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Abstract

In this paper we show that even when the virtual surplus is strictly concave,
an stochastic contract may be desirable. The results are established in the
Principal-Agent model context with a continuum type set.
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1. Introduction

The literature in theory of contracts deals mainly with deterministic con-
tracts. In this paper we present three examples where the deterministic con-
tract is suboptimal, even though the virtual surplus in these examples is strictly
concave, which would suggest that any randomization is undesirable.

In the Principal-Agent model, the principal’s optimization problem consists
in choosing a contract (q, t) that maximizes her expected utility subject to the
agent’s individual rationality (IR) and incentive-compatibility (IC) constraints.
The standard method to solve it is to derive a new expression for the objective
function eliminating the monetary transfer t and then define a relaxed version
of the original problem, using this new expression and ignoring the (IC) con-
straints. Now observe that if qr is implementable (i.e. if we can find a monetary
transfer tr such that (qr, tr) satisfies the (IC) constraints), then (qr, tr) is a solu-
tion of the original problem. Strausz [8], in a model with finite type set, proved
that this contract (qr, tr) is optimal even if we allow for stochastic contracts.
We extend this result for a continuum of types Θ = [θ, θ].

Therefore, if we want to find examples where the deterministic contract
is suboptimal, we should look for situations where the relaxed solution is not
implementable. In the first example, we are under single-crossing condition
CS+ but the relaxed solution is strictly decreasing. In the second example, the
single-crossing condition is not valid. Finally, in the third example, the agent’s
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type has a mass point.2 In all examples, the virtual surplus is strictly concave
in the q variable.

2. Model

We analyse the optimality of deterministic contracts in the unidimensional
screening problem using the Principal-Agent setup. The principal and agent
interaction is mediated by a contract, a pair (q, t) where q ∈ Q ⊂ R represents
the agent’s decision and t ∈ R is the monetary transfer. The agent’s private
information is represented by his type θ ∈ Θ = [θ, θ], a random variable with
probability distribution function F (θ). The principal and the agent have quasi-
linear preferences given respectively by

U(q, t, θ) = u(q, θ)− t and V (q, t, θ) = v(q, θ) + t.

We assume that u(·, θ) is continuous, v(q, θ) is C3 with vθ > 03 and that Q ⊂ R
is compact. The function F (θ) is absolute continuous with density f(θ) > 0.4

We consider stochastic and deterministic contracts. For stochastic ones, let
Q denote the Borel σ−algebra on Q and ∆Q the set of probability measures
on Q. Then a stochastic contract consists in a pair of functions S = (µ, t) :
Θ→ (∆Q,R) associating for each θ type agent a probability measure µ(θ) and
a monetary transfer t(θ).5

On the other hand, a deterministic contract is simply a pair of functions
D = (q, t) : Θ → (Q,R). Notice that any deterministic contract D = (q, t) is
equivalent to an stochastic contract S = (µd, t) where µd(θ), for all A ∈ Q, is
defined by

µD(θ)(A) =

{
1, if q(θ) ∈ A,
0, if q(θ) /∈ A.

Using the ‘Revelation Principle’ 6 we can state the principal’s maximization
problem. In the stochastic case, it consists in choosing the pair (µ, t) : Θ →

2This example is inspired by Hellwig [3], where we can find a methodology for dealing with
more general specifications for the type distribution function.

3The analysis here is also valid when vθ < 0. We only have to change the expression for
the virtual surplus.

4In Example 3, we will consider a more general distribution function that is discontinuous.
5As observed by [9], under quasilinear preferences we may assume without loss of generality

that the monetary transfer is deterministic.
6The ‘Revelation Principle’ has been enunciated in Gibbard [2].
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∆Q× R that solves

(Ps)



max
S=(µ,t)

V (S) =

∫
Θ

{Eµ(θ)[u(q, θ)]− t(θ)}dF (θ), (1)

subject to the individual-rationality constraints
Eµ(θ)[v(q, θ)] + t(θ) ≥ 0, ∀θ ∈ Θ, (2)

and the incentive compatibility constraints
Eµ(θ)[v(q, θ)] + t(θ) ≥ Eµ(θ′)[v(q, θ)] + t(θ′), ∀θ, θ′ ∈ Θ. (3)

On the other hand, in the deterministic case, the principal has to choose a
pair of functions (q, t) : Θ→ R× R that solves

(Pd)



max
D=(q,t)

V (D) =

∫
Θ

[u(q(θ), θ)− t(θ)]dF (θ), (4)

subject to the individual-rationality constraints
v(q(θ), θ) + t(θ) ≥ 0, ∀θ ∈ Θ, (5)

and the incentive compatibility constraints
v(q(θ), θ) + t(θ) ≥ v(q(θ′), θ) + t(θ′), ∀θ, θ′ ∈ Θ. (6)

Observe that if S∗ and D∗ are maximizers of (Ps) and (Pd) respectively, then
the valuation satisfies V (D∗) ≤ V (S∗). Indeed, as we saw before, the set of
deterministic contracts is contained in the set of stochastic contracts.

2.1. Implementability
We say that q : Θ → Q is implementable when there exists a monetary

transfer t(θ) such that the pair (q, t) satisfies (6). In the deterministic case, the
single-crossing condition gives a characterization of implementability.

Definition 1 (Single-crossing). The function v(q, θ) satisfies the single-crossing
condition when we have either

∀ (q, θ) in Q×Θ : vqθ > 0, (CS+)
or
∀ (q, θ) in Q×Θ : vqθ < 0. (CS−)

Under the single-crossing condition, implementability is equivalent to the mono-
tonicity of the decision function, with q(·) increasing if CS+ or decreasing if
CS−.7

In the stochastic case the definition of implementability is similar. Thus a
probability measure µ(θ) is implementable if one can find a monetary transfer

7See [7] or [9], chapter 7.
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t(θ) such that the constraints (3) are satisfied. If we restrict the set of utility
functions, we also have a simple characterization of the implementable stochastic
decisions. Indeed, let us consider the class of separable utility functions with
the form

v(q, θ) = `(θ)h(q),

where `′(θ) > 0. With this functions, the agent’s expected utility is

Eµ(θ)[v(q, θ)] = `(θ)Eµ(θ)[h(q)].

Then, defining

ṽ(x, θ) = `(θ)x and x(θ) = Eµ(θ)[h(q)],

we can see that ṽ satisfies the single-crossing condition (CS+). Therefore x(θ) is
implementable if and only if it is nondecreasing. Finally, the essential observa-
tion is that x(θ) implementability is equivalent to µ(θ) implementability. This
criterion will be used in our examples and is summarized in the next Proposition.

Proposition 1 (Implementability criterion). Let the agent’s utility func-
tion be v(q, θ) = `(θ)h(q), with `′(·) > 0,8 and consider a probability measure
µ(·) in Q. Then µ(θ) is implementable if and only if Eµ(θ)[h(q)] is nondecreas-
ing.

2.2. Relaxed Problem
Now we investigate when the deterministic contract is an optimal choice

for the principal. Our analysis relies on Mirrlees [6] approach to the prob-
lem. The trick is to use the agent’s indirect utility function to eliminate the
monetary transfer function t(θ) from the principal’s problem. After that, we in-
troduce a relaxed version of problems (Ps) and (Pd), disregarding the incentive-
compatibility constraints (3) and (6). Finally we have to check ex-post if the so-
lution of these relaxed problems satisfies the incentive compatibility constraints.

Let us begin with an important definition. Suppose that the stochastic
contract (µ, t) is incentive compatible. Then the agent’s indirect utility is defined
by

V(θ) = max
θ′∈Θ

Eµ(θ′)[v(q, θ)] + t(θ′) = Eµ(θ)[v(q, θ)] + t(θ), (7)

and using the envelope theorem from [5], we can get its derivative

V ′(θ) = Eµ(θ)[vθ(q, θ)]. (8)

8We have an analogous result when `′(·) < 0. In this case implementability is equivalent
to a nonincreasing Eµ(θ)[h(q)].
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We plug V(·) into the objective function in (1) and, after that, an integration
by parts gives us∫

Θ

Eµ(θ)[u(q, θ) + v(q, θ)− 1− F (θ)

f(θ)
vθ(q, θ)]f(θ)dθ. (9)

The virtual surplus function is defined by

g(q, θ) = (u(q, θ) + v(q, θ)− 1− F (θ)

f(θ)
vθ(q, θ)). (10)

Then, the relaxed version of the principal’s stochastic problem is simply

max
µ(·)

∫
Θ

Eµ(θ)[g(q, θ)]f(θ)dθ. (P rs )

Repeating the same procedure, we can define relaxed version of the principal’s
deterministic problem as

max
q(·)

∫
Θ

g(q, θ)f(θ)dθ. (P rd )

The solution of (P rd ) is called the relaxed solution, denoted by qr(θ). We
can associate it to the probability measure µr(θ) defined for all A ∈ Q by

µr(θ)(A) =

{
1, if qr(θ) ∈ A,
0, if qr(θ) /∈ A,

(11)

Observe that µr(θ) is a solution for problem (P rs ). Moreover, when qr(θ) is
implementable, it solves problem (Pd) and (Ps). This is the result of the next
proposition.9

Proposition 2 (Strausz-Jullien). Let qr(θ) be the relaxed solution. Then

(i) µr solves problem (P rs ).
(ii) When qr(θ) is implementable, then qr(θ) solves problem (Pd) and µr solves

problem (Ps).

Proof.
(i) First, observe that qr(θ) satisfies

qr(θ) ∈ arg max
q∈Q

g(q, θ).

Therefore,

∀µ(θ) ∈ ∆Q, Eµ(θ)[g(q, θ)] ≤ g(qr(θ), θ) = Eµr(θ)[g(q, θ)].

9Strausz [8] established this result for a finite type set Θ and we are establishing its natural
extension for a continuous type set. We mention that Jullien [4] derived a similar result in a
more general context.
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(ii) There are two affirmatives in this item. For the first affirmative, observe
that problem (P rd ) is less constrained than problem (Pd). So if the relaxed
solution is implementable then it is also a solution of (Pr). For the second, we
have

V (S) ≤ max
µ(·)

∫
Θ

Eµ(θ)[g(q, θ)]dθ ≤
∫

Θ

g(qr(θ), θ)dθ,

where the inequality at the left hand side is because problem (P rs ) is less con-
strained than problem (Ps). The other inequality comes from item (i). Finally,
as µr(θ) is implementable (because qr(θ) is implementable) the result follows.

The consequence of Proposition 2 is straightforward. When the relaxed
solution is implementable, then the deterministic contract is optimal and there
is no gain for the principal in considering stochastic contracts.

3. Examples

We are going to present three examples where the deterministic contract is
suboptimal. As we know from Proposition 2, the relaxed solution qr(·) in these
examples cannot be implementable. Our strategy, in the first two examples, is
to present a sequence of implementable random variables {q̃k(θ)}k>1 satisfying

(i) limk→∞E[q̃k(θ)] = qr(θ),

(ii) limk→∞

∫ 1

0

E[g(q̃k(θ), θ)]f(θ)dθ =

∫ 1

0

g(qr(θ), θ)f(θ)dθ.

In the third example, we consider a discontinuous distribution function, so the
objective function is slightly different and we have to replace item (ii) by

(ii’) limk→∞E[V (q̃k)] = V (qr),

where V is the new objective function in the relaxed problem, or simply the
valuation.10

Example 1 (Strict concavity). The agent’s and principal’s utility are re-
spectively

v(q, θ) = (θ − 1)q3 and u(q, θ) = −1

2
q
(
(θ − 1)(2 + 4q2) + q

)
.

10In the previous examples, the valuation is just V (q̃(·)) =

∫ 1

0
E[g(q̃(θ), θ)]f(θ)dθ. In

Example 1, as we are considering a discontinuous distribution function, the objective function
will be different.
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The agent’s type θ is uniformly distributed in [0, 1]. With these specifications,
the virtual surplus

g(q, θ) = (1− θ)q − q2

2

is strictly concave and the relaxed solution is

qr(θ) = 1− θ.

This function is not implementable because it is decreasing and only increasing
functions are implementable when we are under single-crossing CS+. We fix
this problem using the ironing procedure. As qr(·) is decreasing for all θ ∈ Θ,
the solution will consist in a bunching represented by qi(θ) = q̂. The optimal
bunching is characterized by∫ 1

0

d

dq
g(q̂, θ)f(θ)dθ = 0. (12)

Solving equation (12) we get qi(θ) = 1
2 . The payoff associated to qi(·) is∫ 1

0

g(qi(θ), θ)f(θ)dθ =
1

8
.

We can see in Fig. 1 the relaxed solution qr(θ) and the solution of (Pr), denoted
by qi(θ).

qr(θ)

qi(θ)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.5

Figure 1: The solutions qr(θ) and qi(θ).

Now consider a discrete random variable q̃k(θ) taking values inQk = {qr(θ), k}
with probabilities pk(θ) and 1− pk(θ) respectively.11 The implementability re-
quires that E[q̃k(θ)3], as a function of θ, is nondecreasing. This is achieved, for

11The notation we use is pk(θ) = Pr (q̃k(θ) = qr(θ)) and 1 − pk(θ) = Pr (q̃k(θ) = k).
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example, by imposing

E[q̃k(θ)3] = 1. (13)

After that, if we solve (13) for pk(θ) we find

pk(θ) =
k3 − 1

(θ − 1)3 + k3
,

and using this probability, we get

E[q̃k(θ)] =
−(θ − 1)k2 + (θ − 1)2k + 1

(θ − 1)2 + k2 − θk + k
. (14)

Taking the limit in (14) we get item(i).
For item(ii), observe that

E[g(q̃k(θ), θ)] =
−θ + (θ − 1)2k2 +

(
−2θ3 + 6θ2 − 6θ + 1

)
k + 1

2 ((θ − 1)2 + k2 − θk + k)
,

and in the limit, we have

lim
k→∞

E[g(q̃k(θ), θ)]f(θ) =
1

2
(θ − 1)2

Using the dominated convergence theorem,

lim
k→∞

∫ 1

0

E[g(q̃k(θ), θ)]f(θ)dθ =
1

6
=

∫ 1

0

g(qr(θ), θ)f(θ)dθ,

and item(ii) is established.

Example 2 (Non single-crossing). The agent’s and principal’s utility are
respectively12

v(q, θ) =
1

3
(θ − 1)

(
4q3 − 3q + 1

)
, and

u(q, θ) =
1

6

(
−4θ − 16(θ − 1)q3 − 3q2 + 6(θ − 1)q + 4

)
.

We assume that the agent’s type θ is uniformly distributed in [0, 1]. Notice
that the utility function v(q, θ) does not satisfy the single-crossing condition.
Indeed, as we can see in Fig. 2, the (θ, q)-plane can be divided in two regions,
CS+ where vqθ > 0 and CS− where vqθ < 0. The boundary between these
regions is represented by the curve q0(θ) = 1/2.

12Notice that the utility function v(q, θ) does not satisfy the single-crossing condition. In-
deed, as we can see in Fig. 2, the (θ, q)-plane can be divided in two regions, CS+ where
vqθ > 0 and CS− where vqθ < 0. The boundary between these regions is represented by the
curve q0(θ) = 1/2.
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Using equation (10), we get the virtual surplus

g(q, θ) = −1

2
q(2θ + q − 2),

and the relaxed solution is simply

qr(θ) = 1− θ.

The relaxed solution cannot be implementable because it is decreasing in CS+,
where vqθ > 013.

qr(θ)

q0(θ)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.5

CS−

CS+

Figure 2: The relaxed solution qr(θ) and the q0(θ) curve.

Repeating what we did in Example 1, we will define a sequence of imple-
mentable random variables {q̃k(θ)}k>1 taking values in Qk = {qr(θ), k} with
probabilities pk(θ) and 1− pk(θ) respectively. If we take

pk(θ) =
−4k3 + 3k + 1

−4θ3 + 12θ2 − 9θ − 4k3 + 3k + 1
.

then we get

E[q̃k(θ)3] =
2

3
.

As E[q̃k(θ)3] is constant, using Proposition 1 we conclude that this sequence of
random variables is implementable. The expected value is

E[q̃k(θ)] =
−4(θ − 1)k2 + 4(θ − 1)2k + 1

4θ2 − 8θ + 4k2 − 4(θ − 1)k + 1
.

13Following [1] one can see that the relaxed solution qr(θ) violates a necessary imple-
mentability condition.
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Taking the limit we get item (i),

lim
k→∞

E[q̃k(θ)] = qr(θ)

The expected value of the virtual surplus is

E[g(q̃k(θ), θ)] =
−θ + 4(θ − 1)2k2 +

(
−8θ3 + 24θ2 − 21θ + 4

)
k + 1

8θ2 − 16θ + 8k2 − 8(θ − 1)k + 2

Again, in the limit we have

lim
k→∞

E[g(q̃k(θ), θ)] =
1

2
(θ − 1)2 = g(qr(θ), θ).

Finally, using the dominated convergence theorem we get item (ii).

Example 3 (Distribution with atoms). The agent’s and principal’s utility
are respectively

v(q, θ) = (θ − 1)q3 and u(q, θ) =


q3 − q2

2 + q
2 , if θ = 0,

− 1
2q
(
−2θ + 4(θ − 1)q2 + q

)
, if 0 < θ ≤ 1.

The probability distribution function is

F (θ) =


0, if θ < 0,
θ
2 + 1

2 , if 0 ≤ θ < 1,
1, if θ ≥ 1,

with a mass point θ = 0. This function can be decomposed as a sum F (θ) =
Fac(θ) +FJ(θ), where Fac is absolute continuous with density fac and FJ is the
jump function

FJ(θ) =

{
0, if θ < 0,
1
2 , if 0 ≤ θ.

Now, if we repeat the same derivation we did in subsection 2.2, we get the
following

V (q(θ)) =

∫ 1

0

ĝ(q(θ), θ)fac(θ)dθ + ĝ0(q)FJ(0),

where

ĝ(q, θ) = [v(q, θ) + u(q, θ)− (1− F (θ))

fac(θ)
vqθ(q, θ)] = −1

4
q(q − 2θ),
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and

ĝ0(q) = v(q, 0) + u(q, 0) =
q

2
− q2

2
.

To find the relaxed solution, we have to maximize the ĝ(·, θ) and ĝ0(·) in q, and
we get

qr(θ) =

{
1
2 , if θ = 0,
θ, if 0 < θ ≤ 1.

As we are under single-crossing CS+, the relaxed solution is not implementable.
We need to use an ironing procedure to find the optimal solution for the deter-
ministic problem. In this case, the resulting decision is characterized by

qi(θ) =

{
qi, if θ ≤ qi,
θ, if θ ≥ qi,

and to find qi we have to solve∫ 1

0

d

dq
ĝ(qi, θ)fac(θ)dθ +

d

dq
ĝ0(qi)FJ(0) = 0. (15)

and solving (15) we get the optimal choice for qi =
√

6− 2. In Fig. 3 we depict
qr(θ) and qi(θ)14.

qr(θ)

qi(θ)

qi

qi
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.5

Figure 3: The relaxed solution qr(θ) and the solution qi(θ) resulting from the ironing proce-
dure.

Now we will define a sequence of implementable random variables {q̃k(θ)}k>1

taking values in Qk = {qr(θ), k} with probabilities pk(θ) and 1 − pk(θ) respec-

14Observe that the shape of the qi solution is just the same as in Hellwig [3] Fig.1.
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tively. The probability we use is

pk(θ) =


1, if θ = 0,

8k3−1
8(k3−θ3) , if 0 < θ ≤ 1

2 ,
1, if θ > 1

2 .

With this specification, we have the implementability of our sequence, because

E[q̃k(θ)3] =

{
1
8 , if θ ≤ 1

2 ,
θ3, if θ > 1

2 ,

is increasing. The expected value of q̃k(θ) is

E[q̃k(θ)] =


1
2 , if θ = 0,
8θk2+8θ2k+1
8(θ2+k2+θk) , if 0 < θ ≤ 1

2 ,
θ, if θ > 1

2 .

For item(i) we take the limit and we get

lim
k→∞

E[q̃k(θ)] = qr(θ).

For item(ii), we observe that

E[V (q̃k(θ)] =

∫ 1/2

0

θ + 8θ2k2 +
(
16θ3 − 1

)
k

32 (θ2 + k2 + θk)
dθ +

∫ 1

1/2

θ2

4
dθ +

1

16
.

The only term that depends on k satisfies

lim
k→∞

θ + 8θ2k2 +
(
16θ3 − 1

)
k

32 (θ2 + k2 + θk)
=
θ2

4
.

and using the dominated convergence theorem

lim
k→∞

E[V (q̃k(θ))] =

∫ 1

0

θ2

4
dθ +

1

16
= V (qr(θ)).

4. Conclusion

We presented three examples where the deterministic contract is subopti-
mal. To build them, we considered situations where the relaxed solution is not
implementable. In all the examples, the virtual surplus is strict concave. How-
ever, this characteristic does not precludes the use of an stochastic contract by
the principal. The reason is that randomization allows for a relaxation of the
(IC) constraints.
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