26× 1013, γf = 67.7, γl = 180.5, σ = 5.56× 103,

β = 0.228, h = 24.7, E = 97.4, κ = 2.26× 103, θ0 = 1.48, α = 4.83× 105.
(89)

Solving equations (85)–(87) numerically with the data (89), we obtain the
wave sequence parameters given in the second row of Table 2. We used the for-
mula of case (a), since the quantity in condition (46) is Le lRσ = 22.5 ≫ 1 with
lR = 0.196 computed using (45). In the condition (77), we haveXvap exp (−σLeL) ∼
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parameters values

Qr 4.74× 105 J/mole of carbon

Qe 4.06× 104 J/mole,

E 1.6× 105 J/mole

Kr 108 1/s

R 8.314 J/moleK

Cm 2× 106 J/m3K

λ 0.87 W/mK

D 2× 10−5(Patm/Ptot) m2/s

cg 29.2 J/moleK

φ 0.3

Ptot 105 Pa (1 atm)

Yinj 0.21 mole of O2/mole of air

nres
f 833.3 mole/m3 (10 kg of carbon per m3)

nres
l 2222 mole/m3 (40 kg of water per m3)

Tb 373.15 K (water),

Tres 293.15 K

uinj 200 m/day

k 0.01 1/s

Table 1: Typical values of the dimensional parameters for in-situ combustion.
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θh vR Yunb θvap vC Xvap nvap
l

analytic 2.212 1.507 0.192 0.064 4.400 0.056 1.213

numeric 2.220 1.536 0.192 0.060 4.404 0.054 1.200

Table 2: Parameters of the wave sequence solution obtained by analytical for-
mulae and numerical simulation.

Figure 4: Non-dimensional results of numerical simulation for combustion-
vaporization and condensation waves.

10−135 ≪ 1 with L = 2.53 found using (73). This condition guarantees that
no vapor enters the reaction layer. We can expect that the same conclusion is
generally true for liquid fuels, so the latter do not participate in the combustion.

For comparison, the numerical simulation was carried out using a split-
implicit finite difference scheme for the PDE system (15)–(20). The steady
solution obtained using numerical simulation is presented in Fig. 4, where the
temperature θ with the fuel concentration nf and water concentration nl are
shown. The combustion-vaporization and condensation wave are well distin-
guished on the figure (the thermal wave on the left is not shown). The solution
parameters can be read from the simulation profiles; they are given in the third
row of Table 2. One can see that they are in very good agreement with the
analytic values shown in the second row. On the plot at the right of Fig. 4 we
compare the analytical temperature profile given by (56) (bold dotted line) with
the numerical simulation (solid line) for the combustion-vaporization wave; we
also show here the reaction rate wr and the characteristic dimensions of the
reaction layer (42), (45).

Finally, Fig. 5 shows the dependence of the solution parameters on the ini-
tial liquid concentration changed in the interval 1205 < nres

l < 5500 [mole/m3].
Here the upper bound nres

l = 5500mole/m3 corresponds approximately to
100 kg/m3 of water. For nres

l < 1205mole/m3, we have nvap
l < 1, so that

the condensation does not occur. One can see that the waves speeds vR and vC
are sensitive to the liquid concentration, while the combustion temperature θh
is not.
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Figure 5: Non-dimensional solution parameters depending on the initial water
concentration nres

l [mole/m3].

Figure 6: Wave sequence for complete oxygen consumption.

5 Complete oxygen consumption wave sequence

In this section, we study the solution with structure shown in Fig. 6. The solu-
tion consists of three waves along which the temperature varies, besides a much
faster wave with constant temperature. These waves are separated by zones
with constant states. The slowest is a combustion wave. Ahead of the reaction
layer, lack of oxygen due to its complete consumption prevents the reaction.
Behind the reaction layer, the reaction stops because of low temperature, where
the reaction rate is negligible. Ahead of this wave, we have a hot zone with
temperature θh. The second wave is a vaporization wave: here the tempera-
ture drops to θvap, and the liquid vaporizes in the front part of the wave. The
zone ahead of this wave contains liquid in equilibrium with its vapor in the
transported gas. This zone ends with a condensation wave. There is also a
composition wave where the concentration of gaseous products of combustion
drops to zero. This wave travels with the speed of the gas, which is much larger
than the speeds of the other waves, so that this wave does not fit in Fig. 6.

The injection conditions at the left side and the initial reservoir conditions
are given in (26), (27). The assumption of complete oxygen consumption implies
that the condition Y = 0 holds ahead of the combustion wave. Complete fuel
consumption is not required, and the concentration of unburned fuel is denoted
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by nunb
f . The assumption of complete liquid vaporization yields the condition

nl = X = 0 everywhere behind the vaporization wave.
In this section, we give the derivations in short form, as they are essentially

similar to those in Section 3.

5.1 Combustion wave

The combustion wave is a traveling wave with speed vR. As before, we introduce
the traveling coordinate ξ = x−xR−vRt. Behind the wave, we have the injection
conditions (26) and an unknown amount of unburned solid fuel nf = nunb

f .
Ahead of the wave (as ξ → ∞), we have θ = θh, nf = 1, and the condition
of complete oxygen consumption Y = 0. All the derivatives with respect to ξ
vanish as ξ → ±∞.

The equations describing the reaction layer in the combustion wave are (34)–
(37). Assuming vR ≪ σu, the constant gas flux condition ρu ≡ 1 is derived first.
Then, equations analogous to (39), (40) using the new boundary conditions
(θ′ = Y ′ = 0, θ = θh, nf = 1, Y = 0 ahead of the wave) become

θ′ − (1− vR)(θ − θh)− vR(1− nf ) = 0, (90)

ρY ′

Le
− σY + vRγf (1− nf ) = 0. (91)

As we will see soon, vR < 1.
We distinguish two layers. In the reaction layer (RL), the reaction occurs at

temperature close to θh. Behind the RL, there is a heating layer (HL), where
there is no reaction and the temperature drops to its value θ = 0 in the injected
gas, see Fig. 6. To allow explicit analysis, let us assume that

δθR
vR(1− nunb

f )
≪ 1, Le lRσ ≫ 1. (92)

As in Section 3.2.1, we use conditions (92) to neglect the second term in (90)
(1 − vR)(θ − θh) . δθR compared to the third term vR(1 − nf ), and the first
term in (91) ρY ′/Le ∼ Yinj/(Le lR) compared to the second term σY ∼ σYinj .
These simplifications yield

Y = vRγf (1− nf )/σ, θ′ = vR(1− nf ). (93)

Let us choose ξ = 0 between HL and RL. At ξ = 0, we have nf = nunb
f ,

Y = Yinj and θ ≈ θh. Using (93) we obtain

ξ = 0 : θ = θh, nunb
f = 1− σYinj/(vRγf ), θ′ = σYinj/γf . (94)

Dividing θ′ from (93) by n′
f from (37), using (25) and expression (93) for Y ,

we obtain

exp

(
− E
θ + θ0

)
dθ =

vRσ

NDaγf

dnf

nf
. (95)
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This equation is integrated as in Section 3.2.1, which yields

(θh + θ0)
2

E
exp

(
− E
θh + θ0

)
= − vRσ

NDaγf
log

(
1− σYinj

vRγf

)
, (96)

where we used expression (94) for nunb
f .

For the effective change of temperature δθR in the RL we get the same
relation (42). Taking θ′ ∼ δθR/lR in the second relation in (93), we estimate
the RL length as lR ∼ δθR/(vR(1− nunb

f )).
In the HL, the reaction is neglected: wr = 0. Behind the wave, the tem-

perature decreases to θ → 0. The change of the temperature is given by the
expression

θ = α0 + α1 exp(−Aξ), A = vR − 1, (97)

which is found as for the HL in Section 3.2.2. Since the temperature increases
together with ξ, the constant A must be negative. This gives the condition
vR < 1, the opposite of condition (33) for complete fuel consumption. From the
condition θ = 0 behind the wave and the third equation in (94), we find

α0 = 0, α1 =
σYinj

(1− vR)γf
. (98)

Then the first relation in (94) with θ given by (97), (98) yields

θh =
σYinj

(1− vR)γf
. (99)

Equations (96) and (99) determine the temperature θh and the combustion
wave speed vR for given injection conditions. The amount of unburned fuel is
given by the second expression in (94). Note that vR > σYinj/γf , which follows
the inequality nunb

f > 0 with nunb
f from (94). Since vR < 1, the necessary

condition for complete oxygen consumption, counterpart to (75), becomes

Yinjσ/γf < 1. (100)

As it was mentioned in Subsection 3.2.4, the equality Yinjσ/γf = 1 corresponds
to the resonant combustion. In both cases of complete oxygen and complete fuel
consumption, vR → 1 as Yinjσ/γf → 1, i.e., the width of the hot zone shrinks
to zero. Thus, by changing problem parameters, one combustion regime can
change into the other passing through the resonance.

Note that the second condition in (92) coincides with condition (a) in (46).
Case (b) corresponding to large diffusion is inappropriate in the case of complete
oxygen consumption: the oxygen is completely expelled from the reaction zone
by diffusion, leading to extinction.

5.2 Vaporization wave

The vaporization wave is a traveling wave with speed vV < 1 consisting of a
heating and a vaporization layer. In the leading VL, the liquid vaporizes at
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temperature θ ≈ θvap. Then the HL follows, where the temperature raises from
θvap to θh. Along the wave, Y = 0 and nf = 1.

The HL and VL are analyzed in the same way as in Sections 3.2.2 and 3.2.3,
with vR substituted by vV . The temperature profile in the HL is found as

θ = α0 + α1 exp(−Aξ), A = vV − 1 < 0. (101)

Let us set ξ = 0 between the HL and VL. Since θ = θh as ξ → −∞ and θ ≈ θvap
at ξ = 0, we find α0 = θh and α1 = θvap − θh. Then the analysis of the VL
yields the expressions

(ρu)vap =
σ + γlvV n

vap
l

σ
, Xvap =

γlvV n
vap
l

σ + γlvV n
vap
l

, θvap = θh −
vV βn

vap
l

1− vV
, (102)

which are similar to (71), (72).

5.3 Condensation wave

The condensation wave has speed vC . In this wave, Y = 0 and nf = 1. The
analysis of this wave is the same as in the complete fuel consumption case in
Sections 3.3, yielding expressions (81), (83) and (84), with vV instead of vR.
The latter two are

nvap
l =

γlvC − σXres/(1−Xres)

γl(vC − vV )
. (103)

θvap (vC − 1− γlvV n
vap
l /σ) = βvC(n

vap
l − 1). (104)

5.4 Defining system of equations for the wave sequence

The two equations (96) and (99) determine the temperature θh and the com-
bustion wave speed vR for given injection conditions, through a single tran-
scendental equation for vR, which has to be solved numerically in the interval
0 < vR < σYinj/γf . The unburned fuel concentration nunb

f is given by (94).
Then the speeds of the vaporization and combustion waves vV and vC are

determined by solving the system of two nonlinear equations (74), (104), where
Xvap, θvap and nvap

l are substituted from (102), (103). This system must be
solved numerically.

In addition to condition (100) for the combustion wave, the condition nvap
l ≥

1 is required for the existence of the condensation wave.

5.5 Numerical results for typical reservoir data

The necessary condition for complete oxygen consumption regime (100) in di-
mensional form becomes Yinj < nres

f cg/Cm. It is satisfied for either large fuel
or low air concentrations. We will consider the data from Tab. 1, except that
Yinj is varied. Then, condition (100) becomes Yinj < 0.0122. This means that
the injected gas must contain a very little fraction of oxygen. Practically, one
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Figure 7: Non-dimensional solution parameters depending on the initial oxygen
fraction Yinj .

might think of injection of a mixture of air with flue gases. Solving the equations
as described in the previous subsection for 0 < Yinj < 0.0122, we obtain the
solution parameters, i.e., the wave speeds vR, vV , vC and intermediate states
θh, n

unb
f , θvap, n

vap
l , Xvap, see Fig. 7.

The interval 0.009 < Yinj < 0.0122 corresponds to the resonant regime, when
the combustion temperature grows and becomes very large for Yinj ≈ 0.0122.
In this region nunb

f ≈ 0, so not only all oxygen is consumed, but almost all fuel
is consumed as well. In the interval 0.0025 < Yinj < 0.009, the combustion
temperature and wave speed remain almost constant: θh ≈ 2.5 (500C◦) and
vR ≈ 1. This looks surprising, since the oxygen fraction Yinj varies substantially.
Such a behavior is explained by the change of speed difference vV − vR. This
is so because most of the heat generated in the combustion goes into the hot
zone, whose width grows in time proportionally to vV − vR. At Yinj = 0.0025,
the combustion and vaporization wave speeds coincide, so for Yinj < 0.0025 the
solution does not have the form we studied (the condition vR < vV is violated).
This means that the combustion is quenched by the liquid for Yinj < 0.0025, if
the liquid is not combustible. If the liquid is combustible, another combustion
regime may appear. Note that, when approaching the singular point Yinj ≈
0.0025, speeds vR and vV get closer, allowing the waves to interact for a long
time. Thus, the time required for development of the steady combustion regime
from a certain initial data increases. This means that the ignition becomes
problematic.

The parameters in the vapor zone θvap, n
vap
l , Xvap (not shown in Fig. 7)

exceed very slightly their initial values in the reservoir, so the effect of vapor-
ization/condensation in the vapor zone is small. The condensation wave speed
also does not change much; vC ≈ 3.5. Finally, we mention that the numerical
simulation of the original PDE system performed for Yinj = 0.007 confirmed
the analytical results with high accuracy.

6 Conclusion

Filtration combustion was considered in the case when air is injected behind
the combustion wave into a porous medium containing a solid fuel and some
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amount of liquid, e.g., water or light oil. Understanding the behavior of this
liquid in the vaporization/condensation process ahead of the combustion wave
is of practical importance, for example, in designing perspective methods of oil
recovery. On the other hand, the liquid may influence the combustion wave,
changing its speed or leading to extinction.

In this paper, we studied two different solutions in the form of wave se-
quences that are typical for combustion in wet reservoirs. All the waves in these
solutions are described analytically, reducing the problem to solving a system
of nonlinear transcendental equations. For typical reservoir data we performed
numerical simulation that confirmed the analytical results, and studied the so-
lution parameters depending on the fuel and injected oxygen concentrations.
According to the computations, the presence of the liquid has a small influence
on the combustion temperature. This is a natural conclusion when the heat
needed for vaporization is much smaller than the heat released in the combus-
tion. On the contrary, the wave speeds are sensitive to the liquid concentration.
It is shown that the concentration of liquid increases in the vapor zone that lies
between the combustion and condensation waves. However, this increase is not
large and does not lead to any dramatic phenomena like extinction (at least for
the data considered).

An interesting regime in detected when the injected air contains very lit-
tle amount of oxidizer (oxygen). In this regime, not all solid fuel is consumed
in the reaction. Surprisingly, the combustion speed and temperature appear
to be almost independent of the (small) oxygen concentration. However, fur-
ther decrease of injected oxygen concentration leads to extinction. Note that
the combustion temperature remains high for solutions in the neighborhood of
the extinction point, and the extinction originates from the interaction of the
combustion and vaporization waves.

In this paper we assumed that the liquid in the reservoir is immobile, which
is true if only small amounts of liquid are present initially. Since the combustion
wave speed is usually very low, one can expect that mobile liquid will be dis-
placed by the injected air, without interacting with the combustion wave. This
case, however, requires study.
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