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“E'sta manha, casais de borboletas brancas, douradas, azuis, passam inumeras contra
o fundo de bambus e samambaias da montanha. E um prazer para mim vé-las voar, nao o
seria, porém, apanhd-las, pregd-las em um quadro... Fu nao quisera guardar delas sendo
a impressao viva, o frémito de alegria da natureza, quando elas cruzam o ar, agitando as
flores. Em uma colecdo, € certo, eu as teria sempre diante da vista, mortas, porém, como
uma poeira conservada junta pelas cores sem vida... O modo unico para mim de guardar
essas borboletas eternamente as mesmas, seria fizar o seu voo instantaneo pela minha
nota intima equivalente... Como com as borboletas, com os vagalumes e com todos os
outros deslumbramentos da vida... De nada nos serve recolher o despojo; o que importa é
S0 0 raio interior que nos feriu, o nosso contato com eles... e este como que eles também

o levam embora consigo.”

Joaquim Nabuco, em Minha Formacao.

eee... arrancando!



Abstract

In this thesis we study the asymptotic behavior of the ergodic Birkhoff Sums for
cylinder skew products over irrational rotation preserving a o-finite measure. We prove
that such maps are ergodic, rationally ergodic and weakly homogeneous, calculating
explicitly the Ergodic Sums for an increasing sequence of time and identifying the return
sequence. From that, it is possible to obtain a second order ergodic theorem, which asserts
that the double average renormalized by the return sequence converges to the integral of
the observable function almost everywhere. We recall that the classical Birkhoff Theorem

does not hold when the invariant measure is infinite.

Keywords: infinite ergodic theory, cylinder skew product, irrational rotation, ergod-
icity, rationally ergodic, weakly homogeneous.



Resumo

Nesta tese estudamos o comportamento assintético das somas ergddicas de Birkhoff
para sistemas dinamicos do tipo skew products do cilindro preservando uma medida
o-finita. Provamos que tais aplicagoes sao racionalmente ergddicas, calculando explici-
tamente as somas ergddicas para uma subsequéncia crescente de tempos e identificando
as sequencias de retorno. Com isto é possivel obter um teorema de Birkhoff de segunda
ordem, que afirma que quase certamente as médias ergddicas duplas, renormalizadas pela
sequéncia de retorno, convergem para a integral do observavel. Vale ressaltar que o

teorema ergodico de Birkhoff classico nao é valido quando a medida invariante é infinita.

Palavras-chave: teoria ergddica infnita, skew products do cilindro, rotagao irracional,

ergodicidade, racionalmente ergédico, fracamente homogéneo.
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1 Introduction

Ergodic theory is the quantitative theory of dynamical systems that deals with measure
preserving transformations on a measure space. Usually the space where the map acts
is assumed to be finite; however, there exist interesting systems that have an infinite
invariant measure.

It is well known that for a measure preserving transformation in a probability measure

space, almost all points are recurrent. Formally,

Theorem 1.1 (Poincaré’s Recurrence Theorem). Let F': X — X be a measure preserving
transformation on a probability space (X, B, n). Let E € B with u(E) > 0. Then almost
every point of E returns infinitely often to E by iterations of F.

This is not the case if p is infinite. In fact, the translation map 7 : R — R, T'(x) = x+1
preserves the Lebesgue measure, but it is clear that there are no recurrent points. Indeed,
every interval (x,z + 1) wanders away by the action of 7.

Since we are interested in understanding how often a set will be visited by typical

orbits, we would like to exclude systems possessing sets that many points do not return.

Definition 1.2. A measure preserving transformation F' on (X, B, u) is called recurrent
if given any positive measure set B, almost every point will eventually return to B, i.e,
B C Un21 F"B pu—a.e.

Definition 1.3. A measure preserving transformation F' on a space (X, B, ) is said to
be ergodic if all its invariant sets, A = F~1(A), are such that pu(A) =0 or u(A°) = 0.

An example of an ergodic transformation which is invariant by an infinite measure is

the Boole map,

F: R\{0} - R

x = r— 1

The invariant measure for the Boole map is the Lebesgue measure in the real line. It
was first studied in [11] and its ergodicity was shown later in [5].

There is also a two dimensional version of the Boole’s map, T : R?\ {0} — R?
T(x,y) = (x— i, r+y— i), where the invariant measure is the Lebesgue measure in the

whole two dimensional plane [17].



It is important to note that the fact of preserving an infinite measure is not intrinsically
connected with the circumstance of the domain of the transformation be not compact.
For example, the Pomeau-Manneville maps, 7" : [0, 1] — [0, 1], T'(x) = = + caPmod(1), in
which zero is a parabolic fixed point (i.e. 77(0) = 1), and in case that p > 2 (¢ > 0) the
invariant measure has support in [0, 1] but gives infinite measure to the interval as shown
in [31] and [15].

Polynomial and rational maps on C (quotient of polynomials acting on C) with
parabolic fixed points (points where the derivative has modulus one) in the Julia set
and no critical points they also preserve an infinite measure which is a h—conformal mea-
sure concentrated in the Julia set and h is the Hausdorff dimension of the Julia set. This
class of examples were studied in [4].

Other examples that can be cited are some quadratic unimodal maps (or logistic type
maps) where the invariant measure is absolute continuous and giving infinite measure to
the domain, see references [23], [14] and [6].

A standard result in classical ergodic theory that also fails for infinite measure pre-

serving systems asserts about ergodic sums S, (f)(z) := Z;:& fo Fi(x).

Theorem 1.4 (Classical Birkhoff’s Pointwise Ergodic Theorem). Suppose F': X — X
is an ergodic measure preserving transformation in a probability space (X,B,u). Then
for all f € L'(n), 28,(f)(x) == [y fdu a.e. on X.

Taking f as the characteristic function 14 of a set A € 2B this theorem tell us that
the rates S, (A)(x) of occupations of z in A are asymptotically the same for almost every
point x € X and depend only on the set A. Furthermore, it says that the pointwise rate

is given proportional to n.

Definition 1.5. A measure space (X, B, u) is said to be o-finite if there exists a countable
family {X;}ien with X; C X with p(X;) < co such that X = (J2, X;.

Whenever we refer to a o-finite space, we will in addition consider that the measure
of the hole space is u(X) = oo.
While for a finite measure space the classical Birkhoff’s theorem holds, when we are

treating with infinite measure what happens is the following

Theorem 1.6. Let F be a recurrent ergodic measure preserving transformation in a
o-finite measure space (X, B, ). Then for all f € L*(u),

1 n [ee]
—Sn(f) =20 a.e. on X.
n



This means that, independently on the observable f chosen, the result does not say
so much. Just state that S,(f) has a sublinear growth, nothing else. Nor how can the

asymptotic behavior of S, (A)(z) depends on z or A.

Remark 1.7. Theorem above tell us that for almost every point we could not expect

positive Lyapunov exponents for smooth systems preserving an infinite measure.

An expectable question at this point is to ask if, despite not having information
about Birkhoff’s sums, could we find another “appropriated” rate of convergence, that is,
a renormalizing sequence of constants (a,) such that iSn(A) — p(A) a.e.? The result

of below comes to tell us that such sequence does not exist.

Theorem 1.8 (Aaronson’s Ergodic Theorem). Suppose that T is a recurrent, ergodic
measure preserving transformation of the o-finite space (X,B, 1) and let (a,)n>1 be any

positive sequence. Then

either lim inf S’;—if) =0 ae VfeLl(u),

n—oo

or limsups’;—if) =00 a.e. Vf € L. (u).

n—o0

This shows that the occupations times S,(A) are very complicated. The rates at
which the sums S5,(A) grow are not uniform and any attempt of normalization will un-
derestimate or overestimate the behavior of Birkhoff sums.

Although the theorems above give negative answers to get convergence of ergodic

sums, there are results that work well in the positive direction.

Theorem 1.9 (Hopf’s Ratio Ergodic Theorem). Let F' be a recurrent ergodic measure
preserving transformation on a o-finite space (X, B, ). If f,g € LY (n) and fX gdp # 0

then

Sn(g) fx gdp

Hopf’s Ratio ergodic theorem states that, even substantially depending on the point

a.e. on X.

and on the function f € LI (u), there is a kind of proportion in the behavior of the

ergodic sums.

Definition 1.10. A recurrent, ergodic measure preserving transformation F on (X, B, i)

is called rationally ergodic if there is a set A € B, 0 < pu(A) < oo, satisfying a Renyi



inequality: AM > 0 such that

/A (S, (A)dp < M ( /A sin(,ax)d,i)2

for some strictly increasing sequence (i, )nen of natural numbers.

We note that the preceding definition lightly differs from that one presented in [1],
since we are asking that the Renyi inequality does not hold for all natural numbers, but
only for a subsequence (i,) C N. This adaptation is performed to prove our results for

cylinder map.

Theorem 1.11 (Aaronson [2]). If F' is rationally ergodic, satisfying the Renyi inequality
along the sequence (i,) then there is a sequence of constants a, T 00, unique up to
asymptotic behavior, such that for all (m;) C (i,) with m; T oo, there is a subsequence
ny = my, for which the following is true:

TLkl

—Z 2o 25 [ aev L) (1)

Remark 1.12. Two sequences a,, and a/, of positive real numbers are of the same asymp-

an

totic type if the limit lim %2 exists.

n—o0 n

The constants a,, given by the theorem above are explicitly determined by the set A

which satisfies the Renyi inequality. In fact,

n—1
an = a,(A 2ZuAﬂFkA
k=0

Definition 1.13. A recurrent, ergodic, measure preserving dynamical system satisfying
(1.1) with respect to some sequence of constants (a,,) is called weakly homogeneous. The
sequence (a,) is called the return sequence of F' and it is unique up to asymptotic type,
see [1].

Theorem 1.11 establishes that, in the rationally ergodic context, there is a sort of sec-
ond order Birkhoft’s theorem. That is, the double average of the ergodic sums converges
to the integral of the observable function f € L(u).

The proof of the rationally ergodic theorem when the Renyi inequality hold just for
a subsequence of S; (A) follows in the same way of that one presented at Section 3.3 of
[1], since at the very beginning of the proof a subsequence as% of S—nl is taken and used
during all the rest of the proof. ’



1.1 Previous examples of rationally ergodic systems

Let T = R/Z denote the circle, parameterized by [0,1). Examples of rationally ergodic
systems on the cylinder T x Z were studied by Aaronson and Keane in [3]. They analyze

ergodic properties for the map

T,: TXZ — T x Z
(z,2) = (z+a,2+T(z))

which preserves the measure p on the cylinder. Here T' is the same as defined in (1.2)
below, but they use only 7" in the skew product, without composing it with the expanding
maps ¢; as we will do. They prove (bounded) rational ergodicity for the map 7, when «
is a quadratic surd, that is, a is a root of a quadratic polynomial with integer coefficients.
We recall that this set of irrational numbers has zero Hausdorff dimension.

The ergodicity of maps of type T,, was previously shown by Conze and Keane in [16]
for every irrational number «.

Others examples of rationally ergodic systems were described by Ledrappier and Sarig
in [26]. They shown that the horocycle flow on the unit tangent bundle of a Z?-cover
of a hyperbolic surface of finite area, equipped with the volume measure are rationally
ergodic. And for semi-dispersing billiards with an infinite cusp, in [27] it is proved by

Lenci that those billiards exhibit an infinite invariant measure and are rationally ergodic.

1.2 Statement of results

Let T = R/Z denotes the circle parameterized by [0, 1) fitted with the Lebesgue measure.
In order to introduce the results, we consider the function 7' : T — {—1,1} defined by

B 1, ifzel0,d),
T(z) = { ~1, ifrell) (12)

Let us denote by a an irrational number and % be a subsequence ! of convergents of
J
the continued fractional expansion of a.
Now, given « and a subsequence of convergents, the objects we study are skew product

maps on the cylinder:

! Conditions for that subsequence will be specified in section 2.2.1.



F:Fa,(qj)j: T x 272 — T x 27
(r,2) +— (z+a,240(x)),

where

o(z) = d(a, (g;);)(x) == ZT(W + gja) — T(g;).

There exists a set Ao, C T, with Leb(Ay) = 1 such that |¢(x)| < oo for all z € Ay,
see Section 2.3 for details.

Let p be the measure on the cylinder T x 2Z given by the sum of the Lebesgue
measures on the fibers, which is invariant by the map F.

Our purpose is to investigate ergodic properties of the infinite measure preserving
system given by the skew product F' above. Precisely, we prove the following

Theorem A [Cirilo, Lima, Pujals] There is a set H; C [0,1] \ Q with Leb(H;) =1
such that if o € Hy then there exists F' = F(c, (q;);) verifying

1. F e L¥(n), for every P > 1, and

2. I is recurrent and ergodic.

Theorem B [Cirilo, Lima, Pujals] There is a set Hy C Hy with HD(Hs) > 0 such
that if o € Hy then there exists F' = Fy (4,

; verifying the thesis of theorem above and in
addition

1. F is rationally ergodic (and so weakly homogeneous);

2. along the subsequence gny1, the constants ag, ., appearing in the double average of
gn+1

\/7Tn;

3. for x in a set of measure 1 — e, with €, —— 0, we can estimate

MN< n )W

weakly homogeneity are of type agq, . ~

n+man () on )

a‘]n+1 2

where my,(x) =377 T(g;x) and A is a fiber T x {2} of the cylinder.
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Here, when saying that a, ~ b, we mean that pr— 1 exponentially fast and out of

. —
a set of Lebesgue measure €,, with €, 27%00.

This thesis is organized as follows. In Section 2 we present standard background that
we will use, as much as continued fractions and random walk properties. Still in Section 2,
we introduce specific tools that we will use to attack our problem. The proof of Theorem
A is presented in Sections 3 and 4, while the last two sections are devoted to conclude

the proof of Theorem B.
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2 Preliminaries and Preparations

This section is devoted to present standard backgrounds and to introduce some tools we

will use in during the text.

2.1 Continued fractions

Proofs of properties of continued fraction cited in this section can be founded in [24], [28]
and [29].

Our skew product on the cylinder will depend on the continued fraction expansion of
the irrational number.

Let a be a real number and consider the continued fraction expansion

1
a=ag+ (L—l—il =: [ao,al,ag,...]
1 az+-—-
with convergents a,, = 2* = [ag, a1, - ,a,| which give the best rational approximation

dn
to a.

The speed of approximation of o by rational numbers is related to the growth rate
of (¢,), also called continuants g,. A more quantitative way of characterizing this is by
the order of a, which is the best exponent one can have in the approximations. More

specifically, for a real number 7 > 2, let

p
a__

W(T):{ae]R; .

1
< — for infinitely many rational numbers 2—9} .
qr q

and

ord(a) := sup{r > 0;||qal|z < ¢'~" for infinitely many ¢ € Z}.

If ||7||z denotes the distance from a real number 7 to the nearest integer, we have

Prn
o — —

n

||QnaHZ = (4n

and

lgnallz = min{|lqe||z;0 < ¢ < gni1,q € Z}.

Recall that for almost every irrational o, the approximation condition [Ja—2[| < ﬁ)gq
p

has an infinite number of rational solutions E.In particular, if (g,), is the sequence of
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continuants of the expansion in continued fractions, we can chose a subsequence that

1 1
lgjallz < ogg < o

Two others useful properties of continued factions for our work are

1
3 < Gnti1llnellz and g, = anGn-1 + Gn—2.

In addition, if ¢; = ¢,, is a subsequence of the consecutive continuants gy, for which

2q; < gj+1, using the properties above we get

1 1 1 1 1
al <y =< l+=4-+--)<2
S lgall <3 (145454 ) =2

i>n i>n 9 Int1 n+1

For our methods we will be interested in a class of irrational numbers having the

<Al (21)

following divisibility property:
Definition 2.1. An irrational number o will be called divisible if it admits a sequence
(qn;)j>1 of continuants such that 2¢,, divides gy, .

Divisible numbers satisfies the property (2.1) and these numbers have full Hausdorff
dimension inside each class W (7), according to [30].
For Theorem B, we will be interested in irrational numbers which are divisible and

have order greater then four.

2.2 Introducing our map
In general, when treating skew products of type
F. Tx22 — T x 27
(r,2) = (x4+a,z+¢(x))

the dynamics of F' is intimately connected to the cocycle S(a, @) : T x Z — R defined as
the Birkhoff sums of ¢ with respect to the rotation z — x + «:

(

i
L

o(x+ka) Lifn>1
0

B
Il

S(a, @)(z,n) =< 0 Jifn =0
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The function S(a, ¢)(-,n) : T — R used to be denoted by S, (a, ¢) for simplicity. By

Birkhoff theorem,
Sn(a> ¢) (l’) N—H-OO) / ¢d Leb
n T

for Leb-almost every x € T. Then, if [ ¢dLeb # 0, almost every point diverges on the
second direction, which does not allow any kind of recurrence. For our intend we are
interested in maps ¢ that has zero-mean. In this situation, the Birkhoff sums have at
most a sublinear growth.

Given a divisible irrational number «, and any subsequence of divisible continuants
(¢j)j>1, define ¢ : T — 2Z by

o(z) = f:T(qjx + gjo) — T'(gjx). (2.2)

As justified in Section 2.3, the map ¢ is well defined in a set of full measure A, C T.

Consider now the skew product determined by « and ¢,

F=F(a,0) = Fagg,: Mo x2Z —  Ayx2Z
(x,z) = (x+a,z+¢(x)).

Let i be a measure on the cylinder T x 27Z given by the sum of the Lebesgue measures

(2.3)

on the fibers. Since the skew product F' defined above is over a rigid rotation on the basis
T, this measure p will be invariant by the map F.

Our purpose is to investigate ergodic properties of F' with respect to the measure p,
study the almost sure asymptotic behavior of its ergodic sums and identify the return
sequence of the weakly homogeneity.

For that we will use the auxiliary skew products F}, defined below. Recall that we are

denoting by a,, = % the convergents of the continued fraction expansion of «. Let

() =Y T(q5w + gjomsr) — Tlg;z)

j=1

and
F,=F,(aps1,0n): Tx2Z — T x 27Z (2.4)
(x,2) = (x4 aps1, 2+ 0(x))
In Section 3 we will show that F), converges to F in the L¥(u) space for all P > 1.
And we will explicitly use the skew products F}, to the return times counting procedure

in Section 5.
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Again, the dynamics of F' is intimately connected to the cocycle S(, 11, ¢,) : TXZ —
R defined as the Birkhoff sums of ¢,, with respect to the rotation x — = + a,,41. More
detailed,

T+ kani1, 2+ ¢n(x) + dn(z+ ) + -+ On(x + (K — Daygr))
z+ ka1, 2+ Sp(ony1, ¢)(2))

Fia,2) = (
=
(@ + ker1, 2+ 3h g dno Riy (2))
(
(

Qn+1
x + ko1, 2+ 3000 T(gj@ + kgjans) — T(g;z))
T+ kany, 2+ ¢F(x)).

Analogously, we can do the same for the iterates of the skew product F when the
point z is in the security region (see Section 2.3) and the function ¢ can be truncated as
> i1 Tgjz + qja) = T(gja).

We will denote the sum appearing in the last expression of the k-th iterated of F),

(and F, respectively) by

(@) =Y T(g5w + kgjomir) — T(g;z),

=0

() = ZT(qjx + kgjo) — T(g ).

3=0
2.2.1 The sets H; and H,

Here we will define the sets H; and Hs in Theorems A and B respectively.
Let Hy be the set of irrational numbers « € [0, 1) satisfying:

a—& <

4n

2. there exist a subsequence g,; satisfying the condition above and such that

1. , for infinitily many convergents &,

q2 log qn In

(a) Z] 1Og1qnj < o,

(b) 2¢y, divides gy, ,.

Remark 2.2. The set H; has total Lebesgue measure. In fact, the first condition holds for
almost every irrational number. The second one is true for that set since the continuants g;
growth exponentially. And still with total Lebesgue measure we can extract a subsequence

of that continuants which satisfies 2¢; | gj41, see [30] for details.
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Let H, is given by the set of irrational numbers o € [0,1) contained in H; and

satisfying

1 la—2&
dn

< #, for infinitely many rational f}ﬁ
n n

2. there exist a subsequence g, satisfying the condition above and such that 2¢,,

divides ¢y,
Lemma 2.3. The set Hy has positive Hausdorff dimension, in fact, it is equal to %

Proof. The positiveness of the Hausdorff dimension of the set H, follows from the Borosh-
Fraenkel’s theorem [12]. While the calculation of the exact Hausdorff dimension is a

variant form of the Bugeaud-Moreira’s theorem, see [13] and [30]. O

As an explicit example of an irrational number belonging to the set H,, we can take

Pni1
dn+1
enough to ensure the approximation condition, for example choose I, = (2¢;)™. Then

o= 5—1 + D et % satisfies qn41 = (2¢1)™'q, and

Qi1 = = Z—: + i, with [,, even to guarantee the divisibility property and [,, large

SAED I qun

i>n

B 1 1 < 2
= g ; (2g1 )3 =D = (2, )t D!

1 1

= Qgy) @21 (7

where the last inequality holds since

(A4[(n=D!+(n=2)++1] _  (44¢) (n—2)! 1
(n+1)! — m+Dn L+ (n—1)! +oee Tt (n—l)!}

_ (44e) 1 1 1

T (n+1)n L+ (n—1) + (n—1)(n—2) + + (n—l)!i|

n— o0

0.
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2.3 Security regions

To understand the dynamics of the skew products (1.2) it is important to comprehend
the behavior of the function ¢. A good way to realizes that is to infer information about
the truncations > 7, T'(gjz + ;o) — T(g;x) of ¢. We will present conditions guaranteeing
that ¢ and its truncation coincides.

Let C' denotes one of the two discontinuities of the map 7', defined in (1.2). Unless
we really need to specify which one of the discontinuities we are using, we will refer to a

discontinuity of T" simply as C.
Definition 2.4. We define the set '), := {x e T :d(gz,C) > @, forallj > n}

The sets I',, will be the security regions that we will use to prove the ergodicity in
item (2) of Theorem A.
We note that Leb(I',) — 1 as n goes to infinity. In fact, since the denominators g;

satisfies > mg%q» < 00, then
J

1
Leb(I';,) <2
; log ¢
n—oo 0

Remark 2.5. If « belongs to I'), and k < g, then gz and gz + kg;o are in the same

plateau for all j > n (see Section 2.4 for precise definition of plateau). Therefore,
rel, = o) = ZT(qjx + gjo) — T'(gjx) Vk < q,.
j=1

In fact observe that it is enough to require that ||gjkal|z < d(g;z,C), but in fact

lgikal] <k
! q; log%
1

> (n
q; 108;%'
< . Vi>n

log ¢;
< d(gjz,C), because z € I',,
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Denoting by I'n, = Upenl'n, we get a set in which |¢(z)| < oo for all z € I'y, and
Leb(I's) = 1. Moreover, there exists a set [oo = Npo(T'ae + kav), such that |¢(z)] < oo

and |¢(z + ka)| < oo for all iterated k and yet Leb(I's) = 1.

For theorem B and for item 1 of theorem A, we will relax a little the security regions:
Definition 2.6. A, := {2z € T : d(g;x,C) > ||gjc||z Vj > n}

(Fig)

{ |
C T [
q;r q;x + C

1
log q;
1(A,) — 1 as n goes to infinity.

Since

> qij > ||lg;a]|z, each set A,, contains the set I',, therefore we also have that

Analogously, we can define the sets Ao, = UpenA,, getting a set in which |¢(z)| < oo
for all € Ay and Leb(As) = 1. And still, Ao = Nio(Aso + kav), such that |¢(z)] < oo

and |¢(z + ka))| < oo for all iterated k and yet Leb(A,) = 1.

2.4 Branches and Plateaus

In this section we will introduce the notion of branches and plateaus for the auxiliary
functions T" and 7" o g; used in the definition of ¢. This will helps to obtain information
about the behavior of ¢.

2.4.1 Branches

Let g; : T — [0,1) be the expanding map z +— g;z(mod 1) and denote by I’ the intervals
where g; is a diffeomorphism. Consider a decomposition of each I JZ in two smaller intervals
];’1 ul ;’_1. Each of which has length %j and corresponds respectively to the first and
second half part of the interval I;. The reason of this last decomposition will be more
clear bellow, when we introduce the notion of plateaus.

The intervals I ;i’tj ) are called branches of ¢;. Sometimes we will omit an upper index
and write the branches of ¢; simply as / ;’t, where t € {1, —1}.
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For each j the circle can be decomposed in the union of branches
T=[0,1) =Mo"
i=1

Remembering that 2¢; must divide g;41, we can take a further decomposition to write

a branch on the level j as an union of branches of the next level j + 1, for example,

9541
2q]

i,1) i,—1
U

We do not explicit the decomposition for every branch to avoid useless notation.

What is important to our context is that all branches I ](i’t) contains the same number

of branches of the level j + 1 in their decomposition, i.e., qu*_l, as much as in the above
J

example.

(Fig)

0l _L L 1
qj+1 4a;j
o
[j+1
I [0 I

Given any point x on the circle, we denote by I;(z) the branch I;’t on the level j
which contains the point z. This is not ambiguous since for each j, there is a unique
and a unique t such that x € I ]”

Looking in the reverse way, if = belongs to I,,(x), we can associate a (unique) sequence
of pairs (i;,%;);<, such that x € ](ij’tj) for all j = n,---,1. And again using the condition
2q; | gj+1, we obtain that

[lntn) ¢ plinsvin=t) ot
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(Fig)
A simple but important observation is that for all 2’ € I,(x), ' and z will belong to

the same branches I;ij’tj) forall j=n,---,1.

2.4.2 gj-intervals and plateaus

Let us remember the definition of the auxiliary function 7: T — {—1,1}

1, ifzelo,d),
7(r) = frelhy)
—]_, lfl' € [5,1)7

and the definition of function ¢ : T — Z,
¢(x) =Y T(gx + ga) — T(g;x),
j=1

Note that ¢ is defined by compositions of 1" with the expanding maps x — g;z, for
instance, T;(z) = T'(g;x). In each summand of ¢ we do the difference between T} at the
points R, (z) and x.

In this way, T} is a function on the circle of period qij

1 1 3 2 =1 2¢;—1
13 2 .. %7 29721 {Jpless we reall
12057957 2057 0577 a5 ) 295 b U Y

need to specify which one of the discontinuity we are using, we will refer to a discontinuity

which has discontinuities at the points {0

of T or T} simply as C'.

We will call a gj-interval, and denote it by Q;(z), the interval with extremes g;x
and ¢;(z + «) of length ¢;a contained in T. Observe that the value of each summand
T(qjx + gjo0) — T(gjx) of ¢ can be 0,2 or —2. And what determines which one of the
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possible values will be taken is the position of the extremes of the g;-interval Q;(z) relative
to the discontinuities of 7. Exactly, if that interval does not contain any discontinuity,
so the corresponding summand is of null value. If the g;-interval at the level j contains
a discontinuity which is multiple of the period, then the related summand assume the
value 2. The value —2 is designated when the g;-interval contains a discontinuity that

belongs to the middle of a fundamental domain of 7}.
(Fig)

-2 2

0

To avoid ambiguity, we ask g;z to be different from the discontinuities C' of the level
j. Note we have a finite number os discontinuities at each level and we are treating with
enumerable levels. Then we are quitting an enumerable set of the circle which will not
disturb our purpose in this work. More precisely, we are considering ¢ restricted to a
set of full measure (indeed, this set is the circle minus an enumerable set). We will yet
denote the map restricted to this set as ¢, and we will not mention this again in the text.

We will call plateaus and denote by L, the intervals of the circle where T} is constant
equals s;. Therefore we are allowing s; = 1 or s; = —1. Note that for each j the circle
is divided in 2g; plateaus. Sometimes when we refer to a plateau at the level j we are

meaning the union of the plateaus in which 7} has the same value being 1 or —1.

2.5 Random walks

Here we will remember some properties of random walks that will be used to prove the
ergodicity. More details can be found in [18].

For almost every point z in T (excluding the discontinuities, where 7 are not well
defined)

ns (@) = 3 Ti() = > Tlgge) (2.6)

defines a simple random walk on Z. The expectation of that random walk is zero.
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To see that this is a random walk, observe that = — T;(z) = T'(¢;z) can be interpreted
as random variables with domain T and image in {—1,1} such that the probabilities
P(T; =1) =P(T; = -1) = 3.

To show that n +— m,(z) is a random walk, its enough to show that 7} are indepen-
dent. This follows immediately checking that P((7; =t;) N (T =t;)) = 1. But the last
is indeed true, as it was proved in previous subsection, because the branches of T} are
embedded in the branches of 7} and in fact subdivide them since 2¢; | g;» V5’ > j.

By the recurrence property of random walks - sometimes also called level-crossing
phenomenon - a simple random walk on Z will cross every point an infinite number of
times. In particular if we look for the random walk defined by n — m,(z) — m,(y) it
will cross the zero line infinite many times. In other words, and as we will in fact use
throughout the text, for almost every pairs of points z and y their random walks defined

by m,,(z) and m,(y) will coincide an infinite number of times.
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3 ¢, converges to ¢ in L7(T)

The L* convergence presented in this section depends only on the condition, q%. < 7% of the
irrational number o where 7 is a real number greater than 1. Since for all irrational o we
have the approximation condition [|¢;a|lz < qij, in our situation we acquire additionally
that ||g;jal|z < v% Note that the divisibility condition 2g; | ¢j11 is enough to guarantee
1 1

<_

o <5 and the constant + will be greater than 2.

3.1 ¢ and ¢, belong to L”(T)

As the calculus for ¢, is analogous and simpler, we will do that just for ¢. (For ¢, just
put oy, 41 instead of o and note that ||gnani1]lz < ||gnal|lz¥m < n).

We will show that there exist K such that [ A, |¢|"dx < K. Here, although it depends
on P of the LY, the constant K is independent of n. As u(A,) tends to 1 as n goes to
infinity, this is enough to show that ¢ € L”.

Let A, := {x € T : d(g;z,C) > ||gjallz Vj > n}, in particular, if x € A,, so
¢(x) = > 71 T(gjz + gjo) — T(gjz) and

|6(2)| <D [T (g7 + gja) — T(gz)]
j=1
where |T'(g;x + gja)) — T(g;z)| can be 0 or 2.
Consider .
By :={zxeT:) |T(gx+qa)—T(gz)| = 2m}

j=1

thus x € A, N B, implies that |¢(z)| = 2m.

Whence it follows that

INCE mz | emrata

= (2m)"| By

Now let us estimate | B,,|.
We will partition B, = UL, By, where
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Bpy={zeT :Z |T(q;x + gjo) — T'(gjx)| = 2m and

j=1

the last summand non null is in the position [}.

Since there are m non null elements, [ > m.
We already know that if the j-th summand 7'(g;x + ¢jo) — T'(gjx) is non null then

C € Qj(x) = [gjz,qjx + gja] C T, and as the expanding map g; preserves the Lebesgue
measure on the circle, it follows that

Leb(C;) = Leb ({z € T : C € [g;7, ¢ + q;al}) = [|g;al|z.

In this way, the set B,, is contained in several C;. All that which the j-th summand
is non null. In particular, B,, C C).
Thus

n n n
Bl <) 1Bl )10 =) llaedlz < 4llgmal|z.
l=m l=m

l=m

So we can calculate

n

/ 6 dLeb < 3 (@2m) 4llgmallz
An

m=0

As it does not depends on n, it follows that ||¢||F» < K(P).

3.2 ¢, is a Cauchy sequence

Given any pair of integers k and n, say 0 < k < n, then
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(@n=0u)(@) < > IT(

j=k+1

Following the same reasoning of the previous subsection, let

By ={zeT: Z |T(gjx + gjomy1) — T'(gjx)| = 2m}
j=k+1
k
A=z € T+ |T(qjx + o) — T(q + gjags)| = 2m}
j=1

N

n—k
/|¢n — ¢p|PdLeb < /Am(Qm)PdLeb+Z/ (2m)"d Leb
m m=0 m

m=0
k n—k
=>_@m)P|AL"+ > (2m)7| By
m=0 m=0

n _| | n
As before, B}, = U,_;. 1., Bn,» Where

By, ={zeT: > |T(qz+gjons) — T(gz)| = 2m and
Jj=k+1

the last summand non null is in the position [}

and defining C)' == {z € T : C € [qz, ¢;z + qov,41]}, we can estimate

Brl < > Bl < > ICH < Y Naonllz < D Maellz

l=k+m I=k+m I=k+m I=k+m

S 4| |Qk+ma‘ ‘Z

Analogously, take

C]’?’” ={x e T:T(gjz+ gjont1) — T(g;x + gjou1) # 0}

gz +qiomn) = T(ga+gioni)|+ Y [T (g2 +gian ) —T(gz)].



25

and we know that

Leb(C’f’") = gjlant1 — Qg4
< gjlar — af

< quQk+1Oé||Z

qk+1

The set A¥™ is contained in C’f "™ for all j such that the j-th summand is non null.

And this happens for at least one index [ greater than m, since there are m non null

elements.
In this way,
k
n n,k
AL < Zle |
| @rt1| |z
< q
Z P qk+1
< (k? _ m)quQk-l-laHZ
- Qr+1
Therefore,
: aellgollz | o=
k10 |z
[ 160 = enlFaLeb < 3 m)” - m) B LS 0m)” g all
0 qk+1 0
n—=k
allgrcllz ,p P P+2 PHQkerOéHZ
= 2P k(Y mT) 4+ 28 gz (Y omP )
Gr+1 n;) Z |grerl|z
k kP
< 2Pk—HQk+10&HZ Zm ) + 27+ H%OKHZ(Z —)
m=0 m=0 v
n—=k
1 1 m¥
< oPp 2k m’) + 2(7+2) —
Qrrr YEHL n;) ) Akt (m=0 fym)
q EoomP 1 Egr
<P (N7 ) 2P (T )
Qo1 ; ol YR ey
k—oo
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Where the convergence to zero is due to the fact that on the sums above the numerator
has polynomial growth while the denominator increase exponentially fast and ~v > 1.

Concluding that ¢, is sequence of Cauchy and because of the completeness of L (1),
it converges.

Let see that the limit is exactly the function ¢(z) := 72, T(¢;x + ¢;a) — T(g;x). In
fact, defining

- Z T(gjx + gjo) — T(gjz)

By an analogous calculation as before,

l6n = Gullze < D (2m)" 2llgmla — apiil IIz

m=0

< 9P+ Z mF ||C_In+1a||Z
n+1

< 27+ Z m" [ gn 10|z

m=0
n P
P+ N~ M
S 2 Z ,yn—i-l
m=0
n—00 0.

Where the convergence to zero is due to the fact that on the sums above the numerator
has polynomial growth while the denominator increase exponentially fast and v > 1.
P
Concluding that ¢, RGN o.
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4 Ergodicity and Recurrence

The process developed in this section shows that a set of positive measure when iterated
by the skew product F' defined in (1.2) fills the hole cylinder T x 2Z almost everywhere.
With these ideas we can prove the ergodicity and also the recurrence property of our map
F.

As we already said in Section 2, the measure p we are considering on the cylinder
T x 27 is the measure given by the sum of the Lebesgue measures on the fibers and it is

invariant by the skew product F'.

4.1 An auxiliary proposition
Definition 4.1. A point z is said to be a density point for a set I' if

(B2 1)
% a(B.(2)

In other words, given any ¢, there exist € > 0 s.t. % >1-9.

=1

B.(z)NnT
Proposition 4.2. Let z be a density point for a setI' C R, § and € such that % >
€

1—6. Let J be an interval contained in B.(z) such that |J| = 2, where k is a positive
w0 J) >1—ko

integer such that k6 < 1. Then T

Proof. Suppose by contradiction that p(I' N J) < (1 — ké)2.
(Fig)

m
A\

7 e 7 ZL|-€

Then,
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p(B(z)Nl)  p((JUJ)NT)

2¢ - 2¢
< p(JNL) +p(JenT)
- 2¢
< 1—1{:5+,u(J NnI)
-k 2¢
< 1—k5+k—1%
- k k  2e
=1-94

which contradicts the election of € and 9.

As a consequence we have the following
Corollary 4.3. Adopting the notation and conditions of the previous proposition, if § < i
and |J| =€, there exists 2 € JNT s.t. d(2,0J) > 1e.
Proof. Suppose this does not occur. So I' N B (w) = 0, where w is the midpoint of J.
Therefore I' N J C J\Be(w).
4
(Fig)

o
o

m

N{\
~
XN

So we get, using the previous proposition, that

% > p(J\Be(w)) > p(I'0J) > (1 —20)[J|
= (1-20)2 = (1 29)e

which implies § > i. This contradiction proves the corollary.
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4.2 Proving the ergodicity

To prove the ergodicity, we will first prove that any invariant set intersecting a fiber with
positive measure saturates that entire fiber. The strategy is to observe that fixing a point
(y,0) in the refereed fiber, the orbit until time ¢, of any other point x in the basis T is
qin—near to y, since the map is the rigid rotation R, on the basis. Then we can choose
ko such that the ky-th iterated of x is qln-near to y at the first coordinate. The problem
at this point is that the second coordinate could be large and so the iterated F*(x,0)
could be really far away from (y,0). We will show, using the propositions 4.4 and 4.5
below, that x can be chosen in a set of total Lebesgue measure so that ¢ (x) = 0. This
guarantees that F'*(z,0) is in fact in the same fiber as (y, 0).

After that we prove by proposition 4.6, that this saturated set jumps fibers with
positive measure.

Suppose by contradiction the existence of an invariant set I' for F, such that pu(T")
and p(I'°) are both positive.

In these hypothesis there is a fiber in which p(I" | fiper) > 0. Let suppose, by a first case,
that the measure of I'® is positive when restrict to the same fiber where p(I" | fiper) > 0.

Take points x € I' and y € I'“ in a way that they are density points for ' I",, and I'®
respectively. Which is possible because p(I',,) — 1, as we showed in section 2.3.

Thus, given any 0 < ¢ < 1, consider n large enough and € = . L_ such that

n—1

p(Be(z) N(T'NTw))

>1—-9
2¢

and

1(Be(y) N 1)
2e
Note that as the embedding I',, C I',,.1 occurs, the above happens for all n larger

>1—-94

than some ng, uniformly on §. Observe also that we do not require that y € [',,.

Let I,,_1(x) the branch of length 2qn+1 containing x and I,,_1(x) C B.(x). Analogously,
In—l(y) - Be(y>
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By the proposition 4.2 and corollary 4.3 above we can suppose the following

paa@OCOT)) o

2qn-1

1
GQn—1’

d(z,0Il,_1(x)) >

2qn-1

d(y,0l,—1(y)) >

1
GQn—l.

As [lgnellz < -
Consider the set

, there exist ko < ¢, such that d(x + koo, y) < é.

B:={2eTx{0}NL,_1(x)n(T'NT,): 2 + ko € I,_1(y)}

Proof.

n—1
ot (2) = Z T(gjx" + gjkoer) — T'(g;x") + Z T(gjx’ + gikoa) — T(g;x")
Jj=1 jzn

Observe that the second sum is zero because of remark 2.5.

Proposition 4.4. Let ky as above, then F¥(B) is contained in the same fiber as B and
FM(B) C (I,_1(z) N (I'NT,)) + koo, where Fy is the projection on the first coordinate.

As 2/ + koa belongs to the branch I,_;(y) we know that T'(g;(2" + kor)) = T'(q;y)

Section 2.5), we can suppose without lose of generality that M, i(z) = M,_1(y).

In this way,

for all j < n — 1. By interpreting = — Z;:ll T(q;x) = M,_1(x) as a random walk (see
As
mentioned also in Section 2.5, almost everywhere two random walks coincide. And since
2’ € I,_1(z), we also know that T'(g;x) = T'(g;«') for all j <n — 1.
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n—1 n—1

Z T(ijb’/ + gikoor) — T(ij/) = Z T(q5y) — T(ij/)

j=1 j=1

Concluding that if 2/ belongs to B then ¢*(z') = 0. Thus F*(B) C (I,—1(z) N (T'N

Fn)) + ]f(]Oé. I
Let us denote B~ = I, 1(z) N (I' N [,), by the proposition 4.2, u(B~) > (1 —
20) L 1(2)] = (1 — 20) -
(Fig)
¢ [n;l(‘r) ~ ,.B \In\—l(‘y>
‘\B_ T 7 77 Y g7 '
T + koo

d(zx + koo, y) < -

Proposition 4.5. Let kg as above, then F*(B)NT¢ # (.
Proof. In fact, F*(B) C I,_1(y) and

1 1-25 1
FF(B)) > u(B™) — — >
pu(F™(B)) > u(B~) o 2 o

and

1—2¢
2Gn—1

As much as both of the sets F'*(B) and '*N I,,_;(y) are contained in I,,_;(y), if their
intersection is empty is because

IU(FC N In—l(y)) >

p(In-1(y)) > p(F*(B)) + (TN Li—1(y))

which is equivalent to
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1 1-20 1 1-2
> —

2qn—1 o 2qn—l An 2Qn—1

1 1-26 1
Gn Gn-1 2Qn—l

|
\%

vV <

1 1—49
q_n 2¢n—1
)
2 n
1—44 = QZ—l
and since d can be taken small enough, the above contradicts the hypothesis of divis-
ibility os the continuants ¢,, which implies q;’—fl >\ > 2.

O

Now remember that I is an invariant set and B is a subset of I', so F*(B) C I'. This
together with the above proposition implies that I' N T'® # (), which is an absurd.
The absurd cames from suppose that p(I'¢) > 0, therefore p(I'“) = 0. In other words,

any invariant set intersecting a fiber with positive measure saturates the entire fiber.

Proposition 4.6. Given I' contained in a fiber, let say I' C T x {0}, such that u(T") =1,
then there is a T C T, still of positive measure and such that |¢p(x)| = 2 for all x in T

Proof. In fact, in order that |¢(z)| = 2 is enough that

1. ¢;(z 4+ o) and gjz belong to the same plateau for all j > 2 and

2. ¢1(x 4+ «) and ¢y belong to distinct plateaus

The measure of the set of points of the circle that satisfy (1) is grater than 1 —
> ;s llgjallz, while the set in (2) has measure [|g1||z.

By the choice of the sequence g, ||q1||z > 35, [|gj@]|Z. So we have that the sum of
the measures of the two sets above is grater than 1, concluding that they must intersect
in set of positive measure.

Take T" the set of points of T that satisfies (1) and (2). And as much as u(I') = 1, this
set also has positive measure.

O
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The proposition above implies that an invariant set of hole measure in a fiber, jump
over fibers with positive measure. And once an invariant set is of positive measure in
a fiber, we can saturate such fiber as explained before. Concluding that the measure of
the complement of any invariant set is null in any fiber. Recalling that the measure p in
T x 27Z is defined by the sum of the Lebesgue measure in each fiber, we get p(1'¢) = 0.

Observe that the way we prove ergodicity in particular implies recurrence since taking
x = y the orbit will return near the initial point.

This concludes the proof of Theorem A.
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5 Counting Procedure

Our aim in this section is counting the return times

dn+1
557;1 ZILAoFkx z (5.1)
to the skew product map F), defined in (2.4) and A being the fiber T x {0}.
An integer k is a return time for a point (z,2) to the set A when F¥(z, z) € A which
holds if and only if ¢¥(x) = 0 (bring up definitions in (2.5)). Therefore, to estimate

this number of returns, we should determine the number of integers k£ < ¢,41 such that
®k(z) = 0. But observe that

on(r) =0 > T(qx+ kgjani) — T(gz) =0

J=1

And ZT((]]ZIT + ijan+l) = mn(x) =m.
j=1
So, fixed a point x and consequently an m = m,(x) (see (2.6)), we are going to count
the number of integers k < qn+1 such that Z \T(gix + kgjani1) = m.
Now consider sequences 7 = = (t1,...,ts) € {=1,1}", such that > 7, ¢; = m and for

each t take the set of integers

K = A{k < qpy1 : T(qjo + kqjony1) =t; Vi =1,...,n}

Consequently, the number (5.1) we are looking for is given by E #K—. But if for
—
t
some reason, # K- does not depend on the sequence ?, then

P (L), 2) = #Kp, - (Q)

2
that is, the cardinal of the sets K~ times the number of sequences of n elements whose
sum of the terms is m, which is represented here by the binomial (n+7n)

Our purpose now is show the following

. —
Lemma 5.1. #K+ is independent on the sequence t , moreover #K- = qg%.
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The rest of this section is devoted to prove the lemma above.
To deal with the formal counting procedure, to each k, let us associate the sequence

(Sny- -+ ,51) € {—1,1}" in the following way

Sj :T(qjx+kqjan+l)7 .] =M, 71'

Thai allow us to consider the following partition of the interval of integers [g,+1] =

{0,1,-++ ,¢us1 — 1}, which can be write as the disjoint union

)= A

siE{—l,l}
where A, . sy = {k < @uy1 : Tou(@ + kani1) = sp, ..., Tj(@ + kay 1) = s;}. Note that
by definition we have the properties
A( - ,s2,81) C A(87“...782) (GIEEENE A(sman) C A(Sn)

Snyt

and
A(Snv“' 7sj) = A(s’m“' 7sj71) L-Ij A(ST’H"' 7sj7_1)'

This last property induces a tree associated to the sets A, ... s;) as represented in the

picture below
(Fig)

Ay A1 <«—TLevel 1
A( *

Snye-Sj41)
X

Al 59) <«— Level j: 27 sets in the partition
A(sn,--- ,s]-,l) A(Sm... ,sj,—l)

Our objective now is show that it is a binary tree, i.e., in each level the quantity of

elements in each set A, ... ;) is independent of the sequence (Sns -+ ,8;). In other words,
- #A(Sn,... 5541)

Sia1rsy) = 5 , obtaining

we want to see that #A, .
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#[Qn+1]
FA ) = sy

(note: 277 is the number of distinct sequences in the level j).

But the above is equivalent to show

#{k < gui1 1 T(gj17 + kgjrioni1) = sj1 and T(q;x + kgjan ) = 55} =

1
= 5#{16 < nt1 : T(qj17 + kgj10my1) = 5511}

Rewriting ¢;jx + kqjouni1 as x; + k%5, where x; = gz, the above yet is equivalent

95

to show that

Pn+1 Pn+1
#k < Gny1 - i + R jl € Ly, and zj + k7 i €L} =

an+1
qj+1 95
Pn+1
:—{k<qn+1 l']+1+kq+1 5]+1}
qj+1

, then

n 1
T(x; + ko) = T(ay + rajpn + ke o)

An+1

aj qj+1
Proof. 1t is enough to write
Pnt1 Gn+1 1
k qn +1 = ,7 —'_ (L ] + ,r) Qn+1
q; 4 qj
- x.? _'_ L + Ly an+1

a5

where L belongs to Z and since T is Z periodic, we get the equality above.

Using that, our goal becomes to demonstrate that

1
#{r < ¢uu1: Tim + T € Lyj41 and Tj+ g €L} =

qj+1 aj

1 1
= 5#{7“ < Qnt1: Tjp1 + Tgr € szH}

qj+1

(5.2)
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Writing kp,41 = Lq’;% +r with 0 < k < @41, the function k — kp, 1 (mod q’;—jl)
has g; pre-images for each rest r in its codomain. Thus the above counting is the same
in each interval os integers of length q’;—;l.

Which reduce our purpose to show

n+1 Sj+1

1
and x; + 147 € Ly, } =

. 1
#{r < o+t (X +ro—s €L
4 4j+1 9

1 1
= 5#{7’ < Gnt1:Tjp1 T Uy S sz+1}

4j+1
Note that in the above equation, if we multiply the both sides by ¢;, we get back the
equality (5.2).

Proposition 5.3. If 2 | q then the sequence {z + r%}rq is such that
1 1 q
#{r<q:x+r§ 611}:#{r<q:x+7“561)_1}:§

Proof. First of all note that’s enough to demonstrate it for 0 < x < %, because
(Fig)

a1

:L“j— 7

'/:—I

1
qj

If z € [%,%), take T = Hx—i—%HZ < %, then #{r < ¢ : :E—l—r% €L} =H#{r<gq:
x + r% € I;}, i =1,—1 and analogous for an z € [l%, HTI) This means that “does not
matter the displacement”.

Since it is already true for x = 0, take an z such that 0 < z < %. Then

1
#{r<q:x+r6€h}:%

holds because for r € {0,1,---,2 — 1}, we have
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q
- < - —1)=
r+r :c+(2 )q
_ +1 1
<_

thenx+r% e 1.
And for r € {,2+1,---,¢q— 1}, we have

then x + r% eL_;.

And again we have reduced our purpose to show that

Proposition 5.4.

n 1
#{r<q+ T € Ly, and r4— € Ly} =

: dn+1
J qj+1 qj
1 Gn+1 1

:5#{r< ” T € Loy}
J qj+1

dn+1
dj+1

Proof. To simplify the notation, let us denote ¢ :=
by the choice of the sequence ¢;, 2¢1 | ¢o.
Thus we would like to prove that

1 1
#{r<qg:r— €Ly andr— € L}
il 42

1 1
5#{7’ < @y : ra € Ly}

Since we know that 2¢; | go, let’s say ga = 2Lq;, then

and ¢y =

dn+1
aj

. So qs > ¢ and
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1 1
#{r<q:r—el,andr— € Ly,}=qlL= & (5.3)
73 G2 2
(Fig)
. T
5 T T
2q q1
This is true because after all the reductions that we made, the intervals [q%, ’";—21) are
embedded in [0, i) or [i,l) and #{r < > : - € L,} = L for each L;,. But since

there are ¢; intervals of the type L;, to complete the circle, the equality in (5.3) holds.

Now let’s count #{r < ¢ : Tq% € Ly, }. We have an r for each interval L;, and there
are q; intervals of the type Ly, in the circle. Then, if r goes until ¢, we are going through
g—f rounds in the circle. Accordingly, #{r < ¢, : rqil €Ly} = Q1Z—f = ¢

Therefore,

1 1
#{r<qg:r—elL,andr— € L}
q1 q2

1 1
- < (@y:1r— €L
S < i€ L)

This concludes the binary character of the tree presented before.

In particular, for an arbitrary fixed sequence (s,,--- ,s1), we have got

# [QTL-H]
2n

#A(Sny"'ysl) = #K? =

and the counting of the Birkhoff sum then is
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Sin (@,2) = #{k < qui1 = Y Tqjz + kgjani1) = ma(x)}

j=1

= #K—= - #{(sn, -+ ,51) € {—1,1}": Zsj =m =my(z)}

_Qn—i-l( n )
- n n+m
2 2

Remark 5.5. The counting process done before holds for almost everywhere in T, since

we are excluding the points @ such that ¢;a + kgjan = {0, 3} (mod 1) for j =1,--- ,n

and for £k = 0,---,¢,+1 — 1. But outside this set of zero measure, we can calculate
Fr

Sqnﬂ(x, ).

5.1 Pushing counting process to F'

Let

n

(@) =Y T(q5w + gjomsr) — T(g;z)

(@) =Y Tlgjz + g;a) — T(g;7)

J=1

o(x) ==Y T(q5@ + gjans1) — T(q;)

Jj=1

The purpose is to compare the Birkhoff sums in each case.

Proposition 5.6. Out of a set of measure 2q,+1||gns1¢||z, we have the equality of the
following Birkhoff sums

Si (@) (@) = S (da) (@) YR =1, - quts

Proof. In fact,

oo

Sk(¢, Ra) (@) = Si(dn, Ra) () & Y T(gje + kgjar) — T(g;z) =

Jj=n+1
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and for this is enough that ¢;z + kgja and ¢;x belong to the same plateau for all
k=1,---,qut1, i€, d(gz,C) > ||kg;a||zV] > n+ 1.
But attending that the sets where this does not occur are embedded, it’s enough to

take out just the bigger of them., i.e, k = ¢, 11.

d(gjz,C) > ||gns1gi||zVi > n+1
N8
d(g;z,C) > ||kgjc||zVji >n+1and Vk =1, -+ g1

since for j > n + 1, ||gn1¢;0|z = @uiallgiallz

and for k < gj, gnllgiallz > kllgiallz = [[kg;allz.

Thus >3 T(g;7 + kgjar) — T(gjz) = 0 out of a set of measure Y77 | gut1llgjallz
which is smaller than 2¢,1||gn1¢||z- O

Proposition 5.7. Out of a set of measure (¢,41)'™||gns10||z, we have the equality of
the following Birkhoff sums

SE (@) (@) = Sy (d)(@) = VE =1, guss

Proof. In fact,

~ Ran
SI?Q (@n)(z) = S (o) (@ Z T(gjx + kgjor) — T(gjz + kgjoni1)
j=1

but this sum is null if ¢;z + kgja and ¢;x + kgjo,41 are in the same plateau for all
j=1,--- n. And for each j the measure of the set such that they are not in the same
plateau is |kgjo — kqjani1] = kgjla — anqr| = kgj ”q’;ﬁ‘i‘uz.

(Fig)

Therefore the equality of that Birkhoff sums holds for all £ = 1, cdots, g,+1 out of a

set of measure

1 Ngwnallz (5 <\ lannallz -
E :E :k = E :qy' E ,k ~ E 4 | Gnr1llnrcl|z
[ An+1 = Gn+1 i

S qvlzieluqn+1a| |Z
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C

° i

LA q;r + kgjo
¢;T + kqgjom
¢

° | .

-
9 q;x + kg,

¢;T + kqgjom

C

q;x

;T + kqion

.
q;* + kgja

Putting together the two propositions above, we get the following relation among the

Birkhoff sums

out of a set of measure

2¢n+1 |||z + ¢

She () (x) = SE (¢n) () VE =1, -

1

gn10llz < <5 + o2

n+1 n+1

2
< —— for a large enough n.

—  2+e
n+1
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6 Renyi inequality

In this section we will establish the Renyi inequality
) 2
/A(S‘Q“) dp < M (/A Sj;;ldu) (6.1)

F,: TxZ — TXZ
(x,2) = (4 apy1, 2+ dn(T))

for the map

in the sequence of times ¢,,1. Where M is a real number that does not depends on

For us the set A will be take as a fiber T x {z}, for simplicity, take the fiber T x {0} .
First of all, note that in a fixed fiber the set of points z that has the same m,(z) =

>_i—1 T(gjr) has measure

Lebr({x € T : my(z) =m} = %(é)

since @+ Y7, T(gjz) = my () is a random walk with P(T(¢;z) = 1) = P(T'(g;2) =
—1) = 3, m is in the range [—n,n] and m = n( mod 2). Thus it determines a Gaussian
distribution, and in a set of measure %(#), with |m| < n and m = n( mod 2), the
Birkhoff sum is given by

n An+1 n
s, ()G = 22 (1)

2

6.1 The return sequences

Once the calculus of the return times Si™ (A)(z, y) has been done in the previous section,

we can obtain the return sequences a,, , for the skew product F,.
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12

6.2 Renyi inequality for F),
2 2 2
q, 2n
([ st i) =22 (%)

[omaenta- ¥ A(5) (5 ()

Thus

[ 2000 a2 g s
A

2 2ui=0 \y
2 Qi 1/(2n 2
</ S£7+1(1A)($,y)du> s ()
A
v,
G

Now remembering that the estimate of the central binomial term is (Z) ~ —2_ and
2

3
vl3

rewriting
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Therefore
2
/ (Sin+1(]'14)(x7y>) d,LL 2n23n\/§
= < ™

2~ 2

The above let us to conclude that the Renyi inequality is valid with constant M = /2

— V3

for each one of the functions F,.

6.3 Pushing the Renyi Inequality to F'

In this section we will use the Renyi inequality for F;,, obtained above and the relations
found in propositions 5.6 and 5.7 to compare the integrals of the Birkhoff sums of F;, and
F. Then we will use that to get the Renyi inequality to the skew product F'.

dn+1

’/ Sgrn (La)dpt — / 5§;+1(1A)du‘ < Qo1+ (20011 + gy ) l|gnnrallz
A A

= (2q2+1 + qiiel)HQH-i-laHZ
n—oo
——0

And as each one of the integrals above diverge to infinity when n goes to infinity, for

a large n is true that
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1
5 ) s odns [ S5 @oan<e [ S5 o

and analogously

3 ) (SE ) de< [ (shay de<z [ (55, 00)

since we also have that

[ (5@ = [ (8L 00 ] < Qs+ Dl

= (2¢1 + ¢t gnsrel]z

n—oo
0

Now as we already know that the Renyi inequality is true for F),, it follows that

[ ) an<e [ (s, ) an
<2v2 </ Sf"ﬂ(h)du)z

(s . om)
<8\/_</ M ILAdu)2

Which is the Renyi inequality for F', proving the rationally ergodicity of the skew

products F' and completing the remainder of the theorem B.
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