MODULUS OF ANALYTIC CLASSIFICATION FOR
UNFOLDINGS OF RESONANT DIFFEOMORPHISMS

JAVIER RIBON

1. INTRODUCTION

The dynamics of germs of complex analytic germs of diffeomorphism in the neigh-
borhood of 0 € C is quite well-known. Either they are formally linealizable or some
iterate belongs to Diff1(C,0) \ {Id} where Diff,(C,0) is the group of germs with
identity linear part. In the former case the classical question is whether the map-
pings are analytically linearizable. The difficulty arises for diffeomorphisms whose
linear part is a non-periodic rotation. The linearizability is guaranteed whenever
the linear part satisfies some diophantine condition [30]. The optimal diophantine
property has been introduced by Bruno [2] [3]; he proves that it is sufficient, the
proof of the optimality corresponds to Yoccoz [32]. Moreover there is a dichotomy:
either the dynamics is conjugated to a linear map or it is chaotic [24]. The other
case is the resonant one and in one variable it can be reduced to the study of
tangent to the identity diffeomorphism (i.e. elements of Diff1(C,0)). The formal,
topological [I3] [4] and analytical invariants [8] [31] [I5] are completely described.

Denote by Diff (C™, 0) the group of germs of complex analytic germs of diffeomor-
phism in the neighborhood of 0 € C™ and let Diff (C™,0) be its formal completion.
In this paper we are interested in 1-dimensional unfoldings of elements of Diff (C, 0),
i.e. the elements of the group

Diff ,(C?,0) = {p(z,y) € Diff (C%,0) : zop=ux}.
More precisely we study the set
Diff ,,(C2,0) = {¢(z,y) € Diff ,(C%,0) : j'p|,—¢ is periodic but ¢,—o is not}.

In other words we deal with all the unfoldings of non-linearizable resonant diffeo-
morphisms. We provide for them a complete system of analytic invariants.

As a consequence of the Jordan-Chevalley decomposition in linear algebraic
groups the analytic classification of elements of Diff ,,.(C?,0) can be obtained by
resolving the analogous problem in

Diff ,1 (C?,0) = {p € Diff ,(C?,0) : ¢p,— € Diff1(C,0) \ {Id}}.

A complete system of formal invariants for ¢ € Diff;(C,0) is composed by the
ideal I(¢(y) — y) and the residue Res¢p € C. We can generalize the definition of
residue for ¢ € Diff ,;(C?,0), we obtain a function Resp : Fizpy — C which is a
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formal invariant. Now the relation o o 1 = g 0 o for 1, s € Diff ,;(C2,0) and
o € Diff (C2,0) implies

e z 00 depends only on z, i.e. 0*dx Adx =0 (o preserves dx = 0).

e I(yopa—y)oo=1I(yops —y) (o conjugates the fixed points sets).

e (Resps) oo = Resp; (o conjugates the residue functions).
We denote I(y o ws —y)oo = I(yowr —y) by o(Fixp1) = Fizps, in particular
Fizp; = Fizgs means (yo @1 —y) = (yo g2 —y). A complete system of formal
invariants for ¢ € Diff ,;(C?,0) is given by the 3-uple (dz = 0, Fizp, Resp) [21].
We define the group SF(p)

SF(p) = {p € Diff (C2,0) : 0*(dz = 0, Fizp, Resp) = (dz = 0, Fizp, Resp)}

of symmetries of the formal invariants of ¢. We are interested on the action that
these symmetries induce in the fixed points set Fizy. We define an equivalence
relation ~q in SF(p) given by

T 0o01 =200y

yoor—yooz €\/(yop—y)

The group SF(p)/ ~1 is reduced to < Id > for generic ¢. Moreover SF(yp)/ ~1
is always a finite group except when SF(y)/ ~1 is isomorphic to Diff (C,0). This
pathology only happens if ¢ is formally conjugated to (z, y+y* 1+ Ay?**+1) for some
(v,A) € NxC. Then up to a “essentially” unique preparation mapping conjugating
analytic sets and holomorphic functions we can restrict ourselves to the level sets
((yoyp —y),Resp) = (I, Res) and conjugating mappings o = (x, g(x,y)) such that
g(z,y)—y € V1. Such mappings are called special (with respect to the set of zeros

g1 ~1 02 if {

V(I) of I). We denote @1 < @5 if 1 and @, are conjugated by a special element
of Diff (C2,0). We say that x € ¥(B(0,7)) is r-moderated for some r € RT if x
is univalent in B(0,7). Moreover we say that s is wo-special if K|y (1)nz=a) = Id.
We say only special if the value of z( is implicit. We can introduce now the main
theorem in this paper.

Theorem 1.1. Let 1,2 € Diﬂ?pl((CQ,O) with Fixp; = Fixps. Then @1 R o if
and only if there exists 1 € RY such that (¢1)|z=z, is conjugated to (p2)p=z, bY @
special r-moderated mapping for all xy in a pointed neighborhood of 0.

We prove this theorem by providing a complete system of analytic invariants for
the elements of Diff ,; (C%,0) and then for those of Diff ,.(C?,0).

Let us focus for a moment in the elements ¢ € Diff 1 (C,0). A pointed neighbor-
hood of the origin is divided in v(¢(y) —y)—1 basins of attraction (attracting petals)
and v(¢(y) — 1) — 1 basins of repulsion (repulsing petals). Moreover v(¢(y) — y)
determines the class of ¢ modulo topological conjugation [4].

A complete system of analytic invariants for the elements of Diff 1 (C, 0) has been
provided independently by Ecalle [7] and Voronin [3I]. The space of orbits orby (¢)
of ¢ € Diff1(C,0) by restriction to a petal V is biholomorphic to C* by a mapping
pv. We can consider orby (¢) ~ P!(C) by adding the fixed point at 0 and co. The
mapping py can be lifted to V' and since

ilogpv op= ilogpv +1
2mi 27

then the function 1/(27i) log py is a so-called Fatou coordinate of ¢ in V. Denote
v = v(¢(y)—y)—1; there are 2v intersections of petals (as many as petals) producing
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changes of charts between copies of P*(C) corresponding to different petals. The
space orb(¢) determines the class of analytic conjugacy of ¢. Such a class can be
expressed in terms of the 2v changes of charts. In this way a complete system of
analytic invariants is obtained. This is the interpretation of Martinet-Ramis [17] of
the Ecalle-Voronin invariants.

Consider two diffeomorphisms ¢,n € Diff 1 (C,0) which are formally conjugated
by some & € Diff (C,0). A conjugation ¢ from orb(¢) to orb(n) is determined by
C(orby(¢)) and (jorp, (¢) for any attracting petal V' of ¢1. The possible images of
orby (¢) are v (as many as attracting petals of 1) and (jore, (4) : P*(C) — P'(C) is
of the form Az for some A € C*. We have to check out for each element of a group
isomorphic to < €™/ > xC* whether or not it is compatible with the changes
of charts. The elements of Diff (C,0) conjugating ¢; and ¢o are of the form po &
where j belongs to the formal centralizer Z(n) of 1. The group Z(n) is isomorphic
to < e2™/¥ > xC and then we obtain Z(1)/ < n >~< *™/¥ > xC*. Moreover
there is a canonical bijection T' from Z(n)/ < 1 > onto the space of candidates
to conjugations of the spaces of orbits. The convergence of the elements of a class
pE A (n)/ < n > is equivalent to the compatibility with the changes of charts of
I'(p). As a consequence we can determine the power series developpements of the
analytic mappings conjugating ¢ and 7 in terms of their changes of charts. We
carry the same program in Diff ;1 (C?,0), whenever we have ¢; L oy we identify
the special analytic conjugations.

The study of deformations of elements ¢ € Diff 1 (C,0) (parabolic implosion) is
interesting to describe the evolution of the Julia sets when we deform a given ratio-
nal mapping [12] [29] [23] [6]. Lavaurs, Shishikura and Oudkerk develop indepen-
dently extensions of the Fatou coordinates of ¢ € Diff1(C,0). Given an unfolding
¢ € Diff ,;(C?,0) these extensions are defined in some sectors in the parameter
space. This point of view has been generalized recently by Mardesic-Roussarie-
Rousseau [16] to obtain a complete system of analytic invariants for generic unfold-
ings of generic codimension 1 elements ¢ € Diff; (C, 0). In this paper we remove all
the genericity conditions and the codimension 1 hypothesis. They study elements
of Diff ,1(C2,0) of the form

o(z,y) = (z,y — 2+ c1(2)y® + o(y?))

with ¢1(0) # 0. The fixed point (0, 0) splits in two fixed points for the values of the
parameter x close to 0. They apply a refinement of Shishikura’s construction [29] to
get extensions of the Fatou coordinates supported in Lavaurs sectors V(;L describing
an angle as close to 47 as desired in the z-variable. Indeed the extensions are multi-
valuated around x = 0. Then they define analytic invariants a la Martinet-Ramis.
More precisely they define a classifying space M and a mapping m,, : V¥ — M.
Then ¢ and ¢ are analytically conjugated if and only if m, = m¢. We skip here the
details of the definition of m, but we stress that m(zo) depends only on pj,—z,.
We generalize the definition of m,, for all ¢ € Diff ,; (C2,0).

We say that ¢ € Diff 1 (C?,0) (resp. ¢ € Diff1(C,0)) is analytically trivial if ¢
(resp. ¢) is the exponential of a germ of nilpotent vector field. We can classify the
elements of Diff 1 (C?,0) depending on their rigidity properties with respect to the
analytic conjugation.

e Flexible. ¢ is analytically trivial. In this case Fixp = Fix(, Resp = Res(
and my, = m¢ imply ¢ B (. Moreover every special formal transformation
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conjugating ¢ and ¢ is analytic. The analytic centralizer Z(y) contains a
1-parameter group.
e Rigid. ¢ is not analytically trivial but we still have that Fixzp = Fix(,
Resp = Res( and m, = m¢ imply ¢ 2z C.
The analytic special centralizer of ¢ € Diff ,; (C2,0) is a discrete group in the non-
flexible setting. Moreover a mapping ¢ conjugating ¢ and ( is determined by its
restriction oj,—,, to a generic line x = x.

A sufficient condition for ¢ to be rigid is that ¢|,—¢ is non-analytically trivial.
In such a case the analytic centralizer Z(¢|,—o) is discrete and such a property
“extends” to the nearby values of the parameter. Therefore provided a good choice
of k conjugating ¢|,—¢ and (j,—¢ it can be extended in a unique way to obtain a
special o € Diff (C2,0) such that Olz—o =k and cop = (o0,

The main theorem in [I6] implies that in their context every unfolding is either
flexible or rigid. This is not true, there is a small mistake in their proof. There
exists a third possibility:

e Semi-rigid. ¢ is neither flexible nor rigid. A necessary condition to be
semi-rigid is that ¢ is not analytically trivial but ¢),—q is.
We provide non-analytically trivial mappings ¢, ¢ € Diff ,; (C?,0) such that
(1) Fizp = Fixz(, Resp = Res( and p|;—¢ = (jg=o-
(2) ¢ and ¢ are conjugated by an injective special analytic mapping o defined
in |y| < Co/¥/|Inx| such that o(e*™z,y) = (o o(x,y).
There exists always a mapping conjugating ¢|,—z, and (jz—z,, namely oj,—z, if
g # 0 and Id for xp = 0. Since my(xo) depends only on ¢j,—,, we obtain
my, = m¢. Moreover the non-flexibility of ¢ implies ¢ & ¢ since otherwise we
would have o € Diff (C2,0). Roughly speaking we have that Z(p|z=a,) is discrete
for ¢ generic but Z(¢|,—o) contains a l1-parameter group. Thus we do not obtain
that limg, .o 0|y—,, exists like in the rigid case since o|,—,, is no longer forced to
adhere a discrete set when g — 0. The construction is rather flexible and we
can suppose that I(y o ¢ —y) = I(f) for every function f € C{x,y} such that
f(0) = (0f/0y)(0) = 0. In particular if we choose f = y* — z, we obtain a counter-
example to the main theorem in [I6]. Nevertheless their theorem remains true in
the generic non-semi-rigid case. The example shows that we can not remove the
moderated hypothesis in theorem this condition can be expressed in terms of
the changes of charts. Our complete system of analytic invariants for the elements
of Diff ,1(C?,0) is the generalization of the Mardesic-Roussarie-Rousseau’s system
with a little twist to include the moderated hypothesis.

Next we explain briefly how to define Fatou coordinates for ¢ € Diff pl(CQ,O).
In [16] it is a key tool to find “transversals” to the dynamics of ¢. A priori this
does not make much sense. Nevertheless they lift ¢|,—,, to a subset C(z) of the
universal covering of P!(C) minus two points. The lifting’s dynamics is flow-like,
it is very similar to exp(9/0z) = z+ 1. We can choose straight lines transversal to
R. A transversal T and its image ¢(7') enclose a strip S(T). The space of orbits
of |5(1) is biholomorphic to C*. We can identify 0 and oo with the fixed points
in the ends of T. The rigidity of the complex structure of C* (or P*(C)) provides
a Fatou coordinate in the neighborhood of S(T) in = zy. It can be extended
by iteration to the points of C(xg) whose orbits intersect S(T"). The construction
depends holomorphically on xg.



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 5

If the unfolded mapping ¢ € Diff1(C,0) is of codimension bigger than 1 the
method can not be replicated. In general we have §(FizpN[x = x¢]) > 3, it is much
more difficult to find expressions for covering mappings of P1(C)\ (Fizp N[z = z))
such that the lifting of ¢|,—,, is flow-like.

We use a different point of view. Denote by X,1(C?,0) the set of germs of vector
field of the form f(x,y)d/dy whith f(0) = (8f/dy)(0) = 0. Given ¢ € Diff 1 (C?,0)
there always exists X € X,;(C?,0) such that yop—yoexp(X) € (yop—y)?. We say
that exp(X) is a convergent normal form of ¢ since they are formally conjugated
(Fizp = SingX and Resp = Res(exp(X))) and the infinitesimal generator X of
exp(X) is convergent. Fixed z¢ € B(0, d) the equation X (¢)) = 1 defines a function
in the universal covering of B(0,€)\ (FizpN[z = x¢]), it is unique up to a constant.
We say that ¢ is an integral of the time form of X. Clearly 1 is locally injective.
Since we have

XW)=1=voexp(tX)=9+t VteC
then the dynamics of exp(X) in the ¢-coordinate is given by z — z + 1. It can
be easily checked out that 1 o ¢ ~ 1 + 1. The natural candidates to transversals
are the curves v : (—00,00) — [x = x] given by 7(t) = exp(tuX)(xo,yo) where
p € S\ {=1,1}. If we do not choose yo and p carefully there is no guarantee
that « is defined for all t € (—00,00) or that the o and w limits are fixed points.
The equivalent tasks in [T6] are trivial since there exists a precise expression of the
covering transformation. Nevertheless this problem can be solved via the descrip-
tion of the dynamics of the real part of a vector field in X,;(C?,0) which can be
implicitly found in [22]. This point of view can be used even if we do not work with
unfoldings and just with discrete deformations of ¢ € Diff(C,0) \ {Id} since there
exists a universal theory of unfoldings of germs of vector field in one variable [T1].

The approach in [22] is topological. We want to identify what formal conju-
gations are analytic and to study the dependance of the domain of definition of a
conjugation with respect to the parameter. A more analytical approach is required.
We use some of the techniques in [22] like the dynamical splitting and also others
like the study of polynomials vector fields related to deformations introduced by
Douady-Estrada-Sentenac in [6]. The polynomial vector fields that we consider are
different. Ours are related to the infinitesimal properties of the unfolding. They
appear after blow-up transformations.

In order to describe the dynamics of Re(uX) for X € X,1(C?,0) we are interested
on undertanding the nature of the set Bx C S! x S! given by (Ao, o) € Bx if
Re(pX)|j0,5)x is stable in the neighborhood of (Ag, po). We do not give now the
precise definition of stability since it involves infinitesimal properties of Re(uX).
Anyway, in particular we have that the points of SingX are either attracting,
repulsing or parabolic for Re(uX)|j0,5a and (p, A) ~ (1o, o). Then their basins
of attraction and repulsion are open sets. We prove that the set Bx ) given by
{2} x Bx,x» = Bx N ({\} x S') is finite and it depends continuously on A.

We say that (K1, 1), ..., (K, ) is an EV-covering of X € X,;(C?,0) if

e K is a compact connected subset of S! for all j € {1,...,1}.

® ;€ St \U)\EKjBX,A for all j € {1,...,1}.

o St = Ué»:lKj (we denote the interior of K; by Kj;).
An EV-covering always exists. An EV-covering for ¢ is an EV-covering for some
X € X,1(C?,0) such that exp(X) is a convergent normal form of ¢. The definition
does not depend on the choice of X but only on Fizy and Resy.
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Let ¢ € Diff ,; (C?%,0) with convergent normal form exp(X). Consider an element
(K, p) of an EV-covering of X € X,;(C%,0). We denote by a*X and w'X the «
and w limits respectively with respect to the vector field Re(uX) in a domain
B(0,0) x B(0,¢). We define the set Reg(e, X, K) of connected components of
("X whX)~1(SingX x SingX)\ SingX. The elements of Reg(e, uX, K) are called
regions of Re(uX). They are open sets in [0,0)K x B(0, €) by stability. We choose
transversals T' = exp(RuX)(zo, yo) for (xo,y0) € H € Reg(e, uX, K).

Let H € Reg(e,uX,K). The set H N[z = 0] is a union of ¢(H) connected
components of (a*X, wHX)=1({(0,0)} x {(0,0)})\ {(0,0)} whereas H N [x = z(] is
always connected for x¢ € (0,)K. We denote H € Regm)(e, uX, K).

Supposed (X)) = (W) then H is a topological product and ¢(H) = 1.
Otherwise o (H(x)) and w*X (H(x)) are different points tending to a single one
(0,0) when x — 0 in (0,6)K. This collapse splits H N [z = 0] in two connected
components.

Denote v = v(yo¢(0,y) —y) — 1. Consider one of the 2v connected components
J of (a*X,wrX)~1({(0,0)} x {(0,0)}) \ {(0,0)}. Then J is contained in a unique
region H € Reg(e, uX, K) Moreover the space of orbits of ¢|ju(#\[z=0]) is home-
omorphic to [0,5)K x P}(C) by a mapping holomorphic in the interior of H. The
Ecalle-Voronin invariants of ¢|,—q can be extended in a natural way to obtain 2v
changes of charts between different copies of [0,d)K x P!(C). Again they depend
holomorphicaly on z € (0,5)K and extend continuously to x = 0. The variety
obtained by taking 2v copies of [0,d)K x P}(C) and doing the 2v identifications
corresponding to the changes of charts is called the p-orbit space of ¢ at K.

The p-space of orbits is not the space of orbits of ¢. Given two different connected
components Ji, Jy of HN [z = 0] for some H € Regs(e, uX, K) we have that the
spaces of orbits of |7, u(m\[z=0)) and Y| s,u(H\[z=0)) are identified outside of x = 0.
In this way we obtain §Regs (e, X, K) identifications not contained in the p-orbit
space. Anyway, the structure of the orbit space of ¢ can be deduced from the
structure of the p-orbit space since the extra identifications depend only on X.
Nevertheless the existence of return mappings makes non-evident that the p-orbit
space is an analytic invariant. We prove that this is the case. Basically the 2v
changes of charts that we obtain for all the elements of the EV-covering are the
base for a complete system of invariants. Our construction, even if different, it is
analogous to the Mardesic-Roussarie-Rousseau’s one in many aspects.

We introduce next some of the analytic aspects of the construction. Given a
region H € Reg(e, pX, K) there exists a unique vector field X3, (the Lavaurs vector
field) such that it is continuous in H , holomorphic in H and fulfills ¢ = exp(X7).
Our construction implies that (X7 (y) — X (y))/(yop— y) is a continuous function in
H vanishing at H N Fixzy. The infinitesimal generator X of ¢ (i.e. the only formal
nilpotent derivation such that ¢ = exp(X)) satisfies X (y) — X(y) € (yo ¢ —y)%
Then we deduce that X is the asymptotic development of X7 in the neighborhood
of H N Fizy in H until the first non-zero term. This fact is a consequence of our
improvement of the constructions in [29] and [16]. We introduce convergent normal
forms not just to obtain a model for ¢ in the regions. This would be guaranteed
by choosing X € X,1(C?,0) such that Fizy = SingX and Resp = Res(exp(X)).
We required y o ¢ — y o exp(X) € (y o ¢ — y)? with the hope of controlling the
behavior of ¢ in the neighborhood of the fixed points. Moreover the introduction
of normal forms has still another advantage; a Fatou coordinate of ¢ is defined up to
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an additive constant. Thus a normalizing condition is required in the construction.
The classical choices are not invariant by iteration. We give an invariant by iteration
condition by prescribing the behavior of the Fatou coordinate in the neighborhood
of the fixed points. We define Fatou coordinates in strips but the definitions paste
together. This property is interesting since otherwise to estimate the asymptotic
behavior of a Fatou coordinate in a region it is necessary to do it in a strip and
then propagating the estimates by iteration.

Since an element 7 in the formal special centralizer of ¢ such that jln = Id
is determined by the first non-zero term ((y on —y)/(y © ¢ — ¥))|Fiz, (or more

formally by the class of (yon—y)/(yo¢ —y) modulo \/(y o ¢ — y)) then the extra
term is going to be a key ingredient to identify what special formal transformations
conjugating two elements ¢, ¢ € Diff ,; (C?,0) converge.

Given ¢ € Diff,;,(C?,0) with Fizy = Fiz¢ and Resp = Res( the property
my(z0) = me(zo) for zo € [0,0)K and a member of an EV-covering (K, p) implies
that they are conjugated by a transformation whose expression in H N [z = x] for
a region H € Reg(e, uX, K) is of the form

eXp(C(mO)XfL[)M:zg o O'H(@) C)|x:x0

for some c(xg) € C. These definitions paste together, we obtain a conjugation
defined in the neighborhood of FizpN[z = x(]. The mapping o (¢, ¢) is continuous
in H and holomorphic in H. Its behavior is moderated-like. Thus the size of the
domain of definition depends basically on exp(c(:vo)XIC{). Our asymptotic study
proves that the latter map behaves like exp(c(xg)X) where exp(X) is a convergent
normal form of (. The moderated hypothesis in theorem is equivalent to the
boundness of ¢(z) in a pointed neighborhood of 0. Roughly speaking once we
fix moderated choices oy (@, () of mappings conjugating ¢ and ¢ the choice of an
element of the centralizer of ( providing an analytic conjugation is bounded. Then
we can conclude the proof of theorem with an argument of Riemann’s kind.

Finally let us remark that the study of germs of diffeomorphism is a useful tool
to classify singular foliations. For instance consider codimension 1 complex analytic
foliations defined in a 2-dimensional manifold. Up to a birrational transformation
we can suppose that all the singularities are reduced. Denote by €,..4(C?,0) the set
of germs of reduced codimension 1 complex analytic singularity in the neighborhood
of 0 € (C2,0). Let w € Q,..4(C?,0); if the quotient of the eigenvalues q(w) is in the
domain of Poincaré (i.e. g(w) € R~ U {0}) then w is conjugated to its linear part.
Anyway, the analytic class of w € Q,..4(C2,0) is determined by the analytic class of
the holonomy of w along a “strong” integral curve [20]. Such a holonomy is formally
linearizable if ¢(w) € R™\Q~ and resonant whenever ¢(w) € Q~U{0}. Traditionally
a singularity w € Q,..4(C?,0) such that ¢(w) € Q is called resonant whereas it is
called a saddle-node if ¢(w) = 0. The modulus of analytic classification for both
resonant and saddle-node singularities have been described by Martinet-Ramis [18]
[I7]. Then it is natural to study unfoldings of resonant diffeomorphisms in order to
study unfoldings of resonant singularities and saddle-nodes. This point of view has
been developped by Martinet, Ramis [25], Glutsyuk [9] and Mardesic-Roussarie-
Rousseau [I6]. Moreover Rousseau classifies generic unfoldings of codimension 1
saddle-nodes [28]. This program can not be carried in higher codimension without
a complete system of analytic invariants for unfoldings of elements of Diff;(C, 0)
of codimension greater than 1. We remove such an obstacle in this paper.
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We comment the structure of the paper. In section [3] we introduce the concepts
of infinitesimal generator and convergent normal forms for germs of unipotent dif-
feomorphism. We prove that every element of Diff ,;(C?,0) has a convergent nor-
mal form. Section [ is basically a quick survey about the topological, formal and
analytic classifications of tangent to the identity germs of diffeomorphism in one
variable. We study the formal properties of elements of Diff ,; (C?,0) in section
We describe the formal invariants and the structure of the formal special centralizer
of an element of Diff ,; (C2,0). We also reduce the problem of classifying unfoldings
of resonant diffeomorphisms to the tangent to the identity case via the semisimple-
unipotent decomposition. Section [0] deals with the special case of unfoldings in
which the fixed points set is parameterized by x. We can use then a parameterized
version of the Ecalle-Voronin theory. We introduce the main results of the paper
in this simpler case and we prove slightly sharper versions. In section [7| we give a
concept of stability for the real flows of elements of X,; (C?,0) and then we describe
their topological behavior in the stable zones. In section [§] we give a quantitative
mesure of how much ¢ € Diff ,;(C?,0) is similar to a convergent normal form.
The estimates are a key ingredient in our refinement of the Shishikura-Mardesic-
Roussarie-Rousseau’s construction. In this way we obtain Fatou coordinates with
controlled asymptotic behavior in the neighborhood of the fixed points. Finally in
section[J] we define the analytic invariants, we describe its nature and compare with
the ones in [16]. In section we prove the main theorem, moreover we provide
a complete system of analytic invariants in both the general and the particular
non-semi-rigid cases. We prove the optimality of our results in section [T}

2. NOTATIONS AND DEFINITIONS

Let Diff (C™,0) be the group of complex analytic germs of diffeomorphism at
0 € C™. Consider coordinates (z1,...,z,—1,y) € C*. We say that ¢ € Diff (C™,0)
is a parameterized diffeomorphism if x; o ¢ = x; for all 1 < j < n. Denote by
Diff ,(C™,0) the subgroup of Diff (C",0) composed by unipotent diffeomorphisms,
i.e. ¢ € Diff ,(C",0) if j1p is unipotent. We define

Diff ,,(C", 0) = Diff , (C", 0) N Diff ,(C™, 0)

the group of germs of unipotent parameterized diffeomorphisms (or up-diffeomorphisms
for shortness). The formal completions of the previous groups will be denoted with
a hat, for instance Diff (C™,0) is the formal completion of Diff (C™,0).

Let Diff 1 (C,0) be the subgroup of Diff (C, 0) of germs of tangent to the identity
diffeomorphisms, i.e. ¢ € Diff (C,0) belongs to Diff;(C,0) if (0p/dy)(0) = 1. We
define the set

Diff 1 (C2,0) = {p € Diff ,(C2,0) : p|p—o € Diff 1(C,0) \ Id}.

Then Diff ,;(C2,0) is the set of one dimensional unfoldings of one dimensional
tangent to the identity germs of diffeomorphism (excluding the identity).

We denote @1 ~ g if 1,92 € Diff (C",0) are analytically conjugated.

We define a formal vector field X as a derivation of the maximal ideal of the
ring C[[z1,...,2n-1,y]]. We also express X in the more conventional form
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We consider the set Xy (C™,0) of nilpotent formal vector fields, i.e. the formal
vector fields X such that j1 X is nilpotent. We denote by X (C™,0) the set of germs
of analytic vector field at 0 € C™.

We denote the rings C{z1,...,z,—1,y} and C[[z1,...,zn_1,y]] by ¥, and Oy,
respectively. We denote f ~ g if f = O(g) and g = O(f).

Let ¢ € Diff (C™,0). Denote by Fizp the fixed points set of ¢. Denote by Z(¢)
and Z () the centralizer and the formal centralizer of ¢, i.e. the centralizers of ¢
in Diff (C™,0) and Diff (C™,0) respectively.

3. THE INFINITESIMAL GENERATOR

In this section we associate a formal vector field to every element of Diff ,,,,(C", 0).
The properties of this object can be used to provide a complete system of formal
invariants for the up-diffeomorphisms [21]. Here, we introduce the properties that
we will use later on.

Let X € X(C™,0); suppose that X is singular at 0. We denote by exp(tX) the
flow of the vector field X, it is the unique solution of the differential equation
%exp(tX) X (exp(tX))
with initial condition exp(0X) = Id. We define the exponential exp(X) of X as
exp(1X). We can define the exponential operator for X € Xy (C™,0). Moreover
the definition coincides with the previous one if X is convergent. We define

exp(X): ¥, — I
°)
g = L5
The nilpotent character of X implies that the power series exp(X)(g) converges in

the Krull topology for all g € Uy Moreover, since X is a derivation then exp(X )
acts like a diffeomorphism, i.e.

exp(X)(g192) = exp(X)(g1)exp(X)(g2)

for all g1, g2 € ¥,,. Then we can use the more conventional notation

R > %ol > o) > $o(j)
exp(X) = [ Y =—=—(@1),..., > ——(zn1), —(y)
j=0 ’ j=0 J: j=0 J:

Moreover jlexp(X) = exp(j'X), thus jlexp(X) is a unipotent linear isomorphism.
The following proposition is classical.

Proposition 3.1. The mapping exp : Xy (C*,0)— ]Si?fu(cn, 0) is a bijection.

Consider the inverse mapping log : Diff «(C",0) — Hy(C™,0). We can interpret
v € Diff ,(C™,0) as a linear operator ¢ : m — m where m is the maximal ideal of
¥,. Denote by © the operator ¢ — Id, we have

o
(log ©)(g Z ) (g)
j=1

for all g € ¥,,. The power series in the right hand side converges in the Krull
topology since ¢ is unipotent. Moreover j!(log ) = log(j'¢) is nilpotent and log ¢
satisfies the Leibnitz rule. We say that log ¢ is the infinitesimal generator of p. The
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exponential mapping has a geometrical nature; next proposition claims that log ¢
preserves the orbits of 9/0y for ¢ € Diff,,,(C", 0) and also that Sing(log ¢) = Fizep.

Proposition 3.2. Let ¢ € Diff ,,(C™,0). Thenlogy is of the form t(yop—y)d/dy
for some formal unit o € U

Proof. Let © = o—Id. We have that log ¢ is of the form f8/dy since ©(z;) = 0 and
then ©°)(z;) = 0 forall j € {1,...,n—1} and all k € N. We have O(y) = yop—y,
moreover since
dg &g (yoyp—y)

1 —Cl _ Pglyop—y)

(1) gop=ygtg oy y)+;ay] i
we obtain that ©°(3)(y) € (y o ¢ — y)ih where th is the maximal ideal of 9,,. Again
by using the Taylor series expansion we can prove that ©°U)(y) € (y o ¢ — y) for
all j > 2. Thus logy = (log)(y)9d/dy is of the form u(y o p — y)9/dy for some
4 € 9, such that 4(0) = 1. O

Let ¢ = exp(u(y o ¢ — y)0/dy) € Dift,,,(C™,0). We say that « € Diff,,,(C",0)
is a convergent normal form of ¢ if loga = u(y o ¢ — y)9/dy for some u € ¥,, and
yop—yoa € (yop — y)z. The last condition is equivalent to & —u € (yo v — y).
If ¢ is a convergent normal form of itself, i.e. if logyp € X(C™,0) then we say that
@ is analytically trivial.

Proposition 3.3. Let ¢ = exp(iu(y o ¢ — y)9/9y) € Diff ,,(C™,0). Then ¢ has a
convergent normal form.

Proof. Let © = ¢ — Id. We have (log¢)(y) = 32t (=1)7'©°0)(y)/j. Consider

j=1
the decomposition f{l e f,lf’ g1...9q of yop —y € ¥, in irreducible factors where
l; >2forall j€{1,...,p}. We define

_In(l+2) 9yop—y)
z dy

U2

Denote f = y o ¢ — y; by equation [I| we obtain that

2
_9f/0y  (9f/0y) +> € (fre fpgr---9q)-

(log)(y)/(yoyp —y) — (1 5 3

We deduce that & — ug belongs to (g1 ... gp)-
We claim that ©°®) (y) € (FaF5=1  fe™ 1 for all k € N. The result is true

for k =1 by equation[I] Since

fiop—fie(f]) and hop—he (yop—y)
for all h € 1§n we deduce that

0°0(g) € (777 = & (g) € (7).

J
Denote | = max(ly,...,l,) and u; = (L (=17 0@ (y) /) /f. We have

j=1
that @ —u; € (f f,l,‘“) The function u; — uy belongs to the formal ideal

( {1 . le,”, g1 --.9gq); by faithful flatness there exist A, B € ¥,, such that
Uy — U :Affl...lef + Bgi...94.



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 11

We define v = u; — Af{1 e f,lf = uz + Bg1 ...gq. By construction it is clear that
@ — u belongs to (f* ...f,lf’)ﬂ(gl...gq) and then to (yo ¢ — y). O

Let X be a holomorphic vector field defined in a connected domain U C C such
that X # 0. Consider P € SingX. There exists a unique meromorphic differential
form w in U such that w(X) = 0. We denote by Res(X, P) the residue of w at
the point P. Given Y = f(z,y)0/dy and a point P = (z°,1°) € SingX such that
SingX does not contain z = 2° we define Res(X, P) = Res(f(z°,v)9/9y,y°).

Let ¢ € Diff ,,(C™,0). Consider a convergent normal form « of ¢. By definition
Res(p, P) = Res(loga, P) for P € Fixp. The definition does not depend on
the choice of a since given another convergent normal form 8 of ¢ we have that
dy/(log a)(y) — dy/(log B)(y) € Indy. We denote the function P — Res(p, P)
defined in Fizp by Res(p).

Remark 3.1. Let ¢ € Diff ,;(C2,0). Consider X = u(z,y)(yop—y)d/dy for some
unit u € C{z,y}. Suppose that [y o = y|N[O(yo¢)/dy = 1] = {(0,0)}; that is
the generic situation. Then Res(p) = Res(X) implies that exp(X) is a convergent
normal form of p. A 1-form with poles of order at most 1 and no residues has no
poles at all.

4. ONE VARIABLE THEORY

We introduce here for the sake of completeness some classical results concerning
tangent to the identity complex analytic germs of diffeomorphism in one variable.

4.1. Formal theory. Let ¢ € Dift,(C,0) = Diff ,(C, 0). We define v(yp) the order
of ¢ as v(p) = v(p(y) —y) — 1.
Proposition 4.1. Let @1, o € Diff 1 (C,0) \ {Id}. Then @y is formally conjugated

to o if and only if v(p1) = v(p2) and Res(p1) = Res(pa). In such a case if log p1
and log @2 are convergent then o1 and po are analytically conjugated.

Supposed that @1, o are formally conjugated by & € Diff (C,0). Then every
other formal conjugation can be expressed in the form 7 o & where 7 belongs to the
formal centralizer Z (p2) of w2. As a consequence it is interesting to describe the
structure of Z (¢) for classification purposes.

Proposition 4.2. Let ¢ € Diff 1(C,0) \ {Id}. Then there exists 7y € Dift (C,0)
satisfying (079/0y)(0) = €*™/*(¥) and %g(u(‘p)) = Id such that

Z(p) = {fg(r) oexp(tlogy) for r € Z/(v(¢)Z) and t € C}.
Moreover Z() is a commutative group.

We denote 7y by 79(¢). We say that 79(¢) is the generating symmetry of . Let
Ky = 277/V(9) . We denote the element 7o(p)°(") o exp(tlog ) of Z(p) by Zhrt
The mapping Z[;’t — (k,t) is a bijection from Z(go) to < e2m/v(#) > xC.

4.2. Topological behavior. Let exp(X) be a convergent normal form of ¢ in
Diff;(C,0). The vector field X is of the form X = (roe’®y**' +377°  a;y7)0/dy
where v = v(p) and 7o # 0. Consider the blow-up 7 : (R* U {0}) x S — R? given
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by m(r,e’) = rei®. We denote by X the strict transform of Re(X), we have
X = (7*Re(X))/r”. We obtain that
- , 0 ; 0

— i(r6+460) v L i(v0+00) o
X=r (roRe(e )+ O(r)) . + (roRe( ie )+ O(r)) 50"
We define Dy (X) = {\ € S* : \e? = —1} and D (X)={r¢€ St Aaveifo =1},
We have that 4D;(X) = §D_1(X) = v and Sing(X,—y) = Di1(X) U D_1(X).

Moreover, since

X0 = (—rovs( — 61) + O((0 — 91)2))%
in the neighborhood of €t € Dy(X) then the points in D;(X) are attractif points
for X\r:o whereas the points of D_;(X) are repulsif.

We define n = —1/(roe?®wvy), it satisfies X (17) = 1+O0(r). Consider \; € D;(X)
and the set S(ri,A1) = [0 < r < rN[A € /\16(_”/(41’)’”/(41’))]. We obtain
n(r,A) € e/ 4T/ [ (uror?) for all (r,\) € S(r1, A1). Since X (1) = 14 O(r) then
the points in S(r1, \;) are attracted to (0, A;) by the positive flow of X for r; >0
small enough. Analogously we can prove that (0, ;) is a repulsif point for X if
A1 € D_l(X).

The dynamics of ¢ is a small deformation of the dynamics of exp(X). We denote
D,(p) = Dy(X) for s € {—1,1} and D(¢) = D_1(¢) U D1(¢). The definition
of D4(p) does not depend on the choice of the convergent normal form exp(X).
Suppose that ¢ and ¢°(—1) are holomorphic in an small enough open set U > 0. It
is easy to prove that

V2 ={PeU\{0}:¢°™(P) €U V¥neN and lim_ ©°CM(P) = (0,A)}
is an open set for all A € D4(p). A domain ng‘ for A € Dy () is called an attracting
petal. A domain Vsé\ for A € D_1(yp) is called a repulsing petal.

We say that V(),0) is a sector of direction A € S* and angle § € RT if there
exists u € RT such that V(\,0) = A\e?l=9/20/21(0, u]. We say that W()\,0) is a
sectorial domain of direction A € S' and angle # € RY if it contains a sector of
direction A and angle 6’ for all ¢’ € (0, 6).

The next proposition is a consequence of the previous discussion and the fact
that o is a small deformation of exp(X).

Proposition 4.3. Let ¢ € Diff1(C,0). Fiz a domain a domain of definition 0 € U.
We have

. Vgg‘ is a sectorial domain of direction A and angle 27 /v(p) for all A € D(p).
{0} UUxep(p) V2 is a neighborhood of 0.
V2oV =0 if A & {e /@ Ng, A, eV N}
V2onV2t is a sectorial domain of direction Xoe?™ (@) and angle 7 /v ()
for A\ = e”/”(“"))\o.

4.3. Analytic properties. Next, we describe the analytic invariants of elements
of Diff1(C,0). Let ¢ € Diff1(C,0). Choose a normal form « € Diff{(C,0) of ¢.
Consider the equation (log «)(¢),) = 1. A holomorphic solution ), is called a Fatou
coordinate of . Alternatively we also say that v, is an integral of the time form
(or dual form) of . The function v, is unique up to an additive constant. Indeed
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14 is of the form

-1 1 > .
VYo = L+ ) by’ | + Res(p)logy
V(@) ay(p)+1 ¥ 1?) ; !

where ¢ = y + a,(p) 4197 O + Oy +2). Let A € D(p); we say that n € I(V2)
is a Fatou coordinate of ¢ in ng if nop =n+1and n — 9, is bounded. Clearly
the definition does not depend on the choice of «.

Proposition 4.4. Let ¢ € Diff 1(C,0). Consider a convergent normal form « of
© and a direction A € D(p). Then there exists a unique Fatou coordinate @[12 of ¢
mn V@A such that lim,_.g z/;é — o = 0 in every sector of direction A and angle lesser
than 27 /v(p) contained in VS;\. Moreover wg is injective.

We can provide a formula for ¢2~ We define A =1, 0 — (1ho, +1). By Taylor’s
formula we obtain that

Mo

A~ By

(p(y) — aly)) = Oy" ) = A e C{y} n (1.

Since (1/}2 — o) — (’(/Ji‘o — 1a) © = A we can obtain 1/1{) — 1), as a telescopic sum.
More precisely let 1) € ﬁ(VS;\) be a Fatou coordinate of o. We have

W =0d+ Y Ao @ and ¢l =) — > Ao ()
j=0 j=1
for A € D1(p) and A € D_1(¢p) respectively.

Let ¢ € Diff 1 (C, 0) with convergent normal form «. Denote v = v(p). Consider
that ¢ € 9(V)2) is chosen for all A € D(y). We define

) = v o (1) 2)

for A € D(p). The dynamics of ¢ in every VY;\ is z — 2z 4+ 1 in the coordinate
¢;\;. Then fj; is the change of chart which allow to glue two z — z + 1 models
corresponding to consecutive petals. In particular we have @ o(z+1) = fg (2)+1
for all A € D(p). Fix A\g € D(y) and 12°. Denote \; = A\ge?™/?. There are several
possible definitions for wﬁf. We consider homogeneous coordinates, supposed wéj
is defined we extend it to V27 U V27" by analytic continuation. Then we define
Paltt =l — miRes(p)/v. Let us remark that z/Ji;O = ¢$2V~ The definition of fg
depends on the choice of 12°. If we replace 920 with 90 + K for some K € C then
£} becomes (z+ K)ol o(z—K) for all X € D(¢). Denote (, = —miRes(p)/v(p).

Proposition 4.5. Let ¢ € Diff1(C,0) with convergent normal form «. Consider
A € Dy(p). Then there exists C € RY such that

o &) is defined in sImgz < —C and £y 0 (z+1) = (z+1) 0 ).

L4 hm|1mg(z)|—>oo g;(z) —z= CSO'

€= 5 Gor N e for some S5, of jud € Clu).

All the possible changes of charts can be realized.
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Proposition 4.6. [31] [I5] Let « € Dift 1 (C,0) such that log v is convergent. Con-
sider a series Zj’;l ax;jwl € C{w} for all \ € D,. Then there exists a mapping
p € Diff 1 (C,0) with convergent normal form « such that

00
A E L —2misjz
fgpfz—"_CQP—’— a)\-,]€

=1

in homogeneous coordinates for all A € Dy(a) and all s € {—1,1}.

4.4. Analytic classification. Suppose that @1, po are formally conjugated. Con-
sider convergent normal forms a; and as of ¢; and o respectively. We have
that a; and oy are formally conjugated and then analytically conjugated by some
h € Diff (C,0) by proposition Then up to replace o with A% 0 s 0 h we
can suppose that ¢; and ¢ have common normal form a; = as. In particular we
have that 1 (y) —2(y) € (y>#1)+D). Indeed ¢; and @, have common convergent
normal form if and only if v(p1) = v(p2) and @1 (y) — p2(y) € (2@ FIH),

Let ¢1,po € Diff1(C,0) with common convergent normal form «. There exists
5(¢1, 2) € Diff (C,0) conjugating g1 and s such that & (1, ¢2)(y)—y € (y")+2).
Moreover &(p1,p2) is unique. We say that 6 (1, p2) is the privileged formal con-
jugation. Choose \g € D(¢1) = D(p2) and 9. The next couple of propositions
are a consequence of Ecalle’s theory. We always use homogeneous coordinates.

Proposition 4.7. Let @1, € Diff 1(C,0) with common convergent normal form
a. Then for all X € D(p1) there exists a unique holomorphic oy : Vsjl — V;‘Q conju-

gating v1 and w2 and such that 5(p1, p2) is a v(p1)-Gevrey asymptotic development
of ox in V2. Moreover We have oy = ( :}2)0(_1) o}, .

The expression o) : ngl — ij implies an abuse of notation. Rigorously VQI
and Vg‘g can be replaced by sectorial domains W:,‘l and W$2 of direction [ and angle
27 /v(1) and such that o; : W, — WL is a biholomorphism. For simplicity we
keep this kind of notation throughout this section.

The elements of the centralizer Z(¢) of ¢ € Diff1(C,0) can be realized in the
sectorial domains V for every A € D,,.

Proposition 4.8. Let ¢ € Diff1(C,0) with convergent normal form «. Consider
an element Z?t of Z(p). Then for all X € D, there exists a unique holomorphic
Ty Vg‘ — Vsé\ﬁ such that p o Ty = Ty © ¢ and Zg’t is a v(p)-Gevrey asymptotic
development of Ty in V). Moreover we have T\ = (1/12"‘)0(71) o (Y +1).
We can combine propositions [£.7] and [4.8] to obtain:

Proposition 4.9. Let @1, € Diff 1(C,0) with common convergent normal form
a. Consider (k,t) €< e¥™/V(#1) > xC. Then for all \ € D,, there evists
a unique holomorphic J;’t : VLP’\1 — Vgg‘; conjugating 1 and @2 and such that
Zt o 6(p1,p2) is a v(pr)-Gevrey asymptotic development of oi’t n Vé\l' More-

over ot = ( ;\,’;)o(_l) o (¢, +1) in homogeneous coordinates.
By uniqueness of the v(p;)-Gevrey sum in sectors of angle greater than 7/v(¢1)
we deduce that Zg’zt o 6(p1,p2) is analytic if and only if oi’t = U:’etm/um) in

Vg‘l N VAfM/V(m) for all A € D,,. These conditions can be expressed in terms of
the changes of charts.
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Proposition 4.10. Let @1, po € Diff 1 (C,0) with common convergent normal form
a. Then o1 ~ o if and only if there exists (k,t) €< e*™/V(?1) > xC such that

(2) Mo(ztt)= (4108 VAE Digy).

P2 P1
Indeed the equatz’on is equivalent to Z5} o 6(ip1,p2) € Diff (C,0).

There is a quite common mistake in the study of tangent to the identity diffeo-
morphisms. We can find references in the litterature where it is claimed that given
1,2 € Diff 1 (C,0) analytically conjugated and with common normal form then
the conjugation can be choosen of the form y+O(y*(¥1)+2). In other words if ; and
@2 are analytically conjugated then (1, p2) € Diff (C,0). This false statement
is obtained by neglecting the role of the centralizer in the analytic conjugation. A
reference can be found in [26].

Remark 4.1. Let A € Dy(p1). The condition )5 (z+t) = (z41t)o&), is equivalent

P2 —2misjt _ ¢1 ;
to ai, e =ay); for all j € N.

Remark 4.2. Let ¢ € Diff1(C,0) with convergent normal form «. Then logg

belongs to X (C,0) if and only if ¢ ~ « (prop. . Therefore logp € X (C,0) if
and only if af,j =0 for all A € D(p) and all j € N.

5. FORMAL CONJUGATION

Part of this paper is devoted to explain the relations among formal conjuga-
tions, analytic conjugations and the centralizer when dealing with elements of
Diff ,; (C2,0). In this section we study the formal properties of the diffeomorphisms.

5.1. Formal invariants. Let o1, € Diff,;(C?,0). Suppose that there exists
o € Diff (C?,0) such that o o ¢; = @3 0 0. We want to express o as a composition
01 o 02 such that the action of o on the formal invariants of ¢ is the same action
induced by o3. Moreover identifying a possible o5 is much simpler than finding o.

The property o o¢; = @9 00 implies that o conjugates convergent normal forms
of ¢1 and 5. We obtain:

Proposition 5.1. Let @1, s € Diff ; (C2%,0). Suppose that 1 and py are analyti-
cally conjugated by o € Diff (C?,0). Then

b [(90@2 *y) OU}/(yOgal fy) 15 a unit.
o Res(p1,P) = Res(pz,0(P)) for all P € Fizp;.

Remark 5.1. The residue functions are formal invariants [21] but for us it is
enough to know that they are analytic invariants.

We denote 7(Fizp) = Fizps if [(yo pa —y)oT]/(yo @1 —y) is a unit for some
r € Diff (C2,0). In particular Fixzp; = Fizps means that Id(Fizp,) = Fizps.

Consider a diffeomorphism 7 € Diff (C2, 0) satisfying the two conditions in propo-
sition By replacing oo with 7°(-1 0 ¢, o 7 we can suppose from now on that
Fixp1 = Fizps and Res(p1) = Res(p2).

Consider a formal conjugation 6 € Diff (C2%,0) between ¢; and . We say that
& is special (with respect to Fizpy) if to6 =x and yo b —y € I(Fixy,). We say
that & is good (with respect to Fizey) if & is special and y o 6 —y € I(7)? for all
irreducible component v of Fizp; such that yog, —y € I(v)2. We denote @1 < ¢y
if (1, 2 € Diff 1 (C?,0) are conjugated by a special element of Diff (C2,0).
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We denote
Xpl((CZ,O) ={X € X(C%0) : exp(X) € Diﬂpl((CQ,O)}.

In particular the set of convergent normal forms of elements of Diff ,1 (C?, 0) is equal
to exp(X,1(C?,0)).

Proposition 5.2. Let aj,as € Diff ,1(C?,0) such that loga; € X,1(C?,0) for
j €{1,2}. Suppose that Fizxa; = Fixas and Res(ay) = Res(ag). Then a; 2 .

Lemma 5.1. Let f € C{z,y} such that f(0,y) # 0. Consider A € C{x,y} such
that (A(zo,y)/ f(xo,y))dy has vanishing residues for all xy in a neighborhood of 0.
Then there exists a germ of meromorphic function 8 such that 03/0y = A/f and

Bf € Vf C Clz,y}.

Proof. Let P = (0,y0) # (0,0) be a point close to the origin. Since f(P) # 0 there
exists a unique holomorphic solution  defined in the neighborhood of P such that
083/0y = A/ f and B(x,y0) = 0. The residues vanish, then we extend 3 by analytic
continuation to obtain 8 € 9(U \ (f = 0)) for some neighborhood U of (0,0).
Consider Q € (U\{(0,0)})N(f = 0). Up to a change of coordinates (x,y+h(x))
we can suppose that f = v(x,y)y" in the neighborhood of @ where y(Q) = 0 # v(Q)
and r € N. The form (A/f)dy is of the form (3, ;5 , ¢j(x)y’)dy. Then 3
is of the form > o5 () cj—1(z)y?/j + Bg(x) for some By holomorphic in a
neighborhood of Q. As a consequence (f is holomorphic and vanishes at f = 0in a
neighborhood of ). Hence §f belongs to 9(U \ {(0,0)}) and then to ¥(U) since we
can remove codimension 2 singularities. Clearly we have 8f € I(f =0) =+/f. O

Proof of proposition[5.4 There exists f € C{z,y} such that loga; = u;f0/dy for
some unit u; € C{z,y} and all j € {1,2}. Let us use the path method (see [27]
and [19]). We define

X o 1o} - U1U2f 1o}

142z = ulﬂfaiy = —zu1 T (1 — Z)UQ 873/
We have that X1, € X,1(C?,0) for all z € C\ {c} where ¢ = u3(0)/(u2(0) —u1(0)).
Moreover SingXi4, and Res(Xi.,) do not depend on 2. It is enough to prove that
log a1 is analytically conjugated by a special diffeomorphism to log as for ¢ & [0, 1].
If ¢ € [0, 1] we define

u1+iu2f ﬁ
2u1q + (1 — 2)ug Oy’

Since u144(0)/(u144(0) — u1(0)) and u1(0)/(u1(0) — u14:(0)) do not belong to [0, 1]
then we obtain a special diffeomorphism conjugating a; and s as a composition
of special diffeomorphisms.

Suppose ¢ € [0, 1]. We look for W € X(C3,0) of the form h(x,vy,2)f0/0y+0/0z
such that [W, X;4.] = 0. We ask hf to be holomorphic in a connected domain
V x V! € C% x C containing {(0,0)} x [0,1]. We also require hf to vanish at
(f =0)xV'. Supposed that such a W exists then exp(W),,_, is a special mapping
conjugating log a; and log as. The equation [W, X14,] = 0 is equivalent to

ohf) L 0wiaf)  Oursaf)

st Jy —hf dy - 0z

U1U1+if 8 2
Y, = — and Y7, =
142 2up + (1 _ Z)U1+i 8y an 1+2
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By simplifying we obtain
oh Oury, Oury,  O(h 2 1 1
Y T CTATES) S S
Oy dy 0z Oy urf  uaf
Let 8 be a solution of 88/dy = 1/(uif) — 1/(uaf) such that 3f € /f. Since
(1/(ur f) — 1/(uaf ))dy has vanishing residues by hypothesis then such a solution
exists by lemma[5.1] We are done by defining h = uy .. O

Suppose that 1,2 € Diff ;1 (C?,0) satisfy Fizg, = Fizps and Res(p1) =
Res(pz). Consider convergent normal forms a; and ag of 1 and @9 respectively.
Then a; and sy are analytically conjugated by some special 7 € Diff (C2,0) (prop.
5.2). By replacing ¢, with 7°(—1) 0,07 we can restrict ourselves to study elements
of Diff 1 (C2,0) with common normal form and analytic special conjugations.

Proposition 5.3. Let 1,2 € Diffpl((Cz, 0) with common convergent normal form
a. Let f € C{z,y} such that (yo w1 —y)/f is a unit and denote 4; = (logp;)(y)/f
for j € {1,2}. Then ¢1 and @2 are formally conjugated by the good transformation

- R Ul °0_ 39
T = exp (52{“ Ta- Z)ﬂQfay + 82’>z—0

where (3 can be any solution of 83/dy = 1/ (i1 f) — 1/(tef) in C[[z,y]).

Proof. We have that 1/(41 f) —1/(taf) € C[[z,y]] since ¢1 and @9 have convergent
common normal form. Let 8, € C{z,y} such that B— B € (J:,y)k. We choose
ur i € C{z,y} such that 41 —u1 € (f)(z, y)k; this is possible by proposition

We define ug , € C{z,y} \ (z,y) such that 98x/0y = 1/(u1 kf) — 1/(u2,kf). Now
exp(uy,,f0/0y) and exp(us i f0/0y) are formally conjugated by

Lodef (5 Uy U2,k ﬁ+2
k p kzul,k-i-(l—z)uz,k By 0z |z=0

by proposition It is straightforward to check out that u;, — 4; and 7, — 7,
the limits considered in the Krull topology. Thus 7 conjugates 1 and ¢s. O

5.2. Formal centralizer. Let ¢ € Diff,;(C?,0). Next, we study the groups
Z () of formal special auto-conjugations of ¢ and Z,,(¢) = Z(p) NDiff ,,,,(C?,0).
We say that Fizy is of trivial type if I(Fizp) is of the form (f) for some f € C{z,y}

such that (0f/0y)(0,0) # 0. Let us remark that Fiz is of trivial type if and only
if it has a unique smooth irreducible component transversal to 9/0y.

Lemma 5.2. Let go € Diff ,;(C%,0). Then
Zup(p) = {exp(é(z) log ) for some é(x) € C[lz]]}.

In particular Zup( ) is commutative and all its elements are good. Moreover we
have Zey (@) = Zup() if Fizyp is not of trivial type.

Proof. We have that 7 € Zup(go) is equivalent to [log ,log7] = 0. Thus log7 is
of the form (log7)(y)9/0y by the same arguments than in the proof of proposition

We obtain 9 ((logp)(y)
B 9 (Lo8P)\Y) _
[log p,log 7] =0 < ( (log 7)(y) ) ’

Since (log ¢)(0,y) # 0 then log7 = é(x)log ¢ for some é(x) € C[[z]]. We proved
Zup(9) C Zap(p), we always have Zp, () C Zup(e) in the non-trivial type case. [
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We define the order v(p) of ¢ € Diff ,1(C?,0) as the order of ¢|,—¢ € Diff1(C,0).
We define v(X) = v(exp(X)) = v(X(y)(0,y)) — 1 for X € X,,;1(C?,0).

Lemma 5.3. Let p € Diff ,1(C2,0). Suppose that Fizy is of trivial type. Then

Zsp(p) = {%S(T) o exp(é(x)log p) for some r € Z/(v(p)Z) and é(x) € C[lx]]}

where Ty € ﬁfp(((?,()) is periodic and ((y o 70)/dy)(0,0) = e2™/¥(?) . Moreover
Zop() is a commutative group.

Denote 7y(p) = To. We say that 7o(p) is the generating symmetry of ¢. We
denote exp(c(z) log @) by ZL© whereas we denote 70()° oexp(c(x) log ) by zZye
where k = 27"/V(#),

Proof. Let v = v(¢1). Up to a change of coordinates (z, h(z,y)) we can suppose
that y o ¢ —y = v(z,y)y” ™" where v € C{x,y} is a unit and v = v(yp). Consider a
convergent normal form a = exp(w(z,y)y’10/dy) of ¢. Let us remark that since

1 dy
Res(yp, (x,0)) = —/ —_
(e (=:0)) 2mi Jyeap(o,e) w(@, y)y !
for € > 0 small enough then Res(y) is a holomorphic function of y = 0. We define
v+1
X = i 9
1+ y¥Res(e, (x,0)) Oy

By construction Fizg = Fiz(exp(X)) and Res(p) = Res(exp(X)). Up to a special
change of coordinates we can suppose that exp(X) is a convergent normal form of

¢ (prop. |5.2)). Let 3 € C[[z,y]] be the solution of d3/dy = 1/X (y) — 1/(log ©)(y)
such that 3(x,0) = 0. We define

s - ull i1 0 0
§=exp (ﬂzu—l—(l—z)ay 8y+82>|z=0

where u = 1/(1 + Res(p, (x,0))y”) and @ = (log©)(y)/y*+*. Then £ conjugates
exp(X) and ¢ by proposition We remark that (z,e*™/Vy)*X = X; hence
Fo = Eo(x,e2m/Vy) 021 € Z, () is periodic and (79/8y)(0,0) = e2™/¥. Given
T e Zsp(go) there exists r € Z such that (?g(ﬂa)f')m:o is tangent to the identity by

(=)

proposition As a consequence 7, 7 is tangent to the identity. We obtain

7= %g(r) o exp(é(z) log ) for some é(z) € C[[z]] by lemmam Moreover Zg,(¢) is
commutative since (z,e2™/*y)*X = X implies 7¢ log ¢ = log . O

Next we stress that special and good conjugations are the same in the non-trivial
type case.

Lemma 5.4. Let 1, s € Diff ;1 (C2,0) with common convergent normal form c.
Suppose that 1 and @ are formally conjugated by a special 6 € Diff (C%,0) and
that Fixpy is not of trivial type. Then & is good.

Proof. We have that o and ¢; are conjugated by a good 7; € Diff (C2%,0) (prop.
. Then it is enough to prove that i—;(_l) 0607 € Zyy(a) is good. This is a
consequence of lemma, [5.2 (]
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Let X € X,1(C?,0). We denote by Singy X the set of irreducible components of
SingX which are parameterized by x. Consider v € Singy X; we denote by vx(7)
the only element of N U {0} such that X (y) € I(y)*XM+1\ [(y)rx(+2,

Proposition 5.4. Let @1, 2 € Diff ,1(C?,0) with common normal form exp(X).

Consider v € Singy X. Then there exists a unique special 5(p1,p2,7) € Diff (C2,0)
conjugating ¢ and oy and such that y o &(p1,@a,y) —y € I(v)"xN+2,

By definition the transformation & (1, p2,7) is the privileged formal conjugation
between ¢, and ¢o with respect to ~.

Proof. There exists a unique solution 3 of 93/8y = 1/(log v1)(y) — 1/(log ©2)(y)
such that B\v = 0. The formula in proposition [5.3|provides a special 6 (1, ¢2,7) = 7
conjugating ¢; and @y and such that y o 6(p1, p2,7) —y € I(y)"xMV+2,

Suppose (1, p2,7) is not unique. Thus we have y o h—ye I(5)vx(M+2 for
some h € Zup(p1) \ {Id}. By lemma the transformation & is of the form zZhe

for some ¢ € C[[z]]. Since (log h)(y) belongs to I(7)**M+2 then ¢ = 0 and h = Id.
We obtain a contradiction. (]

5.3. Unfolding of diffeomorphisms y — ¢2™/9y + O(y?). Consider the sets
Diff ,,5(C2,0) = { € Diff ,(C2,0) : j'¢|,—¢ is periodic}

and

Diff ,,.(C?,0) = {¢ € Diff ,(C?,0) : jlgo‘mzo is periodic but ¢|,—¢ is not periodic}.

Given ¢ € Diff ,,s(C%,0) we denote by ¢q(p) the smallest element of N such that
(0¢/0y)(0,0)9#) = 1. Clearly ¢ € Diff ,.(C?,0) implies ©°(4(¥)) € Diff ,; (C2,0).
In this paper we classify analytically the elements of Diff pl((C2, 0). We obtain for
free a complete system of analytic invariants for the elements of Diff ,,.(C2, 0).

Proposition 5.5. Let ¢1,p2 € Diff ,.5(C2,0). Then o1 ~ @2 if and only if
(901/9y)(0,0) = (922/9y)(0,0) and ") . 3,

Proof. The sufficient condition is obvious. Every mapping ¢ € Diff ,(C",0) admits
a unique formal Jordan decomposition

P = Ps 0Py = Py O Ps

in semisimple ¢y € Diff (C™,0) and unipotent ¢, € ]ji?lfu((C”7 0) parts. Semisimple
is equivalent to formally linearizable. The decomposition is compatible with the
filtration in the space of jets, Le. %o = j%¢ implies j*p, = j¥¢, and %, = j%C,.
Moreover we have ¢, ¢, € Diff ,(C",0) for all ¢ € Diff ,(C",0).

Denote ¢ = g(¢1) and v = (9p1/0y)(0,0), we can suppose v # 1. Suppose
@i(q) = Id. This implies @Z(q) = Id. Denote by 7, the unipotent diffeomorphism

(2,9) + (,09)°CD 0 g + ... (z, 0y)°@=D) o PO
: .

By construction n oo = (z,vy)ony for k € {1,2}. The diffeomorphism 77;(_1) om

conjugates 1 and (o.
Suppose @i(q) # Id. We have that jlyy is conjugated to (z,vy) by a linear
isomorphism and then semisimple for k € {1,2}. Thus we obtain jlp. s = jlox,
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moreover since ¢y s is formally linearizable then @ng) = Id for k € {1,2}. We
deduce that @Z(Q) = ‘PZSZ) for k € {1,2}. Hence log gy, is of the form fz8/y for

some fi € C[[z,y]] \ {0} and all k € {1,2}.

Let o be a diffeomorphism conjugating gpi(q) and gpg(q). The mapping o conju-
gates qlog 1 ,, and glog ¢z, by uniqueness of the infinitesimal generator and then
00 Y1y = P2, ©0. Denote n = oo 2,5 0 0. We claim that o conjugates ¢;
and o, it is enough to prove that ¢ s = n. We have z0¢; , = zon = z and
(0¢p1.5/y)(0,0) = (9n/dy)(0,0). As a consequence n°(~1 oy ; is unipotent. Since
both 7 and ¢ s commute with ¢, ,, then (no(*l) 0PI 5) 0PI = P1,u0 (no(*l) 0p1s)-
We deduce that [log(n°("Y o1 ), log ¢1.] = 0. Since log(n°("Y oy ¢)(2) = 0 then
we obtain log(n°(=1 o ¢y ;) = (é(x)/2™)log ¢y . for some ¢ € C[[z]] and m € Z>o.
The equations z o = x and 7, log ey, = logyi, imply that n commutes with
n°=Y 0 ¢y 4. This leads us to (7°(~1) 0 ¢y ()°@ = Id. In particular ¢ is identically
0, we obtain 1 = ¢ ;. |

Remark 5.2. The techniques in this paper can be used to classify analytically the
diffeomorphisms ¢ € Diff,,,(C2,0) such that (y o ¢ —y) is not of the form (z™)
or (x™y) for m € N up to a change of coordinates and then all resonant diffeo-
morphisms having an iterate in such a set. We work with elements of Diff ,1(C2,0)
for the sake of simplicity. A complete system of analytic invariants for the case
(yop —y) = (™) has been provided by Voronin [10].

6. ECALLE-VORONIN INVARIANTS. TRIVIAL TYPE CASE

We present a complete system of analytic invariants for ¢ € Diff ,;(C2,0) in the
trivial type case. We establish the link between the analytic classes of the one-
variable diffeomorphisms (¢)|;—z, for zo in a neighborhood of 0 and the analytic
class of .

We suppose throughout this section that I(Fizy) = (y) for all ¢ € Diff ;1 (C?,0)
such that Fixep is of trivial type. This is possible up to change of coordinates of
the form (z,y + h(z)).

Lemma 6.1. Let ¢ € Diff,;(C?0) such that Fixe is of trivial type. Then
(log ©)(y) belongs to 9(B(0,0))[[y]] for some § € RT.

Proof. Suppose that ¢ is defined in B(0,d) x B(0,€). Let © be the operator ¢ — Id.
By the proof of proposition [3.9] we have
!

Uogvﬂ(y)——j{:(—qu+1§ff?ﬁyl € (Y.

i=1 J

We are done since ©°0)(y) is holomorphic in the neighborhood of B(0,§) x {0} for
all j € N. 0

Let ¢1,¢p2 € Diff ,1(C?,0) with common convergent normal form such that
Fixzp; is of trivial type. We define 6(¢1,p2) = 6(¢1, ¢2, Fizpr). We say that
6(p1, p2) is the privileged formal conjugation between ¢, and yo. By construction
we obtain that y o &(p1,p2) —y € (y*(#1)+2).

Lemma 6.2. Let o1, 2 € Diff ,1(C2,0) with common convergent normal form such
that Fizpy is of trivial type. Then yo 6(p1,p2) € 9(B(0,6))[[y]] for some § € RT.
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Proof. We have (log 1) (y), (log v2)(y) € 9(B(0,8))[[y]] for some § € RT by lemma
Consider 3 € C[[z,]] such that d3/dy = 1/(logp1)(y) — 1/(og ps2)(y) and
B(x,0) = 0. We deduce that § and then y o 6(p1, ) belong to ¥(B(0,6))[[y]] by
proposition [5.3] O

Lemma 6.3. Let ¢ € Diff 1 (C?,0) such that Fizy is of trivial type. Then yoto(p)
belongs to 9(B(0,0))[[y]] for some 6 € RT.

Proof. Consider the notations in the proof of lemma [5.3] We have that
7o) = 6 (exp(X), @) © (2, >/ y) 0 5(exp(X), )* Y.

Now y o ¢(exp(X), ¢) belongs to 9(B(0,9))[[y]] for some § € RT by the previous
lemma. Therefore y o 7p(¢) belongs to 19( (0,)[y]]- O

Let ¢ € Diff ;1 (C?,0). Suppose that Fizy is of trivial type. We define ¢,, as the
germ of p|,—,, at the neighborhood of y = 0. We define D(¢) as the continuous
sections of Uy,ep,s){w} X Ds(pw). The directions in Dy(p,,) vary continuously
with respect to w. Thus the mapping A — A(0) establishes a bijection from D ()
onto Dg(pg). We define D(p) = D_1(¢) U D1(y).

For A € D(y) we define the petal VW)‘ = UweB(o,é)V/\,Ew)~ The set VW)‘ is open. We
say that n € 9(V}) is a Fatou coordinate of ¢ in V) if 5,—,, is a Fatou coordinate
of Y|p—y in VQUE“’) for all w in a neighborhood of 0.

Fix a convergent normal form « of . Fix a direction A\g € D(yp) and a Fatou
coordinate 10 € ¥(V o U ch‘ﬂ) of @. Now consider homogeneous coordinates, i.e.
we exhibit for every A € D(p) an integral of the time form ) € (V) U va‘) of a

such that the system {(¢ provides homogeneous coordinates for all w

)Iw W})\GD( )
in a neighborhood of 0. There exists a unique integral of the time form @[J:) € 19(V</;\)
of ¢ for all A € D(¢) such that lim, (1)} — va)(w,y) = 0 in every sector of
direction A(w) and angle lesser than 27/v(¢) contained in ng‘ N (z = w) for all w

in a neighborhood of 0. Moreover (z, w (z, z)) is injective in Vg;\. The proof can be
obtained like in subsection u Let A € Ds(p), we can define the change of charts

e 0(71)
Ex(a,2) =0} o (z,¥5(x,2)) " (x,2).
We obtain that 53; is of the form

im/v(e)

gA(gc z) = z — miRes(y, (2,0))/v(e) + Z af ] o~ 2misjz

where af ; is an analytic function for all j € N. Moreover > 72 af ;(z)w’ is an
analytic function in a neighborhood of (z,w) = (0,0). A different choice of con-
vergent normal form or homogeneous coordinates provides new Fatou coordinates
Y3 (x,2) + t(z) for some ¢ € C{z} independent of A € D(y). Thus the changes of
charts are unique up to conjugation with z 4 t(z) for some ¢t € C{z}.

Let @1, p2 € Diff (C2%,0) with common convergent normal form . We always
suppose that their Fatou coordinates are calculated with respect to a common
system of homogeneous coordinates. Since 7p(¢2) and (1, p2) depend analytically
on z by lemmas [6.3] and [6.2] then there are parameterized versions of the results in

subsections and We obtain:
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Proposition 6.1. Let 1, g2 € Diff 1 (C?,0) with common convergent normal form
a. Suppose that Fizey is of trivial type. Then ¢y L oy if and only if there exists
(k,t) €< e2m/v(@) > xC{x} such that

3) o (2,2 +1(2)) = (2 + t(x)) 0 €3, (2,2) YA € D(n).

Y2
Indeed the equation@ is equivalent to Z[! o 6 (1, p2) € Diff (C?,0).

Remark 6.1. Let p € Diff ,;(C2,0). Analogously to Temark the previous propo-
sition implies that

logp € X(C%,0) < fg(x, z) = z — wiRes(p, (2,0))/v(p) YA € D(p).

Let ¢1, @2 € Diff ;1 (C%,0) with Fizp; = Fizps. We say that my, (w) = me, (w)
if (p1)w ~ (p2)w. Next we analyze whether m, determines the analytic class of
@. It turns out that the analytic triviality of ¢y plays a preeminent role. Let
a € Diff ,1(C?,0) be a convergent normal form of ¢ and consider homogeneous
coordinates for the changes of charts of ¢. Consider the set

Ey(p) ={(A\k) € Ds(p) x N s.t. af , # 0}
for s € {—1,1}. We define E(p) = E_1(¢) U E1(p). We define

9d(p) =ged{j e N:3IX € D(p) s.t. (\,j) € E(p)}.

The definitions of gd(p) and Es(p) for s € {—1,1} do not depend on the choice of
homogeneous coordinates.

Proposition 6.2. Let ¢, € Diff ,1(C?,0) such that log ¢y is divergent. Suppose
that Fixp, is of trivial type. Then there exists pa € Diff j1(C2,0) with common
convergent normal form with o1 such that

o My, =My,

e 1 is not analytically conjugated to po by a special diffeomorphism
if and only if

e log(¢p1)o belongs to X (C,0)

o {se{-1,1}: af’lj € (z/9%1)+1) for all (N, ) € Ds(p1) x N} # 0.
In such a case there exists (r,s,q) € Z/(v(p1)Z) x C{z} x (Q\ {0}) such that ¢4
and @9 are conjugated by a transformation of the form

exp (- log + s(x)) log ez ) o 7o(2)°" 0 5 (i1, 02)
which is analytic in a domain of the form |y| < Co/ *“*R/|Inx| for some Cy € RT.

Proof of the sufficient condition. Choose a convergent normal form « of ¢;. Con-
sider Fatou coordinates 2 in V2 for all A € D(g1). Suppose that my,, = my,.
Then there exists (k(z),d(x)) €< €?™/¥(®) > xC such that
3 (2,2 + d(x)) = (2 +d(x)) 0 €, (2, 2)

in homogeneous coordinates for all A € D(p;) and all z in a neighborhood of
0. A priori the functions k(z) and d(x) are not even continuous. There exists
k€< e¥7/Y(®) > such that W = [k(z) = ] is uncountable in every neighborhood
of 2 = 0. Let (A j) € Es(p1); we have al;(v) = aX}, (x)e=2ms1d@)i for all x € W
and then af? . # 0. We denote sg : D(¢1) — {—1,1} the function such that

K,J
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sg(Ds(p1)) = {s} for s € {—1,1}. We denote hy ; = a/\w/a The previous
formula implies that

(4) hi‘?](’\)k _ hSQ(H)J

for all (A, j), (1, k) € E(p1) and for all z € W\ (al}a)}, = 0). The equation
is satisfied for all = in a neighborhood of 0 since W is uncountable. Consider
v(\, j) € Z the order of vanishing of hy j, i.e. hy /2" is a unit. Thus we have

(5) v(X, 5)sg(Nk = v(p, k)sg(p)j

for all (A, ), (i, k) € E(p1).
Consider a point xg € W such that af’;(zo) # 0 for all (X, j) € E(p1). Choose

(Mo, Jo) € E(p1); we define g = sg(Xo)v (Mo, Jo)/jo and

1 A, (l‘)
= In —0J027
) = SrisgOolio " 2 Coi)

Denote t(x) = ¢/(2mi)Inz + s(x). We can suppose t(xg) = d(zg) by choosing
properly the determination of the logarithm. The equation [4] implies that ¢ does
not depend on (Mo, jo) € E(p1). Thus we obtain eQﬂSg(A)jt(z)a%j = af;, ; for all
(AN, j) € E(p1). By proposition [4.10] “ we deduce that 1 and @9 are conjugated by
an analytic mapping o defined in a neighborhood of (y = 0) \ {(0,0)} and whose
expression in each petal ch)‘l is given by

© @) e (3 + g ma)] o [T o (v, +s@)].

The condition o1 £ o implies that ¢ # 0, otherwise 7% 0 6(p1,p2) is a special
analytic conjugation by proposition Moreover since ng — 1) is bounded for
j € {1,2} then o is defined in a domain very similar to the domain of definition of
exp(q/(2mi) Inzlog o). We have 9} ~ 1/y*(®), thus o is defined in a domain of the
form |y| < Cy/ *Y/| Inz| for some Cy € RT.

The property ¢ # 0 implies v(A,j) # 0 for all (A, j) € E(p1). Suppose that
log(¢1)o does not belong to X(C,0). By remark [4.2) this implies the existence of
af, j, such that af; . (0) # 0. Since &pz (0 z+d(0)) = (z 4 d(0)) 0 &},(0,2)
then afjn(o)d.o(()) # 0. We deduce that v(Xg,jo) > 0 > v(Aok(0)s™1, jo), this
inequality contradicts equation [5| since sg(A\g) = sg(Aor(0)x~1). Analogously we
obtain log(y2)o € X(C,0).

To prove the second property we can suppose that Es(p1) # () for all s € {—1,1};
otherwise the result is trivial. The equation[5|implies that either v(E_; (1)) C Z<o
and v(F11(p1)) CNor v(E_1(p1)) C Nand v(E11(p1)) C Zeo. We suppose that

we are in the former case without lack of generality. Since afl = ay? j /hx,; we

deduce that af’; € (z=XDH) for all (A, j) € E_1(p1). Let (u,k) € E(p1), the
equation [5] implies that —v/(},j) € jN/ged(j, k). Therefore —v(,j) € jN/gd(y).
This implies af’; € € (27799 *1) for all (\,j) € D_1(p1) x N. O

Proof of the necessary condition. We keep th_e notations in the previous proof. Sup-
pose without lack of generality that af'; € (27/98(e1)+1) for all (X, j) € D_1(p1)xN.

We define af? = af’a*/94#0) for all (A7) € Ds(p1) X N. Let A € D(p1); it is
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straightforward to prove that

Za‘pl xt9NI/9d01) 20 e Cf, 2} & Za r)z! € C{x, z}.
j=1
Now we can use a parameterized version of propositionto obtain ¢ € Diff ,1 (C2,0)
with convergent normal form a and such that

gz (z,2) =z — miRes(p1, (£,0))/v(p1) + Z af’ZjCL,)e—QTrisjz
j=1
for all X € Dy(¢1) and all s € {—1,1}. Let us remark that log(¢2)o € X(C,0) since
a$?(0) = 0 for all (A, j) € D(¢1) x N. Our choice of ¢, implies that

1 1
A —1 = —1 2 D .
& (7 grgaen ™) = (5 iy %) 2 02) VA€ Do)

Therefore we get m,, (x) = my, (z) for all z # 0. Moreover my,, (0) = m,(0) since
both (1) and (p2)o are analytically trivial.

We define v (2, j) the order of vanishing of afz at 0, it is —oo if affj = 0. We have
va(A,§) = v1(\ j) + s5/g9d(p1) for all (A, j) € Dy(ip1) x N. Suppose o1 ~ a; then
there exists (k,d) €< €?7/¥(¥1) > xC{x} such that all;(z) = af,";’j(w)e_zmjd(‘”)i
for all (A, j) € Ds(¢1) x N (prop. [6.1). Thus we obtain vo(Ak, j) = v1(A, j) for all
(N, 7) € D(¢1) x N. Choose (Ao, jo) € D(p1) x N such that v1 (Ao, jo) # —o0. By
remark that is possible since log ¢ is divergent. We define

H = {)‘ € Dsy(Ao)(‘Pl) : V()‘ij) # _OO}'
Denote ¢ = sg(A\o)jo/9d(p1). We obtain
> aMdo) =Y (n(Ndo) + o) =ctH+ Y (N o) = ctH + > 1a(), jo).
AeH AeH AernH AeH

This is impossible since ¢ # 0 and H # @. Thus ¢; and (5 are not conjugated by
a special diffeomorphism. O

Corollary 6.1. Let a € Diff ,;(C?,0) such that loga € X (C?,0). Suppose that
Fiza is of trivial type. Then there exist p1,p2 € Diﬂpl(Cz,O) with convergent

normal form o such that m,, = m, but ¢, £ ps.

Corollary 6.2. Let @1, 2 € Diff ,1(C?,0) such that Fizyp, = Fizps. Suppose that
Fizpy is of trivial type and that log(p1)o € X (C,0). Then ©1 & @o if and only
Mp, = M,

We say that 1 is a r-moderated mapping if 7 is a biholomorphism from B(0,7)
onto n(B(0,7)). If besides that n(B(0,r)) is contained in B(0, R) then we say that
71 is rR-moderated.

Next proposition is intended to show that 7, o (©1)jz=w = (¢2)jz=w © M for
all w # 0 and @1 % @y are not compatible if the domains of definition of the
conjugations 7,, have a regular behavior when w — 0.

Proposition 6.3. Let p1, 0o € Diffpl ((C2 0) such that Fixp, = Fizps. Suppose

that Fizpy is of trivial type. Then o1 % oy if there exist r € RT and a r-moderated
mapping 1, conjugating (1) and (p2), for all x in a pointed neighborhood of 0.
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We do not ask the mappings 7, to have any kind of good dependance with
respect to x.

Proof. By proposition we have that v(p1) = v(p2) and Res(p1) = Res(p2).
Let a; be a convergent normal form of ¢; for j € {1,2}. Since v(a;) = v(p;) and
Res(aj) = Res(p;) for all j € {1,2} then there exists a special ¢ € Diff (C?,0)
conjugating «; and as by proposition Denote ¢y = ¢°"1 o @y 0¢. The
mapping g;’(*” o7, conjugates (1), and (P3),, they share the convergent nor-

mal form (a),. Then we obtain (2" o, = Z&i)x 0 6((¢1)as (P2)s) for some

(k,t) €< 2™i/¥(¢) > xC. This implies [(9(¢s"" 0 1,)/0y)(0)] = 1 and then
[(0¢)/0y)(0)] = |(Ony)/0y)(0)|. Denote b(x) = (On,;/0y)(0). We obtain that
N(ry)/(rb(z)) is a Schlicht function for all z in a pointed neighborhood of 0. By
the Koebe’s distortion theorem (see [B], page 65) we get

sup  [nu(y)| < rfb(x)|  sup
y€B(0,71) y€B(0,71/7)

ColR e e

for all 71 < r and all = in a pointed neighborhood of 0. We deduce that g;)(‘” 0Ny
is rR-moderated for some R € R™ by considering a smaller r > 0 if necessary. By
replacing ¢o with @5 and 7, with (:;(71) o1, we can suppose that 1 and o have
common normal form.

Suppose that either logp; or log s belongs to X' (C2,0). Since (¢1), is con-
jugated to (@2), for all z in a pointed neighborhood of 0 then aff’j = 0 for all
(A J,k) € D(p1) x N x {1,2} by remark Thus logp, € X(C2,0) for all
k € {1,2} by remark The discussion in the previous paragraph implies that ¢
and 9 are conjugated by a special diffeomorphism.

Now suppose that logp; ¢ X(C2,0) for j € {1,2}. Since 7, conjugates (1)

and (p2), then 7, is of the form ZZ’E;"){;d(w) 0 6((p1)w, (¢2)w) Where (k(w), d(w))

belongs to < €27/¥(¢1) > xC for all w in a pointed neighborhood of 0. We choose
Kk €< e?™/V(#1) > such that (k(z) = k) is an uncountable set in every neighborhood
of 0. Denote W = [k(z) = K] \ U jyer(pn) (a5 = 0). By the proof of proposition
we obtain that there exists (g, s) € Q x C{x} such that

exp (% log = log @2) o Z;;S 06 (p1,p2)

conjugates 1 and @9 in a neighborhood of (y = 0) \ {(0,0)}. We deduce that
exp((q/(2mi) Inw + s(w) — d(w)) log @2) |z=w s in Z((p2)w) for all w € W\ {0}. We
obtain the equation

af?j (ZC) — af?j ($)6—2ﬂ'isj(q/(2ﬂ'i) Inz+s(z)—d(x))

for all (A,j) € Es(¢2) and s € {-1,1} and = € W \ {0} (prop. [4.10). Since
E(p2) # 0 then (q/27i) Inx + s(x) — d(z) belongs to Q for all z € W\ {0}.
We want to estimate d(x). We have

1
(log v2)(v) (w, O)y”(‘“)"‘l c (yu(¢1)+2)

Yonw —Yyo (ZSQO)PU:‘U — rd(w) yl/(<p1)+1

for all w € W\ {0}. The series [(log2)(y)/y’?)*(x,0) is a unit of C{x} by
lemma We denote by C(n,) and C(Z}") the coefficients of y? @)+ of 1, and
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759 respectively. We obtain that C(n,) € C for all z in a pointed neighborhood of
0 and C(Z%) € C{z} by lemma We have that

1 Yy on:(y)
C(nlﬂ) - % /y_r/Q yy(gal)+2

and then |C(n,)| < 2¥(#)+IR/r(¥1)+1 for all ¢ in a pointed neighborhood of 0.
We deduce that there exists K > 0 such that |d(z)] < K for all z € W\ {0} in
a neighborhood of 0. Hence I'mg((q/2mi)Inz) is bounded for x € W \ {0} in a
neighborhood of 0. This implies ¢ = 0 since otherwise

. q ol _
alzlgb ‘Img (2m,lna:)‘ - ilgb 27T|1n|x|| -
We obtain a special element Z5* 0 6(p1, ¢2) of Diff (C?,0) conjugating o1 and ¢y
by proposition [6.1 ]

Consider @1, @9 € Diffpl((Cz, 0) with Fixp, = Fixps of trivial type. We denote
Inv(py) ~ Inv(ps) if there exists (rk(x),d(z)) €< e2™/V(#1) > x[|Img(z)| < I]
such that

5@,z + d(2)) = (2 + d(x)) 0 £}, (2,2) YA€ D(p1)

1
in homogeneous coordinates for all  # 0 in a neighborhood of 0 and some I € RY.

Proposition 6.4. Let o1, s € Diff ,1(C2,0) with Fizp, = Fizps of trivial type.
Then we have @1 % ©o if and only if Inv(p1) ~ Inv(ps).

The previous proposition provides a complete system of analytic invariants in
the trivial type case. It is composed by the changes of charts modulo moderated
changes of coordinates.

Proof. The condition Inv(p1) ~ Inv(ps) implies in particular Res(¢1) = Res(p2).
Let a; be a convergent normal form of ¢; for j € {1,2}. Thus a; and ay are
conjugated by a good o € Diff ,(C?,0) by proposition By replacing o with
o°1 0 py 00 and ), (x,z) with (z + t(z)) 0 £}, o (z,z — t(z)) for all X € D(ps)
and some t € C{z} we can suppose that ¢; and o have common convergent
normal form «. The proof of proposition [6.3] also works if we replace the moderated

hypothesis with the boundness of Img(d). O

Proposition [6.3] provides a geometrical interpretation of the system of invariants
Inv(p). In this paper we define the analogue of Mardesic-Roussarie-Rousseau’s
[16] invariants of analytic classification for all ¢ € Diff 51 (C?,0) (theorem. We
prove a rigidity theorem (analogous to corollary , a theorem making clear the
relation among the analytic conjugation and the centralizer (analogous to propo-
sition and the moderated theorem giving geometrical insight about the
nature of the space of invariants.

7. DYNAMICS OF THE REAL FLOW OF A NORMAL FORM

From now on we deal with diffeomorphism ¢ € Diff ,;(C?,0) such that Fize
is not of trivial type. In particular the number N(p) = §[(Fizp) N (x = zg)]
where zp # 0 satisfies N(¢) > 2. Our goal is splitting a domain |y| < € in
several sets in which the dynamics are simpler to analyze. Afterwards we intend
to analyze the sectors in the parameter space in which a vector field of the form
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Re(AX) (A € St\ {—1,1}) has a stable behavior. The stability will provide well-
behaved transversals to Re(X). Such transversals are the base to construct Fatou
coordinates of ¢ € Diff 1 (C?,0) (with convergent normal form X) for all z in a
neighborhood of 0.

Consider the function

ag : B(0,6) x 9B(0,¢)
(z,y)

Sl
(X (W) /y)/1X(y)/yl-

By lifting ag% to R = S! we obtain a mapping arg% : B(0,0) x R — R such that
e?™% o argS; (z,0) = ags (z,€e*™). It is easy to prove that (darg/90)(0,0) tends
uniformly to v(X) when ¢ — 0. By continuity we obtain that dargS /00 is very
close to v(X) for 0 < e << 1 and 0 < d(e) << 1.

Let X € X,1(C?%,0) and fix 0 < € << 1. We define the set T (z¢) of tan-
gent points between Re(X)|y—,, and 9B(0,¢) for zg € B(0,4(¢)). Denote the set

Ugzen(,0)12} X Tk (z) by T . We say that a point yo € T () is convex if the germ

T

of trajectory of Re(X)|;—s, passing through yo is contained in B(0,¢). Next lemma
is a consequence of darg /00 ~ v(X) and T5y (20) = ag (vo,y)° "V {—i/X\,i/\}.

Lemma 7.1. Let X € X, (C%0). There exist ¢ > 0 and & : (0,e9) — RT
such that TS (o) is composed of 2v(X) convex points for all X € S', 0 < € < ¢
and zg € B(0,60(€)). Moreover, each connected component of 0B(0,¢€) \ T x(zo)
contains a unique point of TSy (xo) for all p e S'\ {=A, A}.

Remark 7.1. Fiz A € S'. We have T{y(z) = {T5y(2), . .. ,T;’;V(X)(w)} for all
z € B(0,00(€)) where Ty : B(0,080(€)) — T 1is continuous for all 1 < j < 2v(X).

7.1. Splitting the dynamics. For simplicity of the notation we will consider the
sets Xp1(C%,0) C X,1(C2,0) and Diff,;(C%,0) C Diff ,;(C%,0) whose elements
satisfy that their singular or fixed points sets respectively are not of trivial type but
they are a union of smooth curves transversal to 9/9y. For all ¢ € Diff ,; (C?,0)
there exists k& € N such that (z!/%,y) o ¢ o (x*,5) belongs to Diff;,;(C?,0). An
element X € X;,1(C?,0) is of the form u(z,y) vazl (y — aj(x))"0/0y for some
unit v € C{z,y} and some a; € C{z} N (z) for all j € {1,...,N(X)}. We have
that v(X)=n1+...+ny —1>1.

Let X € X;,1(C2,0). We define Ty = (|y| < €). Suppose that we have a sequence
B=P...0 where 3 € {0} x C*¥ and k > 0 and a set T = (|t| < ) in coordinates
(x,t) canonically associated to Tjg. The coordinates (x,y) are canonically associated
to Tp. Suppose also that

X = xd"v(z, Dt —y(z)* .. (t—p(x)? =

where 41 (0) = ... =,(0) =0 and (v =0)NTs = 0. Denote v(3) = s1+...+s,—1
and N(3) = p. Define Xp g = (X (t)/2%)0/0t. Denote by TEfj’)?(T, A) the set of
tangent points between Re(A X g)|g=rx and [¢] =1 for (r, A, u) € R>o xSt xSt
If N(B8) =1 then we define Fg = T, in other words we do not split 7.

Suppose N(5) > 1. Denote Sg = {(071/02)(0),...,(07,/0x)(0)}. We define
t = zw and the sets Eg = T N [|t| > |z|p] and Mg = (Jw| < p) for some p >> 0.
We denote Eg = [p|z| < [t| < ] if N(8) > 1, otherwise Es = [|t| < 1]\ SingXs .
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We have
S1 Sp
X = glotsrtetoo=ly (g gw) (w - 71(37)> ... (w - 717(96)) 9

x T ow
in Mg, we define mg = dg + v(3) and the polynomial vector field

Xg(A) = A"?0(0,0) <w B %7;(0))31 <w ) %7;(0))%;0

for X € S'. We define Iy = (Jw| < p) \ Uces,(Jw — ¢| < 7(¢)) where 7(¢) > 0
is small enough for all { € Sg. We define X s = (X (w)/2™8)0/0w; we denote
by TIE}?(T, A) the set of tangent points between Re(A"?uXpg nr)|z—rx and Jw| = p.
Finally we define I3 = (jw| < p) \ Uces, (Jlw = ¢ < 7(C)).

Fix { € S3. We define dg¢ = mg. Consider the coordinate t’ such that w—¢ = t'.
We denote Tge = (|| < r(¢)). We have

X =a®h@t) ] (t’ — (%g(f) - g))sjaaw.
)=¢

(87;/92)(0

Every set Mg with 8 # (0 is called a magnifying glass set. The sets Ej3 are called
exterior sets whereas the sets Ig are called intermediate sets.

In the previous paragraph we introduced a method to divide |y| < € in a union
of exterior and intermediate sets.

Example: Consider X = y(y — 22)(y — 2)9/dy. We have

(ly| <€) = EoyUlyU Ep U Eg Uy U Eggo U Egos.-

We have X (1) = w?(w;—1)0/0w; and Xoo(1) = —we(wy—1)9/0ws where y = zw;
and y = x2wy. We also get mg = 2 and mgg = 3.

Remark 7.2. Let X, = u(x,y) vazl (y — aj(2)"0/0y € Xip1 (C2,0) for k in
{1,2}. The polynomial vector field (X,)s()\) associated to a magnifying glass set
Mg depend only on u(0,0). The value u(0,0) is a formal special invariant in the
non-trivial type case. Thus the combinatorial data associated to X € Xy (C2,0)
depends in particular on its class modulo special analytic conjugation.

Lemma 7.2. Let X € X1 (C?,0) and an exterior set Eg = [n > |t| > p|z]]
associated to X with 0 < n << 1. Then TEE}?(T, A) is composed of 2v(B) convex
points for all (\,p) € S* x St and r close to 0. Each connected component of
0B(0,7n) \TEE}?(T, M) contains a unique point of TEE,’?( (r,\) V' € ST\ {—p, i}

Lemma 7.3. Let X € X1 (C?,0) and an exterior set Eg = [n > |t| > p|z]]
associated to X with N(8) > 1 and p >> 0. Then TIE}?(T, A) is composed of
2v(B3) convex points for all (A, ) € St x St and r close to 0. Denote t = zw; each
connected component of [|w| = p]\TIE}?(T, A) contains a unique point ofTIfj,’g((r, A)
for all p/ € S\ {—p, u}.

Lemmal [7.2]is the analogue of lemmal[7.1] for exterior sets. Lemmal7.3]is deduced
from the polynomial character of Xz(1) since it implies that 8arg§(ﬂ(1)/89 ~ v(B)
when p — oo.

Let X € X(C,0). Consider a set F' C C" contained in the domain of definition
of X. Denote by F the interior of F. We define It(X, P, F') the maximal interval
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where exp(2.X)(P) is well-defined and belongs to F" for all z € It(X, P, I') whereas
exp(zX)(P) belongs to F' for all z # 0 in the interior of It(X, P, F'). We define
OIt(X, P, F) = {inf(I1t(X, P, F)),sup(It(X, P, F))} C RU{—o00,c0}.
We denote I'(X, P, F) = exp(It(X, P, F) X)(P).
We will consider coordinates (z,y) € C x C or (r,\,y) € R>g x S x C in C2.
Given a set F C C? we denote by F(x¢) the set F N [z = z] and by F(ro, Ao) the

set FN[(r,\) = (10, A0)]. In the next subsections we analyze the dynamics in the
exterior and intermediate sets.

7.2. Parabolic exterior sets. Let X € X;,1(C?,0). Suppose we have
X = 2%0(a,8)(t — 31 (2)° ... (t — 7 (2))70 /0t

in some exterior set Eg = [n > |t| > |z|p] for some p > 0. We say that Ejg is
parabolic if s; + ...+ s, > 2. In particular Ey is always parabolic since N > 2.

Lemma 7.4. Let X € X,,1(C?,0) and a parabolic exterior set Eg = [|t]] < n]
associated to X with 0 < n << 1. Consider yu € St and ty € TES’)?(’I“, A). Then we
have Tt(puA% X3 g, (r, X, to), B(0,7)) = R and lim,cg |2 oo exp(2uA¥ X5 £)(rA, to)
is the point in Eg(r,\) N SingXs k.

Proof. Consider 19 > 0 such that TEE}?(n A) is composed of 2v(3) convex points
for all 0 < n < ng, (r,A) €[0,6(n)) x S* and u € S'.

Fix 0 <1 < no, p € St and (r,A) € [0,8(n)) x St. Denote Y = (uAY X5 1) z—r-
We have that SingY is a point t = . Let Y be the strict transform of Re(Y’) by the
blow-up 7 : (RTU{0})xS* — C of t = ~ given by 7(s,7) = sy+70. We consider the
set S € 7= 1(B(0,n))\SingY of points (s,~) such that It(Y, (s,7), B(0,7)) = R and
lim, 1 exp(2Y)(s,7) € SingY. By the discussion in subsectionthe set S has
exactly 2v(() connected components. More precisely every connected component
of S contains exactly an arc {0} x e(#0-i0+7/¥() for ¢ € Singy .

Consider a connected component C' of S. We have It(Y,to, B(0,n +¢)) = R
for all tg € 0C. By Poincaré-Bendixon’s theorem the a and w limits of ¢g by
Re(Y') are either vy or a cycle enclosing 7o since the points in SingY are either
attracting or repelling. The second possibility is excluded by Cartan’s lemma.
We deduce that there exists tc € 9B(0,n7) N dC. Clearly tc € C implies that
tc € TES}?(T, A) and that exp(zY)(tc) belongs to B(0,7n) for all z € R. Moreover
we obtain lim|,|_,, exp(2Y)(tc) = (20,7). The number of connected components
of S coincides with tiTEfj}?(r, A). We deduce that exp(zY)(tc) € B(0,n) for all

z € R\ {0} since C; N Cy = () for different connected components of S. O

Proposition 7.1. Let X € X1 (C?,0) and let Eg = [n > |t| > p|z|] be a parabolic
exterior set associated to X. Consider ty € TES;?(T, A\) and u € St. Then we have

lim  exp(zpA Xp5)(r, A to) € (9B U SingX.5) \ [lt] = 1]

z€R,z—c
for c € OIt(pA% Xg g, (1, A\ to), Eg).
Proof. If N(3) = 1 the result is true by lemma Suppose N(8) > 1. Consider

no > 0 and pg > 0 such that TEf}?(r, A) and Tlﬁjé’(r, A) are both composed of
2v(3) convex points for all 0 < 1 < 19, p > po, (1, ) € [0,5(n, p)) x St and p € St
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Fix 0 < n < m and p > pg. We can suppose that rA # 0 since otherwise the
proof is analogous to the proof in lemma |7.4]

Fix (r,\) € (0,8(n,p)) x St and pu € S'. Consider a point t; € TIﬁ;f(r, A).
There exists exactly one connected component H; of [|w] = p] \ TT 5}?(7“, A) such
that t; € H, and Re(suX) points towards |w| < p for s € {—1,1}. We define
S(t1) as the set of points ¢ in Eg(r\) such that there exists c_i(t),ci(t) € RT
satisfying that exp((—c_1, ¢1)uX)(r), t) is well-defined and contained in E whereas
exp(scsuX)(rA,t) € H, for s € {—1,1}. Clearly S(t;) # 0 since t; € S(t1).

Like in lemma there exists a unique to € S(t1) ﬂTEfj}? (r,\). We deduce that
It = It(uX, (rA, to), Eg) is compact. Moreover we have

exp(hrpuA¥ X5 ) (rA to) € H_y and exp(hspu ™ Xg g)(r), to) € Hy
where It = [hy /1% hg/ri?]. O

Let X € X;,1(C2,0) and pu € S'. We define 505}?(7“, A) the set of connected
components of

[77 > |t| > p’l"] \ UteTEﬁ*}?(r))\)F(M)‘dﬁXﬁ7E7 (’I", )‘at)7Eﬁ)

The behavior of the trajectories passing through tangent points characterizes the
dynamics of Re(uX) in a parabolic exterior set. It is a topological product. The
next results are a consequence of this fact.

Proposition 7.2. Let X € X1 (C?,0) and let Eg = [n > |t| > p|z|] be a parabolic
exterior set associated to X. Consider tg € Eg(r,\) and u € S'. Then we have

%m exp(zu\? X5 ) (r, A\, tg) € OE3 U SingXs g
zeR,z—c

for c € OIt(p\¥ X5 g, (1, A\, to), Ep).

Proof. Let C € SCE}?(n A). Consider the set L of points in C satisfying the result
in the proposition. It is enough to prove that C' = L¢ for all C € SC’E}? (r, A).

The points in C in the neighborhood of points in TEfj}?(r, A) are contained in Lo
by proposition [7.I]and continuity of the flow. We have that C'is a simply connected
open set such that C N SingXs g = (. Moreover every trajectory of Re(u\% X5 g)
contained in Eg and intersecting the set TES}?(T, A) U TIfj}f(r, A) is disjoint from
C. Thus the set L is open and closed in C' and then Lo = C. O

The next result can be proved like proposition 7.2} it is true in the neighborhood
of the tangent points by lemma [7.4] and it defines an open and closed property in
connected sets. We skip the proof.

Corollary 7.1. Let X € X1(C2,0) and let Eg = [n > |t| > plz|] be a para-
bolic exterior set associated to X. Let (uo,m, A\ to) € St x [0,8) x St x dB(0,7)
such that Re(po\% Xg g)(rA, to) does not point towards C \ B(0,n). Then there
exists c(uo, A\ to) € RY U {oo} such that exp((0,c)uoA? X5 1)(r) to) € Eg and
lim, . exp(zpoA% X5 g)(r), to) belongs to (0Es U SingXs.p) \ [|t| = n).

Let X = 2% u(x, t) [TYD (t — v;(2))* 8/0t € Xyp1 (C2,0). We define

Jj=1

X5 =0(0,t — 71(x))(t — 71 (2))" P 0/0t.
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Let 1/)2’ g be a holomorphic integral of the time form of Xg in the neighborhood of
Ep \ SingX. We have 9§ p(x,e*™y) — ¢ p(z,y) = 2miRes(X], (0,0)), in general
’(/Jg’ g is multivaluated. Consider a holomorphic integral 13 g of the time form of
X3, in the neighborhood of Eg\ SingX such that ¢¥g g(0,y) = ¢g,E(0» y). Clearly
V& p = V5 p/r? and Px 3 = P p/c?® are integrals of the time forms of z% X§
and X respectively. We want to provide accurate estimates for ¢ x 3.

Lemma 7.5. Let X € X,,1(C?,0) and let Eg = [n > |t| > p|z|] be a parabolic
exterior set associated to X . Consider ¢ >0 and 6 > 0. Then [{x /% 5— 1] < ¢

in BgN [t —y(x) € RYel=09]n [z € B(0,6(¢,0))] for N(B) = 1. The same
inequality is true for N(3) > 2 if p > 0 is big enough.

Proof. Consider the change of coordinates (z,z) = (x,t — y1(x)). The function
Y9 p is of the form

-1 1
¢%,E - WW + RBS(Xg, (0, 0)) Inz + h(Z) + b(l‘)

where h is a O(1/2*(®~1) meromorphic function and b(x) is a holomorphic function
in the neighborhood of 0. In a sector of bounded angle in the variable z we have
that wg’Ez”(ﬁ) is bounded both by above and by below.

We define K(x,2) = ¢g r(z,2) — 1/)%7]3(:1:72). Consider the function J = z if
N(B)=1and J =x/z if N(§) > 1. We have

(0, 2)2 1 K _ 0(0, 2) 2O+
02~ (w2 + @) [Tzl + @) — ()"

Thus 0K /0z is a O(J/2*D+1). Let (x,re™) € Eg N (largz| < 60). We obtain

neiw
/’ oK
" 0z

Consider + : [0,1] — C? defined by v(v) = (z,€e™[(1 — v)n + vr]). We obtain
' OK

0K
Lé)zdz ) 0=

We define Cp = |z] if N(f) =1 and Cy =1/p if N(8) > 1. We get

—1=0(J).

|K (2, ne)| < |K (z,m)] + =0(z) + O(z) = O(z) Vw € [0, 0].

K (2, re™) — K (x,ne™)| <

<

(v(v))Y (v)dv

Co(z)
Z”(ﬁ)

1
i i n—r
K(z,re") — K(z,ne')| < ACy(x / dv<B
| ( ) ( )| 0( ) 0 [(1 U) UT]U(’B)+1

for some A, B > 0 depending on . We obtain |K(z, 2)| = O(z) + O(Co(z)/2"?)
and then

¥x,8
== — 1| = < D |Cy(x
in EgN[largz| <8Nz € B(0,6(¢,0))] for some D > 0 depending on 6. O

Remark 7.3. The previous lemma implies that x5 ~ 1/(x% (t — y1(2))*P) in
a parabolic exterior set Eg for |arg(t — vy1(x))| bounded.
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Proposition 7.3. Let X € X1 (C?,0) and let Eg = [n > |t| > p|z|] be a parabolic
exterior set associated to X. Consider C' € SCg;?(r, A) for rA in a neighborhood

of 0 and p € St. Then C is contained in a sector centered at t = ~1(r)\) of angle
lesser than 0 for some 6 > 0 independent of r,\, C' and p.

Proof. We use the notations in lemmal7.5] We have that the extrema of a connected
component of 0B(0,7) \TEI’?}?(T, A) lie in an angle centered at z = 0 of angle similar
to w/v(3). Then it is enough to prove that I' = T'(uA% Xz g, (r, A, to), Eg) lies in a
sector of bounded angle for ¢y € TES’)?(’I“, A).

Denote 1° = —1/(v(B8)v(0,0)2"?)). We have lim, o 13 £/%° = 1 in big sectors;
we can suppose that ¢z p/¢° — 1| < ¢ for arbitrary ¢ > 0 by taking 0 < n << 1.
Since the set (15 /uA%)(T) is contained in (g 1/uA?)(r, A, to) + R then it lies
in a sector of angle similar to 7. Since ¢35 g /1° ~ 1 then I lies in a sector of center
t =v1(r,A) and angle close to 7/v(3). O

Remark 7.4. We have that ¥x g ~ 1/(x% (t —1(2))*®) in EgNC for a parabolic
exterior set Eg and all C € SC’f}?

7.3. Nature of the polynomial vector fields. The study of polynomial vec-
tor fields related to stability properties of unfoldings of elements h € Diff{(C,0)
has been introduced in [6]. Their choices are associated with the elements in the
deformation whereas ours depend on the infinitesimal properties of the unfolding.

7.3.1. Directions of unstability. Let Mg be a magnifying glass set associated to a
vector field X € X;1(C2,0). We consider

Xpg(A) = A" C(w —wi)® ... (w—wp)*?0 /0w

where C' € C* and w; € C for all j € {1,...,p}. Denote ré(X) = Res(X3(1),w;)
for 1 < j < p. Consider the set sumg(X) whose elements are the non-vanishing
sums of the form >° .7 for any B C {1,...,p}. We define

Bs(X) = {(\, p) € St x St : sump N A piR # 0},

We denote S'/ ~ the quotient of S' by the equivalence relation identifying y and
—p. We denote by Bg(X) C S'/ ~ xS!/ ~ the quotient of Bz(X). Now we define

Bsa(X)={neS": (A\,n) € Bs(X)} and BL(X)={reS":(\u) e Bs(X)}.

In an analogous way we can define Bs\(X) C S!/ ~ and Bg(X) C St/ ~ for
A\ € St/ ~. Roughly speaking we claim that Re(uX) has a stable behavior in
I at the direction z € RT\ for (A\,u) € Bg(X). We define Bx as the union of
Bg(X) for every magnifying glass set My associated to X. Analogously we can
define By, BY, Bxﬁ)\ and B’;( The sets Bx,\ and Bk are finite for all A, € S'.
Moreover we have Bx s N Bx \ = () and Bg‘(/ N Bﬁ‘( = () for all X' € S' in a pointed
neighborhood of A.

7.3.2. Non-parabolic exterior sets. Let FEg,, be a non-parabolic exterior set where
wy € C. Thus we have

X =2 h(z,w)(w —wi(x))(w —wa(x)) ... (w—wy(zx))*0/ow
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in My where w1(0) = wy and h(z,w) — h(0,0) € (z). This expression implies

X = xﬂl@:é(w —wi(z))(1 + H(x, w))%
in Egy, for some H € (z,w —w;1) = (z,w — wi(x)).

Fix 1 € S* and a compact set K% C S'\ BY. By definition of BY we obtain that
A" p/rh & iR for all X € K%. This implies A u(rg) =" (1 + H(rA, wi(r)))) € iR
for (r, A) € [0,79) x K for some 19 > 0 since K is compact and H (z, w(x)) € ().
We deduce that the singular point w = w1 (o) of Re(uX)|z—s, is not a center for
zo € (0,79) K% . Hence, it is either an attracting or a repulsing point.

The set Egy, is of the form |w — w1| < ¢ for some 0 < ¢ << 1. The vector field
Re(pX)|z=rx and the set 0Eg,, are tangent at the set

A8 w — w (T )
ré w — wq

TEJ(r,\) = (14 H(rAw) € iR | N [lw — w1 (0)| = d].

The function (w — w1 (rA))/(w — wy) tends to 1 when r — 0 in |w — wy| = ¢
Moreover since H € (z,w — w;) we obtain that TES)“?’C(T, A) =0 for r € [0,79(c))
and A € K*%. Then Re(suX) points towards Fg,, for all 2 € (0,79)K% and either

s=—1or s=1. As a consequence Eg,, N[z = x¢] is in the basin of attraction of
(zo, w1 (z0)) by Re(suX) for zo € (0,79) K.

7.3.3. Connexions at oo. We already described the dynamics of Re(uX) in the
exterior sets for 4 € S' and X € X;p1(C?,0). Next we analyze the dynamics of
Re(pX) in the intermediate sets.

Let Y = C(w — wy)* ... (w — wp,)**9/0w be a polynomial vector field such
that »(Y) = s1+ ...+ s, — 1 > 1. Every vector field Xg(\) associated to a
magnifying glass set is of this form. We want to characterize the behavior of Y in
the neighborhood of co. We define the set Tr_, o (Y") of trajectories v : (¢,d) — C of
Re(Y) such that ¢ € RU{—o0}, d € R and lim¢_4v(¢) = oco. In an analogous way
we define Tr oo (V) = Tr_0o(—Y). We define Troo(Y) = Tr oo (Y) U Tr o (Y).

We consider a change of coordinates z = 1/w. The meromorphic vector field
—C(1—w2)*...(1 —wyz)® 0

(V)-1 £

is analytically conjugated to 1/(v(Y)z*¥)=1)9/0z = (2*¥))*(0/9z) in a neigh-
borhood of co. We have Tr_(9/9z) = R~ and Tr._.(0/90z) = R*. As a
consequence the set Tr_ (YY) has v(Y) trajectories and there is exactly one of
them which is tangent to the line arg(w) = —arg(C)/v(Y) + 2rk/v(Y) for all
ke {0,...,v(Y)—1}. Analogously Tr. o (Y) contains v(Y') trajectories of Re(Y)
which are tangent to the lines arg(w) = —arg(C)/v(Y) + n/v(Y) + 27k /v(Y) for
kEe{0,...,v(Y)—1}.

The complementary of the set Tro(Y) U {oo} has 2v(Y") connected components
in the neighborhood of w = co. Each of these components is called an angle, the
boundary of an angle contains exactly one — oo-trajectory and one < oco-trajectory.

We say that Re(Y) has oo-connections if there exists P € C contained in
Tr_oo(Y)NTr_o(Y). In other words there exists a trajectory v : (c_1,¢1) — C
of Re(Y') such that c_1,¢; € R and lime_,., v(¢) = oo for all s € {—1,1}. The
notion of connexion at co has been introduced in [6] for the study of deformations
of elements of Diff(C,0).

Y =
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We define the o and w limits o (P) and wY (P) respectively of a point P € C
by the vector field Re(Y). If P € Tr_ o (Y) we denote wY (P) = {oo} whereas if
P € Tr_o(Y) we denote oY (P) = {c}.

Lemma 7.6. Let Y € X(C,0) be a polynomial vector field such that v(Y) > 1
Then wY (wo) = {00} is equivalent to wo € Tr_.o(Y). Analogously oY (wg) = {oo
is equivalent to wo € Tr—(Y)

)

Proof. The vector field Y is a ramification of a regular vector field in a neighborhood
of co. Thus there exists an open neighborhood V of co and ¢ € R such that

exp(cY)(V\Tr_eo(¥Y)NV =0 and exp(—cY)(V\Tr_(Y))NV = 0.
We are done since wg € Tr_,o(Y) implies w¥ (wg) N (PY(C) \ V) # 0. O

We denote by X (C,0) the set of polynomial vector fields in X(C,0) such that
v(Y)>1and 2mi ) p.g Res(Y, P) ¢ R\ {0} for all subset S of SingY.

Lemma 7.7. Let Y € X (C,0). Then

e Re(Y) has no oo-connections.

o WY (wy) # {oo} implies that fwY (wo) = 1 and w¥ (wo) N SingY # 0.

Proof. Let Q the unique meromorphic 1-form defined by Q(Y) = 1. Suppose that
v : (e—1,¢1) — C is an oo-connexion of Re(Y). Consider the connected component
U of PY(C) \ (v(c_1,c1) U{oo}) such that Re(iY) points towards U at .

There exists a holomorphic integral ¥ of the time form of Y in a neighborhood
of w = oo such that 1 ~ 1/w’™). Let hy, : [dn,e,] — C be a path (but not a
trajectory of Re(Y')) such that h,(d,) = y(c_1 + 1/n) and h,(en) = y(c1 — 1/n)
whereas hy,(dn,e,) C U. Moreover we can suppose that infeciq, e, [hn(¢)| tends
to oo when n — oco. The theorem of the residues and the asymptotics of ¢ in the
neighborhood of co imply that

2mi Y Res(Y,P)= lim / Q= [ Q=c; —c_; eR".
PESingY NU ha ¥

This is a contradiction.

It is enough to prove that w¥ (wp) N (C\ SingY) = 0 since w¥ (wp) is connected.
Suppose P € w¥ (wp)N(C\ SingY’). Denote 7 : [0,00) — C the trajectory of Re(Y")
passing through wy. Consider a germ of transversal h to the vector field Re(Y)
passing through P. There exists some 7 > 0 such that exp((0,7]Y)(h) N h = 0.
There also exists an increasing sequence of positive real numbers j,, — oo such that
v(jn) € h and lim,, .o ¥(jn) = P. We can suppose that v(j,, jnr1) Nh = 0 for all
n € N by twisting a little bit the sequence.

Consider a holomorphicintegral ¥ of the time form of Y defined in the neigh-
borhood of P. Let L, be the segment of h whose boundary is {v(jn),v(Jn+1)}-
Denote by V;, the bounded component of C\ (¥[jn, jn+1] U Ly). By the theorem of
the residues we obtain

/ Q-+ (1) — ¥V Gns1))) = 22703 Res(Y, P)
Ylin dnt1] PcV,NSingY

By making n to tend to co we deduce that there exists a subset S of SingY such
that £27i) g Res(Y, P) € [,00). That is a contradiction. O
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Corollary 7.2. Let X € Xy (C?,0). Consider a magnifying glass set Mg associ-
ated to X. Then

o Re(uXg(N)) has no oco-connections.
o WX (wg) # oo = kXN (wy) = 1 and wWHXeM (wy) N SingXs(N\) # 0.
for all (A1) & Bs(X).

7.3.4. The graph. In this subsection we associate an oriented graph to every vector
field pXg(A) for (A, p) & B(X).

Lemma 7.8. Let Y € X, (C,0). Then the mapping
WY C\ (Tr_oo(Y) U SingY) — SingY
is locally constant.

Proof. Let P € C\ (Tr_o(Y) U SingY). Denote Q = wY(P). The singu-
lar point @ is not a center since then Re(Y') would support cycles (lemma .
If @ is an attracting singular point there is nothing to prove. If @ is para-

bolic then P € UAeDl(Y)Vei\(p(yy We are done since Ux\eDl(Y)Vei\(p(Y) is open and

WY(UAeDl(Y)Ve);(p(y)) =Q. O

We call regions of Re(Y) the connected components of C\ (Tr(Y) U SingY).
We denote by Reg(Y) the set of regions of Re(Y). Every H € Reg(Y) satisfies
that ¥ (H) and w¥ (H) are points. We denote by Reg;(Y) the set of regions H
of Re(Y) such that #{a¥ (H),wY (H)} = j for j € {1,2}. We associate an oriented
graph to Re(Y') for Y € X,(C,0). The vertexes are the points in SingY’, the edges
are the regions of Re(Y). We say that H € Reg(Y) joins the points oY (H) and

wY (H). We denote oY (H) A WY (H). The graph obtained in this way is denoted
by Gy. We denote by NGy the unoriented graph obtained from Gy by removing
the reflexive edges and the orientations of the edges.

An angle is always contained in a region of Re(Y"). Such a region is characterized
by the angles that it contains. Let A be an angle of the polynomial vector field
Y. We denote by v2 __ the trajectory of Tr_ ., contained in the closure of A. The
definition of v2 __ is analogous.

Lemma 7.9. Let Y € X (C,0). Consider H € Reg(Y). Then H contains an
angle A. Moreover o¥ (vA_)) = oY (H) and w¥ (v2 ) = w¥ (H).

Proof. Let P € (C\ SingY) N OH; such a point exists since Tr (Y) is contained
in the complementary of H. Since o and wY are locally constant then either
a¥(P) = oo or w¥(P) = co. We have that P € H, thus there are points of H
in every neighborhood of co. As a consequence H contains at least an angle A.
The relations oY (v2 ) = oY (H) and w¥ (v2 ) = wY (H) can be deduced of the
locally constant character of a¥ and wY . O

Lemma 7.10. Let Y € X (C,0). Then we have SingY C Tro(Y).

Proof. Let P € SingY. Suppose that V NTr.(Y) = @ for some connected neigh-
borhood V' of P. Let H be the region of Re(Y') containing V' \ {P}. Since P is
attracting, repulsing or parabolic then either oY (H) = P or w¥ (H) = P. Consider
an angle A C H. We obtain P € yA _U~yA  C Tro(Y). O

Lemma 7.11. Let Y € X (C,0). Consider H € Reg1(Y). Then H contains
exactly one angle.
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Proof. Let A be an angle contained in H. Denote P = oY (H) = wY(H). By
lemma we have that v = {oo} U~vA U~ U{P} is a closed simple curve.
Let V the connected component of P1(C) \ v containing A. The set Tro(Y) NV
is empty since A is the only angle contained in V. By lemma [7.10| we have that
V N SingY = 0. Hence H is equal to V and contains only one angle. O

Lemma 7.12. Let Y € X (C,0). Consider H € Rega(Y). Then H contains
exactly two angles. Moreover C\ H has two connected components Hy and Hy such
that ¥ (H) € Hy and w¥ (H) € H,.
Proof. Let Ay be an angle contained in H. Fix a trajectory 7o of Re(Y) contained
in H. Denote

M= UrA Uyl ufa¥ (H),w" (H)}.
Let V7 the connected component of C \ ; containing A;. Since V; contains only
one angle then V; C H. By proceeding like in lemma we can prove that there
exists an angle A contained in H \ (V3 U~p). Let V5 be the connected component
of C\ (70 Uz, UnA2 U {aY (H),wY (H)}) such that Ay C Va. Clearly we have
A2 #Al and H = V1 U"}/()UVQ. Now

C\ (72 Uyl Unfz, uyla ufa? (H),wY (H)})
has three connected components H, J; and Js such that
01 =4, U2 U{a" (H)} and 0 =72 Uye, U {wY (H)}.
Then Hy = JyUdJ; and Hy = J,UdJ, are the connected components of C\ H. O
Corollary 7.3. Let Y € X (C,0). Then NGy has no cycles.

Proof. Consider an edge P LA Q@ of Gy with P # ). Consider the notations in
the previous lemma. The fixed points are divided in two sets Hi N SingY and
H; N SingY. The only edge of Gy joining a vertex in the former set with a vertex

in the latter set (or vice-versa) is P LA Q. Clearly NGy has no cycles. O
Proposition 7.4. Let Y € X (C,0). Then the graph NGy is connected.

Proof. Let G1,...,G; be the set of vertexes of the | connected components of NGy .
We define the open set V; = (a¥)~1(G;) U (wY)"H(Gy) for all j € {1,...,1}. The
lack of co-connexions implies Ulj:le = C. Moreover V; NV}, = 0 if j # k since
otherwise G; = G. Clearly ( =1 since C is connected. O

Corollary 7.4. Let Y € X (C,0). Then fRegs(Y) = §SingY — 1.

Let Y € X(C,0). Consider yo € SingY. We define vy (yo) as the only element
of NU {0} such that Y (y) € (y — o) @IT\ (y — yo) " (W)=,

Proposition 7.5. Let Y € X (C,0). Consider yo € SingY. Then there exist
ezxactly 2vy (yo) regions of Re(Y) contained in (o ,w¥ )1 (yo,yo)-

Proof. If yq is attracting or repulsing the result is obvious since on the one hand
vy (yo) = 0 and on the other hand (o, wY) ™1 (yo,v0) = {yo}. We can suppose that
Yo is a parabolic point.

Let Yy be the germ of Y in the neighborhood of g, we have v(Yy) = vy (o).
Consider the strict transform Y of Re(Y') by the real blow-up 7(r, \) = yo + rA.
By the discussion in section there exists a unique region of Re(Y') adhering to
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[(r,\) € {0} x [Ao, Age!™/*(Y0)]] for all Ay € D(Yy). In this way we find 2vy (yo)
regions of Re(Y') contained in (a,wY )™ (yo,0). Any other region would adhere
to a single point in D(Yp). Such a point would be both attracting and repelling for

Y'; that is impossible. O

Corollary 7.5. Let Y € X5 (C,0). Then tReg(Y) =2v(Y) — #(SingY) + 1.

Let Y € X (C,0). Consider a trajectory vy for every region H € Rega(Y).
There exists pg > 0 such that

(7) SingY C B(0, po) and {177 = 2v(Y') for all p > po.
v C B(0, po) for all H € Rego(Y).

Let P € B(0, p). We define w) (P) = oo if It(Y, P, B(0, p)) does not contain (0, c0).
Otherwise we define w) (P) = w (P). We define o) in an analogous way. Denote
by Reg(Y, p) the set of connected components of

B(0,p) \ () 7" (00) U (wy ) ~*(00) U SingY').

Denote
Reg;(Y,p) = {H € Reg(Y,p) : t{a) (H),w) (H)} = j}

for j € {1,2}. The set of connected components of B(0, p)\(SingYUUHGReg(yyp)F)
will be called Rego (Y, p). The dynamics of Re(Y') in C and B(0, pg) is analogous.

Proposition 7.6. Let Y € X (C,0). Consider p >> 0. There exist bijections
F : Reg(Y,p) — Reg(Y) and G : Regoo (Y, p) — Troo(Y) such that

e HC F(H) for all H € Reg(Y, p)

e H(OHNTY) =j for all H € Reg;(Y,p) and j € {1,2}.

e H(0J NTY) = 1 for each connected component J of H \ vy and H €
Reg2(Y7 P)

e G(K)NB(0,p) C K for all K € Regoo(Y, p).

Proof. We define Fy(H) as the element of Reg(Y, p) containing vy for H € Reg(Y').
Every H € Reg(Y, p) is contained in a unique F(H) € Reg(Y). It is clear that
F o Fy = Id. This implies #(Reg; (Y, p)) > #§(Reg;(Y)) for j € {1,2}.

Let H € Reg(Y,p). We have 0H N 9B(0,p) = OH NTy. Thus we obtain
8(O0H NTY) > 1. Let H € Regs(Y, p). Every connected component of F(H) \ vu
contains at least a point in 9H NTy and then #(0H NTY) > 2. We have

20(Y) = 474 > tRequ (Y, p) + 24 Rega (Y, p) > tReqy (V) + 28Rega(Y) = 2w(Y).

Hence all the inequalities are indeed equalities. We obtain §Reg; (Y, p) = §Reg;(Y")
and §(0H NTY) = j for all j € {1,2} and H € Reg;(Y,p). We deduce that
Fy = F°=1 and that {a) (Q),w} (Q)} C SingY for all Q € TY.

Let I be a connected component of dB(0, p) \ Ty such that Re(sY) points to-
wards B(0, p) for some s € {—1,1}. We claim that exp(s(0,00)Y)(l) is a con-
nected component of Regoo(Y,p). Suppose s = 1 without lack of generality.
Since w) (0l) C SingY and NGy is connected then w) (1) = w) (dl) is a single-
ton contained in SingY. The claim is proved, it implies fRegoo (Y, p) = 2v(Y).
There exists a unique v(I) € Troo(Y) such that v(I) Nl # (. The mapping
G(K) =~(0K N (0B(0,p) \ T{)) is the one we are looking for. O
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7.3.5. Dynamical description in the intermediate sets. Let X € X,1(C?,0). Con-
sider a magnifying glass set Mg = [|w| < p] associated to X. We have

X =z™h(z,w)(w—wi(x))* ... (w—wy(x))*d/0w

where h(0,w) = h(0,0). Fix 4 € S' and a compact connected set K% C S'\ B (X).
A value py > 0 satisfying the conditions for pXz(XNo) and some Ay € K% it
also satisfies [7| for uXg(\) and all A € S' in a neighborhood of \g. Since K%
is compact we choose pg > 0 satisfying the conditions m for pXs(A) and all A €
K% . Consider the intermediate set Iy = (Jw| < p) \ Uces, (Jw — (| < 7(¢)) where
0 <r() << 1lforall ( €Sgandp > py. Given A € K and P € T”

uXp(A)
the interval It = It(uXg(X), P,I3) is compact. The set exp(0ItuXg(A))(P) is
contained in Uces, (Jw — ¢| = r(¢)). Since the tangent points are convex then

exp(0ItuXg(M))(P) does not contain points of UCGSBTE%(’T(O(O, A). The interval
It(Q) = It(uA"8 X3 v, Q, Ig) is compact and depends on @ € Tlfjé’ N\ e K%]
continuously. We obtain exp(9It(Q)uA™" X5 1)(Q) C U¢es, (Jw — (| = 7(C)).

The dynamics of Re(uX) restricted to I3 is a topological product in € (0, 6) K
(indeed this is an abuse of notation, it could be necessary to consider a smaller
dp > 0). We denote by Reg*(uX, 3, K%) the set of connected components of

(Is N [(r,2) € [0,60) x KX])\ Uger g exp (IHQ)A™ Xg,u1) (Q).

An element H € Reg*(uX, 3, K%) is open in (r,A) € [0,d0) x K%. Fix \; € K¥%;
by definition H € Reg*(uX, 3, K% ) belongs to Reg;(uX, 3, K%) for j € {1,2,00}
if there exists J € Reg;(uXs(A1),p) such that H(0,A\;) C J. Since H depends

continuously on (r,A) € [0,4dy) x K% the definition does not depend on the choice
of A\1. We define

Reg(pX, 8, K%) = Regi (uX, 3, K ) U Rega(uX, 3, K.
Let Y = pXg(\1). We define w/y™ (H) = wY (H(0,A1)) for H € Reg*(uX, 8, K¥).

The definition of agX(H ) is analogous. A fundamental arc is a connected compo-
nent of

OH N ((Jw] = p) Uces, (lw — ¢l =7(¢)))
for some H € Reg*(puX, 3, K%). We denote by arc(uX, 3, K%) the set of fun-

damental arcs. Moreover since given ac € arc(uX, 3, K% ) there exists a unique
Hg,e € Reg*(pX, 3, K’ ) such that ac C H,. then we define

arci(pX, 8, K%) = {ac € arc(uX, B, K% ) : Hae € Reg;(pX, 3, Kx)}

for j € {1,2,00}.
We sketch next how to build for all (rg, Ag) € [0,dp) x K% a homeomorphism

F(T"o,ku) : Iﬁ(TOa /\0) - Iﬁ(ov >‘1)

such that F' is continuous in Ig N [(r,\) € [0,dp) x K¥%], it conjugates orbits of
Re(pXg” Xp,0) (r ) =(ro,no) a0d Re(uA™” X 01) (r0)=(0,0,) and F(g x,) = Id.

It is straightforward to construct F' once we know its restriction to 0Iz. We
can choose for Fj,—, any homeomorphism G, ) : |w| = p — |w| = p such that
Grono) (TT{(r0, X)) = TI7£(0,A1). The choice of Fj,)_, determines Fj,. for
every ac € arce (uX, 3, K%).
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Given H € Reg;(uX,,K%) with j € {1,2} there exist two fundamental arcs
ac(a) and ac(w) such that ac(v) C [Jw — UEX(H)| = r(UgX(H))] for all v € {a, w}.
Suppose j = 2. The flow of Re(uX) establishes a homeomorphism from ac(o)
to ac(w). We already defined Fjpse(q) and we can extend F' to ac(a) in any way
such that the restriction of F, x,) to ac(a)(ro, Ao) is a homeomorphism varying
continuously on (rg, Ag). The value of Fj,.(o) determines F,c(,). Suppose j = 1.
Denote ¢ = ng(H). We obtain ac(a) = ac(w) C [Jlw — {| = r(¢)]. The flow of
Re(uX) establishes an involution of ac(w) which has exactly one fixed point for
(r,A) = (ro, Ao). Moreover such fixed point belongs to TE%(’T(C)(TO, Ao). We can
extend F' to ac(w) in such a way that F' commutes with the involution. In this way

we defined Fjpy, since we considered all the fundamental arcs throughout the pro-

(

cess. Since U(ESgTEf,C)}T ¢) is contained in the union of the arcs in arcy(uX, B, K%)

then the restriction of F' to UcesBTEfg’(r(C) is the identity.

7.4. Assembling the dynamics of the polynomial vector fields. We already
proved that the dynamics of Re(uX) (X € X1 (C2,0) and p € S') is a topological
product in the exterior sets whereas such a result is true for the intermediate sets
when we avoid the directions in B%.. We want to assemble the information attached
to the exterior and intermediate sets to describe the behavior of Re(uX) in |y| < e.

Throughout this section K% is some compact connected set contained in S*\ B

Lemma 7.13. Let X € X1 (C?,0). Fiz p € S'. Let Py € [0,00) x K% x 9B(0,€)
such that Re(uX) does not point towards C\ B(0,¢€) at P. Then the interval [0, 00)
is contained in It(pX, Py, B(0,€)) and lim¢_, oo exp((uX ) (Po) € SingX.

Proof. Denote Py = (g, Ao, yo). The result for ro = 0 is a consequence of corollary
since {0} x B(0,¢) = Ey.

Suppose g # 0. Since Eo(rg, Ag) N SingX = () then the value c¢(u, Py) provided
by corollary belongs to R*. Denote Qo = exp(c(i, Po)pAd® Xo.5)(Py). We
have that Qo € dM, and Re(uX) points towards Iy at Qo. The point Qg is
contained in a fundamental arc ac € arc(pX,0, K5) contained in the closure of

a unique H € Regoo(uX,0,K%). There exists ( € C such that ng(H) =
since G, x,(xy) is connected. We have that d = sup(It(uX,Q,Iy)) belongs to R*

and that exp(duX)(Q) € My N dFy:. Moreover Re(uX) points towards Fo
at exp(duX)(@). Denote 3(0) = 0 and §(1) = 0¢. By proceeding analogously
we obtain a sequence of points Py, Qo, Pi, Q1, ..., Pr (k > 1) contained in
I'(uX, P, |y| <€) and such that
Qj S 8E5(j) N 8Mﬁ(j) and Pj S 8Mg(j_1) N 8E5(j) Vj e {1, .. ,k}

and Eggy = Tpr). By corollary @ and the discussion in subsection @ then
Re(uX) points towards Eﬁ(k) at 0Fg(y) and P is in the basin of attraction of
SingX N Egx). Thus we obtain lim, . exp(zuX)(P) € SingX N Eg. O

We define Reg*(e, uX, K% ) the set of connected components of

[lyl < el Nz €[0,d0) KX\ (SingX Usepo,50) 1 Urers (o)L (1 X, P, Jy| < €)).

We define o#X(P) = lim,_. . exp(zuX)(P) for all P € [|y| < ¢ such that
It(pX, P, ly| < €) contains (—o00,0). Otherwise we define a*X(P) = co. We define
wHX(P) in an analogous way.
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Given H € Reg*(e, pX, K%) the functions (a*¥) 5 and (w"¥)y satisfy that
either they are identically co or their value is never co. Since the basins of attraction
and repulsion of the curves in Singy pX inz € [0,80) K are open sets then (/X)) g
and (w"*)y are continuous. Thus (a”*)| g () and (w"X) g () are constant for all
z € [0,80)K%. Indeed we can interpret o/ (H) either as oo if (a#X); = oo or as
the element of Singy X that contains o*X (H) otherwise. Denote

Regoo (e, nX, K% ) = Reg* (e, uX, K5 ) N (")~ (c0) U (w*¥) 71 (c0))
and Reg(e, uX, K%) = Reg*(e, pX, K% ) \ Regoo (e, pX, K% ). We define
Reg;(e, uX, K&) = {H € Reg(e, uX, K : t{a"* (H),w" (H)} = j}

for j € {1,2}. We have that the set H(x) is connected for H € Reg(e, pX, K )
and z € (0,09)K’. The set H(0) is connected for H ¢ Rega(e, uX, K ) whereas
otherwise H(0) has two connected components.

We define an oriented graph G(uX, K’ ). The set of vertexes is Singy X whereas
the edges are the elements of Reg(e, uX, K). The edge H € Reg(e, pX, K% ) joins

the vertexes o*X(H) and w*X (H), we denote o*X (H) Rl wHX(H). The graph
NG(pX, K% ) is obtained from G(uX, K% ) by removing the reflexive edges and the
orientation of edges.

Proposition 7.7. Let X € X1 (C%,0). Fiz pu € S' and a compact connected set
K% C S'\ BY. Then the graph NG(uX, K% is acyclic and connected.

We say that a exterior set Eg has depth 0 if N(8) = 1. In general given Eg such
that N(8) > 1 we define depth(Eg) = 1+ sup¢cg, depth(Egc).

Proof. A exterior set Eg = [ > [t| > p|z|] is contained in Ty = [n > [{|]]. We can
associate graphs Gg(uX, K% ) and NGg(uX, K%) to the vector field Re(u % Xz )
defined in Tj.

Consider an exterior set Eg such that depth(Eg) = 0. The graph NGg(uX, K%)
has only one vertex and no edges, therefore it is connected and acyclic.

Suppose that NGg(uX, K% ) is connected and acyclic for all exterior set Ez such
that depth(Es) < k. It is enough to prove that the result is true for every exterior
set Eg such that depth(Eg) =k + 1.

Fix g € K%. The graph NG, x,(»,) is connected and acyclic by corollary
and proposition Consider an edge Jo € Reg(uXg(Ao)) of the graph
Guxs(no) Joining the vertexes ((1) and ¢(2). We denote also by Jy the compo-
nent of Reg(p1Xg(Mo), p) associated to Jy by proposition |7.6| where Mg = [|w| < p].
Let J; be the element of Reg(uX, 3, K%) such that J1(0,\o) C Jo. By lemma
applied to Re(uA®<0 Xg¢1) g) in Te(1) we deduce that a#X(J;) C SingX.
By the open character of the singular points in (r,\) € [0,dp) x K% we obtain
that a#X(.J;) is contained in an irreducible component 7; of SingX. Analogously
whX(J1) is contained in an irreducible component 7, of SingX. Denote by .J, the
edge of NGg(uX, K% ) joining 1 and 7o.

The set C\ Jy has two connected components Hy; 3 ((1) and Hz 3 {(2) (lemma
7.12). Denote Sg; = H; N Sp for j € {1,2}. We obtain that there is no edge
different than Jo of Gg(uX, K%) joining a vertex of NGg, (X, K% ) and a ver-
tex of NGp.(uX,K%) for v € Sg; and k € Sgo. Moreover the restriction of
Gs(uX,K%) to Singy Xpu g is Ggo(uX, K%) for all v € Sg. Then the aciclic-
ity of every NGpg,(uX, K%) for all v € Sz imply that NGg(puX, K%) is acyclic.
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Finally, since NG),x,(x,) and NGpg,(uX, K%) are connected for all v € Sj then
NGs(pX, K% ) is connected. O

The properties of G(uX, K% ) are inherited of the properties of the polynomial
vector fields associated to X.

Proposition 7.8. Let X € X;,1(C?,0). Fiz u € S* and a compact connected set
K% c S'\ B%. Then we have

B(Reg(e, pX, K ) N ("%, 0" %) 7 (y,7)) = 2vx (7)
for all v € Singy X. Moreover we have §Reg(e, uX, K%) = 2v(X) — N(X) + 1.

7.5. Analyzing the regions. Let X € X,,;(C2,0). Fix p € S' and a compact
connected set K% C S\ B%. Consider a region H € Reg; (e, uX, K% ). We denote

by TS x () the unique tangent point in T (z) N H(x) for all x € [0,d) K. Let
¥ be an integral of the time form of X defined in a neighborhood of Ty (0). By

analytic continuation we obtain an integral of the time form wﬁ . = 1/)?1(7 pof X
in H = Hy = Hp such that it is holomorphic in H \ [x = 0] and continuous in
H. Moreover (%7/11)&1(,1:) = (z,wﬁ,R) is injective in H since wﬁL(H(:r)) is simply
connected for all « € [0, 6) K.

Let H € Regs(e, uX, K% ). Denote by L,y ;() the unique point T (z) NH(z)
such that Re(—uiX) points towards H for all z € [0,00)K’%. We define Hy, as
the union of H \ [ = 0] and the connected component Hy,(0) of H(0) such that
Lf x 1(0) € HL(0). We denote by R, ;(x) the other point in T (x) N H(z) for
z €(0,00) K. We define Hg = H\ H1(0). Let v, be a holomorphic integral of the
time form of X defined in a neighborhood of «f, y ;(0) for k € {L, R}. We obtain
an integral w}{(ﬁ of the time form of X in H, obtained by analytic continuation of
Yy, for k € {L, R}. The function 7 , is holomorphic in H \ [ = 0] and continuous
in H, for k € {L, R}. Moreover (x,wiI{L) and (%1/);1(,3) are injective in Hj, and
Hp, respectively. The theorem of the residues implies that

’(/);-I(,L(x’y) - 7#?1(,12(33, Z/) —2m Z R@S(X, P)
PeJ(x)
is bounded in H \ [z = 0] where J(x) is the subset of (SingX)(x) of points
contained in the same connected component of B(0,¢€) \ H(z) than w*X(H(x)).
Since H(0) is disconnected the function z — " pc 5,y Res(X, P) is not bounded
inz € (0,00)K%. Indeed z — >_peJ(x) Bes(X, P) can be extended to a pure
meromorphic function defined in a neighborhood of x = 0.

We call subregion of a region H € Reg(e,uX, K%) to every set of the form
HNEgor HNIg where Eg is an exterior set and I is an intermediate set. We
say that all the subregions of H € Reg (e, uX, K’) are both L-subregions and
R-subregions. Consider H € Regs(e, X, K% ). There exists a magnifying glass
set Mg (o) such that the curves o~ (H) and w*X(H) are contained in Mg, but
they are in differented connected components of Mg \ Ig(). A subregion of H
contained in Mgy is both a L-subregion and an R-subregion. A subregion in the

same connected component of H \ Mg than Lix g is called a L-subregion. A
subregion of H in the same connected component of H \ Mg than R}, x g 1s called

a R-subregion. We define H” the union of the L-subregions of H whereas H' is
the union of the R-subregions of H. Clearly we have H = HY U HE.
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Remark 7.5. The dynamical splitting can be generalized to study any germ of
vector field of the form ™Y for some Y € A (C2,0). There is no problem in
dealing with singular vector fields at x = 0 if Y € X;p1 (C2,0). Indeed we already
dit it since all the transforms of X outside of the first exterior set are singular at
x = 0. The only difference is that the regions do not depend on x but on (r,\). If
Y & Xip1 (C2,0) we just consider a ramification (z*,y) such that (z*,y)*Y belongs
to X1 (C%,0). The expression for the sets of the splitting is a little bit different,
for instance the first exterior set is of the form plz|'/* < |y| <.

8. EXTENSION OF THE FATOU COORDINATES

A diffeomorphism ¢ € Diff 4,1 (C?,0) is a small deformation of its convergent
normal form exp(X) in suitable domains. The dynamical splitting associated to X
provides information about the dynamics of ¢. That is going to lead us to define the
analogue of the Ecalle-Voronin invariants. For such a purpose we need to mesure
the “distance” from exp(X) to ¢.

8.1. Comparing ¢ € Diff;,; (C?,0) and a convergent normal form. Let exp(X)
be a convergent normal form of ¢. We consider

o:(,y) = (2, (1 = 2)(y 0 exp(X)) + 2(y 0 ¢))

for z € B(0,2). Let ¢ be an integral of the time form of X, i.e. X(¢) = 1. We
define A, = ooy (P) — ((P) + 1) for P ¢ Fixyp in a neighborhood of (0,0) as
follows: we choose a determination t,—,(py in the neighborhood of P, we define
Yoo (P) as the evaluation at o1(P) of the analytic continuation of 9|,—,(p) along
the path v : [0,1] — [z = x(P)] given by v(z) = 0.(P). The value of A, does
not depend on the determination of ¢ that we chose. Clearly A, is holomorphic in
U\ Fixyp for some neighborhood U of (0,0). Indeed we have:

Lemma 8.1. Let ¢ € Diff 4, (C?,0) (with fized convergent normal form). Then
the function A, belongs to the ideal (y o ¢ — y) of the ring C{z,y}.

The result is a consequence of Taylor’s formula applied to
oY
Ay =top—oexp(X)~ 371 oexp(X)(yop —yoexp(X)) =0(yop—y).
Proposition 8.1. Let ¢ € Diff 1,1 (C2, 0) with fized convergent normal form exp(X).

Fiz € S' and a compact connected set K% C S'. Consider H € Reg(e, nX, K¥%).
Then we have

1
A, =0(X(y) =0 <(1 T |,¢)§,m)1+1/u(¢)>

for every k-subregion of H and all k € {L, R}.

Proof. Denote f = X (y). Let us prove the result for a L-subregion J without lack
of generality. There exists a sequence B(0), ..., B(k) = J of L-subregions of H
such that

o B(2j) C Egg; for all 0 <25 < k.

o B(2j+1) C Iy, forall 0<2j +1< k.

e (3(0) =0and 5(2j+2) = 5(24)v(j) for some v(j) € Cand all 0 < 2j+2 < k.
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Denote K(Qj) = Eﬁ@j)? h(2j) = dﬂ(gj), K(Qj + 1) = Iﬁ(gj) and h(2j + 1) = mﬁ(gj).

Denote 9.B(0) = [ly| < ¢/ N B(0) and 9,B(j) = B(j) NOK(j —1) for j > 1. We
define the property Pr(j) as

Pr(j) - 5P (5 o 5G| < M;/|z["9) for some M; € RY if j < k
=00/ [wg  )HYYE@) in BO)U...UB(j —1).

We have that Pr(k + 1) implies the result in the proposition for J. The result is
true for j = 0. It is enough to prove that Pr(j) = Pr(j+1) forall 0 <j <k.

From the construction of the splitting we obtain that f € (z)++D/2)in K ()
for all 0 < j < k (let us remark that [(j 4+ 1)/2] is the integer part of (j + 1)/2).
Denote Y = (X /xh(j))‘ k(j)- There exists a holomorphic integral v; of the time
form of Y in a neighborhood of the simply connected set B(j) such that |¢;| < M
in 0. B(j) for some M} > 0. Suppose that K(j) = [n > [t| > p|z|] is a parabolic
exterior set, since v(Y) < v(X) we obtain

O (@) +[G+1)/2] 2h(@)+1G+1)/2]
/= (<1+ |¢j|>1+1/v<Y>> = ((1+ |wj|>1+1/v<X>)

by remark The inequality |xh(j)¢§,L — ;| < Mj + M implies

O 2P @) +E+1)/2]1-h(H) (14+1/v(X)) o 1
f= T S Earze T R N e v zey

in B(j) since h(j) < [(j + 1)/2]v(X) by construction. Moreover if j < k then we
have ;| = O(1/|z|*Y)) in 9. B(j +1). We deduce that there exists M;; > 0 such
that [ 1] < My a/Jal"0+) in 8,B(j + 1) since h(j +1) = h(7) +v(¥),

Suppose that K(j) = [ > |t|] is a non-parabolic exterior set, this implies j = k.
We have that ¢;(r, \,t)A\"%p~! — C(r,\)In(t — v(x)) is bounded in B(j) where
t = 7(x) is the only irreducible component of SingXg;) g by the discussion in
subsection There exists v > 0 such that arg(C(r, X)) in (—7/2 4+ v,7/2 —v)
for all (r,\) € [0,80) x K% if B(j) is a basin of repulsion, otherwise we have that
arg(C(r,\)) € (7/2+v,37/2 — v) for all (r,\) € [0,80) x K. We deduce that

[ =0(hDHGTD2 (¢ — (1)) = O(ahDHGFD/2 =KW1

in B(j) for some K > 0 and then
Lh(@)+G+1)/2] 1
f=0 -0 -
(1 [y rH/0 (1+ [ L)/
in B(j).

Finally suppose that K (j) is an intermediate set. We have that 1; is bounded in
B(j). Thus there exists M;;1 > 0 such that |¢§7L| < Mo /|2"0) = My /|2h0+D

in B(j) and then in 9.(B(j + 1)). We obtain

h(y i+1)/2
f =00t/ = o Zh(@)+G+1)/2] Y .
(1+|¢j|)1+1/V(X) (1+|¢I)§}L|)1+1/V(X)

in B(j). O
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8.2. Constructing Fatou coordinates. Let ¢ € Diff;,1(C?,0) with convergent
normal form o = exp(X). Fix u = ie? with § € (—7/2,7/2) and a compact con-
nected set K% C S'\ B%. Consider H € Reg(e, uX,K%). Let P € H, suppose
P € H' without lack of generality. The trajectory I' = I'(uX, P, |y| < €) is con-
tained in HZ. Let B(P) be the strip exp([0,1]X)(I') and I” = o(T"). The distance
between the lines ¢z ; (') and ¢ ; (") is cos 6. Since gy, 09 =gy o a+ A,
then I' and (I") enclose a strip By (P) whenever supp(o,50)xB(0,¢)|dp| < (cos8)/3.
Since A,(0,0) = 0 this condition is fulfilled by taking p away from —1 and 1 and
a small neighborhood B(0,d¢) x B(0,¢€) of (0,0).

Let B(P) be the complex space obtained from B(P) by identifying I" and I".
Let B;(P) be the complex space obtained from Bj(P) by identifying I' and o(T).
The space B (P) is biholomorphic to C* by €27 ow}; .- A natural compactification
B(P) is obtained by adding 0 ~ w"*(P) and oo ~ a*X(P). Analogously we will
obtain a biholomorphism from By (P) to P*(C). The space of orbits of ¢|g, (»(p)) i
then rigid, that will allow us to define analytic invariants of ¢. Let us remark that
Bj (P) is the restriction of the space of orbits of ¢ to Hy(z(P)) for all choices of H
and P if and only if vx(y) > 1 for all v € Singy X [22]. In general the complete
space of orbits is messier, we obtain further identifications via return maps.

We consider the coordinates given by 1/)1); ;- We define

00(2) = 2 + n(cos ORe((z — vpy L (P))e™))Ay 0 @™V o (v )7V (2)

where 7 : R — [0, 1] is a C* function such that n(b) = 0 for all b < 1/3 and n(b) =1
for all b > 2/3. This definition implies that o = (¢ )°("" 0 6g 0 Y55 | satisfies

Texp([0.1/31X)(1) = [d and Oexy((—1/3,01x)(7) = p 0 a®"H.

The mappings o¢ and o depend on the choice of the base point P. The function
Ay o a*=Do (wf{(’L)o(’l) is holomorphic. By Cauchy’s integral formula we obtain

0(A, 0 a*(=Y o (7,/}1{1([/)0(71)) 1 Ay o a*D o (ng)o(*l)
2 : (Zo) = o /IZ—ZOI—l (2 — 20)2 7
By proposition there exists C' > 1 such that
O(Ag 0™V o (3 1)°Y)
0z

dz.

1
< i S A
(z) < C'min ((1+z|)1+1/V(‘P)’;l(1E)| «p|>

for all z € zbﬁL(B(P)). The jacobien matrix Jog of g is a 2 x 2 real matrix. The
coefficients of Jog— Id are bounded by an expression like the one in the right hand
side of equation maybe for a bigger C' > 1. We obtain that supg g s)x(0,e) [2¢|

small implies Jog ~ Id and then o is a C*° diffeomorphism from B(P) onto B (P).

The mapping & = 2™ o ng’L 00°(=1 is a ¢ diffeomorphism from B; (P) onto
C*. The function %3{(’ L ° °(=1 is a Fatou coordinate, even if not holomorphic in
general, of ¢ in B;(P). The complex dilatation ., of o¢ satisfies

|

Al 1
0z :
oo|(z2) =+ (2) < K(H)min | —————, sup |A
bxeol(2) faa"z°|( )< KH) <(1+|Z|)1+1/”(“’) H(z(II)D))‘ W)

for all z € wg,L(B(P)) and some K (H) > 1 independent of P € H. Since £°(-1) is
equal to (%{;L)"(—l) oogo ((1/2mi)In z) then
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Lemma 8.2. [yco-n|(2) < K(H)min(1/(1+]In 2|/ (2m)) /v, SUP i1 (x(P)) Al
for all z € 2™ o 3l | (B(P)).

The mapping § and then xgo(-1) depend on the base point P. We look for a
quasi-conformal mapping p : P*(C) — P*(C) such that y; = X¢o-1). Since we can
suppose || xgo(-1) |[oo = SUPc+ [Xgo(-1y| < 1/2 < 1 then such a mapping exists by the
Ahlfors-Bers theorem. The choice of 5 is unique if p fulfills p(0) = 0, p(1) =1 and
p(c0) = 0o. By construction j o ¢ is a biholomorphism from B;(P) to C*.

We define

2 K(H) 1
Jr)=2 —d
"=z /z<r (1 + 2 Ta 1|21+ [

for » € RT. We have that J(r) < co for all r € R*.

Lemma 8.3. The mapping p is conformal at 0 and at co. Moreover we have

) Zol<|Fo == Pio) | 2|2

where v depends on K(H), it satisfies lim ;o ¢(|2]) = 0. We have

u(1/]z])

u(]2]) and ‘

min|z|:1|ﬁ(z)|e_J(1) < |0p/0z|(0),]0p/0z|(c0) < maa:|z|:1|ﬁ(z)|e‘](1).

Proof. We define
1 1 5
T Jizj<r L= Ixal 2]

for all » € R*T. We have I(r) < J(r) for all € R*. To get the conformality of 5 at
z =0 it is enough to prove that I(r) < oo for all r € R* (theorem 6.1 in page 232
of [I4]). This is clear since J(r) < oo for all » € RT. The inequality is obtained for
a function ¢ such that lim|.| o ¢(|z|) = 0, it depends on J and then on K(H). The
proof for z = oo is obtained by applying the result in [I4] to 1/p(1/2). O

We denote by [z9, 21] the spherical distance for zg, z; € P1(C).

Lemma 8.4. ([1], lemma 17, page 398). Let x be a measurable complez-valued
function in P1(C). Suppose ||x||co < 1. Then there exists a unique quasi-conformal
mapping v : P1(C) — PY(C) such that x, = x, v(0) =0, v(1) =1, v(c0) = 00 and
[v(2), 2] < Collxllo

for all z € PY(C) and some Cy > 0 not depending on x.
Corollary 8.1. [(z), 2] < Col[xgo-n||oo for all z € P'(C)

We define p = 5/(0p/0z)(0). The quasi-conformal mapping p is the only solution
of X, = Xgo(-1) such that p(0) =0, p(c0) = oo and (9p/92)(0) = 1.
Lemma 8.5. lim“xgo(_l)Hooﬂo(aﬁ/ﬁz)(zo) =1 for zg € {0,00}. In particular we
have limﬂxgo(fl)||oo_,o(8p/3z)(oo) =1.

Proof. Denote X = xgo(-1). For ||x||cc small enough there exists C; > 0 such that
15(2) — 2| < C1||x||oo for all 2 € B(0,1) (lemma[8.4). This leads us to
9p

C
LPoy—1l < J(1) Liivllso
20 -1| < (1+ e’ ufah + i
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for all z € B(0,1)\{0} (lemmaand corollary. By evaluating at z = 1/||x||co

we obtain that limHXEo(fl) l—0(9p/02)(0) = 1. In an analogous way we can prove
that limuxso(fl)Hwﬁo(aﬁ/az)(oo) = 1. Since

(0p/0z)(o0) = (9p/0z)(0)/(8p/02)(0)
then we obtain that lim||X€O(_1) le—0(0p/0z)(c0) = 1. d

Lemma 8.6. lim“xgo(71)||oo_,0 sup,epi(cy |p(2)/2 — 1| = 0.

Proof. Denote x = X¢o(-1. Let b > 0. By lemma there exists rg € R such
that |p(z)/z — 1| < b for all z € B(0,rp). We also obtain

@ —1

z ap -1
_Zr <
‘ - 32(00)

9 (1/]2).

Since lim|jy | —0(0p/0z)(c0) = 1 then there exist ag > 0 and r; > 0 such that
lp(z)/z — 1| < b for all z € C\ B(0,7y1) if ||x||loc < a@o. There exists a; > 0 and
C1 > 0 such that |5(2) — 2| < C1|x||eo for all z € B(0,71) \ B(0,70) if ||X|]oo < a1.
We deduce that

25l <= a/@p0001 + o

z 10p/02(0)| =]
for all z € B(0,71) \ B(0,79) and ||x||sc < a1. By lemma there exists a € R
such that |p(z)/z — 1] < b for all z € PY(C) if ||x]|ec < a. O
Now we can define the function
ViLp = ilnzopoe%iz ozﬁiL og°(=1),

211

It is an injective Fatou coordinate of ¢ in the neighborhood of B;(P). By using
Virnpow =Vf p+ 1 wecan extend ¢F | p to Hr(z(P)).

It looks like ¢}; ; p depends on the choice of the base point P € H L. Neverthe-
less the functions 1/1}3’ 1. p Daste together to provide a Fatou coordinate d’fl, 1, it is

continuous in H;, and holomorphic in H.

Lemma 8.7. Denote & = 62”i20¢§7L. There exists C > 0 independent of P € H
such that

C
1+1/v
R o

1
o vite] < 2|5 1]
YuLp wH,L‘—ﬂ_ > OOJF(

in B1(P). Moreover we have

1 dp

li ¢ o(Z)—Yf(Z) = —=In—
ZeBl(Q)lg:,(z)ﬁzo Vi, p( ) = Vn,(Z) ; (20)

for all zy € {0,00} and all Q € Hr(z(P)).

Proof. Denote x = X¢o-1) and k = p/z—1. We have lim|, .o [[k|[cc = 0 (lemma

. Thus we obtain

1 ) .
‘djlﬁL P w})J(L o 00(71)’ =3 ’1n(1 +k(2)) 0 2Tz °¢I)§L ool < &
L, , - 7

™
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for ||k||s small enough. On the other hand we get

_ C
o — o(—1
¢§,L°U( 1)_¢§,L’ = Uo( )°¢§,L—¢§,L‘ <

1+1/v
(L fogg )
for some C' > 0 and all z € By (P) (prop. [8.1). Analogously we obtain

wfI,L,P(Z) - 1/’§,L(Z) =:—=In 5(20)

lim
ZeB1(P),60(Z)—20

for 29 € {0,00}. We can suppose supp (g 5,)x B(0,e) [Ap| < 1/2. As a consequence
given Q € Hp(z(P)) there exists k(Q) € N such that every Z € B1(Q) is of the
form °U(@)(P') for some P’ € Bi(P) and j(Z) € [-k(Q),k(Q)]. Moreover if
§(Z) > 0 then °W(P") € Hy(x(P)) for 0 <1 < j(Z) whereas for j(Z) < 0 we have
that °(~Y(P") € Hy(x(P)) for 0 <1< —5(Z).

Fix Q € Hp(z(P)). Consider Z € B1(Q), we can suppose j(Z) > 0 without lack
of generality. This leads us to

i(Z2)-1
wff,L,P(Z> - ¢1)L1(,L(Z) = ("/’If{,LP(P/) - 1/’;1(,L(Pl)> - Z Ago ‘Po(l)(Pl)-
1=0

Since [y 1 (0° D (P")) —¢3 1 (Z) +§(Z) — 1| < k(Q)/2 for all 0 < I < j(Z) then

i(2)-1

0 k(@Q)C
Z Booew (l)(Pl) = X 14+1/v(e)
1=0 (1= K(@Q)/2+ [Img(Yy 1(2))])
Now &y(Z) — 0,00 implies [Img(y3y 1 (Z))] — oo. Thus we obtain
li ¢ Z) =i (2) = li o (Z)—ux (Z
LeB P ) VL P B T VLB = L i Vi p(E) Vi ()
for zo € {0, 00}. 0

We prove next that ¢y 1, p depends only on z(P).

Lemma 8.8. Let v € [0,00)K%. We have ¥ 1 p = ¥f 1 o in Hr(zo) for all

P,Q € HE(z¢). We also have ViLp — wﬁL =Yhro — 1/’;{(,1% if 1o # 0 and
(P,Q) € H:(xg) x HE(xg). Then (0p/0z)(c0) depends only on H and z(P).

Proof. Let P,Q € H"(x). We have ¢f; | p —¢f 1 o € (B, (P)) since
(¢fI,L,P - wE,L,Q) cp= wfI,L,P - wZ,L,Q'

We define h = (¢ 1 p —¥f 1 o) © (@bz’L’P)o(*l) 01/(2mi)Inz in C*. The function
extends to a holomorphic function in P!(C) such that h(0) = 0 by lemma
Therefore we obtain h = 0 and then d’fI,L,P = z/)}‘},L’Q.

We have (¢ | — U3 g)(x0,y) = b(x) in H(zo) for some b(zo) € C. We define
9= W rp—Vira)oWhp) " e1/(2mi) Iz in C = (27 oty 1 p) (H(xp)).
By lemma the complex function g admits a continuous extension to P*(C) such
that g(0) = b(xp). We are done since then g = b(zg). O

Here it is important the choice p(0) = 0, p(c0) = oo, p/(0) = 1. By replacing p
by the canonical choice p(0) = 0, (1) = 1, p(c0) = oo in the definition of ¥ | p
we would have ¥ | p # ¥f 1 o in general.
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Denote by ¢} ; any of the functions ¢f ; p defined in Hy. The definition of
Vi g is analogous. We denote by 9j; — & the function defined in H which is
given by the expression 1j; ; — wﬁl in H; for I € {L, R}. The definitions of ¥ ;,
¢f1, rand ¥f — ¢§ allow to deduce asymptotic properties of those functions when
approaching the fixed points without checking out that they are stable by iteration.

Proposition 8.2. Let ¢ € Diff 1 (C2,0) with fized convergent normal form exp(X).
Fiz p € "™ and a compact connected set K5 C S'\B%. Let H € Reg(e, uX, K%);
the mappings (x’wlﬁ,L) and (a:,z/)fl’R) are holomorphic in H and continuous and
injective in Hy, and Hpg respectively.

Proof. Consider P = (x9,30) € H”. The mapping oo(z, z) depends holomorphi-
cally on z. There exists a continuous section P(z1) € [z = 1] for z1 in a neighbor-
hood V of zy in [0, d9) Ky such that ¢§7L(P($1)) = wﬁL(P) and P(z¢) = P. The
mapping o = ¢§7L 00(o (wﬁyL)o(*l) maps B(P(z)) onto B;(P(x)) and establishes
a O diffeomorphism from B(P(z)) onto Bi(P(zx)) for all z € V. The complex
dilation X¢o(-1) depends holomorphically on x € V and continuously on z € V.
Hence the dependance of the canonical solution p : P'(C) — P(C) of x5 = xgo(-1)
with respect to x is continuous in V' and holomorphic in V. In particular the func-
tion  — (8p/0z)(z,0) is holomorphic in V and continuous in V. We deduce that
plx,z) = p(x,2)/(0p/0z)(x,0) depends continuously on z € V and holomorphi-
cally on z € V. Then Y 1 is continuous in Uzey Bi(P(z)) and holomorphic in

a neighborhood of U, .y, B1(P(z)). Since P can be any point of HY then Vi g s

holomorphic in H and continuous in Hy. Moreover (z,9% ) is injective in H,, for
v € {L, R} since ¢, is injective in the fundamental domains of type Bi(P). [0

Corollary 8.2. Let ¢ € Diff 1 (C?,0) with fized convergent normal form exp(X).
Fiz p € /™ and a compact connected set K5 C S'\B%. Let H € Reg(e, uX, K%).
The function x — (Op/0z)(H,x,00) is well-defined and continuous in [0,80) K% .
It is holomorphic in (0,80)K% and (9p/8z)(H,0,00) = 1. Moreover we have
(0p/0z)(H,z,00) =1 if H € Regy (€, u X, K%).

Proof. By the proof of the previous proposition we have that © — (9p/0z)(x,0)
and z — (9p/9z)(x, 00) are continuous in [0, 59) K% and holomorphic in (0, d) K%
The same property is clearly fulfilled by = — (9p/0z)(x, 0).

Consider P = exp(sX)(LﬁIX(O)) if H € Rega(e,uX,K%) for all s € RT. For
H € Regi(e,nX, K% ) consider P = exp(sX)(TfX(O)) for s € RT if Re(—iuX)
points towards H at TfX(O), otherwise we denote P = exp(—sX)(TfX(O)) for
s € RT. Then P is well-defined and belongs to H(0) = Hp(0) for all s € RT.
Moreover infgep(p) |17y, (Q)] tends to co when s — co. We obtain ||xgo-1) [[oc — 0
when s — 0 by lemma This implies (0p/0z)(0,00) = 1 by lemma The
prove of (0p/dz)(x,00) =1 in the case H € Reg1 (e, uX, K ) is analogous. O

Proposition 8.3. Let ¢ € Diff 1,1 (C2,0) with fized convergent normal form exp(X).
Fiz € €% and a compact connected set K% c S'\B%. Let H € Reg(e, uX, K%);
the function ¥ — y3y is continuous in H U [Fize N OH].
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Proof. The function ¥, — ¢3 is clearly continuous in H. We define

(6, — U)X (H() = o0 G2 (H,,00) and (05 = o) (@ (H(2))) =0

for all z € [0,80) K% where In1 = 0. The function (3 =¥} )| Fizpnon is continuous
by corollary Let P € HY. From

(G wﬁ,L =Whop— wﬁ,L 0o 4+ (7/JI)§,L ool — ¢§,L)

we deduce that

1 Tiz o(— C
il = gy (0 (8) o= ouif 00 Y) <

1+1/v
(1+ [ )T

in B (P) for some C' > 0 independent of P € HZ. We can suppose that the function
¢ provided by lemma [8.3| is increasing. By varying P we obtain

1 C
0§ — v < —voe(—nImg(vp 1)) + =D
m (1+ [ )

in H-'n [ImgwiiL > Jy] for some Jy > 0. An analogous expression can be ob-

tained in H® by replacing ¢z ; with ¢3f . Lemma implies the existence

of an increasing ¢/ independent of P € H™ such that lim,_o¢/(|2]) = 0 and
lp/2(0p/0z)(c0)™t — 1] < /(1/]z]). We deduce that
1 Jp 1 R C
v — vy — i In &(SU»OO) < ;L/ oe (WImQ(ZDiI(,L)) +

1+1/v
(1+ [ )T

in HX N [Imgwf{(’L < —Jp] for some J; > 0. Again an analogous expression can be
obtained for H%.

Consider (zo,y0) € Fizp NOH. Suppose zg # 0 and H € Regs (e, pX, K ).
Since H = H" U H? and

lim min(|Img (43 (2, 9))], Img (V3 g (2, y))]) = o0
(z,y)€H, (z,y)—(z0,Y0)

then the discussion in the previous paragraph implies that ¥ — Y2 is continuous
at (zo,yo). Suppose now that zg =0 or H € Reg (¢, uX, K% ). We have

lim X (z,y)] = 0
(z,y)€EH, (z,y)—(w0,Y0) |1/}Hv'€( y)|

for k € {L, R}. It is enough to prove that (¢}, — d’ﬁ)Hlu{(aﬁo,yo)} is continuous at
(z0,yo) for I € {L, R}. Suppose | = L without lack of generality. Analogously to
the previous case we obtain

lim % — ) (x,y) = 0.
(I’y)EHL’ |Img(1l)§1L(aJ,y))|—>oo7 (w,y)—»(mg,yo)( H H)< )

There exists a function v : R* — R>¢ such that lim,_. v(b) = co and satisfying
that given P € H” the strip B(P) is contained in [|[¢3; | > v(|Re(¢3; 1 (P))])]. The
value |[p/z — 1[|o tends to 0 when |[x¢o(-1)|[joc by lemma Moreover we have
[xeon oo < K(H)/(1 4 v([Re(3 1 (P))]) /79 by lemma 8.2 The lemma
[87 implies that

lim (W —vm)(z,y) =0
(w9)EHL, |Re(¥ (@) —o0, @y)—(zowe)

and then the result is proved. [
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The previous proposition implies that by considering a smaller domain of defi-
nition |y| < € we can suppose that supgep|1f; — 1 |(Q) is as small as desired for
all H € Reg(e, nX, K% ) since (4§, —1%)(0,0) = 0.

Remark 8.1. The construction of wfI,L,P or 1/)I‘§’R’P in B1(P) depends only on
getting small values of ||xgo-1)||oo. This condition is automatically fulfilled for

SUPB(0,8)x B(0,¢) || small enough (lemma .

Remark 8.2. We can do the same process in this section for every o € Diff ,(C?,0)
with convergent normal form exp(z™Y) for some Y € X,1(C?,0). The functions
wH v are continuous in HU (H N Fize) U ({0} x B(0,¢€)) and holomorphic in
H even if Y3 has a pole of order m at x = 0. The calculations are basically the
same. We omit them for the sake of simplicity.

9. DEFINING THE ANALYTIC INVARIANTS

Now we define an extension of the Ecalle-Voronin invariants for ¢ € Diff 1,1 (C?,0).
It is the key to prove the main theorems in this paper.

9.1. Normalizing the Fatou coordinates. Let ¢ € Diff;,1(C?,0) with fixed

convergent normal form exp(X). Fix g € ¢/®™ and a compact connected set K%

contained in S'\ BY%. There are 2v(p) continuous sections 7%, ..., T;QV(@) of
the set T%. We will always suppose that T)E(’l7 e T;QV(W), T)e(’mj(('o)+1 = T;gl are

ordered in counter clock-wise sense. For all j € Z/(2v(p)Z) there exists a function
6, : B(0,0) — R* such that

T (2) = T (2)e%@ and T (2)e!®% @) nTg(2) =0 Vo € B(0,6).
There exists a unique T:L)]( (z) in T (2)e* (0% ) " Denote by v;(z) the only value
in (0,27) such that T;§+1(a:) = T;}?(m)ei“f(x). We define H(j) as the element of
Reg(e, nX, K%) such that T % (z) € 0H(j)(z) for all x € [0,d9) K. The region
H € Regy(e, uX, K ) appears k times in the sequence H(1), ..., H(2v(p)). We
denote by Hu(j) the element of Rego, (e, X, K% ) such that T’ (z) belongs to
O(Hoo(j)(x)) for all z € [0,d0)K%. Consider BH(j) C [z € [0,d9) K] such that

BH(j)(x) = (H(j)(x) UH (G + 1)(2) U Hoo(5)()) N ([ly] < €]\ Fizep)
for x € [0,80) K% It is a simply connected open set for every point x € (0, o) K’ .
The set BH(j)(0) can have 1, 2 or 3 connected components. Denote by GH (5)(0)
the connected component of BH(j)(0) containing 7% (0) in its closure. We define
GH(j) = (BH(5) \ [z = 0]) U GH(5)(0).

It is connected and simply connected for all j €Z/(2v(p)Z) and x € [0,00) K’ .

We define the function (,(z) = —miv(p)~ ZPe(sz)( ) Res(g, P). 1t is holo-
morphic in a neighborhood of 0. Fix jg € {1,...,2v(p)}. Consider an integral ¢j§
of the time form of X defined in the nelghborhood of T} 0(0). We can extend it
to GH(jp) by analytic continuation. In an analogous way we can define 1/1 L in
GH (jo+k) for all k € Z; we choose ]0+k(T€’J°+k(O)) to be the result of evaluatmg
the analytic extension of 1/1 + k(, along the curve t — T, ’70( )elt® for t € [0,1]
where £ = Zf;ol Vjo+1(0) if k> 0 and k = lel Vjo—1(0) for £ < 0. If Re(—ipX)
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points towards H(j) at T;)J((O) then we define V(). = Yu(j+1),r = z/)]X, otherwise
we define ¥y r = Yu(j+1),L = 1/)])»(. We obtain wﬁb(w = 1/)])»( for j € Z.

We choose an element v1 = (y = ay(z)) of Singy X, we call v1 the privileged
curve associated to X (or ). We have X = u(x,y) vazl(y — a;(x))"0/dy for
some unit v € C{z,y}. Denote by 7; the curve y = a;(z) for 2 < j < N(¢). We
look for functions ci, ..., cx contained in CO([0, 5o) K% ) N9((0,80) K% ) such that

® C1 = 0

o Given~y; Rl vk of G(uX, K% ) then (¢;—ci)(x) = 1/(2mi) In(0p/0z) (H, x, ).
By corollary the reflexive edges of G(uX, K% ) do not impose any restriction.
There is a unique solution ¢4, ..., cy since NG(uX, K% ) is connected. We say that
¢1,...,cn is a sequence of privileged functions associated to (X, ¢, K, 7).

Denote vi(j) = w**(H(j)). We define a Fatou coordinate ¢y of ¢ in the set
H(j) N GH(j) such that

U7 (@, y) = Vi) (@ Y) + engy (@) or ¥F (@) = V5 g(2,Y) + ey ().
depending on whether H(j) N GH(j) is equal to H(j)y, or H(j)r respectively. We
obtain that (Y —47%),, = ¢ for i, € {a*X(H(5)),w"* (H(4))}. Since given ¥
the function 1/1}0 +c¢(x) is also a Fatou coordinate we normalize by fixing a privileged
curve and the sequence of privileged functions attached to such a choice.

9.2. Defining the changes of charts. Our aim is to define
e (2,2) = ¥fyy 0 (2,97)°Y

for j € Z/(2v(p)Z). A priori it seems that this does not make any sense since the
domains of definition of wf and 1/};'-0+1 are disjoint. Nevertheless we can extend those

domains, the function ffa K will be defined in a strip.
R x
We denote D(y) = Z/(2v(p)Z). We define

Di(p) ={j €Z/(2v(¢)Z) : Re(X) points at T:)j( (0) towards H(j)}.

The condition j € Dj(p) is equivalent to Re(—uX) pointing towards |y| < € at
(0Hoo (j) N[lyl = €]) \ T);x- We denote D_1(¢) = D(¢) \ Di(¢p).

Suppose without lack of generality that j € D_;1(p). There exists a constant
W e R* such that [Re(¢X(B) — ¢ (A))| < W for all A,B € Hy(j)(x) and

all z € [0,80)K’%. Denote Im(z) = Img(wJX(T;jH(x))). We obtain that every
Q € Hoo(j) N [Imgyp* > I'm] fulfills [-W, W] C It(X, Q, |y| < €); we obtain

exp((0, W) X)(Q) N H(j + 1) # 0 and exp((—=W,0)X)(Q) N H(j) # 0.
Denote I'j(z) = T'(pX, T:)l( (),|ly] < €). We define the strip St;(z) enclosed
by T'; and ¢°(=Y(St;(z)) whereas St; 1(z) is the strip enclosed by I';41(z) and
o(Tj41(x)) for all z € [0, ) K.

The functions 1y —1;* are bounded in H([)NGH (l) and continuous at the curve
WHX(BH(35)) for I € {j,j+1} (prop. . Suppose that supg (g, 5)x p(o,e) [Al < 1/2.
It is easy to see that 1/)}0 can be defined by iteration in the set E; given by

Ej(x) = ([Stjs1(2) U Huo(§)(2))] \ Fize) N [Img(y;) > Im(z) +1 + W]

for z € [0,90)K%. The function ¢¥(z,.) is injective in the simply connected set
(H(j)(z) N GH(j)(x)) U Ej(z). Moreover since we only need a finite number of
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iterations the function ¢ — 1/)])-( is still bounded in F; and continuous at the curve
wHX(BH(j5)). There exists I € R* such that 5; eu is defined in
N x

[Usefo,60) i {x} X 9F (Stjga())] N [Img(z) > I].

Since we have g; @z 1) = gi o (@,2) +1 then g; . is defined in gz > 1.
The value of

T =0 = (W, — ﬁ1)_(¢f—¢;{)+( 3X+1_1/J]X)

at the curve vy(;) = WHX(BH(j)) is Ch(j) — Ck(j) T Cp = Cyp, thus f;,K; admits a
expression of the type f;yK; (#,2) = 2+ (@) + 2012, a;DJJ{; (z)e?™'=. In particular
the function ajl, K is continuous in [0, §) K% and holomorphic in (0, dg) K% for all

I € N. The case j € D1(p) is analogous. The previous discussion implies:

Proposition 9.1. Let ¢ € Diff 11 (C?,0) with fized convergent normal form exp(X).
Fiz € /O™ and a compact connected set K% C St \B%. Then there exists I € R*
such that for all s € {—1,1} and j € Ds(p) we have

°§;,K§O('z+1)5(z+l)ofp,K§' .
o & p € CO[0.60) K% x [sTmgz < 1)) 1 9((0.0) K% x [sImgz < ~I)).
[ hm|[mg(z)|~>oo fjap,K; (.T, Z) — (Z + C¢($>) =0.

o §i7K; is of the form z + (,(x) + Y o, ail,K; (z)e~2mislz,

Let orbg () be the space of orbits of ¢ g (j)nau(;) for H(j) € Reg(e, uX, K% ).
The mapping ©; : orbp j() — [0,d0) x P'(C) given by ©; = (,e*™* o ¢¥) is
continuous everywhere and holomorphic outside of z = 0. We define the pu-space
of orbits of ¢ at K% as the variety obtained by considering an atlas composed
of 2v(¢p) charts W; ~ [0,80) x P}(C) for j € Z/(2v(p)Z) and the 2v(yp) changes
of charts ©;41 o 9;(_1) identifying subsets of orbg ;(¢) and orbg j11(p) for all
j € 2/(20(9)2). |

Let j € Ds(). The trajectory ¢ — exp(stX)(T;%(0)) (for t € R*) adheres to a
direction A(yp, j) € Ds(¢|g=0) when ¢t — oco. The mapping A(y) is a bijection from
7] (2v(¢)Z) to D(¢|y—o). The restriction of the changes of charts to x = 0 provide
the Ecalle-Voronin invariants of ¢),—q.

Corollary 9.1. Let ¢ € Diff 1 (C?,0) with fized convergent normal form exp(X).

Fiz € €O and a compact connected set K% C St BY. Then the functions

5; w0 (0,2) (j € Z/(2v(p)Z)) are the changes of charts of ¢|y—q. Indeed we have
My

¢ PAUSE 00D (2) for all j € Z/(2u(p)Z).

We have extended the Ecalle-Voronin invariants to all the lines z = cte in a
neighborhood of = 0 even if in general they do not support elements of Diff 1 (C, 0).

Remark 9.1. We can define 5&71( for every ¢ € Diff ,(C%,0) whith convergent
normal form of the form exp(z™Y) for some Y € X,1(C?,0) (see remark .
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9.3. Nature of the invariants. Let X € X;,1(C?0). In our sectors [0, o) K%
the direction p € S! providing the real flow Re(uX) is fixed. The analogue in [16]
is allowed to vary continuously. Such a thing is also possible with our approach.
More precisely we want to find connected sets E C S! and a continuous function
p: E — O™ such that u(\) € Bx. (see subsection for all A € E. A
maximal set with respect to the previous property will be called a maxzimal sector.
The idea is that for every compact connected set K contained in a maximal sector
there exists do(/K) > 0 such that Re(u(X)X)(rx,y)€[0,60(K))x K xB(0,) has a simple
stable behavior. Thus the maximal sectors provide sectorial domains of stability.
Let ¢ € Diff4,1(C?,0) with convergent normal form exp(X). Given z € ART
and g, 1 in the same connected component of i(0,m) \ Bx,x we claim that there
exists a compact connected neighborhood K = K5 = K%' of A in S! such that
¢ o = 15 s for all j € Z. Then we can define changes of charts f; x(x,2)
0, K5 0, Ky ,
which are continuous in [z € [0,¢(K))K] N [sImgz < —I] and holomorphic in its
interior for j € D4(¢) . We do not include a rigorous proof of the claim but only a
sketch. Consider a path e'l?-01] < ¢i(0:7) \ Bx, joining po and pq. We have
(1) The elements H(j, 1) € Reg(e, uX, K) depend continuously on p € ¢'l00-91],
(2) o*X(H(j, 1)) and w*X(H(j, 1)) do not depend on u € e'l%-91] for H(j, p)
in Reg(e, uX, K).
(3) ©¥ is continuous in H(j,p) N GH(j, ;1) and holomorphic in the interior
Vj € Z and p € etl0o-01],
The first property is a consequence of the continuous dependance of T, x and
Re(uX) with respect to u € S'. The open character of the set points implies
the second property since el?%:91] is connected.
Regarding the third property we can define ¢% in H(j, e%) N GH(j,¢"%) and
then to extend it to U, cileo.0,1 H (J, ) N GH(j, 1) by using ¢¥ o p = ¢¥ + 1. The
trickiest part of the proof is showing that 1/1f — wJX is continuous in

O(H(j,n) NGH(j, 1)) N SingX V€ il0o,0n]
Since (17 — z/;f) o pok) = (5 — 1/JJX) - lb:é A, 0 p°®) the desired property is a
consequence of A, 0 o°*) = O(1/(k 4 X ) +1/7(©)) and
. 1

|[Imgz|—o0 -
kE—24+Reil00—v,01+v]

The previous discussion implies that given z € ART the choices of u-spaces of
orbits of ¢ at {\} are at most the number of connected components of ¢(%™\ By .

It is remarkable that the dependance of Bx x with respect to A is not product-like.
For instance By y.i0(X) = e~"99 By (x) for a magnifying glass My associated to
X. Hence the points of Bx ) turn at different speeds.

There are much simpler cases. Suppose N (p) = 2. Let p be the order of contact
between the two curves of fixed points. We have that

oy —y)(z,y) = ulz,y)(y —1(z)" (y — 12(x))"
for some unit u € C{x, y}. The order p is equal to v(y1(x) —v2(z)). The magnifying
glasses associated to X are organised in a sequence Mg, Moy,, ..., Mob,...b,_,-

Denote 3(q) = 0by...by_1 for ¢ € {1,...,p}. Since the vector field Xz, (1) has a
unique singular point for ¢ < p then Bg(,) (X) = 0 for ¢ < p. Moreover sumgy)
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(see subsection for definition) is composed by two opposite different points.
Hence we have ﬁBB(pM(X) =1 and then #Bx = 1 for all A € S*. The number of
connected components of ¢?(%:™) \ Bx,x being bounded by 2, we have that in general
there are two choices of u-space of orbits. The situation is analogous to the one
described in [I6].
We have mg,) = p(n1 +nz — 1) and
0

Xopm(A) = AP =) Oy — 7)™ () — wg)m%

for some C' € C* and wy,ws € C with wy # ws. The maximal sectors are of the form
Noe? (027 /m(BP)) for Ny € BY. Since §BY = 2m(B(p)) then there are 2p(ny +ny—1)
maximal sectors whose union is S'. Each of them supports a sectorial domain of
angle 27 /(p(n1 + ng — 1)).

Suppose ¢ € Diff 1 (C2,0) \ Diff 4,1 (C%,0) with N = 2. Then ¢ is of the form

oz, y) = (z,y + f(z,y)")

where v(f(0,y)) = 2. Denote by p € N/2\ N the order of contact between the two
branches of Fixzyp. We can find an extension of the Fatou coordinates and then of
the Ecalle-Voronin invariants of ¢ by studying the diffeomorphism

55 = (.%1/2,];) opo (xzay) € Diﬁtpl(c270)

and then undoing the ramification. The order of contact between the the two
irreducible components of ¢ is 2p. The constants n; and ny representing the mul-
tiplicities of the irreducible components are both equal to n. Thus the maximal
sectors support sectorial domains of angle

2T 2 2T

2(2p)(n1 +ny—1) pni+ns—1) p2n—1)
There are 2p(n; + ns — 1) = 2p(2n — 1) maximal sectors.

The situation described is analogous to that in [16]. They work with diffeomor-
phisms of the form ¢(z,y) = (z,y — z + c1(z)y? + O(y?)) where ¢1(0) # 0. They
consider also its ramified version ¢ = (w'/2,y) o ¢ o (w?,y). In the w coordinate
we have p =1 and nq; = ny = 1. Then 2 = 2p(ny + ny — 1) sectors are required to
cover S' describing angles as close to 27 as desired. In the z coordinate we have
p = 1/2 and n; = ny = 1. Only one sector is require to cover S!, it describes
an angle as close to 47 as desired. We obtain the same division in the parameter
space; nevertheless our techniques can be applied to every unfolding of tangent to
the identity germs and not only to the generic ones.

9.4. Embedding in a flow. Let ¢ € Diff;,1(C?,0) with fixed convergent normal
form exp(X). We say that a sequence K%', ..., K& of compact connected subsets
of St is a EV-covering if

o pj€e®m and K C ST\ BY forall j € {1,...,1}.

o Ul Kiy =S
Such a covering exists. We have B N B5 = () for k € S in the neighborhood of
i. Fix such k, then we can choose a EV-covering such that {u1,...,u} C {i,x}.
This construction is a generalization of the trivial type case. In that context we
can choose K% = S! as the only element of the EV-covering.
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Remark 9.2. The definition of EV-covering does not depend on the choice of the
convergent normal form but on Fixze and Res(yp) (remark[7.9).

Proposition 9.2. Let ¢ € Diff 4,1 (C2,0) with fized convergent normal form exp(X).

Fiz p € €9 and a compact connected set K% C St \ B%. Suppose that ¢ is not

analytically trivial. Then there exists j € Z/(2v(p)Z) such that ffp n 2+ Gy
x

The reciprocal is obvious, i.e. logy € X(C2,0) implies that 55971(52 =2+ ¢, for
all the choices of K and j.

Proof. Suppose it is not true. The functions ¢ — ¢ for H € Reg(e, uX, K%)
paste together in a function J defined in ([0, dp) K x B(0,€')) \ Fixe and analytic
in its interior for some 0 < ¢’ < e. Moreover J is continuous in [0, dp) K’ x B(0, €’)
and analytic in its interior (prop. and satisfies J — J o ¢ = A,. By Cauchy’s
integral formula we obtain [0J/0y| < M in |y| < €'/2 for some M > 0. We get

oye _ X 8J_1+6J_<X<y>>‘l
dy dy oy  X(y) 9y 1+ X(y)oJ/oy)
We define the vector field
X(y) 9
X(Kh)=—— 2 =
(KX) 1+ X (y)0J/0y Oy

Since X (K% )(¥%) = 1 then ¢ = exp(X(K%)) in [0,00)K% x B(0,€1) for some
0 < €1 < €/2. Moreover by choosing €; properly we obtain that X (K% ) is of the
form X (y)(1+ X(y)A1)0/0y for some A; € C°([0,50) K’ x B(0,€1)).

Consider a minimal EV-covering Ky = K%, Ko = K2, ..., K; = K&'. Consider
Ky such that Ky N Ky # 0. We define ¢, | = ¢  + J and ¢ p = ¥ p +J
in [0,d0) (K1 N Ky) x B(0,€;) for all H € Reg(e, iy X, Kp). Since J — Jop = A,
then ¢ ; and ¢}  are Fatou coordinates of ¢ for H € Reg(e, X, Kp). We
obtain §i7Kb =24, for j € Z/(2v(p)Z) in x € K; N K, and then in z € K, by
analytic continuation. Analogously to X (K1) we can construct a vector field X (Kj)
such that ¢ = exp(X(K})) in [0,00) Ky x B(0,¢€,) for some €, > 0. Moreover the
construction implies that X (K;) = X (K3) in [0,80)(K; N Kp) x B(0, min(ey, e,)).
Finally we obtain Y € X(C?,0) of the form Y = X(y)(1 + X (y)A)d/dy for some
A € C{z,y} such that ¢ = exp(Y). Since Y is nilpotent then logy =Y. O

10. APPLICATIONS

In this section we complete the task of classifying analytically the elements of
Diff ;1 (C2,0). Moreover given ¢, ~ ¢y we provide the formal power series devel-
opments of the conjugating diffeomorphisms. We also relate the analytic class of
¢ € Diff ,1(C?%,0) and the analytic classes of the elements of {90\”3:950}1-063(0,60)'
10.1. Moderated conjugations. We want to identify how an analytic conjuga-
tion between elements of Diff ;1 (C?,0) acts on the changes of charts. We remind
the reader that N(X) is the number of points in (SingX)(zo) for xg generic in
a neighborhood of 0. Given X € X(C2,0) we say that a mapping # defined in a
neighborhood of (SingX)(zo) in C is xzo-special if K)(singx)(zo) = Id. We just say
that x is special if the value of xg is implicit.
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Lemma 10.1. Let X € X(C?,0) with N(X) > 2. Fizr > 0. There exists a
function R : (0,r) — RY with limy—o R(b) = 0 such that all xo-special r-moderated
mapping k is r1 R(r1)-moderated for all x¢ in a pointed neighborhood V (r1) of 0.

Proof. Let v1(x0) and 7y2(xo) be two different points of (SingX)(zo). We define

1 (1) = R((r = 71(z0) )y +71(20)) — m1(20)
(r = [71(20)])(9r/By) (11 (0))
By construction x; is a Schlicht function, i.e. it is univalent in B(0, 1
and (0k1/0y)(0) = 1. Denote v(zo) = (y2(w0) — 71(x0))/(r — [71(20)
k1(v(20)) = v(20)/(0k/0y)(71(x0)). This implies

(1~ fo(ao)))? < )g;m»

by Koebe’s distortion theorem (see [5], page 65). This leads us to
sup [r(y)| < (r = [71(20) )(9K/0y) (71 (x0))  sup k1 (y)| + [y (zo)]

Hl(O) =0

)
[). We have

< (1+ Jv(@o)])®

yEB(0,71) y€B(0,A(r1))
where A(ry) = (r1 + |71 (z0)])/(r — |71(z0)]). We obtain
A(r1)

pesup [(y)] < (r = I (zo) (1 + Iv(wo)I)Qm + (o)l

again by Koebe’s distortion theorem. The value R(r1) can be chosen as close to
r1/(1 —7r1/r)? as desired. 0

The last lemma implies that in our context the existence of r-moderated and rR-
moderated conjugations are equivalent concepts. The next result is the analogue
of lemma/[5.4] in the moderated setting.

Lemma 10.2. Let p1, 92 € Difftpl((CQ,O) with common convergent normal form
exp(X). There exist a neighborhood V. C C of 0 and D(r,R) € Rt such that a
special rR-moderated mapping k conjugating (1)jz=zy, (92)z=a, s of the form
Yy + X (y)(@o, y)Ju(y) where supp g, [Jx| < D(r, R) for all zo € V' \ {0}.

Proof. Denote X (y) = u(z,y)(y — ()™ ... (y — yn(x))™ where u € C{x,y} is
a unit. By hypothesis we have k = y + (y — v1(0)) . - . (y — 7w (20)) A(y) for some
A € 9(B(0,7)). By the modulus maximum principle we obtain

sup |A| =1lim sup Ir(y) — vl r R
B(0,r) 5= yeB(0,s) [(Y — 11(20)) ... (¥ — N (20))| — (r/2)N

for all zp in a pointed neighborhood of 0. We have that

ok 2N¥(r+ R

- (v (0)) =1 < # []

Jy T .
ke{l,....N}\{j}

Fix j € {1,..., N}. We claim that (y—,(x))" divides k. We can suppose n; > 1.
Denote by (1, (2 and v the germs of diffeomorphism induced by (¢1)|z=z0s (©2)|z=a0

|7j(330) = k(o).

and k respectively in the neighborhood of zy. We have v = Zc);’t 06((y,¢2) for some
t € C and A\ = (9r/dy)(v;(w0)) €< €2 /(=1 > (prop. . This implies A = 1
for xo in a neighborhood of 0 since N > 2. We have that y o v — y — t(log {2)(y)
belongs to (y — v;(z0))™ ™. Thus y o k — y belongs to (y — v;(x0))™. Denote
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Jo = (& = y)/X(Y)|z=2,, it belongs to J(B(0,7)). Analogously than for A we
obtain

(r+R) 1
sup |Jx| < D(r,R) = -
B(0,r) 17 r.R) (r/2)¥X+inf g ) |ul
for all zg in a pointed neighborhood of 0. O

Lemma 10.3. Let p1, 92 € Difftpl((CQ,O) with common convergent normal form
exp(X). Fiz r,R in Rt and 0 < ry < r. There exist M(r,R,r1) € RT and a
neighborhood V- C C of 0 such that a special rR-moderated mapping k conjugating
©1(w0,y) and pa(z0,y) satisfies

Ok
sup |=— — 1‘ < M(r,R,r
B(0,71) dy ( )

for all zy € V'\ {0}. Moreover we have lim,, o M(r,R,r1) = 0.

Proof. Denote X (y) = u(z,y) vazl(y — v (z))™ where v € C{x,y} is a unit. By
lemma we have that k is of the form y + A(y) H;V:1(y — 7;(z))™ for some
A €9(B(0,r)). We have supp g, |A| < H(r, R) for some H(r,R) € R" and all 2o
in a pointed neighborhood of 0. Fix 0 < r; < r. We obtain

oK x) , |90A X)+1

Z(y) =1 < W(X) + D]A®@)|(2r)" ) + | == (2r)" T

o) 1] = 00+ DA +| 5 2r)

for all y € B(0,71) and all 2 in a pointed neighborhood V' (r1) of 0. Cauchy’s
integral formula implies

9 v H(r,R v

()~ 1| < HROC0 + 1)(2n) 00 4 L0 gy 00

Ay r—r
for y € B(0,r1). We define M(r,R,r1) as the right hand side of the previous
formula. Clearly we have lim,, o M(r,R,r1) = 0. O

Last lemma implies that given a special rR-moderated conjugation x we can
suppose that sup (g .y [0K/0y—1| is as small as desired just by considering a smaller
r > 0. We will make this kind of assumption without stressing it every time. We
define k:(y) = y + t(k(y) — y) for y € B(0,r) and t € C.

Lemma 10.4. Let p1, 92 € Diﬁ"tpl((Cg,O) with common convergent normal form
exp(X). Fiz r,R € RY. There exist 0 < r1 <1 and an open set 0 € V C C such
that for all special rR-moderated mapping k conjugating v1(zo,y) and va2(xo,y) and
all zg € V' \ {0} we have that k¢ is a r1R-moderated mapping for all t € B(0,2).

Proof. We can choose 0 < r1 < min(r, R/7) such that supgq,,) |0k/0y — 1| < 1/4
by lemma Therefore we obtain suppgq,,) || < 271 for all z¢ in a pointed
neighborhood V(1) of 0. This implies suppgq ) [k¢| < 7r1 < R for all t € B(0,2).
Moreover since suppgq ;) [0k¢/0y — 1| < 1/2 then k; is injective and hence a 1 R-
moderated mapping for all ¢ € B(0,2). O

Let 9X be a holomorphic integral of the time form of X. We can define the
function ¥ o k(z,y) — X (z,y) in an analogous way than A,. The continuous
path that we use to extend % is parameterized by t — r4(z,y) for t € [0,1]. The
function X o k — )X is well-defined and holomorphic in B(0,r) \ SingX.
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Lemma 10.5. Let 1,92 € Diff 4,1 (C?,0) with common convergent normal form
exp(X). Fiz r,R in RT. There exist 0 <1y < r and C(r,R) > 0 such that for all
special TR-moderated mapping k conjugating p1(xo,y) and p2(xo,y) we have that
SUPp(g,my) [0~ 0 K — X < C(r, R) for all zo in a pointed neighborhood of 0. In
particular we obtain that X ok — X belongs to I(B(0,r1)).

Proof. Denote X (y) = u(z,y)(y — v (z))™ ... (y — yn(x))™N where u € C{x,y} is
a unit. Consider a positive real number H(r, R) such that

kK—Y

121 (y — (o)™

sup
B(0,r)

< H(r, R).

Therefore we obtain

Oris ‘< H(r,R)

j=1 y ’y](xo))nj
5t W) = o m(w)]

|HJ 1(y =75 (20))" o ke (y)
for all y € B(0,r) \ (SingX)(zo). Denote C(r, R) = 21 H(r, R)/inf (o, g) ul-
Since v(X) > 1 there exists 0 < r; < rg < r and a neighborhood V' of 0 such that
exp(B(0,C(r, R))X)(V x B(0,71)) C V x B(0,73) and

y — (o)
(y — i (@0)) © it
for all t € [0,1] and j € {1,..., N}. The previous discussion implies
8&,5
)

for all y € B(0,7r2) \ (SingX)(xo) and t € [0,1]. As a consequence we obtain
9% ok —X|(y) < C(r,R) for all y € B(0,r1) \ (SingX)(z¢). By Riemann’s
theorem % o k — ¥ belongs to ¥(B(0,r1)). O

| X (y

<2.

1
— < sup
B(O,TQ)

< C(r, R)[X(y) o ke (y)]

The nexts results are important. Later on they will allow us to establish the
connection between the formal and analytic conjugations.

Lemma 10.6. Let Y € X (C,0). Consider an integral of the time form i of Y.
Suppose that k € Diff (C,0) satisfies that 1 o k — 1) belongs to C{y}. Then we have

K () = eWon—t)O T2 0)

Supposed (Y (y)/0y)(0) = 0 we also obtain

8V(Y)+1KJ 8V(Y)+ly(y)

W(O) =(Yok— ¢)(O)W
and (87 k/0y?)(0) = 0 for all 2 < j < v(Y).
Proof. Denote A = (9Y (y)/0y)(0). We have that 1ox—1 is of the form d+ L(y) for
some d € Cand L € (y). Suppose A # 0. Then ¢ is of the form (Iny)/A+B(y) in the
neighborhood of 0 where B € C{y}. Therefore we obtain d = (In(9x/dy)(0))/\.

Suppose A = 0. We obtain x(y) = exp((d + )Y (y)9/0y)(y, L(y)). This implies
k(y) =y +dY (y) + O(y*¥)*2). The result is a consequence of last formula. [

Every ¢ € Diff (C,0) such that (9¢/0y)(0) is not in €27@\ {1} has a convergent
normal form. If the linear part is the identity is a consequence of proposition [3.3]
Otherwise it is clear since ¢ is formally linearizable.
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Corollary 10.1. Let ¢ € Diff (C,0) \ {Id} such that (0¢/0y)(0) ¢ *™Q\ {1}.
Consider a convergent normal form exp(Y) of ¢. Let ¥ a holomorphic integral of
the time form of Y. Suppose that 1pov—1) belongs to C{y} N (y) for some v € Z(¢).
Then we have v = Id.

Proof. By lemma we have jlv = Id. Moreover, if (9¢/dy)(0) # 1 then v = Id
(prop. [4.2). Suppose (9¢/dy)(0) = 1, then we have yov —y € (y*¥)*+2) (lemma
110.6). We obtain v = 6(¢, ¢) = Id. O

Lemma 10.7. Let @1, 2 € Diff ,1(C2,0) with common normal form exp(X). Fiz
v = (y=m(z)) € Singv X and ¢ € C[[z]]. Then we have

¢ 1 o 5 y
8(6Xp(0 0og @2{;; 0(9013 ©2, 7)) (I, 7 (:C)) = ec(m) 6);; ) (z,v1(x)) )

Supposed (0X (y)/0y)(x,y1(x)) =0 we also obtain

Ovx N+ (exp(élog 06 (1, 02,7y oL X (y
el e T e ) (0 (0) = o) e )

and (07 (exp(¢log p2) 0 5(¢01, ¢2,7))/ 0y ) (w, 1 (x)) = 0 for all 2 < j < vx (7).

Proof. Since yo&(p1,p2,7) —y € I(7)"XM* 2 and (1, @2, ) and exp(é(z) log )
are special then it is enough to prove the result for exp(é(z)logps2). We denote

X =log 2, the equation

T O ) (:C’,-Yl(m))j = eé(w)a)a(if)(ifrh(m))
=0 7 Yy par

i é(x) 9X°0)(y) (e () = i ¢(z)! 90X (y)

implies the first part of the lemma. Suppose (0X(y)/0y)(x,v1(x)) = 0. Since
X(y) = X(y) € (yows —y)? C (y —71(x))?***2 then we obtain

y o exp(é(z) log pa) — y = é(z) X (y) + O((y — 71 () +2).
The rest of the proof is trivial. 0

10.2. Analytic classification and centralizer. Let ¢1, s € Diff 4,1 (C?,0) with

common convergent normal form. Given a special 7} € Dift (C2,0) conjugating them
we express the condition 7 € Diff (C2,0) in terms of the changes of charts.

Proposition 10.1. Let o1, € Diff 4,1 (C2,0) with common convergent normal
form exp(X). Fiz p € eXO™ and a compact connected set K% C S'\ By. Fir a
privileged curve y = 1 (x) associated to X. Consider a special r-moderated mapping
K conjugating (01)|z=z, and (P2)|z=a,- Then we have

5;2’1{; (20,2) = (24 ¢(xp)) 0 il’K; (x0,2) 0 (2 —c(xg)) VjeEZ/(2v(X)Z)
for all xg € (0,80) K% where c(z¢) = (X ok — %) (20, v1(20)).

Proof. Suppose that k is rR-moderated by considering a smaller 0 < r < € if neces-

sary (lemma [10.1). Denote X = u(z,y)(y —y1(x))™ ... (y —yn(x))"~ J/dy where
u € C{z,y} is a unit. Let ¢}, ..., cﬁ\, be the privileged functions associated to the 4-

uple (X, ¢y, K%,71) for I € {1,2}. Consider the sections T;’)l(, e T;’;”(X). Denote
by H(j) the unique element of Reg(e, uX, K% ) such that T;)J{(x) € 9H (j)(z) for all
z €(0,00)K’. Let 0 < 71 < r be the constant provided by lemma We choose
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r1 such that exp(B(0,C(r, R))X)(Jy] < 1) C (Jy| < €), we obtain x(H(j)") C H(j)
for all j € Z where H(j)" is the element of Reg(r1, uX, K% ) contained in H(j).
We define ¢ = 47 o i for j € Z. Since

¢7 = = (¥ — ) ok + (Y5 ok — )
then ¢ —X is continuous in H(j) (xo)U(OH (j) (z0)NSingX) by proposition
and lemma Therefore (% — 1) (w0, y) is continuous in IH (5)' (xo) N SingX
and then constant. Clearly gi)fl can be extended by iteration to a Fatou coordinate

of 1 in H(j)(zg). We have that o*X (H(5)) and w*X (H(j)) are equal to curves
Y = Vi(j,a)(®) and y = Yy (;..)(7) respectively. We obtain

lim (67" — 7 )(20,y) = ci(z0) + (¥ ok — ™) (20, W (20))

y—k (o)

where k € {k(j, ), k(j,w)}. We deduce that
hm (W’l U ) (w0, y) = ¢ (o) — cj(w0) + (¥~ ok — ™) (0, Yk(0))

y—yk(@
for k € {k(],a), (j,w)}. Since (¢3! — 5" ) (w0, y) is constant then

Ch (.0 (T0) = i (T0) + (% 0 K — ) (0, Ye(j,0) (20))
does not depend on v € {a,w}. The graph G(uX, K%) is connected (prop. ,
hence c2 (o) —ck(z0)+ (X ok—1X) (x0, y4 (70)) does not depend on k € {1,..., N}.
In particular we obtain that ((Z)fl - wfl)(a:o, y) is equal to the constant function
c(xg) for all j € Z/(2v(X)Z). By construction we get

fi%K; (20,2) = ]+1 (¢¢1) (5007 z) = (2 + ¢(20)) 0 5591,1(; (w0, 2) 0 (2 — c(x0))
for all j € Z/(2v(X)Z) as we wanted to prove. O

Proposition 10.2. Let o1, s € Diff 4,1 (C2,0) with common convergent normal
form exp(X). Fiz p € e'O™ and a compact connected set K% C S'\ By. Fir a
privileged curve y = v1(x) associated to X and a constant M > 0. Suppose that

e (20,2) = (24 c(20)) 0 € en (w0, 2) 0 (2 = e(w0)) Vi € Z/(2v(X)Z)

for some xy € [0,00)K’% and c(zo) € B(0,M). Then there exists a special -
moderated mapping r such that ko (¢1)|z=zy = (92)|z=z, © . The constant r € Rt
does not depend on xo. Moreover we get (Y o k — X ) (xg,v1(10)) = c(x0)-

Proof. Consider the notations in proposition [I10.1 We want to define

wy) = (672)" Y o (w0, 2 + cla)) 0 ¥ (20,9)

for j € Z. There exists A € R such that supg ;) [ — | < A for | € {1,2}
(prop. [8.3). We have exp(B(24 + M)X)(ly| < R) C (|y| < ¢) for some R € R*
Let E be the union of the elements of Reg(R, uX, K% ). We deduce that & is well-
defined in E(z) and satisfies supp,,) |¥X ok —pX| < 2A + M, in particular we
have x(E(z9)) C B(0,¢€). Denote D = max;c(1 2} se{1,1} SUPB(0,R) ‘Aw, .
exist 0 < r < R and B € N such that for all J € Regoo(r, pX, K% ) we have

o Uer . {ei™(P)} C (y| < R) for all P € 7\ SingX.

e 30 < ko, k1 < B such that {o")(P), ;%) (P)y c E VP € T\ SingX.

e exp((2A+ M +2BD)X)(ly| <) C (|ly] < R).
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We can define x in J(20) \ SingX as either o3 F 0 k07 or 5T 6 5o 31,
By the construction and the hypothesis k is a well-defined holomorphic mapping
in B(0,7) \ (SingX)(xo) conjugating (¢1)|z=z, and (¢2)|z=z,- Moreover, we have
supB(Oyr)h/)X oK — wX| < 2A+ M +2BD. As a consequence we can extend k to
B(0,r) in a continuous (and then holomorphic) way by defining &|(gingx)(z) = 1d.
The mapping  satisfies x(B(0,r)) C B(0, R). Analogously by defining

k(D (y) = (1/,;."1)0(_1) o (0,2 — c(x0)) 0 Y7 (20,v)

for j € Z we obtain a mapping £°(=1) : B(0,r’) — B(0, R') conjugating (©2)}s—uz,
and (¢1)|g=z,- By taking R < 7" in the construction of x we obtain that & is a
rR-moderated mapping. O

The next theorem is the analogue of proposition in the non-trivial type case.

Theorem 10.1. Let @1, 2 € Diff 4, (C?,0) with common convergent normal form
exp(X). Fiz p € e'O7) and a compact connected set K% C S'\ B. Consider a
privileged curve v = (y = y1(x)) in Singy X. Then ¢ 2z w2 if and only if there
exists d € C{x} such that

I (x,2) = (2 +d(x)) o gihK; o(x,z—d(z)) VjeL/(2w(X)Z).

w2, K
The previous equation is equivalent to exp(d(z)logpa) o 6(p1,p2,7) € Diff (C2,0)

Proof. Implication =. Let o be a special mapping conjugating ¢, and ¢2. Denote
c(z) = (WX oo — X)) (z,71(z)), we have ¢ € C{x} (lemma [10.5). We deduce that

&y i (4,2) = (24 c(x)) 0 5;171(; (z,2) 0 (z,2 —c(x)) VjeZ/(2v(X)Z)

by proposition [10.1l The mapping o is of the form exp(é(x)logps) o 6 (1, v2,7)

(lemma . Lemmas [10.6{ and [10.7| imply ¢ = c.

Implication <. Fix an EV-covering K§' = K%, K\?, ..., K§'. Supposed
(9) 5;27,(;1) (z,2) = (2 + d(z)) o 5117[{;? (z,2) 0 (2,2 —d(x)) VjeZ/(2v(X)Z)
for some p € {1, ..., 1} we can define a continuous special mapping o,(z, y) in the set

[0, 30) K% x B(0,7) such that it is holomorphic in (0,d) K% x B(0,7), it conjugates
¢1 and @9 and o, (20, y) is rR-moderated for all zq € [0,dy) K and some r, R € Rt

(see proof of prop. [10.2)). Moreover we obtain (X o o, — X)) (2, v1(z)) = d(z).
The existence of o1 and proposition imply that

ggpo,K’;(q (0,2) = (2 + d(x0)) © fihK;‘, (0,2) o (z — d(zp))

for all j € Z and for all 2 € (0,8) (K4 NK%?). By analytic continuation we obtain
the same result for zo € [0,80) K5* if Ki' N K%* # 0. The iteration of this process
shows that the equation |§| is fulfilled for all ¢ € {1,...,1} and zg € [0,80) K4".
Suppose Kk*NKL* # O forp,q € {1,...,1}. Denote h = (5,)°(~oo,. We obtain
hop, = prohinz € [0,00) (K5 NK%*) and (X oh—4™)(x,71(x)) = 0. Corollary
implies h(z,y) = Id and then o, = o, in [0,80)(K5* N K%") x B(0,r). Thus
all the o, (b € {1,...,1}) paste together in a mapping o such that it is continuous
in B(0,d0) x B(0,r) and holomorphic in (B(0,dp) \ {0}) x B(0,7). By Riemann’s
theorem o is a special element of Diff (C2,0) conjugating ¢ and 5. Moreover we
have o = exp(d(z)log p2) 0 (1, v2,7) by the first part of the proof. O
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Remark 10.1. The previous theorem is fulfilled also if ¢1, 2 € Diff ,,(C%,0) have
convergent normal form exp(z™Y) for some Y € Xip1 (C?,0). The only difference
is that the condition d € C{x} should be replaced with x™d € C{x}.

Proposition 10.3. Let p € Diff ,; (C?,0) such that logy & X1 (C?,0) and Fixep is
not of trivial type. Then there exists ¢ € N such that Zg,(¢) =< exp(q~'logy) >.

Proof. We can suppose ¢ € Diff 4,1 (C2,0) up to a ramification (2%, 7). Let exp(X)
be a convergent normal form of ¢. A diffeomorphism n € Z,,(¢) is of the form
exp(c(x)log p) by lemma Consider a privileged y = ~1(x) in Singy X. We
have (X on—X)(z,y1 (7)) = c(x) by lemmasand Fix p € %™ and a
compact connected set K C S'\BY. Denote E = {l € N: 3j € Z s.t. a}'il’K; #0}.
The set E is not empty (prop. . Denote ¢ = ged E. The continuous functions
c(x) satisfying the equation

L e (@,2) = (24 (@) 0 & 1 (3,2) o (3,2 — c(x)) Vj € Z/(20(p)Z).

are the constant functions of the form p/q for some p € Z. Thus the result is a
consequence of theorem [10.1 O

10.3. Complete system of analytic invariants. We can introduce a complete
system of analytic invariants for elements ¢ € Diff ,; (C2,0). The presentation is
slightly simpler if ¢|,—q is not analytically trivial. In such a case we obtain the
generalization of Mardesic-Roussarie-Rousseau’s invariants.

Let ¢1, 2 € Diff ;1 (C?,0) with Fize; = Fizes and Res(p1) = Res(p2). Sup-
pose that Fize, is not of trivial type. Let exp(X) be a convergent normal form
of ¢1. There exists k € N such that Y = (z%,4)* X belongs to X,1(C2,0). Fix a
privileged curve vy € SingyY. Consider an EV-covering K1 = K{', ..., K; = K.
We say that mg, (zg) = my,(zg) for zo in B(0,dy) \ {0} if there exist ¢(zg) € C
and b(zo) € {1,...,1} such that zg € R* K}, and

(10) fiz,KbW) (0,2) = (24 ¢(xp)) 0 gilwaU) (x0,2) o (20,2 — c(x0)) Vj € Z.

The definition makes sense since an EV-covering depends only on Fixzy and Res(p)
for ¢ € Diff 41 (C?,0) by remark We denote my,, (0) = m,(0) if we have
((Pl)lx:O ~ (@2)@:0' We say that Inv(p1) ~ Inv(ps) if My, (zo) = My (zo) for
all zp in a pointed neighborhood of 0 and we can choose ¢ : B(0,dp) \ {0} — C
such that Img(c) is bounded. Both invariants m, and Inv(y) can be expressed in

terms of p-spaces of orbits. In this section we prove that ¢y 2z 9 is equivalent to
Inv(py) ~ Inv(ps).

Lemma 10.8. Let f(z) be a multi-valuated holomorphic function of B(0,4) \ {0}
such that f(e*™z) — f(z) = C for some C € R. Suppose that |Imgf(x)| is bounded
in a neighborhood of 0. Then f belongs to ¥(B(0,9)).

Proof. We define F' = f(x)—(C/2ni) Inx, we obtain F' € 9(B(0,6)\{0}). Moreover
we have ImgF = Imgf 4+ (C/2m)In|z|. Suppose C' = 0, then f has a removable
singularity at « = 0 since Imgf is bounded.

Suppose C' # 0. Since lim,_,o ImgF € {—o0,+00} then F' does not have an
essential singularity. We claim that F' does not have a pole at x = 0. Otherwise F'
is of the form Ae'? /2! + O(1/2'~1) for some (I, A,0) € N x RT x R. Since

i(0—7/2)
T

. (0=/2) . A C 1\
}E%Imgf(re )Thi%rl%lnrJrO(rl_l) =00
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we obtain a contradiction with the boundness of Imgf. The equation
lir% Imgf(xz) = ImgF(0) — (C/2m) lin’b In |z|
implies that C' = 0. Hence f belongs to ¥(B(0, d)) by the first part of the proof. O

All the elements of Diff ,; (C2,0) can be interpreted as elements of Diff 1 (C2,0)
up to a ramification (z™,y). The ramification preserves the analytic classes of
elements of Diff ,; (C,0).

Lemma 10.9. Let 1,2 € Diff ,1(C?,0) with Fizp, = Fizps. Consider m € N.
Then 1 ~ @3 if and only if (z1/™,y) 0 gy o (a7, y) % ("™, y) 0 oz 0 (4™, y).

Proof. The sufficient condition is obvious.

Denote ¢; = (™ y) o ;o (x™,y) for j € {1,2}. We have Fizyp, = Fizps by
hypothesis and Res(p1) = Res(p2) since the residues are analytic invariants. We
can suppose that ¢ and @9 are not analytically trivial. Otherwise both log ;1 or
log @2 belong to X(C2,0), we obtain ¢; ~ ¢y by proposition

Let 0¢ be a special diffeomorphism conjugating ¢; and $,. Since we have
(e=2m/mg, y) o g o (e*™/ Mg, y) = $; for j € {1,2} then

67271'1](?/777, (627T'Lk/m

Uk:( 55,1/)0000 :c,y)

conjugates @1 and Py for k € {0,...,m}. The diffeomorphism 08(_1) o o1 belongs
to Zup($1), hence it is of the form exp(Clog @q) for some C' € Q by proposition
The diffeomorphism 02(71) 0 0p41 is equal to

(e—2ﬂ1k/m 627r2k/m

z,y) o exp(Clog @) o ( z,y) = exp(C'log 1).

This implies

Id = (08(71) ooy)o (of(fl) 00g)0...0 (ofrgj) o o) = exp(Cmlog @y).

We obtain C = 0 by uniqueness of the infinitesimal generator. Since oy and
(e2™/™ g ) commute we deduce that o = (2™, y)oogo(z'/™, y) is a special element
of Diff (C?,0) conjugating ¢; and . O

We can prove now that Inv provides a complete system of analytic invariants.

Theorem 10.2. Let ¢1,p> € Diff j1(C?,0). Suppose that Fizp, = Fizps and
Resg1 = Resga. Then oy %y is equivalent to Inv(py) ~ Inv(ps).

Proof. We can suppose that Fizp; is not of trivial type by proposition |6.4

We consider the notations at the beginning of this section. We can suppose that
log 1 and log o, are divergent, otherwise we have that @1 <~ o (prop. and we
can choose ¢ = 0. Let a; be a convergent normal form of ¢; for j € {1,2}. There
exists a special mapping oy conjugating a; and s (prop. . Up to replace
2 with 08(_1) o (g 0 0g and 5&2,& with (z — d(x)) o iz,Kb o (x,z+d(x)) for all
(b,7) € {1,...,1} x Z and some d € C{z} we can suppose that ¢; and s have
common convergent normal form. Finally we can suppose that ¢; and s belong
to Diff 41 (C?,0) by lemma m

The sufficient condition is a consequence of theorem Since change of charts
commute with z — z + 1 we can suppose that ¢ is bounded by replacing ¢(x) with
c(x) — [Re(c(z))] where [] is the integer part. There exists a special r-moderated
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mapping conjugating ¢ (zg,y) and @o(xg,y) for all zy in a pointed neighborhood
of 0 and some r € R™ by proposition We obtain

€, 1, (%0,2) = (2 + e(w0)) 0 &, (w0, 2) 0 (2 = ela0)) Vi€ Z Wbe{l,....l}
for all zo € (0,80) K} by proposition m
Suppose sup g g s,)\ {0} [{/mg ¢| < M. Fix p € {1,...,1}. Consider the set
E{(p1) ={(j,m) € Ds(1) x N:aj), o # 0}
We define EP(p1) = E¥ | (p1) U EY(¢1). We have EP(p1) # 0 by proposition
Let @1 € (0,80) K" such that (j,m) € EP(p;) implies aﬁ%,}(p(xl) # 0. We define
Y2

ar
1 J,m, Ky

T 9 T}
mms aLm’Kp

djm

for all (j,m) € E?(¢1) where we choose d; m,(z1) = ¢(z1). Since

a@z
—2mmM J,m, Kp 2mmM
e Sl | Se

@jm, K,

in (0,d0) K, we deduce that d; ., € 9((0,d0)Kp) for all (j,m) € EP(¢1). We have
that d; m(z0) — c(x0) € Z/m for (j,m) € EP(p1) and aﬁn’Kp (xo) # 0. Thus the
image of d; ,, — djs s is contained in Z/m + Z/m/; since d; ,(x1) = djr s (z1) We
deduce that d; ., = dj/ n for (j,m),(j’,m’) € EP(¢1). Denote by d, any of the
functions d; ., for (j,m) € EP(¢1). By construction we obtain

giz,K;}p (z0,2) = (2 + dp(xo)) o g;hK’;f (z0,2) 0 (2 — dp(xo))

for all j € Z and all ¢ € (0,00)K,. We also get |Img(d,)| < M in (0,80) K.
Consider p,q € {1,...,1} such that K, N K, # 0. Consider (j,m) € EP(¢;) and
(4',m') € E(¢1). We have d,(xg) — c(xo) € Z/m and dy(x¢) — c(xo) € Z/m/' for
all zp € (0,80)(K, N K,) such that (@] 1 1, @5 s i, )(@0) # 0. We deduce that
dp — dg is a constant function, moreover d, — d, € Q. Then we can extend d,,
to (0,00)(K, U K,). We get that d; is a multi-valuated function in B(0,4d,) \ {0}
such that d;(e*™'z) — di(z) = C for some C € Q. We also have |Img(d;)| < M
in B(0,d0) \ {0} and then d; € ¥(B(0,dp)) by lemma Then o7 and @9 are
conjugated by a special element of Diff (C2,0) by theorm O

We give now a geometrical interpretation of our complete system of analytic
invariants. Roughly speaking, given ¢ € Diff ,;(C?,0) the next theorem claims
that the analytic classes of @|,—z, for g € B(0,d¢) \ {0} characterize the analytic
class of ¢ whenever we exclude singularities of the conjugating mappings at o = 0.
The result is the analogue of proposition [6.3]in the non-trivial type case.

Theorem 10.3. Let ¢y, py € Diff 1 (C2,0) with Fizg, = Fizpy. Then o1 ~ ¢y if
and only if (¢1)|z=c, and (P2)|z=z, are conjugated by a special r-moderated mapping
for some r € R™ and all z¢ in a pointed neighborhood of 0.

Proof. By proposition we can suppose that Fizy; is not of trivial type.

We have Fixyp; = Fixps by hypothesis and Res(p1) = Res(ps) since the
residues are analytic invariants. Let o; be a convergent normal form of ¢; for
j € {1,2}. Then there exists a special ¢ € Diff (C2,0) such that ( o a; = az o (
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by proposition By replacing ¢o with ¢°(-1 o ¢y 0 ¢ we can suppose that o,
and 2 have a common normal form ;. The mapping x4, has to be replaced with
(¢°C D) jy—sy © Ky, it s still rR-moderated (maybe for a smaller r € R*) by lemma
[10.3] for all z( in a pointed neighborhood of 0.

There exists m € N such that (z™,y)*loga; belongs to Xj1(C2,0). Fix a
privileged (y = 7y1(z)) € Singy (z™,y)*loga; and an EV-covering. Let us denote
c(zo) = (WX okigy —X) (w0, v1(20)). We are done since proposition and lemma
10.5| assure that the hypothesis of theorem [10.2]is satisfied. O

Remark 10.2. Consider 1, s € Diff ,,(C?,0) sharing a convergent normal form
exp(z™Y) for some Y € X, (C%0) and m € N. The existence of r-moderated
mappings conjugating p1(xo,y) and pa(xo,y for all zg in a neighborhood of 0 does
not imply o1 2z 2. The analogue of lemma 8 is fulfilled if and only if C = 0. The
existence of moderated conjugations plus an emtm monodromic invariant provide a
complete system of analytic invariants.

We are interested in knowing whether or not m,, = m,, is equivalent to ¢, L 0,
Indeed we prove next that the moderated hypothesis in theorem is generically
superfluous (even if we will prove that it is necessary in general).

Theorem 10.4. Let ¢1,p2 € Diffpl((C2,O) satisfying that Fizypr = Fixps and
Res(p1) = Res(p2). Suppose that (¢1)|z—0 € Diff1(C,0) is not analytically trivial.

Then o1 2 @y if and only if Me, = M, .

The analogue of this theorem for the generic case when N(X) = 2 is the main
theorem in [16]. They do not impose any conditions on (¢1)|y—o. The next section
provides counterexamples if (¢1)[,—¢ is analytically trivial.

Proof. We can suppose that Fizy; is not of trivial type by corollary [6.2] Moreover
we can suppose that 1 and @, have a common convergent normal form. Consider
the notations at the beginning of this section.

We have &, ;. (0,2) = g“g)y)( ) for all p € {p1, 02}, be{l,....1} and j € Z
where A = A(p1) = A(p2) (cor. Since (1)|z—0 is not analytlcally trivial
then there exists s(0) € {—1,1} and ( (O) b(0),8) € Dy(o) (1) x N x C\ {0} such
that a¥ (0),6(0), K, (0) =B forall pe{l,...,i}. Then m%(O) = My, (0) implies that
there exists (j(l) B') € Dyo)(p1) x (C\ {0} such that aj(l) b(0), K, (0) = g for all

pe{l,...,1l}. Since my,, =m,, we have

(x)eQﬂ'is(O)b(O)c(z)

Y2 _ %1
@5(0),6(0), Ko (s (z) = @5(0),6(0), K (s
z)e27ris(0)b((])c(z)'

P2 _ 1
aj(l)vb(o)va(z) (1‘) - aj(l)ab(o)va(z)

The first equation implies —s(0)Imgc(z) < K3 in a pointed neighborhood of 0 for
some K7 € R. We obtain Ky < —s(0)Imgc(z) for z # 0 and some Ky € R from
the second equation. This implies |[Img c(x)| < max(|K], | K> ) for all z # 0 in a

10.2 O

neighborhood of 0. Now ¢ < ¢ is a consequence of theorem |

Remark 10.3. The theorem can be easily improved; it remains true if we replace
My, = My, With my, (z9) = my,(xo) for all xg € E U {0} for some set E C C
whose intersection with every neighborhood of 0 is uncountable.
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11. OPTIMALITY OF THE RESULTS

We introduce an example which proves that the hypothesis on the non-analytical
triviality of (¢1)|z—o in theorem can not be dropped. It also shows that the
moderated hypothesis in theorem is essential. Denote = €™, then w is a
coordinate in the universal covering of C*.

Proposition 11.1. Let X € X, (C?,0). There exist p1,p2 € Diff 1 (C%,0) with
normal form exp(X) and such that my,, = my, but vy & ©o. Moreover there exists

an analytic injective mapping o conjugating w1 and po and defined in a domain
ly| < Co/ "X/ |w]| for some Cy € RT.

In particular we provide a counter-example to the main theorem in [I6]. The
size of the domain |y| < Cy/ *Y/2mw|w| decays when z tends to 0. Theorem m
made this property somehow expected. Anyway the decay is slower than algebraic.

Let X = f(x,y)0/dy € X,1(C?,0). We consider vector fields of the form

X, = AGY) 9 4 omi2

1+ fz,y)v(z,y,t) Oy ot
where v is defined in a domain of the form B(0,d) x B(0, ¢) x B(0,2) in coordinates
(z,y,t). The vector field X, supports a dimension 1 foliation 2, preserving the
hypersurfaces = cte. Moreover since X, (t) = 2mit then X, is transversal to every
hypersurface t = cte except t = 0. As a consequence we can consider the holonomy
mapping hol,(z,y,to, z0) of the foliation given by X, along a path ¢t € e2mil0:20lt
it maps the transversal ¢t = ty to t = tpe?™% for t; # 0. The restriction of
holy(xz,y,t,2) to (x,y) € SingX is the identity. Supposed that v = v(x,y) we have

holy(z,y, t,2) = <exp (z = f{fy)yg (x’y)> (m,y),emt) .

The restriction (£2,),—0 is a germ of saddle-node for v € C{z,y,t}. The holonomy
hol,(0,y,t0,1) at a transversal ¢t = ¢y to the strong integral curve y = 0 is analyt-
ically trivial if and only if (€, ),—0 is analytically normalizable [17]. In particular
(£2y)|z=0 is analytically normalizable. Every foliation in the same formal class than
(£2y)|z=0 is analytically conjugated to some (£2,)|,—0, We just truncate the formal
conjugation. Every formal class contains non-analytically normalizable elements,
hence there exists v* € C{y,t} N (y,t) such that the saddle-node
/(0.9) 9 + 27rité
14+ f(0,9)v0(y,t) Oy ot
is not analytically normalizable. Hence the holonomy hol,0 (0, y, o, 1) is not analyt-
ically trivial for ¢y # 0. Moreover up to change of coordinates (x,y,t) — (x,y,nt)
for some n € R™ there exists (o, €p) € RT such that

e v° € 9(B(0,¢0) x B(0,2)) and supp(g s,)x 5(0,2) [v°] < 1.

® SUDPB(0,5,)x B(0,e0) |/ < Co < 1/16.

o 1/2 < SUDp0,50y 0.y [ ©XD(=X) () /1 ()] < 2 for all = € B(0,2).
The constant Cy > 0 will be determined later on. There exists k € N such that
(2%, y)*X € X;p1(C2,0). Denote Y = (z¥,y)*X. Consider U = B(0,d) x B(0,¢)
such that there exists a EV-covering K1 = K, ..., K; = K4 fulfilling that H(z)
is well-defined for all z € [0,8)K,, H € Reg(e, 1, X, K,) and p € {1,...,1}. We can

(XUO)I;z:O =
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also suppose that there exists C' > 0 such that

faw)] < ¢
RO (T MO ey
for every k-subregion of H € Reg(e, X, K;), every (z,y) € H, and k € {L, R}
by proposition Finally we suppose that exp(B(0,4)X)(U) is contained in
B(O7 50) X B(O, 60).
Denote V = B(0,6) x B(0,¢) x B(0,2). Let v € 9(V) such that supy |[v| < 2.
Consider an integral ¥ of the time form of X. We have

1 1 vf
X — —Int) = —1=- .
”(w 2mi nt) L+of L+of

We obtain
(1) wohol,(ep.tiz0) = vle) +20— [

We claim that hol, (U x B(0,2)\ {0} x [0,1]) C V. Otherwise there exist (zo, Yo, to)
in U x B(0, 2) and a minimum zq € [0, 1] such that yohol, (zo, Yo, to, 2z0) € 0B(0, €o).
This leads us to

o holy(z,y,t,z)dz.

2C) 8
< = 2
1-2Cy) — 7|ZO| <

and that contradicts the choice of U. Denote A, (x,y,t) = pohol,(z,y,t, 1)—(+1).
We obtain

|4 o holy, (0, Yo, to, 20) — (20, y0)| < |20] + |20]

32
[Av(@,y, )] < —[f(2,y)| <5C ¥(z,y,1) € U x B(0,2).

We define Al(z,y) = Ay(z,y,1) and A2(z,y) = Ay(z,y,2). The function Al is
holomorphic in U. The same property is true for A2 since it is holomorphic in
U\ [z = 0] and bounded.

We define @1, = holy(z,y,1,1) and @2, = exp(2X)(z,y, 1 + AZ(z,y)). Clearly
wau(z,y) = hol,(z,y,x,1) for  # 0.

Lemma 11.1. exp(X) is a convergent normal form of p1,4, @2, for allv in 9(V).
Proof. The equation [11]implies that Al and A2 belong to (f). Since we have

i xoU)
yow=y+2(1+Ago)JX;!(y)=yoeXp(X)+0(f2)

j=1
for ¢ € {14, 2,0} then ¢, and p2, have convergent normal form exp(X). O

Fix a privileged v € SingyY. We choose Cy > 0 such that there exists I > 0
holding that Vs € {—1,1} and Vj € Dy(exp(X)) we have

&k, € CO[0,6)K, x [sImgz < —I]) N 9((0,8) K, x [sImgz < —I]) V1 <p <1

whenever ¢ has convergent normal form exp(X) and |A, (z,y)| < 5min(Co, | f(x,y)])
for all (z,y) € B(0,6) x B(0,¢€) (remark [3.1)).
By choice (¢1,,0)|2—0 is not analytically trivial. Thus there exists (j(0),p(0), xo)

in Z x {1,...,1} x (8/2,8) x K, such that & (%0,2) # 2+ Co, o (w0)-

Wl,UD»KP(U)
Denote u = (x/z0)v°(y, t), we get supy|u| < 2. We define 1 = 1, and p2 = 2 4.

Lemma 11.2. ¢, is not analytically trivial.
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Proof. By construction 559(1(?)1%(0) (z,2) is well-defined in = € [0,0) X Kp(o) and
gj(O)
p1,K

The next lemma is a consequence of u(0,y,t) = 0.

(@0, 2) # 2+ Cp, (x0). We deduce that ¢ is not analytically trivial. O

p(0)

Lemma 11.3. (¢1)z=0 = (¥2)ja=0 = exp(X)ja—0- In particular (o1),—o and
(¢2)j2=0 are analytically trivial.

Denote by o(x,y) the analytic mapping hol,(z,y, 1,Inxz/(277)).

Lemma 11.4. The mapping o(x,y) conjugates @1 and @2 in a domain of the form
ly| < Co/ "R/ Inz| for some Cy € RT. Moreover o is not univaluated since

Inx

— + 1) = holy(z,y,x,1) oo(x,y) = pa o o(x,y).
2me

Proof. Consider a domain W C B(0, ) x B(0, ¢y) such that

exp <B <0, “’ff') X) (,1) € B(0,6) x B(0,e0) ¥(z,y) € W.

Since y o holy (z,y,1,slnz/(27)) C B(0, ) for all s € [0, so] and so € [0, 1] implies

1 1 1 1
(12) ’woholu<x,y,1,s”.>w(x,y)sSo'”' So|lne|  |lnz]

2m 2m 7 27 s
by equation [11] then hol,(z,y, 1, slnx/(27i)) is well-defined and belongs to V' for
all (x,y,s) € W x [0,1]. We have ¥ ~ 1/y*X) in the first exterior set by remark

we can deduce that W contains a domain of the form |y| < Cy/ *“/|Inz| for
some Cy € RT. O

The domain Wy = [|y| < Co/ *}/|In z|] contains the germ of all the “algebraic”
domains of the form |y| < |z|® for b € Q*, in particular Wy contains SingX\{(0,0)},
every intermediate set and every exterior set except the first one.

Lemma 11.5. We have
hl$0

§i2’Kp(xo,z) = (z + = ) ogith(xo,z) o (z _ 11;::;)
for all (j,p) € Z x {1,...,1} and zo € (0,8) x K,. Then we get m,, = m,, and
1 2.
Proof. Let (z9,y0) € SingX \ {(0,0)}. We remark that

Inx In xq
li h lv ' Y 17 YR = -
(x,y)ir{alco,yo)wo ¢ (x Y s2m> v=s 2mi

for all s € [0,1] by equation Basically the moderated hypothesis in proposition
10.1] is used to estimate 1 o k — ¥ for a special r-moderated conjugation . Such
an estimation is provided here by the inequality [I2] hence we can proceed like in

proposition to obtain
; Inzg ; In zg
J _ J
Epa.ic, (70, 2) = (Z * o ) © &0k, (0, 2) © <Z - 2mi )

for all (j,p) € Z x {1,...,1} and ¢ € (0,6) x K,. We deduce m,, = m,, from the
previous equation and (¢1)|z—0 = (¥2)|z=0-
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We know that ¢ and @9 are not analytically trivial. Thus we have ¢ ;2 (g since
otherwise |In ||| would be bounded in a neighborhood of 0 by theorem[10.2] O

Remark 11.1. The diffeomorphisms 1., and 2, are conjugated by a multivalu-
ated transformation collapsing at © = 0. Anyway since

- (0.) g
(@2,v)|x:0 = exp (1 + f(()7 y)v(o, Y, O) 8y>

then (p2,0)|z=0 is always analytically trivial. Thus my,, , = my, , forces (¢1,0)z=0
to be also analytically trivial.

Remark 11.2. We do not characterize the diffeomorphisms 1 € Diff 4,1 (C2,0)
such that there exists @ € Diff 1,1 (C?,0) satisfying the result in proposition ,
We already proved that the property log(¢1)jz—0 € X (C,0) is necessary (theorem
. It is unlikely that it is sufficient since in the trivial type case we need a con-
dition on half of the changes of charts. Moreover, a careful look to the construction
in this section makes clear that half of the changes of charts of @1, are trivial.
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