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Abstract. Air injection with in-situ combustion has long been considered as a potential 
technique for displacement and recovery of heavy oil. It utilizes heavy and immobile 
components of the crude oil as fuel for producing in-place heat necessary for the 
recovery of upgraded crude oil.  

As a laboratory model for air injection, we consider a porous rock cylinder with a 
homogeneously distributed solid fuel, initially filled with air that is injected at constant 
rate on the left end of the cylinder. We investigate a forward combustion technique, 
whereby the combustion starts at the injection end of the cylinder and propagates 
upstream towards the production end. We neglect air compressibility and heat losses. A 
bimolecular reaction is assumed to take place between the injected oxygen and the solid 
fuel, so the region of reaction behaves as a source of heat as well as a sink for the 
oxygen and fuel. The combustion reaction rate is given by Arrhenius law.  

In order to solve the corresponding Riemann problem and find the combustion wave 
profile some simplifications are commonly used. Many of them are related to the 
diffusion terms that appear in thermal and gas mass balance laws, for example, one 
common approximation is to consider high Lewis number. The goal of this work is to 
discuss the importance of the diffusion terms for the traveling wave solution in these 
models.  

There are different mathematical models describing similar physical phenomena 
developed in previous works. Here, we compare the solutions of our model with the 
solutions of earlier models. 
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1. INTRODUCTION 
Air injection with in-situ combustion has 

long been considered as a potential technique 
for displacement and recovery of heavy oil 
reserves (Boberg, 1988; Prats, 1982; Mota et 
al., 2002). Despite a long history, only a small 
fraction of the total recovery utilizes this 
technique. The explanation is (i) until recently, 
abundance of easily-exploited light-oil reser-
ves, higher-quality resources and cheaper reco-
very methods; (ii) operational success of the 
steam injection methods in large reservoirs 
containing heavy oil. However, most of the 

production of the Brazilian oil is off-shore and 
steam injection there is difficult in such sites, 
from a practical point of view. Other reasons 
are technical, such as the possibility of front 
extinction and the necessity of (re-)ignition for 
sustained propagation within in-situ combus-
tion in the presence of external heat losses 
(Akkutlu and Yortsos, 2002). Thus mathema-
tical analysis of this problem is important to 
predict these events.  

A large number of studies on the structure of 
the combustion front have been reported since 
the 1950s (Akkutlu and Yortsos, 2002; Akkutlu 
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and Yortsos, 2003; Aldushin et al., 1999; Baily 
and Larkin, 1960; Benham and Poettmann, 
1958; Bousaid and Ramey, 1968; Kumar and 
Garon, 1991; Schult et al., 1998). However, 
these studies did not take into account waves 
that occur in the combustion problem besides 
the combustion wave. Since there is interaction 
between the combustion wave and other waves, 
the solution of the Riemann problem 
considering all possible waves is relevant. An 
attempt in this direction can be found in Souza 
et al., 2006. We also provide further 
information elsewhere (Chapiro, 2005; Chapiro 
et al., 2005).  

In order to model the in-situ combustion 
some simplifications are commonly made. For 
example, Balasuriya et al. (2007) use one-
dimensional model and assume limitless access 
to fuel and constant gas speed, obtaining a 
system of two conservation laws. Next, the 
Lewis number is considered high in the 
analysis of the stability of the combustion front. 

In this work we follow the formulation of 
Souza et al. (2006) explained in the next 
section. However, we utilize the simplification 
of neglecting diffusion terms, which is valid 
when the gas velocity is very high. We also 
solve the corresponding Riemann problem and 
obtain the combustion wave profile. It turns out 
to be almost identical to the one obtained from 
more complex models with diffusive terms 
analyzed by using the singular perturbation 
technique. 

 
 

2. MATHEMATICAL MODEL 
 

2.1. Formulation 
According to Akkutlu and Yortsos, (2002) 

and Souza et al. (2006), we assume that air is 
injected at the leftmost part of a mechanically 
and thermally insulated porous rock cylinder 
containing solid fuel, so that the flow of mass 
and energy is one-dimensional. Balance 
equations are written for the total energy, the 
total gas mass, the oxygen mass and the fuel 
mass, and then non-dimensionalized. For the 
latter, we define the solid fuel density per unit 

volume, fρ , and introduce the extent of con-

version depth, ( ) 1 ( ) o
f fx t x tη ρ ρ, = − , /  (here 

o
fρ  is the initial fuel concentration), such that 

0η =  corresponds to complete availability of 
fuel and 1η =  to the complete lack of fuel. The 
primary dependent variables are the following: 
the scaled temperature ( )x tθ ,  (with 1θ =  
corresponding to the reservoir temperature), the 
oxygen mass fraction  within the 
gaseous phase, the solid fuel density 

( )Y x t,
( )x tη ,  

and the gas density (g p)ρ θ, , which is expres-
sed by the ideal gas equation of state in terms 
of temperature. The gas pressure is considered 
to vary only slightly; mathematically, we 
assume that the gas density depends only on 
temperature. The Darcy velocity  is the 
volumetric flow of gas per unit area. These 
simplifications yield the non-dimensional ideal 
gas equation of state 

( )v x t,

1ρθ = , where ρ  is the 
non-dimensional gas density. 

After introducing dimensionless space and 
time variables the flow can be modeled by four 
dimensionless balance equations plus the 
equation of state (Akkutlu and Yortsos, 2002; 
Souza et al., 2006): 

2

2

( )a v q
t x x
θ ρ θ θ∂ ∂ ∂
+ = + Φ

∂ ∂ ∂
,  (1) 

( ) ( ) 1

e

Y vY Y
t x L x x
ρ ρφ ρ μ∂ ∂ ∂ ∂⎛ ⎞+ = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Φ,  (2) 

( )
g

v
t x
ρ ρφ μ∂ ∂
+ = Φ

∂ ∂
,  (3) 

t
η∂
= Φ,

∂
 (4) 

1,ρθ =  (5) 
where ( Y )θ ηΦ , ,  is the reaction rate. The 
nomenclature and typical values of the 
parameters , , a q φ , , eL α , γ , μ , and gμ  are 
given in Table 1. The physical domain of the 
dependent variables θ , ,  and v  is given 
by: 

Y a

0 0 1 0 1 0Y vθ η≥ , ≤ ≤ , ≤ ≤ , > .  (6) 
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We also want the combustion to be 
extinguished at reservoir temperature or in the 
absence of oxygen or fuel, i.e, when at least 
one of the following conditions is satisfied: 

1θ = ,  or 0Y = 1η = . These conditions put 
some restrictions on the form of the reaction 
rate Φ . 

 
 

2.2. Simple combustion wave 
In this paper we analyze the following 

simplification of the model (1)-(4), in which 
the molecular diffusion and thermal heat 
conductivity are negligible: 

( )a v q
t x
θ ρ θ∂ ∂
+ =

∂ ∂
Φ,  (7) 

( ) ( )Y vY
t x
ρ ρφ μ∂ ∂

+ = −
∂ ∂

Φ,  (8) 

( )
g

v
t x
ρ ρφ ∂ ∂
+ =

∂ ∂
μ Φ,  (9) 

t
η∂
= Φ,

∂
 (10) 

1ρθ = .  (11) 
We use the first order mass action law 

combined with the usual Arrhenius law: 

(1 ) for 0
0 for

Y e
γ
θα η θ

θ

−⎧⎪ − ,Φ = ⎨
, ≤⎪⎩ 0

>

0v

0v

 (12) 

Here we focus on the forward combustion 
front with propagation speed . Physically 
ahead or behind this wave there is no 
combustion, i.e, the reaction rate Φ  vanishes. 
Behind the combustion front we consider that 
there is lack of fuel, by imposing: 

0V >

0 1 1b b b bYθ η> , = , = , > ,  (13) 

where the superscript  means burned. Ahead 
of the combustion front, oxygen levels are 
depleted, and: 

b

0 0 0u u u uYθ η> , = , = , > ,  (14) 
where the superscript u  means unburned.  

We look at the combustion front as a steady 
traveling wave of system (1)–(4) with 
propagation speed . The states along such 
a traveling wave depend only on the moving 
coordinate 

0V >

x Vtξ = − , i.e, ˆ( ) (x t )θ θ ξ, = , 
ˆ( ) (Y x t Y )ξ, =  and ˆ( ) ( )x tη η ξ, = . Then 

Eqs. (7)–(11) are transformed into (15)-(18), 
with hats omitted: 

(d
ξ

)av V q
d

θ− = Φ,  (15) 

( )d Y v V
d

φ μ
ξ θ

−⎛ ⎞ = − Φ,⎜ ⎟
⎝ ⎠

 (16) 

g
d v V

d
φ μ

ξ θ
−⎛ ⎞ = Φ,⎜ ⎟

⎝ ⎠
 (17) 

( )d Vη
ξd

= −Φ,  (18) 

where Eq. (11) was used to eliminate ρ . The 
boundary conditions for system (15)–(18) are 
the conditions (13) at  and (14) at −∞ +∞ . 
Notice that (15)-(18) is a first-order ordinary 
differential equation (ODE) system, which can 
be rewritten in a matrix form as: 

2

1

0 0
0 0 0

,
0 0 0

0 0 0 1

g

g

qV a
YYA
qA

avV

ξ

ξ

ξ

ξ

θ
μ μ

η μ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤−⎡ ⎤ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ = Φ⎢ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

⎥  (19) 

 
Table 1. Typical values of dimensionless parameters. (Akkutlu and Yortsos, 2002). 

Physical quantity Symbol Value 
Total heat content of the porous medium  q  1.0121 
Stoichiometric coefficients for oxygen  μ  205.8 
Stoichiometric coefficients for gaseous products  gμ  68.19 
Lewis number (ratio of thermal and molecular diffusion)  eL  0.214 
Arrhenius number (dimensionless activation energy)  γ  23.69 
Dimensionless reaction coefficient  α  0.027 
Volumetric heat capacity ratio of the filtrating gas  a  6.13 ⋅ 410−  
Porosity of the medium  φ  0.3 
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where 2
1 ( ) / /A V v V aφ θ= − + θ  and 2A =  

( ) /v Vφ θ− . The matrix on the left-hand side of 
Eq. (19) can be inverted, provided that: 

0V V v V av a( ).φ θ φ≠ , ≠ / , ≠ / +  (20) 
In Section 6, we will see that these are 
precisely the speeds of the non-combustion 
waves presented in (65)-(67). We can solve 
system (19) and get: 

2

( )
( )

.
1

( )
( )

g

g

g

a q
a V v V

Y
Y V v

v V
q V v V

a V v V

ξ

ξ

ξ

ξ

θ θμ
φ θ

θ μ μ
θ

φ
η

φ θ μ
φ θ

−⎡ ⎤
⎢ ⎥− +⎢ ⎥

⎡ ⎤ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢= Φ
⎢ ⎥ ⎢

−⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥− +
⎢ ⎥

− +⎣ ⎦

⎥
⎥

 (21) 

We will prove that the ODE system of Eq. 
(21) has a solution with boundary conditions 
defined by (13) and (14) for certain values of 

. V
 
 

3. THE RANKINE-HUGONIOT LOCUS 
In order to obtain relations between the 

boundary conditions (13) and (14) so that 
system (21) has a solution, we substitute (18) 
into (15)-(17) obtaining: 

( 0d av V qV
d

θ η
ξ

− + =) ,  (22) 

( ) 0d v V Y V
d

φ μ η
ξ θ

−⎛ − =⎜
⎝ ⎠

⎞ ,⎟  (23) 

0g
d v V V

d
φ μ η

ξ θ
−⎛ + =⎜

⎝ ⎠
⎞ .⎟  (24) 

This means that the quantities inside the 
derivatives are constant in ξ , thus their value at 
some finite ξ  is the same as at ξ →∞ . 

u uav V qV av V qV uθ η θ− + = − − η ,  (25) 
u u u

u
u u

vY VY v Y VYVφ φ Vμ η
θ θ θ θ

− − = − − μ η ,  (26) 

u
u

g u u

v V v VVφ φ
gVμ η μ

θ θ θ θ
− + = − + η .  (27) 

Next we can take the limit ξ → −∞  of the left-
hand side of Eqs. (25)-(27), and substitute 
condition (13) on the left-hand side and 

condition (14) on the right-hand side of such 
system to obtain: 

u u b bav V av V qVθ θ− = − + ,  (28) 

0
b

b

v V Vφ μ
θ
−

= − ,  (29) 

u b

gu b

v V v V Vφ φ μ
θ θ
− −

= + .  (30) 

Physically, it is reasonable to assume that 
we know the temperature at the right of the 
combustion wave ( uθ ) as well as the Darcy 
velocity ( ) of the injected gas. This choice 
will be useful in Section 6, so we have three 
unknowns (

bv

bθ , ,V ) and three equations (28)-
(30). From Eq. (29): 

uv

b
b v V

V
φθ

μ
−

= .  (31) 

Subtracting (29) from (30): 
(u u

gv V V )φ θ μ μ= + + .  (32) 
Now we substitute (31) and (32) in (28) and 

obtain: 

( )

u b b

u
g

V av v V qV a V
a V
μ θ μ φ μ μφ

μ μ μ θ

+ − + + − =

+ .
 (33) 

      We define ( )u uJ q aθ μθ μ φ μ φ= + − + −  
2 uaμ θ − u

gaμμ θ ; one can verify that 

 for the values of the constants given 
in Table 1 for any . Using this and 
(33) we obtain:  

( ) 0uJ θ >
0uθ > J

(1 )
( )

b

u

a vV
J

μ
θ

−
= .  (34) 

Now we have bθ  and  defined in (31) and 
(32) as functions of 

uv
uθ  and  

defined by (34). 
( )u bV V vθ= ,

 
 

4. COMBUSTION PROFILE 
In this section we use the boundary 

conditions defined in Section 3 and the 
equations (22)-(24) to obtain Y vθ, ,  as 
functions of η  and of the parameters, and 
substitute the result in the equation for ξη  in 
(21). Then we compare these results to the 
solutions for the system (1)-(5) obtained by 
singular perturbation techniques in Chapiro 
(2005) and Chapiro et al. (2005). 



 

 5 

4.1. Ordinary differential equations for the 
profile 

From equations (25)-(27) we obtain:  
u uav V av V qVθ θ− = − − η,  (35) 

( )v V Y Vφ μ η
θ
−

= ,  (36) 

( )

( )

u
g u

g g

v V V v V

V V V

θφ μ ηθ φ
θ

φ μ ηθ θ μ μ

= − + −

− + + ,

=
 (37) 

where we have used (32). Substituting v  from 
(37) and  from (32) into (35), dividing by V  
and simplifying, we obtain: 

uv

( )
( )

u u
g

g g

a q
a 1
θ μ μ θ η

θ
μ μ μ η

+ − −
=

+ − −
.  (38) 

Using (37) in (36) we get:  

g g

Y μη
μ μ μ η

=
+ −

.  (39) 

Finally, using (38), (39) and (12) we can 
rewrite the equation for ξη  in (21) as: 

(1 )

1 ( )(1 )
( ) ( )

g g
u u

g g g

Y exp
V

a
exp

V a q

ξ
α η γη

θ

μ μ μ ηαμη η γ
μ μ μ η θ μ μ θ η

− −⎛ ⎞= =⎜ ⎟− ⎝ ⎠
⎛ ⎞− + −− −

.⎜ ⎟⎜ ⎟+ − + − −⎝ ⎠
                            (40) 

We can solve this ODE with any initial 
condition 0(0)η η= , where  and 
substitute the result into the equations (38), 
(39) and (37) for 

00 η< <1

θ , ,  and obtain the 
combustion wave profile. Solving these 

equations with MATLAB with initial condition 

Y v

0 0 5η = . , we obtain the wave profile shown on 
the left side of Figure 1.  

In Chapiro et al. (2005), the approximation 
combustion wave profile for 
was obtained using singular 

perturbation techniques. One can see the result 
e right side of Figure 1. It agrees with the 
ion of system (7)-(10), i.e., the solution of 

the ODE (40). The plots are in the same scale. 

of order zero for 
the system (1)-(4) 

on th
solut

 
 

4.2. Approximation explicit solution 
We have solved the ODE (40) numerically, 

ometimes it is useful to have explicit 
approximations of the solution. To obtain such 
approximation we use the fact that 

however s

1a <<  to 
ponent of (40): approximate the ex

1 (a )
( ) 1 1

g g

ga q q
μ μ μ η γγ

μ μ η η
− + − −

≈ .
+ − − +

 (41) 

Now we rewrite the pre-exponential factor as:  
(1 ) (1 )

g g

A
V B
α μη η η η
μ μ μ η η

− −
− =

+ − −
,

where )

 (42) 

( ) ( gA Vαμ μ= − / , 1 gB μ μ= + / . The 
imate solution is: ODE for the approx

(1 ) exp
1

d A
d B q
η η η γ
ξ η η

⎛ ⎞− −
= .⎜− +⎝ ⎠

⎟  (43) 

We use the exponential integral function 
(Press et al., 1989) and obtain the implicit 
solution of ODE (43): 

 

 
 

Figure 1. On the left the traveling wave solution of the system (40). On the right the first order 
approximation of the traveling wave of the system (1)-(4) from Chapiro et al. (2005). Variables: θ  (dotted 

line), Y  (circles), η  (solid) and the combustion rate Φ  (dashed) as functions of ξ . We use 2γ = . 
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1 1

1 1

1

1

1
1 1

1 1

( 1) ( 1)exp( )
1 (1 )(1

( 1) .
(1 )(1 )

E E
A q q

Be q qE E
A q q

B qE
A q q q

qE
q q

γ

γ γ
η η

γ η γ η
η η

γ γ η
η

γ η ξ
η

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
− −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎛−
−⎜ ⎜+ + +⎝ ⎠⎝

⎞⎛ ⎞−
=⎟⎜ ⎟+ +⎝ ⎠⎠

)

+

⎞−
⎟

+ +⎝ ⎠⎠

 (44)  (44) 

Now we notice that not all terms in (44) are 
important. First we combine all constants:  
Now we notice that not all terms in (44) are 
important. First we combine all constants:  

1 1

1

1
1 1

( 1)( 1)exp( )
1 (1 )(1 )

qK E Be E
A q q

qB E
q q q

γγ γ
η η

γ γ η
η

⎡ ⎛ ⎞ ⎛ ⎞−
= − +⎢ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞−
− − ⎥⎜ ⎟+ + +⎝ ⎠⎦

η
−

)

 (45) 

and drop the term 1( (1 )E qγ η− / + , as it is 
small compared to the other ones, obtaining:  

1

1

( 1)exp( )
1 1

( 1) ( )
(1 )(1 )

qBe E B
q q

qE K
q q

γ

A

γ η γ
η

γ η ξ
η

⎛ ⎞
− + −⎜ ⎟+ +⎝ ⎠
⎛ ⎞−

= − .⎜ ⎟+ +⎝ ⎠

 (46) 

We can compare the solution of (46) with 
the numerical solution of (40) on Figure 2. The 
solution in (46) is implicit and it is not very 
easy to work with. We simplify it utilizing the 
series expansion of the exponential integral 
function (Press et al., 1989), and taking the real 
part to get:  

( ) log
1

( 1)( 1)exp( ) log
1 (1 )(1

qK A Be
q

qB
q q q

γ γ ηξ
η

γ γ η
η

⎛ ⎞
− = −⎜ ⎟+⎝ ⎠

⎛ ⎞−
)

− .⎜ ⎟+ + +⎝ ⎠

 (47) 

We compare the solution of (47) with the 
numerical solution of (40) in Figure 2. 

 
 

4.3. The dimensional solution 
Until now, we studied the non-dimensional 

equations and performed non-dimensional 
analysis, however for applications it is 
important to know the characteristic values of 
our solution in actual units.  

Looking at the fuel consumption rate 
equation (40) we conclude that the reaction 
occurs close to the region where 0 5η ≈ . ; from 
the numerical experiments we can conclude 
that it happens for 0 4 0 8η. < < . . From (47) 
with some simplifications we get: 

2 exp( )
1 2 2

2 exp( )
1

gVV Ve e
q

V
q

γ γμγδξ
α αμ

γ
α

α
= + +

+

.
+

≈
 (48) 

The last approximation is not accurate, howe-
ver here we are interested just in the appro-
ximated length. Substituting the values from 
Table 1 we get 43 5 10δξ ≈ . ⋅ .  

In order to obtain physical values we 
introduce characteristic values for length l∗  
(that will be analyzed later) and speed v∗  (we 
can put it as 1 ), thus characteristic time 
will be t l

m s/ .
v∗ ∗ ∗= / . We define l v , 

where 
sα

∗ ∗= /

sα  is the effective thermal conductivity 
 

 
 

Figure 2. Numerical solution of (40) (solid), analytical solution of an approximate ODE (43) (circles) and 
logarithmic approximation (47) (dotted) used to calculate the characteristic length. All plots use 2 0γ = . .
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7 2((1 ) ) 4 301 10s s scα λ φ ρ −= / − = . ⋅ /m s . Now 
the characteristic length will be sl vα∗ ∗= / ≈  

 where  is some reference 
value for injection speed (but not the actual 
injection speed). 

74 301 10 v− ∗. ⋅ / , v∗

We recover all dimensional variables: 
temperature 0T T θ= , where  is the reservoir 
temperature; time  

; length 

0T
2ˆ ˆ ( )st tt t vα∗ ∗= = / =

27 ˆ4 301 10 ( )t v− ∗. ⋅ / ˆx l x∗= =  
7 ˆ4 301 10 x v−. ⋅ / ∗ [m]; oxygen , where 
 is the injected oxygen fraction in 

total gas mass; and fuel 

iY Y Y=
0 23iY = .

0(1 )f fρ η ρ= − , where 

 [ ] is the initial fuel 
density. 

0 19 2182fρ = . 3kg m/

Finally, the characteristic length is 
7 ˆ4 301 10 1 5 10 [ ]2x x− −= . ⋅ ≈ . ⋅ m . This result is 

compatible with experimental data (Essenhigh, 
1981). 

 
 

5. TESTING THE SOLUTION WITHIN 
THE COMBUSTION WAVE 

In order to solve the linear system (19), the 
restrictions (20) need to be satisfied for V . On 
the other hand our physical model imposes 
other restrictions related to the boundary 
conditions (13) and (14) for the combustion 
waves. Verifying that these restrictions are 
satisfied is the goal of this section. 

 
 

5.1. Monotonicity 
Here we will prove that the solutions ( )θ ξ , 

( )Y ξ  and ( )η ξ  given by the equations of ξθ , 
Yξ , and ξη  in (21) are monotonic. The combus-
tion rate defined by (12) is always positive, 
thus from (21) or (40) we see that ( )η ξ  is 
monotone decreasing. 

In order to prove that ( )θ ξ  is monotonic we 
use (38) obtaining: 

2

( )
( )

u
g

u
g

KV a qd
d K a V

μ θθ
η μ ηθ

−
=

−
,  (49) 

where .u uK av V a Vθ φ= − −  The numerator 
of (49) is independent of η  and the 

denominator is positive. As ( )η ξ  is monotonic, 
( )θ ξ  is monotone decreasing and thus bθ  from 

(31) satisfies b uθ θ> .  
In order to prove the monotonicity of ( )Y ξ  

we use (39) to obtain dY dη/ : 

2

( )
(( ) )

u

u
g

dY V v V
d v V V

μ θ φ
η φ μ ηθ

−
= .

− −
 (50) 

As the numerator of (50) is constant in η  
and the denominator is always positive, the 
function ( )Y ξ  is monotonic. As uY Y b<  we 
conclude that ( )Y ξ  is monotone decreasing.  

Now we will prove that for all ξ , 
( )u bv v vξ< <  where  and  are given by 

(32). First of all we assume that 

bv uv

4u
gqθ μ μ< / ≈ , so u

g qμ θ μ<  and as 

0 1η≤ ≤ , ( )u
g qμ θ η+ <  ( )gq μ μ+ . We 

multiply the last equation by η  and add 
( )[1 (u

g ga )]gθ μ μ μ μ ημ+ − + −  to both sides 
of the inequality; some algebra leads to 

( ) ( )( )u u
g g ga gθ μ μ θ μ μ μ μ μ η+ − + + − ≤  

( ) ( )u
g g qμ μ θ μ μ η+ + + 2( ) u

g aμ μ θ− + −

( )u
g qμ η θ η+ (u )g gaμ ηθ μ μ+ + . If we group 

terms we get [1 ( )] ( )u
g g ga μ μ μ η θ μ μ− + − +  

( )[ (u u
g g gq a )]μ μ μ η θ η θ μ μ≤ + − + − + . Using 

(38), the following inequality holds: 
( )

( )
( )

1 ( )

( )

u
g

u u
g

g g
g g

g g

q a
a

θ μ μ

θ η θ μ μ
μ μ μ η

μ μ μ η

μ μ μ η θ

+ ≤

+ − +
+ − =

− + −

+ − .

 (51) 

Multiplying by V  and using (32) and (37), 
we obtain that ( )uv v ξ≤ . 

In order to verify that  one uses the 
values of Table 1 to verify: 

( ) bv ξ < v

(
)

( ) ( )

2( ) ( )

u u
g

u
g g

a

q

θ μ μ θ μ μ

μ μ θ μ μ

> / + g +

+ + + .
 (52) 

We multiply by μ  and add ( )gq a qμ μ η+ +  
u

gμ ηθ  to both sides of (52), obtaining: 
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( ( ) )

(2 ( ) ( ) )

( )

u
g g

u
g g

u u
g g

a q a

a a

q a q

q

q

μ η θ μ μ η μ η

μ μ μ θ μ μ

μ θ μ η μ ηθ

+ + +

+ + +

+ + + .

+

<

( ( )(1 ))(1 )

u u
g g g g

u u u
g g

g g

a a q
q a a a a

J a a a

μ θ μ μ μ η θ μ η η μ

 (53) 

Organizing (53) in a different manner: 
2

2

(1 )( ( ) )
( )(1 )μθ μ μ θ μμ θ φ μ η

μ μ μ φ μ η

− + − − <
+ − − − + =
− + − − + .

 (54) 
Dividing by (1 )aμ−  and using (34):  

( ( ) ))

( ( ))(1

u u
g g

b

g g

a q

v a a
V

μ η θ μ μ θ η

)μ μ φ μ η

+ − −

− + − +

<

.

g .

           (55) 

Using (38) and (35) we obtain: 
( )u b

gv V V V vφ μ ηθ θ μ μ= − + + ≤            (56) 
At this point we have proved that the functions 

( )θ ξ , ( )Y ξ , ( )η ξ  are monotonic and 
, so they satisfy the boundary 

conditions given in (13) and (14). In other 
words the wave speed V  is physically 
admissible. 

( )uv v vξ< < b

 
 

5.2. Verifying the characteristic inequalities 
     In this subsection we prove that  in (34) 
satisfies the restrictions (20). Obviously, V  
satisfies (20a). For (20b,c) we will show:  

V

( ) ( )
( )

av vV
a

ξ ξ
φ θ ξ φ

< <
+

.  (57) 

In Section 5.1 we proved that the 
function θ  is monotone decreasing in ξ  and  
satisfies , so we have for all 
values of 

v
( )uv v vξ≤ ≤ b

ξ :  
( ) ( )

( )

u b

u

av av v v
a a

ξ ξ
φ θ ξ φ θ φ φ

≤ < ≤
+ +

.  (58) 

Therefore instead of (57a) we verify whether 
 satisfies  V

)u b

u

av vV
aφ θ φ

≤ ≤
+

.  (59) 

For the values given in Table 1 we have 
0 1 ( )ga μ μ< − + , multiplying by μ  we have 

20 u u
ga a uμθ μ θ μμ θ< − −  and also qφ μ+ −  

aμ φ < 2u u u
gq a a aμθ μ φ μ φ μ θ μμ θ+ − + − − =

( )uJ

 

θ . From the last equation using (34) and 
(1 a ) 0μ− >  we obtain ( )V q aφ μ μ φ+ − <  

(1 )bv aμ− . It follows that  ( )uV qμθ φ μ+ + −
(1 ) ( )b uv a V aμ μ φ μθ− < + , dividing by aμ  

and using (32) we obtain ( )u uav V aφ θ< + . 
Dividing the last equation by ( )uaφ θ+  we 
obtain (59a).  

In order to prove (59b) we notice that 
0u u u

gq a aθ μθ μ θ+ − − >  and then 

(1 )a Jμ φ− < , where uJ q aμθ μ φ μ= + − +
u

 
2 u

ga aφ μ θ μμ θ− − ; multiplying the last 

inequality by  and dividing it by  we 
get:  

bv 0J >

(1 ) b ba v v
J
μ

φ
−

< ;  (60) 

Here we conclude that the solution of the 
system (19) for V  defined in (34) always exists 
and that V  always satisfies (59) and 
consequently (57). 

 
 

6. NON-COMBUSTION WAVES AND 
WAVE SEQUENCES 

In the absence of combustion, the source 
terms representing mass transfer or sensible 
heat generation containing the factor Φ  vanish 
on the right hand side of system (7)–(11). Of 
course Φ  vanishes for  or 0Y ≡ 1η ≡ . We 
consider smooth solutions and expand the 
derivatives in the remaining terms in (7)-(10), 
manipulate (8), (9) and finally use (11) to 
eliminate ρ , obtaining: 

0va
t x
θ∂ ∂
+ = ,

∂ ∂
 (61) 

0Y Yv
t x

φ ∂ ∂
+ = ,

∂ ∂
 (62) 

0v
a t x
θ θ θφ ∂ ∂⎛ ⎞+ + =⎜ ⎟ ∂ ∂⎝ ⎠

,  (63) 

0
t
η∂
= .

∂
 (64) 

In increasing order, the characteristic speeds of 
system (61)-(64) and the corresponding charac-
teristic vectors are (Souza et al., 2006):  

0 (0 0 1 0)Tηλ = , , , , ,  (65) 
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(1 0 0 )Tv va
a a

θλ
θ φ θ

= , , , , ,
+ + φ

T

 (66) 

(0 1 0 0)Y vλ φ= / , , , , .  (67) 
It is easy to see that all characteristic speeds 

are constant along the integral curves defined 
by the corresponding characteristic vector 
fields, which means that all the waves are 
contact discontinuities; of course, they satisfy 
the Rankine-Hugoniot conditions for (7)-(11). 
The characteristic speed ηλ  corresponds to an 
immobile discontinuity along which only η  
varies, θλ  corresponds to a thermal disconti-
nuity along which θ  and  vary and v Yλ  
corresponds to a gas composition discontinuity 
along which only Y  varies.  

In section 5.2 we have seen that the wave 
speeds in (65)-(67) are all different and satisfy 
(57). Now we will describe the wave sequence 
in the Riemann solution under conditions (13) 
and (14) surrounding the combustion front 
(Souza et al., 2006).  

We indicate by U  the vector containing the 
variables (U Y )vθ η= , , , . In our case (hot 
upstream combustion) the thermal wave 
precedes the combustion wave ( ( )bU Vθλ < ), 
there is no temperature change ahead the 
combustion wave, which means that b uθ θ> . 
Because of the inequalities Yη θλ λ λ< < , the 
wave sequence in the Riemann solution 
consists of an immobile fuel shock, a thermal 
shock with speed θλ  and a combustion front 
with speed V . The gas composition wave with 

speed Yλ  does not effectively exist due to the 
complete oxygen consumption assumed in the 
boundary condition (14). We denote this 
sequence of waves by means of the following 
convention:  

1
V

i bU U U
η θλ λ

uU .⎯→ ⎯→ ⎯→  (68) 

The state U ( 1 0 )i i ivθ= , , ,
iv
 denotes the injection 

conditions, 1 ( 1 1 )iU θ= , , ,  denotes an inter-
mediate state in the burned region, while 

( 1 1b bU vθ )b= , , ,  and U v  are the 
burned and the unburned states surrounding the 
combustion front.  

( 0 0u u )uθ= , , ,

We summarize our results in the following 
theorem, which provides formulae for all the 
states as well as speeds for combustion and 
non-combustion waves in the wave sequence 
(68) for the Riemann solution. In this theorem 
we have fixed reservoir temperature at 1uθ = .  
 
Theorem 1: Assume that in the wave sequence 
for the Riemann solution of (7)-(12) there is a 
hot upstream combustion wave with left and 
right states satisfying (13)-(14) and b uθ θ> . 
For given injection conditions U v , 
with ,  and reservoir temperature 

( 1 0 )i i iθ= , , ,
0iθ > 0iv >

uθ , the constant states and the speeds of all 
waves in the wave sequence (68) are uniquely 
determined.   
Proof: First of all, as shown by Souza et al. 
(2006), the characteristic pair (66) corresponds 
to a contact discontinuity and there is a 
relationship between the injection conditions 

 

 
 

Figure 3. Regions separated by immobile, thermal wave and combustion waves in the Riemann 

solution. Values of θ , Y , η  and  in each region. v
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iU  and the burned state :  bU
i b

i b

v va a
a aθ φ θ φ

=
+ +

.  (69) 

Now we get four independent relationships 
(31), (32) (34), and (69) between the 
parameters bθ , uθ , iθ , ,  and , so the 
result of the theorem is to be expected. In 
Figure 3 we see that the speeds and the 
intermediate states in the wave sequence (68) 
are determined as follows. 

bv uv iv

Substituting bθ  from (31) in (69) it follows 
that  

( )

( 1)
( )

b
i b i

i
b

i i

v Va v av
V

V a vv
V a v

φ aφ θ φ
μ

φ μ
μ θ φ

⎛ ⎞−
+ = +⎜ ⎟

⎝ ⎠
−

= .
+ −

;
 (70) 

Using  from (70) we can use (34) to obtain 
; next we use (31) and (32) to obtain 

bv
V bθ  and 

 as functions of uv iθ , uθ  and . This 
completes the proof of Theorem 1.  

iv

 
 

7. CONCLUSIONS 
In this paper we describe an interesting and 

simple non-diffusive gas-solid co-flow com-
bustion model. We obtain the wave profile and 
solve the corresponding Riemann problem. 
Comparing these results to ones obtained in 
previous works for the more general model we 
conclude that the diffusion terms do not affect 
qualitatively the propagation of the combustion 
wave. 
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