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às companhias descontráıdas de pedal e em caos de meninas;

a todos os meus amigos;
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“Esta manhã, casais de borboletas brancas, douradas, azuis, passam inúmeras contra

o fundo de bambus e samambaias da montanha. É um prazer para mim vê-las voar, não o

seria, porém, apanhá-las, pregá-las em um quadro... Eu não quisera guardar delas senão

a impressão viva, o frêmito de alegria da natureza, quando elas cruzam o ar, agitando as

flores. Em uma coleção, é certo, eu as teria sempre diante da vista, mortas, porém, como

uma poeira conservada junta pelas cores sem vida... O modo único para mim de guardar

essas borboletas eternamente as mesmas, seria fixar o seu vôo instantâneo pela minha

nota ı́ntima equivalente... Como com as borboletas, com os vagalumes e com todos os

outros deslumbramentos da vida... De nada nos serve recolher o despojo; o que importa é

só o raio interior que nos feriu, o nosso contato com eles... e este como que eles também

o levam embora consigo.”

Joaquim Nabuco, em Minha Formação.

eee... arrancando!
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Abstract

In this thesis we study the asymptotic behavior of the ergodic Birkhoff Sums for

cylinder skew products over irrational rotation preserving a σ-finite measure. We prove

that such maps are ergodic, rationally ergodic and weakly homogeneous, calculating

explicitly the Ergodic Sums for an increasing sequence of time and identifying the return

sequence. From that, it is possible to obtain a second order ergodic theorem, which asserts

that the double average renormalized by the return sequence converges to the integral of

the observable function almost everywhere. We recall that the classical Birkhoff Theorem

does not hold when the invariant measure is infinite.

Keywords: infinite ergodic theory, cylinder skew product, irrational rotation, ergod-

icity, rationally ergodic, weakly homogeneous.
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Resumo

Nesta tese estudamos o comportamento assintótico das somas ergódicas de Birkhoff

para sistemas dinâmicos do tipo skew products do cilindro preservando uma medida

σ-finita. Provamos que tais aplicações são racionalmente ergódicas, calculando explici-

tamente as somas ergódicas para uma subsequência crescente de tempos e identificando

as sequências de retorno. Com isto é posśıvel obter um teorema de Birkhoff de segunda

ordem, que afirma que quase certamente as médias ergódicas duplas, renormalizadas pela

sequência de retorno, convergem para a integral do observável. Vale ressaltar que o

teorema ergódico de Birkhoff clássico não é válido quando a medida invariante é infinita.

Palavras-chave: teoria ergódica infnita, skew products do cilindro, rotação irracional,

ergodicidade, racionalmente ergódico, fracamente homogêneo.
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1 Introduction

Ergodic theory is the quantitative theory of dynamical systems that deals with measure

preserving transformations on a measure space. Usually the space where the map acts

is assumed to be finite; however, there exist interesting systems that have an infinite

invariant measure.

It is well known that for a measure preserving transformation in a probability measure

space, almost all points are recurrent. Formally,

Theorem 1.1 (Poincaré’s Recurrence Theorem). Let F : X → X be a measure preserving

transformation on a probability space (X,B, µ). Let E ∈ B with µ(E) > 0. Then almost

every point of E returns infinitely often to E by iterations of F .

This is not the case if µ is infinite. In fact, the translation map T : R → R, T (x) = x+1

preserves the Lebesgue measure, but it is clear that there are no recurrent points. Indeed,

every interval (x, x+ 1) wanders away by the action of T .

Since we are interested in understanding how often a set will be visited by typical

orbits, we would like to exclude systems possessing sets that many points do not return.

Definition 1.2. A measure preserving transformation F on (X,B, µ) is called recurrent

if given any positive measure set B, almost every point will eventually return to B, i.e,

B ⊆ ⋃n≥1 F
−nB µ− a.e.

Definition 1.3. A measure preserving transformation F on a space (X,B, µ) is said to

be ergodic if all its invariant sets, A = F−1(A), are such that µ(A) = 0 or µ(Ac) = 0.

An example of an ergodic transformation which is invariant by an infinite measure is

the Boole map,

F : R \ {0} → R

x 7→ x− 1
x

The invariant measure for the Boole map is the Lebesgue measure in the real line. It

was first studied in [11] and its ergodicity was shown later in [5].

There is also a two dimensional version of the Boole’s map, T : R2 \ {0} → R2,

T (x, y) = (x− 1
y
, x+ y− 1

y
), where the invariant measure is the Lebesgue measure in the

whole two dimensional plane [17].
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It is important to note that the fact of preserving an infinite measure is not intrinsically

connected with the circumstance of the domain of the transformation be not compact.

For example, the Pomeau-Manneville maps, T : [0, 1] → [0, 1], T (x) = x+ cxpmod(1), in

which zero is a parabolic fixed point (i.e. T ′(0) = 1), and in case that p ≥ 2 (c > 0) the

invariant measure has support in [0, 1] but gives infinite measure to the interval as shown

in [31] and [15].

Polynomial and rational maps on C (quotient of polynomials acting on C) with

parabolic fixed points (points where the derivative has modulus one) in the Julia set

and no critical points they also preserve an infinite measure which is a h−conformal mea-

sure concentrated in the Julia set and h is the Hausdorff dimension of the Julia set. This

class of examples were studied in [4].

Other examples that can be cited are some quadratic unimodal maps (or logistic type

maps) where the invariant measure is absolute continuous and giving infinite measure to

the domain, see references [23], [14] and [6].

A standard result in classical ergodic theory that also fails for infinite measure pre-

serving systems asserts about ergodic sums Sn(f)(x) :=
∑n−1

j=0 f ◦ F j(x).

Theorem 1.4 (Classical Birkhoff’s Pointwise Ergodic Theorem). Suppose F : X → X

is an ergodic measure preserving transformation in a probability space (X,B, µ). Then

for all f ∈ L1(µ), 1
n
Sn(f)(x)

n→∞−−−→
∫
X
fdµ a.e. on X.

Taking f as the characteristic function 1A of a set A ∈ B this theorem tell us that

the rates Sn(A)(x) of occupations of x in A are asymptotically the same for almost every

point x ∈ X and depend only on the set A. Furthermore, it says that the pointwise rate

is given proportional to n.

Definition 1.5. Ameasure space (X,B, µ) is said to be σ-finite if there exists a countable

family {Xi}i∈N with Xi ⊂ X with µ(Xi) < ∞ such that X =
⋃∞

i=1Xi.

Whenever we refer to a σ-finite space, we will in addition consider that the measure

of the hole space is µ(X) = ∞.

While for a finite measure space the classical Birkhoff’s theorem holds, when we are

treating with infinite measure what happens is the following

Theorem 1.6. Let F be a recurrent ergodic measure preserving transformation in a

σ-finite measure space (X,B, µ). Then for all f ∈ L1(µ),

1

n
Sn(f)

n→∞−−−→ 0 a.e. on X.
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This means that, independently on the observable f chosen, the result does not say

so much. Just state that Sn(f) has a sublinear growth, nothing else. Nor how can the

asymptotic behavior of Sn(A)(x) depends on x or A.

Remark 1.7. Theorem above tell us that for almost every point we could not expect

positive Lyapunov exponents for smooth systems preserving an infinite measure.

An expectable question at this point is to ask if, despite not having information

about Birkhoff’s sums, could we find another “appropriated” rate of convergence, that is,

a renormalizing sequence of constants (an) such that 1
an
Sn(A) → µ(A) a.e.? The result

of below comes to tell us that such sequence does not exist.

Theorem 1.8 (Aaronson’s Ergodic Theorem). Suppose that T is a recurrent, ergodic

measure preserving transformation of the σ-finite space (X,B, µ) and let (an)n≥1 be any

positive sequence. Then

either lim inf
n→∞

Sn(f)
an

= 0 a.e. ∀f ∈ L1
+(µ),

or lim sup
n→∞

Sn(f)
an

= ∞ a.e. ∀f ∈ L1
+(µ).

This shows that the occupations times Sn(A) are very complicated. The rates at

which the sums Sn(A) grow are not uniform and any attempt of normalization will un-

derestimate or overestimate the behavior of Birkhoff sums.

Although the theorems above give negative answers to get convergence of ergodic

sums, there are results that work well in the positive direction.

Theorem 1.9 (Hopf’s Ratio Ergodic Theorem). Let F be a recurrent ergodic measure

preserving transformation on a σ-finite space (X,B, µ). If f, g ∈ L1
+(µ) and

∫
X
gdµ 6= 0

then
Sn(f)

Sn(g)

n→∞−−−→
∫
X
fdµ∫

X
gdµ

a.e. on X.

Hopf’s Ratio ergodic theorem states that, even substantially depending on the point

and on the function f ∈ L1
+(µ), there is a kind of proportion in the behavior of the

ergodic sums.

Definition 1.10. A recurrent, ergodic measure preserving transformation F on (X,B, µ)

is called rationally ergodic if there is a set A ∈ B, 0 < µ(A) < ∞, satisfying a Renyi
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inequality : ∃M > 0 such that
∫

A

(Sin(A))
2 dµ < M

(∫

A

Sin(A)dµ

)2

for some strictly increasing sequence (in)n∈N of natural numbers.

We note that the preceding definition lightly differs from that one presented in [1],

since we are asking that the Renyi inequality does not hold for all natural numbers, but

only for a subsequence (in) ⊂ N. This adaptation is performed to prove our results for

cylinder map.

Theorem 1.11 (Aaronson [2]). If F is rationally ergodic, satisfying the Renyi inequality

along the sequence (in) then there is a sequence of constants an ↑ ∞, unique up to

asymptotic behavior, such that for all (ml) ⊂ (in) with ml ↑ ∞, there is a subsequence

nk = mlk for which the following is true:

1

N

N∑

k=1

1

ank

nk−1∑

j=0

f ◦ F j N→∞−−−→
∫

X

fdµ a.e.∀f ∈ L1(µ). (1.1)

Remark 1.12. Two sequences an and a′n of positive real numbers are of the same asymp-

totic type if the limit lim
n→∞

an
a′n

exists.

The constants an given by the theorem above are explicitly determined by the set A

which satisfies the Renyi inequality. In fact,

an = an(A) :=
1

µ(A)2

n−1∑

k=0

µ(A ∩ F−kA).

Definition 1.13. A recurrent, ergodic, measure preserving dynamical system satisfying

(1.1) with respect to some sequence of constants (an) is called weakly homogeneous. The

sequence (an) is called the return sequence of F and it is unique up to asymptotic type,

see [1].

Theorem 1.11 establishes that, in the rationally ergodic context, there is a sort of sec-

ond order Birkhoff’s theorem. That is, the double average of the ergodic sums converges

to the integral of the observable function f ∈ L1(µ).

The proof of the rationally ergodic theorem when the Renyi inequality hold just for

a subsequence of Sin(A) follows in the same way of that one presented at Section 3.3 of

[1], since at the very beginning of the proof a subsequence
Sνj

aνj
of Sn

an
is taken and used

during all the rest of the proof.
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1.1 Previous examples of rationally ergodic systems

Let T = R/Z denote the circle, parameterized by [0, 1). Examples of rationally ergodic

systems on the cylinder T×Z were studied by Aaronson and Keane in [3]. They analyze

ergodic properties for the map

Tα : T× Z → T× Z

(x, z) 7→ (x+ α, z + T (x))

which preserves the measure µ on the cylinder. Here T is the same as defined in (1.2)

below, but they use only T in the skew product, without composing it with the expanding

maps qj as we will do. They prove (bounded) rational ergodicity for the map Tα when α

is a quadratic surd, that is, α is a root of a quadratic polynomial with integer coefficients.

We recall that this set of irrational numbers has zero Hausdorff dimension.

The ergodicity of maps of type Tα was previously shown by Conze and Keane in [16]

for every irrational number α.

Others examples of rationally ergodic systems were described by Ledrappier and Sarig

in [26]. They shown that the horocycle flow on the unit tangent bundle of a Zd-cover

of a hyperbolic surface of finite area, equipped with the volume measure are rationally

ergodic. And for semi-dispersing billiards with an infinite cusp, in [27] it is proved by

Lenci that those billiards exhibit an infinite invariant measure and are rationally ergodic.

1.2 Statement of results

Let T = R/Z denotes the circle parameterized by [0, 1) fitted with the Lebesgue measure.

In order to introduce the results, we consider the function T : T → {−1, 1} defined by

T (x) =

{
1, if x ∈ [0, 1

2
),

−1, if x ∈ [1
2
, 1).

(1.2)

Let us denote by α an irrational number and
pj
qj

be a subsequence 1 of convergents of

the continued fractional expansion of α.

Now, given α and a subsequence of convergents, the objects we study are skew product

maps on the cylinder:

1Conditions for that subsequence will be specified in section 2.2.1.
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F = Fα,(qj)j : T× 2Z −→ T× 2Z

(x, z) 7−→ (x+ α, z + φ(x)),

where

φ(x) = φ(α, (qj)j)(x) :=

∞∑

j=1

T (qjx+ qjα)− T (qjx).

There exists a set Λ∞ ⊂ T, with Leb(Λ∞) = 1 such that |φ(x)| < ∞ for all x ∈ Λ∞,

see Section 2.3 for details.

Let µ be the measure on the cylinder T × 2Z given by the sum of the Lebesgue

measures on the fibers, which is invariant by the map F .

Our purpose is to investigate ergodic properties of the infinite measure preserving

system given by the skew product F above. Precisely, we prove the following

Theorem A [Cirilo, Lima, Pujals] There is a set H1 ⊂ [0, 1] \ Q with Leb(H1) = 1

such that if α ∈ H1 then there exists F = F (α, (qj)j) verifying

1. F ∈ LP (µ), for every P ≥ 1, and

2. F is recurrent and ergodic.

Theorem B [Cirilo, Lima, Pujals] There is a set H2 ⊂ H1 with HD(H2) > 0 such

that if α ∈ H2 then there exists F = Fα,(qj)j verifying the thesis of theorem above and in

addition

1. F is rationally ergodic (and so weakly homogeneous);

2. along the subsequence qn+1, the constants aqn+1 appearing in the double average of

weakly homogeneity are of type aqn+1 ≃
qn+1√
πn

;

3. for x in a set of measure 1− εn, with εn
n→∞−−−→ 0, we can estimate

Sqn+1(A)(x, y)

aqn+1

≃
(

n
n+mn(x)

2

)√
πn

2n
,

where mn(x) =
∑n

j=1 T (qjx) and A is a fiber T× {z} of the cylinder.
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Here, when saying that an ≃ bn we mean that an
bn

−→ 1 exponentially fast and out of

a set of Lebesgue measure ǫn, with ǫn
n→∞−−−→ 0.

This thesis is organized as follows. In Section 2 we present standard background that

we will use, as much as continued fractions and random walk properties. Still in Section 2,

we introduce specific tools that we will use to attack our problem. The proof of Theorem

A is presented in Sections 3 and 4, while the last two sections are devoted to conclude

the proof of Theorem B.
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2 Preliminaries and Preparations

This section is devoted to present standard backgrounds and to introduce some tools we

will use in during the text.

2.1 Continued fractions

Proofs of properties of continued fraction cited in this section can be founded in [24], [28]

and [29].

Our skew product on the cylinder will depend on the continued fraction expansion of

the irrational number.

Let α be a real number and consider the continued fraction expansion

α = a0 +
1

a1 +
1

a2+
1

...

=: [a0, a1, a2, . . .]

with convergents αn = pn
qn

= [a0, a1, · · · , an] which give the best rational approximation

to α.

The speed of approximation of α by rational numbers is related to the growth rate

of (qn), also called continuants qn. A more quantitative way of characterizing this is by

the order of α, which is the best exponent one can have in the approximations. More

specifically, for a real number τ ≥ 2, let

W (τ) =

{
α ∈ R ;

∣∣∣∣α− p

q

∣∣∣∣ <
1

qτ
for infinitely many rational numbers

p

q

}
·

and

ord(α) := sup{τ > 0; ‖qα‖Z < q1−τ for infinitely many q ∈ Z}.

If ‖r‖Z denotes the distance from a real number r to the nearest integer, we have

‖qnα‖Z = qn

∣∣∣∣α− pn
qn

∣∣∣∣

and

‖qnα‖Z = min{‖qα‖Z; 0 < q < qn+1, q ∈ Z}.

Recall that for almost every irrational α, the approximation condition ‖α− p

q
‖ < 1

q2 log q

has an infinite number of rational solutions p

q
. In particular, if (qn)n is the sequence of
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continuants of the expansion in continued fractions, we can chose a subsequence that

‖qjα‖Z < 1
qj log qj

< 1
qj
.

Two others useful properties of continued factions for our work are

1

2
< qn+1‖qnα‖Z and qn = anqn−1 + qn−2.

In addition, if qj = qnj
is a subsequence of the consecutive continuants qn, for which

2qj < qj+1, using the properties above we get

∑

j>n

‖qjα‖ <
∑

j>n

1

qj
<

1

qn+1

(
1 +

1

2
+

1

4
+ · · ·

)
≤ 2

1

qn+1

≤ 4‖qnα‖Z . (2.1)

For our methods we will be interested in a class of irrational numbers having the

following divisibility property:

Definition 2.1. An irrational number α will be called divisible if it admits a sequence

(qnj
)j≥1 of continuants such that 2qnj

divides qnj+1
.

Divisible numbers satisfies the property (2.1) and these numbers have full Hausdorff

dimension inside each class W (τ), according to [30].

For Theorem B, we will be interested in irrational numbers which are divisible and

have order greater then four.

2.2 Introducing our map

In general, when treating skew products of type

F : T× 2Z → T× 2Z

(x, z) 7→ (x+ α, z + φ(x))

the dynamics of F is intimately connected to the cocycle S(α, φ) : T×Z → R defined as

the Birkhoff sums of φ with respect to the rotation x 7→ x+ α:

S(α, φ)(x, n) =





n−1∑

k=0

φ(x+ kα) , if n ≥ 1

0 , if n = 0

−
−n∑

k=1

φ(x− kα) , if n < 0.
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The function S(α, φ)(·, n) : T → R used to be denoted by Sn(α, φ) for simplicity. By

Birkhoff theorem,
Sn(α, φ)(x)

n

n→+∞−−−−→
∫

T

φdLeb

for Leb-almost every x ∈ T. Then, if
∫
φdLeb 6= 0, almost every point diverges on the

second direction, which does not allow any kind of recurrence. For our intend we are

interested in maps φ that has zero-mean. In this situation, the Birkhoff sums have at

most a sublinear growth.

Given a divisible irrational number α, and any subsequence of divisible continuants

(qj)j≥1, define φ : T → 2Z by

φ(x) =
∞∑

j=1

T (qjx+ qjα)− T (qjx). (2.2)

As justified in Section 2.3, the map φ is well defined in a set of full measure Λ∞ ⊂ T.

Consider now the skew product determined by α and φ,

F = F (α, φ) = Fα,(qj)j : Λ∞ × 2Z → Λ∞ × 2Z

(x, z) 7→ (x+ α, z + φ(x)).
(2.3)

Let µ be a measure on the cylinder T×2Z given by the sum of the Lebesgue measures

on the fibers. Since the skew product F defined above is over a rigid rotation on the basis

T, this measure µ will be invariant by the map F .

Our purpose is to investigate ergodic properties of F with respect to the measure µ,

study the almost sure asymptotic behavior of its ergodic sums and identify the return

sequence of the weakly homogeneity.

For that we will use the auxiliary skew products Fn defined below. Recall that we are

denoting by αn = pn
qn

the convergents of the continued fraction expansion of α. Let

φn(x) :=
n∑

j=1

T (qjx+ qjαn+1)− T (qjx)

and
Fn = Fn(αn+1, φn) : T× 2Z → T× 2Z

(x, z) 7→ (x+ αn+1, z + φ(x))
(2.4)

In Section 3 we will show that Fn converges to F in the LP (µ) space for all P ≥ 1.

And we will explicitly use the skew products Fn to the return times counting procedure

in Section 5.
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Again, the dynamics of F is intimately connected to the cocycle S(αn+1, φn) : T×Z →
R defined as the Birkhoff sums of φn with respect to the rotation x 7→ x + αn+1. More

detailed,

F k
n (x, z) = (x+ kαn+1, z + φn(x) + φn(x+ αn+1) + · · ·+ φn(x+ (k − 1)αn+1))

= (x+ kαn+1, z + Sk(αn+1, φn)(x))

= (x+ kαn+1, z +
∑k−1

i=0 φn ◦Ri
αn+1

(x))

= (x+ kαn+1, z +
∑n

j=0 T (qjx+ kqjαn+1)− T (qjx))

=: (x+ kαn+1, z + φk
n(x)).

Analogously, we can do the same for the iterates of the skew product F when the

point x is in the security region (see Section 2.3) and the function φ can be truncated as∑n

j=1 T (qjx+ qjα)− T (qjx).

We will denote the sum appearing in the last expression of the k-th iterated of Fn

(and F , respectively) by

φk
n(x) :=

n∑

j=0

T (qjx+ kqjαn+1)− T (qjx),

φk(x) :=

∞∑

j=0

T (qjx+ kqjα)− T (qjx).

(2.5)

2.2.1 The sets H1 and H2

Here we will define the sets H1 and H2 in Theorems A and B respectively.

Let H1 be the set of irrational numbers α ∈ [0, 1) satisfying:

1.

∣∣∣∣α− pn
qn

∣∣∣∣ <
1

q2n log qn
, for infinitily many convergents

pn
qn

,

2. there exist a subsequence qnj
satisfying the condition above and such that

(a)
∑

j
1

log qnj

< ∞,

(b) 2qnj
divides qnj+1

.

Remark 2.2. The setH1 has total Lebesgue measure. In fact, the first condition holds for

almost every irrational number. The second one is true for that set since the continuants qj

growth exponentially. And still with total Lebesgue measure we can extract a subsequence

of that continuants which satisfies 2qj | qj+1, see [30] for details.
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Let H2 is given by the set of irrational numbers α ∈ [0, 1) contained in H1 and

satisfying

1. |α− pn
qn
| < 1

q4+ǫ
n

, for infinitely many rational pn
qn

2. there exist a subsequence qnj
satisfying the condition above and such that 2qnj

divides qnj+1

Lemma 2.3. The set H2 has positive Hausdorff dimension, in fact, it is equal to 1
2
.

Proof. The positiveness of the Hausdorff dimension of the set H2 follows from the Borosh-

Fraenkel’s theorem [12]. While the calculation of the exact Hausdorff dimension is a

variant form of the Bugeaud-Moreira’s theorem, see [13] and [30].

As an explicit example of an irrational number belonging to the set H2, we can take

αn+1 = pn+1

qn+1
= pn

qn
+ 1

ln
, with ln even to guarantee the divisibility property and ln large

enough to ensure the approximation condition, for example choose ln = (2q1)
n!. Then

α = p1
q1

+
∑

n>1
1
ln

satisfies qn+1 = (2q1)
n!qn and

|α− pn
qn

| ≤
∑

j>n

1

lj
=
∑

j>n

1

(2q1)n!

=
1

(2q1)(n+1)!

∑

j>n

1

(2q1)j!−(n+1)!
≤ 2

(2q1)(n+1)!

<
1

(2q1)(4+ǫ)[(n−1)!+(n−2)!+···+1]
=

1

q
(4+ǫ)
n

where the last inequality holds since

(4+ǫ)[(n−1)!+(n−2)+···+1]
(n+1)!

= (4+ǫ)
(n+1)n

[
1 + (n−2)!

(n−1)!
+ · · ·+ 1

(n−1)!

]

= (4+ǫ)
(n+1)n

[
1 + 1

(n−1)
+ 1

(n−1)(n−2)
+ · · ·+ 1

(n−1)!

]

n→∞−−−→ 0.
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2.3 Security regions

To understand the dynamics of the skew products (1.2) it is important to comprehend

the behavior of the function φ. A good way to realizes that is to infer information about

the truncations
∑n

j=1 T (qjx+qjα)−T (qjx) of φ. We will present conditions guaranteeing

that φ and its truncation coincides.

Let C denotes one of the two discontinuities of the map T , defined in (1.2). Unless

we really need to specify which one of the discontinuities we are using, we will refer to a

discontinuity of T simply as C.

Definition 2.4. We define the set Γn :=
{
x ∈ T : d(qjx, C) > 1

log qj
, forallj > n

}
.

The sets Γn will be the security regions that we will use to prove the ergodicity in

item (2) of Theorem A.

We note that Leb(Γn) → 1 as n goes to infinity. In fact, since the denominators qj

satisfies
∑

j
1

log qj
< ∞, then

Leb(Γc
n) ≤ 2

∑

j>n

1

log qj

n→∞−−−→ 0

Remark 2.5. If x belongs to Γn and k ≤ qn then qjx and qjx + kqjα are in the same

plateau for all j ≥ n (see Section 2.4 for precise definition of plateau). Therefore,

x ∈ Γn ⇒ φk(x) =

n∑

j=1

T (qjx+ qjα)− T (qjx) ∀k ≤ qn.

In fact observe that it is enough to require that ||qjkα||Z < d(qjx, C), but in fact

||qjkα|| ≤ k
1

qj log qj

≤ qn
1

qj log qj

≤ 1

log qj
, ∀j ≥ n

< d(qjx, C), because x ∈ Γn
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Denoting by Γ∞ = ∪n∈NΓn, we get a set in which |φ(x)| < ∞ for all x ∈ Γ∞ and

Leb(Γ∞) = 1. Moreover, there exists a set Γ̃∞ = ∩k≥0(Γ∞ + kα), such that |φ(x)| < ∞
and |φ(x+ kα)| < ∞ for all iterated k and yet Leb(Γ̃∞) = 1.

For theorem B and for item 1 of theorem A, we will relax a little the security regions:

Definition 2.6. Λn := {x ∈ T : d(qjx, C) > ‖qjα‖Z ∀j > n}

(Fig)

Cqjx qjx+ α

Since 1
log qj

> 1
qj

> ‖qjα‖Z, each set Λn contains the set Γn therefore we also have that

µ(Λn) → 1 as n goes to infinity.

Analogously, we can define the sets Λ∞ = ∪n∈NΛn, getting a set in which |φ(x)| < ∞
for all x ∈ Λ∞ and Leb(Λ∞) = 1. And still, Λ̃∞ = ∩k≥0(Λ∞ + kα), such that |φ(x)| < ∞
and |φ(x+ kα)| < ∞ for all iterated k and yet Leb(Λ̃∞) = 1.

2.4 Branches and Plateaus

In this section we will introduce the notion of branches and plateaus for the auxiliary

functions T and T ◦ qj used in the definition of φ. This will helps to obtain information

about the behavior of φ.

2.4.1 Branches

Let qj : T → [0, 1) be the expanding map x 7→ qjx(mod 1) and denote by I ij the intervals

where qj is a diffeomorphism. Consider a decomposition of each I ij in two smaller intervals

I i,1j ∪ I i,−1
j . Each of which has length 1

2qj
and corresponds respectively to the first and

second half part of the interval I ij . The reason of this last decomposition will be more

clear bellow, when we introduce the notion of plateaus.

The intervals I
(i,tj)
j are called branches of qj . Sometimes we will omit an upper index

and write the branches of qj simply as I i,tj , where t ∈ {1,−1}.
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For each j the circle can be decomposed in the union of branches

T = [0, 1) =

qj⋃

i=1

I
(i,1)
j ∪ I

(i,−1)
j .

Remembering that 2qj must divide qj+1, we can take a further decomposition to write

a branch on the level j as an union of branches of the next level j + 1, for example,

I
(1,1)
j =

qj+1
2qj⋃

i=1

I
(i,1)
j+1 ∪ I

(i,−1)
j+1 .

We do not explicit the decomposition for every branch to avoid useless notation.

What is important to our context is that all branches I
(i,t)
j contains the same number

of branches of the level j + 1 in their decomposition, i.e.,
qj+1

2qj
, as much as in the above

example.

(Fig)

0 1
qj+1

1
qj 1

I0j+1

I0j

Given any point x on the circle, we denote by Ij(x) the branch I i,tj on the level j

which contains the point x. This is not ambiguous since for each j, there is a unique i

and a unique t such that x ∈ I i,tj .

Looking in the reverse way, if x belongs to In(x), we can associate a (unique) sequence

of pairs (ij, tj)j≤n such that x ∈ I
(ij ,tj)
j for all j = n, · · · , 1. And again using the condition

2qj | qj+1, we obtain that

I(in,tn)n ⊂ I
(in−1,tn−1)
n−1 ⊂ · · · ⊂ I

(i1,t1)
1 .
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1
qj+1

1
qj

1

I0j+1

I0j

I01

(Fig)

A simple but important observation is that for all x′ ∈ In(x), x
′ and x will belong to

the same branches I
(ij ,tj)
j for all j = n, · · · , 1.

2.4.2 qj-intervals and plateaus

Let us remember the definition of the auxiliary function T : T → {−1, 1}

T (x) =

{
1, if x ∈ [0, 1

2
),

−1, if x ∈ [1
2
, 1);

.

and the definition of function φ : T → Z,

φ(x) =

∞∑

j=1

T (qjx+ qjα)− T (qjx).

Note that φ is defined by compositions of T with the expanding maps x 7→ qjx, for

instance, Tj(x) = T (qjx). In each summand of φ we do the difference between Tj at the

points Rα(x) and x.

In this way, Tj is a function on the circle of period 1
qj

Tj(x) =

{
1, if x ∈ [0, 1

2qj
),

−1, if x ∈ [ 1
2qj

, 1
qj
)

which has discontinuities at the points {0, 1
2qj

, 1
qj
, 3
2qj

, 2
qj
, · · · , qj−1

qj
,
2qj−1

2qj
}. Unless we really

need to specify which one of the discontinuity we are using, we will refer to a discontinuity

of T or Tj simply as C.

We will call a qj-interval, and denote it by Qj(x), the interval with extremes qjx

and qj(x + α) of length qjα contained in T. Observe that the value of each summand

T (qjx + qjα) − T (qjx) of φ can be 0, 2 or −2. And what determines which one of the
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possible values will be taken is the position of the extremes of the qj-intervalQj(x) relative

to the discontinuities of Tj . Exactly, if that interval does not contain any discontinuity,

so the corresponding summand is of null value. If the qj-interval at the level j contains

a discontinuity which is multiple of the period, then the related summand assume the

value 2. The value −2 is designated when the qj-interval contains a discontinuity that

belongs to the middle of a fundamental domain of Tj .

(Fig)

0 2−2

To avoid ambiguity, we ask qjx to be different from the discontinuities C of the level

j. Note we have a finite number os discontinuities at each level and we are treating with

enumerable levels. Then we are quitting an enumerable set of the circle which will not

disturb our purpose in this work. More precisely, we are considering φ restricted to a

set of full measure (indeed, this set is the circle minus an enumerable set). We will yet

denote the map restricted to this set as φ, and we will not mention this again in the text.

We will call plateaus and denote by Lsj the intervals of the circle where Tj is constant

equals sj. Therefore we are allowing sj = 1 or sj = −1. Note that for each j the circle

is divided in 2qj plateaus. Sometimes when we refer to a plateau at the level j we are

meaning the union of the plateaus in which Tj has the same value being 1 or −1.

2.5 Random walks

Here we will remember some properties of random walks that will be used to prove the

ergodicity. More details can be found in [18].

For almost every point x in T (excluding the discontinuities, where Tj are not well

defined)

n 7→ mn(x) =

n∑

j=1

Tj(x) =

n∑

j=1

T (qjx) (2.6)

defines a simple random walk on Z. The expectation of that random walk is zero.
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To see that this is a random walk, observe that x 7→ Tj(x) = T (qjx) can be interpreted

as random variables with domain T and image in {−1, 1} such that the probabilities

P(Tj = 1) = P(Tj = −1) = 1
2
.

To show that n 7→ mn(x) is a random walk, its enough to show that Tj are indepen-

dent. This follows immediately checking that P((Tj = tj) ∩ (Tj′ = tj′)) =
1
4
. But the last

is indeed true, as it was proved in previous subsection, because the branches of Tj′ are

embedded in the branches of Tj and in fact subdivide them since 2qj | qj′ ∀j′ > j.

By the recurrence property of random walks - sometimes also called level-crossing

phenomenon - a simple random walk on Z will cross every point an infinite number of

times. In particular if we look for the random walk defined by n 7→ mn(x) − mn(y) it

will cross the zero line infinite many times. In other words, and as we will in fact use

throughout the text, for almost every pairs of points x and y their random walks defined

by mn(x) and mn(y) will coincide an infinite number of times.
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3 φn converges to φ in LP (T)

The LP convergence presented in this section depends only on the condition, 1
qj

< 1
γj of the

irrational number α where γ is a real number greater than 1. Since for all irrational α we

have the approximation condition ‖qjα‖Z < 1
qj
, in our situation we acquire additionally

that ‖qjα‖Z < 1
γj . Note that the divisibility condition 2qj | qj+1 is enough to guarantee

1
qj

< 1
γj and the constant γ will be greater than 2.

3.1 φ and φn belong to LP (T)

As the calculus for φn is analogous and simpler, we will do that just for φ. (For φn, just

put αn+1 instead of α and note that ||qmαn+1||Z ≤ ||qmα||Z∀m ≤ n).

We will show that there exist K such that
∫
Λn

|φ|Pdx < K. Here, although it depends

on P of the LP , the constant K is independent of n. As µ(Λn) tends to 1 as n goes to

infinity, this is enough to show that φ ∈ LP .

Let Λn := {x ∈ T : d(qjx, C) > ||qjα||Z ∀j > n}, in particular, if x ∈ Λn, so

φ(x) =
∑n

j=1 T (qjx+ qjα)− T (qjx) and

|φ(x)| ≤
n∑

j=1

|T (qjx+ qjα)− T (qjx)|

where |T (qjx+ qjα)− T (qjx)| can be 0 or 2.

Consider

Bm := {x ∈ T :

n∑

j=1

|T (qjx+ qjα)− T (qjx)| = 2m}

thus x ∈ Λn ∩ Bm implies that |φ(x)| = 2m.

Whence it follows that

∫

Λn

|φ|P ≤
n∑

m=0

∫

Bm

(2m)PdLeb

=

n∑

m=0

(2m)p|Bm|

Now let us estimate |Bm|.
We will partition Bm = ∪n

l=mBm,l, where
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Bm,l := {x ∈ T :

n∑

j=1

|T (qjx+ qjα)− T (qjx)| = 2m and

the last summand non null is in the position l}.

Since there are m non null elements, l ≥ m.

We already know that if the j-th summand T (qjx + qjα) − T (qjx) is non null then

C ∈ Qj(x) = [qjx, qjx + qjα] ⊂ T, and as the expanding map qj preserves the Lebesgue

measure on the circle, it follows that

Leb(Cj) = Leb ({x ∈ T : C ∈ [qjx, qjx+ qjα]}) = ||qjα||Z.

In this way, the set Bm is contained in several Cj. All that which the j-th summand

is non null. In particular, Bm ⊂ Cl.

Thus

|Bm| ≤
n∑

l=m

|Bm,l| ≤
n∑

l=m

|Cl| =
n∑

l=m

||qlα||Z ≤ 4||qmα||Z.

So we can calculate

∫

Λn

|φ|PdLeb ≤
n∑

m=0

(2m)P4||qmα||Z

≤
∞∑

m=0

2P+2mP

qm

≤
∞∑

m=0

2P+2mP

(γm)
< K(P ).

As it does not depends on n, it follows that ||φ||P
LP < K(P ).

3.2 φn is a Cauchy sequence

Given any pair of integers k and n, say 0 < k < n, then
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|(φn−φk)(x)| ≤
k∑

j=1

|T (qjx+qjαn+1)−T (qjx+qjαk+1)|+
n∑

j=k+1

|T (qjx+qjαn+1)−T (qjx)|.

Following the same reasoning of the previous subsection, let

Bn
m := {x ∈ T :

n∑

j=k+1

|T (qjx+ qjαn+1)− T (qjx)| = 2m}

Ak,n
m := {x ∈ T :

k∑

j=1

|T (qjx+ qjαn+1)− T (qjx+ qjαk+1)| = 2m}

∫
|φn − φk|PdLeb ≤

k∑

m=0

∫

A
k,n
m

(2m)PdLeb+

n−k∑

m=0

∫

Bn
m

(2m)PdLeb

=

k∑

m=0

(2m)P |Ak,n
m |+

n−k∑

m=0

(2m)P |Bn
m|

As before, Bn
m =

⋃n

l=k+mBn
m,l, where

Bn
m,l := {x ∈ T :

n∑

j=k+1

|T (qjx+ qjαn+1)− T (qjx)| = 2m and

the last summand non null is in the position l}

and defining Cn
l := {x ∈ T : C ∈ [qlx, qjx+ qlαn+1]}, we can estimate

|Bn
m| ≤

n∑

l=k+m

|Bn
m,l| ≤

n∑

l=k+m

|Cn
l | ≤

n∑

l=k+m

||qlαn+1||Z ≤
n∑

l=k+m

||qlα||Z

≤ 4||qk+mα||Z

Analogously, take

Ck,n
j := {x ∈ T : T (qjx+ qjαn+1)− T (qjx+ qjαk+1) 6= 0}
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and we know that

Leb(Ck,n
j ) = qj |αn+1 − αk+1|

≤ qj|αk+1 − α|

≤ qj
||qk+1α||Z

qk+1

The set Ak,n
m is contained in Ck,n

j for all j such that the j-th summand is non null.

And this happens for at least one index l greater than m, since there are m non null

elements.

In this way,

|Ak,n
m | ≤

k∑

l=m

|Cn,k
j |

≤
k∑

l=m

ql
||qk+1α||Z

qk+1

≤ (k −m)qk
||qk+1α||Z

qk+1

Therefore,

∫
|φn − φk|PdLeb ≤

k∑

m=0

(2m)P (k −m)
qk||qk+1α||Z

qk+1
+

n−k∑

m=0

(2m)P 4||qk+mα||Z

=
qk||qk+1α||Z

qk+1
2P k(

k∑

m=0

mP ) + 2(P+2)||qkα||Z(
n−k∑

m=0

mP ||qk+mα||Z
||qkα||Z

)

≤ 2Pk
qk
qk+1

||qk+1α||Z(
k∑

m=0

mP ) + 2(P+2)||qkα||Z(
n−k∑

m=0

mP

γm
)

≤ 2Pk
qk
qk+1

1

γk+1
(

k∑

m=0

mP ) + 2(P+2) 1

γk+1
(

n−k∑

m=0

mP

γm
)

≤ 2Pk
qk
qk+1

(
k∑

m=0

mP

γk+1
) + 2(P+2) 1

γk+1
(
n−k∑

m=0

mP

γm
)

k→∞−−−→ 0.
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Where the convergence to zero is due to the fact that on the sums above the numerator

has polynomial growth while the denominator increase exponentially fast and γ > 1.

Concluding that φn is sequence of Cauchy and because of the completeness of LP (µ),

it converges.

Let see that the limit is exactly the function φ(x) :=
∑∞

j=1 T (qjx+ qjα)− T (qjx). In

fact, defining

φ̃n(x) =

n∑

j=1

T (qjx+ qjα)− T (qjx)

By an analogous calculation as before,

||φn − φ̃n||PLP ≤
n∑

m=0

(2m)P 2||qm|α− αn+1| ||Z

≤ 2(P+1)

n∑

m=0

mP qm
||qn+1α||Z

qn+1

≤ 2(P+1)
n∑

m=0

mP ||qn+1α||Z

≤ 2(P+1)
n∑

m=0

mP

γn+1

n→∞−−−→ 0.

Where the convergence to zero is due to the fact that on the sums above the numerator

has polynomial growth while the denominator increase exponentially fast and γ > 1.

Concluding that φn
LP

−→ φ.
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4 Ergodicity and Recurrence

The process developed in this section shows that a set of positive measure when iterated

by the skew product F defined in (1.2) fills the hole cylinder T× 2Z almost everywhere.

With these ideas we can prove the ergodicity and also the recurrence property of our map

F .

As we already said in Section 2, the measure µ we are considering on the cylinder

T× 2Z is the measure given by the sum of the Lebesgue measures on the fibers and it is

invariant by the skew product F .

4.1 An auxiliary proposition

Definition 4.1. A point z is said to be a density point for a set Γ if

lim
ǫ→0

µ(Bǫ(z) ∩ Γ)

µ(Bǫ(z))
= 1

In other words, given any δ, there exist ǫ > 0 s.t. µ(Bǫ(z)∩Γ)
µ(Bǫ(z))

> 1− δ.

Proposition 4.2. Let z be a density point for a set Γ ⊂ R, δ and ǫ such that
µ(Bǫ(z) ∩ Γ)

2ǫ
>

1 − δ. Let J be an interval contained in Bǫ(z) such that |J | = 2ǫ
k
, where k is a positive

integer such that kδ < 1. Then
µ(Γ ∩ J)

|J | > 1− kδ.

Proof. Suppose by contradiction that µ(Γ ∩ J) ≤ (1− kδ)2ǫ
k
.

(Fig)

Z − ǫ Z Z + ǫ

J

Then,
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µ(Bǫ(z) ∩ Γ)

2ǫ
=

µ((J ∪ Jc) ∩ Γ)

2ǫ

≤ µ(J ∩ Γ) + µ(Jc ∩ Γ)

2ǫ

≤ 1− kδ

k
+

µ(Jc ∩ Γ)

2ǫ

≤ 1− kδ

k
+

k − 1

k

2ǫ

2ǫ

= 1− δ

which contradicts the election of ǫ and δ.

As a consequence we have the following

Corollary 4.3. Adopting the notation and conditions of the previous proposition, if δ < 1
4

and |J | = ǫ, there exists z̃ ∈ J ∩ Γ s.t. d(z̃, ∂J) > 1
4
ǫ.

Proof. Suppose this does not occur. So Γ ∩ B ǫ
4
(w) = ∅, where w is the midpoint of J .

Therefore Γ ∩ J ⊂ J\B ǫ
4
(w).

(Fig)

Vǫ(Z)Z

ǫ
2

ǫ
4

ǫ
4

So we get, using the previous proposition, that

ǫ

2
> µ(J\B ǫ

4
(w)) > µ(Γ ∩ J) > (1− 2δ)|J |

= (1− 2δ)
2ǫ

2
= (1− 2δ)ǫ.

which implies δ > 1
4
. This contradiction proves the corollary.
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4.2 Proving the ergodicity

To prove the ergodicity, we will first prove that any invariant set intersecting a fiber with

positive measure saturates that entire fiber. The strategy is to observe that fixing a point

(y, 0) in the refereed fiber, the orbit until time qn of any other point x in the basis T is
1
qn
-near to y, since the map is the rigid rotation Rα on the basis. Then we can choose

k0 such that the k0-th iterated of x is 1
qn
-near to y at the first coordinate. The problem

at this point is that the second coordinate could be large and so the iterated F k0(x, 0)

could be really far away from (y, 0). We will show, using the propositions 4.4 and 4.5

below, that x can be chosen in a set of total Lebesgue measure so that φk0(x) = 0. This

guarantees that F k0(x, 0) is in fact in the same fiber as (y, 0).

After that we prove by proposition 4.6, that this saturated set jumps fibers with

positive measure.

Suppose by contradiction the existence of an invariant set Γ for F , such that µ(Γ)

and µ(Γc) are both positive.

In these hypothesis there is a fiber in which µ(Γ |fiber) > 0. Let suppose, by a first case,

that the measure of Γc is positive when restrict to the same fiber where µ(Γ |fiber) > 0.

Take points x ∈ Γ and y ∈ Γc in a way that they are density points for Γ∩ Γn and Γc

respectively. Which is possible because µ(Γn) → 1, as we showed in section 2.3.

Thus, given any 0 < δ < 1, consider n large enough and ǫ = 1
qn−1

such that

µ(Bǫ(x) ∩ (Γ ∩ Γn))

2ǫ
> 1− δ

and

µ(Bǫ(y) ∩ Γc)

2ǫ
> 1− δ

Note that as the embedding Γn ⊂ Γn+1 occurs, the above happens for all n larger

than some n0, uniformly on δ. Observe also that we do not require that y ∈ Γn.

Let In−1(x) the branch of length 1
2qn−1

containing x and In−1(x) ⊂ Bǫ(x). Analogously,

In−1(y) ⊂ Bǫ(y).
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By the proposition 4.2 and corollary 4.3 above we can suppose the following

µ(In−1(x) ∩ (Γ ∩ Γn))
1

2qn−1

> 1− 2δ,

d(x, ∂In−1(x)) >
1

6qn−1
,

µ(In−1(y) ∩ Γc)
1

2qn−1

> 1− 2δ,

d(y, ∂In−1(y)) >
1

6qn−1
.

As ||qnα||Z < 1
qn
, there exist k0 ≤ qn such that d(x+ k0α, y) <

1
qn
.

Consider the set

B := {x′ ∈ T× {0} ∩ In−1(x) ∩ (Γ ∩ Γn) : x
′ + k0α ∈ In−1(y)}

Proposition 4.4. Let k0 as above, then F k0(B) is contained in the same fiber as B and

F k0
1 (B) ⊂ (In−1(x) ∩ (Γ ∩ Γn)) + k0α, where F1 is the projection on the first coordinate.

Proof.

φk0(x′) =
n−1∑

j=1

T (qjx
′ + qjk0α)− T (qjx

′) +
∑

j≥n

T (qjx
′ + qjk0α)− T (qjx

′)

Observe that the second sum is zero because of remark 2.5.

As x′ + k0α belongs to the branch In−1(y) we know that T (qj(x
′ + k0α)) = T (qjy)

for all j ≤ n − 1. By interpreting x 7→ ∑n−1
j=1 T (qjx) = Mn−1(x) as a random walk (see

Section 2.5), we can suppose without lose of generality that Mn−1(x) = Mn−1(y). As

mentioned also in Section 2.5, almost everywhere two random walks coincide. And since

x′ ∈ In−1(x), we also know that T (qjx) = T (qjx
′) for all j ≤ n− 1.

In this way,
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n−1∑

j=1

T (qjx
′ + qjk0α)− T (qjx

′) =

n−1∑

j=1

T (qjy)− T (qjx
′)

=

n−1∑

j=1

T (qjx)−
n−1∑

j=1

T (qjx
′)

= 0

Concluding that if x′ belongs to B then φk0(x′) = 0. Thus F k0
1 (B) ⊂ (In−1(x) ∩ (Γ ∩

Γn)) + k0α.

Let us denote B− = In−1(x) ∩ (Γ ∩ Γn), by the proposition 4.2, µ(B−) > (1 −
2δ)|In−1(x)| = (1− 2δ) 1

2qn−1
.

(Fig)

B− x

In−1(x)

x+ k0α
d(x+ k0α, y) <

1
qn

B
y

In−1(y)

Proposition 4.5. Let k0 as above, then F k0(B) ∩ Γc 6= ∅.

Proof. In fact, F k0(B) ⊂ In−1(y) and

µ(F k0(B)) ≥ µ(B−)− 1

qn
>

1− 2δ

2qn−1
− 1

qn

and

µ(Γc ∩ In−1(y)) >
1− 2δ

2qn−1

As much as both of the sets F k0(B) and Γc∩ In−1(y) are contained in In−1(y), if their

intersection is empty is because

µ(In−1(y)) ≥ µ(F k0(B)) + µ(Γc ∩ In−1(y))

which is equivalent to
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1

2qn−1
≥ 1− 2δ

2qn−1
− 1

qn
+

1− 2δ

2qn−1

m
1

qn
≥ 1− 2δ

qn−1

− 1

2qn−1

m
1

qn
≥ 1− 4δ

2qn−1

m
2

1− 4δ
≥ qn

qn−1

and since δ can be taken small enough, the above contradicts the hypothesis of divis-

ibility os the continuants qn, which implies qn
qn−1

> λ > 2.

Now remember that Γ is an invariant set and B is a subset of Γ, so F k0(B) ⊂ Γ. This

together with the above proposition implies that Γ ∩ Γc 6= ∅, which is an absurd.

The absurd cames from suppose that µ(Γc) > 0, therefore µ(Γc) = 0. In other words,

any invariant set intersecting a fiber with positive measure saturates the entire fiber.

Proposition 4.6. Given Γ contained in a fiber, let say Γ ⊂ T×{0}, such that µ(Γ) = 1,

then there is a Γ̃ ⊂ Γ, still of positive measure and such that |φ(x)| = 2 for all x in Γ̃

Proof. In fact, in order that |φ(x)| = 2 is enough that

1. qj(x+ α) and qjx belong to the same plateau for all j ≥ 2 and

2. q1(x+ α) and q1x belong to distinct plateaus

The measure of the set of points of the circle that satisfy (1) is grater than 1 −∑
j≥2 ||qjα||Z, while the set in (2) has measure ||q1α||Z.
By the choice of the sequence qn, ||q1α||Z >

∑
j≥2 ||qjα||Z. So we have that the sum of

the measures of the two sets above is grater than 1, concluding that they must intersect

in set of positive measure.

Take Γ̂ the set of points of Γ that satisfies (1) and (2). And as much as µ(Γ) = 1, this

set also has positive measure.
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The proposition above implies that an invariant set of hole measure in a fiber, jump

over fibers with positive measure. And once an invariant set is of positive measure in

a fiber, we can saturate such fiber as explained before. Concluding that the measure of

the complement of any invariant set is null in any fiber. Recalling that the measure µ in

T× 2Z is defined by the sum of the Lebesgue measure in each fiber, we get µ(Γc) = 0.

Observe that the way we prove ergodicity in particular implies recurrence since taking

x = y the orbit will return near the initial point.

This concludes the proof of Theorem A.
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5 Counting Procedure

Our aim in this section is counting the return times

SFn

qn+1
(1A)(x, z) =

qn+1∑

k=0

1A ◦ F k
n (x, z) (5.1)

to the skew product map Fn defined in (2.4) and A being the fiber T× {0}.
An integer k is a return time for a point (x, z) to the set A when F k

n (x, z) ∈ A which

holds if and only if φk
n(x) = 0 (bring up definitions in (2.5)). Therefore, to estimate

this number of returns, we should determine the number of integers k < qn+1 such that

φk
n(x) = 0. But observe that

φk
n(x) = 0 ⇔

n∑

j=1

T (qjx+ kqjαn+1)− T (qjx) = 0

⇔
n∑

j=1

T (qjx+ kqjαn+1) = mn(x) = m.

So, fixed a point x and consequently an m = mn(x) (see (2.6)), we are going to count

the number of integers k < qn+1 such that
∑n

j=1 T (qjx+ kqjαn+1) = m.

Now consider sequences
−→
t = (t1, . . . , tn) ∈ {−1, 1}n, such that

∑n
j=1 tj = m and for

each
−→
t take the set of integers

K−→
t
:= {k < qn+1 : T (qjx+ kqjαn+1) = tj ∀j = 1, . . . , n}

Consequently, the number (5.1) we are looking for is given by
∑

−→
t

#K−→
t
. But if for

some reason, #K−→
t
does not depend on the sequence

−→
t , then

SFn

qn+1
(1A)(x, z) = #K−→

t 0
·
(

n
n+m
2

)

that is, the cardinal of the sets K−→
t
times the number of sequences of n elements whose

sum of the terms is m, which is represented here by the binomial
(

n
n+m

2

)
.

Our purpose now is show the following

Lemma 5.1. #K−→
t
is independent on the sequence

−→
t , moreover #K−→

t
= qn+1

2n
.
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The rest of this section is devoted to prove the lemma above.

To deal with the formal counting procedure, to each k, let us associate the sequence

(sn, · · · , s1) ∈ {−1, 1}n in the following way

sj = T (qjx+ kqjαn+1); j = n, · · · , 1.

Thai allow us to consider the following partition of the interval of integers [qn+1] :=

{0, 1, · · · , qn+1 − 1}, which can be write as the disjoint union

[qn+1] =
⊎

si∈{−1,1}
A(sn,··· ,sj)

where A(sn,··· ,sj) := {k < qn+1 : Tn(x+ kαn+1) = sn, . . . , Tj(x+ kαn+1) = sj}. Note that

by definition we have the properties

A(sn,··· ,s2,s1) ⊂ A(sn,··· ,s2) ⊂ · · · ⊂ A(sn,sn−1) ⊂ A(sn)

and

A(sn,··· ,sj) = A(sn,··· ,sj ,1)
⊎

A(sn,··· ,sj ,−1).

This last property induces a tree associated to the sets A(sn,··· ,sj) as represented in the

picture below

(Fig)

[qn+1]

A1 A−1 Level 1

Level j: 2j sets in the partition

A(sn,...,sj+1)

A(sn,...,sj)

A(sn,··· ,sj,1) A(sn,··· ,sj,−1)

Our objective now is show that it is a binary tree, i.e., in each level the quantity of

elements in each set A(sn,··· ,sj) is independent of the sequence (sn, · · · , sj). In other words,

we want to see that #A(sn,··· ,sj+1,sj) =
#A(sn,··· ,sj+1)

2
, obtaining
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#A(sn,··· ,sj) =
#[qn+1]

2n−j

(note: 2n−j is the number of distinct sequences in the level j).

But the above is equivalent to show

#{k < qn+1 : T (qj+1x+ kqj+1αn+1) = sj+1 and T (qjx+ kqjαn+1) = sj} =

=
1

2
#{k < qn+1 : T (qj+1x+ kqj+1αn+1) = sj+1}

Rewriting qjx + kqjαn+1 as xj + k pn+1
qn+1
qj

, where xj = qjx, the above yet is equivalent

to show that

#{k < qn+1 : xj+1 + k
pn+1
qn+1

qj+1

∈ Lsj+1
and xj + k

pn+1
qn+1

qj

∈ Lsj} =

=
1

2
{k < qn+1 : xj+1 + k

pn+1
qn+1

qj+1

∈ Lsj+1
}.

Proposition 5.2. If r is the rest of the quotient from kpn+1 by qn+1

qj+1
, then

T (xj + k
pn+1
qn+1

qj

) = T (xj + rxj+1 + k
1

qn+1

qj+1

).

Proof. It is enough to write

xj + k
pn+1
qn+1

qj

= xj + (L
qn+1

qj
+ r)

1
qn+1

qj

= xj + L+ r
1

qn+1

qj

where L belongs to Z and since T is Z periodic, we get the equality above.

Using that, our goal becomes to demonstrate that

#{r < qn+1 : xj+1 + r
1

qn+1

qj+1

∈ Lsj+1 and xj + r
1

qn+1

qj

∈ Lsj} =

=
1

2
#{r < qn+1 : xj+1 + r

1
qn+1

qj+1

∈ Lsj+1
}

(5.2)
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Writing kpn+1 = L qn+1

qj
+ r with 0 < k < qn+1, the function k 7→ kpn+1 (mod qn+1

qj
)

has qj pre-images for each rest r in its codomain. Thus the above counting is the same

in each interval os integers of length qn+1

qj
.

Which reduce our purpose to show

#{r < qn+1

qj
: xj+1 + r

1
qn+1

qj+1

∈ Lsj+1
and xj + r

1
qn+1

qj

∈ Lsj} =

=
1

2
#{r < qn+1 : xj+1 + r

1
qn+1

qj+1

∈ Lsj+1
}

Note that in the above equation, if we multiply the both sides by qj , we get back the

equality (5.2).

Proposition 5.3. If 2 | q then the sequence {x+ r 1
q
}r<q is such that

#{r < q : x+ r
1

q
∈ I1} = #{r < q : x+ r

1

q
∈ L−1} =

q

2

Proof. First of all note that’s enough to demonstrate it for 0 ≤ x < 1
q
, because

(Fig)

x

1
qj

x+ q−1
q

If x ∈ [1
q
, 2
q
), take x̃ = ||x + q−1

q
||Z < 1

q
, then #{r < q : x̃ + r 1

q
∈ Ii} = #{r < q :

x + r 1
q
∈ Ii}, i = 1,−1 and analogous for an x ∈ [l 1

q
, l+1

q
). This means that “does not

matter the displacement”.

Since it is already true for x = 0, take an x such that 0 < x < 1
q
. Then

#{r < q : x+ r
1

q
∈ I1} =

q

2

holds because for r ∈ {0, 1, · · · , q

2
− 1}, we have
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x+ r
1

q
< x+ (

q

2
− 1)

1

q

= x+
1

2
− 1

q

<
1

2

then x+ r 1
q
∈ I1.

And for r ∈ { q

2
, q

2
+ 1, · · · , q − 1}, we have

x+ r
1

q
> x+

q

2

1

q

= x+
1

2

>
1

2

then x+ r 1
q
∈ L−1.

And again we have reduced our purpose to show that

Proposition 5.4.

#{r < qn+1

qj
: r

1
qn+1

qj+1

∈ Lsj+1
and r

1
qn+1

qj

∈ Lsj} =

=
1

2
#{r < qn+1

qj
: r

1
qn+1

qj+1

∈ Lsj+1
}

Proof. To simplify the notation, let us denote q1 := qn+1

qj+1
and q2 :=

qn+1

qj
. So q2 > q1 and

by the choice of the sequence qj , 2q1 | q2.
Thus we would like to prove that

#{r < q2 : r
1

q1
∈ Lt1 and r

1

q2
∈ Lt2}

1

2
#{r < q2 : r

1

q1
∈ Lt1}

Since we know that 2q1 | q2, let’s say q2 = 2Lq1, then
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#{r < q2 : r
1

q1
∈ Lt1 and r

1

q2
∈ Lt2} = q1L =

q2
2

(5.3)

(Fig)

0 11
q1

1
2q1

It1
It2 It2 It2It2

This is true because after all the reductions that we made, the intervals [ r
q2
, r+1

q2
) are

embedded in [0, 1
2q1

) or [ 1
2q1

, 1) and #{r < q2 : r
q2

∈ Lt2} = L for each Lt1 . But since

there are q1 intervals of the type Lt1 to complete the circle, the equality in (5.3) holds.

Now let’s count #{r < q2 : r
1
q1

∈ Lt1}. We have an r for each interval Lt1 and there

are q1 intervals of the type Lt1 in the circle. Then, if r goes until q2 we are going through
q2
q1

rounds in the circle. Accordingly, #{r < q2 : r
1
q1

∈ Lt1} = q1
q2
q1

= q2

Therefore,

#{r < q2 : r
1

q1
∈ Lt1 and r

1

q2
∈ Lt2}

1

2
#{r < q2 : r

1

q1
∈ Lt1}

This concludes the binary character of the tree presented before.

In particular, for an arbitrary fixed sequence (sn, · · · , s1), we have got

#A(sn,...,s1) = #K−→s =
#[qn+1]

2n

and the counting of the Birkhoff sum then is
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SFn

qn+1
(x, z) = #{k < qn+1 :

n∑

j=1

T (qjx+ kqjαn+1) = mn(x)}

= #K−→s ·#{(sn, · · · , s1) ∈ {−1, 1}n :
n∑

j=1

sj = m = mn(x)}

=
qn+1

2n

(
n

n+m
2

)

Remark 5.5. The counting process done before holds for almost everywhere in T, since

we are excluding the points x such that qjx+ kqjαn+1 = {0, 1
2
}(mod 1) for j = 1, · · · , n

and for k = 0, · · · , qn+1 − 1. But outside this set of zero measure, we can calculate

SFn

qn+1(x, z).

5.1 Pushing counting process to F

Let

φn(x) :=

n∑

j=1

T (qjx+ qjαn+1)− T (qjx)

φ̃n(x) :=
n∑

j=1

T (qjx+ qjα)− T (qjx)

φ(x) :=
∞∑

j=1

T (qjx+ qjαn+1)− T (qjx)

The purpose is to compare the Birkhoff sums in each case.

Proposition 5.6. Out of a set of measure 2qn+1||qn+1α||Z, we have the equality of the

following Birkhoff sums

SRα

k (φ)(x) = SRα

k (φ̃n)(x) ∀k = 1, · · · , qn+1

Proof. In fact,

Sk(φ,Rα)(x) = Sk(φ̃n, Rα)(x) ⇔
∞∑

j=n+1

T (qjx+ kqjα)− T (qjx) = 0
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and for this is enough that qjx + kqjα and qjx belong to the same plateau for all

k = 1, · · · , qn+1, i.e, d(qjx, C) > ||kqjα||Z∀j ≥ n+ 1.

But attending that the sets where this does not occur are embedded, it’s enough to

take out just the bigger of them., i.e, k = qn+1.

d(qjx, C) > ||qn+1qjα||Z∀j ≥ n+ 1

⇓
d(qjx, C) > ||kqjα||Z∀j ≥ n + 1 and ∀k = 1, · · · , qn+1

since for j ≥ n + 1, ||qn+1qjα||Z = qn+1||qjα||Z
and for k < qj, qn+1||qjα||Z > k||qjα||Z = ||kqjα||Z.
Thus

∑∞
j=n+1 T (qjx+ kqjα)− T (qjx) = 0 out of a set of measure

∑∞
j=n+1 qn+1||qjα||Z

which is smaller than 2qn+1||qn+1α||Z.

Proposition 5.7. Out of a set of measure (qn+1)
1+ǫ||qn+1α||Z, we have the equality of

the following Birkhoff sums

SRα

k (φ̃n)(x) = S
Rαn+1

k (φn)(x) = ∀k = 1, · · · , qn+1

Proof. In fact,

SRα

k (φ̃n)(x)− S
Rαn+1

k (φn)(x) =
n∑

j=1

T (qjx+ kqjα)− T (qjx+ kqjαn+1)

but this sum is null if qjx + kqjα and qjx + kqjαn+1 are in the same plateau for all

j = 1, · · · , n. And for each j the measure of the set such that they are not in the same

plateau is |kqjα− kqjαn+1| = kqj |α− αn+1| = kqj
||qn+1α||Z

qn+1
.

(Fig)

Therefore the equality of that Birkhoff sums holds for all k = 1, cdots, qn+1 out of a

set of measure

n∑

j=1

qn+1∑

k=1

kqj
||qn+1α||Z

qn+1
=

(
n∑

j=1

qj

)(
qn+1∑

k=1

k

)
||qn+1α||Z

qn+1
≈
(

n∑

j=1

qj

)
qn+1||qn+1α||Z

≤ q1+ǫ
n+1||qn+1α||Z
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C

C

C

qjx

qjx

qjx

qjx+ kqjα

qjx+ kqjα

qjx+ kqjα

qjx+ kqjαn+1

qjx+ kqjαn+1

qjx+ kqjαn+1

Putting together the two propositions above, we get the following relation among the

Birkhoff sums

SRα

k (φ)(x) = S
Rαn+1

k (φn)(x) ∀k = 1, · · · , qn+1

out of a set of measure

2qn+1||qn+1α||Z + q1+ǫ
n+1||qn+1α||Z ≤ 2

q2+2ǫ
n+1

+
1

q2+ǫ
n+1

≤ 2

q2+ǫ
n+1

for a large enough n.
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6 Renyi inequality

In this section we will establish the Renyi inequality

∫

A

(
SFn

qn+1

)2
dµ ≤ M

(∫

A

SFn

qn+1
dµ

)2

(6.1)

for the map

Fn : T× Z −→ T× Z

(x, z) 7→ (x+ αn+1, z + φn(x))

in the sequence of times qn+1. Where M is a real number that does not depends on

n.

For us the set A will be take as a fiber T×{z}, for simplicity, take the fiber T×{0} .

First of all, note that in a fixed fiber the set of points x that has the same mn(x) =∑n

j=1 T (qjx) has measure

LebT({x ∈ T : mn(x) = m} =
1

2

(
n

n+m
2

)

since x 7→∑n

j=1 T (qjx) = mn(x) is a random walk with P(T (qjx) = 1) = P(T (qjx) =

−1) = 1
2
, m is in the range [−n, n] and m ≡ n( mod 2). Thus it determines a Gaussian

distribution, and in a set of measure 1
2n

(
n

n+m
2

)
, with |m| ≤ n and m ≡ n( mod 2), the

Birkhoff sum is given by

SFn

qn+1
(1A)(x, z) =

qn+1

2n

(
n

n+m
2

)

6.1 The return sequences

Once the calculus of the return times SFn
qn+1

(A)(x, y) has been done in the previous section,

we can obtain the return sequences aqn+1 for the skew product Fn.
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aqn+1 = aqn+1(A) = =

∫

A

SFn

qn+1
(1A)(x, y)dµ

=

n∑

m=−n,m≡n(2)

1

2n

(
n

n+m
2

)
qn+1

2n

(
n

n+m
2

)

=
qn+1

22n

n∑

i=0

(
n

i

)2

=
qn+1

22n

(
2n

n

)

≃ qn+1

22n
· 22n√

πn
=

qn+1√
πn

6.2 Renyi inequality for Fn

(∫

A

SFn

qn+1
(1A)(x, y)dµ

)2

=
q2n+1

24n

(
2n

n

)2

∫

A

(
SFn

qn+1
(1A)(x, y)

)2
dµ =

n∑

m=−n,m≡n(2)

1

2n

(
n

n+m
2

)(
qn+1

2n

(
n

n+m
2

))2

=
q2n+1

23n

n∑

i=0

(
n

i

)3

Thus

∫

A

(
SFn

qn+1
(1A)(x, y)

)2
dµ

(∫

A

SFn

qn+1
(1A)(x, y)dµ

)2 =

q2n+1

23n

∑n
i=0

(
n

i

)3
q2n+1

24n

(
2n
n

)2

=
2n
∑n

i=0

(
n

i

)3
(
2n
n

)2

Now remembering that the estimate of the central binomial term is
(
n
n
2

)
≈ 2n√

π n
2

and

rewriting
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n∑

i=0

(
n

i

)3

=

n∑

i=0

(
n

i

)2(
n

i

)

≤
n∑

i=0

(
n

i

)2(
n
n
2

)

=

(
2n

n

)(
n
n
2

)

≈ 22n√
πn

2n√
π n

2

=
23n

√
2

πn

Therefore

∫

A

(
SFn

qn+1
(1A)(x, y)

)2
dµ

(∫

A

SFn

qn+1
(1A)(x, y)dµ

)2 .
2n 23n

√
2

πn

24n

πn

=
√
2

The above let us to conclude that the Renyi inequality is valid with constant M =
√
2

for each one of the functions Fn.

6.3 Pushing the Renyi Inequality to F

In this section we will use the Renyi inequality for Fn obtained above and the relations

found in propositions 5.6 and 5.7 to compare the integrals of the Birkhoff sums of Fn and

F . Then we will use that to get the Renyi inequality to the skew product F .

∣∣∣∣
∫

A

SFn

qn+1
(1A)dµ−

∫

A

SF
qn+1

(1A)dµ

∣∣∣∣ ≤ qn+1 · (2qn+1 + q1+ǫ
n+1)||qn+1α||Z

= (2q2n+1 + q2+ǫ
n+1)||qn+1α||Z

n→∞−−−→ 0

And as each one of the integrals above diverge to infinity when n goes to infinity, for

a large n is true that
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1

2

∫

A

SFn

qn+1
(1A)dµ ≤

∫

A

SF
qn+1

(1A)dµ ≤ 2

∫

A

SFn

qn+1
(1A)dµ

and analogously

1

2

∫

A

(
SFn

qn+1
(1A)

)2
dµ ≤

∫

A

(
SF
qn+1

(1A)
)2

dµ ≤ 2

∫

A

(
SFn

qn+1
(1A)

)2
dµ

since we also have that

∣∣∣∣
∫

A

(
SF
qn+1

(1A)
)2

dµ−
∫

A

(
SF
qn+1

(1A)
)2

dµ

∣∣∣∣ ≤ q2n+1 · (2qn+1 + q1+ǫ
n+1)||qn+1α||Z

= (2q3n+1 + q3+ǫ
n+1)||qn+1α||Z

n→∞−−−→ 0

Now as we already know that the Renyi inequality is true for Fn, it follows that

∫

A

(
SF
qn+1

(1A)
)2

dµ ≤ 2

∫

A

(
SFn

qn+1
(1A)

)2
dµ

≤ 2
√
2

(∫

A

SFn

qn+1
(1A)dµ

)2

≤ 2
√
2

(
2

∫

A

SF
qn+1

(1A)dµ

)2

≤ 8
√
2

(∫

A

SF
qn+1

(1A)dµ

)2

Which is the Renyi inequality for F , proving the rationally ergodicity of the skew

products F and completing the remainder of the theorem B.
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[10] S. De Bièvre and G. Forni, On the growth of averaged Weyl sums for rigid

rotations, Studia Mathematica 130 (1998), N. 3, 199–212.

[11] G. Boole On the comparison of transcendents with certain applications to the

theory of definite integrals, Philos. Trans. Roy. Soc. London, 147 Part III (1857),

745–803.



48

[12] I. Borosh and A. Fraenkel, A generalization of Jarnik’s theorem on Diophantine

approxiamtions, Nederl. Akad. Wetensch. Proc. Ser. A75=Indag.Math, N.34 (1972),

193–201.

[13] Y. Bugeaud and C.G. Moreira, Sets of exact approximation order by rational

numbers III, Acta Arith. 146 (2011), 177–193.

[14] H. Bruin, Induced maps, Markov extensions and invariant measures in one-

dimensional dynamics. Comm. Math. Phys. 168 (1995), no. 3, 571–580.

[15] M. Campanino and S. Isola, Infinite invariant measures for non-uniformly ex-

panding transformations of [0, 1]: weak law of large numbers with anomalous scaling.

Forum Math. 8 (1996), no. 1, 71–92.
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