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Abstract. We show how to derive compositional models from balance models including
source terms representing mass transfer between phases. Mass transfer rate is taken pro-
portional to the deviation from thermodynamic equilibrium. In the balance models, the
mass transfer is very fast and local thermodynamic equilibrium is quickly attained. The
derivation is done by means of an asymptotic expansion where the small parameter is the
time scale of mass transfer relative to the hydrodynamical time scale. The new theory is
illustrated by an example of thermal flow of steam, nitrogen and water in a porous medium,
which can be useful in for soil remediation.

1. Introduction

Multiphase fluid flows with mass transfer between different phases are governed by compo-
sitional models, in the context of petroleum engineering. These are evolution equations that
represent the conservation of mass of each chemical component, supplemented by equations
of state and thermodynamic relationships. Of course, such models support rarefactions and
shocks.

A more fundamental formulation of such flows is given by balance equations for each
component in each phase, with stiff source terms representing mass transfer of components
between phases. The form of these transfer terms is dictated by the thermodynamics: they
vanish precisely under local thermodynamic equilibrium. The balance systems can be written
in the following form, for j = 1, · · · , l and i = l + 1, · · · ,m + 1 :

∂

∂t
Gj(V) +

∂

∂x
uFj(V) = q̂j(V)/ε, (1.1)

∂

∂t
Gi(V) +

∂

∂x
uFi(V) = 0. (1.2)

This is a multi-scale problem, because ε is very small; this quantity is the time scale of
physical phase changes that are active in non-equilibrium regions. We include ε to guarantee
that q̂j do not exceed the order of unity. The source terms q̂j(V)/ε represent mass transfer
rates of chemical species between different phases. In these systems the total volume is not
conserved, so the Darcy speed u representing total volumetric flow rate, which appears in
a particular way within the flux terms, is not constant, generically, contrary to the case
of the classical fractional flow theory in porous media. In (1.1)-(1.2), generically, we have
saturation variables, thermodynamic variables and the speed u. In our class of models, we
assume that pressure variations are so small that they do not affect gas volume, which varies
due to temperature or composition changes, see [11]. Thus the pressure is fixed and the main
thermodynamic variables of the fluid phases are the temperature T and the compositions of
each phase. We assume that the pores in the rock are fully filled with fluids (one of the fluids
is gaseous). Different fluid phases do not mix microscopically. Each saturation variable in
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the system is the fraction of the total volume of a fluid phase relative to the total volume of
the fluid phases. If we denote the saturations by s1, s2, · · · , sp, where p is the number of
immiscible phases, e.g., water, oil or gas, we know that, see [11]:

s1 + s2 + · · ·+ sp = 1. (1.3)

Depending on its nature, a chemical species may exist in a single phase or it can coexist
in matter several phases. The quantity of each chemical species that exists in each phase
is described by concentration variables, which are denoted by cij, i.e., chemical species i in
the phase j. In (1.1)-(1.2) there is an equation for each cij. The total concentration ci of a
chemical species is related to the concentrations per volume of this species in the phases in
which it may exist by the following expression, see [11]:

ci = ci1s1 + ci2 + · · · cipsp.

In general when there are p phases there exist 2p − 1 configurations.
In our notation, the number of balance equations that represents mass transfer is l. Equa-

tions in (1.1) represent the balance of each chemical species in different phases. Equations in
(1.2) represent the conservation of chemical species existing in a single phase. The remaining
m− l + 1 equations represent the conservation of chemical species existing in a single phase,
where there is no mass transfer, as well as one equation for the total conservation of energy.
The variables in the system are saturations variables, compositions of each phase, tempera-
ture T , which is the main unknown in the energy conservation equation and the Darcy speed
u.

In the next section, we show that general compositional models are obtained from systems
of form (1.1)-(1.2) by using asymptotic expansions around thermodynamic equilibrium (see
also [4]).

As a representative example of the theory, we study a mathematical model for nitrogen and
steam injection in a porous media. In this model, there appears a rarefaction evaporation
wave; because it represents evaporation, this wave is not under thermodynamic equilibrium,
so there is a source term. Rarefaction waves have straighten characteristics: this apparent
contradiction is explained by noticing that the equilibrium system is the zero order approx-
imation in the asymptotic expansion and the rarefaction evaporation is only a projection of
this wave onto the phase configurations under thermodynamic equilibrium.

We give an example of a particular solution of (1.1)-(1.2), the Riemann solution, where
the initial data is composed of two constant values, Eq. (6.1). The main motivation of our
this model with this initial data is the clean up of sites with NAPL by using steam and
nitrogen injection. However the theory can be used for models involving several phases and
chemical species applied to improved oil recovery techniques.

2. The models

Systems of type (1.1)-(1.2) model thermal compositional flows in porous media. In such
systems the pair W = (V , u), with V lying in a domain in a m-dimensional space with
m components is called state variable. G and F are the vector-valued functions of m + 1
components G = (G1,G2, · · · ,Gm+1)

T and F = (F1,F2, · · · ,Fm+1)
T , whose domain is the set

of variables V . In (1.1)-(1.2) uFi is the flux for the conserved quantity Gi and ∂Gi/∂t is the
corresponding accumulation term, for i = 1, 2, · · ·m + 1. On the right hand side there are
the first l components of the source term vector (q̂1, q̂2, · · · , q̂l, 0, · · · , 0)/ε, whose domain is
the set V . Physics dictates that the source terms are defined to vanish precisely for states
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V in local thermodynamic equilibrium described by equations of state and thermodynamic
constraints.

It is useful to rewrite the system (1.1)-(1.2) into equations for total conservation of each
chemical species in all phases that are present. the type of phases present defines a phase
configuration. For j = 1, 2, · · · ,m − n and i = m − n + 1,m − n + 2, · · · ,m + 1 this new
system can be written from (1.1)-(1.2) with a minimal number of source terms, for each
configuration. This procedure is used in Petroleum Science, see [11], in order to minimize
the number of balance equations in (1.1) and maximize the number of conservation laws in
(1.2); thus we obtain for each configuration:

∂

∂t
Gj(V) +

∂

∂x
uFj(V) = qj/ε, (2.1)

∂

∂t
Gk(V) +

∂

∂x
uFk(V) = 0, (2.2)

with
Gj = (SG)j , Fj = (SF)j , Gk = (EG)k and Fk = (EF)k ,

where G = (G1, · · · ,Gl,Gl+1, · · · ,Gm+1)
T and F = (F1, · · · ,Fl,Fl+1, · · · ,Fm+1)

T . The com-
plementary matrices S and E are determined from the transfer terms between phases and
the total conservation of each chemical species in each configuration.

For problems with important applications, local thermodynamic equilibrium is reached
quickly, so the ε scale is very small (10−5 or less) and the source terms are large compared
to the prevailing scale; thus it is useful to apply singular perturbation theory to the system
(2.1)-(2.2). We assume that V and u can be expanded as:

V = V0 + εV1 + ε2V2 + · · · , (2.3)

u = u0 + εu1 + ε2u2 + · · · . (2.4)

Substituting (2.3) and (2.4) in (2.1)-(2.2) we have:

∂

∂t
Gj(V0 + εV1 + · · · ) +

∂

∂x

(
u0 + εu1 + · · · ) Fj(V0 + εV1 + · · · ) = qj(V0 + εV1 + · · · )/ε,

∂

∂t
Gk(V0 + εV1 + ε2V2 + · · · ) +

∂

∂x

(
u0 + εu1 + · · · ) Fk(V0 + εV1 + ε2V2 + · · · ) = 0.

Multiplying the first equation by ε and setting ε = 0 we obtain the lowest order approxima-
tion::

qj(V0) = 0, j = 1, 2, · · · ,m− n

∂

∂t
Gi(V0) +

∂

∂t
uFi(V0) = 0, i = m− n + 1,m− n + 2, · · · ,m + 1. (2.5)

Typically, the thermodynamic relationships and equations of state play a central role in
multiphase models (2.1)-(2.2), which are represented here implicitly by qj(V0) = 0. Each
phase configuration is obtained by enforcing q(V0) ≡ (

q1, q2, · · · , qn−m

)
= 0, where the local

thermodynamic equilibrium is represented by relationships among the quantities V0. Since
in this paper we are interested only in the problems with states at local thermodynamic
equilibrium, which is formally the zero-order approximation, we drop the superscript zero
from now on. We denote these variables as V and the respective state W = (V, u). Note
that V has a different meaning in different phase configuration.

Now the variables V are in equilibrium for each configuration, so, by extension of the
notation, we indicate the dependence of the accumulation and the flux functions only on
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the primary variables V , i.e., we use G(V ) and F (V ) representing G(V) and F (V) for a
configuration, so the system (2.5) can be rewritten (in each phase configuration) in the
unknowns W = (V, u) as the compositional model:

∂

∂t
G(V ) +

∂

∂t
uF (V ) = 0. (2.6)

There are three groups of variables in the phase configuration, the basic variables V , or
“primary variables” that are unknowns of (2.6). Notice that the system is “elliptic” in
the variable u in the sense that perturbations in u propagate instantaneously; it turns out
that u can be found from the primary variables and boundary conditions, so we call u a
“secondary variable”; and the “trivial variables” are constant or they can be recovered from
other variables in a simple way by relationships expressing local thermodynamic equilibrium
in each configuration; they complement the variables in V .

3. The model for our example

We consider the one-dimensional horizontal flow resulting the injection of steam and ni-
trogen in a porous rock cylinder. The core consists of rock with constant porosity ϕ and
absolute permeability k. We are interested in scales dictated by field reservoirs, we neglect
the capillarity pressure and heat conductivity effects.

Darcy’s law relates pressure gradient in each fluid phase with its seepage speed:

uw = −kkrw

µw

∂p

∂x
, ug = −kkrg

µg

∂p

∂x
, (3.1)

where k is the absolute permeability of the rock, krw(sw) and krg(sg) are the relative perme-
abilities of water and gas, and µw, µg are their viscosities.

The fractional flow functions [11] for water and steam are given by:

fw =
krw/µw

krw/µw + krg/µg

, fg =
krg/µg

krw/µw + krg/µg

. (3.2)

Using Darcy’s law (3.1) and (3.2) we can write uw and ug as:

uw = ufw, ug = ufg, where u = uw + ug (3.3)

is the total or Darcy velocity ; sw and sg are the water and gas saturation.

4. The model equations

Using (3.3), we write the equations of mass balance for liquid water, gaseous steam and
gaseous nitrogen as:

∂

∂t
ϕρW sw +

∂

∂x
ufwρW = +qg−→a,w, (4.1)

∂

∂t
ϕρgwsg +

∂

∂x
ufgρgw = −qg−→a,w, (4.2)

∂

∂t
ϕρgnsg +

∂

∂x
ufgρgn = 0, (4.3)

where qg−→a,w is the water mass source term (the condensation rate between of steam into
water). The term qg−→a,w is inferred from non-equilibrium thermodynamics [6]; this rate
vanishes for states under thermodynamic equilibrium. ρW is the constant water density, ρgw

(ρgn) denote the concentration of steam (nitrogen) in the gaseous phase (mass per unit gas
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volume); in the presence of liquid water, thermodynamic considerations specify how these
concentrations depend on temperature by Clausius Clapeyron and Raoult’s laws, see [9].

The equation of energy conservation is based on an enthalpy formulation, see [1], [2], given
by:

∂

∂t
ϕ

(
Ĥr + swHW + sgHg

)
+

∂

∂x
(ufwHW + ufgHg) = 0. (4.4)

Here HW = ρW hW , Hg = ρgwhgW + ρgnhgN , Hr is the rock enthalpy per unit volume and

Ĥr = Hr/ϕ; hW , hgW and hgN are the enthalpies per unit mass of water in the liquid aqueous
phase, of water in the gaseous phase and of nitrogen in the gaseous phase; these enthalpies
depend on temperature, see [9].

5. Thermodynamic equilibrium condition

The system (4.1)-(4.4) is in the form (1.1)-(1.2). We can rewrite this system in a equivalent
one by substituting Eq. (4.2) by the result of adding Eqs. (4.1) and (4.2):

∂

∂t
ϕ (ρW sw + ρgwsg) +

∂

∂x
u (ρW fw + ρgwfg) = 0, (5.1)

This new system is formed by a Eq. (4.1) representing the mass transfer of liquid water
into gaseous water in the form (2.1), plus a subsystem formed by (5.1), (4.3) and (4.4),
representing the conservation of total mass of water, nitrogen and conservation of energy, in
the form ((2.2).

By enforcing the thermodynamic equilibrium laws, the system (4.1), (5.1), (4.3) and (4.4)
reduces to systems of conservation laws for states satisfying qg−→a,w = 0, see Figure (5.1.a).
This is the compositional model used in Petroleum Engineering for nitrogen and water, see
[11].

The states under thermodynamic equilibrium laws determine three regions, which are
called phase configurations: a two-phase configuration, tp, in which pores are filled with a
mixture of liquid water, gaseous nitrogen and steam. In this case, the temperature is specified
by the concentration of vapor in the gas through Clausius-Clapeyron; a single-phase gaseous
configuration, spg, in which pores are filled with steam and nitrogen; a single-phase liquid
configuration, spl, in which the pores contain only liquid water. Since each region is under
thermodynamic equilibrium, we can use Gibbs’ phase rule f = c− p + 2, where f represents
the number of thermodynamic degrees of freedom, c of components and p of phases.

5.1. Phase configurations. In the tp configuration, there is only one thermodynamic vari-
able, which is the temperature, since the pressure is fixed. The system to be solved is (5.1),
(4.3) and (4.4) for the three unknowns temperature, saturation and total Darcy velocity.

In the spl configuration, there is only one thermodynamic variable, which is the temper-
ature. System (5.1), (4.3) and (4.4) reduces to a single equation for the temperature.

The spg configuration deserve special attention because the unknowns have an interesting
interpretation in this configuration. Since we fix the pressure, by Gibbs rule we have two
other thermodynamic unknowns: temperature and gas composition. We need to rewrite
the system (5.1), (4.3) and (4.4) by using the new unknown gas composition. To do so, we
assume that nitrogen and steam in the gaseous phase behave as ideal gases with densities
denoted by ρgN and ρgW , and that there are no volume effects due to mixing. Hence:

ρgN =
MNpatm

RT
, ρgW =

MW patm

RT
,

ρgw

ρgW (T )
+

ρgn

ρgN(T )
= 1, (5.2)
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Figure 5.1. a) Left: Phase space for the phase configurations. b) Right: The
states and wave sequences curves of the Riemann solution in the tp configura-
tion.

where the patm is the pressure of the atmosphere, R is the gas constant; MW , MN are the
nitrogen and water molar masses. From Eq. (5.2), we define the steam and nitrogen gas
composition as:

ψgw = ρgw/ρgW (T ) and ψgn = ρgn/ρgN(T ), so ψgw + ψgn = 1. (5.3)

The compositions ρgw and ρgn are functions of temperature only, which can be obtained from
(5.3.a) and (5.3.b). Using Eqs. (5.2.a), (5.2.b), (5.3.a) and (5.3.b), Eqs. (4.1)-(4.4) become:

∂

∂t
ϕθW ψgwT−1 +

∂

∂x
uθW ψgwT−1 = 0, (5.4)

∂

∂t
ϕθNψgnT−1 +

∂

∂x
uθNψgnT−1 = 0, (5.5)

∂

∂t
ϕ
(
Ĥr + ψgwHgW + ψgnHgN

)
+

∂

∂x
u
(
ψgwHgW + ψgnHgN

)
= 0; (5.6)

we have substituted ρgW and ρgN from Eqs. (5.2.a), (5.2.b), defined HgW = MW patmhgW /RT
and HgN = MNpatmhgN/RT , where hgW and hgN are functions of T , see [9]. We have three
variables to determine: temperature, gas composition and Darcy speed.

6. The Riemann problem for steam and nitrogen injection

We consider the injection of a mixture of steam and nitrogen in the spg below boiling
temperature of pure water at prevailing pressure into a rock saturated with water. These
initial data are typical for shallow subsurface clean up:

{
(0, ψL, TL, uL) if x = 0 (the injection point),
(1, ψgw(TR), TR, ·) if x > 0.

(6.1)

where s = sw is the water saturation and ψ = ψgw is the steam composition. The speed uL

is specified at the injection side and the right side uR is obtained from left and right states
and the Riemann solution. The general solution of the Riemann problem associated to Eq.
(2.5) consists of a sequence of elementary waves, namely shocks and rarefactions.
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Shocks are special type of discontinuities appearing in solution of the Riemann problems.
They need to satisfy the Rankine-Hugoniot conditions (RH), see [9], which can be written
as:

vs
(
G+(V +)−G−(V −)

)
= u+F+(V +)− u−F−(V −), (6.2)

where (V +, u+) is the state on the right of the shock and (V −, u−) is the state on the left
of the shock; vs is the shock speed; G+ (G−) and F+ (F−) are the accumulation and flux
terms on the right (left) of the shock, which in general have different expressions in each
phase configuration. We specify the left conditions for the variables V and u, but the right
conditions are specified only for V . The speed u+ is always obtained from the RH condition
(6.2).

The smooth waves in the Riemann solution are obtained by differentiating all equations
in (2.6) with respect to their variables obtaining a system of the form:

(
B

∂

∂t
+ A

∂

∂x

)
(V, u)T = 0,

where the matrices B and A are the derivatives of G(V ) and uF (V ) with respect to the

variables V and u. (V, u)T represent a column vector. Since G(V ) does not depend on u,
the last column in the matrix B is zero. The characteristic values λ and vectors ~ri, (where
i is the label of each eigenvector) for the following system are the rarefaction wave speeds
and directions:

A~ri = λB~ri where λ is obtained by solving det(A− λB) = 0.

6.1. The fundamental waves. In the spg configuration there are two waves: a thermal and
a compositional wave. On the thermal wave, the temperature and speed u change while the
gas composition is constant. The characteristic speed is denoted by λT . On the compositional
wave, the gas composition changes while the temperature and speed are constant. This wave
has speed denoted by λc.

In the tp configuration, there are two waves: an non-isothermal wave and a saturation
isothermal (Buckley-Leverett) wave. The non-isothermal wave is composed by an evapora-
tion rarefaction wave (denoted by Re) and a condensation shock wave (denoted by Sc), where
the saturation, temperature and speed change. The characteristic speed of Re is denoted by
λe and the shock speed of Sc is denoted by vc. This wave is a projection of a non-equilibrium
wave in another wave in the tp phase configurations under thermodynamic equilibrium.

On the saturation wave, the water saturation changes, but the temperature and speed are
constant. The characteristic speed is denoted by λBL (Buckley-Leverett); this rarefaction
wave is represented by RBL. The shock is the Buckley-Leverett shock SBL and its speed is
denoted by vBL.

There is only one wave connecting the spg and the tp configurations, which is also a
condensation shock with speed vGT ; it is denoted by SGT . This shock occurs in a thin region
far away the thermodynamic equilibrium.

6.2. The Riemann solution for our example. We consider the Riemann problem with
left and right states in the form (6.1): L has ψL = 0.1, TL = 340K and R has TR = 300K.

Since L is in the spg configuration, see Fig. 5.1, we propose a shock on the SGT ; this
shock connects L to an intermediate state E1. The speed of this shock satisfies vGB(L; E1) =
λBL(E1), where λBL is the Buckley-Leverett speed. The state E1 is obtained by intersecting
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the Rankine-Hugoniot curve SBL from L with the curve where vBL and λBL coincide. We
can verify that vGB(L; E1) < λT (L).

From E1 there exists an isothermal rarefaction RBL up to E2, with fixed temperature TE1 .
The state E2 is obtained using the “left-characteristic shock curve” (lcsh, see Fig. (5.1.b).

The lcsh curve (see Fig. (5.1.b)) is formed by the states P1 on the RBL (from E1), such
that there is a state P2 belonging to the condensation shock Sc (from P1) and to the vertical
line from the right state R, where the equality vc(P1; P2) = λBL(P1) is satisfied. The vertical
line represents an isothermal Buckley-Leverett shock and a rarefaction curve.

The state E2 is the intersection between the vertical line starting at the right state R
and the “left characteristic shock curve”, see Figure (5.1.b). The state E3 is the intersection
between Sc starting at E2 and the vertical line from the right state R. From E3 there is
an isothermal rarefaction up to E4. The state E4 is obtained so as to satisfy the equality
λBL(E4) = vBL(E4; R). The solution is summarized in the Figures (5.1.b) and (6.1).

Condensation of water occurs in the shocks SGT and Sc between the states L-E1 and
E2-E3.
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Figure 6.1. a) Left: Riemann solution in phase space V , for our example.
In the Riemann solution, we have removed the surface in the phase space of
Fig. 5.1. b) Right: The saturation, temperature and gas composition profiles
for some t > 0. In both Figures, the numbers 1 to 4 indicate the intermediate
states E1 to E4.

7. Summary and Conclusions

By asymptotic expansions, we have found a systematic procedure to reduce balance laws
including mass transfer between phases to a local thermodynamic equilibrium compositional
model. The method has been applied to non-isothermal flow.



THE ROLE OF NON-EQUILIBRIUM THERMODYNAMICS IN COMPOSITIONAL MODELING 9

We have also shown an example of the Riemann solution for the injection of a mixture of
nitrogen and steam into a porous rock filled with water and sketched a systematic theory for
the Riemann solution. This solution shows that in principle it is possible to clean up NAPL’s
from the soil with a mixture of nitrogen and steam at moderate temperatures, (67oC). The
set of solutions depends continuously on the Riemann data. For other cases, see [9].

Table 2, Summary of physical input parameters and variables

Physical quantity Symbol Value Unit
Water, steam fractional functions fw, fg Eq. (3.2) . [m3/m3]
Porous rock permeability k 1.0× 10−12. [m3]
Water, steam relative permeabilities krw, krg see [9] for equations [m3/m3]
Pressure patm 1.0135× 105. [Pa]
Water, gaseous phase velocity uw, ug Eq. (3.1) . [m3/(m2s)]
Total Darcy velocity u uw + ug, Eq. (3.3) . [m3/(m2s)]
Rock and water heat capacities Cr and CW 2.029× 106 and 4.018× 106. [J/(m3 K)]
Steam and nitrogen enthalpies HgW , HgN see [9] for equations [J/m3]
Water and Rock enthalpies HW , Hr see [9] for equations [J/m3]
Water, steam saturations sw, sg Dependent variables. [m3/m3]
Temperature, Reference Temperature T Tref Dependent variable, 293K. [K]
Water, gaseous phase viscosity µw, µg see [9] for equations [Pa s]
Steam and nitrogen densities ρgw, ρgn see [9] for equations [kg/m3]
Constant water density ρW 998.2. [kg/m3]
Steam and nitrogen gas composition ψgw, ψgn Dependent variables. [−]
Universal gas constant R 8.31 [J/mol/K]
Nitrogen and water molar masses MN , MW 0.28, 0.18 [kg/mol]
Rock porosity ϕ 0.38. [m3/m3]
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