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1. Introduction

The dynamics of germs of complex analytic germs of diffeomorphism in the neigh-
borhood of 0 ∈ C is quite well-known. Either they are formally linealizable or some
iterate belongs to Diff 1(C, 0) \ {Id} where Diff 1(C, 0) is the group of germs with
identity linear part. In the former case the classical question is whether the map-
pings are analytically linearizable. The difficulty arises for diffeomorphisms whose
linear part is a non-periodic rotation. The linearizability is guaranteed whenever
the linear part satisfies some diophantine condition [30]. The optimal diophantine
property has been introduced by Bruno [2] [3]; he proves that it is sufficient, the
proof of the optimality corresponds to Yoccoz [32]. Moreover there is a dichotomy:
either the dynamics is conjugated to a linear map or it is chaotic [24]. The other
case is the resonant one and in one variable it can be reduced to the study of
tangent to the identity diffeomorphism (i.e. elements of Diff 1(C, 0)). The formal,
topological [13] [4] and analytical invariants [8] [31] [15] are completely described.

Denote by Diff (Cn, 0) the group of germs of complex analytic germs of diffeomor-
phism in the neighborhood of 0 ∈ Cn and let D̂iff (Cn, 0) be its formal completion.
In this paper we are interested in 1-dimensional unfoldings of elements of Diff (C, 0),
i.e. the elements of the group

Diff p(C2, 0) = {ϕ(x, y) ∈ Diff (C2, 0) : x ◦ ϕ = x}.

More precisely we study the set

Diff pr(C2, 0) = {ϕ(x, y) ∈ Diff p(C2, 0) : j1ϕ|x=0 is periodic but ϕ|x=0 is not}.

In other words we deal with all the unfoldings of non-linearizable resonant diffeo-
morphisms. We provide for them a complete system of analytic invariants.

As a consequence of the Jordan-Chevalley decomposition in linear algebraic
groups the analytic classification of elements of Diff pr(C2, 0) can be obtained by
resolving the analogous problem in

Diff p1(C2, 0) = {ϕ ∈ Diff p(C2, 0) : ϕ|x=0 ∈ Diff 1(C, 0) \ {Id}}.

A complete system of formal invariants for φ ∈ Diff 1(C, 0) is composed by the
ideal I(φ(y) − y) and the residue Resφ ∈ C. We can generalize the definition of
residue for ϕ ∈ Diff p1(C2, 0), we obtain a function Resϕ : Fixϕ → C which is a
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formal invariant. Now the relation σ ◦ ϕ1 = ϕ2 ◦ σ for ϕ1, ϕ2 ∈ Diff p1(C2, 0) and
σ ∈ Diff (C2, 0) implies

• x ◦ σ depends only on x, i.e. σ∗dx ∧ dx = 0 (σ preserves dx = 0).
• I(y ◦ ϕ2 − y) ◦ σ = I(y ◦ ϕ1 − y) (σ conjugates the fixed points sets).
• (Resϕ2) ◦ σ ≡ Resϕ1 (σ conjugates the residue functions).

We denote I(y ◦ ϕ2 − y) ◦ σ = I(y ◦ ϕ1 − y) by σ(Fixϕ1) = Fixϕ2, in particular
Fixϕ1 = Fixϕ2 means (y ◦ ϕ1 − y) = (y ◦ ϕ2 − y). A complete system of formal
invariants for ϕ ∈ Diff p1(C2, 0) is given by the 3-uple (dx = 0, F ixϕ,Resϕ) [21].
We define the group SF (ϕ)

SF (ϕ) = {ϕ ∈ Diff (C2, 0) : σ∗(dx = 0, F ixϕ,Resϕ) = (dx = 0, F ixϕ,Resϕ)}
of symmetries of the formal invariants of ϕ. We are interested on the action that
these symmetries induce in the fixed points set Fixϕ. We define an equivalence
relation ∼1 in SF (ϕ) given by

σ1 ∼1 σ2 if
{

x ◦ σ1 ≡ x ◦ σ2

y ◦ σ1 − y ◦ σ2 ∈
√

(y ◦ ϕ− y)
The group SF (ϕ)/ ∼1 is reduced to < Id > for generic ϕ. Moreover SF (ϕ)/ ∼1

is always a finite group except when SF (ϕ)/ ∼1 is isomorphic to Diff (C, 0). This
pathology only happens if ϕ is formally conjugated to (x, y+yν+1+λy2ν+1) for some
(ν, λ) ∈ N×C. Then up to a “essentially” unique preparation mapping conjugating
analytic sets and holomorphic functions we can restrict ourselves to the level sets
((y ◦ϕ− y), Resϕ) = (I,Res) and conjugating mappings σ = (x, g(x, y)) such that
g(x, y)− y ∈

√
I. Such mappings are called special (with respect to the set of zeros

V (I) of I). We denote ϕ1
sp∼ ϕ2 if ϕ1 and ϕ2 are conjugated by a special element

of Diff (C2, 0). We say that κ ∈ ϑ(B(0, r)) is r-moderated for some r ∈ R+ if κ
is univalent in B(0, r). Moreover we say that κ is x0-special if κ|V (I)∩[x=x0] ≡ Id.
We say only special if the value of x0 is implicit. We can introduce now the main
theorem in this paper.

Theorem 1.1. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2. Then ϕ1
sp∼ ϕ2 if

and only if there exists r ∈ R+ such that (ϕ1)|x=x0 is conjugated to (ϕ2)|x=x0 by a
special r-moderated mapping for all x0 in a pointed neighborhood of 0.

We prove this theorem by providing a complete system of analytic invariants for
the elements of Diff p1(C2, 0) and then for those of Diff pr(C2, 0).

Let us focus for a moment in the elements φ ∈ Diff 1(C, 0). A pointed neighbor-
hood of the origin is divided in ν(φ(y)−y)−1 basins of attraction (attracting petals)
and ν(φ(y) − 1) − 1 basins of repulsion (repulsing petals). Moreover ν(φ(y) − y)
determines the class of φ modulo topological conjugation [4].

A complete system of analytic invariants for the elements of Diff 1(C, 0) has been
provided independently by Ecalle [7] and Voronin [31]. The space of orbits orbV (φ)
of φ ∈ Diff 1(C, 0) by restriction to a petal V is biholomorphic to C∗ by a mapping
ρV . We can consider orbV (φ) ∼ P1(C) by adding the fixed point at 0 and ∞. The
mapping ρV can be lifted to V and since

1
2πi

log ρV ◦ ϕ =
1

2πi
log ρV + 1

then the function 1/(2πi) log ρV is a so-called Fatou coordinate of φ in V . Denote
ν = ν(φ(y)−y)−1; there are 2ν intersections of petals (as many as petals) producing
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changes of charts between copies of P1(C) corresponding to different petals. The
space orb(φ) determines the class of analytic conjugacy of φ. Such a class can be
expressed in terms of the 2ν changes of charts. In this way a complete system of
analytic invariants is obtained. This is the interpretation of Martinet-Ramis [17] of
the Ecalle-Voronin invariants.

Consider two diffeomorphisms φ, η ∈ Diff 1(C, 0) which are formally conjugated
by some σ̂ ∈ Diff (C, 0). A conjugation ζ from orb(φ) to orb(η) is determined by
ζ(orbV (φ)) and ζ|orbV (φ) for any attracting petal V of φ1. The possible images of
orbV (φ) are ν (as many as attracting petals of η) and ζ|orbV (φ) : P1(C)→ P1(C) is
of the form λz for some λ ∈ C∗. We have to check out for each element of a group
isomorphic to < e2πi/ν > ×C∗ whether or not it is compatible with the changes
of charts. The elements of D̂iff (C, 0) conjugating φ1 and φ2 are of the form ρ̂ ◦ σ̂
where ρ̂ belongs to the formal centralizer Ẑ(η) of η. The group Ẑ(η) is isomorphic
to < e2πi/ν > ×C and then we obtain Ẑ(η)/ < η >∼< e2πi/ν > ×C∗. Moreover
there is a canonical bijection Γ from Ẑ(η)/ < η > onto the space of candidates
to conjugations of the spaces of orbits. The convergence of the elements of a class
ρ̂ ∈ Ẑ(η)/ < η > is equivalent to the compatibility with the changes of charts of
Γ(ρ̂). As a consequence we can determine the power series developpements of the
analytic mappings conjugating φ and η in terms of their changes of charts. We
carry the same program in Diff p1(C2, 0), whenever we have ϕ1

sp∼ ϕ2 we identify
the special analytic conjugations.

The study of deformations of elements φ ∈ Diff 1(C, 0) (parabolic implosion) is
interesting to describe the evolution of the Julia sets when we deform a given ratio-
nal mapping [12] [29] [23] [6]. Lavaurs, Shishikura and Oudkerk develop indepen-
dently extensions of the Fatou coordinates of φ ∈ Diff 1(C, 0). Given an unfolding
ϕ ∈ Diff p1(C2, 0) these extensions are defined in some sectors in the parameter
space. This point of view has been generalized recently by Mardesic-Roussarie-
Rousseau [16] to obtain a complete system of analytic invariants for generic unfold-
ings of generic codimension 1 elements φ ∈ Diff 1(C, 0). In this paper we remove all
the genericity conditions and the codimension 1 hypothesis. They study elements
of Diff p1(C2, 0) of the form

ϕ(x, y) = (x, y − x+ c1(x)y2 + o(y2))

with c1(0) 6= 0. The fixed point (0, 0) splits in two fixed points for the values of the
parameter x close to 0. They apply a refinement of Shishikura’s construction [29] to
get extensions of the Fatou coordinates supported in Lavaurs sectors V Lδ describing
an angle as close to 4π as desired in the x-variable. Indeed the extensions are multi-
valuated around x = 0. Then they define analytic invariants a la Martinet-Ramis.
More precisely they define a classifying space M and a mapping mϕ : V Lδ → M.
Then ϕ and ζ are analytically conjugated if and only if mϕ ≡ mζ . We skip here the
details of the definition of mϕ but we stress that mϕ(x0) depends only on ϕ|x=x0 .
We generalize the definition of mϕ for all ϕ ∈ Diff p1(C2, 0).

We say that ϕ ∈ Diff p1(C2, 0) (resp. φ ∈ Diff 1(C, 0)) is analytically trivial if ϕ
(resp. φ) is the exponential of a germ of nilpotent vector field. We can classify the
elements of Diff p1(C2, 0) depending on their rigidity properties with respect to the
analytic conjugation.

• Flexible. ϕ is analytically trivial. In this case Fixϕ = Fixζ, Resϕ ≡ Resζ
and mϕ ≡ mζ imply ϕ

sp∼ ζ. Moreover every special formal transformation
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conjugating ϕ and ζ is analytic. The analytic centralizer Z(ϕ) contains a
1-parameter group.
• Rigid. ϕ is not analytically trivial but we still have that Fixϕ = Fixζ,
Resϕ ≡ Resζ and mϕ ≡ mζ imply ϕ

sp∼ ζ.
The analytic special centralizer of ϕ ∈ Diff p1(C2, 0) is a discrete group in the non-
flexible setting. Moreover a mapping σ conjugating ϕ and ζ is determined by its
restriction σ|x=x0 to a generic line x = x0.

A sufficient condition for ϕ to be rigid is that ϕ|x=0 is non-analytically trivial.
In such a case the analytic centralizer Z(ϕ|x=0) is discrete and such a property
“extends” to the nearby values of the parameter. Therefore provided a good choice
of κ conjugating ϕ|x=0 and ζ|x=0 it can be extended in a unique way to obtain a
special σ ∈ Diff (C2, 0) such that σ|x=0 ≡ κ and σ ◦ ϕ = ζ ◦ σ.

The main theorem in [16] implies that in their context every unfolding is either
flexible or rigid. This is not true, there is a small mistake in their proof. There
exists a third possibility:

• Semi-rigid. ϕ is neither flexible nor rigid. A necessary condition to be
semi-rigid is that ϕ is not analytically trivial but ϕ|x=0 is.

We provide non-analytically trivial mappings ϕ, ζ ∈ Diff p1(C2, 0) such that
(1) Fixϕ = Fixζ, Resϕ ≡ Resζ and ϕ|x=0 ≡ ζ|x=0.
(2) ϕ and ζ are conjugated by an injective special analytic mapping σ defined

in |y| < C0/
ν
√
| lnx| such that σ(e2πix, y) = ζ ◦ σ(x, y).

There exists always a mapping conjugating ϕ|x=x0 and ζ|x=x0 , namely σ|x=x0 if
x0 6= 0 and Id for x0 = 0. Since mϕ(x0) depends only on ϕ|x=x0 we obtain
mϕ ≡ mζ . Moreover the non-flexibility of ϕ implies ϕ 6sp∼ ζ since otherwise we
would have σ ∈ Diff (C2, 0). Roughly speaking we have that Z(ϕ|x=x0) is discrete
for x0 generic but Z(ϕ|x=0) contains a 1-parameter group. Thus we do not obtain
that limx0→0 σ|x=x0 exists like in the rigid case since σ|x=x0 is no longer forced to
adhere a discrete set when x0 → 0. The construction is rather flexible and we
can suppose that I(y ◦ ϕ − y) = I(f) for every function f ∈ C{x, y} such that
f(0) = (∂f/∂y)(0) = 0. In particular if we choose f = y2−x, we obtain a counter-
example to the main theorem in [16]. Nevertheless their theorem remains true in
the generic non-semi-rigid case. The example shows that we can not remove the
moderated hypothesis in theorem 1.1; this condition can be expressed in terms of
the changes of charts. Our complete system of analytic invariants for the elements
of Diff p1(C2, 0) is the generalization of the Mardesic-Roussarie-Rousseau’s system
with a little twist to include the moderated hypothesis.

Next we explain briefly how to define Fatou coordinates for ϕ ∈ Diff p1(C2, 0).
In [16] it is a key tool to find “transversals” to the dynamics of ϕ. A priori this
does not make much sense. Nevertheless they lift ϕ|x=x0 to a subset C(x0) of the
universal covering of P1(C) minus two points. The lifting’s dynamics is flow-like,
it is very similar to exp(∂/∂z) = z + 1. We can choose straight lines transversal to
R. A transversal T and its image ϕ(T ) enclose a strip S(T ). The space of orbits
of ϕ|S(T ) is biholomorphic to C∗. We can identify 0 and ∞ with the fixed points
in the ends of T . The rigidity of the complex structure of C∗ (or P1(C)) provides
a Fatou coordinate in the neighborhood of S(T ) in x = x0. It can be extended
by iteration to the points of C(x0) whose orbits intersect S(T ). The construction
depends holomorphically on x0.
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If the unfolded mapping φ ∈ Diff 1(C, 0) is of codimension bigger than 1 the
method can not be replicated. In general we have ](Fixϕ∩ [x = x0]) ≥ 3, it is much
more difficult to find expressions for covering mappings of P1(C)\(Fixϕ∩ [x = x0])
such that the lifting of ϕ|x=x0 is flow-like.

We use a different point of view. Denote by Xp1(C2, 0) the set of germs of vector
field of the form f(x, y)∂/∂y whith f(0) = (∂f/∂y)(0) = 0. Given ϕ ∈ Diff p1(C2, 0)
there always exists X ∈ Xp1(C2, 0) such that y◦ϕ−y◦exp(X) ∈ (y◦ϕ−y)2. We say
that exp(X) is a convergent normal form of ϕ since they are formally conjugated
(Fixϕ = SingX and Resϕ ≡ Res(exp(X))) and the infinitesimal generator X of
exp(X) is convergent. Fixed x0 ∈ B(0, δ) the equation X(ψ) = 1 defines a function
in the universal covering of B(0, ε)\(Fixϕ∩ [x = x0]), it is unique up to a constant.
We say that ψ is an integral of the time form of X. Clearly ψ is locally injective.
Since we have

X(ψ) = 1⇒ ψ ◦ exp(tX) = ψ + t ∀t ∈ C
then the dynamics of exp(X) in the ψ-coordinate is given by z → z + 1. It can
be easily checked out that ψ ◦ ϕ ∼ ψ + 1. The natural candidates to transversals
are the curves γ : (−∞,∞) → [x = x0] given by γ(t) = exp(tµX)(x0, y0) where
µ ∈ S1 \ {−1, 1}. If we do not choose y0 and µ carefully there is no guarantee
that γ is defined for all t ∈ (−∞,∞) or that the α and ω limits are fixed points.
The equivalent tasks in [16] are trivial since there exists a precise expression of the
covering transformation. Nevertheless this problem can be solved via the descrip-
tion of the dynamics of the real part of a vector field in Xp1(C2, 0) which can be
implicitly found in [22]. This point of view can be used even if we do not work with
unfoldings and just with discrete deformations of φ ∈ Diff 1(C, 0) \ {Id} since there
exists a universal theory of unfoldings of germs of vector field in one variable [11].

The approach in [22] is topological. We want to identify what formal conju-
gations are analytic and to study the dependance of the domain of definition of a
conjugation with respect to the parameter. A more analytical approach is required.
We use some of the techniques in [22] like the dynamical splitting and also others
like the study of polynomials vector fields related to deformations introduced by
Douady-Estrada-Sentenac in [6]. The polynomial vector fields that we consider are
different. Ours are related to the infinitesimal properties of the unfolding. They
appear after blow-up transformations.

In order to describe the dynamics of Re(µX) forX ∈ Xp1(C2, 0) we are interested
on undertanding the nature of the set BX ⊂ S1 × S1 given by (λ0, µ0) 6∈ BX if
Re(µX)|[0,δ)λ is stable in the neighborhood of (λ0, µ0). We do not give now the
precise definition of stability since it involves infinitesimal properties of Re(µX).
Anyway, in particular we have that the points of SingX are either attracting,
repulsing or parabolic for Re(µX)|[0,δ)λ and (µ, λ) ∼ (µ0, λ0). Then their basins
of attraction and repulsion are open sets. We prove that the set BX,λ given by
{λ} ×BX,λ = BX ∩ ({λ} × S1) is finite and it depends continuously on λ.

We say that (K1, µ1), . . ., (Kl, µl) is an EV-covering of X ∈ Xp1(C2, 0) if
• Kj is a compact connected subset of S1 for all j ∈ {1, . . . , l}.
• µj ∈ S1 \ ∪λ∈KjBX,λ for all j ∈ {1, . . . , l}.
• S1 = ∪lj=1K̇j (we denote the interior of Kj by K̇j).

An EV-covering always exists. An EV-covering for ϕ is an EV-covering for some
X ∈ Xp1(C2, 0) such that exp(X) is a convergent normal form of ϕ. The definition
does not depend on the choice of X but only on Fixϕ and Resϕ.
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Let ϕ ∈ Diff p1(C2, 0) with convergent normal form exp(X). Consider an element
(K,µ) of an EV-covering of X ∈ Xp1(C2, 0). We denote by αµX and ωµX the α
and ω limits respectively with respect to the vector field Re(µX) in a domain
B(0, δ) × B(0, ε). We define the set Reg(ε, µX,K) of connected components of
(αµX , ωµX)−1(SingX×SingX)\SingX. The elements of Reg(ε, µX,K) are called
regions of Re(µX). They are open sets in [0, δ)K ×B(0, ε) by stability. We choose
transversals T = exp(RµX)(x0, y0) for (x0, y0) ∈ H ∈ Reg(ε, µX,K).

Let H ∈ Reg(ε, µX,K). The set H ∩ [x = 0] is a union of c(H) connected
components of (αµX , ωµX)−1({(0, 0)} × {(0, 0)}) \ {(0, 0)} whereas H ∩ [x = x0] is
always connected for x0 ∈ (0, δ)K. We denote H ∈ Regc(H)(ε, µX,K).

Supposed (αµX)|H ≡ (ωµX)|H then H is a topological product and c(H) = 1.
Otherwise αµX(H(x)) and ωµX(H(x)) are different points tending to a single one
(0, 0) when x → 0 in (0, δ)K. This collapse splits H ∩ [x = 0] in two connected
components.

Denote ν = ν(y ◦ϕ(0, y)− y)− 1. Consider one of the 2ν connected components
J of (αµX , ωµX)−1({(0, 0)} × {(0, 0)}) \ {(0, 0)}. Then J is contained in a unique
region H ∈ Reg(ε, µX,K). Moreover the space of orbits of ϕ|J∪(H\[x=0]) is home-
omorphic to [0, δ)K × P1(C) by a mapping holomorphic in the interior of H. The
Ecalle-Voronin invariants of ϕ|x=0 can be extended in a natural way to obtain 2ν
changes of charts between different copies of [0, δ)K × P1(C). Again they depend
holomorphicaly on x ∈ (0, δ)K̇ and extend continuously to x = 0. The variety
obtained by taking 2ν copies of [0, δ)K × P1(C) and doing the 2ν identifications
corresponding to the changes of charts is called the µ-orbit space of ϕ at K.

The µ-space of orbits is not the space of orbits of ϕ. Given two different connected
components J1, J2 of H ∩ [x = 0] for some H ∈ Reg2(ε, µX,K) we have that the
spaces of orbits of ϕ|J1∪(H\[x=0]) and ϕ|J2∪(H\[x=0]) are identified outside of x = 0.
In this way we obtain ]Reg2(ε, µX,K) identifications not contained in the µ-orbit
space. Anyway, the structure of the orbit space of ϕ can be deduced from the
structure of the µ-orbit space since the extra identifications depend only on X.
Nevertheless the existence of return mappings makes non-evident that the µ-orbit
space is an analytic invariant. We prove that this is the case. Basically the 2ν
changes of charts that we obtain for all the elements of the EV-covering are the
base for a complete system of invariants. Our construction, even if different, it is
analogous to the Mardesic-Roussarie-Rousseau’s one in many aspects.

We introduce next some of the analytic aspects of the construction. Given a
region H ∈ Reg(ε, µX,K) there exists a unique vector field Xϕ

H (the Lavaurs vector
field) such that it is continuous in H , holomorphic in Ḣ and fulfills ϕ = exp(Xϕ

H).
Our construction implies that (Xϕ

H(y)−X(y))/(y◦ϕ−y) is a continuous function in
H vanishing at H ∩Fixϕ. The infinitesimal generator X̂ of ϕ (i.e. the only formal
nilpotent derivation such that ϕ = exp(X̂)) satisfies X̂(y) − X(y) ∈ (y ◦ ϕ − y)2.
Then we deduce that X̂ is the asymptotic development of Xϕ

H in the neighborhood
of H ∩ Fixϕ in H until the first non-zero term. This fact is a consequence of our
improvement of the constructions in [29] and [16]. We introduce convergent normal
forms not just to obtain a model for ϕ in the regions. This would be guaranteed
by choosing X ∈ Xp1(C2, 0) such that Fixϕ = SingX and Resϕ ≡ Res(exp(X)).
We required y ◦ ϕ − y ◦ exp(X) ∈ (y ◦ ϕ − y)2 with the hope of controlling the
behavior of ϕ in the neighborhood of the fixed points. Moreover the introduction
of normal forms has still another advantage; a Fatou coordinate of ϕ is defined up to
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an additive constant. Thus a normalizing condition is required in the construction.
The classical choices are not invariant by iteration. We give an invariant by iteration
condition by prescribing the behavior of the Fatou coordinate in the neighborhood
of the fixed points. We define Fatou coordinates in strips but the definitions paste
together. This property is interesting since otherwise to estimate the asymptotic
behavior of a Fatou coordinate in a region it is necessary to do it in a strip and
then propagating the estimates by iteration.

Since an element η in the formal special centralizer of ϕ such that j1η = Id
is determined by the first non-zero term ((y ◦ η − y)/(y ◦ ϕ − y))|Fixϕ (or more
formally by the class of (y ◦ η− y)/(y ◦ϕ− y) modulo

√
(y ◦ ϕ− y)) then the extra

term is going to be a key ingredient to identify what special formal transformations
conjugating two elements ϕ, ζ ∈ Diff p1(C2, 0) converge.

Given ζ ∈ Diff p1(C2, 0) with Fixϕ = Fixζ and Resϕ ≡ Resζ the property
mϕ(x0) = mζ(x0) for x0 ∈ [0, δ)K and a member of an EV-covering (K,µ) implies
that they are conjugated by a transformation whose expression in H ∩ [x = x0] for
a region H ∈ Reg(ε, µX,K) is of the form

exp(c(x0)X
ζ
H)|x=x0 ◦ σH(ϕ, ζ)|x=x0

for some c(x0) ∈ C. These definitions paste together, we obtain a conjugation
defined in the neighborhood of Fixϕ∩[x = x0]. The mapping σH(ϕ, ζ) is continuous
in H and holomorphic in Ḣ. Its behavior is moderated-like. Thus the size of the
domain of definition depends basically on exp(c(x0)X

ζ
H). Our asymptotic study

proves that the latter map behaves like exp(c(x0)X) where exp(X) is a convergent
normal form of ζ. The moderated hypothesis in theorem 1.1 is equivalent to the
boundness of c(x) in a pointed neighborhood of 0. Roughly speaking once we
fix moderated choices σH(ϕ, ζ) of mappings conjugating ϕ and ζ the choice of an
element of the centralizer of ζ providing an analytic conjugation is bounded. Then
we can conclude the proof of theorem 1.1 with an argument of Riemann’s kind.

Finally let us remark that the study of germs of diffeomorphism is a useful tool
to classify singular foliations. For instance consider codimension 1 complex analytic
foliations defined in a 2-dimensional manifold. Up to a birrational transformation
we can suppose that all the singularities are reduced. Denote by Ωred(C2, 0) the set
of germs of reduced codimension 1 complex analytic singularity in the neighborhood
of 0 ∈ (C2, 0). Let ω ∈ Ωred(C2, 0); if the quotient of the eigenvalues q(ω) is in the
domain of Poincaré (i.e. q(ω) 6∈ R− ∪ {0}) then ω is conjugated to its linear part.
Anyway, the analytic class of ω ∈ Ωred(C2, 0) is determined by the analytic class of
the holonomy of ω along a “strong” integral curve [20]. Such a holonomy is formally
linearizable if q(ω) ∈ R−\Q− and resonant whenever q(ω) ∈ Q−∪{0}. Traditionally
a singularity ω ∈ Ωred(C2, 0) such that q(ω) ∈ Q− is called resonant whereas it is
called a saddle-node if q(ω) = 0. The modulus of analytic classification for both
resonant and saddle-node singularities have been described by Martinet-Ramis [18]
[17]. Then it is natural to study unfoldings of resonant diffeomorphisms in order to
study unfoldings of resonant singularities and saddle-nodes. This point of view has
been developped by Martinet, Ramis [25], Glutsyuk [9] and Mardesic-Roussarie-
Rousseau [16]. Moreover Rousseau classifies generic unfoldings of codimension 1
saddle-nodes [28]. This program can not be carried in higher codimension without
a complete system of analytic invariants for unfoldings of elements of Diff 1(C, 0)
of codimension greater than 1. We remove such an obstacle in this paper.
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We comment the structure of the paper. In section 3 we introduce the concepts
of infinitesimal generator and convergent normal forms for germs of unipotent dif-
feomorphism. We prove that every element of Diff p1(C2, 0) has a convergent nor-
mal form. Section 4 is basically a quick survey about the topological, formal and
analytic classifications of tangent to the identity germs of diffeomorphism in one
variable. We study the formal properties of elements of Diff p1(C2, 0) in section 5.
We describe the formal invariants and the structure of the formal special centralizer
of an element of Diff p1(C2, 0). We also reduce the problem of classifying unfoldings
of resonant diffeomorphisms to the tangent to the identity case via the semisimple-
unipotent decomposition. Section 6 deals with the special case of unfoldings in
which the fixed points set is parameterized by x. We can use then a parameterized
version of the Ecalle-Voronin theory. We introduce the main results of the paper
in this simpler case and we prove slightly sharper versions. In section 7 we give a
concept of stability for the real flows of elements of Xp1(C2, 0) and then we describe
their topological behavior in the stable zones. In section 8 we give a quantitative
mesure of how much ϕ ∈ Diff p1(C2, 0) is similar to a convergent normal form.
The estimates are a key ingredient in our refinement of the Shishikura-Mardesic-
Roussarie-Rousseau’s construction. In this way we obtain Fatou coordinates with
controlled asymptotic behavior in the neighborhood of the fixed points. Finally in
section 9 we define the analytic invariants, we describe its nature and compare with
the ones in [16]. In section 10 we prove the main theorem, moreover we provide
a complete system of analytic invariants in both the general and the particular
non-semi-rigid cases. We prove the optimality of our results in section 11.

2. Notations and definitions

Let Diff (Cn, 0) be the group of complex analytic germs of diffeomorphism at
0 ∈ Cn. Consider coordinates (x1, . . . , xn−1, y) ∈ Cn. We say that ϕ ∈ Diff (Cn, 0)
is a parameterized diffeomorphism if xj ◦ ϕ = xj for all 1 ≤ j < n. Denote by
Diff u(Cn, 0) the subgroup of Diff (Cn, 0) composed by unipotent diffeomorphisms,
i.e. ϕ ∈ Diff u(Cn, 0) if j1ϕ is unipotent. We define

Diff up(Cn, 0) = Diff u(Cn, 0) ∩Diff p(Cn, 0)

the group of germs of unipotent parameterized diffeomorphisms (or up-diffeomorphisms
for shortness). The formal completions of the previous groups will be denoted with
a hat, for instance D̂iff (Cn, 0) is the formal completion of Diff (Cn, 0).

Let Diff 1(C, 0) be the subgroup of Diff (C, 0) of germs of tangent to the identity
diffeomorphisms, i.e. ϕ ∈ Diff (C, 0) belongs to Diff 1(C, 0) if (∂ϕ/∂y)(0) = 1. We
define the set

Diff p1(C2, 0) = {ϕ ∈ Diff p(C2, 0) : ϕ|x=0 ∈ Diff 1(C, 0) \ Id}.

Then Diff p1(C2, 0) is the set of one dimensional unfoldings of one dimensional
tangent to the identity germs of diffeomorphism (excluding the identity).

We denote ϕ1 ∼ ϕ2 if ϕ1, ϕ2 ∈ Diff (Cn, 0) are analytically conjugated.
We define a formal vector field X̂ as a derivation of the maximal ideal of the

ring C[[x1, . . . , xn−1, y]]. We also express X̂ in the more conventional form

X̂ =
n−1∑
j=1

X̂(xj)
∂

∂xj
+ X̂(y)

∂

∂y
.
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We consider the set X̂N (Cn, 0) of nilpotent formal vector fields, i.e. the formal
vector fields X̂ such that j1X̂ is nilpotent. We denote by X (Cn, 0) the set of germs
of analytic vector field at 0 ∈ Cn.

We denote the rings C{x1, . . . , xn−1, y} and C[[x1, . . . , xn−1, y]] by ϑn and ϑ̂n
respectively. We denote f ∼ g if f = O(g) and g = O(f).

Let ϕ ∈ Diff (Cn, 0). Denote by Fixϕ the fixed points set of ϕ. Denote by Z(ϕ)
and Ẑ(ϕ) the centralizer and the formal centralizer of ϕ, i.e. the centralizers of ϕ
in Diff (Cn, 0) and D̂iff (Cn, 0) respectively.

3. The infinitesimal generator

In this section we associate a formal vector field to every element of Diff up(Cn, 0).
The properties of this object can be used to provide a complete system of formal
invariants for the up-diffeomorphisms [21]. Here, we introduce the properties that
we will use later on.

Let X ∈ X (Cn, 0); suppose that X is singular at 0. We denote by exp(tX) the
flow of the vector field X, it is the unique solution of the differential equation

∂

∂t
exp(tX) = X(exp(tX))

with initial condition exp(0X) = Id. We define the exponential exp(X) of X as
exp(1X). We can define the exponential operator for X̂ ∈ X̂N (Cn, 0). Moreover
the definition coincides with the previous one if X̂ is convergent. We define

exp(X̂) : ϑ̂n → ϑ̂n

g →
∑∞
j=0

X̂◦(j)

j! (g).

The nilpotent character of X̂ implies that the power series exp(X̂)(g) converges in
the Krull topology for all g ∈ ϑ̂n. Moreover, since X̂ is a derivation then exp(X̂)
acts like a diffeomorphism, i.e.

exp(X̂)(g1g2) = exp(X̂)(g1)exp(X̂)(g2)

for all g1, g2 ∈ ϑ̂n. Then we can use the more conventional notation

exp(X̂) =

 ∞∑
j=0

X̂◦(j)

j!
(x1), . . . ,

∞∑
j=0

X̂◦(j)

j!
(xn−1),

∞∑
j=0

X̂◦(j)

j!
(y)

 .

Moreover j1exp(X̂) = exp(j1X̂), thus j1exp(X̂) is a unipotent linear isomorphism.
The following proposition is classical.

Proposition 3.1. The mapping exp : X̂N (Cn, 0)→ D̂iff u(Cn, 0) is a bijection.

Consider the inverse mapping log : D̂iff u(Cn, 0)→ ĤN (Cn, 0). We can interpret
ϕ ∈ D̂iff u(Cn, 0) as a linear operator ϕ : m̂ → m̂ where m̂ is the maximal ideal of
ϑ̂n. Denote by Θ the operator ϕ− Id, we have

(logϕ)(g) =
∞∑
j=1

(−1)j+1 Θ◦(j)

j
(g)

for all g ∈ ϑ̂n. The power series in the right hand side converges in the Krull
topology since ϕ is unipotent. Moreover j1(logϕ) = log(j1ϕ) is nilpotent and logϕ
satisfies the Leibnitz rule. We say that logϕ is the infinitesimal generator of ϕ. The
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exponential mapping has a geometrical nature; next proposition claims that logϕ
preserves the orbits of ∂/∂y for ϕ ∈ Diff up(Cn, 0) and also that Sing(logϕ) = Fixϕ.

Proposition 3.2. Let ϕ ∈ Diff up(Cn, 0). Then logϕ is of the form û(y◦ϕ−y)∂/∂y
for some formal unit û ∈ ϑ̂n.

Proof. Let Θ = ϕ−Id. We have that logϕ is of the form f̂∂/∂y since Θ(xj) = 0 and
then Θ◦(k)(xj) = 0 for all j ∈ {1, . . . , n−1} and all k ∈ N. We have Θ(y) = y◦ϕ−y,
moreover since

(1) g ◦ ϕ = g +
∂g

∂y
(y ◦ ϕ− y) +

∞∑
j=2

∂jg

∂yj
(y ◦ ϕ− y)j

j!

we obtain that Θ◦(2)(y) ∈ (y ◦ ϕ− y)m̂ where m̂ is the maximal ideal of ϑ̂n. Again
by using the Taylor series expansion we can prove that Θ◦(j)(y) ∈ (y ◦ ϕ− y)m̂ for
all j ≥ 2. Thus logϕ = (logϕ)(y)∂/∂y is of the form û(y ◦ ϕ − y)∂/∂y for some
û ∈ ϑ̂n such that û(0) = 1. �

Let ϕ = exp(û(y ◦ ϕ − y)∂/∂y) ∈ Diff up(Cn, 0). We say that α ∈ Diff up(Cn, 0)
is a convergent normal form of ϕ if logα = u(y ◦ ϕ− y)∂/∂y for some u ∈ ϑn and
y ◦ ϕ− y ◦ α ∈ (y ◦ ϕ− y)2. The last condition is equivalent to û− u ∈ (y ◦ ϕ− y).
If ϕ is a convergent normal form of itself, i.e. if logϕ ∈ X (Cn, 0) then we say that
ϕ is analytically trivial.

Proposition 3.3. Let ϕ = exp(û(y ◦ ϕ − y)∂/∂y) ∈ Diff up(Cn, 0). Then ϕ has a
convergent normal form.

Proof. Let Θ = ϕ − Id. We have (logϕ)(y) =
∑l
j=1 (−1)j+1Θ◦(j)(y)/j. Consider

the decomposition f l11 . . . f
lp
p g1 . . . gq of y ◦ ϕ − y ∈ ϑn in irreducible factors where

lj ≥ 2 for all j ∈ {1, . . . , p}. We define

u2 =
ln(1 + z)

z
◦ ∂(y ◦ ϕ− y)

∂y
.

Denote f = y ◦ ϕ− y; by equation 1 we obtain that

(logϕ)(y)/(y ◦ ϕ− y)−

(
1− ∂f/∂y

2
+

(∂f/∂y)2

3
+ . . .

)
∈ (f1 . . . fpg1 . . . gq).

We deduce that û− u2 belongs to (g1 . . . gp).
We claim that Θ◦(k)(y) ∈ (f l1+k−1

1 . . . f
lp+k−1
p ) for all k ∈ N. The result is true

for k = 1 by equation 1. Since

fj ◦ ϕ− fj ∈ (f2
j ) and h ◦ ϕ− h ∈ (y ◦ ϕ− y)

for all h ∈ ϑ̂n we deduce that

Θ◦(k)(g) ∈ (f lj+k−1
j ) =⇒ Θ◦(k+1)(g) ∈ (f lj+kj ).

Denote l = max(l1, . . . , lp) and u1 = (
∑l
j=1 (−1)j+1Θ◦(j)(y)/j)/f . We have

that û − u1 ∈ (f l11 . . . f
lp
p ). The function u1 − u2 belongs to the formal ideal

(f l11 . . . f
lp
p , g1 . . . gq); by faithful flatness there exist A,B ∈ ϑn such that

u1 − u2 = Af l11 . . . f lpp +Bg1 . . . gq.



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 11

We define u = u1 − Af l11 . . . f
lp
p = u2 + Bg1 . . . gq. By construction it is clear that

û− u belongs to (f l11 . . . f
lp
p ) ∩ (g1 . . . gq) and then to (y ◦ ϕ− y). �

Let X be a holomorphic vector field defined in a connected domain U ⊂ C such
that X 6= 0. Consider P ∈ SingX. There exists a unique meromorphic differential
form ω in U such that ω(X) = 0. We denote by Res(X,P ) the residue of ω at
the point P . Given Y = f(x, y)∂/∂y and a point P = (x0, y0) ∈ SingX such that
SingX does not contain x = x0 we define Res(X,P ) = Res(f(x0, y)∂/∂y, y0).

Let ϕ ∈ Diff up(Cn, 0). Consider a convergent normal form α of ϕ. By definition
Res(ϕ, P ) = Res(logα, P ) for P ∈ Fixϕ. The definition does not depend on
the choice of α since given another convergent normal form β of ϕ we have that
dy/(logα)(y) − dy/(log β)(y) ∈ ϑndy. We denote the function P → Res(ϕ, P )
defined in Fixϕ by Res(ϕ).

Remark 3.1. Let ϕ ∈ Diff p1(C2, 0). Consider X = u(x, y)(y◦ϕ−y)∂/∂y for some
unit u ∈ C{x, y}. Suppose that [y ◦ ϕ = y] ∩ [∂(y ◦ ϕ)/∂y = 1] = {(0, 0)}; that is
the generic situation. Then Res(ϕ) ≡ Res(X) implies that exp(X) is a convergent
normal form of ϕ. A 1-form with poles of order at most 1 and no residues has no
poles at all.

4. One variable theory

We introduce here for the sake of completeness some classical results concerning
tangent to the identity complex analytic germs of diffeomorphism in one variable.

4.1. Formal theory. Let ϕ ∈ Diff 1(C, 0) = Diff u(C, 0). We define ν(ϕ) the order
of ϕ as ν(ϕ) = ν(ϕ(y)− y)− 1.

Proposition 4.1. Let ϕ1, ϕ2 ∈ Diff 1(C, 0) \ {Id}. Then ϕ1 is formally conjugated
to ϕ2 if and only if ν(ϕ1) = ν(ϕ2) and Res(ϕ1) = Res(ϕ2). In such a case if logϕ1

and logϕ2 are convergent then ϕ1 and ϕ2 are analytically conjugated.

Supposed that ϕ1, ϕ2 are formally conjugated by σ̂ ∈ D̂iff (C, 0). Then every
other formal conjugation can be expressed in the form τ̂ ◦ σ̂ where τ̂ belongs to the
formal centralizer Ẑ(ϕ2) of ϕ2. As a consequence it is interesting to describe the
structure of Ẑ(ϕ) for classification purposes.

Proposition 4.2. Let ϕ ∈ Diff 1(C, 0) \ {Id}. Then there exists τ̂0 ∈ D̂iff (C, 0)
satisfying (∂τ̂0/∂y)(0) = e2iπ/ν(ϕ) and τ̂◦(ν(ϕ))

0 = Id such that

Ẑ(ϕ) = {τ̂◦(r)0 ◦ exp(t logϕ) for r ∈ Z/(ν(ϕ)Z) and t ∈ C}.

Moreover Ẑ(ϕ) is a commutative group.

We denote τ̂0 by τ̂0(ϕ). We say that τ̂0(ϕ) is the generating symmetry of ϕ. Let
κr = e2irπ/ν(ϕ). We denote the element τ̂0(ϕ)◦(r) ◦ exp(t logϕ) of Ẑ(ϕ) by Zκr,t

ϕ .
The mapping Zκ,tϕ 7→ (κ, t) is a bijection from Ẑ(ϕ) to < e2iπ/ν(ϕ) > ×C.

4.2. Topological behavior. Let exp(X) be a convergent normal form of ϕ in
Diff 1(C, 0). The vector field X is of the form X = (r0eiθ0yν+1 +

∑∞
j=ν+2 ajy

j)∂/∂y
where ν = ν(ϕ) and r0 6= 0. Consider the blow-up π : (R+ ∪ {0})× S1 → R2 given
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by π(r, eiθ) = reiθ. We denote by X̃ the strict transform of Re(X), we have
X̃ = (π∗Re(X))/rν . We obtain that

X̃ = r
(
r0Re(ei(νθ+θ0)) +O(r)

) ∂

∂r
+
(
r0Re(−iei(νθ+θ0)) +O(r)

) ∂

∂θ
.

We define D1(X) = {λ ∈ S1 : λνeiθ0 = −1} and D−1(X) = {λ ∈ S1 : λνeiθ0 = 1}.
We have that ]D1(X) = ]D−1(X) = ν and Sing(X̃|r=0) = D1(X) ∪ D−1(X).
Moreover, since

X̃|r=0 = (−r0νs(θ − θ1) +O((θ − θ1)2))
∂

∂θ

in the neighborhood of eiθ1 ∈ Ds(X) then the points in D1(X) are attractif points
for X̃|r=0 whereas the points of D−1(X) are repulsif.

We define η = −1/(r0eiθ0νyν), it satisfies X̃(η) = 1+O(r). Consider λ1 ∈ D1(X)
and the set S(r1, λ1) = [0 ≤ r < r1] ∩ [λ ∈ λ1e

(−iπ/(4ν),iπ/(4ν))]. We obtain
η(r, λ) ∈ e(−iπ/4,iπ/4)/(νr0rν) for all (r, λ) ∈ S(r1, λ1). Since X̃(η) = 1+O(r) then
the points in S(r1, λ1) are attracted to (0, λ1) by the positive flow of X̃ for r1 > 0
small enough. Analogously we can prove that (0, λ1) is a repulsif point for X̃ if
λ1 ∈ D−1(X).

The dynamics of ϕ is a small deformation of the dynamics of exp(X). We denote
Ds(ϕ) = Ds(X) for s ∈ {−1, 1} and D(ϕ) = D−1(ϕ) ∪ D1(ϕ). The definition
of Ds(ϕ) does not depend on the choice of the convergent normal form exp(X).
Suppose that ϕ and ϕ◦(−1) are holomorphic in an small enough open set U 3 0. It
is easy to prove that

V λϕ = {P ∈ U \ {0} : ϕ◦(sn)(P ) ∈ U ∀n ∈ N and lim
n→∞

ϕ◦(sn)(P ) = (0, λ)}

is an open set for all λ ∈ Ds(ϕ). A domain V λϕ for λ ∈ D1(ϕ) is called an attracting
petal. A domain V λϕ for λ ∈ D−1(ϕ) is called a repulsing petal.

We say that V (λ, θ) is a sector of direction λ ∈ S1 and angle θ ∈ R+ if there
exists µ ∈ R+ such that V (λ, θ) = λei[−θ/2,θ/2](0, µ]. We say that W (λ, θ) is a
sectorial domain of direction λ ∈ S1 and angle θ ∈ R+ if it contains a sector of
direction λ and angle θ′ for all θ′ ∈ (0, θ).

The next proposition is a consequence of the previous discussion and the fact
that ϕ is a small deformation of exp(X).

Proposition 4.3. Let ϕ ∈ Diff 1(C, 0). Fix a domain a domain of definition 0 ∈ U .
We have

• V λϕ is a sectorial domain of direction λ and angle 2π/ν(ϕ) for all λ ∈ D(ϕ).
• {0} ∪ ∪λ∈D(ϕ)V

λ
ϕ is a neighborhood of 0.

• V λ0
ϕ ∩ V λ1

ϕ = ∅ if λ1 6∈ {e−iπ/ν(ϕ)λ0, λ0, e
iπ/ν(ϕ)λ0}.

• V λ0
ϕ ∩V λ1

ϕ is a sectorial domain of direction λ0e
iπ/(2ν(ϕ)) and angle π/ν(ϕ)

for λ1 = eiπ/ν(ϕ)λ0.

4.3. Analytic properties. Next, we describe the analytic invariants of elements
of Diff 1(C, 0). Let ϕ ∈ Diff 1(C, 0). Choose a normal form α ∈ Diff 1(C, 0) of ϕ.
Consider the equation (logα)(ψα) = 1. A holomorphic solution ψα is called a Fatou
coordinate of α. Alternatively we also say that ψα is an integral of the time form
(or dual form) of α. The function ψα is unique up to an additive constant. Indeed



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 13

ψα is of the form

ψα =
−1

ν(ϕ)aν(ϕ)+1

1
yν(ϕ)

1 +
∞∑
j=1

bjy
j

+Res(ϕ) log y

where ϕ = y + aν(ϕ)+1y
ν(ϕ)+1 +O(yν(ϕ)+2). Let λ ∈ D(ϕ); we say that η ∈ ϑ(V λϕ )

is a Fatou coordinate of ϕ in V λϕ if η ◦ ϕ = η + 1 and η − ψα is bounded. Clearly
the definition does not depend on the choice of α.

Proposition 4.4. Let ϕ ∈ Diff 1(C, 0). Consider a convergent normal form α of
ϕ and a direction λ ∈ D(ϕ). Then there exists a unique Fatou coordinate ψλϕ of ϕ
in V λϕ such that limy→0 ψ

λ
ϕ −ψα = 0 in every sector of direction λ and angle lesser

than 2π/ν(ϕ) contained in V λϕ . Moreover ψλϕ is injective.

We can provide a formula for ψλϕ. We define ∆ = ψα ◦ϕ− (ψα +1). By Taylor’s
formula we obtain that

∆ ∼ ∂ψα
∂y

(ϕ(y)− α(y)) = O(yν(ϕ)+1)⇒ ∆ ∈ C{y} ∩ (yν(ϕ)+1).

Since (ψλϕ − ψα)− (ψλϕ − ψα) ◦ ϕ = ∆ we can obtain ψλϕ − ψα as a telescopic sum.
More precisely let ψλα ∈ ϑ(V λϕ ) be a Fatou coordinate of α. We have

ψλϕ = ψλα +
∞∑
j=0

∆ ◦ ϕ◦(j) and ψλϕ = ψλα −
∞∑
j=1

∆ ◦ ϕ◦(−j)

for λ ∈ D1(ϕ) and λ ∈ D−1(ϕ) respectively.
Let ϕ ∈ Diff 1(C, 0) with convergent normal form α. Denote ν = ν(ϕ). Consider

that ψλα ∈ ϑ(V λϕ ) is chosen for all λ ∈ D(ϕ). We define

ξλϕ(z) = ψλe
iπ/ν

ϕ ◦
(
ψλϕ
)◦(−1)

(z)

for λ ∈ D(ϕ). The dynamics of ϕ in every V λϕ is z 7→ z + 1 in the coordinate
ψλϕ. Then ξλϕ is the change of chart which allow to glue two z 7→ z + 1 models
corresponding to consecutive petals. In particular we have ξλϕ ◦ (z + 1) ≡ ξλϕ(z) + 1
for all λ ∈ D(ϕ). Fix λ0 ∈ D(ϕ) and ψλ0

α . Denote λj = λ0e
iπj/ν . There are several

possible definitions for ψλj
α . We consider homogeneous coordinates, supposed ψ

λj
α

is defined we extend it to V λj
ϕ ∪ V λj+1

ϕ by analytic continuation. Then we define
ψ
λj+1
α = ψ

λj
α − πiRes(ϕ)/ν. Let us remark that ψλ0

ϕ = ψλ2ν
ϕ . The definition of ξλϕ

depends on the choice of ψλ0
α . If we replace ψλ0

α with ψλ0
α +K for some K ∈ C then

ξλϕ becomes (z+K) ◦ ξλϕ ◦ (z−K) for all λ ∈ D(ϕ). Denote ζϕ = −πiRes(ϕ)/ν(ϕ).

Proposition 4.5. Let ϕ ∈ Diff 1(C, 0) with convergent normal form α. Consider
λ ∈ Ds(ϕ). Then there exists C ∈ R+ such that

• ξλϕ is defined in sImgz < −C and ξλϕ ◦ (z + 1) ≡ (z + 1) ◦ ξλϕ.
• lim|Img(z)|→∞ ξλϕ(z)− z = ζϕ.
• ξλϕ = z + ζϕ +

∑∞
j=1 a

ϕ
λ,je

−2πisjz for some
∑∞
j=1 a

ϕ
λ,jw

j ∈ C{w}.

All the possible changes of charts can be realized.
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Proposition 4.6. [31] [15] Let α ∈ Diff 1(C, 0) such that logα is convergent. Con-
sider a series

∑∞
j=1 aλ,jw

j ∈ C{w} for all λ ∈ Dα. Then there exists a mapping
ϕ ∈ Diff 1(C, 0) with convergent normal form α such that

ξλϕ = z + ζϕ +
∞∑
j=1

aλ,je
−2πisjz

in homogeneous coordinates for all λ ∈ Ds(α) and all s ∈ {−1, 1}.

4.4. Analytic classification. Suppose that ϕ1, ϕ2 are formally conjugated. Con-
sider convergent normal forms α1 and α2 of ϕ1 and ϕ2 respectively. We have
that α1 and α2 are formally conjugated and then analytically conjugated by some
h ∈ Diff (C, 0) by proposition 4.1. Then up to replace ϕ2 with h◦(−1) ◦ ϕ2 ◦ h we
can suppose that ϕ1 and ϕ2 have common normal form α1 = α2. In particular we
have that ϕ1(y)−ϕ2(y) ∈ (y2(ν(ϕ1)+1)). Indeed ϕ1 and ϕ2 have common convergent
normal form if and only if ν(ϕ1) = ν(ϕ2) and ϕ1(y)− ϕ2(y) ∈ (y2(ν(ϕ1)+1)).

Let ϕ1, ϕ2 ∈ Diff 1(C, 0) with common convergent normal form α. There exists
σ̂(ϕ1, ϕ2) ∈ D̂iff (C, 0) conjugating ϕ1 and ϕ2 such that σ̂(ϕ1, ϕ2)(y)−y ∈ (yν(ϕ)+2).
Moreover σ̂(ϕ1, ϕ2) is unique. We say that σ̂(ϕ1, ϕ2) is the privileged formal con-
jugation. Choose λ0 ∈ D(ϕ1) = D(ϕ2) and ψλ0

α . The next couple of propositions
are a consequence of Ecalle’s theory. We always use homogeneous coordinates.

Proposition 4.7. Let ϕ1, ϕ2 ∈ Diff 1(C, 0) with common convergent normal form
α. Then for all λ ∈ D(ϕ1) there exists a unique holomorphic σλ : V λϕ1

→ V λϕ2
conju-

gating ϕ1 and ϕ2 and such that σ̂(ϕ1, ϕ2) is a ν(ϕ1)-Gevrey asymptotic development
of σλ in V λϕ1

. Moreover We have σλ = (ψλϕ2
)◦(−1) ◦ ψλϕ1

.

The expression σλ : V λϕ1
→ V λϕ2

implies an abuse of notation. Rigorously V λϕ1

and V λϕ2
can be replaced by sectorial domains Wλ

ϕ1
and Wλ

ϕ2
of direction l and angle

2π/ν(ϕ1) and such that σl : W l
ϕ1
→ W l

ϕ2
is a biholomorphism. For simplicity we

keep this kind of notation throughout this section.
The elements of the centralizer Ẑ(ϕ) of ϕ ∈ Diff 1(C, 0) can be realized in the

sectorial domains V λϕ for every λ ∈ Dϕ.

Proposition 4.8. Let ϕ ∈ Diff 1(C, 0) with convergent normal form α. Consider
an element Zκ,tϕ of Ẑ(ϕ). Then for all λ ∈ Dϕ there exists a unique holomorphic
τλ : V λϕ → V λκϕ such that ϕ ◦ τλ = τλ ◦ ϕ and Zκ,tϕ is a ν(ϕ)-Gevrey asymptotic

development of τλ in V λϕ . Moreover we have τλ = (ψλκϕ )◦(−1) ◦ (ψλϕ + t).

We can combine propositions 4.7 and 4.8 to obtain:

Proposition 4.9. Let ϕ1, ϕ2 ∈ Diff 1(C, 0) with common convergent normal form
α. Consider (κ, t) ∈< e2iπ/ν(ϕ1) > ×C. Then for all λ ∈ Dϕ1 there exists
a unique holomorphic σκ,tλ : V λϕ1

→ V λκϕ2
conjugating ϕ1 and ϕ2 and such that

Zκ,tϕ2
◦ σ̂(ϕ1, ϕ2) is a ν(ϕ1)-Gevrey asymptotic development of σκ,tλ in V λϕ1

. More-

over σκ,tλ = (ψλκϕ2
)◦(−1) ◦ (ψλϕ1

+ t) in homogeneous coordinates.

By uniqueness of the ν(ϕ1)-Gevrey sum in sectors of angle greater than π/ν(ϕ1)
we deduce that Zκ,tϕ2

◦ σ̂(ϕ1, ϕ2) is analytic if and only if σκ,tλ = σκ,t
λeiπ/ν(ϕ1) in

V λϕ1
∩ V λeiπ/ν(ϕ1)

ϕ1
for all λ ∈ Dϕ1 . These conditions can be expressed in terms of

the changes of charts.
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Proposition 4.10. Let ϕ1, ϕ2 ∈ Diff 1(C, 0) with common convergent normal form
α. Then ϕ1 ∼ ϕ2 if and only if there exists (κ, t) ∈< e2iπ/ν(ϕ1) > ×C such that

(2) ξλκϕ2
◦ (z + t) ≡ (z + t) ◦ ξλϕ1

∀λ ∈ D(ϕ1).

Indeed the equation 2 is equivalent to Zκ,tϕ2
◦ σ̂(ϕ1, ϕ2) ∈ Diff (C, 0).

There is a quite common mistake in the study of tangent to the identity diffeo-
morphisms. We can find references in the litterature where it is claimed that given
ϕ1, ϕ2 ∈ Diff 1(C, 0) analytically conjugated and with common normal form then
the conjugation can be choosen of the form y+O(yν(ϕ1)+2). In other words if ϕ1 and
ϕ2 are analytically conjugated then σ̂(ϕ1, ϕ2) ∈ Diff (C, 0). This false statement
is obtained by neglecting the role of the centralizer in the analytic conjugation. A
reference can be found in [26].

Remark 4.1. Let λ ∈ Ds(ϕ1). The condition ξλκϕ2
(z+t) = (z+t)◦ξλϕ1

is equivalent
to aϕ2

λκ,je
−2πisjt = aϕ1

λ,j for all j ∈ N.

Remark 4.2. Let ϕ ∈ Diff 1(C, 0) with convergent normal form α. Then logϕ
belongs to X (C, 0) if and only if ϕ ∼ α (prop. 4.1). Therefore logϕ ∈ X (C, 0) if
and only if aϕλ,j = 0 for all λ ∈ D(ϕ) and all j ∈ N.

5. Formal conjugation

Part of this paper is devoted to explain the relations among formal conjuga-
tions, analytic conjugations and the centralizer when dealing with elements of
Diff p1(C2, 0). In this section we study the formal properties of the diffeomorphisms.

5.1. Formal invariants. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0). Suppose that there exists
σ ∈ Diff (C2, 0) such that σ ◦ ϕ1 = ϕ2 ◦ σ. We want to express σ as a composition
σ1 ◦ σ2 such that the action of σ on the formal invariants of ϕ1 is the same action
induced by σ2. Moreover identifying a possible σ2 is much simpler than finding σ.

The property σ ◦ϕ1 = ϕ2 ◦σ implies that σ conjugates convergent normal forms
of ϕ1 and ϕ2. We obtain:

Proposition 5.1. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0). Suppose that ϕ1 and ϕ2 are analyti-
cally conjugated by σ ∈ Diff (C2, 0). Then

• [(y ◦ ϕ2 − y) ◦ σ]/(y ◦ ϕ1 − y) is a unit.
• Res(ϕ1, P ) = Res(ϕ2, σ(P )) for all P ∈ Fixϕ1.

Remark 5.1. The residue functions are formal invariants [21] but for us it is
enough to know that they are analytic invariants.

We denote τ(Fixϕ1) = Fixϕ2 if [(y ◦ϕ2 − y) ◦ τ ]/(y ◦ϕ1 − y) is a unit for some
τ ∈ D̂iff (C2, 0). In particular Fixϕ1 = Fixϕ2 means that Id(Fixϕ1) = Fixϕ2.

Consider a diffeomorphism τ ∈ Diff (C2, 0) satisfying the two conditions in propo-
sition 5.1. By replacing ϕ2 with τ◦(−1) ◦ ϕ2 ◦ τ we can suppose from now on that
Fixϕ1 = Fixϕ2 and Res(ϕ1) ≡ Res(ϕ2).

Consider a formal conjugation σ̂ ∈ D̂iff (C2, 0) between ϕ1 and ϕ2. We say that
σ̂ is special (with respect to Fixϕ1) if x ◦ σ̂ ≡ x and y ◦ σ̂ − y ∈ I(Fixϕ1). We say
that σ̂ is good (with respect to Fixϕ1) if σ̂ is special and y ◦ σ̂ − y ∈ I(γ)2 for all
irreducible component γ of Fixϕ1 such that y ◦ϕ1−y ∈ I(γ)2. We denote ϕ1

sp∼ ϕ2

if ϕ1, ϕ2 ∈ Diff p1(C2, 0) are conjugated by a special element of Diff (C2, 0).



16 JAVIER RIBÓN

We denote

Xp1(C2, 0) = {X ∈ X (C2, 0) : exp(X) ∈ Diff p1(C2, 0)}.

In particular the set of convergent normal forms of elements of Diff p1(C2, 0) is equal
to exp(Xp1(C2, 0)).

Proposition 5.2. Let α1, α2 ∈ Diff p1(C2, 0) such that logαj ∈ Xp1(C2, 0) for
j ∈ {1, 2}. Suppose that Fixα1 = Fixα2 and Res(α1) ≡ Res(α2). Then α1

sp∼ α2.

Lemma 5.1. Let f ∈ C{x, y} such that f(0, y) 6≡ 0. Consider A ∈ C{x, y} such
that (A(x0, y)/f(x0, y))dy has vanishing residues for all x0 in a neighborhood of 0.
Then there exists a germ of meromorphic function β such that ∂β/∂y = A/f and
βf ∈

√
f ⊂ C{x, y}.

Proof. Let P = (0, y0) 6= (0, 0) be a point close to the origin. Since f(P ) 6= 0 there
exists a unique holomorphic solution β defined in the neighborhood of P such that
∂β/∂y = A/f and β(x, y0) ≡ 0. The residues vanish, then we extend β by analytic
continuation to obtain β ∈ ϑ(U \ (f = 0)) for some neighborhood U of (0, 0).

Consider Q ∈ (U \{(0, 0)})∩(f = 0). Up to a change of coordinates (x, y+h(x))
we can suppose that f = v(x, y)yr in the neighborhood of Q where y(Q) = 0 6= v(Q)
and r ∈ N. The form (A/f)dy is of the form (

∑
−1 6=j≥−r cj(x)y

j)dy. Then β

is of the form
∑

0 6=j≥−(r−1) cj−1(x)yj/j + βQ(x) for some βQ holomorphic in a
neighborhood of Q. As a consequence βf is holomorphic and vanishes at f = 0 in a
neighborhood of Q. Hence βf belongs to ϑ(U \ {(0, 0)}) and then to ϑ(U) since we
can remove codimension 2 singularities. Clearly we have βf ∈ I(f = 0) =

√
f . �

Proof of proposition 5.2. There exists f ∈ C{x, y} such that logαj = ujf∂/∂y for
some unit uj ∈ C{x, y} and all j ∈ {1, 2}. Let us use the path method (see [27]
and [19]). We define

X1+z = u1+zf
∂

∂y
=

u1u2f

zu1 + (1− z)u2

∂

∂y
.

We have that X1+z ∈ Xp1(C2, 0) for all z ∈ C\{c} where c = u2(0)/(u2(0)−u1(0)).
Moreover SingX1+z and Res(X1+z) do not depend on z. It is enough to prove that
logα1 is analytically conjugated by a special diffeomorphism to logα2 for c 6∈ [0, 1].
If c ∈ [0, 1] we define

Y 1
1+z =

u1u1+if

zu1 + (1− z)u1+i

∂

∂y
and Y 2

1+z =
u1+iu2f

zu1+i + (1− z)u2

∂

∂y
.

Since u1+i(0)/(u1+i(0)− u1(0)) and u1(0)/(u1(0)− u1+i(0)) do not belong to [0, 1]
then we obtain a special diffeomorphism conjugating α1 and α2 as a composition
of special diffeomorphisms.

Suppose c 6∈ [0, 1]. We look for W ∈ X (C3, 0) of the form h(x, y, z)f∂/∂y+∂/∂z
such that [W,X1+z] = 0. We ask hf to be holomorphic in a connected domain
V × V ′ ⊂ C2 × C containing {(0, 0)} × [0, 1]. We also require hf to vanish at
(f = 0)×V ′. Supposed that such a W exists then exp(W )|z=0 is a special mapping
conjugating logα1 and logα2. The equation [W,X1+z] = 0 is equivalent to

u1+zf
∂(hf)
∂y

− hf ∂(u1+zf)
∂y

=
∂(u1+zf)

∂z
.
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By simplifying we obtain

u1+zf
∂h

∂y
− hf ∂u1+z

∂y
=
∂u1+z

∂z
⇒ ∂(h/u1+z)

∂y
=

1
u1f
− 1
u2f

.

Let β be a solution of ∂β/∂y = 1/(u1f) − 1/(u2f) such that βf ∈
√
f . Since

(1/(u1f) − 1/(u2f))dy has vanishing residues by hypothesis then such a solution
exists by lemma 5.1. We are done by defining h = u1+zβ. �

Suppose that ϕ1, ϕ2 ∈ Diff p1(C2, 0) satisfy Fixϕ1 = Fixϕ2 and Res(ϕ1) ≡
Res(ϕ2). Consider convergent normal forms α1 and α2 of ϕ1 and ϕ2 respectively.
Then α1 and α2 are analytically conjugated by some special τ ∈ Diff (C2, 0) (prop.
5.2). By replacing ϕ2 with τ◦(−1)◦ϕ2◦τ we can restrict ourselves to study elements
of Diff p1(C2, 0) with common normal form and analytic special conjugations.

Proposition 5.3. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form
α. Let f ∈ C{x, y} such that (y ◦ϕ1− y)/f is a unit and denote ûj = (logϕj)(y)/f
for j ∈ {1, 2}. Then ϕ1 and ϕ2 are formally conjugated by the good transformation

τ̂ = exp
(
β̂

û1û2

zû1 + (1− z)û2
f
∂

∂y
+

∂

∂z

)
|z=0

where β̂ can be any solution of ∂β̂/∂y = 1/(û1f)− 1/(û2f) in C[[x, y]].

Proof. We have that 1/(û1f)−1/(û2f) ∈ C[[x, y]] since ϕ1 and ϕ2 have convergent
common normal form. Let βk ∈ C{x, y} such that β̂ − βk ∈ (x, y)k. We choose
u1,k ∈ C{x, y} such that û1 − u1,k ∈ (f)(x, y)k; this is possible by proposition 3.3.
We define u2,k ∈ C{x, y} \ (x, y) such that ∂βk/∂y = 1/(u1,kf) − 1/(u2,kf). Now
exp(u1,kf∂/∂y) and exp(u2,kf∂/∂y) are formally conjugated by

τk
def
= exp

(
βk

u1,ku2,k

zu1,k + (1− z)u2,k
f
∂

∂y
+

∂

∂z

)
|z=0

by proposition 5.2. It is straightforward to check out that uj,k → ûj and τk → τ̂ ,
the limits considered in the Krull topology. Thus τ̂ conjugates ϕ1 and ϕ2. �

5.2. Formal centralizer. Let ϕ ∈ Diff p1(C2, 0). Next, we study the groups
Ẑsp(ϕ) of formal special auto-conjugations of ϕ and Ẑup(ϕ) = Ẑ(ϕ)∩ D̂iff up(C2, 0).
We say that Fixϕ is of trivial type if I(Fixϕ) is of the form (f) for some f ∈ C{x, y}
such that (∂f/∂y)(0, 0) 6= 0. Let us remark that Fixϕ is of trivial type if and only
if it has a unique smooth irreducible component transversal to ∂/∂y.

Lemma 5.2. Let ϕ ∈ Diff p1(C2, 0). Then

Ẑup(ϕ) = {exp(ĉ(x) logϕ) for some ĉ(x) ∈ C[[x]]}.

In particular Ẑup(ϕ) is commutative and all its elements are good. Moreover we
have Ẑsp(ϕ) = Ẑup(ϕ) if Fixϕ is not of trivial type.

Proof. We have that τ̂ ∈ Ẑup(ϕ) is equivalent to [logϕ, log τ̂ ] = 0. Thus log τ̂ is
of the form (log τ̂)(y)∂/∂y by the same arguments than in the proof of proposition
3.2. We obtain

[logϕ, log τ̂ ] = 0⇔ ∂

∂y

(
(logϕ)(y)
(log τ̂)(y)

)
= 0.

Since (logϕ)(0, y) 6≡ 0 then log τ̂ = ĉ(x) logϕ for some ĉ(x) ∈ C[[x]]. We proved
Ẑup(ϕ) ⊂ Ẑsp(ϕ), we always have Ẑsp(ϕ) ⊂ Ẑup(ϕ) in the non-trivial type case. �
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We define the order ν(ϕ) of ϕ ∈ Diff p1(C2, 0) as the order of ϕ|x=0 ∈ Diff 1(C, 0).
We define ν(X) = ν(exp(X)) = ν(X(y)(0, y))− 1 for X ∈ Xp1(C2, 0).

Lemma 5.3. Let ϕ ∈ Diff p1(C2, 0). Suppose that Fixϕ is of trivial type. Then

Ẑsp(ϕ) = {τ̂◦(r)0 ◦ exp(ĉ(x) logϕ) for some r ∈ Z/(ν(ϕ)Z) and ĉ(x) ∈ C[[x]]}

where τ̂0 ∈ D̂iff p(C2, 0) is periodic and (∂(y ◦ τ̂0)/∂y)(0, 0) = e2πi/ν(ϕ). Moreover
Ẑsp(ϕ) is a commutative group.

Denote τ̂0(ϕ) = τ̂0. We say that τ̂0(ϕ) is the generating symmetry of ϕ. We
denote exp(c(x) logϕ) by Z1,c

ϕ whereas we denote τ̂0(ϕ)◦(r) ◦exp(c(x) logϕ) by Zκ,cϕ
where κ = e2πir/ν(ϕ).

Proof. Let ν = ν(ϕ1). Up to a change of coordinates (x, h(x, y)) we can suppose
that y ◦ ϕ− y = v(x, y)yν+1 where v ∈ C{x, y} is a unit and ν = ν(ϕ). Consider a
convergent normal form α = exp(w(x, y)yν+1∂/∂y) of ϕ. Let us remark that since

Res(ϕ, (x, 0)) =
1

2πi

∫
y∈∂B(0,ε)

dy

w(x, y)yν+1

for ε > 0 small enough then Res(ϕ) is a holomorphic function of y = 0. We define

X =
yν+1

1 + yνRes(ϕ, (x, 0))
∂

∂y
.

By construction Fixϕ = Fix(exp(X)) and Res(ϕ) ≡ Res(exp(X)). Up to a special
change of coordinates we can suppose that exp(X) is a convergent normal form of
ϕ (prop. 5.2). Let β̂ ∈ C[[x, y]] be the solution of ∂β/∂y = 1/X(y) − 1/(logϕ)(y)
such that β̂(x, 0) ≡ 0. We define

ξ̂ = exp
(
β̂

uû

zu+ (1− z)û
yν+1 ∂

∂y
+

∂

∂z

)
|z=0

where u = 1/(1 + Res(ϕ, (x, 0))yν) and û = (logϕ)(y)/yν+1. Then ξ̂ conjugates
exp(X) and ϕ by proposition 5.3. We remark that (x, e2πi/νy)∗X = X; hence
τ̂0 = ξ̂ ◦ (x, e2πi/νy)◦ ξ̂◦(−1) ∈ Ẑsp(ϕ) is periodic and (∂τ̂0/∂y)(0, 0) = e2πi/ν . Given
τ̂ ∈ Ẑsp(ϕ) there exists r ∈ Z such that (τ̂◦(−r)0 τ̂)|x=0 is tangent to the identity by
proposition 4.2. As a consequence τ̂◦(−r)0 τ̂ is tangent to the identity. We obtain
τ̂ = τ̂

◦(r)
0 ◦ exp(ĉ(x) logϕ) for some ĉ(x) ∈ C[[x]] by lemma 5.2. Moreover Ẑsp(ϕ) is

commutative since (x, e2πi/νy)∗X = X implies τ̂∗0 logϕ = logϕ. �

Next we stress that special and good conjugations are the same in the non-trivial
type case.

Lemma 5.4. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form α.
Suppose that ϕ1 and ϕ2 are formally conjugated by a special σ̂ ∈ D̂iff (C2, 0) and
that Fixϕ1 is not of trivial type. Then σ̂ is good.

Proof. We have that α and ϕj are conjugated by a good τ̂j ∈ D̂iff (C2, 0) (prop.
5.3). Then it is enough to prove that τ̂◦(−1)

2 ◦ σ̂ ◦ τ̂1 ∈ Ẑsp(α) is good. This is a
consequence of lemma 5.2. �
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Let X ∈ Xp1(C2, 0). We denote by SingVX the set of irreducible components of
SingX which are parameterized by x. Consider γ ∈ SingVX; we denote by νX(γ)
the only element of N ∪ {0} such that X(y) ∈ I(γ)νX(γ)+1 \ I(γ)νX(γ)+2.

Proposition 5.4. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common normal form exp(X).
Consider γ ∈ SingVX. Then there exists a unique special σ̂(ϕ1, ϕ2, γ) ∈ D̂iff (C2, 0)
conjugating ϕ1 and ϕ2 and such that y ◦ σ̂(ϕ1, ϕ2, γ)− y ∈ I(γ)νX(γ)+2.

By definition the transformation σ̂(ϕ1, ϕ2, γ) is the privileged formal conjugation
between ϕ1 and ϕ2 with respect to γ.

Proof. There exists a unique solution β̂ of ∂β̂/∂y = 1/(logϕ1)(y) − 1/(logϕ2)(y)
such that β̂|γ ≡ 0. The formula in proposition 5.3 provides a special σ̂(ϕ1, ϕ2, γ) = τ̂

conjugating ϕ1 and ϕ2 and such that y ◦ σ̂(ϕ1, ϕ2, γ)− y ∈ I(γ)νX(γ)+2.
Suppose σ̂(ϕ1, ϕ2, γ) is not unique. Thus we have y ◦ ĥ − y ∈ I(γ)νX(γ)+2 for

some ĥ ∈ Ẑup(ϕ1) \ {Id}. By lemma 5.2 the transformation ĥ is of the form Z1,c
ϕ1

for some c ∈ C[[x]]. Since (log ĥ)(y) belongs to I(γ)νX(γ)+2 then c ≡ 0 and ĥ ≡ Id.
We obtain a contradiction. �

5.3. Unfolding of diffeomorphisms y → e2πip/qy +O(y2). Consider the sets

Diff prs(C2, 0) = {ϕ ∈ Diff p(C2, 0) : j1ϕ|x=0 is periodic}
and

Diff pr(C2, 0) = {ϕ ∈ Diff p(C2, 0) : j1ϕ|x=0 is periodic but ϕ|x=0 is not periodic}.

Given ϕ ∈ Diff prs(C2, 0) we denote by q(ϕ) the smallest element of N such that
(∂ϕ/∂y)(0, 0)q(ϕ) = 1. Clearly ϕ ∈ Diff pr(C2, 0) implies ϕ◦(q(ϕ)) ∈ Diff p1(C2, 0).
In this paper we classify analytically the elements of Diff p1(C2, 0). We obtain for
free a complete system of analytic invariants for the elements of Diff pr(C2, 0).

Proposition 5.5. Let ϕ1, ϕ2 ∈ Diff prs(C2, 0). Then ϕ1 ∼ ϕ2 if and only if
(∂ϕ1/∂y)(0, 0) = (∂ϕ2/∂y)(0, 0) and ϕ◦(q(ϕ1))

1 ∼ ϕ◦(q(ϕ1))
2 .

Proof. The sufficient condition is obvious. Every mapping ϕ ∈ Diff u(Cn, 0) admits
a unique formal Jordan decomposition

ϕ = ϕs ◦ ϕu = ϕu ◦ ϕs
in semisimple ϕs ∈ D̂iff (Cn, 0) and unipotent ϕu ∈ D̂iff u(Cn, 0) parts. Semisimple
is equivalent to formally linearizable. The decomposition is compatible with the
filtration in the space of jets, i.e. jkϕ = jkζ implies jkϕs = jkζs and jkϕu = jkζu.
Moreover we have ϕs, ϕu ∈ D̂iff p(Cn, 0) for all ϕ ∈ Diff p(Cn, 0).

Denote q = q(ϕ1) and υ = (∂ϕ1/∂y)(0, 0), we can suppose υ 6= 1. Suppose
ϕ
◦(q)
1 ≡ Id. This implies ϕ◦(q)2 ≡ Id. Denote by ηk the unipotent diffeomorphism

(x, y) + (x, υy)◦(−1) ◦ ϕk + . . . (x, υy)◦(−(q−1)) ◦ ϕ◦(q−1)
k

q
.

By construction ηk ◦ϕk = (x, υy)◦ηk for k ∈ {1, 2}. The diffeomorphism η
◦(−1)
2 ◦η1

conjugates ϕ1 and ϕ2.
Suppose ϕ◦(q)1 6≡ Id. We have that j1ϕk is conjugated to (x, υy) by a linear

isomorphism and then semisimple for k ∈ {1, 2}. Thus we obtain j1ϕk,s = j1ϕk,
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moreover since ϕk,s is formally linearizable then ϕ
◦(q)
k,s ≡ Id for k ∈ {1, 2}. We

deduce that ϕ◦(q)k = ϕ
◦(q)
k,u for k ∈ {1, 2}. Hence logϕk,u is of the form f̂k∂/y for

some f̂k ∈ C[[x, y]] \ {0} and all k ∈ {1, 2}.
Let σ be a diffeomorphism conjugating ϕ◦(q)1 and ϕ

◦(q)
2 . The mapping σ conju-

gates q logϕ1,u and q logϕ2,u by uniqueness of the infinitesimal generator and then
σ ◦ ϕ1,u = ϕ2,u ◦ σ. Denote η = σ◦(−1) ◦ ϕ2,s ◦ σ. We claim that σ conjugates ϕ1

and ϕ2, it is enough to prove that ϕ1,s = η. We have x ◦ ϕ1,s = x ◦ η = x and
(∂ϕ1,s/∂y)(0, 0) = (∂η/∂y)(0, 0). As a consequence η◦(−1) ◦ϕ1,s is unipotent. Since
both η and ϕ1,s commute with ϕ1,u then (η◦(−1)◦ϕ1,s)◦ϕ1,u = ϕ1,u◦(η◦(−1)◦ϕ1,s).
We deduce that [log(η◦(−1)◦ϕ1,s), logϕ1,u] = 0. Since log(η◦(−1)◦ϕ1,s)(x) = 0 then
we obtain log(η◦(−1) ◦ ϕ1,s) = (ĉ(x)/xm) logϕ1,u for some ĉ ∈ C[[x]] and m ∈ Z≥0.
The equations x ◦ η = x and η∗ logϕ1,u = logϕ1,u imply that η commutes with
η◦(−1) ◦ ϕ1,s. This leads us to (η◦(−1) ◦ ϕ1,s)◦(q) ≡ Id. In particular ĉ is identically
0, we obtain η = ϕ1,s. �

Remark 5.2. The techniques in this paper can be used to classify analytically the
diffeomorphisms ϕ ∈ Diff up(C2, 0) such that (y ◦ ϕ − y) is not of the form (xm)
or (xmy) for m ∈ N up to a change of coordinates and then all resonant diffeo-
morphisms having an iterate in such a set. We work with elements of Diff p1(C2, 0)
for the sake of simplicity. A complete system of analytic invariants for the case
(y ◦ ϕ− y) = (xm) has been provided by Voronin [10].

6. Ecalle-Voronin invariants. Trivial type case

We present a complete system of analytic invariants for ϕ ∈ Diff p1(C2, 0) in the
trivial type case. We establish the link between the analytic classes of the one-
variable diffeomorphisms (ϕ)|x=x0 for x0 in a neighborhood of 0 and the analytic
class of ϕ.

We suppose throughout this section that I(Fixϕ) = (y) for all ϕ ∈ Diff p1(C2, 0)
such that Fixϕ is of trivial type. This is possible up to change of coordinates of
the form (x, y + h(x)).

Lemma 6.1. Let ϕ ∈ Diff p1(C2, 0) such that Fixϕ is of trivial type. Then
(logϕ)(y) belongs to ϑ(B(0, δ))[[y]] for some δ ∈ R+.

Proof. Suppose that ϕ is defined in B(0, δ)×B(0, ε). Let Θ be the operator ϕ−Id.
By the proof of proposition 3.3 we have

(logϕ)(y)−
l∑

j=1

(−1)j+1 Θ◦(j)(y)
j

∈ (yν(ϕ)+l+1).

We are done since Θ◦(j)(y) is holomorphic in the neighborhood of B(0, δ)×{0} for
all j ∈ N. �

Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form such that
Fixϕ1 is of trivial type. We define σ̂(ϕ1, ϕ2) = σ̂(ϕ1, ϕ2, F ixϕ1). We say that
σ̂(ϕ1, ϕ2) is the privileged formal conjugation between ϕ1 and ϕ2. By construction
we obtain that y ◦ σ̂(ϕ1, ϕ2)− y ∈ (yν(ϕ1)+2).

Lemma 6.2. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form such
that Fixϕ1 is of trivial type. Then y ◦ σ̂(ϕ1, ϕ2) ∈ ϑ(B(0, δ))[[y]] for some δ ∈ R+.
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Proof. We have (logϕ1)(y), (logϕ2)(y) ∈ ϑ(B(0, δ))[[y]] for some δ ∈ R+ by lemma
6.1. Consider β̂ ∈ C[[x, y]] such that ∂β̂/∂y = 1/(logϕ1)(y) − 1/(logϕ2)(y) and
β̂(x, 0) ≡ 0. We deduce that β̂ and then y ◦ σ̂(ϕ1, ϕ2) belong to ϑ(B(0, δ))[[y]] by
proposition 5.3. �

Lemma 6.3. Let ϕ ∈ Diff p1(C2, 0) such that Fixϕ is of trivial type. Then y◦ τ̂0(ϕ)
belongs to ϑ(B(0, δ))[[y]] for some δ ∈ R+.

Proof. Consider the notations in the proof of lemma 5.3. We have that

τ̂0(ϕ) = σ̂(exp(X), ϕ) ◦ (x, e2πi/ν(ϕ)y) ◦ σ̂(exp(X), ϕ)◦(−1).

Now y ◦ σ̂(exp(X), ϕ) belongs to ϑ(B(0, δ))[[y]] for some δ ∈ R+ by the previous
lemma. Therefore y ◦ τ̂0(ϕ) belongs to ϑ(B(0, δ))[[y]]. �

Let ϕ ∈ Diff p1(C2, 0). Suppose that Fixϕ is of trivial type. We define ϕw as the
germ of ϕ|x=w at the neighborhood of y = 0. We define Ds(ϕ) as the continuous
sections of ∪w∈B(0,δ){w} × Ds(ϕw). The directions in Ds(ϕw) vary continuously
with respect to w. Thus the mapping λ 7→ λ(0) establishes a bijection from Ds(ϕ)
onto Ds(ϕ0). We define D(ϕ) = D−1(ϕ) ∪D1(ϕ).

For λ ∈ D(ϕ) we define the petal V λϕ = ∪w∈B(0,δ)V
λ(w)
ϕw . The set V λϕ is open. We

say that η ∈ ϑ(V λϕ ) is a Fatou coordinate of ϕ in V λϕ if η|x=w is a Fatou coordinate

of ϕ|x=w in V λ(w)
ϕw for all w in a neighborhood of 0.

Fix a convergent normal form α of ϕ. Fix a direction λ0 ∈ D(ϕ) and a Fatou
coordinate ψλ0

α ∈ ϑ(V λ0
α ∪ V λ0

ϕ ) of α. Now consider homogeneous coordinates, i.e.
we exhibit for every λ ∈ D(ϕ) an integral of the time form ψλα ∈ ϑ(V λα ∪ V λϕ ) of α
such that the system {(ψλα)|x=w}λ∈D(ϕ)

provides homogeneous coordinates for all w

in a neighborhood of 0. There exists a unique integral of the time form ψλϕ ∈ ϑ(V λϕ )
of ϕ for all λ ∈ D(ϕ) such that limy→0(ψλϕ − ψα)(w, y) = 0 in every sector of
direction λ(w) and angle lesser than 2π/ν(ϕ) contained in V λϕ ∩ (x = w) for all w
in a neighborhood of 0. Moreover (x, ψλϕ(x, z)) is injective in V λϕ . The proof can be
obtained like in subsection 4.3. Let λ ∈ Ds(ϕ), we can define the change of charts

ξλϕ(x, z) = ψλe
iπ/ν(ϕ)

ϕ ◦
(
x, ψλϕ(x, z)

)◦(−1)
(x, z).

We obtain that ξλϕ is of the form

ξλϕ(x, z) = z − πiRes(ϕ, (x, 0))/ν(ϕ) +
∞∑
j=1

aϕλ,j(x)e
−2πisjz

where aϕλ,j is an analytic function for all j ∈ N. Moreover
∑∞
j=1 a

ϕ
λ,j(x)w

j is an
analytic function in a neighborhood of (x,w) = (0, 0). A different choice of con-
vergent normal form or homogeneous coordinates provides new Fatou coordinates
ψλϕ(x, z) + t(x) for some t ∈ C{x} independent of λ ∈ D(ϕ). Thus the changes of
charts are unique up to conjugation with z + t(x) for some t ∈ C{x}.

Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form α. We always
suppose that their Fatou coordinates are calculated with respect to a common
system of homogeneous coordinates. Since τ̂0(ϕ2) and σ̂(ϕ1, ϕ2) depend analytically
on x by lemmas 6.3 and 6.2 then there are parameterized versions of the results in
subsections 4.2, 4.3 and 4.4. We obtain:
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Proposition 6.1. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common convergent normal form
α. Suppose that Fixϕ1 is of trivial type. Then ϕ1

sp∼ ϕ2 if and only if there exists
(κ, t) ∈< e2iπ/ν(α) > ×C{x} such that

(3) ξλκϕ2
(x, z + t(x)) = (z + t(x)) ◦ ξλϕ1

(x, z) ∀λ ∈ D(ϕ1).

Indeed the equation 3 is equivalent to Zκ,tϕ2
◦ σ̂(ϕ1, ϕ2) ∈ Diff (C2, 0).

Remark 6.1. Let ϕ ∈ Diff p1(C2, 0). Analogously to remark 4.2 the previous propo-
sition implies that

logϕ ∈ X (C2, 0)⇔ ξλϕ(x, z) ≡ z − πiRes(ϕ, (x, 0))/ν(ϕ) ∀λ ∈ D(ϕ).

Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2. We say that mϕ1(w) = mϕ2(w)
if (ϕ1)w ∼ (ϕ2)w. Next we analyze whether mϕ determines the analytic class of
ϕ. It turns out that the analytic triviality of ϕ0 plays a preeminent role. Let
α ∈ Diff p1(C2, 0) be a convergent normal form of ϕ and consider homogeneous
coordinates for the changes of charts of ϕ. Consider the set

Es(ϕ) = {(λ, k) ∈ Ds(ϕ)× N s.t. aϕλ,k 6≡ 0}

for s ∈ {−1, 1}. We define E(ϕ) = E−1(ϕ) ∪ E1(ϕ). We define

gd(ϕ) = gcd{j ∈ N : ∃λ ∈ D(ϕ) s.t. (λ, j) ∈ E(ϕ)}.

The definitions of gd(ϕ) and Es(ϕ) for s ∈ {−1, 1} do not depend on the choice of
homogeneous coordinates.

Proposition 6.2. Let ϕ1 ∈ Diff p1(C2, 0) such that logϕ1 is divergent. Suppose
that Fixϕ1 is of trivial type. Then there exists ϕ2 ∈ Diff p1(C2, 0) with common
convergent normal form with ϕ1 such that

• mϕ1 ≡ mϕ2

• ϕ1 is not analytically conjugated to ϕ2 by a special diffeomorphism
if and only if

• log(ϕ1)0 belongs to X (C, 0)
• {s ∈ {−1, 1} : aϕ1

λ,j ∈ (xj/gd(ϕ1)+1) for all (λ, j) ∈ Ds(ϕ1)× N} 6= ∅.
In such a case there exists (r, s, q) ∈ Z/(ν(ϕ1)Z) × C{x} × (Q \ {0}) such that ϕ1

and ϕ2 are conjugated by a transformation of the form

exp
(( q

2πi
log x+ s(x)

)
logϕ2

)
◦ τ̂0(ϕ2)◦(r) ◦ σ̂(ϕ1, ϕ2)

which is analytic in a domain of the form |y| < C0/
ν(ϕ1)
√
| lnx| for some C0 ∈ R+.

Proof of the sufficient condition. Choose a convergent normal form α of ϕ1. Con-
sider Fatou coordinates ψλα in V λα for all λ ∈ D(ϕ1). Suppose that mϕ1 ≡ mϕ2 .
Then there exists (κ(x), d(x)) ∈< e2iπ/ν(α) > ×C such that

ξλκ(x)ϕ2
(x, z + d(x)) = (z + d(x)) ◦ ξλϕ1

(x, z)

in homogeneous coordinates for all λ ∈ D(ϕ1) and all x in a neighborhood of
0. A priori the functions κ(x) and d(x) are not even continuous. There exists
κ ∈< e2iπ/ν(α) > such that W = [κ(x) = κ] is uncountable in every neighborhood
of x = 0. Let (λ, j) ∈ Es(ϕ1); we have aϕ1

λ,j(x) = aϕ2
λκ,j(x)e

−2πsjd(x)i for all x ∈ W
and then aϕ2

λκ,j 6≡ 0. We denote sg : D(ϕ1) → {−1, 1} the function such that
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sg(Ds(ϕ1)) = {s} for s ∈ {−1, 1}. We denote hλ,j = aϕ2
λκ,j/a

ϕ1
λ,j . The previous

formula implies that

(4) h
sg(λ)k
λ,j = h

sg(µ)j
µ,k

for all (λ, j), (µ, k) ∈ E(ϕ1) and for all x ∈ W \ (aϕ1
λ,ja

ϕ1
µ,k = 0). The equation

4 is satisfied for all x in a neighborhood of 0 since W is uncountable. Consider
ν(λ, j) ∈ Z the order of vanishing of hλ,j , i.e. hλ,j/xν(λ,j) is a unit. Thus we have

(5) ν(λ, j)sg(λ)k = ν(µ, k)sg(µ)j

for all (λ, j), (µ, k) ∈ E(ϕ1).
Consider a point x0 ∈ W such that aϕ1

λ,j(x0) 6= 0 for all (λ, j) ∈ E(ϕ1). Choose
(λ0, j0) ∈ E(ϕ1); we define q = sg(λ0)ν(λ0, j0)/j0 and

s(x) =
1

2πisg(λ0)j0
ln
hλ0,j0(x)
xν(λ0,j0)

.

Denote t(x) = q/(2πi) lnx + s(x). We can suppose t(x0) = d(x0) by choosing
properly the determination of the logarithm. The equation 4 implies that t does
not depend on (λ0, j0) ∈ E(ϕ1). Thus we obtain e2πisg(λ)jt(x)aϕ1

λ,j = aϕ2
λκ,j for all

(λ, j) ∈ E(ϕ1). By proposition 4.10 we deduce that ϕ1 and ϕ2 are conjugated by
an analytic mapping σ defined in a neighborhood of (y = 0) \ {(0, 0)} and whose
expression in each petal V λϕ1

is given by

(6)
[(
ψλκϕ2

)◦(−1) ◦
(
ψλκϕ2

+
q

2πi
lnx
)]
◦
[(
ψλκϕ2

)◦(−1) ◦
(
ψλϕ1

+ s(x)
)]
.

The condition ϕ1 6
sp∼ ϕ2 implies that q 6= 0, otherwise Zκ,sϕ2

◦ σ̂(ϕ1, ϕ2) is a special
analytic conjugation by proposition 6.1. Moreover since ψλϕj

− ψλα is bounded for
j ∈ {1, 2} then σ is defined in a domain very similar to the domain of definition of
exp(q/(2πi) lnx logα). We have ψλα ∼ 1/yν(α), thus σ is defined in a domain of the
form |y| < C0/

ν(α)
√
| lnx| for some C0 ∈ R+.

The property q 6= 0 implies ν(λ, j) 6= 0 for all (λ, j) ∈ E(ϕ1). Suppose that
log(ϕ1)0 does not belong to X (C, 0). By remark 4.2 this implies the existence of
aϕ1
λ0,j0

such that aϕ1
λ0,j0

(0) 6= 0. Since ξλκ(0)ϕ2 (0, z + d(0)) = (z + d(0)) ◦ ξλϕ1
(0, z)

then aϕ2
λ0κ(0),j0

(0) 6= 0. We deduce that ν(λ0, j0) > 0 > ν(λ0κ(0)κ−1, j0), this
inequality contradicts equation 5 since sg(λ0) = sg(λ0κ(0)κ−1). Analogously we
obtain log(ϕ2)0 ∈ X (C, 0).

To prove the second property we can suppose that Es(ϕ1) 6= ∅ for all s ∈ {−1, 1};
otherwise the result is trivial. The equation 5 implies that either ν(E−1(ϕ1)) ⊂ Z<0

and ν(E+1(ϕ1)) ⊂ N or ν(E−1(ϕ1)) ⊂ N and ν(E+1(ϕ1)) ⊂ Z<0. We suppose that
we are in the former case without lack of generality. Since aϕ1

λ,j ≡ aϕ2
λκ,j/hλ,j we

deduce that aϕ1
λ,j ∈ (x−ν(λ,j)+1) for all (λ, j) ∈ E−1(ϕ1). Let (µ, k) ∈ E(ϕ1), the

equation 5 implies that −ν(λ, j) ∈ jN/ gcd(j, k). Therefore −ν(λ, j) ∈ jN/gd(ϕ).
This implies aϕ1

λ,j ∈ (xj/gd(ϕ)+1) for all (λ, j) ∈ D−1(ϕ1)× N. �

Proof of the necessary condition. We keep the notations in the previous proof. Sup-
pose without lack of generality that aϕ1

λ,j ∈ (xj/gd(ϕ1)+1) for all (λ, j) ∈ D−1(ϕ1)×N.
We define aϕ2

λ,j = aϕ1
λ,jx

sj/gd(ϕ1) for all (λ, j) ∈ Ds(ϕ1) × N. Let λ ∈ D(ϕ1); it is
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straightforward to prove that
∞∑
j=1

aϕ1
λ,j(x)x

sg(λ)j/gd(ϕ1)zj ∈ C{x, z} ⇔
∞∑
j=1

aϕ1
λ,j(x)z

j ∈ C{x, z}.

Now we can use a parameterized version of proposition 4.6 to obtain ϕ2 ∈ Diff p1(C2, 0)
with convergent normal form α and such that

ξλϕ2
(x, z) ≡ z − πiRes(ϕ1, (x, 0))/ν(ϕ1) +

∞∑
j=1

aϕ2
λ,j(x)e

−2πisjz

for all λ ∈ Ds(ϕ1) and all s ∈ {−1, 1}. Let us remark that log(ϕ2)0 ∈ X (C, 0) since
aϕ2
λ,j(0) = 0 for all (λ, j) ∈ D(ϕ1)× N. Our choice of ϕ2 implies that

ξλϕ2

(
x, z +

1
2πigd(ϕ1)

lnx
)
≡
(
z +

1
2πigd(ϕ1)

lnx
)
◦ ξλϕ1

(x, z) ∀λ ∈ D(ϕ1).

Therefore we get mϕ1(x) = mϕ2(x) for all x 6= 0. Moreover mϕ1(0) = mϕ2(0) since
both (ϕ1)0 and (ϕ2)0 are analytically trivial.

We define νk(λ, j) the order of vanishing of aϕk

λ,j at 0, it is−∞ if aϕk

λ,j ≡ 0. We have

ν2(λ, j) = ν1(λ, j) + sj/gd(ϕ1) for all (λ, j) ∈ Ds(ϕ1)× N. Suppose ϕ1
sp∼ ϕ2; then

there exists (κ, d) ∈< e2iπ/ν(ϕ1) > ×C{x} such that aϕ1
λ,j(x) ≡ aϕ2

λκ,j(x)e
−2πsjd(x)i

for all (λ, j) ∈ Ds(ϕ1)× N (prop. 6.1). Thus we obtain ν2(λκ, j) = ν1(λ, j) for all
(λ, j) ∈ D(ϕ1) × N. Choose (λ0, j0) ∈ D(ϕ1) × N such that ν1(λ0, j0) 6= −∞. By
remark 6.1 that is possible since logϕ1 is divergent. We define

H = {λ ∈ Dsg(λ0)(ϕ1) : ν(λ, j0) 6= −∞}.

Denote c = sg(λ0)j0/gd(ϕ1). We obtain∑
λ∈H

ν2(λ, j0) =
∑
λ∈H

(ν1(λ, j0) + c) = c]H +
∑
λ∈κH

ν2(λ, j0) = c]H +
∑
λ∈H

ν2(λ, j0).

This is impossible since c 6= 0 and H 6= ∅. Thus ϕ1 and ϕ2 are not conjugated by
a special diffeomorphism. �

Corollary 6.1. Let α ∈ Diff p1(C2, 0) such that logα ∈ X (C2, 0). Suppose that
Fixα is of trivial type. Then there exist ϕ1, ϕ2 ∈ Diff p1(C2, 0) with convergent
normal form α such that mϕ1 ≡ mϕ2 but ϕ1 6

sp∼ ϕ2.

Corollary 6.2. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) such that Fixϕ1 = Fixϕ2. Suppose that
Fixϕ1 is of trivial type and that log(ϕ1)0 6∈ X (C, 0). Then ϕ1

sp∼ ϕ2 if and only
mϕ1 ≡ mϕ2 .

We say that η is a r-moderated mapping if η is a biholomorphism from B(0, r)
onto η(B(0, r)). If besides that η(B(0, r)) is contained in B(0, R) then we say that
η is rR-moderated.

Next proposition is intended to show that ηw ◦ (ϕ1)|x=w = (ϕ2)|x=w ◦ ηw for
all w 6= 0 and ϕ1 6

sp∼ ϕ2 are not compatible if the domains of definition of the
conjugations ηw have a regular behavior when w → 0.

Proposition 6.3. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) such that Fixϕ1 = Fixϕ2. Suppose
that Fixϕ1 is of trivial type. Then ϕ1

sp∼ ϕ2 if there exist r ∈ R+ and a r-moderated
mapping ηx conjugating (ϕ1)x and (ϕ2)x for all x in a pointed neighborhood of 0.
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We do not ask the mappings ηx to have any kind of good dependance with
respect to x.

Proof. By proposition 5.1 we have that ν(ϕ1) = ν(ϕ2) and Res(ϕ1) ≡ Res(ϕ2).
Let αj be a convergent normal form of ϕj for j ∈ {1, 2}. Since ν(αj) = ν(ϕj) and
Res(αj) ≡ Res(ϕj) for all j ∈ {1, 2} then there exists a special ζ ∈ Diff (C2, 0)
conjugating α1 and α2 by proposition 5.2. Denote ϕ̃2 = ζ◦(−1) ◦ ϕ2 ◦ ζ. The
mapping ζ

◦(−1)
x ◦ ηx conjugates (ϕ1)x and (ϕ̃2)x, they share the convergent nor-

mal form (α1)x. Then we obtain ζ
◦(−1)
x ◦ ηx = Zκ,t(ϕ̃2)x

◦ σ̂((ϕ1)x, (ϕ̃2)x) for some

(κ, t) ∈< e2πi/ν(ϕ1) > ×C. This implies |(∂(ζ◦(−1)
x ◦ ηx)/∂y)(0)| = 1 and then

|(∂ζx)/∂y)(0)| = |(∂ηx)/∂y)(0)|. Denote b(x) = (∂ηx/∂y)(0). We obtain that
ηx(ry)/(rb(x)) is a Schlicht function for all x in a pointed neighborhood of 0. By
the Koebe’s distortion theorem (see [5], page 65) we get

sup
y∈B(0,r1)

|ηx(y)| ≤ r|b(x)| sup
y∈B(0,r1/r)

∣∣∣∣ηx(ry)rb(x)

∣∣∣∣ ≤ r ∣∣∣∣∂(y ◦ ζ)
∂y

(x, 0)
∣∣∣∣ r1/r

(1− r1/r)2

for all r1 < r and all x in a pointed neighborhood of 0. We deduce that ζ◦(−1)
x ◦ ηx

is rR-moderated for some R ∈ R+ by considering a smaller r > 0 if necessary. By
replacing ϕ2 with ϕ̃2 and ηx with ζ◦(−1)

x ◦ ηx we can suppose that ϕ1 and ϕ2 have
common normal form.

Suppose that either logϕ1 or logϕ2 belongs to X (C2, 0). Since (ϕ1)x is con-
jugated to (ϕ2)x for all x in a pointed neighborhood of 0 then aϕk

λ,j ≡ 0 for all
(λ, j, k) ∈ D(ϕ1) × N × {1, 2} by remark 4.2. Thus logϕk ∈ X (C2, 0) for all
k ∈ {1, 2} by remark 6.1. The discussion in the previous paragraph implies that ϕ1

and ϕ2 are conjugated by a special diffeomorphism.
Now suppose that logϕj 6∈ X (C2, 0) for j ∈ {1, 2}. Since ηw conjugates (ϕ1)w

and (ϕ2)w then ηw is of the form Z
κ(w),d(w)
(ϕ2)w

◦ σ̂((ϕ1)w, (ϕ2)w) where (κ(w), d(w))
belongs to < e2πi/ν(ϕ1) > ×C for all w in a pointed neighborhood of 0. We choose
κ ∈< e2πi/ν(ϕ1) > such that (κ(x) = κ) is an uncountable set in every neighborhood
of 0. Denote W = [κ(x) = κ] \ ∪(λ,j)∈E(ϕ2)(a

ϕ2
λ,j = 0). By the proof of proposition

6.2 we obtain that there exists (q, s) ∈ Q× C{x} such that

exp
( q

2πi
log x logϕ2

)
◦ Zκ,sϕ2

◦ σ̂(ϕ1, ϕ2)

conjugates ϕ1 and ϕ2 in a neighborhood of (y = 0) \ {(0, 0)}. We deduce that
exp((q/(2πi) lnw+s(w)−d(w)) logϕ2)|x=w is in Z((ϕ2)w) for all w ∈W \{0}. We
obtain the equation

aϕ2
λ,j(x) = aϕ2

λ,j(x)e
−2πisj(q/(2πi) ln x+s(x)−d(x))

for all (λ, j) ∈ Es(ϕ2) and s ∈ {−1, 1} and x ∈ W \ {0} (prop. 4.10). Since
E(ϕ2) 6= ∅ then (q/2πi) lnx+ s(x)− d(x) belongs to Q for all x ∈W \ {0}.

We want to estimate d(x). We have

y ◦ ηw − y ◦ (Zκ,0ϕ2
)|x=w − κd(w)

(logϕ2)(y)
yν(ϕ1)+1

(w, 0)yν(ϕ1)+1 ∈ (yν(ϕ1)+2)

for all w ∈ W \ {0}. The series [(logϕ2)(y)/yν(ϕ1)+1](x, 0) is a unit of C{x} by
lemma 6.1. We denote by C(ηx) and C(Zκ,0ϕ2

) the coefficients of yν(ϕ1)+1 of ηx and
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Zκ,0ϕ2
respectively. We obtain that C(ηx) ∈ C for all x in a pointed neighborhood of

0 and C(Zκ,0ϕ2
) ∈ C{x} by lemma 6.3. We have that

C(ηx) =
1

2πi

∫
|y|=r/2

y ◦ ηx(y)
yν(ϕ1)+2

and then |C(ηx)| ≤ 2ν(ϕ1)+1R/rν(ϕ1)+1 for all x in a pointed neighborhood of 0.
We deduce that there exists K > 0 such that |d(x)| ≤ K for all x ∈ W \ {0} in
a neighborhood of 0. Hence Img((q/2πi) lnx) is bounded for x ∈ W \ {0} in a
neighborhood of 0. This implies q = 0 since otherwise

lim
x→0

∣∣∣Img ( q

2πi
lnx
)∣∣∣ = lim

x→0

|q|
2π
| ln |x|| =∞.

We obtain a special element Zκ,sϕ2
◦ σ̂(ϕ1, ϕ2) of Diff (C2, 0) conjugating ϕ1 and ϕ2

by proposition 6.1. �

Consider ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2 of trivial type. We denote
Inv(ϕ1) ∼ Inv(ϕ2) if there exists (κ(x), d(x)) ∈< e2πi/ν(ϕ1) > ×[|Img(z)| < I]
such that

ξλκ(x)ϕ2
(x, z + d(x)) = (z + d(x)) ◦ ξλϕ1

(x, z) ∀λ ∈ D(ϕ1)

in homogeneous coordinates for all x 6= 0 in a neighborhood of 0 and some I ∈ R+.

Proposition 6.4. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2 of trivial type.
Then we have ϕ1

sp∼ ϕ2 if and only if Inv(ϕ1) ∼ Inv(ϕ2).

The previous proposition provides a complete system of analytic invariants in
the trivial type case. It is composed by the changes of charts modulo moderated
changes of coordinates.

Proof. The condition Inv(ϕ1) ∼ Inv(ϕ2) implies in particular Res(ϕ1) ≡ Res(ϕ2).
Let αj be a convergent normal form of ϕj for j ∈ {1, 2}. Thus α1 and α2 are
conjugated by a good σ ∈ Diff p(C2, 0) by proposition 5.3. By replacing ϕ2 with
σ◦(−1) ◦ ϕ2 ◦ σ and ξλϕ2

(x, z) with (z + t(x)) ◦ ξλϕ2
◦ (x, z − t(x)) for all λ ∈ D(ϕ2)

and some t ∈ C{x} we can suppose that ϕ1 and ϕ2 have common convergent
normal form α. The proof of proposition 6.3 also works if we replace the moderated
hypothesis with the boundness of Img(d). �

Proposition 6.3 provides a geometrical interpretation of the system of invariants
Inv(ϕ). In this paper we define the analogue of Mardesic-Roussarie-Rousseau’s
[16] invariants of analytic classification for all ϕ ∈ Diff p1(C2, 0) (theorem 10.2). We
prove a rigidity theorem (analogous to corollary 6.2), a theorem making clear the
relation among the analytic conjugation and the centralizer (analogous to propo-
sition 6.1) and the moderated theorem 1.1 giving geometrical insight about the
nature of the space of invariants.

7. Dynamics of the real flow of a normal form

From now on we deal with diffeomorphism ϕ ∈ Diff p1(C2, 0) such that Fixϕ
is not of trivial type. In particular the number N(ϕ) = ][(Fixϕ) ∩ (x = x0)]
where x0 6= 0 satisfies N(ϕ) ≥ 2. Our goal is splitting a domain |y| < ε in
several sets in which the dynamics are simpler to analyze. Afterwards we intend
to analyze the sectors in the parameter space in which a vector field of the form
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Re(λX) (λ ∈ S1 \ {−1, 1}) has a stable behavior. The stability will provide well-
behaved transversals to Re(X). Such transversals are the base to construct Fatou
coordinates of ϕ ∈ Diff p1(C2, 0) (with convergent normal form X) for all x in a
neighborhood of 0.

Consider the function

agεX : B(0, δ)× ∂B(0, ε) → S1

(x, y) 7→ (X(y)/y)/|X(y)/y|.

By lifting agεX to R = S̃1 we obtain a mapping argεX : B(0, δ) × R → R such that
e2πiθ ◦ argεX(x, θ) = agεX(x, εe2πiθ). It is easy to prove that (∂argεX/∂θ)(0, θ) tends
uniformly to ν(X) when ε → 0. By continuity we obtain that ∂argεX/∂θ is very
close to ν(X) for 0 < ε << 1 and 0 < δ(ε) << 1.

Let X ∈ Xp1(C2, 0) and fix 0 < ε << 1. We define the set T εX(x0) of tan-
gent points between Re(X)|x=x0 and ∂B(0, ε) for x0 ∈ B(0, δ(ε)). Denote the set
∪x∈B(0,δ){x}×T εX(x) by T εX . We say that a point y0 ∈ T εX(x0) is convex if the germ
of trajectory of Re(X)|x=x0 passing through y0 is contained in B(0, ε). Next lemma
is a consequence of ∂argεX/∂θ ∼ ν(X) and T ελX(x0) = agεX(x0, y)◦(−1){−i/λ, i/λ}.

Lemma 7.1. Let X ∈ Xp1(C2, 0). There exist ε0 > 0 and δ0 : (0, ε0) → R+

such that T ελX(x0) is composed of 2ν(X) convex points for all λ ∈ S1, 0 < ε < ε0
and x0 ∈ B(0, δ0(ε)). Moreover, each connected component of ∂B(0, ε) \ T ελX(x0)
contains a unique point of T εµX(x0) for all µ ∈ S1 \ {−λ, λ}.

Remark 7.1. Fix λ ∈ S1. We have T ελX(x) = {T ε,1λX(x), . . . , T ε,2ν(X)
λX (x)} for all

x ∈ B(0, δ0(ε)) where T ε,jλX : B(0, δ0(ε))→ T εX is continuous for all 1 ≤ j ≤ 2ν(X).

7.1. Splitting the dynamics. For simplicity of the notation we will consider the
sets Xtp1(C2, 0) ⊂ Xp1(C2, 0) and Diff tp1(C2, 0) ⊂ Diff p1(C2, 0) whose elements
satisfy that their singular or fixed points sets respectively are not of trivial type but
they are a union of smooth curves transversal to ∂/∂y. For all ϕ ∈ Diff p1(C2, 0)
there exists k ∈ N such that (x1/k, y) ◦ ϕ ◦ (xk, y) belongs to Diff tp1(C2, 0). An
element X ∈ Xtp1(C2, 0) is of the form u(x, y)

∏N
j=1 (y − αj(x))nj∂/∂y for some

unit u ∈ C{x, y} and some αj ∈ C{x} ∩ (x) for all j ∈ {1, . . . , N(X)}. We have
that ν(X) = n1 + . . .+ nN − 1 ≥ 1.

Let X ∈ Xtp1(C2, 0). We define T0 = (|y| ≤ ε). Suppose that we have a sequence
β = β0 . . . βk where β ∈ {0}×Ck and k ≥ 0 and a set Tβ = (|t| ≤ η) in coordinates
(x, t) canonically associated to Tβ . The coordinates (x, y) are canonically associated
to T0. Suppose also that

X = xdβv(x, t)(t− γ1(x))s1 . . . (t− γp(x))sp
∂

∂t

where γ1(0) = . . . = γp(0) = 0 and (v = 0)∩Tβ = ∅. Denote ν(β) = s1 + . . .+sp−1
and N(β) = p. Define Xβ,E = (X(t)/xdβ )∂/∂t. Denote by TEβ,ηµX (r, λ) the set of
tangent points between Re(λdβµXβ,E)|x=rλ and |t| = η for (r, λ, µ) ∈ R≥0×S1×S1.
If N(β) = 1 then we define Eβ = Tβ , in other words we do not split Tβ .

Suppose N(β) > 1. Denote Sβ = {(∂γ1/∂x)(0), . . . , (∂γp/∂x)(0)}. We define
t = xw and the sets Eβ = Tβ ∩ [|t| ≥ |x|ρ] and Mβ = (|w| ≤ ρ) for some ρ >> 0.
We denote Ėβ = [ρ|x| < |t| < η] if N(β) > 1, otherwise Ėβ = [|t| < η] \ SingXβ,E .
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We have

X = xdβ+s1+...+sp−1v(x, xw)
(
w − γ1(x)

x

)s1
. . .

(
w − γp(x)

x

)sp ∂

∂w

in Mβ , we define mβ = dβ + ν(β) and the polynomial vector field

Xβ(λ) = λmβv(0, 0)
(
w − ∂γ1

∂x
(0)
)s1

. . .

(
w − ∂γp

∂x
(0)
)sp ∂

∂w

for λ ∈ S1. We define Iβ = (|w| ≤ ρ) \ ∪ζ∈Sβ
(|w − ζ| < r(ζ)) where r(ζ) > 0

is small enough for all ζ ∈ Sβ . We define Xβ,M = (X(w)/xmβ )∂/∂w; we denote
by TIβ,ρµX (r, λ) the set of tangent points between Re(λmβµXβ,M )|x=rλ and |w| = ρ.
Finally we define İβ = (|w| < ρ) \ ∪ζ∈Sβ

(|w − ζ| ≤ r(ζ)).
Fix ζ ∈ Sβ . We define dβζ = mβ . Consider the coordinate t′ such that w−ζ = t′.

We denote Tβζ = (|t′| ≤ r(ζ)). We have

X = xdβζh(x, t′)
∏

(∂γj/∂x)(0)=ζ

(
t′ −

(
γj(x)
x
− ζ
))sj ∂

∂w
.

Every set Mβ with β 6= ∅ is called a magnifying glass set. The sets Eβ are called
exterior sets whereas the sets Iβ are called intermediate sets.

In the previous paragraph we introduced a method to divide |y| ≤ ε in a union
of exterior and intermediate sets.

Example: Consider X = y(y − x2)(y − x)∂/∂y. We have

(|y| ≤ ε) = E0 ∪ I0 ∪ E01 ∪ E00 ∪ I00 ∪ E000 ∪ E001.

We haveX0(1) = w2
1(w1−1)∂/∂w1 andX00(1) = −w2(w2−1)∂/∂w2 where y = xw1

and y = x2w2. We also get m0 = 2 and m00 = 3.

Remark 7.2. Let Xu = u(x, y)
∏N
j=1 (y − αj(x))nj∂/∂y ∈ Xtp1(C2, 0) for k in

{1, 2}. The polynomial vector field (Xu)β(λ) associated to a magnifying glass set
Mβ depend only on u(0, 0). The value u(0, 0) is a formal special invariant in the
non-trivial type case. Thus the combinatorial data associated to X ∈ Xtp1(C2, 0)
depends in particular on its class modulo special analytic conjugation.

Lemma 7.2. Let X ∈ Xtp1(C2, 0) and an exterior set Eβ = [η ≥ |t| ≥ ρ|x|]
associated to X with 0 < η << 1. Then TEβ,ηµX (r, λ) is composed of 2ν(β) convex
points for all (λ, µ) ∈ S1 × S1 and r close to 0. Each connected component of
∂B(0, η) \ TEβ,ηµX (r, λ) contains a unique point of TEβ,ηµ′X(r, λ) ∀µ′ ∈ S1 \ {−µ, µ}.

Lemma 7.3. Let X ∈ Xtp1(C2, 0) and an exterior set Eβ = [η ≥ |t| ≥ ρ|x|]
associated to X with N(β) > 1 and ρ >> 0. Then TIβ,ρµX (r, λ) is composed of
2ν(β) convex points for all (λ, µ) ∈ S1 × S1 and r close to 0. Denote t = xw; each
connected component of [|w| = ρ]\TIβ,ρµX (r, λ) contains a unique point of TIβ,ρµ′X(r, λ)
for all µ′ ∈ S1 \ {−µ, µ}.

Lemma 7.2 is the analogue of lemma 7.1 for exterior sets. Lemma 7.3 is deduced
from the polynomial character of Xβ(1) since it implies that ∂argρXβ(1)/∂θ ∼ ν(β)
when ρ→∞.

Let X ∈ X (C, 0). Consider a set F ⊂ Cn contained in the domain of definition
of X. Denote by Ḟ the interior of F . We define It(X,P, F ) the maximal interval



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 29

where exp(zX)(P ) is well-defined and belongs to F for all z ∈ It(X,P, F ) whereas
exp(zX)(P ) belongs to Ḟ for all z 6= 0 in the interior of It(X,P, F ). We define

∂It(X,P, F ) = {inf(It(X,P, F )), sup(It(X,P, F ))} ⊂ R ∪ {−∞,∞}.
We denote Γ(X,P, F ) = exp(It(X,P, F )X)(P ).

We will consider coordinates (x, y) ∈ C × C or (r, λ, y) ∈ R≥0 × S1 × C in C2.
Given a set F ⊂ C2 we denote by F (x0) the set F ∩ [x = x0] and by F (r0, λ0) the
set F ∩ [(r, λ) = (r0, λ0)]. In the next subsections we analyze the dynamics in the
exterior and intermediate sets.

7.2. Parabolic exterior sets. Let X ∈ Xtp1(C2, 0). Suppose we have

X = xdβv(x, t)(t− γ1(x))s1 . . . (t− γp(x))sp∂/∂t

in some exterior set Eβ = [η ≥ |t| ≥ |x|ρ] for some ρ ≥ 0. We say that Eβ is
parabolic if s1 + . . .+ sp ≥ 2. In particular E0 is always parabolic since N ≥ 2.

Lemma 7.4. Let X ∈ Xtp1(C2, 0) and a parabolic exterior set Eβ = [|t|] ≤ η]
associated to X with 0 < η << 1. Consider µ ∈ S1 and t0 ∈ TEβ,ηµX (r, λ). Then we
have It(µλdβXβ,E , (r, λ, t0), B(0, η)) = R and limz∈R,|z|→∞ exp(zµλdβXβ,E)(rλ, t0)
is the point in Eβ(r, λ) ∩ SingXβ,E.

Proof. Consider η0 > 0 such that TEβ,ηµX (r, λ) is composed of 2ν(β) convex points
for all 0 < η < η0, (r, λ) ∈ [0, δ(η))× S1 and µ ∈ S1.

Fix 0 < η < η0, µ ∈ S1 and (r, λ) ∈ [0, δ(η))× S1. Denote Y = (µλdβXβ,E)x=rλ.
We have that SingY is a point t = γ0. Let Ỹ be the strict transform of Re(Y ) by the
blow-up π : (R+∪{0})×S1 → C of t = γ0 given by π(s, γ) = sγ+γ0. We consider the
set S ⊂ π−1(B(0, η))\SingỸ of points (s, γ) such that It(Ỹ , (s, γ), B(0, η)) = R and
limz→±∞ exp(zỸ )(s, γ) ∈ SingỸ . By the discussion in subsection 4.2 the set S has
exactly 2ν(β) connected components. More precisely every connected component
of S contains exactly an arc {0} × e(iθ,i(θ+π/ν(β))) for eiθ ∈ SingỸ .

Consider a connected component C of S. We have It(Ỹ , t0, B(0, η + c)) = R
for all t0 ∈ ∂C. By Poincaré-Bendixon’s theorem the α and ω limits of t0 by
Re(Y ) are either γ0 or a cycle enclosing γ0 since the points in SingỸ are either
attracting or repelling. The second possibility is excluded by Cartan’s lemma.
We deduce that there exists tC ∈ ∂B(0, η) ∩ ∂C. Clearly tC ∈ C implies that
tC ∈ TEβ,ηµX (r, λ) and that exp(zY )(tC) belongs to B(0, η) for all z ∈ R. Moreover
we obtain lim|z|→∞ exp(zY )(tC) = (x0, γ0). The number of connected components
of S coincides with ]TEβ,ηµX (r, λ). We deduce that exp(zY )(tC) ∈ B(0, η) for all
z ∈ R \ {0} since C1 ∩ C2 = ∅ for different connected components of S. �

Proposition 7.1. Let X ∈ Xtp1(C2, 0) and let Eβ = [η ≥ |t| ≥ ρ|x|] be a parabolic
exterior set associated to X. Consider t0 ∈ TEβ,ηµX (r, λ) and µ ∈ S1. Then we have

lim
z∈R,z→c

exp(zµλdβXβ,E)(r, λ, t0) ∈ (∂Eβ ∪ SingXβ,E) \ [|t| = η]

for c ∈ ∂It(µλdβXβ,E , (r, λ, t0), Eβ).

Proof. If N(β) = 1 the result is true by lemma 7.4. Suppose N(β) > 1. Consider
η0 > 0 and ρ0 > 0 such that TEβ,ηµX (r, λ) and TIβ,ρµX (r, λ) are both composed of
2ν(β) convex points for all 0 < η < η0, ρ > ρ0, (r, λ) ∈ [0, δ(η, ρ))× S1 and µ ∈ S1.
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Fix 0 < η < η0 and ρ > ρ0. We can suppose that rλ 6= 0 since otherwise the
proof is analogous to the proof in lemma 7.4.

Fix (r, λ) ∈ (0, δ(η, ρ)) × S1 and µ ∈ S1. Consider a point t1 ∈ TIβ,ρµX (r, λ).
There exists exactly one connected component Hs of [|w| = ρ] \ TIβ,ρµX (r, λ) such
that t1 ∈ Hs and Re(sµX) points towards |w| < ρ for s ∈ {−1, 1}. We define
S(t1) as the set of points t in Ėβ(rλ) such that there exists c−1(t), c1(t) ∈ R+

satisfying that exp((−c−1, c1)µX)(rλ, t) is well-defined and contained in Ėβ whereas
exp(scsµX)(rλ, t) ∈ Hs for s ∈ {−1, 1}. Clearly S(t1) 6= ∅ since t1 ∈ S(t1).

Like in lemma 7.4 there exists a unique t0 ∈ S(t1)∩TEβ,ηµX (r, λ). We deduce that
It = It(µX, (rλ, t0), Eβ) is compact. Moreover we have

exp(hIµλdβXβ,E)(rλ, t0) ∈ H−1 and exp(hSµλdβXβ,E)(rλ, t0) ∈ H1

where It = [hI/rdβ , hS/r
dβ ]. �

Let X ∈ Xtp1(C2, 0) and µ ∈ S1. We define SCβ,ηµX (r, λ) the set of connected
components of

[η > |t| > ρr] \ ∪t∈TEβ,η
µX (r,λ)Γ(µλdβXβ,E , (r, λ, t), Eβ).

The behavior of the trajectories passing through tangent points characterizes the
dynamics of Re(µX) in a parabolic exterior set. It is a topological product. The
next results are a consequence of this fact.

Proposition 7.2. Let X ∈ Xtp1(C2, 0) and let Eβ = [η ≥ |t| ≥ ρ|x|] be a parabolic
exterior set associated to X. Consider t0 ∈ Ėβ(r, λ) and µ ∈ S1. Then we have

lim
z∈R,z→c

exp(zµλdβXβ,E)(r, λ, t0) ∈ ∂Eβ ∪ SingXβ,E

for c ∈ ∂It(µλdβXβ,E , (r, λ, t0), Eβ).

Proof. Let C ∈ SCβ,ηµX (r, λ). Consider the set LC of points in C satisfying the result
in the proposition. It is enough to prove that C = LC for all C ∈ SCβ,ηµX (r, λ).

The points in C in the neighborhood of points in TEβ,ηµX (r, λ) are contained in LC
by proposition 7.1 and continuity of the flow. We have that C is a simply connected
open set such that C ∩SingXβ,E = ∅. Moreover every trajectory of Re(µλdβXβ,E)
contained in Eβ and intersecting the set TEβ,ηµX (r, λ) ∪ TIβ,ρµX (r, λ) is disjoint from
C. Thus the set LC is open and closed in C and then LC = C. �

The next result can be proved like proposition 7.2, it is true in the neighborhood
of the tangent points by lemma 7.4 and it defines an open and closed property in
connected sets. We skip the proof.

Corollary 7.1. Let X ∈ Xtp1(C2, 0) and let Eβ = [η ≥ |t| ≥ ρ|x|] be a para-
bolic exterior set associated to X. Let (µ0, r, λ, t0) ∈ S1 × [0, δ) × S1 × ∂B(0, η)
such that Re(µ0λ

dβXβ,E)(rλ, t0) does not point towards C \ B(0, η). Then there
exists c(µ0, r, λ, t0) ∈ R+ ∪ {∞} such that exp((0, c)µ0λ

dβXβ,E)(rλ, t0) ∈ Ėβ and
limz→c exp(zµ0λ

dβXβ,E)(rλ, t0) belongs to (∂Eβ ∪ SingXβ,E) \ [|t| = η].

Let X = xdβv(x, t)
∏N(β)
j=1 (t− γj(x))sj∂/∂t ∈ Xtp1(C2, 0). We define

X0
β = v(0, t− γ1(x))(t− γ1(x))

ν(β)+1
∂/∂t.



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 31

Let ψ0
β,E be a holomorphic integral of the time form of X0

β in the neighborhood of
Eβ \ SingX. We have ψ0

β,E(x, e2πiy)− ψ0
β,E(x, y) ≡ 2πiRes(X0

β , (0, 0)), in general
ψ0
β,E is multivaluated. Consider a holomorphic integral ψβ,E of the time form of

Xβ,E in the neighborhood of Eβ \SingX such that ψβ,E(0, y) ≡ ψ0
β,E(0, y). Clearly

ψ0
X,β = ψ0

β,E/x
dβ and ψX,β = ψβ,E/x

dβ are integrals of the time forms of xdβX0
β

and X respectively. We want to provide accurate estimates for ψX,β .

Lemma 7.5. Let X ∈ Xtp1(C2, 0) and let Eβ = [η ≥ |t| ≥ ρ|x|] be a parabolic
exterior set associated to X. Consider ζ > 0 and θ > 0. Then |ψX,β/ψ0

X,β − 1| ≤ ζ
in Eβ ∩ [t − γ1(x) ∈ R+ei[−θ,θ]] ∩ [x ∈ B(0, δ(ζ, θ))] for N(β) = 1. The same
inequality is true for N(β) ≥ 2 if ρ > 0 is big enough.

Proof. Consider the change of coordinates (x, z) = (x, t − γ1(x)). The function
ψ0
β,E is of the form

ψ0
β,E =

−1
ν(β)v(0, 0)

1
zν(β)

+Res(X0
β , (0, 0)) ln z + h(z) + b(x)

where h is a O(1/zν(β)−1) meromorphic function and b(x) is a holomorphic function
in the neighborhood of 0. In a sector of bounded angle in the variable z we have
that ψ0

β,Ez
ν(β) is bounded both by above and by below.

We define K(x, z) = ψβ,E(x, z) − ψ0
β,E(x, z). Consider the function J = x if

N(β) = 1 and J = x/z if N(β) > 1. We have

v(0, z)zν(β)+1 ∂K

∂z
=

v(0, z)zν(β)+1−s1

v(x, z + γ1(x))
∏p
j=2(z + γ1(x)− γj(x))sj

− 1 = O(J).

Thus ∂K/∂z is a O(J/zν(β)+1). Let (x, reiω) ∈ Eβ ∩ (|argz| ≤ θ). We obtain

|K(x, ηeiω)| ≤ |K(x, η)|+

∣∣∣∣∣
∫ ηeiω

η

∂K

∂z
dz

∣∣∣∣∣ = O(x) +O(x) = O(x) ∀ω ∈ [−θ, θ].

Consider γ : [0, 1]→ C2 defined by γ(υ) = (x, eiω[(1− υ)η + υr]). We obtain

|K(x, reiω)−K(x, ηeiω)| ≤
∣∣∣∣∫
γ

∂K

∂z
dz

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

∂K

∂z
(γ(υ))γ′(υ)dυ

∣∣∣∣
We define C0 ≡ |x| if N(β) = 1 and C0 ≡ 1/ρ if N(β) > 1. We get

|K(x, reiω)−K(x, ηeiω)| ≤ AC0(x)
∫ 1

0

η − r
[(1− υ)η + υr]ν(β)+1

dυ ≤ B
∣∣∣∣C0(x)
zν(β)

∣∣∣∣
for some A,B > 0 depending on θ. We obtain |K(x, z)| = O(x) + O(C0(x)/zν(β))
and then ∣∣∣∣∣ψX,βψ0

X,β

− 1

∣∣∣∣∣ =
∣∣∣∣∣ K

ψ0
β,E

∣∣∣∣∣ ≤ D |C0(x)|

in Eβ ∩ [| arg z| ≤ θ] ∩ [x ∈ B(0, δ(ζ, θ))] for some D > 0 depending on θ. �

Remark 7.3. The previous lemma implies that ψX,β ∼ 1/(xdβ (t − γ1(x))ν(β)) in
a parabolic exterior set Eβ for | arg(t− γ1(x))| bounded.
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Proposition 7.3. Let X ∈ Xtp1(C2, 0) and let Eβ = [η ≥ |t| ≥ ρ|x|] be a parabolic
exterior set associated to X. Consider C ∈ SCβ,ηµX (r, λ) for rλ in a neighborhood
of 0 and µ ∈ S1. Then C is contained in a sector centered at t = γ1(rλ) of angle
lesser than θ for some θ > 0 independent of r, λ, C and µ.

Proof. We use the notations in lemma 7.5. We have that the extrema of a connected
component of ∂B(0, η)\TEβ,ηµX (r, λ) lie in an angle centered at z = 0 of angle similar
to π/ν(β). Then it is enough to prove that Γ = Γ(µλdβXβ,E , (r, λ, t0), Eβ) lies in a
sector of bounded angle for t0 ∈ TEβ,ηµX (r, λ).

Denote ψ0 = −1/(ν(β)v(0, 0)zν(β)). We have limz→0 ψβ,E/ψ
0 = 1 in big sectors;

we can suppose that |ψβ,E/ψ0 − 1| < ζ for arbitrary ζ > 0 by taking 0 < η << 1.
Since the set (ψβ,E/µλdβ )(Γ) is contained in (ψβ,E/µλdβ )(r, λ, t0) + R then it lies
in a sector of angle similar to π. Since ψβ,E/ψ0 ∼ 1 then Γ lies in a sector of center
t = γ1(r, λ) and angle close to π/ν(β). �

Remark 7.4. We have that ψX,β ∼ 1/(xdβ (t−γ1(x))ν(β)) in Eβ∩C for a parabolic
exterior set Eβ and all C ∈ SCβ,ηµX

7.3. Nature of the polynomial vector fields. The study of polynomial vec-
tor fields related to stability properties of unfoldings of elements h ∈ Diff 1(C, 0)
has been introduced in [6]. Their choices are associated with the elements in the
deformation whereas ours depend on the infinitesimal properties of the unfolding.

7.3.1. Directions of unstability. Let Mβ be a magnifying glass set associated to a
vector field X ∈ Xtp1(C2, 0). We consider

Xβ(λ) = λmβC(w − w1)s1 . . . (w − wp)sp∂/∂w

where C ∈ C∗ and wj ∈ C for all j ∈ {1, . . . , p}. Denote rjβ(X) = Res(Xβ(1), wj)
for 1 ≤ j ≤ p. Consider the set sumβ(X) whose elements are the non-vanishing
sums of the form

∑
j∈E r

j
β for any E ⊂ {1, . . . , p}. We define

Bβ(X) = {(λ, µ) ∈ S1 × S1 : sumβ ∩ λmβµiR 6= ∅}.

We denote S1/ ∼ the quotient of S1 by the equivalence relation identifying µ and
−µ. We denote by B̃β(X) ⊂ S1/ ∼ ×S1/ ∼ the quotient of Bβ(X). Now we define

Bβ,λ(X) = {µ ∈ S1 : (λ, µ) ∈ Bβ(X)} and Bµβ (X) = {λ ∈ S1 : (λ, µ) ∈ Bβ(X)}.

In an analogous way we can define B̃β,λ(X) ⊂ S1/ ∼ and B̃µβ (X) ⊂ S1/ ∼ for
λ, µ ∈ S1/ ∼. Roughly speaking we claim that Re(µX) has a stable behavior in
Iβ at the direction x ∈ R+λ for (λ, µ) 6∈ Bβ(X). We define BX as the union of
Bβ(X) for every magnifying glass set Mβ associated to X. Analogously we can
define BX,λ, B

µ
X , B̃X,λ and B̃µX . The sets BX,λ and BµX are finite for all λ, µ ∈ S1.

Moreover we have BX,λ′ ∩BX,λ = ∅ and Bλ
′

X ∩BλX = ∅ for all λ′ ∈ S1 in a pointed
neighborhood of λ.

7.3.2. Non-parabolic exterior sets. Let Eβw1 be a non-parabolic exterior set where
w1 ∈ C. Thus we have

X = xmβh(x,w)(w − w1(x))(w − w2(x))s2 . . . (w − wp(x))sp∂/∂w
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in Mβ where w1(0) = w1 and h(x,w)− h(0, 0) ∈ (x). This expression implies

X = xmβ
1
r1β

(w − w1(x))(1 +H(x,w))
∂

∂w

in Eβw1 for some H ∈ (x,w − w1) = (x,w − w1(x)).
Fix µ ∈ S1 and a compact set Kµ

X ⊂ S1\BµX . By definition of BµX we obtain that
λmβµ/r1β 6∈ iR for all λ ∈ Kµ

X . This implies λmβµ(r1β)
−1(1 +H(rλ,w1(rλ))) 6∈ iR

for (r, λ) ∈ [0, r0)×Kµ
X for some r0 > 0 since Kµ

X is compact and H(x,w1(x)) ∈ (x).
We deduce that the singular point w = w1(x0) of Re(µX)|x=x0 is not a center for
x0 ∈ (0, r0)K

µ
X . Hence, it is either an attracting or a repulsing point.

The set Eβw1 is of the form |w − w1| < c for some 0 < c << 1. The vector field
Re(µX)|x=rλ and the set ∂Eβw1 are tangent at the set

TEβw1,c
µX (r, λ) =

[
λmβµ

r1β

w − w1(rλ)
w − w1

(1 +H(rλ,w)) ∈ iR

]
∩ [|w − w1(0)| = c].

The function (w − w1(rλ))/(w − w1) tends to 1 when r → 0 in |w − w1| = c.
Moreover since H ∈ (x,w − w1) we obtain that TEβw1,c

µX (r, λ) = ∅ for r ∈ [0, r0(c))
and λ ∈ Kµ

X . Then Re(sµX) points towards Ėβw1 for all x ∈ (0, r0)K
µ
X and either

s = −1 or s = 1. As a consequence Eβw1 ∩ [x = x0] is in the basin of attraction of
(x0, w1(x0)) by Re(sµX) for x0 ∈ (0, r0)K

µ
X .

7.3.3. Connexions at ∞. We already described the dynamics of Re(µX) in the
exterior sets for µ ∈ S1 and X ∈ Xtp1(C2, 0). Next we analyze the dynamics of
Re(µX) in the intermediate sets.

Let Y = C(w − w1)s1 . . . (w − wp)sp∂/∂w be a polynomial vector field such
that ν(Y ) = s1 + . . . + sp − 1 ≥ 1. Every vector field Xβ(λ) associated to a
magnifying glass set is of this form. We want to characterize the behavior of Y in
the neighborhood of∞. We define the set Tr→∞(Y ) of trajectories γ : (c, d)→ C of
Re(Y ) such that c ∈ R∪ {−∞}, d ∈ R and limζ→d γ(ζ) =∞. In an analogous way
we define Tr←∞(Y ) = Tr→∞(−Y ). We define Tr∞(Y ) = Tr←∞(Y ) ∪ Tr→∞(Y ).

We consider a change of coordinates z = 1/w. The meromorphic vector field

Y =
−C(1− w1z)s1 . . . (1− wpz)sp

zν(Y )−1

∂

∂z

is analytically conjugated to 1/(ν(Y )zν(Y )−1)∂/∂z = (zν(Y ))∗(∂/∂z) in a neigh-
borhood of ∞. We have Tr→∞(∂/∂z) = R− and Tr←∞(∂/∂z) = R+. As a
consequence the set Tr→∞(Y ) has ν(Y ) trajectories and there is exactly one of
them which is tangent to the line arg(w) = − arg(C)/ν(Y ) + 2πk/ν(Y ) for all
k ∈ {0, . . . , ν(Y )− 1}. Analogously Tr←∞(Y ) contains ν(Y ) trajectories of Re(Y )
which are tangent to the lines arg(w) = − arg(C)/ν(Y ) + π/ν(Y ) + 2πk/ν(Y ) for
k ∈ {0, . . . , ν(Y )− 1}.

The complementary of the set Tr∞(Y )∪{∞} has 2ν(Y ) connected components
in the neighborhood of w = ∞. Each of these components is called an angle, the
boundary of an angle contains exactly one→∞-trajectory and one←∞-trajectory.

We say that Re(Y ) has ∞-connections if there exists P ∈ C contained in
Tr→∞(Y ) ∩ Tr←∞(Y ). In other words there exists a trajectory γ : (c−1, c1) → C
of Re(Y ) such that c−1, c1 ∈ R and limζ→cs γ(ζ) = ∞ for all s ∈ {−1, 1}. The
notion of connexion at ∞ has been introduced in [6] for the study of deformations
of elements of Diff 1(C, 0).
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We define the α and ω limits αY (P ) and ωY (P ) respectively of a point P ∈ C
by the vector field Re(Y ). If P ∈ Tr→∞(Y ) we denote ωY (P ) = {∞} whereas if
P ∈ Tr←∞(Y ) we denote αY (P ) = {∞}.

Lemma 7.6. Let Y ∈ X (C, 0) be a polynomial vector field such that ν(Y ) ≥ 1.
Then ωY (w0) = {∞} is equivalent to w0 ∈ Tr→∞(Y ). Analogously αY (w0) = {∞}
is equivalent to w0 ∈ Tr←∞(Y )

Proof. The vector field Y is a ramification of a regular vector field in a neighborhood
of ∞. Thus there exists an open neighborhood V of ∞ and c ∈ R+ such that

exp(cY )(V \ Tr→∞(Y )) ∩ V = ∅ and exp(−cY )(V \ Tr←∞(Y )) ∩ V = ∅.

We are done since w0 6∈ Tr→∞(Y ) implies ωY (w0) ∩ (P1(C) \ V ) 6= ∅. �

We denote by X∞(C, 0) the set of polynomial vector fields in X (C, 0) such that
ν(Y ) ≥ 1 and 2πi

∑
P∈S Res(Y, P ) 6∈ R \ {0} for all subset S of SingY .

Lemma 7.7. Let Y ∈ X∞(C, 0). Then
• Re(Y ) has no ∞-connections.
• ωY (w0) 6= {∞} implies that ]ωY (w0) = 1 and ωY (w0) ∩ SingY 6= ∅.

Proof. Let Ω the unique meromorphic 1-form defined by Ω(Y ) = 1. Suppose that
γ : (c−1, c1)→ C is an ∞-connexion of Re(Y ). Consider the connected component
U of P1(C) \ (γ(c−1, c1) ∪ {∞}) such that Re(iY ) points towards U at γ.

There exists a holomorphic integral ψ of the time form of Y in a neighborhood
of w = ∞ such that ψ ∼ 1/wν(Y ). Let hn : [dn, en] → C be a path (but not a
trajectory of Re(Y )) such that hn(dn) = γ(c−1 + 1/n) and hn(en) = γ(c1 − 1/n)
whereas hn(dn, en) ⊂ U . Moreover we can suppose that infζ∈[dn,en] |hn(ζ)| tends
to ∞ when n → ∞. The theorem of the residues and the asymptotics of ψ in the
neighborhood of ∞ imply that

2πi
∑

P∈SingY ∩U
Res(Y, P ) = lim

n→∞

∫
hn

Ω =
∫
γ

Ω = c1 − c−1 ∈ R+.

This is a contradiction.
It is enough to prove that ωY (w0)∩ (C \SingY ) = ∅ since ωY (w0) is connected.

Suppose P ∈ ωY (w0)∩(C\SingY ). Denote γ : [0,∞)→ C the trajectory of Re(Y )
passing through w0. Consider a germ of transversal h to the vector field Re(Y )
passing through P . There exists some η > 0 such that exp((0, η]Y )(h) ∩ h = ∅.
There also exists an increasing sequence of positive real numbers jn →∞ such that
γ(jn) ∈ h and limn→∞ γ(jn) = P . We can suppose that γ(jn, jn+1) ∩ h = ∅ for all
n ∈ N by twisting a little bit the sequence.

Consider a holomorphicintegral ψ of the time form of Y defined in the neigh-
borhood of P . Let Ln be the segment of h whose boundary is {γ(jn), γ(jn+1)}.
Denote by Vn the bounded component of C \ (γ[jn, jn+1]∪Ln). By the theorem of
the residues we obtain∫

γ[jn,jn+1]

Ω + (ψ(γ(jn))− ψ(γ(jn+1))) = ±2πi
∑

P∈Vn∩SingY
Res(Y, P )

By making n to tend to ∞ we deduce that there exists a subset S of SingY such
that ±2πi

∑
P∈S Res(Y, P ) ∈ [η,∞). That is a contradiction. �
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Corollary 7.2. Let X ∈ Xtp1(C2, 0). Consider a magnifying glass set Mβ associ-
ated to X. Then

• Re(µXβ(λ)) has no ∞-connections.
• ωµXβ(λ)(w0) 6=∞⇒ ]ωµXβ(λ)(w0) = 1 and ωµXβ(λ)(w0)∩ SingXβ(λ) 6= ∅.

for all (λ, µ) 6∈ Bβ(X).

7.3.4. The graph. In this subsection we associate an oriented graph to every vector
field µXβ(λ) for (λ, µ) 6∈ Bβ(X).

Lemma 7.8. Let Y ∈ X∞(C, 0). Then the mapping

ωY : C \ (Tr→∞(Y ) ∪ SingY )→ SingY

is locally constant.

Proof. Let P ∈ C \ (Tr→∞(Y ) ∪ SingY ). Denote Q = ωY (P ). The singu-
lar point Q is not a center since then Re(Y ) would support cycles (lemma 7.7).
If Q is an attracting singular point there is nothing to prove. If Q is para-
bolic then P ∈ ∪λ∈D1(Y )V

λ
exp(Y ). We are done since ∪λ∈D1(Y )V

λ
exp(Y ) is open and

ωY (∪λ∈D1(Y )V
λ
exp(Y )) = Q. �

We call regions of Re(Y ) the connected components of C \ (Tr∞(Y ) ∪ SingY ).
We denote by Reg(Y ) the set of regions of Re(Y ). Every H ∈ Reg(Y ) satisfies
that αY (H) and ωY (H) are points. We denote by Regj(Y ) the set of regions H
of Re(Y ) such that ]{αY (H), ωY (H)} = j for j ∈ {1, 2}. We associate an oriented
graph to Re(Y ) for Y ∈ X∞(C, 0). The vertexes are the points in SingY , the edges
are the regions of Re(Y ). We say that H ∈ Reg(Y ) joins the points αY (H) and
ωY (H). We denote αY (H) H→ ωY (H). The graph obtained in this way is denoted
by GY . We denote by NGY the unoriented graph obtained from GY by removing
the reflexive edges and the orientations of the edges.

An angle is always contained in a region of Re(Y ). Such a region is characterized
by the angles that it contains. Let A be an angle of the polynomial vector field
Y . We denote by γA→∞ the trajectory of Tr→∞ contained in the closure of A. The
definition of γA←∞ is analogous.

Lemma 7.9. Let Y ∈ X∞(C, 0). Consider H ∈ Reg(Y ). Then H contains an
angle A. Moreover αY (γA→∞) = αY (H) and ωY (γA←∞) = ωY (H).

Proof. Let P ∈ (C \ SingY ) ∩ ∂H; such a point exists since Tr∞(Y ) is contained
in the complementary of H. Since αY and ωY are locally constant then either
αY (P ) = ∞ or ωY (P ) = ∞. We have that P ∈ H, thus there are points of H
in every neighborhood of ∞. As a consequence H contains at least an angle A.
The relations αY (γA→∞) = αY (H) and ωY (γA←∞) = ωY (H) can be deduced of the
locally constant character of αY and ωY . �

Lemma 7.10. Let Y ∈ X∞(C, 0). Then we have SingY ⊂ Tr∞(Y ).

Proof. Let P ∈ SingY . Suppose that V ∩ Tr∞(Y ) = ∅ for some connected neigh-
borhood V of P . Let H be the region of Re(Y ) containing V \ {P}. Since P is
attracting, repulsing or parabolic then either αY (H) = P or ωY (H) = P . Consider
an angle A ⊂ H. We obtain P ∈ γA←∞ ∪ γA→∞ ⊂ Tr∞(Y ). �

Lemma 7.11. Let Y ∈ X∞(C, 0). Consider H ∈ Reg1(Y ). Then H contains
exactly one angle.
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Proof. Let A be an angle contained in H. Denote P = αY (H) = ωY (H). By
lemma 7.9 we have that γ = {∞} ∪ γA→∞ ∪ γA←∞ ∪ {P} is a closed simple curve.
Let V the connected component of P1(C) \ γ containing A. The set Tr∞(Y ) ∩ V
is empty since A is the only angle contained in V . By lemma 7.10 we have that
V ∩ SingY = ∅. Hence H is equal to V and contains only one angle. �

Lemma 7.12. Let Y ∈ X∞(C, 0). Consider H ∈ Reg2(Y ). Then H contains
exactly two angles. Moreover C\H has two connected components H1 and H2 such
that αY (H) ∈ H1 and ωY (H) ∈ H2.

Proof. Let A1 be an angle contained in H. Fix a trajectory γ0 of Re(Y ) contained
in H. Denote

γ1 = γ0 ∪ γA1
→∞ ∪ γA1

←∞ ∪ {αY (H), ωY (H)}.
Let V1 the connected component of C \ γ1 containing A1. Since V1 contains only
one angle then V1 ⊂ H. By proceeding like in lemma 7.9 we can prove that there
exists an angle A2 contained in H \ (V1 ∪ γ0). Let V2 be the connected component
of C \ (γ0 ∪ γA2

→∞ ∪ γA2
←∞ ∪ {αY (H), ωY (H)}) such that A2 ⊂ V2. Clearly we have

A2 6= A1 and H = V1 ∪ γ0 ∪ V2. Now

C \ (γA1
→∞ ∪ γA1

←∞ ∪ γA2
→∞ ∪ γA2

←∞ ∪ {αY (H), ωY (H)})
has three connected components H, J1 and J2 such that

∂J1 = γA1
→∞ ∪ γA2

→∞ ∪ {αY (H)} and ∂J2 = γA1
←∞ ∪ γA2

←∞ ∪ {ωY (H)}.
Then H1 = J1∪∂J1 and H2 = J2∪∂J2 are the connected components of C\H. �

Corollary 7.3. Let Y ∈ X∞(C, 0). Then NGY has no cycles.

Proof. Consider an edge P H→ Q of GY with P 6= Q. Consider the notations in
the previous lemma. The fixed points are divided in two sets H1 ∩ SingY and
H2 ∩ SingY . The only edge of GY joining a vertex in the former set with a vertex
in the latter set (or vice-versa) is P H→ Q. Clearly NGY has no cycles. �

Proposition 7.4. Let Y ∈ X∞(C, 0). Then the graph NGY is connected.

Proof. Let G1, . . . , Gl be the set of vertexes of the l connected components of NGY .
We define the open set Vj = (αY )−1(Gj) ∪ (ωY )−1(Gj) for all j ∈ {1, . . . , l}. The
lack of ∞-connexions implies ∪lj=1Vj = C. Moreover Vj ∩ Vk = ∅ if j 6= k since
otherwise Gj = Gk. Clearly l = 1 since C is connected. �

Corollary 7.4. Let Y ∈ X∞(C, 0). Then ]Reg2(Y ) = ]SingY − 1.

Let Y ∈ X (C, 0). Consider y0 ∈ SingY . We define νY (y0) as the only element
of N ∪ {0} such that Y (y) ∈ (y − y0)νY (y0)+1 \ (y − y0)νY (y0)+2.

Proposition 7.5. Let Y ∈ X∞(C, 0). Consider y0 ∈ SingY . Then there exist
exactly 2νY (y0) regions of Re(Y ) contained in (αY , ωY )−1(y0, y0).

Proof. If y0 is attracting or repulsing the result is obvious since on the one hand
νY (y0) = 0 and on the other hand (αY , ωY )−1(y0, y0) = {y0}. We can suppose that
y0 is a parabolic point.

Let Y0 be the germ of Y in the neighborhood of y0, we have ν(Y0) = νY (y0).
Consider the strict transform Ỹ of Re(Y ) by the real blow-up π(r, λ) = y0 + rλ.
By the discussion in section 4.2 there exists a unique region of Re(Y ) adhering to
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[(r, λ) ∈ {0} × [λ0, λ0e
iπ/ν(Y0)]] for all λ0 ∈ D(Y0). In this way we find 2νY (y0)

regions of Re(Y ) contained in (αY , ωY )−1(y0, y0). Any other region would adhere
to a single point in D(Y0). Such a point would be both attracting and repelling for
Ỹ ; that is impossible. �

Corollary 7.5. Let Y ∈ X∞(C, 0). Then ]Reg(Y ) = 2ν(Y )− ](SingY ) + 1.

Let Y ∈ X∞(C, 0). Consider a trajectory γH for every region H ∈ Reg2(Y ).
There exists ρ0 > 0 such that

(7)
{
SingY ⊂ B(0, ρ0) and ]T ρY = 2ν(Y ) for all ρ ≥ ρ0.
γH ⊂ B(0, ρ0) for all H ∈ Reg2(Y ).

Let P ∈ B(0, ρ). We define ωYρ (P ) =∞ if It(Y, P,B(0, ρ)) does not contain (0,∞).
Otherwise we define ωYρ (P ) = ωY (P ). We define αYρ in an analogous way. Denote
by Reg(Y, ρ) the set of connected components of

B(0, ρ) \ ((αYρ )−1(∞) ∪ (ωYρ )−1(∞) ∪ SingY ).

Denote
Regj(Y, ρ) = {H ∈ Reg(Y, ρ) : ]{αYρ (H), ωYρ (H)} = j}

for j ∈ {1, 2}. The set of connected components of B(0, ρ)\(SingY ∪∪H∈Reg(Y,ρ)H)
will be called Reg∞(Y, ρ). The dynamics of Re(Y ) in C and B(0, ρ0) is analogous.

Proposition 7.6. Let Y ∈ X∞(C, 0). Consider ρ >> 0. There exist bijections
F : Reg(Y, ρ)→ Reg(Y ) and G : Reg∞(Y, ρ)→ Tr∞(Y ) such that

• H ⊂ F (H) for all H ∈ Reg(Y, ρ)
• ](∂H ∩ T ρY ) = j for all H ∈ Regj(Y, ρ) and j ∈ {1, 2}.
• ](∂J ∩ T ρY ) = 1 for each connected component J of H \ γH and H ∈
Reg2(Y, ρ).
• G(K) ∩B(0, ρ) ⊂ K for all K ∈ Reg∞(Y, ρ).

Proof. We define F1(H) as the element of Reg(Y, ρ) containing γH for H ∈ Reg(Y ).
Every H ∈ Reg(Y, ρ) is contained in a unique F (H) ∈ Reg(Y ). It is clear that
F ◦ F1 ≡ Id. This implies ](Regj(Y, ρ)) ≥ ](Regj(Y )) for j ∈ {1, 2}.

Let H ∈ Reg(Y, ρ). We have ∂H ∩ ∂B(0, ρ) = ∂H ∩ T ρY . Thus we obtain
](∂H ∩ T ρY ) ≥ 1. Let H ∈ Reg2(Y, ρ). Every connected component of F (H) \ γH
contains at least a point in ∂H ∩ T ρY and then ](∂H ∩ T ρY ) ≥ 2. We have

2ν(Y ) = ]T ρY ≥ ]Reg1(Y, ρ) + 2]Reg2(Y, ρ) ≥ ]Reg1(Y ) + 2]Reg2(Y ) = 2ν(Y ).

Hence all the inequalities are indeed equalities. We obtain ]Regj(Y, ρ) = ]Regj(Y )
and ](∂H ∩ T ρY ) = j for all j ∈ {1, 2} and H ∈ Regj(Y, ρ). We deduce that
F1 = F ◦(−1) and that {αYρ (Q), ωYρ (Q)} ⊂ SingY for all Q ∈ T ρY .

Let l be a connected component of ∂B(0, ρ) \ T ρY such that Re(sY ) points to-
wards B(0, ρ) for some s ∈ {−1, 1}. We claim that exp(s(0,∞)Y )(l) is a con-
nected component of Reg∞(Y, ρ). Suppose s = 1 without lack of generality.
Since ωYρ (∂l) ⊂ SingY and NGY is connected then ωYρ (l) = ωYρ (∂l) is a single-
ton contained in SingY . The claim is proved, it implies ]Reg∞(Y, ρ) = 2ν(Y ).
There exists a unique γ(l) ∈ Tr∞(Y ) such that γ(l) ∩ l 6= ∅. The mapping
G(K) = γ(∂K ∩ (∂B(0, ρ) \ T ρY )) is the one we are looking for. �
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7.3.5. Dynamical description in the intermediate sets. Let X ∈ Xtp1(C2, 0). Con-
sider a magnifying glass set Mβ = [|w| ≤ ρ] associated to X. We have

X = xmβh(x,w)(w − w1(x))s1 . . . (w − wp(x))sp∂/∂w

where h(0, w) ≡ h(0, 0). Fix µ ∈ S1 and a compact connected set Kµ
X ⊂ S1\Bµβ (X).

A value ρ0 > 0 satisfying the conditions 7 for µXβ(λ0) and some λ0 ∈ Kµ
X it

also satisfies 7 for µXβ(λ) and all λ ∈ S1 in a neighborhood of λ0. Since Kµ
X

is compact we choose ρ0 > 0 satisfying the conditions 7 for µXβ(λ) and all λ ∈
Kµ
X . Consider the intermediate set Iβ = (|w| ≤ ρ) \ ∪ζ∈Sβ

(|w − ζ| < r(ζ)) where
0 < r(ζ) << 1 for all ζ ∈ Sβ and ρ ≥ ρ0. Given λ ∈ Kµ

X and P ∈ T ρµXβ(λ)

the interval It = It(µXβ(λ), P, Iβ) is compact. The set exp(∂ItµXβ(λ))(P ) is
contained in ∪ζ∈Sβ

(|w − ζ| = r(ζ)). Since the tangent points are convex then
exp(∂ItµXβ(λ))(P ) does not contain points of ∪ζ∈Sβ

TE
βζ,r(ζ)
µX (0, λ). The interval

It(Q) = It(µλmβXβ,M , Q, Iβ) is compact and depends on Q ∈ TIβ,ρµX ∩ [λ ∈ Kµ
X ]

continuously. We obtain exp(∂It(Q)µλmβXβ,M )(Q) ⊂ ∪ζ∈Sβ
(|w − ζ| = r(ζ)).

The dynamics ofRe(µX) restricted to Iβ is a topological product in x ∈ (0, δ0)K
µ
X

(indeed this is an abuse of notation, it could be necessary to consider a smaller
δ0 > 0). We denote by Reg∗(µX, β,Kµ

X) the set of connected components of

(İβ ∩ [(r, λ) ∈ [0, δ0)×Kµ
X ]) \ ∪Q∈TIβ,ρ

µX
exp (It(Q)µλmβXβ,M ) (Q).

An element H ∈ Reg∗(µX, β,Kµ
X) is open in (r, λ) ∈ [0, δ0) ×Kµ

X . Fix λ1 ∈ Kµ
X ;

by definition H ∈ Reg∗(µX, β,Kµ
X) belongs to Regj(µX, β,K

µ
X) for j ∈ {1, 2,∞}

if there exists J ∈ Regj(µXβ(λ1), ρ) such that H(0, λ1) ⊂ J . Since H depends
continuously on (r, λ) ∈ [0, δ0) ×Kµ

X the definition does not depend on the choice
of λ1. We define

Reg(µX, β,Kµ
X) = Reg1(µX, β,K

µ
X) ∪Reg2(µX, β,Kµ

X).

Let Y = µXβ(λ1). We define ωµXβ (H) = ωYρ (H(0, λ1)) for H ∈ Reg∗(µX, β,Kµ
X).

The definition of αµXβ (H) is analogous. A fundamental arc is a connected compo-
nent of

∂H ∩ ((|w| = ρ) ∪ζ∈Sβ
(|w − ζ| = r(ζ)))

for some H ∈ Reg∗(µX, β,Kµ
X). We denote by arc(µX, β,Kµ

X) the set of fun-
damental arcs. Moreover since given ac ∈ arc(µX, β,Kµ

X) there exists a unique
Hac ∈ Reg∗(µX, β,Kµ

X) such that ac ⊂ Hac then we define

arcj(µX, β,K
µ
X) = {ac ∈ arc(µX, β,Kµ

X) : Hac ∈ Regj(µX, β,Kµ
X)}

for j ∈ {1, 2,∞}.
We sketch next how to build for all (r0, λ0) ∈ [0, δ0)×Kµ

X a homeomorphism

F(r0,λ0) : Iβ(r0, λ0)→ Iβ(0, λ1)

such that F is continuous in Iβ ∩ [(r, λ) ∈ [0, δ0) × Kµ
X ], it conjugates orbits of

Re(µλmβ

0 Xβ,M )|(r,λ)=(r0,λ0) and Re(µλmβ

1 Xβ,M )|(r,λ)=(0,λ1) and F(0,λ1) ≡ Id.
It is straightforward to construct F once we know its restriction to ∂Iβ . We

can choose for F|w|=ρ any homeomorphism G(r0,λ0) : |w| = ρ → |w| = ρ such that
G(r0,λ0)(TI

β,ρ
µX (r0, λ0)) = TIβ,ρµX (0, λ1). The choice of F|w|=ρ determines F|ac for

every ac ∈ arc∞(µX, β,Kµ
X).
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Given H ∈ Regj(µX, β,Kµ
X) with j ∈ {1, 2} there exist two fundamental arcs

ac(α) and ac(ω) such that ac(υ) ⊂ [|w− υµXβ (H)| = r(υµXβ (H))] for all υ ∈ {α, ω}.
Suppose j = 2. The flow of Re(µX) establishes a homeomorphism from ac(α)
to ac(ω). We already defined F|∂ac(α) and we can extend F to ac(α) in any way
such that the restriction of F(r0,λ0) to ac(α)(r0, λ0) is a homeomorphism varying
continuously on (r0, λ0). The value of F|ac(α) determines F|ac(ω). Suppose j = 1.
Denote ζ = ωµXβ (H). We obtain ac(α) = ac(ω) ⊂ [|w − ζ| = r(ζ)]. The flow of
Re(µX) establishes an involution of ac(ω) which has exactly one fixed point for
(r, λ) = (r0, λ0). Moreover such fixed point belongs to TEβζ,r(ζ)µX (r0, λ0). We can
extend F to ac(ω) in such a way that F commutes with the involution. In this way
we defined F|∂Iβ

since we considered all the fundamental arcs throughout the pro-

cess. Since ∪ζ∈Sβ
TE

βζ,r(ζ)
µ,X is contained in the union of the arcs in arc1(µX, β,K

µ
X)

then the restriction of F to ∪ζ∈Sβ
TE

βζ,r(ζ)
µ,X is the identity.

7.4. Assembling the dynamics of the polynomial vector fields. We already
proved that the dynamics of Re(µX) (X ∈ Xtp1(C2, 0) and µ ∈ S1) is a topological
product in the exterior sets whereas such a result is true for the intermediate sets
when we avoid the directions in BµX . We want to assemble the information attached
to the exterior and intermediate sets to describe the behavior of Re(µX) in |y| ≤ ε.

Throughout this section Kµ
X is some compact connected set contained in S1\BµX .

Lemma 7.13. Let X ∈ Xtp1(C2, 0). Fix µ ∈ S1. Let P0 ∈ [0, δ0)×Kµ
X × ∂B(0, ε)

such that Re(µX) does not point towards C\B(0, ε) at P . Then the interval [0,∞)
is contained in It(µX,P0, B(0, ε)) and limζ→∞ exp(ζµX)(P0) ∈ SingX.

Proof. Denote P0 = (r0, λ0, y0). The result for r0 = 0 is a consequence of corollary
7.1 since {0} ×B(0, ε) = E0.

Suppose r0 6= 0. Since E0(r0, λ0) ∩ SingX = ∅ then the value c(µ, P0) provided
by corollary 7.1 belongs to R+. Denote Q0 = exp(c(µ, P0)µλd00 X0,E)(P0). We
have that Q0 ∈ ∂M0 and Re(µX) points towards İ0 at Q0. The point Q0 is
contained in a fundamental arc ac ∈ arc(µX, 0,Kµ

X) contained in the closure of
a unique H ∈ Reg∞(µX, 0,Kµ

X). There exists ζ ∈ C such that ωµX0 (H) = ζ
since GµX0(λ0) is connected. We have that d = sup(It(µX,Q, I0)) belongs to R+

and that exp(dµX)(Q) ∈ ∂M0 ∩ ∂E0ζ . Moreover Re(µX) points towards Ė0ζ

at exp(dµX)(Q). Denote β(0) = 0 and β(1) = 0ζ. By proceeding analogously
we obtain a sequence of points P0, Q0, P1, Q1, . . ., Pk (k ≥ 1) contained in
Γ(µX,P, |y| ≤ ε) and such that

Qj ∈ ∂Eβ(j) ∩ ∂Mβ(j) and Pj ∈ ∂Mβ(j−1) ∩ ∂Eβ(j) ∀j ∈ {1, . . . , k}
and Eβ(k) = Tβ(k). By corollary 7.1 and the discussion in subsection 7.3.2 then
Re(µX) points towards Ėβ(k) at ∂Eβ(k) and Pk is in the basin of attraction of
SingX ∩ Eβ(k). Thus we obtain limz→∞ exp(zµX)(P ) ∈ SingX ∩ Eβ(k). �

We define Reg∗(ε, µX,Kµ
X) the set of connected components of

[[|y| < ε] ∩ [x ∈ [0, δ0)K
µ
X ]] \ (SingX ∪x∈[0,δ0)K

µ
X
∪P∈T ε

µX(x)Γ(µX,P, |y| ≤ ε)).

We define αµX(P ) = limz→−∞ exp(zµX)(P ) for all P ∈ [|y| ≤ ε] such that
It(µX,P, |y| ≤ ε) contains (−∞, 0). Otherwise we define αµX(P ) =∞. We define
ωµX(P ) in an analogous way.
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Given H ∈ Reg∗(ε, µX,Kµ
X) the functions (αµX)|H and (ωµX)|H satisfy that

either they are identically∞ or their value is never∞. Since the basins of attraction
and repulsion of the curves in SingV µX in x ∈ [0, δ0)K

µ
X are open sets then (αµX)|H

and (ωµX)|H are continuous. Thus (αµX)|H(x) and (ωµX)|H(x) are constant for all
x ∈ [0, δ0)K

µ
X . Indeed we can interpret αµX(H) either as ∞ if (αµX)|H ≡ ∞ or as

the element of SingVX that contains αµX(H) otherwise. Denote

Reg∞(ε, µX,Kµ
X) = Reg∗(ε, µX,Kµ

X) ∩ ((αµX)−1(∞) ∪ (ωµX)−1(∞))

and Reg(ε, µX,Kµ
X) = Reg∗(ε, µX,Kµ

X) \Reg∞(ε, µX,Kµ
X). We define

Regj(ε, µX,K
µ
X) = {H ∈ Reg(ε, µX,Kµ

X) : ]{αµX(H), ωµX(H)} = j}
for j ∈ {1, 2}. We have that the set H(x) is connected for H ∈ Reg(ε, µX,Kµ

X)
and x ∈ (0, δ0)K

µ
X . The set H(0) is connected for H 6∈ Reg2(ε, µX,Kµ

X) whereas
otherwise H(0) has two connected components.

We define an oriented graph G(µX,Kµ
X). The set of vertexes is SingVX whereas

the edges are the elements of Reg(ε, µX,Kµ
X). The edge H ∈ Reg(ε, µX,Kµ

X) joins

the vertexes αµX(H) and ωµX(H), we denote αµX(H) H→ ωµX(H). The graph
NG(µX,Kµ

X) is obtained from G(µX,Kµ
X) by removing the reflexive edges and the

orientation of edges.

Proposition 7.7. Let X ∈ Xtp1(C2, 0). Fix µ ∈ S1 and a compact connected set
Kµ
X ⊂ S1 \BµX . Then the graph NG(µX,Kµ

X) is acyclic and connected.

We say that a exterior set Eβ has depth 0 if N(β) = 1. In general given Eβ such
that N(β) > 1 we define depth(Eβ) = 1 + supζ∈Sβ

depth(Eβζ).

Proof. A exterior set Eβ = [η ≥ |t| ≥ ρ|x|] is contained in Tβ = [η ≥ |t|]. We can
associate graphs Gβ(µX,Kµ

X) and NGβ(µX,Kµ
X) to the vector field Re(µλdβXβ,E)

defined in Tβ .
Consider an exterior set Eβ such that depth(Eβ) = 0. The graph NGβ(µX,Kµ

X)
has only one vertex and no edges, therefore it is connected and acyclic.

Suppose that NGβ(µX,Kµ
X) is connected and acyclic for all exterior set Eβ such

that depth(Eβ) ≤ k. It is enough to prove that the result is true for every exterior
set Eβ such that depth(Eβ) = k + 1.

Fix λ0 ∈ Kµ
X . The graph NGµXβ(λ0) is connected and acyclic by corollary

7.3 and proposition 7.4. Consider an edge J0 ∈ Reg(µXβ(λ0)) of the graph
GµXβ(λ0) joining the vertexes ζ(1) and ζ(2). We denote also by J0 the compo-
nent of Reg(µXβ(λ0), ρ) associated to J0 by proposition 7.6 where Mβ = [|w| ≤ ρ].
Let J1 be the element of Reg(µX, β,Kµ

X) such that J1(0, λ0) ⊂ J0. By lemma
7.13 applied to Re(µλdβζ(1)Xβζ(1),E) in Tβζ(1) we deduce that αµX(J1) ⊂ SingX.
By the open character of the singular points in (r, λ) ∈ [0, δ0) × Kµ

X we obtain
that αµX(J1) is contained in an irreducible component γ1 of SingX. Analogously
ωµX(J1) is contained in an irreducible component γ2 of SingX. Denote by J2 the
edge of NGβ(µX,Kµ

X) joining γ1 and γ2.
The set C \ J0 has two connected components H1 3 ζ(1) and H2 3 ζ(2) (lemma

7.12). Denote Sgj = Hj ∩ Sβ for j ∈ {1, 2}. We obtain that there is no edge
different than J2 of Gβ(µX,Kµ

X) joining a vertex of NGβυ(µX,Kµ
X) and a ver-

tex of NGβκ(µX,Kµ
X) for υ ∈ Sg1 and κ ∈ Sg2. Moreover the restriction of

Gβ(µX,Kµ
X) to SingVXβυ,E is Gβυ(µX,Kµ

X) for all υ ∈ Sβ . Then the aciclic-
ity of every NGβυ(µX,Kµ

X) for all υ ∈ Sβ imply that NGβ(µX,Kµ
X) is acyclic.
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Finally, since NGµXβ(λ0) and NGβυ(µX,Kµ
X) are connected for all υ ∈ Sβ then

NGβ(µX,Kµ
X) is connected. �

The properties of G(µX,Kµ
X) are inherited of the properties of the polynomial

vector fields associated to X.

Proposition 7.8. Let X ∈ Xtp1(C2, 0). Fix µ ∈ S1 and a compact connected set
Kµ
X ⊂ S1 \BµX . Then we have

](Reg(ε, µX,Kµ
X) ∩ (αµX , ωµX)−1(γ, γ)) = 2νX(γ)

for all γ ∈ SingVX. Moreover we have ]Reg(ε, µX,Kµ
X) = 2ν(X)−N(X) + 1.

7.5. Analyzing the regions. Let X ∈ Xtp1(C2, 0). Fix µ ∈ S1 and a compact
connected set Kµ

X ⊂ S1 \BµX . Consider a region H ∈ Reg1(ε, µX,Kµ
X). We denote

by T εµX,H(x) the unique tangent point in T εX(x) ∩H(x) for all x ∈ [0, δ0)K
µ
X . Let

ψ be an integral of the time form of X defined in a neighborhood of T εµX,H(0). By
analytic continuation we obtain an integral of the time form ψXH,L = ψXH,R of X
in H = HL = HR such that it is holomorphic in H \ [x = 0] and continuous in
H. Moreover (x, ψXH,L) = (x, ψXH,R) is injective in H since ψXH,L(H(x)) is simply
connected for all x ∈ [0, δ0)K

µ
X .

Let H ∈ Reg2(ε, µX,Kµ
X). Denote by LεµX,H(x) the unique point T εX(x)∩H(x)

such that Re(−µiX) points towards H for all x ∈ [0, δ0)K
µ
X . We define HL as

the union of H \ [x = 0] and the connected component HL(0) of H(0) such that
LεµX,H(0) ∈ HL(0). We denote by RεµX,H(x) the other point in T εX(x) ∩H(x) for
x ∈ [0, δ0)K

µ
X . We define HR = H \HL(0). Let ψκ be a holomorphic integral of the

time form of X defined in a neighborhood of κεµX,H(0) for κ ∈ {L,R}. We obtain
an integral ψXH,κ of the time form of X in Hκ obtained by analytic continuation of
ψκ for κ ∈ {L,R}. The function ψXH,κ is holomorphic in H \ [x = 0] and continuous
in Hκ for κ ∈ {L,R}. Moreover (x, ψXH,L) and (x, ψXH,R) are injective in HL and
HR respectively. The theorem of the residues implies that

ψXH,L(x, y)− ψXH,R(x, y)− 2πi
∑

P∈J(x)

Res(X,P )

is bounded in H \ [x = 0] where J(x) is the subset of (SingX)(x) of points
contained in the same connected component of B(0, ε) \ H(x) than ωµX(H(x)).
Since H(0) is disconnected the function x →

∑
P∈J(x)Res(X,P ) is not bounded

in x ∈ (0, δ0)K
µ
X . Indeed x →

∑
P∈J(x)Res(X,P ) can be extended to a pure

meromorphic function defined in a neighborhood of x = 0.
We call subregion of a region H ∈ Reg(ε, µX,Kµ

X) to every set of the form
H ∩ Eβ or H ∩ Iβ where Eβ is an exterior set and Iβ is an intermediate set. We
say that all the subregions of H ∈ Reg1(ε, µX,K

µ
X) are both L-subregions and

R-subregions. Consider H ∈ Reg2(ε, µX,K
µ
X). There exists a magnifying glass

set Mβ(0) such that the curves αµX(H) and ωµX(H) are contained in Mβ(0) but
they are in differented connected components of Mβ(0) \ Iβ(0). A subregion of H
contained in Mβ(0) is both a L-subregion and an R-subregion. A subregion in the
same connected component of H \Mβ(0) than LεµX,H is called a L-subregion. A
subregion of H in the same connected component of H \Mβ(0) than RεµX,H is called
a R-subregion. We define HL the union of the L-subregions of H whereas HR is
the union of the R-subregions of H. Clearly we have H = HL ∪HR.
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Remark 7.5. The dynamical splitting can be generalized to study any germ of
vector field of the form xmY for some Y ∈ Xp1(C2, 0). There is no problem in
dealing with singular vector fields at x = 0 if Y ∈ Xtp1(C2, 0). Indeed we already
dit it since all the transforms of X outside of the first exterior set are singular at
x = 0. The only difference is that the regions do not depend on x but on (r, λ). If
Y 6∈ Xtp1(C2, 0) we just consider a ramification (xk, y) such that (xk, y)∗Y belongs
to Xtp1(C2, 0). The expression for the sets of the splitting is a little bit different,
for instance the first exterior set is of the form ρ|x|1/k ≤ |y| ≤ η.

8. Extension of the Fatou coordinates

A diffeomorphism ϕ ∈ Diff tp1(C2, 0) is a small deformation of its convergent
normal form exp(X) in suitable domains. The dynamical splitting associated to X
provides information about the dynamics of ϕ. That is going to lead us to define the
analogue of the Ecalle-Voronin invariants. For such a purpose we need to mesure
the “distance” from exp(X) to ϕ.

8.1. Comparing ϕ ∈ Diff tp1(C2, 0) and a convergent normal form. Let exp(X)
be a convergent normal form of ϕ. We consider

σz(x, y) = (x, (1− z)(y ◦ exp(X)) + z(y ◦ ϕ))

for z ∈ B(0, 2). Let ψ be an integral of the time form of X, i.e. X(ψ) = 1. We
define ∆ϕ = ψ ◦ σ1(P ) − (ψ(P ) + 1) for P 6∈ Fixϕ in a neighborhood of (0, 0) as
follows: we choose a determination ψ|x=x(P ) in the neighborhood of P , we define
ψ ◦ σ1(P ) as the evaluation at σ1(P ) of the analytic continuation of ψ|x=x(P ) along
the path γ : [0, 1] → [x = x(P )] given by γ(z) = σz(P ). The value of ∆ϕ does
not depend on the determination of ψ that we chose. Clearly ∆ϕ is holomorphic in
U \ Fixϕ for some neighborhood U of (0, 0). Indeed we have:

Lemma 8.1. Let ϕ ∈ Diff tp1(C2, 0) (with fixed convergent normal form). Then
the function ∆ϕ belongs to the ideal (y ◦ ϕ− y) of the ring C{x, y}.

The result is a consequence of Taylor’s formula applied to

∆ϕ = ψ ◦ ϕ− ψ ◦ exp(X) ∼ ∂ψ

∂y
◦ exp(X)(y ◦ ϕ− y ◦ exp(X)) = O(y ◦ ϕ− y).

Proposition 8.1. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ S1 and a compact connected set Kµ

X ⊂ S1. Consider H ∈ Reg(ε, µX,Kµ
X).

Then we have

∆ϕ = O(X(y)) = O

(
1

(1 + |ψXH,κ|)1+1/ν(ϕ)

)
for every κ-subregion of H and all κ ∈ {L,R}.

Proof. Denote f = X(y). Let us prove the result for a L-subregion J without lack
of generality. There exists a sequence B(0), . . ., B(k) = J of L-subregions of H
such that

• B(2j) ⊂ Eβ(2j) for all 0 ≤ 2j ≤ k.
• B(2j + 1) ⊂ Iβ(2j) for all 0 ≤ 2j + 1 ≤ k.
• β(0) = 0 and β(2j+2) = β(2j)υ(j) for some υ(j) ∈ C and all 0 ≤ 2j+2 ≤ k.
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Denote K(2j) = Eβ(2j), h(2j) = dβ(2j), K(2j + 1) = Iβ(2j) and h(2j + 1) = mβ(2j).
Denote ∂eB(0) = [|y| ≤ ε] ∩ B(0) and ∂eB(j) = B(j) ∩ ∂K(j − 1) for j ≥ 1. We
define the property Pr(j) as

Pr(j) :
{

sup |(ψXH,L)|∂eB(j)| ≤Mj/|x|h(j) for some Mj ∈ R+ if j ≤ k
f = O(1/(1 + |ψXH,L|)1+1/ν(ϕ)) in B(0) ∪ . . . ∪B(j − 1).

We have that Pr(k + 1) implies the result in the proposition for J . The result is
true for j = 0. It is enough to prove that Pr(j) =⇒ Pr(j + 1) for all 0 ≤ j ≤ k.

From the construction of the splitting we obtain that f ∈ (xh(j)+[(j+1)/2]) inK(j)
for all 0 ≤ j ≤ k (let us remark that [(j + 1)/2] is the integer part of (j + 1)/2).
Denote Y = (X/xh(j))|K(j). There exists a holomorphic integral ψj of the time
form of Y in a neighborhood of the simply connected set B(j) such that |ψj | ≤M ′j
in ∂eB(j) for some M ′j > 0. Suppose that K(j) = [η ≥ |t| ≥ ρ|x|] is a parabolic
exterior set, since ν(Y ) ≤ ν(X) we obtain

f = O

(
xh(j)+[(j+1)/2]

(1 + |ψj |)1+1/ν(Y )

)
= O

(
xh(j)+[(j+1)/2]

(1 + |ψj |)1+1/ν(X)

)
by remark 7.4. The inequality |xh(j)ψXH,L − ψj | ≤Mj +M ′j implies

f = O

(
xh(j)+[(j+1)/2]−h(j)(1+1/ν(X))

(1 + |ψXH,L|)1+1/ν(X)

)
= O

(
1

(1 + |ψXH,L|)1+1/ν(X)

)
in B(j) since h(j) ≤ [(j + 1)/2]ν(X) by construction. Moreover if j < k then we
have |ψj | = O(1/|x|ν(Y )) in ∂eB(j+1). We deduce that there exists Mj+1 > 0 such
that |ψXH,L| ≤Mj+1/|x|h(j+1) in ∂eB(j + 1) since h(j + 1) = h(j) + ν(Y ),

Suppose that K(j) = [η ≥ |t|] is a non-parabolic exterior set, this implies j = k.
We have that ψj(r, λ, t)λ−dβµ−1 − C(r, λ) ln(t − γ(x)) is bounded in B(j) where
t = γ(x) is the only irreducible component of SingXβ(j),E by the discussion in
subsection 7.3.2. There exists υ > 0 such that arg(C(r, λ)) in (−π/2 + υ, π/2− υ)
for all (r, λ) ∈ [0, δ0) ×Kµ

X if B(j) is a basin of repulsion, otherwise we have that
arg(C(r, λ)) ∈ (π/2 + υ, 3π/2− υ) for all (r, λ) ∈ [0, δ0)×Kµ

X . We deduce that

f = O(xh(j)+[(j+1)/2](t− γ(x))) = O(xh(j)+[(j+1)/2]e−K|ψj |)

in B(j) for some K > 0 and then

f = O

(
xh(j)+[(j+1)/2]

(1 + |ψj |)1+1/ν(X)

)
= O

(
1

(1 + |ψXH,L|)1+1/ν(X)

)
in B(j).

Finally suppose that K(j) is an intermediate set. We have that ψj is bounded in
B(j). Thus there existsMj+1 > 0 such that |ψXH,L| ≤Mj+1/|x|h(j) = Mj+1/|x|h(j+1)

in B(j) and then in ∂e(B(j + 1)). We obtain

f = O(xh(j)+[(j+1)/2]) = O

(
xh(j)+[(j+1)/2]

(1 + |ψj |)1+1/ν(X)

)
= O

(
1

(1 + |ψXH,L|)1+1/ν(X)

)
in B(j). �
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8.2. Constructing Fatou coordinates. Let ϕ ∈ Diff tp1(C2, 0) with convergent
normal form α = exp(X). Fix µ = ieiθ with θ ∈ (−π/2, π/2) and a compact con-
nected set Kµ

X ⊂ S1 \ BµX . Consider H ∈ Reg(ε, µX,Kµ
X). Let P ∈ H, suppose

P ∈ HL without lack of generality. The trajectory Γ = Γ(µX,P, |y| ≤ ε) is con-
tained in HL. Let B(P ) be the strip exp([0, 1]X)(Γ) and Γ′ = α(Γ). The distance
between the lines ψXH,L(Γ) and ψXH,L(Γ′) is cos θ. Since ψXH,L ◦ ϕ = ψXH,L ◦ α + ∆ϕ

then Γ and ϕ(Γ) enclose a strip B1(P ) whenever supB(0,δ0)×B(0,ε)|∆ϕ| < (cos θ)/3.
Since ∆ϕ(0, 0) = 0 this condition is fulfilled by taking µ away from −1 and 1 and
a small neighborhood B(0, δ0)×B(0, ε) of (0, 0).

Let B̃(P ) be the complex space obtained from B(P ) by identifying Γ and Γ′.
Let B̃1(P ) be the complex space obtained from B1(P ) by identifying Γ and ϕ(Γ).
The space B̃(P ) is biholomorphic to C∗ by e2πiz ◦ψXH,L. A natural compactification
B(P ) is obtained by adding 0 ∼ ωµX(P ) and ∞ ∼ αµX(P ). Analogously we will
obtain a biholomorphism from B1(P ) to P1(C). The space of orbits of ϕ|HL(x(P )) is
then rigid, that will allow us to define analytic invariants of ϕ. Let us remark that
B̃1(P ) is the restriction of the space of orbits of ϕ to HL(x(P )) for all choices of H
and P if and only if νX(γ) ≥ 1 for all γ ∈ SingVX [22]. In general the complete
space of orbits is messier, we obtain further identifications via return maps.

We consider the coordinates given by ψXH,L. We define

σ0(z) = z + η(cos θRe((z − ψXH,L(P ))e−iθ))∆ϕ ◦ α◦(−1) ◦ (ψXH,L)◦(−1)(z)

where η : R→ [0, 1] is a C∞ function such that η(b) = 0 for all b ≤ 1/3 and η(b) = 1
for all b ≥ 2/3. This definition implies that σ = (ψXH,L)◦(−1) ◦ σ0 ◦ ψXH,L satisfies

σexp([0,1/3]X)(Γ) ≡ Id and σexp([−1/3,0]X)(Γ′) ≡ ϕ ◦ α◦(−1).

The mappings σ0 and σ depend on the choice of the base point P . The function
∆ϕ ◦ α◦(−1) ◦ (ψXH,L)◦(−1) is holomorphic. By Cauchy’s integral formula we obtain

∂(∆ϕ ◦ α◦(−1) ◦ (ψXH,L)◦(−1))
∂z

(z0) =
1

2πi

∫
|z−z0|=1

∆ϕ ◦ α◦(−1) ◦ (ψXH,L)◦(−1)

(z − z0)2
dz.

By proposition 8.1 there exists C > 1 such that

(8)

∣∣∣∣∣∂(∆ϕ ◦ α◦(−1) ◦ (ψXH,L)◦(−1))
∂z

∣∣∣∣∣ (z) ≤ Cmin

(
1

(1 + |z|)1+1/ν(ϕ)
, sup
B(P )

|∆ϕ|

)
for all z ∈ ψXH,L(B(P )). The jacobien matrix J σ0 of σ0 is a 2× 2 real matrix. The
coefficients of J σ0−Id are bounded by an expression like the one in the right hand
side of equation 8, maybe for a bigger C > 1. We obtain that supB(0,δ)×B(0,ε) |∆ϕ|
small implies J σ0 ∼ Id and then σ is a C∞ diffeomorphism from B̃(P ) onto B̃1(P ).

The mapping ξ = e2πiz ◦ψXH,L ◦σ◦(−1) is a C∞ diffeomorphism from B̃1(P ) onto
C∗. The function ψXH,L ◦ σ◦(−1) is a Fatou coordinate, even if not holomorphic in
general, of ϕ in B1(P ). The complex dilatation χσ0 of σ0 satisfies

|χσ0 |(z) =

∣∣∂σ0
∂z

∣∣∣∣∂σ0
∂z

∣∣ (z) ≤ K(H) min

(
1

(1 + |z|)1+1/ν(ϕ)
, sup
H(x(P ))

|∆ϕ|

)
for all z ∈ ψXH,L(B(P )) and some K(H) > 1 independent of P ∈ H. Since ξ◦(−1) is
equal to (ψXH,L)◦(−1) ◦ σ0 ◦ ((1/2πi) ln z) then
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Lemma 8.2. |χξ◦(−1) |(z) ≤ K(H) min(1/(1+ | ln z|/(2π))1+1/ν(ϕ), supH(x(P )) |∆ϕ|)
for all z ∈ e2πiw ◦ ψXH,L(B(P )).

The mapping ξ and then χξ◦(−1) depend on the base point P . We look for a
quasi-conformal mapping ρ̃ : P1(C)→ P1(C) such that χρ̃ = χξ◦(−1) . Since we can
suppose ||χξ◦(−1) ||∞ = supC∗ |χξ◦(−1) | < 1/2 < 1 then such a mapping exists by the
Ahlfors-Bers theorem. The choice of ρ̃ is unique if ρ̃ fulfills ρ̃(0) = 0, ρ̃(1) = 1 and
ρ̃(∞) =∞. By construction ρ̃ ◦ ξ is a biholomorphism from B̃1(P ) to C∗.

We define

J(r) =
2
π

∫
|z|<r

K(H)
(1 + 2−1π−1| ln |z||)1+1/ν(ϕ)

1
|z|2

dσ

for r ∈ R+. We have that J(r) <∞ for all r ∈ R+.

Lemma 8.3. The mapping ρ̃ is conformal at 0 and at ∞. Moreover we have∣∣∣∣ ρ̃(z)z − ∂ρ̃

∂z
(0)
∣∣∣∣ ≤ ∣∣∣∣∂ρ̃∂z (0)

∣∣∣∣ ι(|z|) and
∣∣∣∣ z

ρ̃(z)
− ∂ρ̃

∂z
(∞)

−1∣∣∣∣ ≤ ∣∣∣∣∂ρ̃∂z (∞)
∣∣∣∣−1

ι(1/|z|)

where ι depends on K(H), it satisfies lim|z|→0 ι(|z|) = 0. We have

min|z|=1|ρ̃(z)|e−J(1) ≤ |∂ρ̃/∂z|(0), |∂ρ̃/∂z|(∞) ≤ max|z|=1|ρ̃(z)|eJ(1).

Proof. We define

I(r) =
1
π

∫
|z|<r

1
1− |χρ̃|

|χρ̃(z)|
|z|2

dσ

for all r ∈ R+. We have I(r) ≤ J(r) for all r ∈ R+. To get the conformality of ρ̃ at
z = 0 it is enough to prove that I(r) <∞ for all r ∈ R+ (theorem 6.1 in page 232
of [14]). This is clear since J(r) <∞ for all r ∈ R+. The inequality is obtained for
a function ι such that lim|z|→0 ι(|z|) = 0, it depends on J and then on K(H). The
proof for z =∞ is obtained by applying the result in [14] to 1/ρ̃(1/z). �

We denote by [z0, z1] the spherical distance for z0, z1 ∈ P1(C).

Lemma 8.4. ([1], lemma 17, page 398). Let χ be a measurable complex-valued
function in P1(C). Suppose ||χ||∞ < 1. Then there exists a unique quasi-conformal
mapping υ : P1(C)→ P1(C) such that χυ = χ, υ(0) = 0, υ(1) = 1, υ(∞) =∞ and

[υ(z), z] ≤ C0||χ||∞
for all z ∈ P1(C) and some C0 > 0 not depending on χ.

Corollary 8.1. [ρ̃(z), z] ≤ C0||χξ◦(−1) ||∞ for all z ∈ P1(C)

We define ρ = ρ̃/(∂ρ̃/∂z)(0). The quasi-conformal mapping ρ is the only solution
of χρ = χξ◦(−1) such that ρ(0) = 0, ρ(∞) =∞ and (∂ρ/∂z)(0) = 1.

Lemma 8.5. lim||χ
ξ◦(−1) ||∞→0(∂ρ̃/∂z)(z0) = 1 for z0 ∈ {0,∞}. In particular we

have lim||χ
ξ◦(−1) ||∞→0(∂ρ/∂z)(∞) = 1.

Proof. Denote χ = χξ◦(−1) . For ||χ||∞ small enough there exists C1 > 0 such that
|ρ̃(z)− z| ≤ C1||χ||∞ for all z ∈ B(0, 1) (lemma 8.4). This leads us to∣∣∣∣∂ρ̃∂z (0)− 1

∣∣∣∣ ≤ (1 + C1)eJ(1)ι(|z|) +
C1

|z|
||χ||∞
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for all z ∈ B(0, 1)\{0} (lemma 8.3 and corollary 8.1). By evaluating at z =
√
||χ||∞

we obtain that lim||χ
ξ◦(−1) ||∞→0(∂ρ̃/∂z)(0) = 1. In an analogous way we can prove

that lim||χ
ξ◦(−1) ||∞→0(∂ρ̃/∂z)(∞) = 1. Since

(∂ρ/∂z)(∞) = (∂ρ̃/∂z)(∞)/(∂ρ̃/∂z)(0)

then we obtain that lim||χ
ξ◦(−1) ||∞→0(∂ρ/∂z)(∞) = 1. �

Lemma 8.6. lim||χ
ξ◦(−1) ||∞→0 supz∈P1(C) |ρ(z)/z − 1| = 0.

Proof. Denote χ = χξ◦(−1) . Let b > 0. By lemma 8.3 there exists r0 ∈ R+ such
that |ρ(z)/z − 1| < b for all z ∈ B(0, r0). We also obtain∣∣∣∣ z

ρ(z)
− ∂ρ

∂z
(∞)

−1∣∣∣∣ ≤ ∣∣∣∣∂ρ∂z (∞)
−1∣∣∣∣ ι(1/|z|).

Since lim||χ||∞→0(∂ρ/∂z)(∞) = 1 then there exist a0 > 0 and r1 > 0 such that
|ρ(z)/z − 1| < b for all z ∈ C \ B(0, r1) if ||χ||∞ < a0. There exists a1 > 0 and
C1 > 0 such that |ρ̃(z)− z| < C1||χ||∞ for all z ∈ B(0, r1) \B(0, r0) if ||χ||∞ < a1.
We deduce that ∣∣∣∣ρ(z)z − 1

∣∣∣∣ ≤ |1− 1/(∂ρ̃/∂z)(0)|+ C1||χ||∞
|∂ρ̃/∂z|(0)|z|

for all z ∈ B(0, r1) \ B(0, r0) and ||χ||∞ < a1. By lemma 8.5 there exists a ∈ R+

such that |ρ(z)/z − 1| < b for all z ∈ P1(C) if ||χ||∞ < a. �

Now we can define the function

ψϕH,L,P =
1

2πi
ln z ◦ ρ ◦ e2πiz ◦ ψXH,L ◦ σ◦(−1).

It is an injective Fatou coordinate of ϕ in the neighborhood of B1(P ). By using
ψϕH,L,P ◦ ϕ = ψϕH,L,P + 1 we can extend ψϕH,L,P to HL(x(P )).

It looks like ψϕH,L,P depends on the choice of the base point P ∈ HL. Neverthe-
less the functions ψϕH,L,P paste together to provide a Fatou coordinate ψϕH,L, it is
continuous in HL and holomorphic in Ḣ.

Lemma 8.7. Denote ξ0 = e2πiz ◦ψXH,L. There exists C > 0 independent of P ∈ HL

such that ∣∣∣ψϕH,L,P − ψXH,L∣∣∣ ≤ 1
π

∣∣∣∣∣∣ρ
z
− 1
∣∣∣∣∣∣
∞

+
C

(1 + |ψXH,L|)
1+1/ν(ϕ)

in B1(P ). Moreover we have

lim
Z∈B1(Q),ξ0(Z)→z0

ψϕH,L,P (Z)− ψXH,L(Z) =
1

2πi
ln
∂ρ

∂z
(z0)

for all z0 ∈ {0,∞} and all Q ∈ HL(x(P )).

Proof. Denote χ = χξ◦(−1) and κ = ρ/z−1. We have lim||χ||∞→0 ||κ||∞ = 0 (lemma
8.6). Thus we obtain∣∣∣ψϕH,L,P − ψXH,L ◦ σ◦(−1)

∣∣∣ = 1
2π

∣∣∣ln(1 + κ(z)) ◦ e2πiz ◦ ψXH,L ◦ σ◦(−1)
∣∣∣ ≤ ||κ||∞

π
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for ||κ||∞ small enough. On the other hand we get∣∣∣ψXH,L ◦ σ◦(−1) − ψXH,L
∣∣∣ = ∣∣∣σ◦(−1)

0 ◦ ψXH,L − ψXH,L
∣∣∣ ≤ C

(1 + |ψXH,L|)
1+1/ν(ϕ)

for some C > 0 and all z ∈ B1(P ) (prop. 8.1). Analogously we obtain

lim
Z∈B1(P ),ξ0(Z)→z0

ψϕH,L,P (Z)− ψXH,L(Z) =
1

2πi
ln
∂ρ

∂z
(z0)

for z0 ∈ {0,∞}. We can suppose supB(0,δ0)×B(0,ε) |∆ϕ| < 1/2. As a consequence
given Q ∈ HL(x(P )) there exists k(Q) ∈ N such that every Z ∈ B1(Q) is of the
form ϕ◦(j(Z))(P ′) for some P ′ ∈ B1(P ) and j(Z) ∈ [−k(Q), k(Q)]. Moreover if
j(Z) ≥ 0 then ϕ◦(l)(P ′) ∈ HL(x(P )) for 0 ≤ l < j(Z) whereas for j(Z) < 0 we have
that ϕ◦(−l)(P ′) ∈ HL(x(P )) for 0 ≤ l < −j(Z).

Fix Q ∈ HL(x(P )). Consider Z ∈ B1(Q), we can suppose j(Z) > 0 without lack
of generality. This leads us to

ψϕH,L,P (Z)− ψXH,L(Z) = (ψϕH,L,P (P ′)− ψXH,L(P ′))−
j(Z)−1∑
l=0

∆ϕ ◦ ϕ◦(l)(P ′).

Since |ψXH,L(ϕ◦(l)(P ′))− ψXH,L(Z) + j(Z)− l| < k(Q)/2 for all 0 ≤ l ≤ j(Z) then∣∣∣∣∣∣
j(Z)−1∑
l=0

∆ϕ ◦ ϕ◦(l)(P ′)

∣∣∣∣∣∣ ≤ k(Q)C

(1− k(Q)/2 + |Img(ψXH,L(Z))|)1+1/ν(ϕ)

Now ξ0(Z)→ 0,∞ implies |Img(ψXH,L(Z))| → ∞. Thus we obtain

lim
Z∈B1(P ),ξ0(Z)→z0

ψϕH,L,P (Z)− ψXH,L(Z) = lim
Z∈B1(Q),ξ0(Z)→z0

ψϕH,L,P (Z)− ψXH,L(Z)

for z0 ∈ {0,∞}. �

We prove next that ψH,L,P depends only on x(P ).

Lemma 8.8. Let x0 ∈ [0, δ0)K
µ
X . We have ψϕH,L,P ≡ ψϕH,L,Q in HL(x0) for all

P,Q ∈ HL(x0). We also have ψϕH,L,P − ψXH,L ≡ ψϕH,R,Q − ψXH,R if x0 6= 0 and
(P,Q) ∈ HL(x0)×HR(x0). Then (∂ρ/∂z)(∞) depends only on H and x(P ).

Proof. Let P,Q ∈ HL(x0). We have ψϕH,L,P − ψ
ϕ
H,L,Q ∈ ϑ(B̃1(P )) since

(ψϕH,L,P − ψ
ϕ
H,L,Q) ◦ ϕ ≡ ψϕH,L,P − ψ

ϕ
H,L,Q.

We define h = (ψϕH,L,P −ψ
ϕ
H,L,Q) ◦ (ψϕH,L,P )◦(−1) ◦ 1/(2πi) ln z in C∗. The function

extends to a holomorphic function in P1(C) such that h(0) = 0 by lemma 8.7.
Therefore we obtain h ≡ 0 and then ψϕH,L,P ≡ ψ

ϕ
H,L,Q.

We have (ψXH,L − ψXH,R)(x0, y) ≡ b(x0) in H(x0) for some b(x0) ∈ C. We define

g = (ψϕH,L,P −ψ
ϕ
H,R,Q)◦(ψϕH,L,P )◦(−1)◦1/(2πi) ln z in C∗ = (e2πiz ◦ψH,L,P )(H(x0)).

By lemma 8.7 the complex function g admits a continuous extension to P1(C) such
that g(0) = b(x0). We are done since then g ≡ b(x0). �

Here it is important the choice ρ(0) = 0, ρ(∞) = ∞, ρ′(0) = 1. By replacing ρ
by the canonical choice ρ̃(0) = 0, ρ̃(1) = 1, ρ̃(∞) = ∞ in the definition of ψϕH,L,P
we would have ψϕH,L,P 6≡ ψ

ϕ
H,L,Q in general.
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Denote by ψϕH,L any of the functions ψϕH,L,P defined in HL. The definition of
ψϕH,R is analogous. We denote by ψϕH − ψXH the function defined in H which is
given by the expression ψϕH,l − ψXH,l in Hl for l ∈ {L,R}. The definitions of ψϕH,L,
ψϕH,R and ψϕH −ψXH allow to deduce asymptotic properties of those functions when
approaching the fixed points without checking out that they are stable by iteration.

Proposition 8.2. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1\BµX . Let H ∈ Reg(ε, µX,Kµ
X);

the mappings (x, ψϕH,L) and (x, ψϕH,R) are holomorphic in Ḣ and continuous and
injective in HL and HR respectively.

Proof. Consider P = (x0, y0) ∈ HL. The mapping σ0(x, z) depends holomorphi-
cally on x. There exists a continuous section P (x1) ∈ [x = x1] for x1 in a neighbor-
hood V of x0 in [0, δ0)K

µ
X such that ψXH,L(P (x1)) = ψXH,L(P ) and P (x0) = P . The

mapping σ = ψXH,L ◦σ0 ◦ (ψXH,L)◦(−1) maps B(P (x)) onto B1(P (x)) and establishes
a C∞ diffeomorphism from B̃(P (x)) onto B̃1(P (x)) for all x ∈ V . The complex
dilation χξ◦(−1) depends holomorphically on x ∈ V̇ and continuously on x ∈ V .
Hence the dependance of the canonical solution ρ̃ : P1(C)→ P1(C) of χρ̃ = χξ◦(−1)

with respect to x is continuous in V and holomorphic in V̇ . In particular the func-
tion x→ (∂ρ̃/∂z)(x, 0) is holomorphic in V̇ and continuous in V . We deduce that
ρ(x, z) = ρ̃(x, z)/(∂ρ̃/∂z)(x, 0) depends continuously on x ∈ V and holomorphi-
cally on x ∈ V̇ . Then ψϕH,L is continuous in ∪x∈VB1(P (x)) and holomorphic in
a neighborhood of ∪x∈V̇B1(P (x)). Since P can be any point of HL then ψϕH,L is
holomorphic in Ḣ and continuous in HL. Moreover (x, ψϕH,υ) is injective in Hυ for
υ ∈ {L,R} since ψϕH,υ is injective in the fundamental domains of type B1(P ). �

Corollary 8.2. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1\BµX . Let H ∈ Reg(ε, µX,Kµ
X).

The function x → (∂ρ/∂z)(H,x,∞) is well-defined and continuous in [0, δ0)K
µ
X .

It is holomorphic in (0, δ0)K̇
µ
X and (∂ρ/∂z)(H, 0,∞) = 1. Moreover we have

(∂ρ/∂z)(H,x,∞) ≡ 1 if H ∈ Reg1(ε, µX,Kµ
X).

Proof. By the proof of the previous proposition we have that x → (∂ρ̃/∂z)(x, 0)
and x→ (∂ρ̃/∂z)(x,∞) are continuous in [0, δ0)K

µ
X and holomorphic in (0, δ0)K̇

µ
X .

The same property is clearly fulfilled by x→ (∂ρ/∂z)(x,∞).
Consider P = exp(sX)(LHµX(0)) if H ∈ Reg2(ε, µX,K

µ
X) for all s ∈ R+. For

H ∈ Reg1(ε, µX,K
µ
X) consider P = exp(sX)(THµX(0)) for s ∈ R+ if Re(−iµX)

points towards H at THµX(0), otherwise we denote P = exp(−sX)(THµX(0)) for
s ∈ R+. Then P is well-defined and belongs to HL(0) = HL(0) for all s ∈ R+.
Moreover infQ∈B(P ) |ψXH,L(Q)| tends to∞ when s→∞. We obtain ||χξ◦(−1) ||∞ → 0
when s → 0 by lemma 8.2. This implies (∂ρ/∂z)(0,∞) = 1 by lemma 8.5. The
prove of (∂ρ/∂z)(x,∞) ≡ 1 in the case H ∈ Reg1(ε, µX,Kµ

X) is analogous. �

Proposition 8.3. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1\BµX . Let H ∈ Reg(ε, µX,Kµ
X);

the function ψϕH − ψXH is continuous in H ∪ [Fixϕ ∩ ∂H].
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Proof. The function ψϕH − ψXH is clearly continuous in H. We define

(ψϕH − ψ
X
H )(αµX(H(x))) =

1
2πi

ln
∂ρ

∂z
(H,x,∞) and (ψϕH − ψ

X
H )(ωµX(H(x))) = 0

for all x ∈ [0, δ0)K
µ
X where ln 1 = 0. The function (ψϕH−ψXH )|Fixϕ∩∂H is continuous

by corollary 8.2. Let P ∈ HL. From

ψϕH,L,P − ψ
X
H,L = (ψϕH,L,P − ψ

X
H,L ◦ σ◦(−1)) + (ψXH,L ◦ σ◦(−1) − ψXH,L)

we deduce that∣∣∣∣ψϕH − ψXH − 1
2πi

(
ln
(ρ
z

)
◦ e2πiz ◦ ψXH,L ◦ σ◦(−1)

)∣∣∣∣ ≤ C

(1 + |ψXH,L|)
1+1/ν(ϕ)

in B1(P ) for some C > 0 independent of P ∈ HL. We can suppose that the function
ι provided by lemma 8.3 is increasing. By varying P we obtain

|ψϕH − ψ
X
H | ≤

1
π
ι ◦ ez(−πImg(ψXH,L)) +

C

(1 + |ψXH,L|)
1+1/ν(ϕ)

in HL ∩ [ImgψXH,L > J0] for some J0 > 0. An analogous expression can be ob-
tained in HR by replacing ψXH,L with ψXH,R. Lemma 8.3 implies the existence
of an increasing ι′ independent of P ∈ HL such that lim|z|→0 ι

′(|z|) = 0 and
|ρ/z(∂ρ/∂z)(∞)−1 − 1| ≤ ι′(1/|z|). We deduce that∣∣∣∣ψϕH − ψXH − 1

2πi
ln
∂ρ

∂z
(x,∞)

∣∣∣∣ ≤ 1
π
ι′ ◦ ez(πImg(ψXH,L)) +

C

(1 + |ψXH,L|)
1+1/ν(ϕ)

in HL ∩ [ImgψXH,L < −J1] for some J1 > 0. Again an analogous expression can be
obtained for HR.

Consider (x0, y0) ∈ Fixϕ ∩ ∂H. Suppose x0 6= 0 and H ∈ Reg2(ε, µX,K
µ
X).

Since H = HL ∪HR and

lim
(x,y)∈H, (x,y)→(x0,y0)

min(|Img(ψXH,L(x, y))|, |Img(ψXH,R(x, y))|) =∞

then the discussion in the previous paragraph implies that ψϕH − ψXH is continuous
at (x0, y0). Suppose now that x0 = 0 or H ∈ Reg1(ε, µX,Kµ

X). We have

lim
(x,y)∈Hκ, (x,y)→(x0,y0)

|ψXH,κ(x, y)| =∞

for κ ∈ {L,R}. It is enough to prove that (ψϕH − ψXH )Hl∪{(x0,y0)} is continuous at
(x0, y0) for l ∈ {L,R}. Suppose l = L without lack of generality. Analogously to
the previous case we obtain

lim
(x,y)∈HL, |Img(ψX

H,L(x,y))|→∞, (x,y)→(x0,y0)
(ψϕH − ψ

X
H )(x, y) = 0.

There exists a function υ : R+ → R≥0 such that limb→∞ υ(b) = ∞ and satisfying
that given P ∈ HL the strip B(P ) is contained in [|ψXH,L| > υ(|Re(ψXH,L(P ))|)]. The
value ||ρ/z − 1||∞ tends to 0 when ||χξ◦(−1) |||∞ by lemma 8.6. Moreover we have
||χξ◦(−1) |||∞ ≤ K(H)/(1 + υ(|Re(ψXH,L(P ))|))1+1/ν(ϕ) by lemma 8.2. The lemma
8.7 implies that

lim
(x,y)∈HL, |Re(ψX

H,L(x,y))|→∞, (x,y)→(x0,y0)
(ψϕH − ψ

X
H )(x, y) = 0

and then the result is proved. �
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The previous proposition implies that by considering a smaller domain of defi-
nition |y| ≤ ε we can suppose that supQ∈H |ψϕH − ψXH |(Q) is as small as desired for
all H ∈ Reg(ε, µX,Kµ

X) since (ψϕH − ψXH )(0, 0) = 0.

Remark 8.1. The construction of ψϕH,L,P or ψϕH,R,P in B1(P ) depends only on
getting small values of ||χξ◦(−1) ||∞. This condition is automatically fulfilled for
supB(0,δ)×B(0,ε) |∆ϕ| small enough (lemma 8.2).

Remark 8.2. We can do the same process in this section for every ϕ ∈ Diff p(C2, 0)
with convergent normal form exp(xmY ) for some Y ∈ Xp1(C2, 0). The functions
ψϕH − ψXH are continuous in H ∪ (H ∩ Fixϕ) ∪ ({0} ×B(0, ε)) and holomorphic in
Ḣ even if ψXH has a pole of order m at x = 0. The calculations are basically the
same. We omit them for the sake of simplicity.

9. Defining the analytic invariants

Now we define an extension of the Ecalle-Voronin invariants for ϕ ∈ Diff tp1(C2, 0).
It is the key to prove the main theorems in this paper.

9.1. Normalizing the Fatou coordinates. Let ϕ ∈ Diff tp1(C2, 0) with fixed
convergent normal form exp(X). Fix µ ∈ ei(0,π) and a compact connected set Kµ

X

contained in S1 \ BµX . There are 2ν(ϕ) continuous sections T ε,1X , . . ., T ε,2ν(ϕ)
X of

the set T εX . We will always suppose that T ε,1X , . . ., T ε,2ν(ϕ)
X , T ε,2ν(ϕ)+1

X = T ε,1X are
ordered in counter clock-wise sense. For all j ∈ Z/(2ν(ϕ)Z) there exists a function
θj : B(0, δ)→ R+ such that

T ε,j+1
X (x) = T ε,jX (x)eiθj(x) and T ε,jX (x)ei(0,θj(x)) ∩ T εX(x) = ∅ ∀x ∈ B(0, δ).

There exists a unique T ε,jµX(x) in T ε,jX (x)ei(0,θj(x)). Denote by υj(x) the only value
in (0, 2π) such that T ε,j+1

µX (x) = T ε,jµX(x)eiυj(x). We define H(j) as the element of
Reg(ε, µX,Kµ

X) such that T ε,jµX(x) ∈ ∂H(j)(x) for all x ∈ [0, δ0)K
µ
X . The region

H ∈ Regk(ε, µX,Kµ
X) appears k times in the sequence H(1), . . ., H(2ν(ϕ)). We

denote by H∞(j) the element of Reg∞(ε, µX,Kµ
X) such that T ε,j+1

X (x) belongs to
∂(H∞(j)(x)) for all x ∈ [0, δ0)K

µ
X . Consider BH(j) ⊂ [x ∈ [0, δ0)K

µ
X ] such that

BH(j)(x) = (H(j)(x) ∪H(j + 1)(x) ∪H∞(j)(x)) ∩ ([|y| < ε] \ Fixϕ)

for x ∈ [0, δ0)K
µ
X . It is a simply connected open set for every point x ∈ (0, δ0)K

µ
X .

The set BH(j)(0) can have 1, 2 or 3 connected components. Denote by GH(j)(0)
the connected component of BH(j)(0) containing T ε,jµX(0) in its closure. We define

GH(j) = (BH(j) \ [x = 0]) ∪GH(j)(0).

It is connected and simply connected for all j ∈ Z/(2ν(ϕ)Z) and x ∈ [0, δ0)K
µ
X .

We define the function ζϕ(x) = −πiν(ϕ)−1
∑
P∈(Fixϕ)(x)Res(ϕ, P ). It is holo-

morphic in a neighborhood of 0. Fix j0 ∈ {1, . . . , 2ν(ϕ)}. Consider an integral ψXj0
of the time form of X defined in the neighborhood of T ε,j0µX (0). We can extend it
to GH(j0) by analytic continuation. In an analogous way we can define ψXj0+k in
GH(j0 +k) for all k ∈ Z; we choose ψXj0+k(T

ε,j0+k
µX (0)) to be the result of evaluating

the analytic extension of ψXj0 + kζϕ along the curve t → T ε,j0µX (0)eitκ for t ∈ [0, 1]
where κ =

∑k−1
l=0 υj0+l(0) if k > 0 and κ = −

∑−k
l=1 υj0−l(0) for k < 0. If Re(−iµX)
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points towardsH(j) at T ε,jµX(0) then we define ψH(j),L = ψH(j+1),R = ψXj , otherwise
we define ψH(j),R = ψH(j+1),L = ψXj . We obtain ψXj+2ν(ϕ) ≡ ψ

X
j for j ∈ Z.

We choose an element γ1 ≡ (y = α1(x)) of SingVX, we call γ1 the privileged
curve associated to X (or ϕ). We have X = u(x, y)

∏N
j=1(y − αj(x))nj∂/∂y for

some unit u ∈ C{x, y}. Denote by γj the curve y = αj(x) for 2 ≤ j ≤ N(ϕ). We
look for functions c1, . . ., cN contained in C0([0, δ0)K

µ
X) ∩ ϑ((0, δ0)K̇

µ
X) such that

• c1 ≡ 0
• Given γj

H→ γk of G(µX,Kµ
X) then (cj−ck)(x) ≡ 1/(2πi) ln(∂ρ/∂z)(H,x,∞).

By corollary 8.2 the reflexive edges of G(µX,Kµ
X) do not impose any restriction.

There is a unique solution c1, . . ., cN since NG(µX,Kµ
X) is connected. We say that

c1, . . . , cN is a sequence of privileged functions associated to (X,ϕ,Kµ
X , γ1).

Denote γk(j) = ωµX(H(j)). We define a Fatou coordinate ψϕj of ϕ in the set
H(j) ∩GH(j) such that

ψϕj (x, y) = ψϕH(j),L(x, y) + ck(j)(x) or ψϕj (x, y) = ψϕH(j),R(x, y) + ck(j)(x).

depending on whether H(j) ∩GH(j) is equal to H(j)L or H(j)R respectively. We
obtain that (ψϕj − ψXj )|γk

≡ ck for γk ∈ {αµX(H(j)), ωµX(H(j))}. Since given ψϕj
the function ψϕj +c(x) is also a Fatou coordinate we normalize by fixing a privileged
curve and the sequence of privileged functions attached to such a choice.

9.2. Defining the changes of charts. Our aim is to define

ξj
ϕ,Kµ

X
(x, z) = ψϕj+1 ◦ (x, ψϕj )◦(−1)

for j ∈ Z/(2ν(ϕ)Z). A priori it seems that this does not make any sense since the
domains of definition of ψϕj and ψϕj+1 are disjoint. Nevertheless we can extend those
domains, the function ξj

ϕ,Kµ
X

will be defined in a strip.
We denote D(ϕ) = Z/(2ν(ϕ)Z). We define

D1(ϕ) = {j ∈ Z/(2ν(ϕ)Z) : Re(X) points at T ε,jµX(0) towards H(j)}.

The condition j ∈ D1(ϕ) is equivalent to Re(−µX) pointing towards |y| < ε at
(∂H∞(j) ∩ [|y| = ε]) \ T εµX . We denote D−1(ϕ) = D(ϕ) \D1(ϕ).

Suppose without lack of generality that j ∈ D−1(ϕ). There exists a constant
W ∈ R+ such that |Re(ψXj (B) − ψXj (A))| < W for all A,B ∈ H∞(j)(x) and
all x ∈ [0, δ0)K

µ
X . Denote Im(x) = Img(ψXj (T ε,j+1

X (x))). We obtain that every
Q ∈ H∞(j) ∩ [ImgψXj > Im] fulfills [−W,W ] ⊂ It(X,Q, |y| < ε); we obtain

exp((0,W )X)(Q) ∩H(j + 1) 6= ∅ and exp((−W, 0)X)(Q) ∩H(j) 6= ∅.

Denote Γl(x) = Γ(µX, T ε,lµX(x), |y| ≤ ε). We define the strip Stj(x) enclosed
by Γj and ϕ◦(−1)(Stj(x)) whereas Stj+1(x) is the strip enclosed by Γj+1(x) and
ϕ(Γj+1(x)) for all x ∈ [0, δ0)K

µ
X .

The functions ψϕl −ψXl are bounded in H(l)∩GH(l) and continuous at the curve
ωµX(BH(j)) for l ∈ {j, j+1} (prop. 8.3). Suppose that supB(0,δ)×B(0,ε) |∆| < 1/2.
It is easy to see that ψϕj can be defined by iteration in the set Ej given by

Ej(x) = ([Stj+1(x) ∪H∞(j)(x))] \ Fixϕ) ∩ [Img(ψXj ) > Im(x) + 1 +W ]

for x ∈ [0, δ0)K
µ
X . The function ψϕj (x, .) is injective in the simply connected set

(H(j)(x) ∩ GH(j)(x)) ∪ Ej(x). Moreover since we only need a finite number of
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iterations the function ψϕj −ψXj is still bounded in Ej and continuous at the curve
ωµX(BH(j)). There exists I ∈ R+ such that ξj

ϕ,Kµ
X

is defined in

[∪x∈[0,δ0)K
µ
X
{x} × ψϕj (Stj+1(x))] ∩ [Img(z) > I].

Since we have ξj
ϕ,Kµ

X
(x, z+1) = ξj

ϕ,Kµ
X

(x, z)+1 then ξj
ϕ,Kµ

X
is defined in Imgz > I.

The value of

ψϕj+1 − ψ
ϕ
j = (ψϕj+1 − ψ

X
j+1)− (ψϕj − ψ

X
j ) + (ψXj+1 − ψXj )

at the curve γk(j) = ωµX(BH(j)) is ck(j) − ck(j) + ζϕ ≡ ζϕ, thus ξj
ϕ,Kµ

X
admits a

expression of the type ξj
ϕ,Kµ

X
(x, z) = z+ζϕ(x)+

∑∞
l=1 a

ϕ
j,l,Kµ

X
(x)e2πilz. In particular

the function aϕ
j,l,Kµ

X
is continuous in [0, δ0)K

µ
X and holomorphic in (0, δ0)K̇

µ
X for all

l ∈ N. The case j ∈ D1(ϕ) is analogous. The previous discussion implies:

Proposition 9.1. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1\BµX . Then there exists I ∈ R+

such that for all s ∈ {−1, 1} and j ∈ Ds(ϕ) we have

• ξj
ϕ,Kµ

X
◦ (z + 1) ≡ (z + 1) ◦ ξj

ϕ,Kµ
X
.

• ξj
ϕ,Kµ

X
∈ C0([0, δ0)K

µ
X × [sImgz < −I]) ∩ ϑ((0, δ0)K̇

µ
X × [sImgz < −I]).

• lim|Img(z)|→∞ ξj
ϕ,Kµ

X
(x, z)− (z + ζϕ(x)) = 0.

• ξj
ϕ,Kµ

X
is of the form z + ζϕ(x) +

∑∞
l=1 a

ϕ
j,l,Kµ

X
(x)e−2πislz.

Let orbH,j(ϕ) be the space of orbits of ϕ|H(j)∩GH(j) for H(j) ∈ Reg(ε, µX,Kµ
X).

The mapping Θj : orbH,j(ϕ) → [0, δ0) × P1(C) given by Θj ≡ (x, e2πiz ◦ ψϕj ) is
continuous everywhere and holomorphic outside of x = 0. We define the µ-space
of orbits of ϕ at Kµ

X as the variety obtained by considering an atlas composed
of 2ν(ϕ) charts Wj ∼ [0, δ0) × P1(C) for j ∈ Z/(2ν(ϕ)Z) and the 2ν(ϕ) changes
of charts Θj+1 ◦ Θ◦(−1)

j identifying subsets of orbH,j(ϕ) and orbH,j+1(ϕ) for all
j ∈ Z/(2ν(ϕ)Z).

Let j ∈ Ds(ϕ). The trajectory t→ exp(stX)(T ε,jµX(0)) (for t ∈ R+) adheres to a
direction Λ(ϕ, j) ∈ Ds(ϕ|x=0) when t→∞. The mapping Λ(ϕ) is a bijection from
Z/(2ν(ϕ)Z) to D(ϕ|x=0). The restriction of the changes of charts to x = 0 provide
the Ecalle-Voronin invariants of ϕ|x=0.

Corollary 9.1. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1 \ BµX . Then the functions
ξj
ϕ,Kµ

X
(0, z) (j ∈ Z/(2ν(ϕ)Z)) are the changes of charts of ϕ|x=0. Indeed we have

ξj
ϕ,Kµ

X
(0, z) ≡ ξΛ(ϕ,j)

ϕ|x=0 (z) for all j ∈ Z/(2ν(ϕ)Z).

We have extended the Ecalle-Voronin invariants to all the lines x = cte in a
neighborhood of x = 0 even if in general they do not support elements of Diff 1(C, 0).

Remark 9.1. We can define ξjϕ,K for every ϕ ∈ Diff p(C2, 0) whith convergent
normal form of the form exp(xmY ) for some Y ∈ Xp1(C2, 0) (see remark 8.2).
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9.3. Nature of the invariants. Let X ∈ Xtp1(C2, 0). In our sectors [0, δ0)K
µ
X

the direction µ ∈ S1 providing the real flow Re(µX) is fixed. The analogue in [16]
is allowed to vary continuously. Such a thing is also possible with our approach.

More precisely we want to find connected sets E ⊂ S1 and a continuous function
µ : E → ei(0,π) such that µ(λ) 6∈ BX,λ (see subsection 7.3.1) for all λ ∈ E. A
maximal set with respect to the previous property will be called a maximal sector.
The idea is that for every compact connected set K contained in a maximal sector
there exists δ0(K) > 0 such that Re(µ(λ)X)(r,λ,y)∈[0,δ0(K))×K×B(0,ε) has a simple
stable behavior. Thus the maximal sectors provide sectorial domains of stability.

Let ϕ ∈ Diff tp1(C2, 0) with convergent normal form exp(X). Given x ∈ λR+

and µ0, µ1 in the same connected component of ei(0,π) \ BX,λ we claim that there
exists a compact connected neighborhood K = Kµ0

X = Kµ1
X of λ in S1 such that

ξj
ϕ,K

µ0
X

≡ ξj
ϕ,K

µ1
X

for all j ∈ Z. Then we can define changes of charts ξjϕ,K(x, z)
which are continuous in [x ∈ [0, δ0(K))K] ∩ [sImgz < −I] and holomorphic in its
interior for j ∈ Ds(ϕ) . We do not include a rigorous proof of the claim but only a
sketch. Consider a path ei[θ0,θ1] ⊂ ei(0,π) \BX,λ joining µ0 and µ1. We have

(1) The elements H(j, µ) ∈ Reg(ε, µX,K) depend continuously on µ ∈ ei[θ0,θ1].
(2) αµX(H(j, µ)) and ωµX(H(j, µ)) do not depend on µ ∈ ei[θ0,θ1] for H(j, µ)

in Reg(ε, µX,K).
(3) ψϕj is continuous in H(j, µ) ∩ GH(j, µ) and holomorphic in the interior
∀j ∈ Z and µ ∈ ei[θ0,θ1].

The first property is a consequence of the continuous dependance of T εµX and
Re(µX) with respect to µ ∈ S1. The open character of the set points implies
the second property since e[θ0,θ1] is connected.

Regarding the third property we can define ψϕj in H(j, eiθ0) ∩ GH(j, eiθ0) and
then to extend it to ∪µ∈ei[θ0,θ1]H(j, µ) ∩GH(j, µ) by using ψϕj ◦ ϕ = ψϕj + 1. The
trickiest part of the proof is showing that ψϕj − ψXj is continuous in

∂(H(j, µ) ∩GH(j, µ)) ∩ SingX ∀µ ∈ ei[θ0,θ1].

Since (ψϕj − ψXj ) ◦ ϕ◦(k) = (ψϕj − ψXj )−
∑k−1
b=0 ∆ϕ ◦ ϕ◦(b) the desired property is a

consequence of ∆ϕ ◦ ϕ◦(k) = O(1/(k + ψX)1+1/ν(ϕ)) and

lim
|Imgz|→∞

∑
k∈−z+Rei[θ0−υ,θ1+υ]

1
|z + k|1+1/ν(ϕ)

= 0.

The previous discussion implies that given x ∈ λR+ the choices of µ-spaces of
orbits of ϕ at {λ} are at most the number of connected components of ei(0,π)\BX,λ.

It is remarkable that the dependance ofBX,λ with respect to λ is not product-like.
For instance Bβ,λeiθ (X) = e−imβθBβ,λ(x) for a magnifying glass Mβ associated to
X. Hence the points of BX,λ turn at different speeds.

There are much simpler cases. Suppose N(ϕ) = 2. Let p be the order of contact
between the two curves of fixed points. We have that

(y ◦ ϕ− y)(x, y) = u(x, y)(y − γ1(x))n1(y − γ2(x))n2

for some unit u ∈ C{x, y}. The order p is equal to ν(γ1(x)−γ2(x)). The magnifying
glasses associated to X are organised in a sequence M0, M0b1 , . . ., M0b1...bp−1 .
Denote β(q) = 0b1 . . . bq−1 for q ∈ {1, . . . , p}. Since the vector field Xβ(q)(1) has a
unique singular point for q < p then Bβ(q)(X) = ∅ for q < p. Moreover sumβ(p)
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(see subsection 7.3.1 for definition) is composed by two opposite different points.
Hence we have ]B̃β(p),λ(X) = 1 and then ]B̃X,λ = 1 for all λ ∈ S1. The number of
connected components of ei(0,π) \BX,λ being bounded by 2, we have that in general
there are two choices of µ-space of orbits. The situation is analogous to the one
described in [16].

We have mβ(p) = p(n1 + n2 − 1) and

Xβ(p)(λ) = λp(n1+n2−1)C(w − w1)n1(w − w2)n2
∂

∂w

for some C ∈ C∗ and w1, w2 ∈ C with w1 6= w2. The maximal sectors are of the form
λ0e

i(0,2π/m(β(p))) for λ0 ∈ B1
X . Since ]B1

X = 2m(β(p)) then there are 2p(n1+n2−1)
maximal sectors whose union is S1. Each of them supports a sectorial domain of
angle 2π/(p(n1 + n2 − 1)).

Suppose ϕ ∈ Diff p1(C2, 0) \Diff tp1(C2, 0) with N = 2. Then ϕ is of the form

ϕ(x, y) = (x, y + f(x, y)n)

where ν(f(0, y)) = 2. Denote by p ∈ N/2 \ N the order of contact between the two
branches of Fixϕ. We can find an extension of the Fatou coordinates and then of
the Ecalle-Voronin invariants of ϕ by studying the diffeomorphism

ϕ̃ = (x1/2, y) ◦ ϕ ◦ (x2, y) ∈ Diff tp1(C2, 0)

and then undoing the ramification. The order of contact between the the two
irreducible components of ϕ̃ is 2p. The constants n1 and n2 representing the mul-
tiplicities of the irreducible components are both equal to n. Thus the maximal
sectors support sectorial domains of angle

2
2π

(2p)(n1 + n2 − 1)
=

2π
p(n1 + n2 − 1)

=
2π

p(2n− 1)
.

There are 2p(n1 + n2 − 1) = 2p(2n− 1) maximal sectors.
The situation described is analogous to that in [16]. They work with diffeomor-

phisms of the form ϕ(x, y) = (x, y − x + c1(x)y2 + O(y3)) where c1(0) 6= 0. They
consider also its ramified version ϕ̃ = (w1/2, y) ◦ ϕ ◦ (w2, y). In the w coordinate
we have p = 1 and n1 = n2 = 1. Then 2 = 2p(n1 + n2 − 1) sectors are required to
cover S1 describing angles as close to 2π as desired. In the x coordinate we have
p = 1/2 and n1 = n2 = 1. Only one sector is require to cover S1, it describes
an angle as close to 4π as desired. We obtain the same division in the parameter
space; nevertheless our techniques can be applied to every unfolding of tangent to
the identity germs and not only to the generic ones.

9.4. Embedding in a flow. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal
form exp(X). We say that a sequence Kµ1

X , . . ., Kµl

X of compact connected subsets
of S1 is a EV-covering if

• µj ∈ ei(0,π) and Kµj

X ⊂ S1 \Bµj

X for all j ∈ {1, . . . , l}.
• ∪lj=1K̇

µj

X = S1.

Such a covering exists. We have BiX ∩ BκX = ∅ for κ ∈ S1 in the neighborhood of
i. Fix such κ, then we can choose a EV-covering such that {µ1, . . . , µl} ⊂ {i, κ}.
This construction is a generalization of the trivial type case. In that context we
can choose Ki

X = S1 as the only element of the EV-covering.
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Remark 9.2. The definition of EV-covering does not depend on the choice of the
convergent normal form but on Fixϕ and Res(ϕ) (remark 7.2).

Proposition 9.2. Let ϕ ∈ Diff tp1(C2, 0) with fixed convergent normal form exp(X).
Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1 \ BµX . Suppose that ϕ is not
analytically trivial. Then there exists j ∈ Z/(2ν(ϕ)Z) such that ξj

ϕ,Kµ
X
6≡ z + ζϕ.

The reciprocal is obvious, i.e. logϕ ∈ X (C2, 0) implies that ξj
ϕ,Kµ

X
≡ z + ζϕ for

all the choices of Kµ
X and j.

Proof. Suppose it is not true. The functions ψϕH − ψXH for H ∈ Reg(ε, µX,Kµ
X)

paste together in a function J defined in ([0, δ0)K
µ
X ×B(0, ε′)) \Fixϕ and analytic

in its interior for some 0 < ε′ < ε. Moreover J is continuous in [0, δ0)K
µ
X ×B(0, ε′)

and analytic in its interior (prop. 8.3) and satisfies J − J ◦ ϕ = ∆ϕ. By Cauchy’s
integral formula we obtain |∂J/∂y| ≤M in |y| < ε′/2 for some M > 0. We get

∂ψϕ

∂y
=
∂ψX

∂y
+
∂J

∂y
=

1
X(y)

+
∂J

∂y
=
(

X(y)
1 +X(y)∂J/∂y

)−1

.

We define the vector field

X(Kµ
X) =

X(y)
1 +X(y)∂J/∂y

∂

∂y
.

Since X(Kµ
X)(ψϕ) = 1 then ϕ = exp(X(Kµ

X)) in [0, δ0)K
µ
X × B(0, ε1) for some

0 < ε1 < ε′/2. Moreover by choosing ε1 properly we obtain that X(Kµ
X) is of the

form X(y)(1 +X(y)A1)∂/∂y for some A1 ∈ C0([0, δ0)K
µ
X ×B(0, ε1)).

Consider a minimal EV-covering K1 = Kµ
X , K2 = Kµ2

X , . . ., Kl = Kµl

X . Consider
Kb such that K̇1 ∩ K̇b 6= ∅. We define ψϕH,L = ψXH,L + J and ψϕH,R = ψXH,R + J

in [0, δ0)(K1 ∩Kb) × B(0, ε1) for all H ∈ Reg(ε, µbX,Kb). Since J − J ◦ ϕ = ∆ϕ

then ψϕH,L and ψϕH,R are Fatou coordinates of ϕ for H ∈ Reg(ε, µbX,Kb). We
obtain ξjϕ,Kb

≡ z + ζϕ for j ∈ Z/(2ν(ϕ)Z) in x ∈ K̇1 ∩ K̇b and then in x ∈ Kb by
analytic continuation. Analogously to X(K1) we can construct a vector field X(Kb)
such that ϕ = exp(X(Kb)) in [0, δ0)Kb × B(0, εb) for some εb > 0. Moreover the
construction implies that X(K1) ≡ X(Kb) in [0, δ0)(K̇1 ∩ K̇b) × B(0,min(ε1, εb)).
Finally we obtain Y ∈ X (C2, 0) of the form Y = X(y)(1 + X(y)A)∂/∂y for some
A ∈ C{x, y} such that ϕ = exp(Y ). Since Y is nilpotent then logϕ = Y . �

10. Applications

In this section we complete the task of classifying analytically the elements of
Diff p1(C2, 0). Moreover given ϕ1

sp∼ ϕ2 we provide the formal power series devel-
opments of the conjugating diffeomorphisms. We also relate the analytic class of
ϕ ∈ Diff p1(C2, 0) and the analytic classes of the elements of {ϕ|x=x0}x0∈B(0,δ0)

.

10.1. Moderated conjugations. We want to identify how an analytic conjuga-
tion between elements of Diff tp1(C2, 0) acts on the changes of charts. We remind
the reader that N(X) is the number of points in (SingX)(x0) for x0 generic in
a neighborhood of 0. Given X ∈ X (C2, 0) we say that a mapping κ defined in a
neighborhood of (SingX)(x0) in C is x0-special if κ|(SingX)(x0) ≡ Id. We just say
that κ is special if the value of x0 is implicit.
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Lemma 10.1. Let X ∈ X (C2, 0) with N(X) ≥ 2. Fix r ≥ 0. There exists a
function R : (0, r)→ R+ with limb→0R(b) = 0 such that all x0-special r-moderated
mapping κ is r1R(r1)-moderated for all x0 in a pointed neighborhood V (r1) of 0.

Proof. Let γ1(x0) and γ2(x0) be two different points of (SingX)(x0). We define

κ1(y) =
κ((r − |γ1(x0)|)y + γ1(x0))− γ1(x0)

(r − |γ1(x0)|)(∂κ/∂y)(γ1(x0))
.

By construction κ1 is a Schlicht function, i.e. it is univalent in B(0, 1), κ1(0) = 0
and (∂κ1/∂y)(0) = 1. Denote υ(x0) = (γ2(x0) − γ1(x0))/(r − |γ1(x0)|). We have
κ1(υ(x0)) = υ(x0)/(∂κ/∂y)(γ1(x0)). This implies

(1− |υ(x0)|)2 ≤
∣∣∣∣∂κ∂y (γ1(x0))

∣∣∣∣ ≤ (1 + |υ(x0)|)2

by Koebe’s distortion theorem (see [5], page 65). This leads us to

sup
y∈B(0,r1)

|κ(y)| ≤ (r − |γ1(x0)|)(∂κ/∂y)(γ1(x0)) sup
y∈B(0,A(r1))

|κ1(y)|+ |γ1(x0)|

where A(r1) = (r1 + |γ1(x0)|)/(r − |γ1(x0)|). We obtain

sup
y∈B(0,r1)

|κ(y)| ≤ (r − |γ1(x0)|)(1 + |υ(x0)|)2
A(r1)

(1−A(r1))2
+ |γ1(x0)|

again by Koebe’s distortion theorem. The value R(r1) can be chosen as close to
r1/(1− r1/r)2 as desired. �

The last lemma implies that in our context the existence of r-moderated and rR-
moderated conjugations are equivalent concepts. The next result is the analogue
of lemma 5.4 in the moderated setting.

Lemma 10.2. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal form
exp(X). There exist a neighborhood V ⊂ C of 0 and D(r,R) ∈ R+ such that a
special rR-moderated mapping κ conjugating (ϕ1)|x=x0 , (ϕ2)|x=x0 is of the form
y +X(y)(x0, y)Jκ(y) where supB(0,r) |Jκ| < D(r,R) for all x0 ∈ V \ {0}.

Proof. Denote X(y) = u(x, y)(y − γ1(x))n1 . . . (y − γN (x))nN where u ∈ C{x, y} is
a unit. By hypothesis we have κ = y + (y − γ1(x0)) . . . (y − γN (x0))A(y) for some
A ∈ ϑ(B(0, r)). By the modulus maximum principle we obtain

sup
B(0,r)

|A| = lim
s→r

sup
y∈B(0,s)

|κ(y)− y|
|(y − γ1(x0)) . . . (y − γN (x0))|

≤ r +R

(r/2)N

for all x0 in a pointed neighborhood of 0. We have that∣∣∣∣∂κ∂y (γj(x0))− 1
∣∣∣∣ ≤ 2N (r +R)

rN

∏
k∈{1,...,N}\{j}

|γj(x0)− γk(x0)|.

Fix j ∈ {1, . . . , N}. We claim that (y−γj(x0))nj divides κ. We can suppose nj > 1.
Denote by ζ1, ζ2 and υ the germs of diffeomorphism induced by (ϕ1)|x=x0 , (ϕ2)|x=x0

and κ respectively in the neighborhood of x0. We have υ = Zλ,tζ2 ◦ σ̂(ζ1, ζ2) for some
t ∈ C and λ = (∂κ/∂y)(γj(x0)) ∈< e2πi/(nj−1) > (prop. 4.2). This implies λ = 1
for x0 in a neighborhood of 0 since N ≥ 2. We have that y ◦ υ − y − t(log ζ2)(y)
belongs to (y − γj(x0))nj+1. Thus y ◦ κ − y belongs to (y − γj(x0))nj . Denote
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Jκ = (κ − y)/X(y)|x=x0 , it belongs to ϑ(B(0, r)). Analogously than for A we
obtain

sup
B(0,r)

|Jκ| ≤ D(r,R) =
(r +R)

(r/2)ν(X)+1

1
infB(0,r) |u|

for all x0 in a pointed neighborhood of 0. �

Lemma 10.3. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal form
exp(X). Fix r,R in R+ and 0 < r1 < r. There exist M(r,R, r1) ∈ R+ and a
neighborhood V ⊂ C of 0 such that a special rR-moderated mapping κ conjugating
ϕ1(x0, y) and ϕ2(x0, y) satisfies

sup
B(0,r1)

∣∣∣∣∂κ∂y − 1
∣∣∣∣ ≤M(r,R, r1)

for all x0 ∈ V \ {0}. Moreover we have limr1→0M(r,R, r1) = 0.

Proof. Denote X(y) = u(x, y)
∏N
j=1(y − γj(x))nj where u ∈ C{x, y} is a unit. By

lemma 10.2 we have that κ is of the form y + A(y)
∏N
j=1(y − γj(x))nj for some

A ∈ ϑ(B(0, r)). We have supB(0,r) |A| ≤ H(r,R) for some H(r,R) ∈ R+ and all x0

in a pointed neighborhood of 0. Fix 0 < r1 < r. We obtain∣∣∣∣∂κ∂y (y)− 1
∣∣∣∣ ≤ (ν(X) + 1)|A(y)|(2r1)ν(X) +

∣∣∣∣∂A∂y
∣∣∣∣ (2r1)ν(X)+1

for all y ∈ B(0, r1) and all x0 in a pointed neighborhood V (r1) of 0. Cauchy’s
integral formula implies∣∣∣∣∂κ∂y (y)− 1

∣∣∣∣ ≤ H(r,R)(ν(X) + 1)(2r1)
ν(X) +

H(r,R)
r − r1

(2r1)
ν(X)+1

for y ∈ B(0, r1). We define M(r,R, r1) as the right hand side of the previous
formula. Clearly we have limr1→0M(r,R, r1) = 0. �

Last lemma implies that given a special rR-moderated conjugation κ we can
suppose that supB(0,r) |∂κ/∂y−1| is as small as desired just by considering a smaller
r > 0. We will make this kind of assumption without stressing it every time. We
define κt(y) = y + t(κ(y)− y) for y ∈ B(0, r) and t ∈ C.

Lemma 10.4. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal form
exp(X). Fix r,R ∈ R+. There exist 0 < r1 < r and an open set 0 ∈ V ⊂ C such
that for all special rR-moderated mapping κ conjugating ϕ1(x0, y) and ϕ2(x0, y) and
all x0 ∈ V \ {0} we have that κt is a r1R-moderated mapping for all t ∈ B(0, 2).

Proof. We can choose 0 < r1 < min(r,R/7) such that supB(0,r1) |∂κ/∂y − 1| ≤ 1/4
by lemma 10.3. Therefore we obtain supB(0,r1) |κ| ≤ 2r1 for all x0 in a pointed
neighborhood V (r1) of 0. This implies supB(0,r1) |κt| ≤ 7r1 < R for all t ∈ B(0, 2).
Moreover since supB(0,r1) |∂κt/∂y − 1| ≤ 1/2 then κt is injective and hence a r1R-
moderated mapping for all t ∈ B(0, 2). �

Let ψX be a holomorphic integral of the time form of X. We can define the
function ψX ◦ κ(x, y) − ψX(x, y) in an analogous way than ∆ϕ. The continuous
path that we use to extend ψX is parameterized by t→ κt(x, y) for t ∈ [0, 1]. The
function ψX ◦ κ− ψX is well-defined and holomorphic in B(0, r) \ SingX.
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Lemma 10.5. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal form
exp(X). Fix r,R in R+. There exist 0 < r1 < r and C(r,R) > 0 such that for all
special rR-moderated mapping κ conjugating ϕ1(x0, y) and ϕ2(x0, y) we have that
supB(0,r1) |ψ

X ◦ κ − ψX | ≤ C(r,R) for all x0 in a pointed neighborhood of 0. In
particular we obtain that ψX ◦ κ− ψX belongs to ϑ(B(0, r1)).

Proof. Denote X(y) = u(x, y)(y − γ1(x))n1 . . . (y − γN (x))nN where u ∈ C{x, y} is
a unit. Consider a positive real number H(r,R) such that

sup
B(0,r)

∣∣∣∣∣ κ− y∏N
j=1(y − γj(x0))nj

∣∣∣∣∣ ≤ H(r,R).

Therefore we obtain∣∣∣∣∂κt∂t (y)
∣∣∣∣ ≤ H(r,R)
|u ◦ κt(y)|

|X(y) ◦ κt(y)|

∣∣∣∣∣
∏N
j=1(y − γj(x0))nj∏N

j=1(y − γj(x0))nj ◦ κt(y)

∣∣∣∣∣
for all y ∈ B(0, r) \ (SingX)(x0). Denote C(r,R) = 2ν(X)+1H(r,R)/ infB(0,R) |u|.
Since ν(X) ≥ 1 there exists 0 < r1 < r2 < r and a neighborhood V of 0 such that
exp(B(0, C(r,R))X)(V ×B(0, r1)) ⊂ V ×B(0, r2) and

1
2
≤ sup
B(0,r2)

∣∣∣∣ y − γj(x0)
(y − γj(x0)) ◦ κt

∣∣∣∣ ≤ 2.

for all t ∈ [0, 1] and j ∈ {1, . . . , N}. The previous discussion implies∣∣∣∣∂κt∂t (y)
∣∣∣∣ ≤ C(r,R)|X(y) ◦ κt(y)|

for all y ∈ B(0, r2) \ (SingX)(x0) and t ∈ [0, 1]. As a consequence we obtain
|ψX ◦ κ − ψX |(y) ≤ C(r,R) for all y ∈ B(0, r1) \ (SingX)(x0). By Riemann’s
theorem ψX ◦ κ− ψX belongs to ϑ(B(0, r1)). �

The nexts results are important. Later on they will allow us to establish the
connection between the formal and analytic conjugations.

Lemma 10.6. Let Y ∈ X (C, 0). Consider an integral of the time form ψ of Y .
Suppose that κ ∈ Diff (C, 0) satisfies that ψ ◦ κ−ψ belongs to C{y}. Then we have

∂κ

∂y
(0) = e(ψ◦κ−ψ)(0)

∂Y (y)
∂y (0).

Supposed (∂Y (y)/∂y)(0) = 0 we also obtain

∂ν(Y )+1κ

∂yν(Y )+1
(0) = (ψ ◦ κ− ψ)(0)

∂ν(Y )+1Y (y)
∂yν(Y )+1

(0)

and (∂jκ/∂yj)(0) = 0 for all 2 ≤ j ≤ ν(Y ).

Proof. Denote λ = (∂Y (y)/∂y)(0). We have that ψ◦κ−ψ is of the form d+L(y) for
some d ∈ C and L ∈ (y). Suppose λ 6= 0. Then ψ is of the form (ln y)/λ+B(y) in the
neighborhood of 0 where B ∈ C{y}. Therefore we obtain d = (ln(∂κ/∂y)(0))/λ.
Suppose λ = 0. We obtain κ(y) = exp((d + t)Y (y)∂/∂y)(y, L(y)). This implies
κ(y) = y + dY (y) +O(yν(Y )+2). The result is a consequence of last formula. �

Every φ ∈ Diff (C, 0) such that (∂φ/∂y)(0) is not in e2πiQ \ {1} has a convergent
normal form. If the linear part is the identity is a consequence of proposition 3.3.
Otherwise it is clear since φ is formally linearizable.
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Corollary 10.1. Let φ ∈ Diff (C, 0) \ {Id} such that (∂φ/∂y)(0) 6∈ e2πiQ \ {1}.
Consider a convergent normal form exp(Y ) of φ. Let ψ a holomorphic integral of
the time form of Y . Suppose that ψ◦υ−ψ belongs to C{y}∩(y) for some υ ∈ Z(φ).
Then we have υ ≡ Id.

Proof. By lemma 10.6 we have j1υ ≡ Id. Moreover, if (∂φ/∂y)(0) 6= 1 then υ ≡ Id
(prop. 4.2). Suppose (∂φ/∂y)(0) = 1, then we have y ◦ υ − y ∈ (yν(Y )+2) (lemma
10.6). We obtain υ = σ̂(φ, φ) = Id. �

Lemma 10.7. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with common normal form exp(X). Fix
γ ≡ (y = γ1(x)) ∈ SingVX and ĉ ∈ C[[x]]. Then we have

∂(exp(ĉ logϕ2) ◦ σ̂(ϕ1, ϕ2, γ))
∂y

(x, γ1(x)) ≡ eĉ(x)
∂X(y)

∂y (x,γ1(x)).

Supposed (∂X(y)/∂y)(x, γ1(x)) ≡ 0 we also obtain

∂νX(γ)+1(exp(ĉ logϕ2) ◦ σ̂(ϕ1, ϕ2, γ))
∂yνX(γ)+1

(x, γ1(x)) ≡ ĉ(x)
∂νX(γ)+1X(y)
∂yνX(γ)+1

(x, γ1(x))

and (∂j(exp(ĉ logϕ2) ◦ σ̂(ϕ1, ϕ2, γ))/∂yj)(x, γ1(x)) ≡ 0 for all 2 ≤ j ≤ νX(γ).

Proof. Since y◦ σ̂(ϕ1, ϕ2, γ)−y ∈ I(γ)νX(γ)+2 and σ̂(ϕ1, ϕ2, γ) and exp(ĉ(x) logϕ2)
are special then it is enough to prove the result for exp(ĉ(x) logϕ2). We denote
X̂ = logϕ2, the equation
∞∑
j=0

ĉ(x)j

j!
∂X̂◦(j)(y)

∂y
(x, γ1(x)) ≡

∞∑
j=0

ĉ(x)j

j!
∂X(y)
∂y

(x, γ1(x))j ≡ eĉ(x)
∂X(y)

∂y (x,γ1(x))

implies the first part of the lemma. Suppose (∂X(y)/∂y)(x, γ1(x)) ≡ 0. Since
X̂(y)−X(y) ∈ (y ◦ ϕ2 − y)2 ⊂ (y − γ1(x))2νX(γ)+2 then we obtain

y ◦ exp(ĉ(x) logϕ2)− y = ĉ(x)X(y) +O((y − γ1(x))νX(γ)+2).

The rest of the proof is trivial. �

10.2. Analytic classification and centralizer. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with
common convergent normal form. Given a special η̂ ∈ D̂iff (C2, 0) conjugating them
we express the condition η̂ ∈ Diff (C2, 0) in terms of the changes of charts.

Proposition 10.1. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal
form exp(X). Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1 \ BµX . Fix a
privileged curve y = γ1(x) associated to X. Consider a special r-moderated mapping
κ conjugating (ϕ1)|x=x0 and (ϕ2)|x=x0 . Then we have

ξj
ϕ2,K

µ
X

(x0, z) = (z + c(x0)) ◦ ξjϕ1,K
µ
X

(x0, z) ◦ (z − c(x0)) ∀j ∈ Z/(2ν(X)Z)

for all x0 ∈ (0, δ0)K
µ
X where c(x0) = (ψX ◦ κ− ψX)(x0, γ1(x0)).

Proof. Suppose that κ is rR-moderated by considering a smaller 0 < r < ε if neces-
sary (lemma 10.1). Denote X = u(x, y)(y − γ1(x))n1 . . . (y − γN (x))nN∂/∂y where
u ∈ C{x, y} is a unit. Let cl1, . . . , c

l
N be the privileged functions associated to the 4-

uple (X,ϕl,K
µ
X , γ1) for l ∈ {1, 2}. Consider the sections T ε,1µX , . . ., T ε,2ν(X)

µX . Denote
by H(j) the unique element of Reg(ε, µX,Kµ

X) such that T ε,jµX(x) ∈ ∂H(j)(x) for all
x ∈ [0, δ0)K

µ
X . Let 0 < r1 < r be the constant provided by lemma 10.5. We choose
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r1 such that exp(B(0, C(r,R))X)(|y| < r1) ⊂ (|y| < ε), we obtain κ(H(j)′) ⊂ H(j)
for all j ∈ Z where H(j)′ is the element of Reg(r1, µX,K

µ
X) contained in H(j).

We define φϕ1
j = ψϕ2

j ◦ κ for j ∈ Z. Since

φϕ1
j − ψ

X
j = (ψϕ2

j − ψ
X
j ) ◦ κ+ (ψXj ◦ κ− ψXj )

then φϕ1
j −ψXj is continuous in H(j)′(x0)∪(∂H(j)′(x0)∩SingX) by proposition 8.3

and lemma 10.5. Therefore (φϕ1
j −ψ

ϕ1
j )(x0, y) is continuous in ∂H(j)′(x0)∩SingX

and then constant. Clearly φϕ1
j can be extended by iteration to a Fatou coordinate

of ϕ1 in H(j)(x0). We have that αµX(H(j)) and ωµX(H(j)) are equal to curves
y = γk(j,α)(x) and y = γk(j,ω)(x) respectively. We obtain

lim
y→γk(x0)

(φϕ1
j − ψ

X
j )(x0, y) = c2k(x0) + (ψX ◦ κ− ψX)(x0, γk(x0))

where k ∈ {k(j, α), k(j, ω)}. We deduce that

lim
y→γk(x0)

(φϕ1
j − ψ

ϕ1
j )(x0, y) = c2k(x0)− c1k(x0) + (ψX ◦ κ− ψX)(x0, γk(x0))

for k ∈ {k(j, α), k(j, ω)}. Since (φϕ1
j − ψ

ϕ1
j )(x0, y) is constant then

c2k(j,υ)(x0)− c1k(j,υ)(x0) + (ψX ◦ κ− ψX)(x0, γk(j,υ)(x0))

does not depend on υ ∈ {α, ω}. The graph G(µX,Kµ
X) is connected (prop. 7.7),

hence c2k(x0)−c1k(x0)+(ψX◦κ−ψX)(x0, γk(x0)) does not depend on k ∈ {1, . . . , N}.
In particular we obtain that (φϕ1

j − ψ
ϕ1
j )(x0, y) is equal to the constant function

c(x0) for all j ∈ Z/(2ν(X)Z). By construction we get

ξj
ϕ2,K

µ
X

(x0, z) = φϕ1
j+1 ◦

(
φϕ1
j

)◦(−1)(x0, z) = (z + c(x0)) ◦ ξjϕ1,K
µ
X

(x0, z) ◦ (z − c(x0))

for all j ∈ Z/(2ν(X)Z) as we wanted to prove. �

Proposition 10.2. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal
form exp(X). Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1 \ BµX . Fix a
privileged curve y = γ1(x) associated to X and a constant M > 0. Suppose that

ξj
ϕ2,K

µ
X

(x0, z) = (z + c(x0)) ◦ ξjϕ1,K
µ
X

(x0, z) ◦ (z − c(x0)) ∀j ∈ Z/(2ν(X)Z)

for some x0 ∈ [0, δ0)K
µ
X and c(x0) ∈ B(0,M). Then there exists a special r-

moderated mapping κ such that κ ◦ (ϕ1)|x=x0 = (ϕ2)|x=x0 ◦κ. The constant r ∈ R+

does not depend on x0. Moreover we get (ψX ◦ κ− ψX)(x0, γ1(x0)) = c(x0).

Proof. Consider the notations in proposition 10.1. We want to define

κ(y) =
(
ψϕ2
j

)◦(−1) ◦ (x0, z + c(x0)) ◦ ψϕ1
j (x0, y)

for j ∈ Z. There exists A ∈ R+ such that supH(j) |ψ
ϕl

j − ψXj | ≤ A for l ∈ {1, 2}
(prop. 8.3). We have exp(B(2A + M)X)(|y| < R) ⊂ (|y| < ε) for some R ∈ R+

Let E be the union of the elements of Reg(R,µX,Kµ
X). We deduce that κ is well-

defined in E(x0) and satisfies supE(x0) |ψ
X ◦ κ − ψX | < 2A +M , in particular we

have κ(E(x0)) ⊂ B(0, ε). Denote D = maxl∈{1,2},s∈{−1,1} supB(0,R) |∆ϕ
◦(s)
l

|. There
exist 0 < r < R and B ∈ N such that for all J ∈ Reg∞(r, µX,Kµ

X) we have

• ∪k∈{−B,...,B}{ϕ
◦(k)
1 (P )} ⊂ (y| < R) for all P ∈ J \ SingX.

• ∃0 ≤ k0, k1 ≤ B such that {ϕ◦(−k0)1 (P ), ϕ◦(k1)1 (P )} ⊂ E ∀P ∈ J \ SingX.
• exp((2A+M + 2BD)X)(|y| < r) ⊂ (|y| < R).
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We can define κ in J(x0)\SingX as either ϕ◦(k0)2 ◦κ◦ϕ◦(−k0)1 or ϕ◦(−k1)2 ◦κ◦ϕ◦(k1)1 .
By the construction and the hypothesis κ is a well-defined holomorphic mapping
in B(0, r) \ (SingX)(x0) conjugating (ϕ1)|x=x0 and (ϕ2)|x=x0 . Moreover, we have
supB(0,r)|ψX ◦ κ − ψX | < 2A +M + 2BD. As a consequence we can extend κ to
B(0, r) in a continuous (and then holomorphic) way by defining κ|(SingX)(x0) ≡ Id.
The mapping κ satisfies κ(B(0, r)) ⊂ B(0, R). Analogously by defining

κ◦(−1)(y) =
(
ψϕ1
j

)◦(−1) ◦ (x0, z − c(x0)) ◦ ψϕ2
j (x0, y)

for j ∈ Z we obtain a mapping κ◦(−1) : B(0, r′) → B(0, R′) conjugating (ϕ2)|x=x0

and (ϕ1)|x=x0 . By taking R ≤ r′ in the construction of κ we obtain that κ is a
rR-moderated mapping. �

The next theorem is the analogue of proposition 6.1 in the non-trivial type case.

Theorem 10.1. Let ϕ1, ϕ2 ∈ Diff tp1(C2, 0) with common convergent normal form
exp(X). Fix µ ∈ ei(0,π) and a compact connected set Kµ

X ⊂ S1 \ BµX . Consider a
privileged curve γ ≡ (y = γ1(x)) in SingVX. Then ϕ1

sp∼ ϕ2 if and only if there
exists d ∈ C{x} such that

ξj
ϕ2,K

µ
X

(x, z) ≡ (z + d(x)) ◦ ξj
ϕ1,K

µ
X
◦ (x, z − d(x)) ∀j ∈ Z/(2ν(X)Z).

The previous equation is equivalent to exp(d(x) logϕ2) ◦ σ̂(ϕ1, ϕ2, γ) ∈ Diff (C2, 0)

Proof. Implication ⇒. Let σ be a special mapping conjugating ϕ1 and ϕ2. Denote
c(x) ≡ (ψX ◦ σ − ψX)(x, γ1(x)), we have c ∈ C{x} (lemma 10.5). We deduce that

ξj
ϕ2,K

µ
X

(x, z) ≡ (z + c(x)) ◦ ξj
ϕ1,K

µ
X

(x, z) ◦ (x, z − c(x)) ∀j ∈ Z/(2ν(X)Z)

by proposition 10.1. The mapping σ is of the form exp(ĉ(x) logϕ2) ◦ σ̂(ϕ1, ϕ2, γ)
(lemma 5.2). Lemmas 10.6 and 10.7 imply ĉ ≡ c.

Implication ⇐. Fix an EV-covering Kµ1
X = Kµ

X , Kµ2
X , . . ., Kµl

X . Supposed

(9) ξj
ϕ2,K

µp
X

(x, z) ≡ (z + d(x)) ◦ ξj
ϕ1,K

µp
X

(x, z) ◦ (x, z − d(x)) ∀j ∈ Z/(2ν(X)Z)

for some p ∈ {1, . . . , l} we can define a continuous special mapping σp(x, y) in the set
[0, δ0)K

µ
X ×B(0, r) such that it is holomorphic in (0, δ0)K̇

µ
X ×B(0, r), it conjugates

ϕ1 and ϕ2 and σp(x0, y) is rR-moderated for all x0 ∈ [0, δ0)K
µ
X and some r,R ∈ R+

(see proof of prop. 10.2). Moreover we obtain (ψX ◦ σp − ψX)(x, γ1(x)) ≡ d(x).
The existence of σ1 and proposition 10.1 imply that

ξj
ϕ2,K

µq
X

(x0, z) ≡ (z + d(x0)) ◦ ξjϕ1,K
µq
X

(x0, z) ◦ (z − d(x0))

for all j ∈ Z and for all x0 ∈ (0, δ0)(K̇
µ1
X ∩K̇

µq

X ). By analytic continuation we obtain
the same result for x0 ∈ [0, δ0)K̇

µq

X if K̇µ1
X ∩ K̇

µq

X 6= ∅. The iteration of this process
shows that the equation 9 is fulfilled for all q ∈ {1, . . . , l} and x0 ∈ [0, δ0)K

µq

X .
Suppose K̇µp

X ∩K̇
µq

X 6= ∅ for p, q ∈ {1, . . . , l}. Denote h = (σq)◦(−1)◦σp. We obtain
h◦ϕ1 = ϕ1 ◦h in x ∈ [0, δ0)(K̇

µp

X ∩K̇
µq

X ) and (ψX ◦h−ψX)(x, γ1(x)) ≡ 0. Corollary
10.1 implies h(x, y) ≡ Id and then σp ≡ σq in [0, δ0)(K̇

µp

X ∩ K̇
µq

X ) × B(0, r). Thus
all the σb (b ∈ {1, . . . , l}) paste together in a mapping σ such that it is continuous
in B(0, δ0) × B(0, r) and holomorphic in (B(0, δ0) \ {0}) × B(0, r). By Riemann’s
theorem σ is a special element of Diff (C2, 0) conjugating ϕ1 and ϕ2. Moreover we
have σ = exp(d(x) logϕ2) ◦ σ̂(ϕ1, ϕ2, γ) by the first part of the proof. �
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Remark 10.1. The previous theorem is fulfilled also if ϕ1, ϕ2 ∈ Diff up(C2, 0) have
convergent normal form exp(xmY ) for some Y ∈ Xtp1(C2, 0). The only difference
is that the condition d ∈ C{x} should be replaced with xmd ∈ C{x}.
Proposition 10.3. Let ϕ ∈ Diff p1(C2, 0) such that logϕ 6∈ Xp1(C2, 0) and Fixϕ is
not of trivial type. Then there exists q ∈ N such that Zsp(ϕ) =< exp(q−1 logϕ) >.

Proof. We can suppose ϕ ∈ Diff tp1(C2, 0) up to a ramification (xk, y). Let exp(X)
be a convergent normal form of ϕ. A diffeomorphism η ∈ Zsp(ϕ) is of the form
exp(c(x) logϕ) by lemma 5.2. Consider a privileged y = γ1(x) in SingVX. We
have (ψX ◦η−ψX)(x, γ1(x)) ≡ c(x) by lemmas 10.6 and 10.7. Fix µ ∈ ei(0,π) and a
compact connected setKµ

X ⊂ S1\BµX . Denote E = {l ∈ N : ∃j ∈ Z s.t. aϕ
j,l,Kµ

X
6≡ 0}.

The set E is not empty (prop. 9.2). Denote q = gcdE. The continuous functions
c(x) satisfying the equation

ξj
ϕ,Kµ

X
(x, z) = (z + c(x)) ◦ ξj

ϕ,Kµ
X

(x, z) ◦ (x, z − c(x)) ∀j ∈ Z/(2ν(ϕ)Z).

are the constant functions of the form p/q for some p ∈ Z. Thus the result is a
consequence of theorem 10.1. �

10.3. Complete system of analytic invariants. We can introduce a complete
system of analytic invariants for elements ϕ ∈ Diff p1(C2, 0). The presentation is
slightly simpler if ϕ|x=0 is not analytically trivial. In such a case we obtain the
generalization of Mardesic-Roussarie-Rousseau’s invariants.

Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2 and Res(ϕ1) ≡ Res(ϕ2). Sup-
pose that Fixϕ1 is not of trivial type. Let exp(X) be a convergent normal form
of ϕ1. There exists k ∈ N such that Y = (xk, y)∗X belongs to Xtp1(C2, 0). Fix a
privileged curve γ ∈ SingV Y . Consider an EV-covering K1 = Kµ1

Y , . . ., Kl = Kµl

Y .
We say that mϕ1(x0) = mϕ2(x0) for x0 in B(0, δ0) \ {0} if there exist c(x0) ∈ C
and b(x0) ∈ {1, . . . , l} such that x0 ∈ R+K̇b(x0) and

(10) ξjϕ2,Kb(x0)
(x0, z) ≡ (z + c(x0)) ◦ ξjϕ1,Kb(x0)

(x0, z) ◦ (x0, z − c(x0)) ∀j ∈ Z.

The definition makes sense since an EV-covering depends only on Fixϕ and Res(ϕ)
for ϕ ∈ Diff tp1(C2, 0) by remark 9.2. We denote mϕ1(0) = mϕ2(0) if we have
(ϕ1)|x=0 ∼ (ϕ2)|x=0. We say that Inv(ϕ1) ∼ Inv(ϕ2) if mϕ1(x0) = mϕ2(x0) for
all x0 in a pointed neighborhood of 0 and we can choose c : B(0, δ0) \ {0} → C
such that Img(c) is bounded. Both invariants mϕ and Inv(ϕ) can be expressed in
terms of µ-spaces of orbits. In this section we prove that ϕ1

sp∼ ϕ2 is equivalent to
Inv(ϕ1) ∼ Inv(ϕ2).

Lemma 10.8. Let f(x) be a multi-valuated holomorphic function of B(0, δ) \ {0}
such that f(e2πix)− f(x) ≡ C for some C ∈ R. Suppose that |Imgf(x)| is bounded
in a neighborhood of 0. Then f belongs to ϑ(B(0, δ)).

Proof. We define F = f(x)−(C/2πi) lnx, we obtain F ∈ ϑ(B(0, δ)\{0}). Moreover
we have ImgF = Imgf + (C/2π) ln |x|. Suppose C = 0, then f has a removable
singularity at x = 0 since Imgf is bounded.

Suppose C 6= 0. Since limx→0 ImgF ∈ {−∞,+∞} then F does not have an
essential singularity. We claim that F does not have a pole at x = 0. Otherwise F
is of the form Aeiθ/xl +O(1/xl−1) for some (l, A, θ) ∈ N× R+ × R. Since

lim
r→0

Imgf(re
i(θ−π/2)

l ) = lim
r→0

A

rl
− C

2π
ln r +O

(
1

rl−1

)
=∞
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we obtain a contradiction with the boundness of Imgf . The equation

lim
x→0

Imgf(x) = ImgF (0)− (C/2π) lim
x→0

ln |x|

implies that C = 0. Hence f belongs to ϑ(B(0, δ)) by the first part of the proof. �

All the elements of Diff p1(C2, 0) can be interpreted as elements of Diff tp1(C2, 0)
up to a ramification (xm, y). The ramification preserves the analytic classes of
elements of Diff p1(C2, 0).

Lemma 10.9. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2. Consider m ∈ N.
Then ϕ1

sp∼ ϕ2 if and only if (x1/m, y) ◦ ϕ1 ◦ (xm, y)
sp∼ (x1/m, y) ◦ ϕ2 ◦ (xm, y).

Proof. The sufficient condition is obvious.
Denote ϕ̃j = (x1/m, y) ◦ ϕj ◦ (xm, y) for j ∈ {1, 2}. We have Fixϕ1 = Fixϕ2 by

hypothesis and Res(ϕ1) ≡ Res(ϕ2) since the residues are analytic invariants. We
can suppose that ϕ1 and ϕ2 are not analytically trivial. Otherwise both logϕ1 or
logϕ2 belong to X (C2, 0), we obtain ϕ1

sp∼ ϕ2 by proposition 5.2.
Let σ0 be a special diffeomorphism conjugating ϕ̃1 and ϕ̃2. Since we have

(e−2πi/mx, y) ◦ ϕ̃j ◦ (e2πi/mx, y) = ϕ̃j for j ∈ {1, 2} then

σk = (e−2πik/mx, y) ◦ σ0 ◦ (e2πik/mx, y)

conjugates ϕ̃1 and ϕ̃2 for k ∈ {0, . . . ,m}. The diffeomorphism σ
◦(−1)
0 ◦ σ1 belongs

to Zup(ϕ̃1), hence it is of the form exp(C log ϕ̃1) for some C ∈ Q by proposition
10.3. The diffeomorphism σ

◦(−1)
k ◦ σk+1 is equal to

(e−2πik/mx, y) ◦ exp(C log ϕ̃1) ◦ (e2πik/mx, y) = exp(C log ϕ̃1).

This implies

Id = (σ◦(−1)
0 ◦ σ1) ◦ (σ◦(−1)

1 ◦ σ2) ◦ . . . ◦ (σ◦(−1)
m−1 ◦ σm) = exp(Cm log ϕ̃1).

We obtain C = 0 by uniqueness of the infinitesimal generator. Since σ0 and
(e2πi/mx, y) commute we deduce that σ = (xm, y)◦σ0◦(x1/m, y) is a special element
of Diff (C2, 0) conjugating ϕ1 and ϕ2. �

We can prove now that Inv provides a complete system of analytic invariants.

Theorem 10.2. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0). Suppose that Fixϕ1 = Fixϕ2 and
Resϕ1 ≡ Resϕ2. Then ϕ1

sp∼ ϕ2 is equivalent to Inv(ϕ1) ∼ Inv(ϕ2).

Proof. We can suppose that Fixϕ1 is not of trivial type by proposition 6.4.
We consider the notations at the beginning of this section. We can suppose that

logϕ1 and logϕ2 are divergent, otherwise we have that ϕ1
sp∼ ϕ2 (prop. 5.2) and we

can choose c ≡ 0. Let αj be a convergent normal form of ϕj for j ∈ {1, 2}. There
exists a special mapping σ0 conjugating α1 and α2 (prop. 5.2). Up to replace
ϕ2 with σ

◦(−1)
0 ◦ ϕ2 ◦ σ0 and ξjϕ2,Kb

with (z − d(x)) ◦ ξjϕ2,Kb
◦ (x, z + d(x)) for all

(b, j) ∈ {1, . . . , l} × Z and some d ∈ C{x} we can suppose that ϕ1 and ϕ2 have
common convergent normal form. Finally we can suppose that ϕ1 and ϕ2 belong
to Diff tp1(C2, 0) by lemma 10.9.

The sufficient condition is a consequence of theorem 10.1. Since change of charts
commute with z → z + 1 we can suppose that c is bounded by replacing c(x) with
c(x) − [Re(c(x))] where [] is the integer part. There exists a special r-moderated
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mapping conjugating ϕ1(x0, y) and ϕ2(x0, y) for all x0 in a pointed neighborhood
of 0 and some r ∈ R+ by proposition 10.2. We obtain

ξjϕ2,Kb
(x0, z) ≡ (z + c(x0)) ◦ ξjϕ1,Kb

(x0, z) ◦ (z − c(x0)) ∀j ∈ Z ∀b ∈ {1, . . . , l}

for all x0 ∈ (0, δ0)K̇b by proposition 10.1.
Suppose supB(0,δ0)\{0} |Img c| < M . Fix p ∈ {1, . . . , l}. Consider the set

Eps (ϕ1) = {(j,m) ∈ Ds(ϕ1)× N : aϕ1
j,m,Kp

6≡ 0}.

We define Ep(ϕ1) = Ep−1(ϕ1) ∪ Ep1 (ϕ1). We have Ep(ϕ1) 6= ∅ by proposition 9.2.
Let x1 ∈ (0, δ0)K̇

µp

X such that (j,m) ∈ Ep(ϕ1) implies aϕ1
j,m,Kp

(x1) 6= 0. We define

dj,m =
1

2πims
ln
aϕ2
j,m,Kp

aϕ1
j,m,Kp

for all (j,m) ∈ Eps (ϕ1) where we choose dj,m(x1) = c(x1). Since

e−2πmM ≤

∣∣∣∣∣a
ϕ2
j,m,Kp

aϕ1
j,m,Kp

∣∣∣∣∣ ≤ e2πmM
in (0, δ0)Kp we deduce that dj,m ∈ ϑ((0, δ0)K̇p) for all (j,m) ∈ Ep(ϕ1). We have
that dj,m(x0) − c(x0) ∈ Z/m for (j,m) ∈ Ep(ϕ1) and aϕ1

j,m,Kp
(x0) 6= 0. Thus the

image of dj,m − dj′,m′ is contained in Z/m+ Z/m′; since dj,m(x1) = dj′,m′(x1) we
deduce that dj,m ≡ dj′,m′ for (j,m), (j′,m′) ∈ Ep(ϕ1). Denote by dp any of the
functions dj,m for (j,m) ∈ Ep(ϕ1). By construction we obtain

ξj
ϕ2,K

µp
X

(x0, z) ≡ (z + dp(x0)) ◦ ξjϕ1,K
µp
X

(x0, z) ◦ (z − dp(x0))

for all j ∈ Z and all x0 ∈ (0, δ0)K̇p. We also get |Img(dp)| ≤M in (0, δ0)K̇p.
Consider p, q ∈ {1, . . . , l} such that K̇p ∩ K̇p 6= ∅. Consider (j,m) ∈ Ep(ϕ1) and

(j′,m′) ∈ Eq(ϕ1). We have dp(x0) − c(x0) ∈ Z/m and dq(x0) − c(x0) ∈ Z/m′ for
all x0 ∈ (0, δ0)(K̇p ∩ K̇q) such that (aϕ1

j,m,Kp
aϕ1
j′,m′,Kq

)(x0) 6= 0. We deduce that
dp − dq is a constant function, moreover dp − dq ∈ Q. Then we can extend dp
to (0, δ0)(K̇p ∪ K̇q). We get that d1 is a multi-valuated function in B(0, δ0) \ {0}
such that d1(e2πix) − d1(x) ≡ C for some C ∈ Q. We also have |Img(d1)| ≤ M
in B(0, δ0) \ {0} and then d1 ∈ ϑ(B(0, δ0)) by lemma 10.8. Then ϕ1 and ϕ2 are
conjugated by a special element of Diff (C2, 0) by theorem 10.1. �

We give now a geometrical interpretation of our complete system of analytic
invariants. Roughly speaking, given ϕ ∈ Diff p1(C2, 0) the next theorem claims
that the analytic classes of ϕ|x=x0 for x0 ∈ B(0, δ0) \ {0} characterize the analytic
class of ϕ whenever we exclude singularities of the conjugating mappings at x0 = 0.
The result is the analogue of proposition 6.3 in the non-trivial type case.

Theorem 10.3. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) with Fixϕ1 = Fixϕ2. Then ϕ1
sp∼ ϕ2 if

and only if (ϕ1)|x=x0 and (ϕ2)|x=x0 are conjugated by a special r-moderated mapping
for some r ∈ R+ and all x0 in a pointed neighborhood of 0.

Proof. By proposition 6.3 we can suppose that Fixϕ1 is not of trivial type.
We have Fixϕ1 = Fixϕ2 by hypothesis and Res(ϕ1) ≡ Res(ϕ2) since the

residues are analytic invariants. Let αj be a convergent normal form of ϕj for
j ∈ {1, 2}. Then there exists a special ζ ∈ Diff (C2, 0) such that ζ ◦ α1 = α2 ◦ ζ



UNFOLDINGS OF RESONANT DIFFEOMORPHISMS 65

by proposition 5.2. By replacing ϕ2 with ζ◦(−1) ◦ ϕ2 ◦ ζ we can suppose that ϕ1

and ϕ2 have a common normal form α1. The mapping κx0 has to be replaced with
(ζ◦(−1))|x=x0 ◦κx0 , it is still rR-moderated (maybe for a smaller r ∈ R+) by lemma
10.1 for all x0 in a pointed neighborhood of 0.

There exists m ∈ N such that (xm, y)∗ logα1 belongs to Xtp1(C2, 0). Fix a
privileged (y = γ1(x)) ∈ SingV (xm, y)∗ logα1 and an EV-covering. Let us denote
c(x0) = (ψX ◦κx0−ψX)(x0, γ1(x0)). We are done since proposition 10.1 and lemma
10.5 assure that the hypothesis of theorem 10.2 is satisfied. �

Remark 10.2. Consider ϕ1, ϕ2 ∈ Diff up(C2, 0) sharing a convergent normal form
exp(xmY ) for some Y ∈ Xp1(C2, 0) and m ∈ N. The existence of r-moderated
mappings conjugating ϕ1(x0, y) and ϕ2(x0, y) for all x0 in a neighborhood of 0 does
not imply ϕ1

sp∼ ϕ2. The analogue of lemma 10.8 is fulfilled if and only if C = 0. The
existence of moderated conjugations plus an extra monodromic invariant provide a
complete system of analytic invariants.

We are interested in knowing whether or notmϕ1 ≡ mϕ2 is equivalent to ϕ1
sp∼ ϕ2.

Indeed we prove next that the moderated hypothesis in theorem 10.2 is generically
superfluous (even if we will prove that it is necessary in general).

Theorem 10.4. Let ϕ1, ϕ2 ∈ Diff p1(C2, 0) satisfying that Fixϕ1 = Fixϕ2 and
Res(ϕ1) ≡ Res(ϕ2). Suppose that (ϕ1)|x=0 ∈ Diff 1(C, 0) is not analytically trivial.
Then ϕ1

sp∼ ϕ2 if and only if mϕ1 ≡ mϕ2 .

The analogue of this theorem for the generic case when N(X) = 2 is the main
theorem in [16]. They do not impose any conditions on (ϕ1)|x=0. The next section
provides counterexamples if (ϕ1)|x=0 is analytically trivial.

Proof. We can suppose that Fixϕ1 is not of trivial type by corollary 6.2. Moreover
we can suppose that ϕ1 and ϕ2 have a common convergent normal form. Consider
the notations at the beginning of this section.

We have ξjϕ,Kb
(0, z) = ξ

Λ(j)
ϕ(0,y)(z) for all ϕ ∈ {ϕ1, ϕ2}, b ∈ {1, . . . , l} and j ∈ Z

where Λ ≡ Λ(ϕ1) ≡ Λ(ϕ2) (cor. 9.1). Since (ϕ1)|x=0 is not analytically trivial
then there exists s(0) ∈ {−1, 1} and (j(0), b(0), β) ∈ Ds(0)(ϕ1)× N× C \ {0} such
that aϕ1

j(0),b(0),Kp
(0) = β for all p ∈ {1, . . . , l}. Then mϕ1(0) = mϕ2(0) implies that

there exists (j(1), β′) ∈ Ds(0)(ϕ1) × C \ {0} such that aϕ2
j(1),b(0),Kp

(0) = β′ for all
p ∈ {1, . . . , l}. Since mϕ1 ≡ mϕ2 we have{

aϕ2
j(0),b(0),Kb(x)

(x) = aϕ1
j(0),b(0),Kb(x)

(x)e2πis(0)b(0)c(x)

aϕ2
j(1),b(0),Kb(x)

(x) = aϕ1
j(1),b(0),Kb(x)

(x)e2πis(0)b(0)c(x).

The first equation implies −s(0)Imgc(x) < K1 in a pointed neighborhood of 0 for
some K1 ∈ R. We obtain K2 < −s(0)Imgc(x) for x 6= 0 and some K2 ∈ R from
the second equation. This implies |Img c(x)| ≤ max(|K1|, |K2|) for all x 6= 0 in a
neighborhood of 0. Now ϕ1

sp∼ ϕ2 is a consequence of theorem 10.2. �

Remark 10.3. The theorem can be easily improved; it remains true if we replace
mϕ1 ≡ mϕ2 with mϕ1(x0) = mϕ2(x0) for all x0 ∈ E ∪ {0} for some set E ⊂ C
whose intersection with every neighborhood of 0 is uncountable.
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11. Optimality of the results

We introduce an example which proves that the hypothesis on the non-analytical
triviality of (ϕ1)|x=0 in theorem 10.4 can not be dropped. It also shows that the
moderated hypothesis in theorem 10.3 is essential. Denote x = e2πiw, then w is a
coordinate in the universal covering of C∗.

Proposition 11.1. Let X ∈ Xp1(C2, 0). There exist ϕ1, ϕ2 ∈ Diff p1(C2, 0) with
normal form exp(X) and such that mϕ1 ≡ mϕ2 but ϕ1 6

sp∼ ϕ2. Moreover there exists
an analytic injective mapping σ conjugating ϕ1 and ϕ2 and defined in a domain
|y| < C0/

ν(X)
√
|w| for some C0 ∈ R+.

In particular we provide a counter-example to the main theorem in [16]. The
size of the domain |y| < C0/

ν(X)
√

2π|w| decays when x tends to 0. Theorem 10.3
made this property somehow expected. Anyway the decay is slower than algebraic.

Let X = f(x, y)∂/∂y ∈ Xp1(C2, 0). We consider vector fields of the form

Xv =
f(x, y)

1 + f(x, y)v(x, y, t)
∂

∂y
+ 2πit

∂

∂t

where v is defined in a domain of the form B(0, δ)×B(0, ε)×B(0, 2) in coordinates
(x, y, t). The vector field Xv supports a dimension 1 foliation Ωv preserving the
hypersurfaces x = cte. Moreover since Xv(t) = 2πit then Xv is transversal to every
hypersurface t = cte except t = 0. As a consequence we can consider the holonomy
mapping holv(x, y, t0, z0) of the foliation given by Xv along a path t ∈ e2πi[0,z0]t0,
it maps the transversal t = t0 to t = t0e

2πiz0 for t0 6= 0. The restriction of
holv(x, y, t, z) to (x, y) ∈ SingX is the identity. Supposed that v = v(x, y) we have

holv(x, y, t, z) =
(

exp
(
z

f(x, y)
1 + f(x, y)v(x, y)

)
(x, y), e2πizt

)
.

The restriction (Ωv)x=0 is a germ of saddle-node for v ∈ C{x, y, t}. The holonomy
holv(0, y, t0, 1) at a transversal t = t0 to the strong integral curve y = 0 is analyt-
ically trivial if and only if (Ωv)|x=0 is analytically normalizable [17]. In particular
(Ωy)|x=0 is analytically normalizable. Every foliation in the same formal class than
(Ωy)|x=0 is analytically conjugated to some (Ωv)|x=0, we just truncate the formal
conjugation. Every formal class contains non-analytically normalizable elements,
hence there exists v0 ∈ C{y, t} ∩ (y, t) such that the saddle-node

(Xv0)|x=0 =
f(0, y)

1 + f(0, y)v0(y, t)
∂

∂y
+ 2πit

∂

∂t

is not analytically normalizable. Hence the holonomy holv0(0, y, t0, 1) is not analyt-
ically trivial for t0 6= 0. Moreover up to change of coordinates (x, y, t) → (x, y, ηt)
for some η ∈ R+ there exists (δ0, ε0) ∈ R+ such that

• v0 ∈ ϑ(B(0, ε0)×B(0, 2)) and supB(0,δ0)×B(0,2) |v0| < 1.
• supB(0,δ0)×B(0,ε0) |f | < C0 < 1/16.
• 1/2 < supB(0,δ0)×B(0,ε0) |f ◦ exp(zX)(x, y)|/|f(x, y)| < 2 for all z ∈ B(0, 2).

The constant C0 > 0 will be determined later on. There exists k ∈ N such that
(xk, y)∗X ∈ Xtp1(C2, 0). Denote Y = (xk, y)∗X. Consider U = B(0, δ) × B(0, ε)
such that there exists a EV-covering K1 = Kµ1

Y , . . ., Kl = Kµl

Y fulfilling that H(x)
is well-defined for all x ∈ [0, δ)K̇p, H ∈ Reg(ε, µpX,Kp) and p ∈ {1, . . . , l}. We can
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also suppose that there exists C > 0 such that

|f(x, y)| ≤ C

(1 + |ψXH,κ(x, y)|)1+1/ν(X)

for every κ-subregion of H ∈ Reg(ε, µlX,Kl), every (x, y) ∈ Hκ and κ ∈ {L,R}
by proposition 8.1. Finally we suppose that exp(B(0, 4)X)(U) is contained in
B(0, δ0)×B(0, ε0).

Denote V = B(0, δ) × B(0, ε0) × B(0, 2). Let v ∈ ϑ(V ) such that supV |v| < 2.
Consider an integral ψ of the time form of X. We have

Xv

(
ψ − 1

2πi
ln t
)

=
1

1 + vf
− 1 = − vf

1 + vf
.

We obtain

(11) ψ ◦ holv(x, y, t, z0) = ψ(x, y) + z0 −
∫ z0

0

vf

1 + vf
◦ holv(x, y, t, z)dz.

We claim that holv(U ×B(0, 2)\{0}× [0, 1]) ⊂ V . Otherwise there exist (x0, y0, t0)
in U×B(0, 2) and a minimum z0 ∈ [0, 1] such that y◦holv(x0, y0, t0, z0) ∈ ∂B(0, ε0).
This leads us to

|ψ ◦ holv(x0, y0, t0, z0)− ψ(x0, y0)| ≤ |z0|+ |z0|
2C0

1− 2C0
≤ 8

7
|z0| < 2

and that contradicts the choice of U . Denote ∆v(x, y, t) = ψ◦holv(x, y, t, 1)−(ψ+1).
We obtain

|∆v(x, y, t)| ≤
32
7
|f(x, y)| < 5C0 ∀(x, y, t) ∈ U ×B(0, 2).

We define ∆1
v(x, y) = ∆v(x, y, 1) and ∆2

v(x, y) = ∆v(x, y, x). The function ∆1
v is

holomorphic in U . The same property is true for ∆2
v since it is holomorphic in

U \ [x = 0] and bounded.
We define ϕ1,v = holv(x, y, 1, 1) and ϕ2,v = exp(zX)(x, y, 1 + ∆2

v(x, y)). Clearly
ϕ2,v(x, y) = holv(x, y, x, 1) for x 6= 0.

Lemma 11.1. exp(X) is a convergent normal form of ϕ1,v, ϕ2,v for all v in ϑ(V ).

Proof. The equation 11 implies that ∆1
v and ∆2

v belong to (f). Since we have

y ◦ ϕ = y +
∞∑
j=1

(1 + ∆ϕ)j
X◦(j)(y)

j!
= y ◦ exp(X) +O(f2)

for ϕ ∈ {ϕ1,v, ϕ2,v} then ϕ1,v and ϕ2,v have convergent normal form exp(X). �

Fix a privileged γ ∈ SingV Y . We choose C0 > 0 such that there exists I > 0
holding that ∀s ∈ {−1, 1} and ∀j ∈ Ds(exp(X)) we have

ξjϕ,Kp
∈ C0([0, δ)K̇p × [sImgz < −I]) ∩ ϑ((0, δ)K̇p × [sImgz < −I]) ∀1 ≤ p ≤ l

whenever ϕ has convergent normal form exp(X) and |∆ϕ(x, y)| ≤ 5 min(C0, |f(x, y)|)
for all (x, y) ∈ B(0, δ)×B(0, ε) (remark 8.1).

By choice (ϕ1,v0)|x=0 is not analytically trivial. Thus there exists (j(0), p(0), x0)
in Z × {1, . . . , l} × (δ/2, δ) × K̇p(0) such that ξj(0)ϕ1,v0 ,Kp(0)

(x0, z) 6≡ z + ζϕ1,v0 (x0).

Denote u = (x/x0)v0(y, t), we get supV |u| < 2. We define ϕ1 = ϕ1,u and ϕ2 = ϕ2,u.

Lemma 11.2. ϕ1 is not analytically trivial.
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Proof. By construction ξ
j(0)
ϕ1,Kp(0)

(x, z) is well-defined in x ∈ [0, δ) × K̇p(0) and

ξ
j(0)
ϕ1,Kp(0)

(x0, z) 6≡ z + ζϕ1(x0). We deduce that ϕ1 is not analytically trivial. �

The next lemma is a consequence of u(0, y, t) ≡ 0.

Lemma 11.3. (ϕ1)|x=0 ≡ (ϕ2)|x=0 ≡ exp(X)|x=0. In particular (ϕ1)|x=0 and
(ϕ2)|x=0 are analytically trivial.

Denote by σ(x, y) the analytic mapping holu(x, y, 1, lnx/(2πi)).

Lemma 11.4. The mapping σ(x, y) conjugates ϕ1 and ϕ2 in a domain of the form
|y| < C0/

ν(X)
√
| lnx| for some C0 ∈ R+. Moreover σ is not univaluated since

σ(e2πix, y) = holu

(
x, y, 1,

lnx
2πi

+ 1
)

= holu(x, y, x, 1) ◦ σ(x, y) = ϕ2 ◦ σ(x, y).

Proof. Consider a domain W ⊂ B(0, δ)×B(0, ε0) such that

exp
(
B

(
0,
| lnx|
π

)
X

)
(x, y) ∈ B(0, δ)×B(0, ε0) ∀(x, y) ∈W.

Since y ◦ holu(x, y, 1, s lnx/(2π)) ⊂ B(0, ε0) for all s ∈ [0, s0] and s0 ∈ [0, 1] implies

(12)
∣∣∣∣ψ ◦ holu(x, y, 1, s lnx

2πi

)
− ψ(x, y)

∣∣∣∣ ≤ s0 | lnx|2π
+
s0
7
| lnx|
2π

<
| lnx|
π

by equation 11 then holu(x, y, 1, s lnx/(2πi)) is well-defined and belongs to V for
all (x, y, s) ∈ W × [0, 1]. We have ψ ∼ 1/yν(X) in the first exterior set by remark
7.4, we can deduce that W contains a domain of the form |y| < C0/

ν(X)
√
| lnx| for

some C0 ∈ R+. �

The domain W0 = [|y| < C0/
ν(X)
√
| lnx|] contains the germ of all the “algebraic”

domains of the form |y| < |x|b for b ∈ Q+, in particularW0 contains SingX\{(0, 0)},
every intermediate set and every exterior set except the first one.

Lemma 11.5. We have

ξjϕ2,Kp
(x0, z) =

(
z +

lnx0

2πi

)
◦ ξjϕ1,Kp

(x0, z) ◦
(
z − lnx0

2πi

)
for all (j, p) ∈ Z × {1, . . . , l} and x0 ∈ (0, δ) × K̇p. Then we get mϕ1 ≡ mϕ2 and
ϕ1 6

sp∼ ϕ2.

Proof. Let (x0, y0) ∈ SingX \ {(0, 0)}. We remark that

lim
(x,y)→(x0,y0)

ψ ◦ holv
(
x, y, 1, s

lnx
2πi

)
− ψ = s

lnx0

2πi

for all s ∈ [0, 1] by equation 11. Basically the moderated hypothesis in proposition
10.1 is used to estimate ψ ◦ κ − ψ for a special r-moderated conjugation κ. Such
an estimation is provided here by the inequality 12, hence we can proceed like in
proposition 10.1 to obtain

ξjϕ2,Kp
(x0, z) =

(
z +

lnx0

2πi

)
◦ ξjϕ1,Kp

(x0, z) ◦
(
z − lnx0

2πi

)
for all (j, p) ∈ Z×{1, . . . , l} and x0 ∈ (0, δ)× K̇p. We deduce mϕ1 ≡ mϕ2 from the
previous equation and (ϕ1)|x=0 ≡ (ϕ2)|x=0.
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We know that ϕ1 and ϕ2 are not analytically trivial. Thus we have ϕ1 6
sp∼ ϕ2 since

otherwise | ln |x|| would be bounded in a neighborhood of 0 by theorem 10.2. �

Remark 11.1. The diffeomorphisms ϕ1,v and ϕ2,v are conjugated by a multivalu-
ated transformation collapsing at x = 0. Anyway since

(ϕ2,v)|x=0 = exp
(

f(0, y)
1 + f(0, y)v(0, y, 0)

∂

∂y

)
then (ϕ2,v)|x=0 is always analytically trivial. Thus mϕ1,v

≡ mϕ2,v
forces (ϕ1,v)|x=0

to be also analytically trivial.

Remark 11.2. We do not characterize the diffeomorphisms ϕ1 ∈ Diff tp1(C2, 0)
such that there exists ϕ2 ∈ Diff tp1(C2, 0) satisfying the result in proposition 11.1.
We already proved that the property log(ϕ1)|x=0 ∈ X (C, 0) is necessary (theorem
10.4). It is unlikely that it is sufficient since in the trivial type case we need a con-
dition on half of the changes of charts. Moreover, a careful look to the construction
in this section makes clear that half of the changes of charts of ϕ1,v are trivial.
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[32] J.-C. Yoccoz. Théorème de Siegel, polynômes quadratiques et nombres de Brjuno. Asterisque,

(231), 1995.


	1. Introduction
	2. Notations and definitions
	3. The infinitesimal generator
	4. One variable theory
	4.1. Formal theory
	4.2. Topological behavior
	4.3. Analytic properties
	4.4. Analytic classification

	5. Formal conjugation
	5.1. Formal invariants
	5.2. Formal centralizer
	5.3. Unfolding of diffeomorphisms y e2 i p/qy + O(y2)

	6. Ecalle-Voronin invariants. Trivial type case
	7. Dynamics of the real flow of a normal form
	7.1. Splitting the dynamics
	7.2. Parabolic exterior sets
	7.3. Nature of the polynomial vector fields
	7.4. Assembling the dynamics of the polynomial vector fields
	7.5. Analyzing the regions

	8. Extension of the Fatou coordinates
	8.1. Comparing Difftp1(C2,0) and a convergent normal form
	8.2. Constructing Fatou coordinates

	9. Defining the analytic invariants
	9.1. Normalizing the Fatou coordinates
	9.2. Defining the changes of charts
	9.3. Nature of the invariants
	9.4. Embedding in a flow

	10. Applications
	10.1. Moderated conjugations
	10.2. Analytic classification and centralizer
	10.3. Complete system of analytic invariants

	11. Optimality of the results
	References

