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Abstract. We prove results related to robust transitivity of Partially Hyper-

bolic Diffeomorphisms under conditions involving Accessibility and the Prop-

erty SH.
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1. Introduction

A very interesting feature of a differentiable dynamical system is transitivity, i.e.
existence of a dense orbit. Being a sign of complexity of the underlying dynamics
it prevents the possibility of reducing its study to more simple systems.

One of the most important questions in the theory of Differentiable Dynamical
Systems regarding a particular dynamical property is to recognize when it is present
in all nearby systems (with respect to some topology). When this happens we say
that the property is robust or stable under perturbations.

So the search for conditions on a differentiable dynamical system leading to
robust transitivity has been a topic of interest for a long time. Many examples ex-
hibiting robust transitivity has been studied, beginning with the transitive Anosov
diffeomorphisms.

Robust transitivity is not an exclusive property of Hyperbolic Diffeomorphisms
as it has been showed first by the example of Shub on the torus T4, later by the
example of Mañé on the torus T3 and more recently by the example of Bonatti and
Dı́as in [2]. All these examples are Partially Hyperbolic Systems (see section 2).
While other example, due to Bonatti and Viana [5], exhibits just dominated split-
ting.

Ergodicity and its stability are other important properties to study on a dynam-
ical system. A well known conjecture formulated by Pugh and Shub [12] on Stable
Ergodicity for Partially Hyperbolic Systems has been the motivation for a lot of
research during the last few years. Some progress has been done but the conjecture
is still unproved.

One of the conditions appearing on the hypothesis of this conjecture is that of
Accessibility (see section 2) which as the work [6] shows is a typical property in the
sense that it is C1 dense among the Cr Partially Hyperbolic Diffeomorphisms of a
compact manifold.

Accessibility has also a relation with transitivity according to Brin’s Theorem [11]
stating that in a Partially Hyperbolic Accessible System, transitivity is equivalent
to the fact of the non-wandering set being the whole manifold.

In connection with the mentioned examples of Shub and Mañé, the authors
Pujals and Sambarino introduced in [13] an interesting property which they call
Property SH, which proves to be there a good mechanism to guarantee that the
strong stable foliation is robustly minimal. A key feature of Property SH is its
intrinsic robustness which makes it an appealing condition to use for establishing
robust transitivity in more general contexts.

The work in this thesis has been motivated by the idea of exploring the conse-
quences, in the sense of robust transitivity, of the combination of these two prop-
erties, Property SH and Accessibility, for Partially Hyperbolic Systems.

The first result came naturally when studying the proof of Brin’s Theorem, after
the observation that accessibility in relation to open sets (as defined in section 2)
was enough to guarantee the transitivity. Having at hand the Property SH and its
robustness it was a natural step to think on establishing the robustness of accessibi–
lity in relation to open sets, conforming to Corollary 3.1 . As a Corollary, it followed
the first significant result (see section 3) in the search for robust transitivity:

Corollary 1.1. Let PHv ⊂ Diffr(M) be the set of volume-preserving, partially
hyperbolic diffeomorphisms. Let f ∈ PHv be accessible, exhibiting Property SH.
Then f is robustly transitive in PHv.
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Abdenur and Crovisier proved in [1] that the fact of a diffeomorphism being
robustly transitive implies that it is also topologically mixing modulo an arbitrarily
small C1 perturbation. Then to try to prove that an accessible, transitive dif-
feomorphism satisfying Property SH is topologically mixing is a natural question.
Thus we have the following result in section 3:

Theorem 1.1. Let f be a partially hyperbolic diffeomorphism, accessible, topolo-
gically transitive and satisfying Property SH. Then f is topologically mixing .

In section 5 we show that Shub’s example in T4 satisfies all the conditions in
this Theorem 1.1.

Trying to understand a little more Property SH we found that it is enough to
guarantee robust transitivity in the sense given by the following result proved in
section 4:

Theorem 1.2. Let M be a compact Riemannian manifold and let f ∈ Diffr(M) be
a partially hyperbolic diffeomorphism and transitive. If f and f−1 satisfy Property
SH then f is robustly transitive.

The point in this last Theorem is that the hypotheses are given on the tangent
bundle. The condition of minimality of the stable foliation assumed in [13] was
substituted here by the Property SH for f−1. In section 5 we give an scenario
where all the conditions in Theorem 1.2 are realized.

And in Section 6 we prove the density of periodic points under the assumption
of Property SH and minimality of the strong stable foliation.

Finally we would like to address a few related and interesting questions:

1) Does a Partially Hyperbolic, transitive and accessible System exhibiting the
Property SH, is necessarily robustly transitive?

2) Is it possible to exploit Theorem 1.2 to produce new examples of robustly tran-
sitive diffeomorphisms?

3) Which robustly transitive and Partially Hyperbolic Diffeomorphism can be ap-
proximated by one exhibiting the conditions in Theorem 1.2?

4) Given a diffeomorphism satisfying the hypotheses in Theorem 1.2 is it true
that the set of its periodic points is dense?

5) Given a diffeomorphism exhibiting the Property SH, transitivity and accessi-
bility is it true that the set of its periodic points is dense in the whole manifold?

6) Given a diffeomorphism exhibiting the Property SH and transitivity is it true
that the set of its periodic points is dense in the whole manifold?

In the following sections M will denote a compact Riemannian manifold and
Diffr(M) the set of Cr-diffeomorphims defined on M .
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2. Preliminaries

In this section we recall some well-known results regarding partially hyperbolic
systems. We refer to [7], [11], [14], [13] for a general background on the topics we
will review.

2.1. Partially Hyperbolic Diffeomorphisms.

Definition 2.1. A diffeomorphism f : M → M is partially hyperbolic provided
the tangent bundle splits into three non-trivial sub-bundles TM = Ess⊕Ec⊕Euu
which are invariant under the tangent map Df and there are 0 < λ < µ < 1 such
that for all x ∈M
‖ Df|Ess(x) ‖< λ, ‖ Df−1

|Euu(x) ‖< λ, µ <‖ Df−1
|Ec(x) ‖, ‖ Df|Ec(x) ‖< µ−1.

Lemma 2.1. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. Then
there exist a Cr neighborhood of f , say U , 0 < λ < λ1 < µ1 < µ < 1 and continuous
functions Ess : U → C(M,TM), Ec : U → C(M,TM) and Euu : U → C(M,TM)
such that, for any g ∈ U and x ∈M , we have the following:

(1) TM = Ess(g) ⊕ Ec(g) ⊕ Euu(g), this decomposition is invariant under Dg
and no one of these sub-bundles is trivial;

(2) ‖ Dg|Ess(x) ‖< λ1, ‖ Dg−1
|Euu(x) ‖< λ1;

(3) µ1 <‖ Dg−1
|Ec(x) ‖, ‖ Dg|Ec(x) ‖< µ−1

1 .

The sub-bundles Ess(g) and Euu(g) are uniquely integrable and form two folia-
tions Fss and Fuu.

Theorem 2.1. Let U be as in Lemma 2.1. Then, for each g ∈ U there are two
partitions Fss(g) and Fuu(g) of M such that for each x ∈ M the elements of the
partitions that contain x, denoted by Fss(x, g) and Fuu(x, g) are C1 submanifolds
such that TxFss(x, g) = Ess(x, g) and TxFuu(x, g) = Euu(x, g). These submani-
folds depend continuously (on compact subsets) on x ∈M and g ∈ U .

These submanifolds Fss(x, g) and Fuu(x, g) inherit the Riemannian metric on
M . We shall denote by Fssr (x, g) (respectively Fuur (x, g)) the ball in Fss(x, g)
(respectively Fuu(x, g)) of radius r centered at x.

The sub-bundle Ecu = Ec ⊕ Euu is not integrable in general. However, we
can choose a continuous family of locally invariant manifolds tangent to it. Let
dimEcu = l and denote by Iε the ball of radius ε in Rl.

Lemma 2.2. Let U be as in Lemma 2.1. There exists a continuous map
ϕ : M × U → Emb1(I1,M) such that, if we set W cu

ε (x, g) = ϕ(x, g)Iε, then the
following hold:

(1) TxW
cu
ε (x, g) = Ecu(x, g);

(2) given ε > 0 there exists r = r(ε) such that g−1(W cu
r (x, g)) ⊂W cu

ε (g−1(x), g).

For the sake of simplicity we shall identify W cu
ε (x, g) with the ball of radius ε in

W cu
1 (x, g).
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Lemma 2.3. Let U be as in Lemmas 2.1 and 2.2. Given 0 < λ < λ1 < 1 there
exists r0 such that if g ∈ U and x ∈M satisfy

n∏
j=0

‖ Dg−1
|Ecu(g−j(x))

‖< λn, 0 ≤ n ≤ m,

Then g−m(W cu
r0 (x, g)) ⊂W cu

λm1 r0
(g−m(x), g).

In the following, we will work with partially hyperbolic diffeomorphisms.

2.2. Accessibility.

Definition 2.2. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. Two
points p, q ∈ M are called accessible , if there are points z0 = p, z1, . . . , zl−1, zl =
q, zi ∈M , such that zi ∈ Fα(zi−1, f) for i = 1, . . . , l and α = ss or uu.

The collection of points z0, z1, . . . , zl is called the us-path connecting p and q
and is denoted by [p, q, f ].

Accessibility is an equivalence relation and the collection of points accessible
from a given point p is called the accessibility class of p. We will denote this class
by C(p, f).

The diffeomorphism f is said to have the accessibility property if the accessibility
class of any point is the whole manifold M , or, in other words, if any two points in
M are accessible.

Next we introduce the notion of accessibility in relation to open sets, which we
use to give a stronger version of Brin’s Theorem (See section 3).

Definition 2.3. Two open sets P,Q ⊆M are called accessible , if there are points
p ∈ P , q ∈ Q, such that p, q are accessible.

We will call a diffeomorphism f accessible in relation to open sets if any two
open sets are accessible.

Obviously accessibility implies accessibility in relation to open sets. The converse
is not true as can be shown with the following example:

Example 2.1. Take two linear Anosov diffeomorphisms A and B in T2 with
eigenvalues 1

8 , 3 and 1
8 , 9 respectively. Define the diffeomorphism F : T2 × T2 →

T2 × T2 given by F (x, y) = (A(x), B(y)). F is partially hyperbolic with T(x,y)T4 =
Es(x, y)⊕Es(x, y)⊕Ec(x, y)⊕Euu(x, y) where Ec(x, y) = Eu(x, y). Observe that
Fs(0, A) × Fs(0, B) ⊂ Fss((0, 0), F ) and hence Fss((0, 0), F ) is dense in T2 × T2.
Consequently F is accessible in relation to open sets. The fact that F is not acces-
sible follows from the integrability of Es⊕Es⊕Euu where for every (x, y) ∈ T2×T2

we have that T(x,y)(T2 ×W s(y,B)) = Es(x, y)⊕ Euu(x, y)⊕ Es(x, y).

Lemma 2.4. Assume that a partially hyperbolic diffeomorphism f has the accessi-
bility property. Then for every δ > 0 there exist l > 0 and R > 0 such that for any
p, q ∈ M one can find a us-path that starts at p, ends within distance δ

2 of q, and
has at most l legs, each of them with length at most R.

Proof. See [11]. �
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Lemma 2.5. Let f : M → M be a partially hyperbolic accessible diffeomorphism.
Given p0 ∈ M , there is q0 ∈ M and a us-path z0(q0) = p0, z1(q0), . . . , zN (q0) = q0

connecting p0 to q0 and satisfying the following property: for any ε > 0 there exist
δ > 0 and L > 0 such that for every x ∈ B(q0, δ) there exists a us-path z0(x) =
p0, z1(x), . . . , zN (x) = x connecting p0 to x and such that dist(zj(x), zj(q0)) < ε
and distFα(zj−1(x), zj(x)) < L for j = 1, . . . , N where distFα denotes the distance
along the strong (either stable or unstable) leaf common to the two points.

Proof. See [14]. �

Now we give an easy but interesting conquence of the last two Lemmas, useful
for our purposes in section 3.

Lemma 2.6. Assume that a partially hyperbolic diffeomorphism f has the accessi-
bility property. Then there exist l0 > 0 and R0 > 0 such that for any p, q ∈M one
can find a us-path that starts at p, ends at q, and has at most l0 legs, each of them
with length at most R0.

Proof. Fix p0 ∈M . Let q0 ∈M and a us-path z0(q0) = p0, z1(q0), . . . , zN (q0) = q0

be as in Lemma 2.5. Let ε > 0. Take δ > 0 and L > 0 as in Lemma 2.5. For
this δ > 0 take l > 0 and R > 0 as in Lemma 2.4. Next, set l0 = 2l + 2N and
R0 = max{R,L}. Let p, q ∈ M . From Lemma 2.4 we know that there exists a
us-path that starts at p (respectively q), ends within distance δ of q0, say at p1

(respectively q1), and has at most l legs, each of them with length at most R.
From Lemma 2.5 there exist a us-path z0(p1) = p0, z1(p1), . . . , zN (p1) = p1 con-
necting p0 to p1 and a us-path z0(q1) = p0, z1(q1), . . . , zN (q1) = q1 connecting p0

to q1.
Thus,

p1 = zN (p1), zN−1(p1), . . . , z0(p1) = p0 = z0(q1), z1(q1), . . . , zN (q1) = q1

is a us-path connecting p1 to q1, and it has 2N legs, each of them with length at
most L. Hence, using the us-paths [p, p1, f ] and [q, q1, f ] with at most l legs, each
of them with length at most R, we have completed the proof. �

Corollary 2.1. Let f : M →M be a partially hyperbolic accessible diffeomorphism.
Then there exist l1 > 0 and R1 > 0 such that for any p, q ∈ M one can find a
us-path z0 = p, z1, . . . , zl−1, zl = q, l ≤ l1, that starts at p, ends at q, such that
q ∈ FssR1

(zl−1, f), and each leg has length at most R1.

Proof. Let l0 and R0 be as in Lemma 2.6. Set l1 = l0 + 1 and set R1 = R0. Let
p, q ∈ M . Take q0 ∈ FssR0

(q, f). From Lemma 2.6 we know that one can find a
us-path z0 = p, z1, . . . , zl−1 = q0 that starts at p, ends at q0, and has at most l0
legs, each of them with length at most R0 = R1. Therefore, z0 = p, z1, . . . , zl−1 =
q0, zl = q is a us-path that starts at p, ends at q, and has at most l1 legs, each of
them with length at most R1. �

Now, using the last Corollary, we will prove that if f is accessible then, robustly,
for a fixed r > 0 and any pair of points p, q ∈ M there exists a path connecting p
to the center unstable disc of radius r centered at q.

Lemma 2.7. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. Given
R0 > 0 and d0 > 0 there exist δ0 > 0 and a neighborhood U(f) such that for any
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g ∈ U(f) and for every x, y ∈M such that d(x, y) < δ0 we have that FαR0
(x, g) and

FαR0
(y, f) are d0-close, α = ss or uu.

Proof. From Stable Manifold Theorem we know that for every x ∈ M there exist
rx > 0 and a neighborhood Ux(f) such that for any g ∈ Ux(f) and for every
y ∈ M such that d(x, y) < rx we have that FαR0

(x, f) and FαR0
(y, g) are d0

2 -close,
α = ss or uu. Thus, for any g ∈ Ux(f) and for every y, z ∈ B(x, rx) we get
FαR0

(y, g) and FαR0
(z, f) are d0-close, α = ss or uu. Since M is compact, there are

x1, x2, . . . , xn ∈M such that

M ⊂
n⋃
i=1

B(xi, rxi).

Let δ0 > 0 be a Lebesgue number of this cover and take

U(f) =

n⋂
i=1

Uxi(f).

Thus, if d(x, y) < δ0 then x, y ∈ B(xi, rxi) for some i = 1, 2, . . . , n. Hence we
have that FαR0

(x, f) and FαR0
(y, g) are d0-close, α = ss or uu, for any g ∈ U(f) ⊂

Uxi(f). �

Lemma 2.8. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. Given
R0 > 0 and r > 0 there exist ε > 0, δ0 > 0 and a neighborhood V(f) such that for
any g ∈ V(f) it follows that for any x, y ∈M with d(x, y) < δ0 the following holds:

FssR0+ε(x, g) tW cu
r (z, g) 6= ∅ for any z ∈ FssR0

(y, f).

Proof. Take ε > 0 given by Stable Manifold Theorem. There exists a neighborhood
U1(f) such that ε > 0 can to be taken for any g ∈ U1(f). Let d0 > 0 be such that
for any g ∈ U1(f) it follows that if d(x, y) < d0 then

Fssε (x, g) tW cu
r (y, g) 6= ∅.

Consider V(f) ⊂ U1(f) and δ0 > 0 given by Lemma 2.7. Thus, if g ∈ V(f) and
x, y ∈ M with d(x, y) < δ0 we have that FssR0

(x, g) and FssR0
(y, f) are d0-close and

therefore

FssR0+ε(x, g) tW cu
r (z, g) 6= ∅ for any z ∈ FssR0

(y, f).

�

Lemma 2.9. Let f ∈ Diffr(M) be a partially hyperbolic accessible diffeomor-
phism. Given r > 0 there exist a neighborhood U(f), l > 0 and R > 0 such that
for any g ∈ U(f) it follows that for every p, q ∈M there exists q′ ∈W cu

r (q, g) such
that one can find a us-path by g that starts at p, ends at q′, and has at most l legs,
each of them with length at most R.

Proof. Let l1 > 0 and R1 > 0 be as in Corollary 2.1. For the sake of simplicity, we
will assume that l1 = 4. Given R1 and r let ε, δ0 and V(f) be as in Lemma 2.8.
From Lemma 2.7 there exist δ1 > 0 and U1(f) ⊂ V(f) such that if g ∈ U1(f) and
x, y ∈M with d(x, y) < δ1 then FαR1

(x, g) and FαR1
(y, f) are δ0-close, α = ss or uu.

Once again, using Lemma 2.7 take δ2 > 0 and U2(f) ⊂ U1(f) such that if g ∈ U2(f)
and x, y ∈ M with d(x, y) < δ2 then FαR1

(x, g) and FαR1
(y, f) are δ1-close, α = ss

or uu. Finally let U(f) ⊂ U2(f) be a neighborhood such that for any g ∈ U(f) and
for any x ∈M we have that FαR1

(x, g) and FαR1
(x, f) are δ2-close, α = ss or uu.
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Let us prove that U(f), l = l1 and R = R1 + ε satisfy what we want. Let g ∈ U(f)
and let p, q ∈ M . We know that there exists a us-path by f that starts at p, ends
at q, and has at most l1 legs, each of them with length at most R1. Moreover,
the last leg lies in FssR1

(q, f). Suppose that such a us-path has exactly l1 legs. Let
p = z0, z1, z2, z3, z4 = q be such a us-path. See the figure.
We have that FuuR1

(p, g) and FuuR1
(p, f) are δ2-close. Then, there exists x1 ∈ FuuR1

(p, g)
such that d(x1, z1) < δ2. Thus FssR1

(x1, g) and FssR1
(z1, f) are δ1-close. There-

fore, there exists x2 ∈ FssR1
(x1, g) such that d(x2, z2) < δ1. Hence FuuR1

(x2, g) and
FuuR1

(z2, f) are δ0-close. Take x3 ∈ FuuR1
(x2, g) with d(x3, z3) < δ0. From Lemma 2.8,

since q ∈ FssR1
(z3, f) we have that

FssR1+ε(x3, g) tW cu
r (q, g) 6= ∅.

Take
q′ ∈ FssR1+ε(x3, g) tW cu

r (q, g),

and p, x1, x2, x3, q
′ the us-path by g. The case that such a us-path by f , connecting

p to q, has l′ legs with l′ < l1, is similar.
�

2.3. Property SH.

Next, we will define the key property that guarantees the robust transitivity:
some hyperbolicity (SH) on the central distribution Ec at some points. Before
we do, let us introduce some notation: if L : V → W is a linear isomorphism
between normed vector spaces we denote by m{L} the minimum norm of L, i.e.
m{L} =‖ L−1 ‖−1.

Definition 2.4. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. We
say that f exhibits the property SH if there exist λ0 > 1, C > 0 such that for any
x ∈M there exists yu(x) ∈ Fuu1 (x, f) (the ball of radius 1 in Fuu(x, f) centered at
x) satisfying

m{Dfn|Ec(f l(yu(x)))} > Cλn0 for any n > 0, l > 0.

The Property SH persists under slight perturbations and guarantees the robust-
ness of the minimality of a stable foliation for a partially hyperbolic diffeomorphism.

Theorem 2.2. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism exhi
biting Property SH. Then, there are U(f), C ′ > 0 and σ > 1 such that for any
g ∈ U it follows that for any x ∈M there exists yu ∈ Fuu1 (x, g) satisfying

m{Dgn|Ec(gl(yu))} > C ′σn for any n > 0, l > 0.

Proof. See [13]. �

Definition 2.5. Let f : M → M be a Cr partially hyperbolic diffeomorphism.
We say that Fss(f) is minimal when Fss(x, f), the leave of this foliation passing
through the point x, is dense in M for every x ∈ M . We say that Fss(f) is Cr-
robustly minimal if there exist a Cr neighborhood U(f) such that Fss(g) is minimal
for every diffeomorphism g ∈ U(f).

Theorem 2.3. Let r ≥ 1 and let f ∈ Diffr(M) be a partially hyperbolic diffeo-
morphism satisfying Property SH and such that the strong stable foliation Fss(f)
is minimal. Then, Fss(f) is C1 (and hence Cr) robustly minimal.
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Proof. See [13]. �

2.4. Blenders and heterodimensional cycles.

In this subsection we recall the notions of blender and heterodimensional cycle
and the relation between them. We also give a condition under which the presence
of a blender guarantees the Property SH.

Let M be a compact n-dimensional manifold, n ≥ 3; write n = k + m + 1,
where k,m ≥ 1. Let Dk and Dm denote the unitary closed balls in Rk and Rm,
respectively. Consider a C1-embedding C ofDk×[−1, 1]×Dm. Divide the boundary
of C into three parts as follows:

∂ssC = (∂Dk)× [−1, 1]×Dm,

∂uC = Dk × ∂([−1, 1]×Dm),

∂uuC = Dk × [−1, 1]× ∂Dm.

In C we take coordinates (xs, xc, xu), xs ∈ Dk, xc ∈ [−1, 1] and xu ∈ Dm. We
use the notation ∂

∂xs
to mean the space spanned by { ∂

∂x1
s
, · · · , ∂

∂xks
}. The definition

of ∂
∂xu

is analogous.

In the manifold M we consider a metric ‖ · ‖ that induces in the cube C the
product of the usual euclidean metrics in Dk, [−1, 1] and Dm.

Given a k-plane Π and ε > 0, we define the ε-cone around Π by Cε(Π) = {u ∈
TM, u = v + w, v ∈ Π, w ∈ Π>, ‖ w ‖≤ ε· ‖ v ‖}.

Fix ε ∈]0, 1[ and consider conefields Cuu, Cu and Css of size ε around the tangent
spaces of the families of disks {(xs, xc)} × Dm, {xs} × [−1, 1] × Dm and Dk ×
{(xc, xu)}, respectively.

We say that an m-disk ∆ in C is a vertical disk through C if ∆ is tangent to Cuu
and its boundary ∂∆ is contained in ∂uuC.

Definition 2.6. Let f : M →M be a C1-diffeomorphism and C a C1-embedding
of Dk × [−1, 1]×Dm. We say that the pair (C, f) is a cs-blender if it satisfies the
five properties (H1)− (H5) below:

(H1) There is a connected component A of C ∩ f(C) disjoint from the union
∂ssC ∪ f(∂uC).

(H2) There are n ∈ N∗ and a connected component B of fn(C) ∩ C so that B
is disjoint from Dk × {1} ×Dm, from ∂ssC and from f(∂uuC).

(H3) There is ε > 0 so that the conefields Cu, Cuu and Css of size ε defined above
satisfy:

i) For every x ∈ f−1(A) (resp. x ∈ f−n(B)) and every vector v ∈ Cu(x), the
vector w = Df(v) (resp. w = (Dfn)(v)) belongs to the interior of Cu(f(x)) (resp.
Cu(fn(x))). In addition, there is λ > 1 such that λ· ‖ v ‖≤‖ w ‖.

ii) For every x ∈ f−1(A) (resp. x ∈ f−n(B)) and every vector v ∈ Cuu(x), the
vector w = Df(v) (resp. w = (Dfn)(v)) belongs to the interior of Cuu(f(x)) (resp.
Cuu(fn(x))).
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iii) For every x ∈ A (resp. x ∈ B) and every vector v in Css(x), the vector
w = Df−1(v) (resp. w = Df−n(w)) is in the interior of the cone Css(f−1(x))
(resp. Css(f−n(x))). Moreover λ· ‖ v ‖≤‖ w ‖.

In [2] it is proved that the hypotheses (H1) and (H3) imply that the diffeo-
morphism f has an unique fixed point, say Q, in the component A. This point
is hyperbolic and its index is k. Denote by W s

0 the connected component of the
intersection W s(Q) ∩ C containing Q; W s

0 is a horizontal k-disk through the cube
C.

(H4) There is a neighborhood U of the left side {xc = −1} of C so that every
vertical disk D through C at the righ of W s

0 does not intersect U .
(H5) There are neighborhoods U and U+ of W s

0 and of the right side {xc = +1}
of C, respectively, so that for every vertical disk D through C at the right of W s

0

one of the two following possibilities holds:

i) The intersection f(D) ∩ A contains a vertical disk Σ through C at the right
of W s

0 and disjoint from U+;

ii) fn(D) ∩ B contains a vertical disk Σ through C at the right of W s
0 and dis-

joint from U .

We define cu-blender as a cs-blender for f−1.

Observation- 1. In [2], it is proved that if B is a cs-blender there is a conefield
Cuu around the strong unstable direction of B so that every curve σ tangent to Cuu
intersects W s(B). Moreover, such a property is C1-persistent.

Proposition 2.1. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism
with strong unstable minimal foliation such that B = (C, f) is a cs-blender. Then
f satisfies Property SH.
Analogously if f has a strong stable minimal foliation and it has a cu-blender then
f−1 satisfies Property SH.

Proof. It is not difficult to see that if the strong unstable foliation is minimal, then
there exists r > 0 such that Fuur (x, f) ∩ C 6= ∅, ∀x ∈ M . Hence, using the
observation above, we have that for some k > 0 and for every x ∈M , there exists

yx ∈ Fuur (x, f) ∩W s
k (B).

From this, it follows that

d(fn(yx), B)→ 0 when n→ +∞.

Since TzM = Ess(z, f)⊕Eu(z, f)⊕Euu(z, f) for every z ∈ B, there exists n0 ∈ N
such that Df|Ec(z) is uniformly expanding in the future ∀z ∈ fn0(W s

k (B)). There-
fore, f satisfies Property SH. �

Blenders can be produced by unfolding heterodimensional cycles far from homo-
clinic tangencies as in next Proposition found in [4].

Definition 2.7. Given a diffeomorphism f with two hyperbolic periodic points
Pf and Qf with different indices, say index(Pf ) > index(Qf ), we say that f has
a heterodimensional cycle with codimension index(Pf ) − index(Qf ) associated to
Pf and Qf if Fs(Pf , f) and Fu(Qf , f) have a (nontrivial) transverse intersection
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and Fu(Pf , f) and Fs(Qf , f) have a quasi-transverse intersection along the orbit
of some point x, i.e., TxFu(Pf , f) + TxFs(Qf , f) is a direct sum.

Proposition 2.2. Let f be a C1 diffeomorphism with a heterodimensional cycle
associated to saddles P and Q of indices p and q = p + 1. Suppose that the cycle
is C1-far from homoclinic tangencies. Then there is an open set V ⊂ Diff1(M)
whose closure contains f such that for every g in V there are a cs-blender defined
for g and a cs-blender defined for g−1 such that:
· The cs-blender for g is associated to a hyperbolic periodic point Rg homoclini-

cally related to Qg and is activated by Pg.
· The cs-blender for g−1 is associated to a hyperbolic periodic point Sg homoclini-

cally related to Pg and is activated by Qg.

3. A first step towards robust transitivity

From now on we will show our results. This section deals with the first results,
already mentioned on the introduction, obtained in colaboration with H. T. Alien.

We begin giving our version of Brin’s Theorem. Observe that the condition of
accessibility in relation to open sets is weaker than the condition of accessibility in
the original version.

Let g ∈ Diffr(M). We will denote by Ω(g) the set of the non-wandering points
for g.

Theorem 3.1. (Brin’s Theorem). Let f ∈ Diffr(M) be a partially hyperbolic
diffeomorphism exhibiting the accessibility property in relation to open sets. If
Ω(f) = M then f is transitive.

Proof. Let P,Q ⊂ M be open sets. Take two non-periodic points p ∈ P , q ∈ Q
such that p, q are accessible.
Thus, there exist

z0 = p, z1, z2, · · · , zl−1, zl = q ∈M
such that zi ∈ Fα(zi−1, f) for i = 1, · · · , l and α = ss or uu.

For the sake of simplicity, we will assume that l = 3, z1 ∈ Fssr (p, f), z2 ∈
Fuur (z1, f), q ∈ Fssr (z2, f) for some r > 0. Let δ0 > 0 be such that B(p, δ0) ⊂ P .
Take δ1 > 0 such that Fssr (z, f) and Fssr (z1, f) are δ0-close for any z ∈ B(z1, δ1).

Let δ2 > 0 be such that Fuur (z, f) and Fuur (z2, f) are δ1-close for any z ∈
B(z2, δ2).

Finally, choose δ > 0 such that Fssr (z, f) and Fssr (q, f) are δ2-close for any
z ∈ B(q, δ), with B(q, δ) ⊂ Q. Take l0 such that

fm(Fssr (z, f)) ⊂ B(fm(z),
δ

2
)

for any m ≥ l0, z ∈ M . Since Ω(f) = M , there are x3 ∈ B(q, δ) and m3 > l0 such
that fm3(x3) ∈ B(q, δ2 ).

From this it follows that Fssr (x3, f) and Fssr (q, f) are δ2-close and therefore

Fssr (x3, f) ∩B(z2, δ2) 6= ∅.

Moreover, it also follows that

fm3(Fssr (x3, f)) ⊂ B(fm3(x3),
δ

2
).
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Hence,

fm3(B(z2, δ2)) ∩B(fm3(x3),
δ

2
) 6= ∅.

Notice that B(fm3(x3), δ2 ) ⊂ B(q, δ) ⊂ Q. Thus V2 = B(z2, δ2) ∩ f−m3(Q) is non
empty.

Let B(w, γ) be a ball of radius γ in V2. Take m0 such that f−m(Fuur (z, f)) ⊂
B(f−m(z), γ2 ) for any m ≥ m0, z ∈ M . Using that Ω(f) = M , we obtain x2 ∈
B(w, γ) and m2 > m0 such that f−m2(x2) ∈ B(w, γ2 ). From this it follows that

Fuur (x2, f) and Fuur (z2, f) are δ1-close

and therefore

Fuur (x2, f) ∩B(z1, δ1) 6= ∅.
Moreover, it also follows that

f−m2(Fuur (x2, f)) ⊂ B(f−m2(x2),
γ

2
).

Hence,

f−m2(B(z1, δ1)) ∩B(f−m2(x2),
γ

2
) 6= ∅.

Observe that B(f−m2(x2), γ2 ) ⊂ V2 because f−m2(x2) ∈ B(w, γ2 ) and B(w, γ) ⊂
V2.

Thus

V3 = B(z1, δ1) ∩ fm2(V2)

= B(z1, δ1) ∩ fm2(B(z2, δ2)) ∩ fm2−m3(Q)

is non empty.
Now, let B(y, β) be a ball of radius β in V3. Take n0 such that fm(Fssr (z, f)) ⊂

B(fm(z), β2 ) for any m ≥ n0, z ∈ M . From Ω(f) = M , there exist x1 ∈ B(y, β)

and m1 > n0 such that fm1(x1) ∈ B(y, β2 ). From this we have that

Fssr (x1, f) and Fssr (z1, f) are δ0-close

and hence,

Fssr (x1, f) ∩B(p, δ0) 6= ∅.
Furthermore, we also have that

fm1(Fssr (x1, f)) ⊂ B(fm1(x1),
β

2
).

Thus,

fm1(B(p, δ0)) ∩B(fm1(x1),
β

2
) 6= ∅.

Since B(fm1(x1), β2 ) ⊂ B(y, β) ⊂ V3 ⊂ fm2−m3(Q), then

fm1(B(p, δ0)) ∩ fm2−m3(Q) 6= ∅
and therefore

fm1(P ) ∩ fm2−m3(Q) 6= ∅.
�

Theorem 3.2. Let f ∈ Diffr(M) be a partially hyperbolic accessible diffeomor-
phism exhibiting Property SH. Then there is U(f) such that for every g ∈ U and
p ∈M it follows that C(p, g) is dense in M .
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Proof. From Theorem 2.2 we know that there exist a neighborhood U0(f), C ′ > 0
and σ > 1 such that for every g ∈ U0 and x ∈M there exists a point yu ∈ Fuu1 (x, g)
satisfying

(1) m{Dgn|Ec(gl(yu))} > C ′σn for any n > 0, l > 0.

We may assume that C = 1. Otherwise we take a fixed power of every g ∈ U0.
Let λ = σ−1 and fix 0 < λ < λ1 < 1 and let r be as in Lemma 2.3. For this r > 0
take U(f) ⊂ U0(f), l > 0 and R > 0 as in Lemma 2.9. We will prove that for every
g ∈ U(f) and p ∈M we have that C(p, g) is dense in M .
Let V ⊂ M be an open set and let z ∈ V. Let β > 0 be such that Fuuβ (z, g) ⊂
V. Take n0 such that gn0(Fuuβ (z, g)) ⊃ Fuu1 (gn0(z), g). Consider the point yu ∈
Fuu1 (gn0(z), g) given by Theorem 2.2 and let η > 0 be such that

(2) g−n0(W cu
η (yu, g)) ⊂ V

Choose a positive integerm such that λm1 r < η and set k = n0+m. From Lemma 2.9
for q = gm(yu) there exists q′ ∈ W cu

r (q, g) such that one can find a us-path by g
that starts at gk(p), ends at q′, and has at most l legs, each of them with length at
most R.
Since Ecu = Ec ⊕ Eu and this decomposition is dominated, there is L > 0 such
that ‖ Dg−n|Ecu ‖≤ L sup{‖ Dg−n|Eu ‖, ‖ Dg

−n
|Ec ‖}. For the sake of simplicity, we will

assume that L = 1. From (1) we know that

(3)

n∏
j=0

‖ Dg−1
|Ec(g−j+m(yu)) ‖< λn, 0 ≤ n ≤ m

and therefore

(4)

n∏
j=0

‖ Dg−1
|Ecu(g−j+m(yu)) ‖< λn, 0 ≤ n ≤ m

From Lemma 2.3 we conclude that

(5) g−m(W cu
r (gm(yu), g)) ⊂W cu

λm1 r
(yu, g) ⊂W cu

η (yu, g)

and hence, using (2), we have g−k(W cu
r (gm(yu), g)) ⊂ V. Since q′ ∈W cu

r (gm(yu), g)
we get g−k(q′) ∈ V. Thus, there exists a us-path by g that starts at p, ends at
g−k(q′) ∈ V. Hence, g−k(q′) ∈ V ∩ C(p, g) and the proof is completed. �

Corollary 3.1. Let f ∈ Diffr(M) be a partially hyperbolic accessible diffeomor-
phism exhibiting Property SH. Then there is U(f) such that for any g ∈ U it follows
that g is accessible in relation to open sets.

Corollary 3.2. Let PHΩ ⊂ Diffr(M) be the set of partially hyperbolic diffeo-
morphisms such that the set of the non-wandering points is M . Let f ∈ PHΩ be
accessible, exhibiting Property SH. Then f is robustly transitive in PHΩ.

Corollary 3.3. Let PHv ⊂ Diffr(M) be the set of volume-preserving, partially
hyperbolic diffeomorphisms. Let f ∈ PHv be accessible, exhibiting Property SH.
Then f is robustly transitive in PHv.

As mentioned above our next step will be to prove that f transitive under the
conditions of Accessibility and Property SH is topologically mixing.
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Proposition 3.1. Assume that a partially hyperbolic diffeomorphism f has the
accessibility property . Then fk is also accessible for every k ∈ N∗.

Proof. For every x ∈M ,

Fssε (x, f) ⊂ Fssε (x, fk) for any k ∈ N∗,

and therefore,

Fss(x, f) ⊂ Fss(x, fk) for any k ∈ N∗.
Analogously

Fuu(x, f) ⊂ Fuu(x, fk) for any k ∈ N∗.
Hence fk is accessible for every k ∈ N∗. �

Corollary 3.4. Let f be a partially hyperbolic accessible diffeomorphism. Then fk

is also accessible for every k ∈ Z∗.

Proof. It is enough to notice that f−1 is accessible since Fss(x, f−1) = Fuu(x, f)
for any x ∈M . �

Proposition 3.2. Let f ∈ Diffr(M) be a topologically transitive diffeomorphism.
Then Ω(fk) = M for any k ∈ Z∗.

Proof. Fix k ∈ N∗ arbitrarily. Take p ∈ M and let V be an open neighborhood
of p. Since f is transitive, there exists z ∈ M such that infinitely many iterates
of z belong to V. Thus, we have two iterates fm0(z) and fm1(z), in V, such that
m0 ≡ m1 (mod k). Therefore, there exist q0, q1 ∈ N such that m0 = kq0 + r and
m1 = kq1 + r for some r ∈ N∗ with 0 ≤ r ≤ k − 1. Hence,

(fk)(q1−q0)(fm0(z)) = fm1−m0(fm0(z)) = fm1(z)

and p ∈ Ω(fk) ∩ Ω(f−k). �

Proposition 3.3. Assume that a partially hyperbolic diffeomorphism f has the
accessibility property. If f is topologically transitive then fk is also topologically
transitive for every k ∈ Z∗.

Proof. From Corollary 3.4 fk is accessible for every k ∈ Z∗. From Proposition 3.2
Ω(fk) = M for every k ∈ Z∗. From Brin’s Theorem, fk is topologically transitive
for every k ∈ Z∗. �

Theorem 3.3. Let f be a partially hyperbolic diffeomorphism, accessible, topolo-
gically transitive and satisfying Property SH. Then f is topologically mixing .

Proof. Let U ,W ⊂ M be open sets. Let x ∈ U and let β > 0 be such that
Fuuβ (x, f) ⊂ U . Take n0 such that fn0(Fuuβ (x, f)) ⊃ Fuu1 (fn0(x), f). Consider the

point yu ∈ Fuu1 (fn0(x), f) satisfying

(6) m{Dfn|Ec(f l(yu))} > Cσn for any n > 0, l > 0,

where C > 0, σ > 1.
We may assume that C = 1. Otherwise we take a fixed power of f . Let λ = σ−1,
fix 0 < λ < λ1 < 1 and let r be as in Lemma 2.3. Let η > 0 be such that

(7) f−n0(W cu
η (yu, f)) ⊂ U .
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Let q ∈ ω(yu) be a recurrent point.
Consider ε > 0 given in Stable Manifold Theorem. Take δ > 0 such that

d(z1, z2) < δ ⇒ Fssε (z1, f) tW cu
r (z2, f) 6= ∅.

From Shadowing Lemma, there exists p ∈M , periodic hyperbolic point, shadowing
a periodic pseudo-orbit in ω(yu) defined by recurrent point q, with d(p, q) < δ

2 .

Since q ∈ ω(yu), take m ∈ N∗ such that λm1 r < η and d(fm(yu), q) < δ
2 .

Set k0 = n0 +m. We have that d(p, fm(yu)) < δ and therefore

Fssε (p, f) tW cu
r (fm(yu), f) 6= ∅.

Let P be the period of p. From Proposition 3.3 fP is topologically transitive. Let
i ∈ {0, 1, . . . ,P − 1}. Take wi ∈ f−i(W ) and mi ∈ N∗ such that

(8) d((fP)−mi(wi), p) < δ and (fP)mi(Fssε ((fP)−mi(wi), f)) ⊂ f−i(W ).

Thus,

Fssε ((fP)−mi(wi), f) tW cu
r (p, f) 6= ∅.

Using λ-Lemma, there exists li ∈ N∗ such that

(fP)−n(Fssε ((fP)−mi(wi), f)) tW cu
r (fm(yu), f) 6= ∅, ∀n ≥ li.

Set l′ = max{li; i = 0, 1, . . . ,P − 1}. Then,

(9) (fP)−n(Fssε ((fP)−mi(wi), f)) tW cu
r (fm(yu), f) 6= ∅, ∀n ≥ l′.

Assertion: W cu
r (fm(yu), f) ⊂ fk0(U).

Proof. We know that Ecu = Ec ⊕ Eu is a dominated decomposition. Thus, there
is L > 0 such that ‖ Df−n|Ecu ‖≤ L sup{‖ Df−n|Ec ‖, ‖ Df

−n
|Eu ‖} . For the sake of

simplicity, we will assume that L = 1. From (6) we have that

n∏
j=0

‖ Df−1
|Ec(f−j(fm(yu))) ‖< λn, 0 ≤ n ≤ m

and therefore
n∏
j=0

‖ Df−1
|Ecu(f−j(fm(yu))) ‖< λn, 0 ≤ n ≤ m.

From Lemma 2.3 we conclude that f−m(W cu
r (fm(yu), f)) ⊂W cu

λm1 r
(yu, f) ⊂W cu

η (yu, f)

and hence, using (7), we have f−k0(W cu
r (fm(yu), f)) ⊂ U and the assertion is com-

pleted. �

Using the assertion, (8) and (10) we obtain

∅ 6= (fP)−n(Fssε ((fP)−mi(wi), f)) tW cu
r (fm(yu), f) ⊂

⊂ (fP)−n((fP)−mi(f−i(W ))) ∩ fk0(U), ∀n ≥ l′, ∀i ∈ {0, 1, . . . ,P − 1}.

Hence

(fP)−(n+mi)(f−i(W )) ∩ fk0(U) 6= ∅, ∀n ≥ l′, ∀i ∈ {0, 1, . . . ,P − 1}.

Taking n′ = max{l′ +mi; i = 0, 1, . . . ,P − 1} we have that

(fP)−n(f−i(W )) ∩ fk0(U) 6= ∅, ∀n ≥ n′, ∀i = 0, 1, . . . ,P − 1.
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Finally,
W ∩ fpn+k0+i(U) 6= ∅, ∀n ≥ n′, ∀i = 0, 1, . . . ,P − 1,

and the proof is completed. �

4. Robust Transitivity

Unlike the results in preceding section our next Theorem do not have in the
hypotheses the condition of Accessibility, leading us to suspect that Property SH
might be sufficient to guarantee robust transitivity.

Lemma 4.1. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. There
exist ε > 0 such that given r > 0 there are δ > 0 and a neighborhood V0 of f such
that for any x, y ∈M with d(x, y) < δ it follows that

• Fssε (x, g) tWcu
r (y, g) 6= ∅

•• Fuuε (x, g) tWcs
r (y, g) 6= ∅, for any g ∈ V0.

Proof. The result follows from Stable Manifold Theorem. �

Theorem 4.1. Let M be a compact Riemannian manifold and let f ∈ Diffr(M)
be a partially hyperbolic diffeomorphism, non-hyperbolic, transitive. If f and f−1

satisfy Property SH then f is robustly transitive .

Proof. For the sake of clarity we divide the proof in two steps. The first step deals
with the construction of an appropiate neighborhood V of f . In the second step we
prove that any diffeomorphism in V is transitive.
Step 1
From Theorem 2.2 there exist a neighborhood V1(f), C0 > 0 and σ0 > 1 such that
for every g ∈ V1 and x ∈M there exists a point y ∈ Fuu1 (x, g) such that

(10) m{Dgn|Ec(gl(y))} > C0σ
n
0 for any n > 0, l > 0.

Analogously there exist a neighborhood V2(f−1), C1 > 0 and σ1 > 1 such that for
every h ∈ V2 and x ∈M there exists a point y ∈ Fuu1 (x, h) such that

m{Dhn|Ec(hl(y))} > C1σ
n
1 for any n > 0, l > 0.

Take C = min{C0, C1} > 0 and σ = min{σ0, σ1} > 1. Thus, for every g ∈ V1 ∪ V2

and x ∈M there exists a point y ∈ Fuu1 (x, g) such that

m{Dgn|Ec(gl(y))} > Cσn for any n > 0, l > 0.

We may assume that C = 1. Otherwise we take a fixed power of every g ∈ V1 ∪V2.
Let V3(f) ⊂ V1 be a neighborhood of f such that if g ∈ V3 then g−1 ∈ V2. Let
λ = σ−1, fix 0 < λ < λ1 < 1 and let r > 0 be as in Lemma 2.3. Consider ε > 0
given by Stable Manifold Theorem and let r > 0 be as above. Take δ > 0 and
take V4(f) ⊂ V3 a neighborhood of f as in Lemma 4.1. Since f is transitive there
exists a point z ∈ M such that {fn(z);n ∈ N} and {f−n(z);n ∈ N} are dense in
M . Therefore

M =
⋃
n∈N

B(fn(z),
δ

2
)

and by compactness there exist positive integers n1 < · · · < nl such that

l⋃
i=1

B(fni(z),
δ

2
) = M.
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Next, choose a positive integer m0 and a neighborhood V5(f) ⊂ V4 such that if
m ≥ m0, g ∈ V5 and q ∈M then

• gm(Fssε (q, g)) ⊂ B(gm(q),
δ

6
)

• g−m(Fuuε (q, g)) ⊂ B(g−m(q),
δ

6
)

Affirmation 1. For each i = 2, . . . , l there exists mi ∈ Z∗+ satisfying:

(i) fmi(z) ∈ B(fni(z), δ6 ) for i = 2, . . . , l

(ii) m2 > n1 +m0

mi > mi−1 +m0 for i = 3, . . . , l

Proof. It follows by density of {fn(z);n ∈ N} in M . �

Affirmation 2. For each i = 2, . . . , l there exists mi ∈ Z∗− satisfying:

(iii) fmi(z) ∈ B(fni(z), δ6 ) for i = 2, . . . , l

(iv) m2 < n1 −m0

mi < mi−1 −m0 for i = 3, . . . , l

Proof. It follows by density of {f−n(z);n ∈ N} in M . �

Set l0 = max{nl,m2,m3,m4, . . . ,ml,−m2,−m3, . . . ,−ml}.
Observe that l0 ≥ nl > ni for i = 1, . . . , l − 1.
Take a neighborhood V(f) ⊂ V5 such that dC0(gn, fn) < δ

6 , for any n ∈ Z with
|n| ≤ l0, for any g ∈ V.
Step 2
We will prove that any g ∈ V is transitive. Take two arbitrary open sets U ,W ⊂M .
Let us prove that there exists a positive integer k0 such that gk0(U) ∩W 6= ∅. Let
u ∈ U and w ∈ W. Let β > 0 be such that Fuuβ (u, g) ⊂ U and Fuuβ (w, g−1) ⊂ W.

Take n0 such that gn0(Fuuβ
2

(u, g)) ⊃ Fuu1 (gn0(u), g) and g−n0(Fuuβ
2

(w, g−1)) ⊃
Fuu1 (g−n0(w), g−1). Consider y ∈ Fuu1 (gn0(u), g) and x ∈ Fuu1 (g−n0(w), g−1) satis-
fying:

(11)

{
m{Dgn|Ec(g

l(y))} > σn for any n > 0, l > 0

m{Dg−n|Ec(g
−l(x))} > σn for any n > 0, l > 0.

Observe that

• Fuuβ
2

(g−n0(y), g) ⊂ U because g−n0(y) ∈ Fuuβ
2

(u, g) ⊂ Fuuβ (u, g) ⊂ U

• Fuuβ
2

(gn0(x), g−1) ⊂ W because gn0(x) ∈ Fuuβ
2

(w, g−1) ⊂ Fuuβ (w, g−1) ⊂ W.

Thus, there exist A ⊂ U a neighborhood of g−n0(y) and B ⊂ W a neighborhood of
gn0(x) such that

(12)

{ Fuuβ
2

(a, g) ⊂ U for any a ∈ A

Fuuβ
2

(b, g−1) ⊂ W for any b ∈ B.
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Let η > 0 be such that

(13)

{
g−n0(Wcu

η (y, g)) ⊂ A ⊂ U
gn0(Wcu

η (x, g−1)) ⊂ B ⊂ W

Next, choose a positive integer m′ such that λm
′

1 r < η and

(14)

 gm
′+n0(Fuuβ

2

(q, g)) ⊃ Fuuε (gm
′+n0(q), g) for any q ∈M

g−(m′+n0)(Fuuβ
2

(q, g−1)) ⊃ Fuuε (g−(m′+n0)(q), g−1) for any q ∈M

Set k′ = n0 +m′. Thus, using (11), we get

n−1∏
j=0

‖ Dg−1
|Ec(g−j(y))

‖< λn, 0 ≤ n ≤ m′

n−1∏
j=0

‖ Dg|Ec(gj(x)) ‖< λn, 0 ≤ n ≤ m′

and therefore

n−1∏
j=0

‖ Dg−1
|Ecu(g−j(y))

‖< λn, 0 ≤ n ≤ m′

n−1∏
j=0

‖ Dg|Ecu(gj(x))
‖< λn, 0 ≤ n ≤ m′

From Lemma 2.3 we conclude that

(15)

 g−m
′
(Wcu

r (gm
′
(y), g)) ⊂ Wcu

λm
′

1 r
(y, g) ⊂ Wcu

η (y, g)

gm
′
(Wcu

r (g−m
′
(x), g−1)) ⊂ Wcu

λm
′

1 r
(x, g−1) ⊂ Wcu

η (x, g−1)

and hence, using (13), we have

(16)

{
g−k

′
(Wcu

r (gm
′
(y), g)) ⊂ A ⊂ U

gk
′
(Wcu

r (g−m
′
(x), g−1)) ⊂ B ⊂ W.

Particularly, it follows

(17)

{
Wcu
r (gm

′
(y), g) ⊂ gk

′
(U)

Wcu
r (g−m

′
(x), g−1) ⊂ g−k

′
(W).

Moreover, if p ∈ Wcu
r (gm

′
(y), g), q ∈ Wcu

r (g−m
′
(x), g−1) then g−k

′
(p) ∈ A and

gk
′
(q) ∈ B due to (16). Thus, from (12),

Fuuβ
2

(g−k
′
(p), g) ⊂ U and Fuuβ

2

(gk
′
(q), g−1) ⊂ W

and hence, (14) imply
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(18)

 F
uu
ε (p, g) ⊂ gk

′
(Fuuβ

2

(g−k
′
(p), g)) ⊂ gk

′
(U)

Fuuε (q, g−1) ⊂ g−k
′
(Fuuβ

2

(gk
′
(q), g−1)) ⊂ g−k

′
(W).

Finally, from (17) and (18) we conclude that

(i) Wcu
r (gm

′
(y), g) ⊂ gk

′
(U)

(ii) Fuuε (p, g) ⊂ gk
′
(U), ∀p ∈ Wcu

r (gm
′
(y), g)

(iii) Wcs
r (g−m

′
(x), g) ⊂ g−k

′
(W)

(iv) Fssε (q, g) ⊂ g−k
′
(W), ∀q ∈ Wcs

r (g−m
′
(x), g)

For the sake of simplicity, we will denote gm
′
(y) for y and g−m

′
(x) for x.

Since M =
l
∪
i=1
B(fni(z), δ2 ), there are i, j ∈ {1, . . . , l} such that

y ∈ B(fni(z),
δ

2
) and x ∈ B(fnj (z),

δ

2
).

• Case i = j
In this case, d(x, y) < δ. Thus, using Lemma 4.1, Fuuε (y, g) t W cs

r (x, g) 6= ∅.

Moreover, by (ii) and by (iii), we have that Fuuε (y, g) ⊂ gk
′
(U) and Wcs

r (x, g) ⊂
g−k

′
(W), and hence, gk

′
(U) ∩ g−k′(W) 6= ∅, i.e., g2k′(U) ∩W 6= ∅.

Next, we will prove the case i < j. The case i > j is similar.
• Case i < j
First assume i > 1. Consider j = i+ k for k = 1, 2, . . . , l − i. In this case we have
that

d(y, gmi(z)) ≤ d(y, fni(z)) + d(fni(z), fmi(z)) + d(fmi(z), gmi(z))

<
δ

2
+
δ

6
+
δ

6
< δ

and therefore

Fssε (gmi(z), g) tW cu
r (y, g) 6= ∅.

Take p ∈ Fssε (gmi(z), g) tW cu
r (y, g). Since

mj −mi = mi+k −mi = (mi+k −mi+(k−1)) + (mi+(k−1) −mi+(k−2))

+ · · ·+ (mi+1 −mi) > km0 > m0,

gmj−mi(Fssε (gmi(z), g)) ⊂ B(gmj (z),
δ

6
),

and from this it follows that

gmj−mi(p) ∈ B(gmj (z),
δ

6
).
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Thus,

d(gmj−mi(p), x) ≤ d(gmj−mi(p), gmj (z)) + d(gmj (z), fmj (z))

+ d(fmj (z), fnj (z)) + d(fnj (z), x)

<
δ

6
+
δ

6
+
δ

6
+
δ

2
= δ

and from Lemma 4.1, we get

(v) Fuuε (gmj−mi(p), g) tWcs
r (x, g) 6= ∅.

Using that (mj −mi) > 0 and p ∈ Wcu
r (y, g) and using (ii), we have that

Fuuε (gmj−mi(p), g) ⊂ gmj−mi(Fuuε (p, g)) ⊂ gmj−mi(gk
′
(U)).

From (iii) and (v) we conclude that

gmj−mi(gk
′
(U)) ∩ g−k

′
(W) 6= ∅.

In this case the proof is completed.

Now, assume i = 1.
Consider j = i+ k for k = 1, 2, . . . , l − i. In this case we have that

d(y, gn1(z)) ≤ d(y, fn1(z)) + d(fn1(z), gn1(z))

<
δ

2
+
δ

6
< δ

and therefore

Fssε (gn1(z), g) tWcu
r (y, g) 6= ∅.

Take p ∈ Fssε (gn1(z), g) tWcu
r (y, g). Since

mj − n1 = m1+k − n1 = (m1+k −mk) + (mk −mk−1) + · · ·+ (m2 − n1)

> km0 > m0,

gmj−n1(Fssε (gn1(z), g)) ⊂ B(gmj (z),
δ

6
),

and from this it follows that

gmj−n1(p) ∈ B(gmj (z),
δ

6
).
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Thus,

d(gmj−n1(p), x) ≤ d(gmj−n1(p), gmj (z)) + d(gmj (z), fmj (z))

+ d(fmj (z), fnj (z)) + d(fnj (z), x)

<
δ

6
+
δ

6
+
δ

6
+
δ

2
= δ

and from Lemma 4.1 , we get

(vi) Fuuε (gmj−n1(p), g) tWcs
r (x, g) 6= ∅.

However,

Fuuε (gmj−n1(p), g) ⊂ gmj−n1(Fuuε (p, g)) ⊂ gmj−n1(gk
′
(U))

due to

mj − n1 > 0, p ∈ Wcu
r (y, g) and (ii).

From (iii) and (vi) we conclude that

gmj−n1(gk
′
(U)) ∩ g−k

′
(W) 6= ∅.

Hence, the case i < j is completed. The case i > j follows by symmetry, and the
proof of Theorem is completed.

�

5. Examples

5.1. Shub’s example.

Now we will show that Shub’s example satisfies the conditions in Theorems 3.2,
3.3. As a consequence its accessibility classes are robustly dense in T4 and it is
topologically mixing.

Let us remember a few details concerning the construction of Shub’s example.
We will follow the notation in [13].

Let f : T2 → T2 be an Anosov diffeomorphism having two fixed points p and q.
Since f is Anosov, TT2 = Ess ⊕ Euu with ‖ Df|Ess ‖< λ < 1 and ‖ Df−1

|Euu ‖< λ.

Now, consider a smooth family of torus diffeomorphisms gx : T2 → T2 indexed
in x ∈ T2 such that the following hold:

• TT2 = Es(gx)⊕ Ec(gx) invariant under D(gx) and such that ‖ D(gx)|Es(gx) ‖
< µ < µ1 < 1 and µ < µ1 <‖ D(gx)|Ec(gx) ‖≤ µ−1;

• for all x ∈ T2, gx preserves a cone field Cs and Ccu;

• gp is Anosov and gx = gp outside a small disc of T2;

• gq is a DA (derived from Anosov) map and gx = DA inside a smaller disc;

• gx(p) = p for every x and p is an atractor for gq.

We assume (taking a power of f if necessary) that λ < µ. Next, we define the
map on T4:

F : T2 × T2 → T2 × T2, F (x, y) = (f(x), gx(y)).
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F constructed this way is partially hyperbolic with T(x,y)T4 = Ess(x, y) ⊕
Es(x, y)⊕ Ec(x, y)⊕ Eu(x, y). Let us set Es = Ess ⊕ Es.

It is a known fact that F is transitive.
In [13] it is used that

(19) W s({p} × T2) =
⋃
z∈T2

W ss(p, z) = W ss(p, f)× T2

and hence is dense in T2 × T2. So for some ε > 0 and r > 0 we have for every
(z, w) ∈ T2 × T2 that

(20) Wuu
ε ((z, w)) ∩W s

r ({p} × T2) 6= ∅,

which guarantees the Property SH because for any point y in the intersection holds
that for some uniform n0 the iterates Fn(y), n ≥ n0 are contained in the region
where F is the product of two linear Anosovs.

Finally, we will verify that F is accessible.
Relations (19) and (20) reduce our problem to prove that any two points (p, w)

and (p, y) are accessible.
Observe that, since gp is Anosov, we have that

(21) W s(p, z) =
⋃

y∈W s(z,gp)

W ss(p, y)

and

(22) Wu(p, z) =
⋃

y∈Wu(z,gp)

Wuu(p, y)

From (21) it follows that if x ∈W s(z, gp) then W ss(p, x) ⊂W s(p, z) and so (p, x) ∈
W s(p, z). Analogously from (22) it follows that if x ∈Wu(z, gp) then Wuu(p, x) ⊂
Wu(p, z) and so (p, x) ∈Wu(p, z).

Since gp is Anosov we can take u ∈ W s(w, gp) ∩Wu(y, gp) 6= ∅. Hence (p, u) ∈
W s(p, w) ∩Wu(p, y) and the points (p, w) and (p, y) are accessible.

5.2. Mañé’s example.

Let f : T3 → T3 be a partially hyperbolic diffeomorphism, such that there exists
an open set of nonhyperbolic diffeomorphisms V ⊂ Diff1(T3), containing f , whose
elements exhibit no homoclinic tangencies. Suppose that f has two hyperbolic fixed
points with different indices, satisfies Property SH and its strong stable foliation
Fss(f) is minimal.

Here we will prove that there exists a transitive diffeomorphism ϕ as close as we
wish to f in C1 topology, such that ϕ and ϕ−1 satisfy Property SH.

In fact, from Theorems 2.2 and 2.3, there exists a neighborhood U(f) ⊂ V such
that for every g ∈ U(f) the strong stable foliation of g is minimal and g satisfies
Property SH.

By Hayashi’s Connecting Lemma there exists h ∈ U(f) with a heterodimensional
cycle of codimension one associated to two hyperbolic fixed points Ph and Qh. (See
Lemma 2.5 in [3]).
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Consequently, by Proposition 2.2, there exists ϕ ∈ U(f) close to h with a cu-
blender.

As the strong stable foliation Fss(ϕ) is minimal, because ϕ ∈ U(f), then, by the
Proposition 2.1, ϕ−1 has the Property SH.

Finally, ϕ is transitive and exhibits the Property SH, again because ϕ ∈ U(f).
Remember that Mañé’s example gives an open set V of nonhyperbolic diffeomor-

phisms far from homoclinic tangencies (See [10]). In this case, Mañé’s example, for
f ∈ V we have
· f has two saddles of different indices whose stable and unstable manifolds are

dense in T3,
· f satisfies Property SH and its strong stable foliation is minimal (See [13]).
Hence, there exists a transitive perturbation of Mañé’s example in T3 such that

it and its inverse satisfy Property SH.

5.3. A wider scenario for SH on the inverse.

Next we generalize the argument used on Mañé’s example to get perturbations
whose inverses satisfy Property SH, based on some known facts.

Claim 1. Let f ∈ Diff1(M) be a diffeomorphism such that its periodic points are
C1-robustly hyperbolic and Ω(f) = M . Then f is Anosov.

Proof. See [8].
�

Let M be a smooth compact boundaryless three dimensional manifold and T
the set of non Anosov robustly transitive partially hyperbolic diffeomorphisms in
M .

Claim 2. There is a dense subset A of T such that for every f ∈ A there exists a
pair of hyperbolic periodic points with different indices.

Proof. It follows from Claim 1 and [9]. �

Claim 3. There exists a dense subset B of T such that every f ∈ B has a heterodi-
mensional cycle of codimension one.

Proof. It follows from Claim 2 and [3]. �

Claim 4. There exists an open and dense subset D of T such that every g ∈ D has
a cs-blender and a cu-blender.

Proof. It follows from Claim 3 and Proposition 2.2. �

Let us denote by T ′ the subset of T consisting of the diffeomorphisms with strong
stable robustly minimal foliation.

Proposition 5.1. There exists an open and dense subset D′ of T ′ such that for
every g ∈ D′ we have that g−1 satisfies Property SH.

Proof. Just apply Claim 4 and Proposition 2.1. �



24 ANA TÉRCIA MONTEIRO OLIVEIRA

6. Property SH and density of periodic points

Here we prove that for a diffeomorphism exhibiting Property SH and minimality
of the strong stable foliation the set of its periodic points is dense. So both transi-
tivity and density of the periodic points are robust properties under the hypotheses
of Property SH and minimality of the strong stable foliation.

As can be seen in the following proof the condition of minimality can be weakened
to some kind of d-minimality of the strong stable foliation for some appropriate d.

This result together with those proved before gives us a sense of the potential of
the Property SH, raising up a few interesting questions mentioned in the introduc-
tion to this work.

Remark 6.1. In the next result we will assume that f is a partially hyperbolic
diffeomorphism exhibiting Property SH, as in Definition 2.4. Changing f by a
power of itself, we can assume that there is σ > 1 such that for any x ∈ M there
exists yu ∈ Fuu1 (x, f) such that

(23) m{Dfn|Ec(f l(yu))} > σn for any n > 0, l > 0.

Theorem 6.1. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism ex-
hibiting Property SH and such that the strong stable foliation is minimal. Then,
Per(f) = M .

Proof. Let SH be defined by:

(24) SH = {y ∈M : m{Dfn|Ec(f l(y))} > σn for any n > 0, l > 0}.

Lemma 6.1. If SH ⊂ Per(f) then M ⊂ Per(f).

Proof. Let x ∈ M and V an open set containing x. Let β > 0 be such that
Fuuβ (x, f) ⊂ V . Take l0 such that Fuu1 (f l0(x), f) ⊂ f l0(Fuuβ (x, f)). Consider

h ∈ Fuu1 (f l0(x), f)∩SH. Let U be an open set containing h such that f−l0(U) ⊂ V .
It is enough to take p0 a periodic point in U and consequently f−l0(p0) in V . �

Analogously if fn(SH) ⊂ Per(f) for some n ∈ N∗ then M ⊂ Per(f).

From now on our goal will be to prove that SH ⊂ Per(f).

Lemma 6.2. Let ε > 0 be given by the Stable Manifold Theorem and r > 0 sufi-
ciently small. For any ε′ < ε, r′ < r there exists d′ = d′(ε′, r′) > 0 such that for any
pair of points x, y ∈M with dist(x, y) < d′ the manifolds W cu

r′ (x, f) and Fssε′ (y, f)
intersect transversely in exactly one point.

Let us fix ε′, r′ and d′ as in Lemma 6.2.

Definition 6.1. We will call a cylinder any open set W ⊂M , with diam(W ) < d′,
which is the domain of some local chart η : M → Rn trivializing the strong stable
foliation such that W cu

r′ (y, f) *W and Fssε′ (y, f) *W for any y ∈W .

Lemma 6.3. For every x ∈M there exists a cylinder containing x.

Proof. First observe that there exists a local chart (W̃ , η̃), trivializing the strong

stable foliation, with x ∈ W̃ and such that W cu
r′ (x, f) * W̃ ,Fssε′ (x, f) * W̃ . Now

by the continuous dependence of the manifolds W cu
r′ (y, f) and Fssε′ (y, f) on the

point y, follows the existence of an open set
˜̃
W ⊂ W̃ containing x and such that

W cu
r′ (z, f) * W̃ ,Fssε′ (z, f) * W̃ for any z ∈ ˜̃

W .
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Finally take a local chart trivializing the strong stable foliation (W, η), with

x ∈W ⊂ ˜̃
W and diam(W ) < d′. �

Notice that there exists a base B of open sets of the topology of manifold M
whose elements are cylinders.

Let C be an open covering of cylinders of the manifold M and L its Lebesgue
number.

Lemma 6.4. Let C be a cylinder and let η : C → U cu × V ss be a local chart
trivializing the strong stable foliation, where U cu, V ss are open sets in Rc+uu,Rss
respectively and 0 ∈ η(C). Let π : U cu × V ss → U cu × {0} be the projection of

Rc+uu+ss on Rc+uu × {0}. Let h ∈ C and r̂ > 0 be such that Fssr̂ (h, f) ⊂ C and

let δ̂ > 0 be such that W cu
δ̂

(y, f) ⊂ C for any y ∈ Fssr̂ (h, f). Denote π(η(h)) by

(hcu, hss). Then the following hold:

(i) π|η(W cu
δ̂

(y,f))
is an homeomorphism on its image for any y ∈ Fssr̂ (h, f).

(ii) There exists an open ball B ⊂ U cu centered at hcu such that

B × {0} ⊂
⋂

y∈Fssr̂ (h,f)

π(η(W cu
δ̂

(y, f))).

(iii) There exists 0 < δ < δ̂ such that for any y1, y2 ∈ Fssr̂ (h, f) there exists
a continuous map πy1,y2 : W cu

δ
(y1, f) → W cu

δ̂
(y2, f) and if t′ = πy1,y2(t) then

t′ ∈ Fss(t, f).

Proof. (i) As C is a cylinder it follows that if x, y ∈ C,W cu
r (y, f) ⊂ C,Fssε (x, f) ⊂ C

then r < r′, ε < ε′ and by Lemma 6.2 if W cu
r+r′

2

(y, f)∩Fssε (x, f) 6= ∅ then this inter-

section is exactly one point. So if W cu
r (y, f) ∩ Fssε (x, f) 6= ∅ then this intersection

is exactly one point and so π|η(W cu
r (y,f))

is injective. As η(W cu
r (y, f)) is compact

and Hausdorff then π(η(W cu
r (y, f))) is Hausdorff and we get that π|η(W cu

r (y,f))
is

an homeomorphism on its image. Taking r = δ̂ it follows that π|η(W cu
δ̂

(y,f))
is an

homeomorphism on its image.
(ii) As π|η(W cu

δ̂
(y,f))

is an homeomorphism on its image by the Invariance of

Domain Theorem it is easy to see that for any y ∈ Fssr̂ (h, f) there exists an open
ball By ⊂ U cu centered at hcu such that By × {0} ⊂ π(η(W cu

δ̂
(y, f))). Now by

the compacity of Fssr̂ (h, f) and by the continuous dependence of the manifolds
W cu
δ̂

(y, f) on the points y follows the existence of the open ball B.

(iii) It is enough to take δ < δ̂ suficiently small such that η(W cu
δ

(y, f)) ⊂ B×V ss

for any y ∈ Fssr̂ (h, f). Then π(η(W cu
δ

(y1, f))) ⊂ B × {0} ⊂ π(η(W cu
δ̂

(y2, f))) for

every y1, y2 ∈ Fssr̂ (h, f). Since π|η(W cu
δ̂

(y1,f))
and π|η(W cu

δ̂
(y2,f))

are homeomor-

phisms, the function:

πy1,y2 = (η)−1 ◦ (π|η(W cu
δ̂

(y2,f))
)−1 ◦ π|η(W cu

δ̂
(y1,f))

◦ η : W cu
δ

(y1, f)→W cu
δ̂

(y2, f)

is well defined and continuous.
Moreover if t′ = πy1,y2(t) then

π|η(W cu
δ̂

(y2,f))
◦ η(t′) = π|η(W cu

δ̂
(y1,f))

◦ η(t)
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and using that η is a chart trivializing the strong stable foliation we conclude that
t′ ∈ Fss(t, f).

�

Choose δ > 0 such that if dist(z, SH) < δ then

(25) ‖ Df−1
|Ec(f(z)) ‖< (σ′)−1 < 1

for some 1 < σ′ < σ.
Let us define the set SH′ by

SH′ =
⋃
z∈SH

Fssδ (z, f).

Lemma 6.5. If x ∈ SH ′ then m{Dfn|Ec(f l(x))} > (σ′)n for any n > 0, l > 0.

Proof. It follows by induction, using (25) and the fact that f(SH) ⊂ SH. �

Let α = (σ′)−1, fix 0 < α < α1 < 1 and let r0 be as in Lemma 2.3.

Lemma 6.6. There exist 0 < d < r1 < r0 and ε1 > 0 such that for every x ∈
M, z ∈W cu

d (x, f) and

Ax,z = W cu
r1 (x, f) ∪ (

⋃
y∈W cu

d (z,f)

Fssε1 (y, f))

then diam(Ax,z) < L and for any y ∈ W cu
d (z, f) the intersection of Fssε1 (y, f) with

W cu
r1 (x, f) is exactly one point.

Proof. Take r1 < min{L8 , r, r0} and ε1 < min{L8 , ε}. From Lemma 6.2 there exist
d1 such that if dist(x, y) < d1 then the manifolds W cu

r1 (x, f) and Fssε1 (y, f) intersect
in exactly one point.

Take d < min{d14 , r1}. Let now x ∈M be an arbitrary point and z ∈W cu
d (x, f).

Observe that if y ∈W cu
d (z, f) then

dist(x, y) ≤ dist(x, z) + dist(z, y) ≤ distW cu(x, z) + distW cu(z, y) ≤ 2d <
d1

2
< d1

so the manifolds W cu
r1 (x, f) and Fssε1 (y, f) intersect at exactly one point.

Also if t ∈ Fssε1 (y, f) for some y ∈W cu
d (z, f) then

dist(t, x) ≤ dist(t, y)+dist(y, x) ≤ distFss(t, y)+dist(y, x) ≤ ε1+2d <
L

8
+2r1 <

L

2

and if t ∈W cu
r1 (x, f) then

dist(t, x) ≤ distW cu(t, x) ≤ r1 <
L

8

so it follows easily that diam(A) < L. �

Consider λ < 1 the contraction factor of the strong stable subbundle.
Let h ∈ SH and let U ⊂ M be an open set containing h. We will prove that there
exists a periodic point in U .
Let C ∈ B be a cylinder contained in U such that h ∈ C.
Take 0 < r̂ < δ such that Fss2r̂ (h, f) ⊂ C and K > δ + ε1 such that

(26) FssK (x, f) tW cu
d (y, f) 6= ∅,∀x, y ∈M.
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Remark 6.2. Observe that this is the only step where the condition of minimality
of the strong stable foliation is used and that the number d is uniform depending
only of the diffeomorphism. In fact the condition of minimality of the strong stable
foliation can be substituted by the fact that for any x ∈M there exists K > 0 such
that (26) holds for any y ∈M .

Choose n0 ∈ N such that

FssK (f−n0(x), f) ⊂ f−n0(Fssr̂ (x, f)), ∀x ∈M.

Take δ̂ satisfying simultaneously the following three conditions:

1)W cu
δ̂

(y, f) ⊂ C, ∀y ∈ Fssr̂ (h, f)

2)f−n0(W cu
δ̂

(y, f)) ⊂W cu
d (f−n0(y), f), ∀y ∈ Fssr̂ (h, f)

3)If dist(z,Fssr̂ (h, f)) < δ̂ then Fssr̂ (z, f) ⊂ C.

To see that there exists δ̂ satisfying 3) observe that for each y ∈ Fssr̂ (h, f) there

exists θy such that if dist(z, y) < θy then Fssr̂ (z, f) ⊂ C because Fssr̂ (y, f) ⊂
Fss2r̂ (h, f) ⊂ C.

Let now δ and πy1,y2 be like in Lemma 6.4. Observe that δ can be selected

arbitrarily small. Take then δ such that

(27) Fssr̂ (πh,y2(q), f) ⊂ Fss2r̂ (q, f), ∀q ∈W cu
δ

(h, f), ∀y2 ∈ Fssr̂ (h, f)

This is possible because Fssr̂ (h, f) intersects transversely W cu
δ̂

(y2, f) in y2. Thus,

using the compacity of Fssr̂ (h, f), we conclude that Fssr̂ (q, f) intersects W cu
δ̂

(y2, f)

for any y2 ∈ Fssr̂ (h, f) when q is in some suficiently small open ball centered at h.
As C is a cylinder any non empty intersection of a strong stable disc and a center
unstable disc, both of them contained in C, consists of exactly one point. Further-
more, πh,y2(q) ∈ W cu

δ̂
(y2, f) ∩ Fssr̃ (q, f) for some r̃. Hence πh,y2(q) ∈ Fssr̂ (q, f),

which clearly implies (27).

Let N ∈ N be such that (α1)Nr0 < δ and fN (Fss2r̂ (y, f)) ⊂ Fssδ (fN (y), f), ∀y ∈
M . From Lemma 6.5 it follows that

n∏
j=0

‖ Df−1
|Ec(f−j(z)) ‖< αn, 0 ≤ n ≤ N, ∀z ∈ fN (Fssr̂ (h, f))

and therefore
n∏
j=0

‖ Df−1
|Ecu(f−j(z)) ‖< αn, 0 ≤ n ≤ N, ∀z ∈ fN (Fssr̂ (h, f)).

Then by Lemma 2.3 we conclude that:

f−N (W cu
r1 (fN (y), f)) ⊂ f−N (W cu

r0 (fN (y), f)) ⊂W cu
αN1 r0

(y, f) ⊂W cu
δ

(y, f)

for any y ∈ Fssr̂ (h, f).
Put y1 = h. We know that FssK (f−n0(h), f) intersects W cu

d (fN (h), f) in some point
z. Then there exists y2 ∈ Fssr̂ (h, f) such that z = f−n0(y2) and a continuous func-
tion πh,y2 : W cu

δ
(h, f)→W cu

δ̂
(y2, f) such that if t′ = πh,y2(t) then t′ ∈ Fss(t, f).
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Set x = fN (h) in Lemma 6.6. From this it follows that there exists a cylinder

Ĉ containing

A = W cu
r1 (x, f) ∪ (

⋃
y∈W cu

d (z,f)

Fssε1 (y, f))

and for any y ∈W cu
d (z, f) the intersection of the manifolds Fssε1 (y, f) and W cu

r1 (x, f)
is exactly one point.

Now let φ : Ĉ → Û cu × V̂ ss be the trivializing local chart of the strong stable
foliation with 0 ∈ φ(Ĉ) and π̂ : Û cu× V̂ ss → Û cu×{0} the projection. By the same
argument used while proving (i) in Lemma 6.4 we know that if π1 = π̂|φ(W cu

r1
(x,f))

then π1 is a homeomorphism on its image.
On the other side if π2 = π̂|φ(W cu

d (z,f)), as the intersection between the manifolds

Fssε1 (y, f) and W cu
r1 (x, f) is exactly one point, it follows

π2(φ(W cu
d (z, f))) ⊂ π1(φ(W cu

r1 (x, f))).

Then the function

g : π1(φ(W cu
r1 (x, f)))→ π2(φ(W cu

d (z, f)))

defined by g = π2 ◦ φ ◦ f−n0 ◦ πh,y2 ◦ f−N ◦ (φ)−1 ◦ (π1)−1 is well defined and it
is continuous. Hence by Brower’s fixed point Theorem there exists a fixed point
p ∈ π1(φ(W cu

r1 (x, f))), that is

(28) π2 ◦ φ ◦ f−n0 ◦ πh,y2 ◦ f−N ◦ (φ)−1 ◦ (π1)−1(p) = p.

Observe that π̂(π−1
1 (p)) = π̂(π−1

2 (p)) = p and therefore the stable manifolds of
pr1 = (φ)−1 ◦ π−1

1 (p), p−n0
= (φ)−1 ◦ π−1

2 (p) coincide (Fss(pr1 , f) = Fss(p−n0
, f)).

Also

Fss(f−N (p−n0
), f) = Fss(f−N (pr1), f) and Fss(fn0(p−n0

), f) = Fss(fn0(pr1), f).

From (28)

(φ)−1 ◦ π−1
2 ◦ π2 ◦ φ ◦ f−n0 ◦ πh,y2 ◦ f−N (pr1) = (φ)−1 ◦ π−1

2 (p) = p−n0

and hence

πh,y2 ◦ f−N (pr1) = fn0(p−n0).

So

Fss(fn0(pr1), f) = Fss(fn0(p−n0
), f) = Fss(πh,y2 ◦ f−N (pr1), f)

= Fss(f−N (pr1), f) = Fss(f−N (p−n0
), f)

which implies Fss(pr1 , f) = Fss(f−n0−N (p−n0), f).
Observe that p−n0

∈ W cu
d (z, f), pr1 ∈ W cu

r1 (x, f) = W cu
r1 (fN (h), f) and pr1 ∈

Fssε1 (p−n0
, f). Thus distFss(pr1 , p−n0

) ≤ ε1 and p−n0
= f−n0 ◦ πh,y2 ◦ f−N (pr1) ∈

f−n0(W cu
δ̂

(y2, f)).

Take θ ∈ Fssδ (pr1 , f) arbitrary. Then

distFss(θ, p−n0
) ≤ distFss(θ, pr1) + distFss(pr1 , p−n0

) ≤ δ + ε1 < K

and from there

Fssδ (pr1 , f) ⊂ FssK (p−n0
, f) ⊂ f−n0(Fssr̂ (fn0(p−n0

), f)).
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Remember that

fN (Fssr̂ (fn0(p−n0
), f)) ⊂ fN (Fss2r̂ (f−N (pr1), f)) ⊂ Fssδ (fN (f−N (pr1)), f)

= Fssδ (pr1 , f)

we have that

fN (Fssr̂ (fn0(p−n0
), f)) ⊂ Fssδ (pr1 , f) ⊂ f−n0(Fssr̂ (fn0(p−n0

), f)).

So

fn0+N (f−n0(Fssr̂ (fn0(p−n0
), f)) = fN (Fssr̂ (fn0(p−n0

), f))

⊂ f−n0(Fssr̂ (fn0(p−n0), f)).

Again by Brower’s fixed point Theorem there exists Q ∈ f−n0(Fssr̂ (fn0(p−n0
), f)) ⊂

f−n0(C) a fixed point by the function fn0+N , and hence fn0(Q) a periodic point
in C.

�

We will understand by unstable index of a point the dimension of its subbundle
where vectors are backward contracted. Remember that two points P and Q are
homoclinically related when the stable manifold of the orbit of Q transversely meets
the unstable manifold of the orbit of P and vice versa.

Corollary 6.1. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism ex-
hibiting Property SH and such that the strong stable foliation is minimal. Then the
set of periodic points with unstable index c+ u is dense in M .

Proof. It follows from the proof of Theorem 6.1. �

Corollary 6.2. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism exhibi-
ting Property SH and such that the strong stable foliation is minimal. Then the
periodic points with unstable index c+ u are homoclinically related. Moreover, if p
is a periodic point with unstable index c+ u and

H(p) =

Per(p)⋃
i=1

(Fss(f i(p)) tWcu(f i(p)))

is the homoclinic class of p, then H(p) = M .

Proof. The first assertion follows from the minimality of the strong stable foliation.
The second follows from Corollary 6.1 and the fact that H(p) coincides with the
closure of the saddles homoclinically related with p. �
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