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Résumé

Un célébre lemme de John Franks dit que toute perturbation de la différentielle d’un
difféomorphisme f le long d’une orbite périodique peut étre réalisée par une C'-perturbation
g du difféeomorphisme sur un voisinage arbitrairement petit de ladite orbite. Ce lemme
cependant ne donne aucune information sur le comportement des variétés invariantes de
I'orbite périodique aprés perturbation.

Dans cet article nous montrons que si la perturbation de la dérivée peut étre jointe a la
dérivée initiale par un chemin, alors la distance C' entre f et g peut étre trouvée arbitraire-
ment, proche du diamétre du chemin. De plus, si des directions stables ou instables d’indices
fixés existent le long du chemin, alors les variétés invariantes correspondantes peuvent étre
préservées en-dehors d’un voisinage arbitrairement petit de I’orbite.

Abstract

A well-known lemma by John Franks asserts that one can realise any perturbation of the
derivative of a diffeomorphism f along a periodic orbit by a C''-perturbation g of the whole
diffeomorphism on an arbitrarily small neighbourhood of the periodic point. However, that
lemma does not provide any information on the behaviour of the invariant manifolds of the
periodic point for g.

In this paper we show that if the perturbated derivative can be joined from the initial
derivative by a continuous path, then the C!-distance between f and g can be found arbi-
trarily close to the diameter of the path. Moreover, if strong stable or unstable directions
of some indices exist along that path, then the corresponding invariant manifolds can be
preserved outside a small neighbourhood of the orbit.

1 Introduction

To study the dynamics of C'-generic diffeomophisms on compact manifolds, that is, diffeomor-
phisms of a residual subset of the set Diff!(M) of C' diffeomorphisms, one heavily relies on a
few Cl-specific perturbation tools and ideas.

On the one hand, closing and connecting lemmas create periodic points and connecting
homoclinically saddle. The C!'-Closing Lemma of Pugh [Pug67| states that a recurent orbit
can be closed by an arbitrarily small C'-perturbation. This was eventually generalized into
the C'-ergodic closing Lemma by Maiié [Man82|. Using similar ideas, the connecting lemma of
Hayashi [Hay97] states that if the unstable manifold of a saddle point accumulates on a point of
the stable manifold of another saddle, then a C'! perturbation creates a transverse intersection
between the two manifolds. That result is further generalized in [WXO00], [Arn01] and finally
in [BC04] and [Cro06|, where remarkable generic consequences are obtained.



On the other hand we have tools to perturb the derivative along a periodic orbit, or to
create local dynamical patterns by Cl-perturbations around periodic orbit. John Franks’ intro-
duced in [Fra71] a very simple lemma that allows to realise the perturbation of the derivative
along a periodic orbit as a C''-perturbation of the whole diffeomorphism on an arbitrarily small
neighbourhood of that orbit. This is the very lemma that systematically allows to reduce C'-
perturbation problems along periodic orbits to linear algebra.

Another perturbation result around a periodic orbit and a consequence of Franks’ lemma is
for instance the first step of their proof of the Palis C''-density conjecture in dimension 2 (the
union of hyperbolic diffeomorphisms and diffeomorphisms admitting a homoclinic tangency is
Cl-dense in the set of diffeomorphisms). Pujals and Sambarino [PS00] first proved that if the
dominated splitting between the stable and unstable directions of a saddle point is not strong
enough, then a Cl-perturbation of the derivative along the orbit induces a small angle between
the two eigendirections. They apply the Franks’ Lemma and finally, they do another perturbation
to obtain a tangency between the two manifolds. Wen [Wen02| generalized somewhat that first
step in dimension greater than 2 under similar non-domination hypothesis.

These perturbations results rely on the Franks’ lemma which unfortunately fails to yield any
information on the behaviour of the invariant manifolds of the periodic point. In particular, one
does not control a priori what homoclinic class the periodic point will belong to, what strong
connections it may have after perturbation, and it may not be possible to apply a connecting
lemma in order to recreate a broken homoclinic relation. Therefore we naturally ask whether the
Franks’ perturbation lemma can be tamed into preserving more or less the invariant manifolds
of the saddle point.

In [Gou06], a technique is found to preserve any fixed finite set in the invariant manifolds
of a periodic point for particular types of perturbations along a periodic orbit. In particular it
implies that one can create of homoclinic tangencies inside homoclinic classes on which there is
no stable/unstable uniform dominated splitting. This technique however is very complex and
difficult to adapt to other contexts.

In this paper, we find a very simple and general context in which we have good control of
the invariant manifolds of a saddle point after a perturbation of its derivative. We first state the
so-called Franks Lemma:

Lemma (Franks). Let f be a diffeomorphism. For all € > 0 there is § > 0 such that, for any
periodic orbit X of f, for any d-perturbation A of the derivative df x along the orbit X, one finds
a C' e-perturbation g of f on an arbitrarily small neighbourhood of X such that dgx = A.

In this paper we provide a perturbation theorem that extends the Franks’ Lemma, controlling
both the behaviour of the invariant manifolds of X, and the size € of the C''-perturbation we need
to obtain the derivative A. Precisely, we prove that if the perturbation A of df|x is done along
a path along which the strong stable/unstable directions of some indices allways exist, then the
diffeomorphism ¢ can be chosen in order to preserve the corresponding strong stable/unstable
manifolds outside an arbitrarily small neighbourhood. Moreover, the size of the perturbation is
given by the length of the path. That theorem is precisely stated in section 2.

We state in section 5 further foreseen generalisations of our perturbation Lemma. If we do not
require that the flags of stable/unstable be entirely preserved outside a small neighbourhood of
X, but only almost entirely preserved, then one allows the eigenvalues to cross each other along
the perturbation path (it is not required any more that the strong stable/unstable directions of



fixed indices exist all along the path). Moreover, these times at which several eigenvalues have
same moduli enable as many freedoms of choice for the strong stable and unstable manifolds.

Finally in section 6 we claim that requiring the existence of “good” paths is not so constraining.
Indeed, many of the cocycle perturbations techniques that we know of are adaptable to building
such paths. A few cocycle perturbation statements are proposed as examples. We point out that
our result allows another proof of [Gou06].

Remerciements : Je remercie vivement Flavio Abdenur, Christian Bonatti, Sylvain Crovisier et
Lorenzo Diaz pour de nombreuses discussions, suggestions et encouragements ainsi que Marcelo
Viana et 'IMPA - Instituto nacional de Matemdtica Pura e Aplicada (Rio de Janeiro) pour la
confiance qui m’a €té accordée et pour le soutien financier et matériel dans le cadre de mon
Post-Doctorat.

2 Definitions and statement of results.

In the following f is a C'-diffeomorphism of a Riemannian manifold M of dimension d, and X
is a periodic orbit for f. Let 3 be the vector space of cocycles o on T'M|x that project on f)x,
that is, such that the following diagram commutes:

TM,x TMy .
¥ X
X ! X
We endow that vector space with the norm ||o|s = 31713/[ lo(v)||. The eigenvalues of a cocycle
ve
l[ol=1

are the eigenvalues of the first return map. When the eigenvalues A ..., Ay of a cocycle o, counted
with multiplicity and ordered by increasing moduli, are so that |[A\;| < |[X\i+1] and |N\;| < 1, the i-
strong stable direction of dimension i of o is the invariant bundle corresponding to the eigenvalues
A1, ...y Aj. If the cocycle o = df| x has a strong stable direction of dimension i, then the i-strong
stable manifold of X for f is the unique f-invariant, i-dimensionnal manifold that is tangent to
that direction. The strong unstable manifolds are naturally defined symmetrically.

Given two finite sets I,J of positive integers, we denote by X ; the set of cocyles that
are bijective and have a strong stable (resp. unstable) direction of dimension i for all i € T
(resp. i € J). We endow X; ; with the following distance: for all o,7 € ¥; ;, dist(o,7) =
max (o — 7, [lo~L = 7).

Let f bein ¥; ;. Let U be a neighbourhood of X.

The local i-strong stable manifold of X inside U for f is the set of points of the i-strong stable
manifold whose positive iterates remain in &/. We denote it by locl/l(f’ X). The local i-strong
stable manifold of f outside U is the set of points y of the i-strong stable manifold of f outside
U whose positive orbit does not leave U once it entered it. We denote it by W,”" \u(f, X). The
local strong unstable manifolds are naturally defined symmetrically.

Let g be a perturbation of f such that the cocycles df x,dg)x are in Xy ;. We say that

g preserves locally the i-strong stable manifold of f outside U if and only if W \u(f, X) =
VVlOC.\M(g,X). We say that it preserues locally the i-strong unstable manifold of f outside U if
and only if VV;;Z\u(f,X) = VV;;Z\U(Q,X). We write that g preserves locally the (I,J)-strong
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stable /unstable manifolds of f outside U, if and only if for all ¢ € I (resp. j € J), it preserves
the i-strong stable (resp. the j-strong unstable) manifolds of f outside U.
We can now state the main theorem:

Theorem 2.1. Assume that df|x is in Xy, 7, and let v: [0,1] — X5 ; be a path starting at df|x.

Let r(7y) be the radius sup dist(dfix,v(t)) of the path . Then there is a perturbation g of f on
te(0,1]
an arbitrarily small neighbourhood U of X such that

o the Cl-distance between g and f is arbitrarily close to the radius r(7Y),

o the (I,J)-strong stable/unstable manifolds are preserved locally outside U.

3 Perturbation propositions

In this section X is still the orbit of a periodic point of the diffeomorphism f. Given two
diffeomophisms g, h of M, we write that h = g locally at X if they are equal on a neighbourhood
of X. Let us state two fundamental perturbation propositions:

Proposition 3.1 (Py ;). Let g, € Diff(M) be a sequence that converges to g € Diff (M) for the
C-topology, with dgx and dgyx i Xg . For all neighbourhood U of X, there exists a sequence
of diffeomorphisms hy that converges to g such that

o hi = gi locally at X,
o hy =g outside U,
e for k great enough, the (I,J)-invariant manifolds of g and hy coincide locally outside U.

Proposition 3.2 (P} ;). Let g, € Diff(M) be a sequence that converges to g € Diff (M) for the
C'-topology, with dgx and dgyx i Xg, . For all neighbourhood U of X, there exists a sequence
of diffeomorphisms hy that converges to g such that

e hi =g locally at X,
e hp = g outside U,
e for k great enough, the (I,J)-invariant manifolds of g and hy coincide locally outside U.

We are going to prove Propositions Py ; and P; ; (Propositions 3.1 and 3.2) by induction for
all pairs I, J of finite sets of strictly positive integers.

Proof of Pyy and Py, : These are slightly refined Franks’ Lemmas. It is enough to take a
unit partition g+ v =1 on M such that p = 1 outside a small neighbourhood of X and u =0
in a smaller neighbourhood. Then follow the proof of Franks’ Lemma. O

Given two finite sets I, J of strictly positive integers, if they exist, let ig and jy be respectively
the least integer in [ and J, and let I* = I\ {ip} and J* = J\ {jo}.



Lemma 3.3. For any subsets I,J € N\ {0} such that J # 0, Proposition P(I,J*) implies
Proposition P(I,J).

Lemma 3.4. For any subsets I,J € N\ {0} such that J # 0, Proposition P'(I,J*) implies
Proposition P'(I,.J).

By symmetry of statements, up to changing dynamics to inverse dynamics, we also have
that P(I*,J) implies P(I,J), and P'(I*,J) implies P'(I,J). By induction, this implies Propo-
sitions 3.1 and 3.2 for all I, J.

Hence we are left to prove Lemmas 3.3 and 3.4. We first introduce a few notations and a
regularity result on local invariant manifolds. Let x € X. Given two neighbourhoods V C U
of the orbit X, the local i-strong unstable manifold of the point z inside ¢ (resp. outside V) is

denoted by W/}Z’Ci.u(g,x) (resp. VVIZ’CZ.\V(Q,Qf)). Their intersection is denoted by W/}Z’Cz.u\v(g,x).

Remark 3.5. While the strong unstable manifolds inside V) are respectively included in the strong
unstable manifolds inside U, the strong unstable manifolds outside V in general do not respectively
contain the strong unstable manifolds outside U.

Definition 3.6. Two neighbourhoods V C U of the orbit X are said to be regular for g if

1. For any diffeomorphism h close enough to g, the local invariant manifolds of X for h outside
V contain the local invariant manifolds of X for h outside U, respectively.

2. The sets V[/IZZ.M\V(g,x) are submanifolds (with boundary) of M that vary uniformly C'-

continuously by small perturbations of g.

Remark 3.7. There exist arbitrarily small pairs of reqular neighourhoods.

3.1 Proof of Lemma 3.3

We assume P(I,J*). Let g, € Diff(M) be a sequence that converges to g € Diff (M) for the
C'-topology, with dg)x and dgy x in Xy j. In the following, jo is the least integer of J.

We can find an arbitrarily small regular pair of compact neighbourhoods V,U/ of X, and
a “reqular boz” B in U \ V around a pair of consecutive fundamental domains of the jy-strong
unstable manifold of the point x. Precisely, there exist arbitrarily small regular neighbourhoods
U DV > X and aset B C U\YV identified to S0~ x [~1,1[x[~1,1]% % through a C'-
diffeomorphism, such that

(i) the neighbourhoods U,V satisfy the hypothesis of Lemma ?7,

(i3) for all j € J, B; = 9071 x [=1,1[x[~1,1}9770 x {0}977 is the intersection of B and the

local unstable manifold W/}Zgu\v(g,x) in U and outside V,

(#31) the first half-box S70~1 x [—1,0[x[—1,1]?7% is sent at the period on the second half-box by
a translation: for all (a,b,c) € S0~1 x [~1,0[x[~1,1]¢77°, gP(a,b,c) = (a,b+ 1,c), where
p is the period of z. In particular D;, = S0~ x [~1,0[x{0}4770 is a fundamental domain
of the jo-strong unstable manifold,

(iv) the closure of B does not intersect the local stable manifold in U,



Figure 1: Regular box for J = {1,2}

When orientation on W*!(g) is reversed, keep only one of the two connected components.

See a representation in dimension 3 in figure 1. To obtain such a box B, build successively the
subsets B; knowing that for any pair j < j" in J, the local j-strong unstable manifold of g is a
C'-submanifold of the local j’-strong stable manifold. Finally we obtain B from the fact that
the local unstable manifold of ¢ is a C''-submanifold of M.

Remark 3.8. In the particular case jo =1 and g preserves orientation on the 1-strong unstable
manifold, the 1-fundamental domain Dy has two connected components (see figure 1), and so has
B.

When jo = 1 and g reverses orientation on the 1-strong unstable manifold we actually only
have one connected component. In the end of this section, we briefly show how to adapt the
definition of reqular box and the rest of our proof to that particular case.

By P(1,J*), there is a sequence of diffeomorphisms h} that converges to g such that

e hy = gi locally at X,

e hj = g outside V,

e for k great enough, the (I, J*)-invariant manifolds of g and hj coincide locally outside V.

We will now push the local jo-strong unstable manifold of h} in ¢ \ V to coincide with that of
g, by a small perturbation on B. We will ensure that this perturbation can be done preserving
the (I, J*)-invariant manifolds of hj. Let j; be the least integer in J*. If J* is empty, then let
71 = d and write B = By. Each of the following items hold, for k great enough:

(v) forall j € J*, B; is in the j-strong local unstable manifold V[/ligu\v(hj;, x) in Y and outside
V.

(vi) The intersection of the‘ lolcal Jjo-strong unstable manifold I/Vlzgy\v(hz,x) of hy and le =
SPo=1 x [—1,1[x[~1,1]71770 is the graph of a C'-function ¢, : S0~ x [~1,1[— [~1, 1]/t —Jo.



(vii) For all (a,b) € S0~1 x [~1,0[, we have ¢r(a,b) = ¢p(a + 1,b).
(viii) The closure of B does not intersect the local stable manifold of x in U for hj.

Proof : (v) comes from (i7) and from the (I, J*)-invariant manifolds of g and hj, coinciding
locally outside V. (vi) is a consequence of (v), of the regularity of the neighbourhoods V C U for
g and of h} tending C! to g. (vii) is a consequence of (iii) and of the equality g = h} outside
V, in particular on B. (viii) is a consequence of (iv), of the compactness of ¢ and of h} tending
Cltog. O

Since hy, tends to g, ¢, tends to O for the C'-topology. Let p+ ¢ = 1 be a unit partition on
[0, 1] such that p = 0 on a neighbourhood of —1 and p =1 on a neighbourhood of 0. Define the
map
Sio=1 x [—1,1[— [—1,1]/r o
(s wk(av b) = _p(a)'¢k(aa b)v for a € [_17 0[
Y(a,b) = —o(a+1).¢x(a,b), for a € [0,1]

It is well defined and C! on S70~1 x [—1,1[. Let 6: B — [0,1] be a C'! map such that § = 1 on
Sto=1 x [—1,1[x[—1/4,1/4]77 and 6 = 0 outside S0~ x [~1,1[x[~1/2,1/2]¢ 70, Then define

o.. | B= Sto= x [=1,1[x[~1, 1170 x [-1,1]¢7T — B
k ®p(a,b,c,d) = (a,b,c+ 0(a, b, c,d).bp(a,b),d)

For k great enough ®; is well defined and is a diffeomorphism of B that extends the identity
map on M \ B. Finally we define hj, = ®j 0 hj. The sequence hy, tends to g for the C'! topology
and coincides with g outside U.

By (vi) and (vii), for k great enough, the jg-strong unstable manifold of X for hj coincides
locally with that of g on the strictly positive iterates of the first half box S0 ~1x[—1,0[x[~1,1]¢~
until first return in U (since g = hy, outside VUB). Therefore the local jy-strong unstable manifold
of X for hy coincides with that of g locally outside U.

Besides, by (v) and (viii), @ leaves invariant the local (I, J*)-invariant manifolds of g, for
k great enough. Since the (I, J*)-invariant manifolds of g and h} coincide locally outside V,
they coincide outside U (by regularity of the pair U,V for g). Therefore the (I, J*)-invariant
manifolds of g and hy, also coincide outside U. Hence the three following items are satisfied:

e h; = g locally at X,
e hj; = g outside U,
e for k great enough, the (I, J)-invariant manifolds of g and hj, coincide locally outside U.

QED.

We now explain how to adapt the regular box for the particular case mentionned in Re-
mark 3.8: we assume jp = 1 and g reverses orientation on the 1-strong unstable manifold. Then
B is identified to [—1,1[x[~1,1]%7% and we have to change (ii) and (44i) into

(i) for all j € J, B; = [-1,1[x[-1,1]77% x {0}977 is the intersection of B and the local
unstable VV;;ZM\V(g,m) in U and outside V,



(iii') the first half-box [—1,0[x[—1,1]477 is sent at the double period on the second half-box
by a translation: for all (a,b,c) € [~1,0[x[—1,1]9790 ¢?P(b,c) = (b + 1,¢), where p is the
period of . In particular Dj, = [—1,0[x{0}47% is a fundamental domain of the jo-strong
unstable manifold.

The rest of the proof is easily adapted. This concludes the proof of Lemma 3.3.

3.2 Proof of Lemma 3.4

The proof of Lemma 3.4, is very similar to that of Lemma 3.3. We only sketch it. We build
again a regular box B around the jg-strong stable manifold of x for g. Then instead of pushing
local jo-strong unstable manifold of hj, in that box to meet the strong unstable manifold of g,
we push it to meet the jg-strong unstable manifold of gy.

Remember that g, tends to g for the C!-topology, therefore we find for each k a regular box
By, for g, so that the sequence of boxes B, tends uniformly to B for the C'-topology. Then,
the same way as in the previous section, for k great enough we can perturb hy on By into
hi, pushing its jp-strong unstable manifold on that of g;, and preserving its strong unstable
manifolds of greater dimensions and its strong stable manifolds.

It is easily checked that, since By, converges to B and hj, converges to g for the C'-topology,
the size of the perturbation tends to zero, as k-tends to co. Therefore the sequence hi tends to
g. This ends the proof of Lemma 3.4.

4 Proof of the main theorem

We fix a family of charts {¢,: B, — R9},cx, where B, is an open ball containing  and the
closures B, are pairwise disjoint. We denote by D the union of these balls. We endow D with
the corresponding canonical linear structure and Euclidean metric. We endow Diff! (M) with a
Reimannian metric that extends that Euclidean metric.

We have this useful corollary of Proposition 3.1:

Lemma 4.1 (Linearisation). Let g € Diff (M) such that dg|x € Xy ;. then there is an arbitrarily
small perturbation h of g on an arbitrarily small neighbourhood U of X such that dh = dg on X,
such that h is locally linear and the (I, J)-invariant manifolds of g and h coincide locally outside

u.

Proof : By unit partitions we find a sequence hy of locally linear diffeomorphism that tends to
g, and such that dhy = dg on X. Then we apply Proposition 3.1. O

For any cocycle o € Xr j, we denote by o the linear diffeomorphism it induces from a
neighbourhood C, C D of X to its image D, C D. We say that the (I, J)-quasidistance from o
to 7 € X,y is less than € > 0 if for any neighbourhood U/ of X there exists a diffeomorphism h
from C, to D, that satisfies the following:

e dh is locally equal to 7 at X,
e h is equal to o outside U,

e The (I, J)-invariant manifolds of & and h coincide outside U.



e the C'l-distance between h and & is less than e.

We denote the infimum of these € by dy j(¢ — 7). This is a quasidistance: it is positive, separate
and satisfies the triangle inequality. Proposition 3.3 implies the following result:

Lemma 4.2. For all 0 € X j, for all € > 0, there is a neighbourhood 2 C X1 j of o such that
the quasidistance dy j(o — T) is less than €, for any T € Q.

Let o € ¥ and let U be a neighbourhood of X in C, whose boundary does not intersect
that of C,. Then, if a diffeomorphism h from C, to D, is equal to & outside U, one can locally
conjugate it by a homothety as follows: for any 0 < A < 1 we denote by h) the diffeomorphism
from C, to D, that is equal to \.Jd o h o A~'.Id on AU and equal to & outside, where Id is the
linear diffeomorphism induced on C, by the identical cocycle.

Remark 4.3. The C'-distance between hy and G is less or equal to the C'-distance between h
and 0.

The images of the (1, J)-invariant manifolds of h by the homothety \.Id are in the respective
(I, J)-invariant manifolds of hy.

Remark 4.4. Assume that there are fundamental domains of the invariant manifolds of o in C,
outside Up<x<1AU. Then if the (I,J)-invariant manifolds coincide for o and h outside U, the
(I, J)-invariant manifolds also coincide for o and hy outside A\.U.

Proof of Lemma 4.2 : Let U C C, be a neighbourhood of X that satisfies the assumptions
of Remark 4.4. Tt can obviously be chosen arbitrarily small. Let o5 be a sequence that tends to
o and let € > 0. We have to show that for all k great enough, the quasidistance dr j(oc — 7) is
less than e.

Let g be a diffeomorphism that extends o on M. By a unit partition we build a sequence gy
of diffeomorphisms that tends to g, such that dgr = o on X. We apply Proposition 3.3 to find
a sequence hy that tends to g such that

[ dhk = O On )(7
e the restriction hyc, is equal to & outside U,
e for k great enough, the (I, .J)-invariant manifolds of & and hyc, coincide outside U.

Let ko be such that, for all & > kg, the three items above are satisfied and the C!-distance
between o and hy, is less than e. Then, for any k > kg, conjugating by any homothety of ratio
0 < A <1 and by Remarks 4.3 and 4.4 we have

e dhy )= o on X,

° hk)\\cg = 0 outside \.U,

e the (I, J)-invariant manifolds of & and hy,c, coincide outside A\.U.
e the C'l-distance between hi,» and @ is less than e.

Therefore, the distance the (I, J)-quasidistance from o to oy is less than €, for & > kg. QED. O



Lemma 4.5. For all 7 € Xy 5, for all e > 0, there is a neighbourhood € C X1 ; of T such that,
for any o € Q, the quasidistance dy j(oc — T) is less than e.

Proof : The proof is the very similar to that of Lemma 4.2, applying Proposition 3.4 and
Remarks 4.3 and 4.4. To be able to apply Remark 4.4 here, notice that for all ¢ there is a
neighbourhood U of X that satisfies the assumptions of the remark, with respect to any o’ close
enough to sigma. a

For all 0,7 € X1 5, we define the distance dr j(o,7) to be the infimum of dr j(o — 7) and
dr.j(T — o). As a direct consequence of Lemmas 4.2 and 4.5, we have

Lemma 4.6. The metric dy j is compatible with the topology on Xy ; defined by the metric dist
in section 2.

Proof of Theorem 2.1 : Choose a path « as in the assumptions of the theorem and fix
€ > 0 and a neighbourhood U of X. Let p be the radius sup,{dist(y(t),df|x)} of the path.
By compactness of the path and Lemma 4.6, we find a sequence {o}}r=0.. n, such that og =
7(0) = df|x and o, = (1), and such that the distance dy j(ok, 0k 1) is strictly less than e, for
all0 <k <n-—1.

By Lemma 4.1, we find an e-perturbation fy of f on an arbitrarily small neighbourhood
Uy C U of X such that fy = gg on some neighbourhood U; C Uy of X. Then, since dy j(op —
ok+1) < drj(ok,0k41) < €, and applying each time Lemma 4.1, we can build by induction a
sequence of open sets Uy O ..U,—1 D U, O K and a sequence of diffeomorphisms f = fo, f1,..., fn
such that, for all 1 < k < n,

o dfy, = op on Uy,
e fi is an e-perturbation of fx_1 on U (thus an e-perturbation of Tr_1, by previous item),
e the (I, J)-invariant manifolds of the restrictions fkfl\uo and fk\uo coincide outside Uy.

By a straightforward induction, for all k, fj is a perturbation of f that preserves (I, J)-strong
stable/unstable manifolds locally outside Up.

Choosing Uy small enough, we may assume that the C'-distance between &} and 7y is less
than 0 + €, by restriction to U;. Assume that fj is a (0 4+ 2¢)-perturbation of fy. By restriction
to U1, it is equal to oy therefore is § + e-close to fy. Then the diffeomorphism fiy1, which is
an e-perturbation of f on Uy, 1, is also a (§ + 2¢)-perturbation of fy. By induction, we get that
fn is a (0 + 2¢)-perturbation of fo on Uy, therefore a (6 + 3¢)-perturbation of f on Uy C U. This
ends the proof of Theorem 2.1. O

5 Further Results

In this paper, we have assumed that the i-strong stable/unstable directions exist at any time ¢ of
the homotopy, and we obtain a perturbation lemma that preserves the corresponding invariant
manifolds entirely, locally outside of an arbitrarily small neighbourhood.

We now announce two generalisations of this result and a few consequences: assuming only
that the i-strong stable/unstable manifold exists at the beginning and the end of the homotopy,
and that at any time ¢ the stable/unstable manifold has dimension > ¢, we have a perturbation
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result that preserves the corresponding invariant manifolds almost entirely, locally outside of an
arbitrarily small neighbourhood.

We need some definitions. Let f be a C'-diffeomorphism and X be a periodic saddle point for
f. Given a fundamental domain of the stable/unstable manifold of x identified diffeomorphically
to S~1 x [0,1[, an annulus A(f, X) is a subset of the form S~! x [0, p[, where 0 < p < 1. We
say that a perturbation g of f that coincides with f on X leaves invariant the (I,J)-invariant
manifolds of f on the annulus A if and only if the (I, J)-invariant manifolds coincide for f and

g by restriction to A.

Theorem . Assume that df|x is in Xy 5, and let v: [0,1] — ¥ be a path starting at df x such
that v(1) € X1y and for all 0 <t < 1 the stable/unstable direction of y(t) has dimension greater
than the mazimum element of I/J. Then, for any (arbitrarily great) annulus A(f, X), there is a
perturbation g of f on an arbitrarily small neighbourhood U of X such that

e the C'-distance between g and f is arbitrarily close to the radius r(v) of 7,
o the (I,J)-strong stable/unstable manifolds is preserved on the annulus A.

As a consequence, the (I, J)-strong stable/unstable manifolds can be preserved almost en-
tirely outside an arbitrarily small neighourhood of X.

We can generalise further and see that if at some time ¢ of the path v, some eigenvalues
have same modulus, then one can prescribe the flags of strong stable/unstable manifolds within
a range of possible admissible flags. Let v be a path in 3. Let 1 < iy < i1 < ... < in and
1 <jo <j1 <..<jsbe two sequences such that

e at any time ¢, the stable and unstable directions of v(¢) have dimensions greater or equal
to iq and jg, respectively.

e for all 0 < k < o« — 1 there exists ¢ such that, counting the eigenvalues of ~(¢) with
multiplicity and ordering them by increasing moduli, the ig-th and the i 1-th (stable)
eigenvalues of y(t) have same modulus.

e for all 0 < k < (3 — 1 there exists ¢ such that, counting the eigenvalues of ~(t) with
multiplicity and ordering them by decreasing moduli, the ji-th and the jii-th (unstable)
eigenvalues of v(t) have same modulus.

Such pair of sequences is called an admissible pair for the path v(t). Let f be a diffeomorphism
such that df|x = v(0). A stable/unstable invariant flag for f is a pair of sequences of f-invariant
manifolds W' C ... ¢ W ¢ W*(f, X) and W*! c ... ¢ W% ¢ W*(f, X) such that W*?
(resp. W%?) is an injectively immersed submanifold of dimension i in W31 (resp. Wwitl),
topologically equal to R? x X, containing X, and C! away from X.

A stable/unstable flag W C .. W% and W%l C .W%Is for (f,v) is an admissible sta-
ble/unstable flag if there is an admissible pair {4y }r—0..a, {Ji }x=0...3 such that

o if i1 < i < i; then W' contains the strong stable manifolds of (f, X) of dimension
< i;_1 and is contained in the strong stable manifolds of dimension > 7.

e if j,_1 < j < j, then W%J contains the strong unstable manifolds of (f, X) of dimension
< jr—1 and is contained in the strong unstable manifolds of dimension > j.
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The next theorem states that we can almost entirely realise any admissible stable/unstable
flag for (f,~), by a perturbation of size arbitrarily close to the radius of the path v with derivative
at X equal to y(1).

Theorem . Let v: [0,1] — X be a path starting at dfjx. Let {Ws’i}izl,m,ia and {W“’j}jzl,m,jﬂ
be an admissible stable/unstable flag for (f,~). Then for any annulus A for (f, X), there is a
perturbation g of f on an arbitrarily small neighbourhood U of X such that

o the Cl-distance between g and f is arbitrarily close to the radius r(7Y),

o for all 1 <i <i,, the i-strong stable manifold of g coincides with the manifold YW** on the
annulus A, if it exists.

e for all 1 < j < jg, the j-strong stable manifold of g coincides with the manifold W*J on
the annulus A, if it exists.

We have for instance the following particular case:

Theorem . Assume X is hyperbolic for f. Let v be a path starting at df|x such that the index
is constant along it. Assume that (1) has pairwise distinct eigenvalues, and that ~(1/2) has all
stable eigenvalues with same modulus. Fiz an stable/unstable invariant flag with respect to f.

Then there is a perturbation g of size close to (), on an arbitrarily small neighbourhood
of X such that dg = ~1, and such that the strong stable/unstable manifolds of g coincide with
manifolds of the fized stable/unstable invariant flag on an arbitrarily great annulus

6 Hints for applications

In this section we announce that the perturbation techniques for linear cocycles as developed
in [Man82|, [BDP00|, [Gan04|, and [BGV04|, successively, can be rewritten in order to take
into account the need of a good path between the initial cocycle and the pertubation. The
perturbations of cocycles obtained by the techniques of [BGV04]| can indeed be done along paths
whose size are small.

Let K C M be a compact invariant set for a diffeomorphism f. We recall that an invariant
splitting TMyg = E' @ ... ® E* for df is N-dominated if and only if for any pair u,v of unit
vectors in consecutive bundles E¢, EiT! we have |df (u)|| < 1/2||df (v)||. A saddle orbit X for f
is N-dominated if and only if its stable/unstable splitting TMx = E* @ E" is N-dominated.

Let us state a few of the foreseeable results:

Proposition . Let f € Diff'(M), € > 0. There exists N > 0 and P > 0 such that if a saddle
point X of f is not N-dominated and has period greater than P, then the following holds:

Let I,J be the biggest sets such that df x € X1 j. There is a path v in Xy that starts at df|x
such that

o the radius of 7y is less than €,

e the angle between the stable and unstable direction of (1) is less than e.

12



Note that (1) is hyperbolic with same index as df|x With theorem 2.1, this proposition allows
to create small angles between the stable and unstable manifolds of a periodic saddle point of
long period, while preserving its invariant manifolds outside an arbitrarily small neighbourhood
of its orbit. In particular, this leads to another proof of the results of [Gou06].

Proposition . Let f € Diffl(M), € > 0. There exists N > 0 such that if a saddle point X of f
18 mot N-dominated, then the following holds:

Let I,J be the biggest sets such that df x € Xy j. Let I* and J* be the sets I, J without their
respective biggest element. Then there is a path ~y that starts at df|x such that

e the radius of v is less than €,
o cither ~(t) has constant index for t € [0,1]
e (1) has an eigenvalue of modulus 1.

This, with the first theorem announced, allows to create saddle nodes from periodic sad-
dle points with weak domination and strong connections, under some assumptions of volume
contraction or dilation along the center bundles.

A consequence of the second theorem that we announced in section 5 is for instance this:

Theorem . Fixz ¢ > 0. There exists N > 0 such that if X is a saddle orbit for f with non-
trivial homoclinic class, and the weakest and second weakest stable eigendirections (counted with
multiplicity) of X are not mutually N-dominated, then there exists an e-perturbation of f on an
arbitrarily small neighbourhood of X for which X has a strong homoclinic connection.

This translates as follows on homoclinic classes:

Corollary . Let Hom(X, f) be a non trivial homoclinic class, and let TMyom(x,5) = ESOE" be
the stable/unstable oseledets splitting. Let E° = E{ @ ...® EJ be the finest dominated splitting on
E*. If the weakest stable bundle E} has dimension greater than 2, then there exists an arbitrarily
small perturbation that creates a strong connection in Hom(X, f).
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