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Abstract

Toric geometry provides a bridge between algebraic geometry and combinatorics
of fans and polytopes. For each polarized toric variety (X,L) we have associ-
ated a polytope P . In this thesis we use this correspondence to study birational
geometry for toric varieties. To this end, we address subjects such as Minimal
Model Program, Mori fiber spaces, and chamber structures on the cone of effec-
tive divisors. We translate some results from these theories to the combinatorics
of polytopes and use them to get structure theorems on space of polytopes. In
particular, we treat toric varieties known as 2-Fano, and we classify them in low
dimensions.

Keywords: Polytope, Cayley-Mori, Minimal Model Program, Chern charac-
ter, toric variety, invariant surface, 2-Fano.
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Chapter 1

Introduction

A toric variety is a normal algebraic variety X containing an algebraic torus T '
(C∗)n as an open dense subset, together with an action T×X → X extending the
natural action of T on itself. To each toric variety X one associates a fan ΣX .
Many geometric proprieties of X are encoded as combinatorial proprieties of
ΣX . There are also connections between projective toric varieties and polytopes.
Each polarized toric variety (X,L), where L is an ample Q-divisor on X, defines
a rational polytope P . This correspondence is one to one and again there are
links between geometric proprieties of (X,L) and combinatorial aspects of the
associated polytope P .

Toric varieties play an important role in the algebraic geometry. Thanks to
their combinatorial description, they provide several examples and have been a
natural place to test general conjectures and theories. The main reference for
an introduction to toric varieties is Fulton’s book [34].

One of the most important achievements in birational classification of alge-
braic varieties is the so called Minimal Model Program (MMP for short). The
aim of the MMP is to run a succession of special birational transformations on
X in order to achieve a variety X ′ that is birationally equivalent to X satisfying
one of the following:

1. KX′ is nef (i.e., KX′ ≥ 0), or

2. X ′ admits a structure of Mori fiber space (i.e., there exists an elementary
fibration f : X ′ → Y such that −KX′ is f -ample).

The birational transformations allowed in MMP are very special: they are
either divisorial contractions or flips. Since a projective toric variety is bira-
tionally equivalent to Pn, its canonical class can never be made nef, so the
MMP for projective toric varieties always ends with a Mori fiber space.

The MMP was proved by Mori for threefolds in [29] and for toric varieties
in [23]. Recently, a special instance of the Minimal Model Program, the MMP
with scaling, was established for arbitrary dimension in [8].
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One of the problems that we are interested in is the study of MMP from the
viewpoint of polytope theory. In [23] Reid has established the MMP for toric
varieties by interpreting it as a sequence of operations on the associated fans. In
this thesis, we consider a similar problem. Given a polarized toric variety (X,L)
we define operations on the associated polytope that describe each step of the
MMP with scaling for (X,L). Our first task is to give a complete description of
polytopes associated to Mori fiber spaces. We call these Cayley-Mori polytopes,
and provide an explicit facet presentation for them.

Next, we summarize the results established in this thesis:

1. We introduce a new class of polytopes, called Cayley-Mori polytopes that
correspond precisely to Mori fiber spaces.

2. We describe the structure of spaces of polytopes.

3. We describe the Minimal Model Program with scaling as an operation on
polytopes.

4. We investigate toric 2-Fano varieties, providing a classification in low di-
mension.

1.1 Cayley-Mori Polytopes and Mori Fiber Spaces

We say that a simple polytope is a Cayley-Mori polytope if it is isomorphic to a
polytope of the form P0 ∗P1 ∗ ...∗Pk = conv((P0×w0), ..., (Pk×wk)) ⊂ Rn×Rk,
where P0, ..., Pk are n-dimensional strictly combinatorially equivalent polytopes,
{w1, ..., wk} is a basis for Rk, and w0 = 0. We prove that these polytopes
correspond precisely to Mori fiber spaces obtained from Q-factorial projective
toric varieties by running MMP.

1.2 Spaces of Polytopes

Let vi ∈ Zn, 1 ≤ i ≤ r, be distinct primitive vectors such that cone(v1, ..., vr) =
Rn. Set H =

(
v1, · · · , vr

)
. For each a = (a1, ..., ar) ∈ Rr define the polytope:

Pa =
{
x ∈ Rn

∣∣∣〈vi, x〉 ≥ −ai, 1 ≤ i ≤ r}.
We define the space of polytope presentations PPH as

PPH =
{
a ∈ Rr

∣∣∣ Pa is a nonempty polytope
}
⊂ Rr.

Since two distinct element of PPH can define the same polytope, one is led
to consider the quotient PPH / ∼, where ∼ is the equivalence relation that
identifies elements a, b ∈ PPH such that Pa = Pb.

We prove that PPH / ∼ can be realized as an r-dimensional closed convex
polyhedral subcone of PPH ⊂ Rr, denoted by PH. We show that there is a

16



point a0 ∈ PPH such that Pa0 is a simple polytope (i.e. each vertex is contained
in exactly n edges) which has exactly r facets. Let X be the toric variety defined
by Pa0

. The cone Eff(X) of effective divisors on X admits a decomposition
in convex cones called GKZ decomposition of X. We use this decomposition to
get structure theorems for spaces of polytopes. We define a fan supported on
PPH ⊂ Rr satisfying the following conditions: Polytopes associated to elements
in the relative interior of the same cone of this fan are strictly combinatorially
isomorphic. Moreover, PH is the union of some of the maximal cones in this
fan.

1.3 Polytope MMP

Let (X,L) be a polarized Q-factorial toric variety, where L is an ample Q-
divisor on X. Let P := PL be the polytope associated to L. For each s ≥ 0
we define P (s) as the set of those points in P whose lattice distance to every
facet of P is at least s. These polytopes are called adjoint polytopes in [27].
Let σ(P ) := sup{s ∈ R≥0 | P (s) 6= ∅}. The polytope P (σ(P )) is called the core
of P. When we increase s from 0 to σ(P ), P (s) will change its combinatorial
type at some critical values. The first one is

λ1 := sup{s ∈ R≥0 | P and P (s) have the same normal fan} =

= sup{s ∈ R≥0 | L+ sKX is nef}

the nef value of P .
Our aim is to describe the family of polytopes P (s) for values of s between

0 and σ(P ). We will prove the following result. See Definition 4.2.6 for the
precise notion of a general polytope.

Theorem. Let (X,L) be a polarized n-dimensional Q-factorial toric variety
associated to a “general” rational polytope P ⊂ Rn. Then there exist sequences

0 = λ0 < λ1 < ... < λk = σ(P ), X = X1
f1
99K X2

f2
99K ...

fk
99K Xk+1

of rational numbers and rational maps, such that:

1. For i ∈ {1, ..., k − 1}, fi is either a divisorial contraction or a flip.

2. For λi < s, t < λi+1, P
(s) and P (t) are n-dimensional simple polytopes

with the same normal fan.

3. At s = λi, one of the following occurs.

(a) Either P (λi) is simple and P (λi) has one less facet than P (λi−1) (equiv-
alently, fi is a divisorial contraction), or

(b) P (λi) is not simple and P (λi) has the same number of facets as P (λi−1)

(equivalently, fi is a flip).
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(c) For each i ∈ {1, ..., k}, denote by mi the dimension of the locus where
fi is not an isomorphism. Then, for λi < s < λi+1, the polytope P (s)

has exactly one more mi-dimensional face than P (λi+1), and this face
is a Cayley-Mori polytope.

4. For λk−1 < s < λk = σ(P ), P (s) is a Cayley-Mori polytope, (equiva-
lently fk is a Mori fiber space, and Xk+1 is the toric variety associated to
P (σ(P ))).

5. Let K(P ) be the linear space parallel to Aff(Core(P )) and consider the
natural projection πP : Rn → Rn/K(P ) associated to P . The toric variety
associated to the polytope Q := πP (P ) is the closure of the general fiber
of the rational map f := fk ◦ ... ◦ f1 : X 99K Xk+1.

Moreover, if P (λi) is simple then Xi+1 is the toric variety associated to it.
Otherwise, if P (λi) is not simple, the toric variety associated to P (λi) is the
image of the small contraction corresponding to the flip fi and Xi+1 is associated
to P (s) for λi < s < λi+1.

1.4 2-Fano Toric Varieties

A Q-factorial projective variety X is said to be Fano if has ample anti-canonical
divisor. One important aspect of Fano varieties is that they appear in the MMP
as fibers of Mori fiber spaces. In addition to their role in the MMP, Fano vari-
eties are important for their own sake, and have been very much studied. Fano
varieties are quite rare. It was proved by Kollár, Miyaoka and Mori that, for
a fixed dimension, there exist only finitely many smooth Fano varieties up to
deformation (see [15], [16]). Further, in the toric case, there exist only finitely
many isomorphism classes of them.

A smooth Fano variety X is said to be 2-Fano if its second Chern character
is positive (i.e., ch2(TX) · S > 0 for every surface S ⊂ X). These varieties were
introduced by de Jong and Starr in [3] and [2] in connection with rationally
simply connected varieties, which in turn are linked with the problem of finding
rational sections for fibrations over surfaces. 2-Fano varieties are even more
scarce than Fano varieties. Few examples of 2-Fano varieties are known. First
de Jong and Starr gave some examples in [2], then in [6] Araujo and Castravet
found some more examples. Among all known examples, the only smooth toric
2-Fano varieties are projective spaces. So, it is natural to pose the following
question:

Question 1: Is Pn the only n-dimensional smooth projective toric 2-Fano
variety?

In [12] we have answered this question positively when n ≤ 4 by using the
classification of toric Fano 4-folds given by Batyrev. Then, we used a database
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provided by Øbro to answered the question positively in dimension 5 and 6.
In order to approach this question in the general case, we investigate what
happens with the second Chern character when we run the Minimal Model
Program. Since in the toric case the MMP ends with a Mori fiber space, we
start investigating the second Chern character of a Mori fiber space.

Since Mori fiber spaces are associated to Cayley-Mori polytopes, we study
combinatorial proprieties of these polytopes, and translate them into geometric
proprieties about Mori fiber spaces. We will show that is possible to find a bira-
tional model X ′ of X with structure of Mori fiber space, such that the general
fibers are projective spaces. Then, we will show that such a variety X ′ cannot
be 2-Fano. In particular, we will show that if X is a smooth toric variety which
is a Mori fiber space then X cannot be a 2-Fano variety. As a corollary, the only
n-dimensional smooth projective toric 2-Fano variety with Picard number ≤ 2
is Pn. On the other hand, if we allow singularities on X, we can give examples
of Mori fiber spaces with Picard number 2 that are 2-Fano. We also prove that
a 2-Fano toric variety cannot admit certain types of divisorial contractions.

This thesis is structured as follows. In Chapter 2 we give an overview of
general theory for toric varieties and Mori theory for toric varieties. We warn
that this review is rather concise. For more details we indicate [10], [34] and
[23].

In Chapter 3 we introduce the class of Cayley-Mori polytopes. We give a
combinatorial description for these polytopes and prove that they are associated
to Mori fiber spaces.

In Chapter 4 we present spaces of polytopes and give structure theorems on
this space. Next, we define an operation on polytopes and relate this with the
MMP with scaling.

In Chapter 5 we approach the problem of classification of Fano varieties
having positive second Chern character. These varieties are called 2-Fano. We
provide a classification of toric 2-Fano varieties in low dimension. We describe a
strategy to classify these varieties in arbitrary dimension and give some partial
results. We finalize this work in Chapter 6 giving the Maple code used in
Chapter 5 to compute the second Chern character of a smooth projective toric
variety.

19





Chapter 2

Preliminaries on Toric
Varieties

2.1 Constructing Toric Varieties

Throughout this thesis, a variety means an algebraic integral separated scheme
of finite type over C. A subvariety of a variety is a closed subscheme which is a
variety, and by a point on a variety we mean a closed point.

In this chapter we will give an overview of basic facts about toric varieties.
The definitions and statements of the theorems can be found in [10] and [34],
unless otherwise noted.

Definition 2.1.1. A toric variety is a normal variety X containing an algebraic
torus T ' (C∗)n as an open dense subset, together with an action T ×X → X
extending the natural action of T on itself.

There is a combinatorial way to obtain toric varieties. Let N ' Zn be a
lattice and M := HomZ(N,Z) ' Zn its dual lattice. Set NR := N ⊗Z R. Given
u ∈ M and v ∈ N we denote u(v) by 〈u, v〉. Each element u = (u1, ..., un) ∈
M defines a character of the torus denoted by χu := xu1

1 · ... · xunn ∈ k[T ] =
k[x±1

1 , ..., x±1
n ].

Definition 2.1.2. A convex rational polyhedral cone in NR is a set of the form:

σ :=

{
k∑
i=1

aivi ∈ NR

∣∣∣ ai ≥ 0

}
,

for some finite collection of elements {v1, ..., vk} ⊂ N . If σ contains no line we
say that it is strongly convex. We will call it a “cone” for short.

Let σ ⊂ NR be a cone of dimension n and consider the dual cone of σ given
by σ∨ := {u ∈MR := M ⊗Z R | 〈u, v〉 ≥ 0 for all v ∈ σ}.
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The semigroup Sσ := σ∨ ∩M is finitely generated. Then Aσ := C[Sσ] =
C[χu]u∈Sσ is a finitely generated C-algebra defining the affine toric variety Uσ :=
Spec(Aσ) of dimension n. Recall that a fan Σ ⊂ NR ' Rn is a finite collection
of rational polyhedral strongly convex cones σ ⊂ NR such that:

1. If σ and τ belong to Σ then σ ∩ τ is a face of σ and τ ;

2. If σ ∈ Σ and τ is a face of σ then τ ∈ Σ.

The set of the m-dimensional cones of Σ will be denoted by Σ(m). A cone
τ ∈ Σ(n − 1) is called a wall when it is the intersection of two n-dimensional
cones of Σ.

If Σ ⊂ NR is a fan then the affine toric varieties Uσ for σ ∈ Σ glue together
to a toric variety XΣ.

A collection Σ of convex cones is called a degenerate fan if it satisfies the two
conditions above and there is a nontrivial rational linear subspace U ⊂ NR such
that, for every cone σ ∈ Σ, we have σ∩−σ = U . In this case, Σ/U defines a fan
with respect to the quotient lattice N/(U ∩N) whose associated toric variety is
also denoted by XΣ. It is a classical result that every toric variety is obtained
from a fan (see for instance [10, Corollary 3.1.8]).

There is a one to one correspondence between the points of an affine toric
variety Uσ and the semigroup homomorphisms ϕ : Sσ → C. For each cone σ we
have a distinguished point xσ ∈ Uσ that corresponds to the following semigroup
homomorphism

m ∈ Sσ 7−→
{

1 if m ∈ Sσ ∩ σ⊥
0 otherwise.

Let XΣ be the toric variety associated to a fan Σ ⊂ NR. The distinguished
points of XΣ determine TN -invariant subvarieties of XΣ. We have the following
correspondence (The Orbit-Cone Correspondence, see for instance [10, 3.2.6]):

1. There is a bijective correspondence

{σ ∈ Σ} ←→ {TN -orbits in XΣ}.
σ ←→ Oσ := TN · xσ

2. Let n =dim NR. Then dim Oσ = n−dim σ.

3. Uσ =
⊔
τ≺σ

Oτ .

4. τ ≺ σ ⇔ Oσ ⊆ Oτ , and V (σ) := Oσ =
⊔
σ≺γ

Oγ , where Oσ denotes the

closure in both the classical and Zariski topologies.

The T -invariant subvariety V (σ) of XΣ has the structure of a toric variety
given by the following fan:

22



Consider the sublattice Nσ := span(σ)∩N of N and let N(σ) = N/Nσ. The
collection of cones Star(σ) := {τ̄ ⊂ N(σ)R | σ ≺ τ ∈ Σ} is a fan, where τ̄ is the
image of τ ∈ Σ in N(σ), and XStar(σ),N(σ) ' V (σ).

Let Σ and Σ′ be fans with respect to lattices N and N ′ respectively. Consider
a lattice homomorphism Φ : N → N ′. We say that Φ is compatible with Σ and
Σ′ or, Σ and Σ′ are compatible with Φ, if for each cone σ ∈ Σ there exists a
cone σ′ ∈ Σ′ with ΦR(σ) ⊂ σ′. In this case, Φ induces an equivariant morphism
φ : XΣ → XΣ′ . Moreover, this is a toric morphism. This means that φ maps the
torus TN of XΣ on the torus TN ′ of XΣ′ and φ |TN is a group homomorphism.
In fact, every toric morphism arises in this way.

We recall an important result involving distinguished points and toric mor-
phisms (see for instance [10, 3.3.21]).

Proposition 2.1.3. Let φ : XΣ → XΣ′ be a toric morphism induced by a map
Φ : N → N ′ that is compatible with Σ and Σ′. Given σ ∈ Σ, let σ′ be the
minimal cone of Σ′ such that ΦR(σ) ⊂ σ′. Then:

1. φ(xσ) = xσ′ .

2. φ(Oσ) ⊆ Oσ′ and φ(V (σ)) ⊆ V (σ′).

3. The induced map φ |V (σ): V (σ)→ V (σ′) is a toric morphism.

There are deep connections between toric varieties and polytopes. We can
construct toric varieties from rational polytopes. Recall that a set P ⊂MR is a
rational polytope if P is a convex hull of a finite set S ⊂MQ. When S ⊂M we
call P a lattice polytope. When P is full dimensional we can write a polytope
P , in a minimal way, as intersection of finitely many closed half spaces

P :=
{
m ∈MR

∣∣∣ 〈m,uF 〉 ≥ −aF , for all facets F ≺ P
}
,

where uF ∈ N is a primitive vector normal to the facet F and aF ∈ Q. This
is called a facet presentation of P . When P is full dimensional, it has a unique
facet presentation. Note that if P is a lattice polytope then aF ∈ Z. Each face
Q of P defines a cone σQ := Cone(uF )Q≺F ⊂ NR. The collection of these cones
forms a fan (also known as the normal fan of P ) ΣP and then we get a toric
variety XP associated to P . When P is not a full dimensional polytope we set
XP to be the toric variety associated to R := Aff(P ) ∩ P with respect to the
lattice Aff(P ) ∩M , where Aff(P ) denotes the smallest affine space contain-
ing P . In this case, ΣP will denote the degenerate fan each of whose cones is
generated by a cone of ΣR and the linear space span(P )⊥.

A fan encodes many algebraic proprieties of the variety associated to it. Let

Σ ⊂ NR be a fan. The support of Σ is |Σ| =
⋃
σ∈Σ

σ. We say that Σ is complete

if |Σ| = NR. A cone σ ∈ Σ is smooth (resp. simplicial) if its minimal generators
form part of a Z-basis of N (resp. R-basis of NR). We say that Σ is smooth
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(resp. simplicial) if every cone of Σ is smooth (resp. simplicial). We say that a
polytope P is smooth (resp. simplicial) if the same holds for ΣP .

Next proposition is a standard result for toric varieties. For the proof see
for instance [10, 3.1.19 and 4.2.7].

Proposition 2.1.4. The toric variety XΣ is smooth, complete or Q-factorial if
and only if Σ is, respectively, smooth, complete or simplicial.

A polytope P will be called smooth (resp. simple) if ΣP is smooth (resp.
simplicial). Note that if P ⊂ MR is a rational polytope then for every k ∈ Q
and v ∈MQ, the poytopes P, kP and P +v define the same fan. For this reason,
we will frequently suppose that P is a lattice polytope.

Given a fan Σ ⊂ NR, a fan Σ′ in NR refines Σ if |Σ′| = |Σ| and every cone
of Σ′ is contained in a cone of Σ. In this case, the identity map on N induces a
toric birational morphism φ : XΣ′ → XΣ.

There is a special type of refinement called star subdivision which we describe
below.

Given a fan Σ ⊂ NR and a nonzero primitive element v ∈ |Σ| ∩N , let Σ(v)
be the set of the following cones:

• σ, where v /∈ σ ∈ Σ.

• cone(τ, v), where v /∈ τ ∈ Σ and {v} ∪ τ ⊂ σ ∈ Σ.

The collection Σ(v) is a fan which refines Σ, called by star subdivision of Σ at v.
When Σ is smooth and there is a maximal cone σ = Cone(v1, ..., vn) ∈ Σ such
that v = v1 + ... + vn, the refinement Σ(v) induces a morphism XΣ(v) → XΣ

that corresponds the blow up of XΣ at the point V (σ). For details we refer to
[10, §11.1] and [13].

2.2 Toric Varieties and Divisors

Let Σ be a fan in NR. We denote by Σ(1) := {v1, ..., vr} the set of all minimal
generators of Σ. Given σ ∈ Σ we set σ(1) := σ ∩ Σ(1). By the orbit-cone
correspondence Di := V (vi) is a T -invariant subvariety of XΣ of codimension 1.
Hence Di is an invariant prime divisor on XΣ. By abuse of notation, we often
write i ∈ Σ(1) meaning vi ∈ Σ(1).
For m ∈ M , the character χm is a rational function on XΣ. We have the
following nice description of its divisor.

Proposition 2.2.1. div(χm) =
∑

vi∈Σ(1)

〈m, vi〉Di for every m ∈M .

Definition 2.2.2. A Weil divisor D :=
∑
aiDi on the toric variety XΣ is

said to be T -invariant (or simply invariant) if every prime divisor Di such that
ai 6= 0 is invariant under the action of the torus. This happens exactly when
Di = V (vi) with vi ∈ Σ(1).
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Proposition 2.2.3. Let X := XΣ be a toric variety of dimension n. Then the
Chow group Ak(X) of XΣ is generated by the classes of k-dimensional invariant
subvarieties. In other words, Ak(X) is generated by [V (σ)] as σ ranges over the
(n−k)-dimensional cones from Σ. In particular, the set T -Div(XΣ) of invariant
divisors by the torus action generate the class group Cl(XΣ).

Now, we will describe intersection products between invariant divisors and
invariant varieties (see for instance [34, Section 5.1]).

Proposition 2.2.4. Let XΣ be a toric variety, D =
∑
i∈Σ(1)

aiDi an invariant

Cartier divisor on XΣ and V (σ) a k-dimensional subvariety of XΣ that is not

contained in the support of D. Then D · V (σ) =
∑

bγV (γ), where the sum is

over all (k+1)-dimensional cones γ ∈ Σ containing σ, and bγ is obtained in the
following way:

Let vi ∈ Σ(1) be any primitive ray of γ that is not a primitive ray of σ. Let
e be the generator of the one-dimensional lattice Nγ/Nσ such that the image of

vi in Nγ/Nσ is si · e, with si a positive integer. Then bγ =
ai
si

.

Remark 2.2.5. When XΣ is smooth, Di is a Cartier divisor for every i ∈ Σ(1)
and we have:

Di · V (σ) =

{
V (γ) if vi and σ span a cone γ of Σ
0 if vi and σ do not span a cone of Σ .

The following proposition gives a criterion for a Weil invariant divisor to be
a Cartier invariant divisor.

Proposition 2.2.6. Let σ ∈ Σ be a cone and D a Weil invariant divisor on
XΣ. Then:

1. D|Uσ is a T -invariant Cartier divisor on Uσ ⇔ there exists u ∈ M such
that D|Uσ = div(χu).

2. Pic(Uσ) = 0.

3. D :=
∑

vi∈Σ(1)

aiDi is Cartier ⇔ D is principal on the affine open subset Uσ

for all σ ∈ Σ ⇔ for each σ ∈ Σ, there is uσ ∈ M such that 〈uσ, vi〉 = ai
∀ vi ∈ σ(1).

Let XP be the toric variety of a full dimensional rational polytope P ⊂MR.
The polytope P has a facet presentation

P :=
{
m ∈MR

∣∣∣ 〈m,uF 〉 ≥ −aF , for all facets F ≺ P
}
.

The fan ΣP tells us the facet normal uF but it does not give any information
about the numbers aF . In fact, we have already noted that P and kP give the
same fan for all k ∈ Q. We define a special Q-divisor DP :=

∑
aFDF on XP ,

where DF = V (uF ).
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Proposition 2.2.7. If P ⊂ MR is a full dimensional rational polytope, then
DP is an ample Q-Cartier invariant divisor on XP .

A divisor D ∈ T -Div(XΣ) on the toric variety XΣ defines a sheaf OXΣ
(D).

We give a description of the global sections Γ(XΣ,OXΣ
(D)).

Proposition 2.2.8. If D ∈ T -Div(XΣ) then

Γ(XΣ,OXΣ
(D)) '

⊕
div(χm)+D≥0

C · χm.

Definition 2.2.9. Let XΣ be a toric variety and let D :=
∑

vi∈Σ(1)

aiDi be an

invariant Weil divisor on XΣ. We define a polyhedron associated to D as

PD :=
{
m ∈MR

∣∣∣ 〈m, vi〉 ≥ −ai for all vi ∈ Σ(1)
}
.

Note that
Γ(XΣ,OXΣ(D)) '

⊕
m∈PD∩M

χm.

When Σ is a complete fan, PD is a polytope. Furthermore, if D is an ample
Q-divisor on XΣ then the toric variety associated to PD is isomorphic to XΣ

and DPD = D. In other words, a full dimensional rational polytope P ⊂ MR
defines a polarized toric variety, that is, a pair (XP , DP ) where DP is an ample
invariant Q-divisor on XP . Conversely, a pair (XΣ, D) where D is an ample
invariant Q-divisor on XΣ, defines a rational polytope PD. These constructions
are inverses to each other. In particular, a toric variety is projective if and only
if it is the variety associated to a full dimensional rational polytope.

Remark 2.2.10. It follows from Propositions 2.2.1 and 2.2.8 that if D = D′+
div(χm) for some m ∈M then PD = PD′ +m, and conversely. In particular, D
is linearly equivalent to an effective divisor if and only if PD 6= ∅.

Definition 2.2.11. Let P ⊂ MR and P ′ ⊂ M ′R be full dimensional rational
polytopes. We say that P and P ′ are isomorphic if there exists an isomorphism
between the corresponding polarized toric varieties (XP , DP ) and (XP ′ , DP ′).
Equivalently, if there is a bijective affine transformation ρ : MR →M ′R induced
by a bijective affine transformation on the lattices, satisfying ρ(P ) = P ′.

2.3 Mori Theory for Toric Varieties

2.3.1 Definitions and Standard Results

Definition 2.3.1. Let X be a complete variety and D a Cartier divisor on X.
We say that D is nef (numerically effective) if D · C > 0 for every irreducible
complete curve C.
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Proposition 2.3.2. Let X be a complete toric variety and D a Cartier divisor
on X. The following are equivalent:

1. D is nef

2. OX(D) is generated by global sections.

3. D · C > 0 for every invariant irreducible curve C ⊂ X.

The theorem below is a well known criterion of ampleness for a Cartier
divisor. We will enunciate it in the toric case.

Theorem 2.3.3. (Toric Kleiman Criterion). Let D be a Cartier Divisor on
a complete toric variety XΣ. Then D is ample if and only if D · C > 0 for
every invariant curve C ⊂ XΣ, that is, D · V (σ) > 0 for every cone σ ∈ Σ of
dimension equal to (rank(Σ)− 1).

Definition 2.3.4. Let X be a normal variety, D and F be Cartier divisors on
X. We say that D and F are numerically equivalent, and we write D ≡ F , if
D · C = F · C for every irreducible complete curve C ⊂ X.

Proposition 2.3.5. [10, 6.3.15] For complete toric varieties numerical equiv-
alence and linear equivalence coincide.

We also have a numerical equivalence on curves.

Definition 2.3.6. Let X be a toric variety and denote by Z1(X) the free abelian
group generated by irreducible complete curves contained in X. Given C and
C ′ cycles in Z1(X), we say that C and C ′ are numerically equivalent, written
C ≡ C ′, if D · C = D · C ′ for every Cartier divisor D on X.

Definition 2.3.7. For a toric variety X we define the vector spaces N1(X) :=
(CDiv(X)/ ≡)⊗Z R = Pic(X)R and N1(X) := (Z1(X)/ ≡)⊗Z R.

The linear map
N1(X)×N1(X)→ R

induced by the intersection product makes N1(X) and N1(X) dual vector spaces
to each other.

In N1(X) and N1(X) there are some important cones for Mori theory.

Definition/Proposition 2.3.8. Let X be an n-dimensional complete toric
variety.

1. The effective cone Eff(X) of X is the cone in Cl(X) ⊗ R generated by
effective divisors. Equivalently, by Remark 2.2.10, the effective cone is
generated by the divisors D such that PD is not empty.

2. When X is Q-factorial, Eff(X) ⊂ N1(X) and the interior of Eff(X) is
the big cone Big(X) (see [26, 2.2.26]).
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3. The nef cone Nef(X) of X is the cone in N1(X) generated by nef Cartier
divisors.

4. The interior of Nef(X) is the ample cone Amp(X) (see 2.3.3). Equiv-
alently, the ample cone of X is generated by the Cartier divisors D such
that the toric variety associated to PD is isomorphic to X.

5. The Mori cone NE(X) of X is the cone in N1(X) dual to Nef(X). Equiv-
alently, it is the cone generated by irreducible complete curves.

All these cones are strongly convex polyhedral cones.

Now we state a toric version of one of the first results in the Mori theory.

Theorem 2.3.9. (Toric Cone Theorem)[10, 6.3.20] Let X := XΣ be a complete
toric variety of dimension n. Then

NE(X) =
∑

τ∈Σ(n−1)

R≥0[V (τ)].

Proposition 2.3.10. (See for instance [10, 6.4.1]) Let Σ be a simplicial fan
and X := XΣ. Then there is an exact sequence:

0 −→ N1(X) −→ Rr −→ NR −→ 0 ,

ξ 7−→
∑

vi∈Σ(1)

(V (〈vi〉) · ξ)ei

ei 7−→ vi

where r := |Σ(1)|, and e1, ..., er is the standard basis for Rr.

Proposition 2.3.10 says that N1(X) can be interpreted as the space of linear
relations among the v′is.

Now, consider a projective Q-factorial toric variety X. Let Z2(X) and Z2(X)
be the free Z-modulo of 2-cycles and 2-cocycles respectively on X. We define
the vector space N2(X) := (Z2(X)/ ≡) ⊗Z R, where “ ≡ ” denotes numerical
equivalence on Z2(X): A 2-cycle S ∈ Z2(X) is numerically equivalent to 0 if
E · S = 0 for every 2-cocycle E ∈ N2(X). The cone of effective 2-cycles is
defined as:

NE2(X) :=
{[∑

i

aiSi

]
∈ N2(X)

∣∣∣ ai ≥ 0
}
,

where the S′is are irreducible surfaces in X.
Proposition 5.1.5 gives a version of the “Toric Cone Theorem” for the cone

of effective 2-cycles.
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2.3.2 Description of Contractions of Extremal Rays

Throughout this section we will suppose thatX := XΣ is a projective Q-factorial
n-dimensional toric variety.

Now we discuss the connection between the faces of the nef cone and fiber
spaces. We recall that if X is projective then a fiber space is a morphism
f : X → Y onto a normal variety with connected fibers. From the Stein fac-
torization theorem [25, 11.5] it follows that a fiber space is determined by the
irreducible complete curves that are contracted by f .

Let D be a nef divisor on X. By replacing it with a linearly equivalent
divisor if necessary, we may suppose that D is effective. Denote by ΣD the fan
defined by the polytope PD and XΣD the toric variety defined by ΣD. From
[10, 6.2.5] it follows that Σ is a refinement of ΣD. Then we have a morphism
fD : X → XΣD such that D = f∗(A) for some ample divisor A on XΣD . This
means that an irreducible complete curve C ∈ X is contracted to a point by
fD if and only if D · C = 0. Therefore, C is contracted by fD if and only
if the class [C] belongs to the face of the Mori cone defined by NE(X) ∩ D⊥.
From the duality of the nef cone and the Mori cone, we conclude that fD only
depends on the face τ ≺ Nef(X) which contains D in its interior. Moreover,
τ = f∗D(Nef(XΣD )). On the other hand, if g : X → Y is a fiber space with Y
projective, then, up to isomorphism, g = ff∗A for any ample divisor A on Y .

We summarize our discussion in the following theorem.

Theorem 2.3.11. (Toric Contraction Theorem) There is a bijective correspon-
dence between the faces τ of the nef cone Nef(X) and the fiber spaces f : X → Y
with Y projective, given by τ = f∗(Nef(Y )). Conversely, the irreducible com-
plete curves contracted by f are the curves in τ⊥. Each such fiber space is a
toric morphism.

Let τ be a facet of Nef(X) and f : X → Y be the corresponding fiber space.
Then an irreducible complete curve C ⊂ X is contracted by f if and only if the
class [C] belongs the 1-dimensional face NE(X)∩ τ⊥ of the Mori cone. By 2.3.9
this face is of the form R≥0V (σ) for some cone σ ∈ Σ(n − 1). In this case, we
say that f is a contraction of a ray of NE(X) or simply an extremal contraction.

Given a contraction fR : X → Y of a ray R ⊂ NE(X) we will describe how
to obtain the fan of the variety Y . We give an overview of the results in [23, 17].

Let V (W ) be an invariant curve which generates the ray R. Then we can
write the wall W := cone(v1, ..., vn−1) as intersection of two maximal cones:
cone(v1, ..., vn−1, vn) and cone(v1, ..., vn−1, vn+1). Since ΣX is a simplicial fan
there are uniquely determined rational numbers a1, ..., an such that vn+1 =
−a1v1 − ... − anvn. Reordering the vectors v′is if necessary we may suppose
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that:

ai

 < 0 for 1 ≤ i ≤ α,
= 0 for α+ 1 ≤ i ≤ β,
> 0 for β + 1 ≤ i ≤ n+ 1;

with 0 ≤ α ≤ β ≤ n− 1.

For each j ∈ {1, ..., n + 1}, set Σj := cone(v1, ..., v̂j , ..., vn+1) and ΣW :=
cone(v1, ..., vn+1). One can show that ΣW = ∪αj=1Σj = ∪n+1

j=β+1Σj .
The fan ΣY is determined by the collection of maximal cones formed by the

maximal cones of ΣX which contain no wall W ∈ ΣX with [V (W )] ∈ R and the
cones ΣW for every wall W ∈ ΣX such that [V (W )] ∈ R. This fan is degenerate
if and only if α = 0.

Proposition 2.3.12. Let fR : X → Y be the contraction of a ray R of the Mori
cone NE(X). Denote by Exc(fR) the exceptional locus of fR. This morphism is
classified into one of the following three types:

1. Contraction of Fibering Type (or Mori Fiber Space): dim Y < dim X.

In this case, we have

α = 0,
β = dim Y.

The variety Y is Q-factorial (equivalently the non degenerate fan corre-
sponding to ΣY is simplicial).

2. Divisorial Contraction: The morphism fR is birational and codim (Exc(fR)) =
α = 1. In this case Y is Q-factorial and Exc(fR) is the prime T -invariant
divisor V (v1).

3. Contraction of Flipping type (or small contraction): The morphism fR is
birational and codim Exc(fR) = α ≥ 2. In this case Y is necessarily non
Q-factorial. The exceptional locus is the irreducible T -invariant variety
V (cone(v1, ..., vα)).

In all cases, Y is projective, the exceptional locus is an invariant irre-
ducible variety and fR restricted to Exc(fR) is a flat equivariant mor-
phism. There exists a toric Q-factorial Fano variety G with Picard number
one such that (fR)−1(p)red ' G for every p ∈ fR(Exc(fR)).

Remark 2.3.13. When fR : X → Y is a contraction of fibering type, that is,
α = 0, we can use the linear relation vn+1 = −a1v1− ...−anvn and Proposition
2.2.4 to show that −KX is fR-ample, that is, −KX ·R > 0.

Proposition 2.3.14. If fR : X → Y is a contraction of flipping type, then
there exists a birational morphism f+

R : X+ → Y called the flip of fR such that:
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1. X+ is projective and Q-factorial.

2. f+
R is also a contraction of flipping type.

3. X and X+ are isomorphic in codimension 1 and so we have an iso-
morphism N1(X) ∼= N1(X+) defined by taking strict transforms of di-
visors. Hence, this induces an isomorphism between their dual spaces
N1(X) ∼= N1(X+).

4. f+
R is the contraction of the extremal ray −R of NE(X+), where −R is

the image of R by the isomorphism N1(X) ∼= N1(X+).

5. The divisor −KX is fR-ample if and only if KX+ is f+
R -ample.

The maximal cones of the fan ΣX+ are:

ΣX+(n) := ΣX(n) \ {ΣW | [V (W )] ∈ R} ∪ {Σj | [V (W )] ∈ R, j = 1, ..., α}.

2.4 MMP for Toric Varieties

Let X be a projective Q-factorial variety with klt singularities. The aim of the
Minimal Model Program (MMP for short) is to run a succession of divisorial
contractions and flips on X in order to achieve a variety X ′ that is birationally
equivalent to X satisfying one of the following:

1. KX′ is nef, or

2. X ′ admits a structure of Mori fiber space (i.e., there exists an extremal
contraction f : X ′ → Y such that −KX′ is f -ample).

In the toric case, we do not need require any condition on singularities since
every projective Q-factorial toric variety is klt.

2.4.1. Now, we recall the steps of the MMP in the toric case. We start with a
projective Q-factorial toric variety X. If KX is not nef, then there is an extremal
ray R of the Mori cone of X such that KX ·R < 0. We consider the contraction
fR : X → Y of the ray R. If fR is a Mori fiber space, then we stop. If fR is a
divisorial contraction we replace X by Y and repeat the process. Finaly, if fR
is a small contraction we replace X by X+ and repeat the process.

For toric varieties it was proved in [23] that this process stops. Since a
projective toric variety is birationally equivalent to Pn its canonical class can
never be made nef, so the MMP for projective toric varieties always ends with
a Mori fiber space.

2.5 MMP with scaling

In the general case termination of flips is still an open problem for dimension
bigger than three. However, an instance of the MMP, called MMP with scaling,
was proved in [8] for arbitrary dimension.
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Next, we recall the steps of the MMP with scaling, established in [8]. See
also [7, 3.8].

2.5.1. We start with a polarized toric variety (X,L), where X is projective, Q-
factorial. Here L is an ample Q-divisor on X. Since X is a Q-factorial projective

toric variety, X is klt (see [17, 14.3.2]). Moreover, −KX is equal to
∑
i∈Σ(1)

Di

and therefore this divisor is always big (see for instance [10, 8.2.3]).
Given a big R-divisor E on X set σ(E) := sup{s ∈ R≥0 | [E + sKX ] ∈

Eff(X)}. When E is a Q-divisor the number σ(E) is rational (see for instance
[7, 5.2]. In addition, we consider the nef threshold

λ(E,X) := sup
{
s ∈ R≥0

∣∣∣ [E + sKX ] ∈ Nef(X)
}
≤ σ(E).

This is defined provided that [E + sKX ] is nef for some s ≥ 0. Moreover, if E
is a Q-divisor, then by the Rationality Theorem λ(E,X) is a rational number
(see for instance [18, 1.5.5]). Note that λ(E,X) = σ(E) if and only if the class
[E + λ(E,X)KX ] is not big.

Set (X1, L1) = (X,L), λ1 = λ(L,X) and σ = σ(L). We will define in-
ductively a finite sequence of pairs (Xi, Li), 1 ≤ i ≤ k and rational numbers
0 < λ1 < ... < λk = σ such that the following holds.

• For each 0 ≤ i ≤ k, the variety Xi will be projective, Q-factorial.

• There are birational maps ϕi : X 99K Xi which are compositions of divi-
sorial contractions and flips.

• Li = (ϕi)∗L and [Li + λiKXi ] ∈ ∂Nef(Xi).

Suppose we have constructed (Xi, Li) and λi. Since [Li + λiKXi ] ∈ ∂Nef(Xi),
there exists an extremal ray Ri ⊂ NE(Xi) such that (Li + λiKXi) ·Ri = 0 and
KXi ·Ri < 0 .

Let f : Xi → Y be the contraction of Ri.
As in 2.3.12, we have three possibilities:

1. If dim Y < dim Xi then λi = σ, Y is Q-factorial, and f is a Mori fiber
space. In this case we stop.

2. If f : Xi → Y is a divisorial contraction, then Y is Q-factorial. We set
Xi+1 = Y , ϕi+1 = f ◦ ϕi : X 99K Xi+1, and Li+1 = f∗Li = (ϕi+1)∗L.
Notice that

Li + λiKXi = f∗(Li+1 + λiKXi+1
).

This implies that Li+1 + λiKXi+1 is nef since so is Li + λiKXi . Thus

λi ≤ λi+1 := λ(Li+1, Xi+1) ≤ σ.
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3. If f : Xi → Y is a small contraction, then Y is not Q-factorial. (In fact,
KY is not a Q-Cartier divisor. Otherwise, KXi = f∗(KY ) and therefore
KXi ·Ri = 0). Consider the flip diagram:

Xi

f ��@
@@

@@
@@

@
ψ //_______ X+

i

f+

~~}}
}}

}}
}}

Y

where ψ is the associated flip, X+
i is Q-factorial and f+ is the contraction

of a KX+
i

-positive extremal ray of NE(X+
i ). We set Xi+1 = X+

i , ϕi+1 =

ψ ◦ϕi : X 99K Xi+1 and Li+1 = ψ∗Li = (ϕi+1)∗L. Since (Li +λiKXi) ·Ri = 0,
there exists a Q-Cartier Q-divisor DY on Y such that Li + λiKXi = f∗DY .
Then Li+1 + λiKXi+1 = (f+)∗DY . By hypothesis Li + λiKXi is nef. Thus DY

is nef and so is Li+1 + λiKXi+1 . Therefore

λi ≤ λi+1 := λ(Li+1, Xi+1) ≤ σ.

Remark 2.5.2. If [Li+λiKXi ] is in the relative interior of a facet of Nef(Xi),
then there is only one extremal ray Ri satisfying (Li+λiKXi)·Ri = 0. Moreover,
f : Xi → Y is the morphism associated to the complete linear system | m(Li +
λiKXi) | for m sufficiently large and divisible.

2.6 GKZ Decomposition

In this section we describe the GKZ decomposition for a complete toric variety,
and we recall some of its properties. We refer to [19] and [21] for details.

Let X = XΣ be a complete toric variety and D1, ..., Dr be the T -invariant
prime divisors. Consider a possibly degenerate complete fan ∆ and I a subset
of Σ(1) = {v1, ..., vr} such that:

1. Every cone of ∆ is generated by rays in Σ(1) \ I.

2. X∆ is projective.

There is a rational map f : X 99K X∆ induced by the natural projection
π : N → N/W ∩ N , where W is the maximal linear space contained in every

cone of ∆. Since ∆ is complete, f is defined on the toric variety U =

r⋃
i=1

U〈vi〉.

The codimension of the complement of U in X is at least 2. Therefore we have
a pull-back map f∗ which takes Q-Cartier divisors on X∆ to Q-Weil divisors on
X.

Let A be an invariant nef Q-Cartier divisor on X∆ and λ = (λi)i ∈ R|I|≥0.
There is an injective linear map
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Φ∆,I : Nef(X∆)× R|I|≥0 → Cl(X)R

A× λ 7→ f∗(A) +
∑
i∈I

λiDi.

The image of this map is a cone denoted by GKZ(∆, I).

Let S be the set of such pairs (∆, I).
The set GKZ(X) := {GKZ(∆, I) | (∆, I) ∈ S} is a fan supported on the

effective cone Eff(X) of X satisfying the following proprieties:

1. The cone GKZ(∆, I) is a maximal cone in GKZ(X) if and only if ∆ is
non degenerate and simplicial, and I = Σ(1) \∆(1). Thus, each maximal
cone GKZ(∆, I) of GKZ(X) determines a unique variety X∆.

2. The cone GKZ(∆′, I ′) is a face of GKZ(∆, I) if and only if ∆ refines ∆′

and I ′ is contained in I.

3. If [D] and [D′] belong to the relative interior of the cone GKZ(∆, I), then
the toric varieties associated to D and D′, that is, the varieties corre-
sponding to PD and PD′ , are isomorphic.

4. If D =

r∑
i=1

aiDi is an effective Q-divisor on X, then [D] lies in the interior

of the cone GKZ(∆, I) if and only if the normal fan ∆D of PD is equal
to ∆ and I = {vi | 〈u, vi〉 > −ai for every u ∈ PD}.

The next proposition describes the walls of the fan GKZ(X).

Proposition 2.6.1. Let X = XΣ be a complete toric variety. Suppose that
GKZ(∆, I) is a maximal cone in GKZ(X). Then:

1. If f : X∆ → X∆′ is a divisorial contraction with exceptional divisor corre-
sponding to the primitive vector v ∈ ∆(1) then the cone GKZ(∆′, I ∪{v})
is a maximal cone in GKZ(X) which intersects GKZ(∆, I) along the wall
GKZ(∆′, I).

2. Suppose v ∈ I, and let ∆(v) be the fan obtained by star subdivision of ∆.
Then GKZ(∆(v), I \{v}) is a maximal cone in GKZ(X) which intersects
GKZ(∆, I) along the wall GKZ(∆, I \ {v}).

3. If f : X∆ → X∆′ is a small contraction and f+ : X∆+ → X∆′ is the
associated flip, then GKZ(∆+, I) is a maximal cone in GKZ(X) whose
intersection with GKZ(∆, I) is the wall GKZ(∆′, I).

4. If f : X∆ → X∆′ is a contraction of fibering type, then GKZ(∆′, I) is an
exterior wall of GKZ(X).
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Moreover, every interior wall in GKZ(X) arises as in 1,2 or 3, and every ex-
terior wall appears as in 4.

Proof. This result was proved in [21]. For the reader’s convenience we give
the proof here. First of all, note that by Theorem 2.3.11 a cone GKZ(∆′, I ′) is
a facet of GKZ(∆, I) if and only if one of the following conditions holds:

1. ∆ = ∆′ and |I \ I ′| = 1.

2. I = I ′ and there is a contraction X∆ → X∆′ of a ray of NE(X∆).

If f : X∆ → X∆′ is a divisorial contraction then, as described in Section
2.3.2, X∆′ is a Q-factorial projective variety and v is the only primitive vector
in ∆(1) \∆′(1). Thus, GKZ(∆′, I ∪{v}) is a maximal cone in GKZ(X), which
intersects GKZ(∆, I) along the wall GKZ(∆′, I).

The second claim follows from the first one since we have the divisorial
contraction X∆(v) → X∆ and the cone GKZ(∆(v), I \ {v}) is maximal.

To prove 3., note that the cone GKZ(∆+, I) is maximal in GKZ(X) since
X∆+ is a Q-factorial projective variety isomorphic to X∆ in codimension one.
So, the inclusionGKZ(∆′, I) ⊆ GKZ(∆, I)∩GKZ(∆+, I) has to be an equality.

Finally suppose that f : X∆ → X∆′ is a contraction of fibering type. Assume
that there is a maximal cone GKZ(∆′′, I ′′) which intersect GKZ(∆, I) along
the wall GKZ(∆′, I). We must have I ′′ = I. Otherwise, ∆′′ = ∆′, I ′′ \ I =
{v} and 2. would imply GKZ(∆′(v), I) = GKZ(∆, I). In this case, f would
be a divisorial contraction. Moreover, the morphism X∆′′ → X∆′ is again a
contraction of fibering type. Indeed, otherwise it follows from 1, 2 and 3 that
the maximal cone GKZ(∆, I), adjacent to GKZ(∆′′, I ′′), does not correspond
to a contraction of fibering type. It follows that ∆′′ = ∆, a contradiction.

The last assertion follows from the fact that we already have considered all
possible walls in GKZ(X).
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Chapter 3

Cayley-Mori Polytopes

3.1 Cayley-Mori Polytopes

In this section we characterize the normal fans of a special class of polytopes
called Cayley-Mori polytopes. These polytopes play an important role in the
spaces of polytopes as described in Chapter 4. From the viewpoint of toric va-
rieties, this is reflected by the fact that these polytopes are associated to Mori
fiber spaces.

Let X := PY (E) be a toric variety which is a toric projective bundle over
a toric variety Y . It is well known that in this case E will be a decompos-
able bundle, that is, it is a direct sum of line bundles (see for instance [31],
p.41). We adopt the Grothendieck notation, that is, PY (E) = ProjY Sym(E).
Let Σ be the fan of Y with respect to the lattice N . For each vj ∈ Σ(1) set

Dj := V (〈vj〉). Let Li :=
∑

j∈Σ(1)

aijDj , i ∈ {0, ..., k}, be divisors on Y such that

E = OY (L0)⊕ ...⊕OY (Lk). The fan of X can be described as follows.

Let e1, ..., ek be the canonical basis for Zk and e0 := −(e1 + ... + ek). By
abuse of notation we also denote by ei the element 0× ei in the lattice N ×Zk.
Similarly given v ∈ N we also denote by v the element v × 0 in N × Zk.

For each cone σ ∈ Σ and i = 0, ..., k we define

σi := Cone
(
vj+(a1j−a0j )e1+...+(akj−a0j )ek) | vj ∈ σ(1)

)
+Cone(e0, ..., êi, ..., ek).

The fan of X is built up from the cones σi and their faces, as σ ranges over
the cones from Σ.
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Now, consider Y a projective toric variety and for i = 1, ..., k let Li :=∑
j∈Σ(1)

aijDj be ample divisors on Y . Each Li defines a polytope Pi := PLi ⊂MR

whose associated fan is ΣY .
Consider the polytope P := conv

(
(P0×0), (P1×e1), ..., (Pk×ek)

)
⊂MR×Rk.

In [11, §3] it was proved that P is defined by the following inequalities:

〈m̂, v̂j〉 ≥ −a0j , vj ∈ ΣY (1)
〈m̂, e0〉 ≥ −1
〈m̂, ej〉 ≥ 0 j = 1, ..., k

where v̂j = vj +

k∑
i=1

(aij − a0j )ei.

Moreover,
(
PY (OY (L0)⊕ ...⊕OY (Lk)), ξ

)
is the polarized toric variety as-

sociated to P , where ξ is the tautological line bundle.

The polytope P is called a Cayley polytope. In [1] a generalization of Cayley
polytopes was introduced, namely polytopes of the form Cayleys(P0, ..., Pk) :=
conv

(
(P0×0), (P1×se1), ..., (Pk×sek)

)
for some positive integer s. Such a poly-

tope is called an sth order generalized Cayley polytope associated to P0, ..., Pk.
Now, we will define a further generalization of Cayley polytopes. We will

use the inequalities above and the description of the fan ΣP to describe the fan
of this new object.

Definition 3.1.1. Let P0, ..., Pk ⊂ Rn be n-dimensional polytopes, {w1, ..., wk}
a basis for Rk and w0 = 0. Suppose that P0, ..., Pk are strictly combinatorially
equivalent polytopes, that is, they have the same normal fan Σ. Let P0 ∗P1 ∗ ...∗
Pk = conv

(
(P0×w0), ..., (Pk×wk)

)
⊂ Rn×Rk. Any simple polytope isomorphic

to a polytope of the form P0 ∗ P1 ∗ ... ∗ Pk will be called a Cayley-Mori polytope
associated to P0, ..., Pk.

Remark 3.1.2. Note that a Cayley-Mori polytope is defined in the same way
as a Cayley polytope, replacing the canonical basis {e1, ..., ek} ⊂ Rk by an
arbitrary basis {w1, ..., wk} ⊂ Rk.

We want to describe the fan of a Cayley-Mori rational polytope P := P0 ∗
P1 ∗ ... ∗ Pk. We may suppose that P is a lattice polytope.

Consider a linear isomorphism A : Rn+k → Rn+k which is the identity on
the first n coordinates and maps ei to wi for each i ∈ {1, ..., t}. We write

DPi :=
∑

j∈Σ(1)

aijDj for i = 0, ..., k.

Note that the polytope Q := conv
(
(P0 × 0), ..., (Pk × ek)

)
is mapped onto P .

Thus P is defined by the inequalities:
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〈m̂, (A∗)−1(v̂j)〉 ≥ −a0j , vj ∈ ΣPi(1)
〈m̂, (A∗)−1(e0)〉 ≥ −1
〈m̂, (A∗)−1(ej)〉 ≥ 0 j = 1, ..., k

where v̂j = vj +

k∑
i=1

(aij − a0j )ei.

It follows that the 1-dimensional cones of ΣP are generated by the vectors:

• ṽj := dj [vj +

k∑
i=1

(aij − a0j )(A
∗)−1(ei)], for every vj ∈ Σ(1).

• ui := si(A
∗)−1(ei), i = 0, ..., k,

where dj and si are rational numbers which make ṽj and ui primitive
vectors for every vj ∈ Σ(1) and i = 0, ..., k.

Hence, the fan of P is given by the cones

σi := cone
(
ṽj | vj ∈ σ(1)

)
+ Cone(u0, ..., ûi, ..., uk)

and their faces, as σ ranges over the cones σ ∈ Σ and i ranges from 0 to k.

3.2 Cayley-Mori Polytopes and Mori Fiber Spaces

Let N and N ′ be lattices and Φ : N → N ′ a surjective Z-linear map.
If Σ and Σ′ are fans in NR and N ′R respectively, compatible with Φ, then there
is a toric morphism φ : XΣ → XΣ′ .
Let N0 := ker(Φ). The following sequence is exact:

0 −→ N0 −→ N
Φ−→ N ′ −→ 0.

Now, consider the subfan of Σ:

Σ0 := {σ ∈ Σ | σ ⊂ (N0)R ⊆ NR}.

We have that XΣ0,N ' XΣ0,N0
× T N

N0

' XΣ0,N0
× TN ′ .

Furthermore, Φ is compatible with Σ0 ⊂ NR and {0} ⊂ N ′R.
Thus, there is a toric morphism φ|XΣ0,N

: XΣ0,N → TN ′ such that φ−1(TN ′) '
XΣ0,N0

× TN ′ .
Note that if XΣ,N is smooth then so is XΣ0,N0

.

Definition 3.2.1. We say Σ is weakly split by Σ0 and Σ′ if there exist a
subfan Σ̂ ⊆ Σ such that:
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1. ΦR maps each cone σ̂ ∈ Σ̂ bijectively to a cone σ′ ∈ Σ′. Furthermore, the
map σ̂ 7→ σ′ defines a bijection between Σ̂ and Σ′.

2. For every cone σ ∈ Σ we have σ = σ̂ + σ0 with σ̂ ∈ Σ̂ and σ0 ∈ Σ0.

Definition 3.2.2. Let X be a Q-factorial projective toric variety of dimension
n. A toric fibration on X is a flat, equivariant surjective morphism f : X → Y
with connected fibers such that Y is a projective toric variety and dim Y < n.

Remark 3.2.3. Note that a toric fibration is also a fiber space and if all fibers
of f are irreducible and have Picard number one, then f : X → Y is a Mori
fiber space.

Remark 3.2.4. In [10, §3.3] it was defined the notion of a fan Σ being split
by fans Σ0 and Σ′. There, it is required the additional condition ΦR(σ̂ ∩N) =
σ′ ∩ N ′ for each σ̂ ∈ Σ̂. It was proved that if Σ is split by Σ0 and Σ′, then
φ : XΣ → XΣ′ is a locally trivial toric fibration with fiber XΣ0,N0

. Next, we
give a generalization of this result.

Theorem 3.2.5. Let (Σ, N) and (Σ′, N ′) be fans defining Q-factorial projective
toric varieties and Φ : N → N ′ a surjective Z-linear map compatible with Σ and
Σ′. Let φ : XΣ → XΣ′ be the associated toric morphism. Then, φ is a toric
fibration with irreducible fibers if and only if Σ is weakly split by Σ0 and Σ′ as
in Definition 3.2.1. In this case, the general fiber of φ is isomorphic to XΣ0,N0

.

Proof. Suppose first that Σ is weakly split by Σ0 and Σ′. In order to prove
that φ : XΣ → XΣ′ is a toric fibration with irreducible fibers we will show
that all fibers are toric varieties of the same dimension. We have seen that the
morphism φ : XΣ → XΣ′ is a trivial fibration over the torus T ′N with fiber
XΣ0,N0 . If p ∈ XΣ′ is an invariant point then there exists a maximal cone σ′

such that p = V (σ′). By proposition 2.1.3, φ−1(p)red = V (σ̂) is a toric variety
of dimension dim(XΣ)−dim(XΣ′).

Now, consider an invariant divisor V (v′) on XΣ′ . Since span(v̂)∩N0 = {0},
the restriction φ |V (v̂): V (v̂)→ V (v′) is induced by

0→ N0 → N/span(v̂) ∩N → N ′/span(v′) ∩N ′ → 0.

Note that ΣV (v̂) is split by ΣV (v′) and the fan {σ ∈ ΣV (v̂) | σ ∈ ΣV (v̂) ∩ Σ0}.
Hence, the fibers over the torus of V (v′) and over fixed points are toric varieties
with the same dimension, which is dim(V (v̂))−dim(V (v′)) = dim(XΣ)−dim(XΣ′).
By induction on the rank of N ′, we conclude that all fibers of φ are irreducible
of the same dimension and then φ has connected fibers. Since every toric variety
is Cohen-Macaulay (see Theorem 9.2.9, [10]), this is enough to conclude that φ
is a flat morphism (see Theorem 4.1.2, [18]).

Conversely, suppose φ is a toric fibration with irreducible fibers. Let σ′ be a
maximal cone of Σ′. Since φ is a flat surjective morphism with irreducible fibers,
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there exists only one cone σ̂ ∈ Σ such that σ̂ has the same dimension as σ′ and Φ
maps σ̂ bijectively onto σ′. Let τ ∈ Σ be a maximal cone containing σ̂. We write
σ̂ = Cone(v1, ..., vk) and τ = Cone(u1, ..., um, v1, ..., vk). Since Σ is simplicial,
for each i = 1, ...,m and j = 1, ..., k the cone cone(v1, ..., v̂j , ..., vk, ui) belongs
to Σ. If ui does not belong to Σ0 for some i = 1, ...,m, there exists some j such
that Φ(cone(v1, ..., v̂j , ..., vk, ui)) has the same dimension as σ′. In this case
V (σ̂) and V (cone(v1, ..., v̂j , ..., vk, ui)) are both contained in π−1(V (σ′)). But
this is absurd since every fiber is irreducible. Thus, τ = σ̂ + cone(u1, ..., um)
and cone(u1, ..., um) is contained in Σ0. Note that since Σ is simplicial, Φ maps
each face of σ̂ bijectively to a face of σ′. So, the set formed by the cones σ̂ and
their faces is clearly the desired fan Σ̂.

Lemma 3.2.6. Let XΣ be an n-dimensional complete Q-factorial toric variety
and d the number of 1-dimensional cones of Σ. Then d− ρX = n.

Proof. It follows immediately from the exact sequence (see [10], 4.2.1):

0→M → CDivT (X)→ Pic(X)→ 0

where CDivT (X) denotes the subgroup of invariants Cartier divisors on X.

Corollary 3.2.7. If XΣ is a smooth complete toric variety with Picard number
one, then X ' Pn.

Proof. By Lemma 3.2.6 the complete fan Σ has exactly n+ 1 primitive vectors
v1, ..., vn+1. Therefore, the maximal cones are of the form cone(v1, ..., v̂i, ...vn+1)
for every i ∈ {1, ..., n + 1}. Since Σ is smooth we can suppose that v1, ..., vn is
the canonical base of Rn and vn+1 = −v1 − ...− vn. Thus, X ' Pn.

Lemma 3.2.8. Let X be a toric projective variety associated to a rational poly-
tope P . Let Q be a face of P defining a cone σQ ∈ ΣX and Z := V (σQ).
Then:

1. There exists u ∈MQ such that Aff(Q) + u = (σQ)⊥.

2. Q+u ⊂ (σQ)⊥ is the polytope associated to the pair (Z,DP |Z) with respect
to the lattice M ∩ (σQ)⊥.

Proof. There is no loss in supposing that P is a lattice polytope. Then P has a
unique facet presentation P = {x ∈ MR | 〈x, uF 〉 ≥ −aF for all facets F ≺ P}.
With this notation we have σQ = cone(uF )F�Q and the smallest affine space
containing Q is Aff(Q) = {x ∈MR | 〈x, uF 〉 = −aF for all facets F � Q}. So,
to prove 1 we can take u to be any lattice point such that −u ∈ Q ∩M .

To prove 2 we can make a translation of P and assume that u = 0. The
maximal cones of ΣX containing σQ are given by σv := cone(uF )v≺F where v is a
vertice of Q. Moreover DP |Uσv= div(χ−v). Since Q ⊂ (σQ)⊥ we conclude that

Z * supp(DP ). In this case, by Proposition 2.2.4, DP |Z=
∑
γ

bγV (γ), where γ

runs through all cones containing σQ such that dim(γ) =dim(σQ) + 1, bγ =
aFi
si
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where uFi is any primitive vector in γ(1)\σQ(1) and si is a positive integer such
that the image of uFi in the one-dimensional lattice Nγ/NσQ is uFi = sie for e
a generator of Nγ/NσQ . To finish the proof, we note that if DQ is the divisor
associated to Q ⊂ MR ∩ (σQ)⊥ and v is a vertice of Q with γ ⊂ σv, then the
coefficient of V (γ) in DQ is 〈−v, e〉 = 1

si
〈−v, sie〉 = 1

si
〈−v, uFi〉 =

aFi
si

= bγ . It
follows that DP |Z= DQ.

Theorem 3.2.9. Let X be the Q-factorial projective toric variety associated to
a simple rational polytope P ⊂MR and ∆ a sublattice of N . Let π : M → Λ be
the dual map to the inclusion j : ∆ ↪→ N , where Λ = ∆∨. If j : ∆ ↪→ N induces
a Mori fiber space f : X → Y then:

1. π : M → Λ is surjective, and

2. P ' P0 ∗P1 ∗ ...∗Pk is a Cayley-Mori polytope for some rational polytopes
P0, ..., Pk such that XPi ' Y and Q := πR(P ) = conv(w0, ..., wk) is the
polytope associated to the general fiber of f .

Conversely, if P = P0 ∗P1 ∗ ... ∗Pk then the canonical inclusion j : Zk ↪→ Zn+k

induces a Mori fiber space f : XP → Y , where Y ' XPi .

Proof. Throughout the proof we suppose without loss that P is a lattice poly-
tope. Suppose that j : ∆ ↪→ N induces a Mori fiber space f : X → Y . The first
item follows from [23, 2.4]. Let F be the general fiber of f . Then F has the
structure of toric variety given by ΣF := {σ ∈ ΣX | σ ⊂ ∆R}. Since DP is an
ample divisor on X, DP |F is an ample divisor on F. Let S := PDP |F ⊂ ΛR and
denote by w0, ..., wk the vertices of S. Every vertex wi corresponds to a full di-
mensional cone τi ∈ ΣF which defines a fixed point pi of F . Let Yi := V (τi) ⊂ X
be the invariant section of f passing through pi.

Let Ri be the face of P corresponding to Yi. Note that span(τi) = ∆R, which
implies τ⊥i = ∆⊥R =ker(πR). By Lemma 3.2.8 there exists ui ∈ M such that
Aff(Ri)+ui =ker(πR) and Ri+ui is the polytope associated to (Yi, DP |Yi) with
respect to the lattice ker(π) ⊂M . Since Yi ' Y , we conclude that R0, ..., Rk are
strictly combinatorially isomorphic. Since ΣX is simplicial, the Yi’s are pairwise
disjoint and therefore the same holds for the Ri’s.

Let DP =
∑

v1i∈Σ(1)

aiV (〈vi〉) be the invariant divisor on X associated to P .

Since F is the a general fiber, V (〈vi〉) ∩ F 6= ∅ if and only if vi ∈ ∆, and we

have DP |F=
∑

vi∈∆∩Σ(1)

aiV (〈vi〉). Using the facet presentations of P and S we

see that πR(Ri) = wi and Q = πR(P ) = S.

The fixed points of X belong to the fibers of f over the fixed points of Y .
From 2.3.12 we have that every fiber has Picard number one. Hence, by lemma
3.2.6 every invariant fiber has k+1 fixed points. If s is the number of fixed points
of Y then each Ri has s vertices. It follows that X has s(k+ 1) fixed points and
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therefore P has s(k+1) vertices. Thus, P is the convex hull of R0, ..., Rk. Since
F has 1+dim(F ) fixed points, S = conv(w0, ..., wk) is a simplex in ΛR. Thus,
we conclude that P = P0 ∗ ... ∗ Pk, where Pi = Ri + ui ⊂ ker(πR).

Conversely, assume that P = P0 ∗ P1 ∗ ... ∗ Pk. We can suppose that π is
a canonical projection Zn+k → Zk as definition 3.1.1. Since πR(Pi) = wi the
affine subspace Aff(Pi) is a translation of ker(πR). Let Y be the projective
toric variety associated to the polytopes Pi’s with respect to the lattice ker(π).
Then the cones of the fan ΣY are contained in (ker(πR))∨ = Rn. We have noted
in Section 3.1 that the fan ΣP consists of the cones

σi := cone
(
ṽj | vj ∈ σ(1)

)
+ cone(u0, ..., ûi, ..., uk)

and their faces, where σ ∈ ΣPj . Denote by Σ0 the fan consisting of the cones
cone(u0, ..., ûi, ..., uk) for i = 0, ..., k and their faces. Then ΣP is split by Σ0

and ΣY . It follows from Theorem 3.2.5, Lemma 3.2.6 and Remark 3.2.3 that
j : Zk ↪→ Zn+k induces a Mori fiber space f : XP → Y .

Remark 3.2.10. Recall from the end of Section 3.1 that the 1-dimensional
cones of ΣP , P = P0 ∗ ... ∗Pk, are generated by the vectors ṽi, vi ∈ ΣPj , and uj ,
j ∈ {0, ..., k}. Notice that the divisors on X of the form V (ṽj) are pull backs
of the invariant divisors V (vj) on Y . Moreover, the invariant divisors of the
general fiber F are the restrictions to F of the divisors on X of the form V (ui).

Corollary 3.2.11. Let XP be a projective toric variety associated to the lat-
tice polytope P . Then, there is a Mori fiber space f : XP → Y with general
fiber isomorphic to Pk if and only if there are strictly combinatorially equivalent
polytopes P0, ..., Pk and a positive integer s, such that P ' Cayleys(P0, ..., Pk).
Moreover, if XP is smooth we can take s equal to one and therefore XP is a
projective bundle PY (E), where Y is the toric variety associated to the P ′is, and
E is a decomposable vector bundle of rank k + 1 on Y .

Proof. By Theorem 3.2.9, there are strictly combinatorially equivalent polytopes
P0, ..., Pk such that P = P0 ∗ ... ∗ Pk is a Cayley-Mori polytope. Suppose that
the general fiber of f is Pk. Then there exists a positive integer s such that P =
Cayleys(P0, ..., Pk) = conv

(
(P0×0), (P1× se1)..., (Pk× sek)

)
, where {e1, ..., ek}

is a basis for Zk ⊂ Rk.
As discussed in Section 3.1, if σ is a maximal cone of ΣY then the cone

σ0 := cone(ṽj | vj ∈ σ(1)) + cone(e1, ..., ek)) is a maximal cone of ΣP , where

ṽj = dj

[
vj +

k∑
i=1

(aij −a0j )
ei
s

]
and DPi :=

∑
j∈ΣP (1)

aijDj for i = 0, ..., k. If XP is

smooth, then dj = 1 and
aij − a0j

s
is an integer for every i = 1, ..., k. It follows

that s divides Dj−D0 in Pic(Y ) for every j ∈ ΣP (1), and the fan ΣP is exactly
the fan of PY

(
O ⊕O(D1−D0

s )⊕ ...O(Dk−D0

s )
)
.
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Let D be an ample divisor on Y such that D +
Di −D0

s
is ample for every

i ∈ {1, ..., k}. We set Qi to be the polytope associated to D +
Di −D0

s
. Then,

P ' Cayley1(Q0, ..., Qk).

Corollary 3.2.12. Let X be a smooth projective toric variety and fR : X → Y a
contraction of an extremal ray R ∈ NE(X). Then the exceptional locus Exc(fR)
is a projective bundle over a toric variety Z.

Proof. By Proposition 2.3.12 the restriction fR |Exc(fR): Exc(fR)→ Z is a flat,
equivariant, surjective morphism and the fibers are invariants varieties with
Picard number one. So, this restriction is a Mori Fiber space. Since X is
smooth, Exc(fR) is also a smooth toric variety and therefore the general fiber
of fR |Exc(fR) is smooth. Hence, this general fiber is isomorphic to a projective

space Pk. From Corollary 3.2.11 we conclude that the exceptional locus Exc(fR)
is a projective bundle over a toric variety Z := fR(Exc(fR)).
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Chapter 4

Birational Polytope
Geometry

In this chapter we relate the Mori theory for toric varieties with combinatorial
properties of polytopes. Part of the content exposed in this chapter comes from
a joint work in progress with Carolina Araujo, Alicia Dickenstein and Sandra
Di Rocco.

4.1 Spaces of Polytopes

Let vi ∈ Zn, 1 ≤ i ≤ r, be distinct primitive vectors such that cone(v1, ..., vr) =
Rn. Set H =

(
v1, · · · , vr

)
. For each a = (a1, ..., ar) ∈ Rr define the set:

Pa =
{
x ∈ Rn

∣∣∣〈vi, x〉 ≥ −ai, 1 ≤ i ≤ r}.
Definition 4.1.1. We define the space of polytope presentations PPH as

PPH =
{
a ∈ Rr

∣∣∣ Pa is a nonempty polytope
}
⊂ Rr.

Next we will find a suitable projective Q-factorial n-dimensional toric variety
X, and associate to each a ∈ PPH the linear equivalence class of a real effective
divisor on X.

Lemma 4.1.2. Let H =
(
v1, · · · , vr

)
be as above. Then there is an element

a0 ∈ Zr such that Pa0
is an n-dimensional simple lattice polytope having exactly

r distinct facets.

Proof. Consider the polytope Q ⊂ Rn defined as the convex hull of the vectors
{vi | 1 ≤ i ≤ r}. Since cone(v1, ..., vr) = Rn, the polytope Q contains 0 ∈ Rn
in its interior. Hence Q determines a fan Σ, whose cones are defined to be the
cones over the faces of Q, that is, Σ = ΣQ∨ . The fan Σ defines a projective
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toric variety. The primitive vectors of Σ form a subset of {v1, · · · , vr}. After
renumbering, we may assume that Σ(1) = {v1, · · · , vk}, with n+ 1 ≤ k ≤ r.

By considering subsequent star subdivisions of Σ at vk+1, · · · , vr, we obtain
a fan refinement Σ′ of Σ such that Σ′(1) = {v1, · · · , vr}. By [10, Proposition
11.1.6], Σ′ still defines a projective toric variety. By [10, Proposition 11.1.7], Σ′

can be further star subdivided to produce a simplicial fan Σ′′ such that Σ′′(1) =
{v1, · · · , vr}. The toric variety X corresponding to Σ′′ is then projective, Q-
factorial and n-dimensional. Let L be an ample divisor on X. Then the polytope
P associated to L is an n-dimensional simple lattice polytope having exactly r
distinct facets. By construction, P = Pa0

for some a0 ∈ Zr.

4.1.3. Let H =
(
v1, · · · , vr

)
be as above.

By Lemma 4.1.2, there is an element a0 ∈ Zr such that P = Pa0
is an n-

dimensional simple lattice polytope having exactly r distinct facets.

Let X be the n-dimensional Q-factorial projective toric variety associated to
P . Then ΣX(1) = {v1, · · · , vr}. As usual, for each i ∈ {1, · · · , r}, let Di ⊂ X
be the T -invariant prime Weil divisor associated to vi.

Consider the surjective linear map:

D : Rr −→ N1(X).

a =
(
a1, ..., ar

)
7−→ Da =

[ r∑
i=1

aiDi

]
Lemma 4.1.4. Let the notation be as in 4.1.3. Then

1. PPH = D−1
(
Eff(X)

)
.

2. PPH is an r-dimensional closed convex polyhedral cone in Rr.

Let a ∈ PPH. Then

3. Pa is n-dimensional if and only if a lies in the interior of PPH.

4. Pa and P have the same normal fan if and only if Da ∈ Amp(X).

Proof. Let a ∈ Zr. It follows from Proposition 2.2.8 that Pa 6= ∅ if and only if
Da ∈ Eff(X), proving 1.

It follows from Propositions 2.2.1 and 2.2.8 that the effective cone of a toric
variety is generated by the classes of the T -invariant prime divisors of X. So
Eff(X) is a ρX -dimensional closed convex polyhedral cone in N1(X), and 2
follows.

From the definition of bigness, we see that Da is big if and only if Pa is
n-dimensional. Then item 3 follows from the fact that Big(X) is the interior of
Eff(X).

Item 4 is also well known. See for instance [34, Section 3.4].
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Notice that 2 distinct elements of PPH may define the same polytope.

Example 4.1.5. Set H =
(
(1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1)

)
, and consider

the elements a = (1, 1, 1, 1, 2), and b = (1, 1, 1, 1, 3). One can check that Pa =
Pb.

Hence, if one is interested in parameter spaces for polytopes, not just for
polytope presentations, then one is led to consider the quotient PPH / ∼,
where ∼ is the equivalence relation that identifies elements a, b ∈ PPH such
that Pa = Pb.

Our next goal is to show that that PPH / ∼ can be realized as an r-
dimensional closed convex polyhedral subcone of PPH ⊂ Rr.

In [30], Payne introduced the cone Amp1(X) generated by classes of divisors
on X whose stable base loci do not contain any divisorial component. There,
it was proved that if X is a complete Q-factorial toric variety then Amp1(X) is

the closed convex polyhedral cone

r⋂
i=1

cone
(
D1, ..., D̂i, ..., Dr

)
.

The class of an invariant divisor Di on X does not belong to Amp1(X) if

and only if [Di] 6∈ cone
(
D1, ..., D̂i, ..., Dr

)
. This is equivalent to saying that

|mDi| = {mDi} for any m such that mDi is Cartier. We call such divisor an
exceptional divisor. One can check that a divisor Di is exceptional if and only
if cone(v1, ..., v̂i, ..., vr) = Rn.

We define the r-dimensional closed convex polyhedral cone:

PH := D−1
(
Amp1(X)

)
⊂ PPH ⊂ Rr.

Next we show that PPH / ∼ can be identified with PH.

Proposition 4.1.6. Let the assumptions and notation be as in 4.1.3 above.
Then the correspondence a 7→ Pa induces a bijection between PH and the set of
polytopes

{
Pa
∣∣ a ∈ PPH}.

Proof. Let a ∈ PPH ∩ Zn, and set Da :=

r∑
i=1

aiDi. Consider the set

Ia := {vi ∈ ΣX(1) | 〈u, vi〉 > −ai for every u ∈ Pa}.

It follows from Proposition 2.2.8 that the divisor Di appears in the stable base
locus of Da if and only if vi ∈ Ia.

We claim that there is an effective divisor Db :=

r∑
i=1

biDi ∈ Amp1(X) such

that Pa = Pb. For each i ∈ Ia set di := minu∈Pa〈u, vi〉+ ai.

We take Db :=
∑
i/∈Ia

aiDi +
∑
i∈Ia

(ai − di)Di ∈ Amp1(X). To see the equality

Pa = Pb consider i ∈ Ia and u ∈ Pa. Since 〈u, vi〉 + ai ≥ di we have u ∈ Pb.
The converse is obvious since di ≥ 0. So, we are reduced to proving that the
correspondence a 7→ Pa is injective on PH. But this is obvious since Da ∈
Amp1(X) if and only if Ia = ∅.
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Proposition 4.1.7. Let X be a complete Q-factorial toric variety. Then, the
cone Amp1(X) is compatible with the GKZ decomposition of X. More precisely,

Amp1(X) =
⋃

(∆,∅)∈S

GKZ(∆, ∅). In particular, every maximal cone of GKZ(X)

intersects Amp1(X) non trivially. If X is projective then Amp1(X) is a ρX-
dimensional cone containing Nef(X).

Proof. Let D be a divisor in Amp1(X) and let ∆ be the fan defined by PD. Let
m be a positive integer such that mD is Cartier. The complete linear system∣∣mD∣∣ defines a rational map f : X 99K X∆, which extends to a morphism
on an open subset whose complement has codimension ≥ 2 in X. Therefore
one can define a pull-back map f∗ : N1(X∆) → N1(X). By construction,
there is an ample divisor A on X∆, and an effective divisor E on X such that
mD = f∗A+E. The support of E consists of the T -invariant prime divisors on
the base locus of

∣∣mD∣∣. Since D ∈ Amp1(X) we have E = 0 and mD = f∗A.
Thus, D ∈ GKZ(∆, ∅).

Conversely, given (∆, ∅) ∈ S, f : X 99K X∆ the associated rational map
and A an ample divisor on X∆, then D := f∗(A) belongs to the interior of
GKZ(∆, ∅). Thus, the set I = {vi | 〈u, vi〉 > −ai for every u ∈ PD} is empty.
Using the same argument as in the proof of Proposition 4.1.6 we conclude that
D ∈ Amp1(X). If GKZ(∆, I) is a maximal cone then it follows from the
first propriety of GKZ decomposition that GKZ(∆, ∅) is a non trivial face of
GKZ(∆, I). For the last claim notice that in that case Nef(X) = GKZ(ΣX , ∅).

Let H =
(
v1, ..., vr

)
and X be as in 4.1.3. In Section 2.6, we described the

GKZ decomposition of X. We saw that each maximal cone in this decom-
position is generated by the nef cone of a Q-factorial birational model of X
and some classes of exceptional invariant divisors [Di]’s. This decomposition
induces, through the map D, a degenerate fan supported on PPH ⊂ Rr which
we call the GKZ-decomposition of PPH and denote by GKZ(PPH).

Polytopes associated to elements in the relative interior of the same cone of
this fan are strictly combinatorially equivalent. This is a different construction of
a cell decomposition of PPH that has already been considered in the literature.
See for instance [9, Section1.3]. There, the maximal cones of this decomposition
are called big cells, and it is shown that the volume of the polytope Pb is a
polynomial function of b on each big cell.

It follows from the properties of the GKZ decomposition of X that given
a point a ∈ PPH there is a linear subspace S 3 a with maximal dimension
among those satisfying the following property: there is an open neighbourhood
U of a such that for each b ∈ S ∩ U the polytopes Pa and Pb are strictly
combinatorially equivalent. The closure of the set consisting of points b ∈ S such
that Pb is strictly combinatorially equivalent to Pa defines a cone GKZ(a,PPH)
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of GKZ(PPH) whose dimension is dim S. This means that

GKZ(PPH) =
{
GKZ(a,PPH)

∣∣ a ∈ PPH},
and

PPH =
⋃

a∈PPH

GKZ(a,PPH).

Moreover, for each point a in the interior of a maximal cone of GKZ(PPH),
the polytope Pa is n-dimensional and simple. It follows from Proposition 4.1.7
that the GKZ-decomposition of PPH is compatible with PH. More precisely,

PH =
⋃
a

GKZ(a,PPH),

where the union is over all a ∈ PPH such that Pa is a simple polytope having
exactly r facets.

Note that D(a) = D
(
a +

(
〈u, vi〉, · · · , 〈u, vr〉

))
for every u ∈ Zn. There-

fore, the fan GKZ(PPH) is degenerate. Each cone of this fan contains the
n-dimensional linear subspace defined as the image of the linear map Rn → R
given by the matrix whose rows are the vectors v1, ..., vr.

Remark 4.1.8. It follows from the properties of the GKZ decomposition of X
that GKZ(a,PPH) is a maximal cone if and only if Pa is a simple n-dimensional
polytope with r facets.

Proposition 2.6.1 can be rewritten as follows. Consider GKZ(a,PPH) and
GKZ(b,PPH) maximal cones whose intersection is a wall GKZ(c,PPH). One
of the following occurs:

1. Pb has one less facet than Pa, Pc is strictly combinatorially equivalent to
Pb and there is a divisorial contraction f : XPa → XPb .

2. Pa has one less facet than Pb, Pc is strictly combinatorially equivalent to
Pa and there is a divisorial contraction f : XPb → XPa .

3. The polytope Pc is n-dimensional but not simple. There is a small con-
traction f : XPa → XPc with f+ : XPb → XPc the associated flip. The
polytope Pc has one less m-dimensional face than Pa, where m denotes
the dimension of the exceptional locus of f .

In all cases it follows from Theorem 3.2.9 that the lost face (i.e., the face
corresponding to Exp(f)) is a Cayley-Mori polytope.

If GKZ(a,PPH) is a maximal cone and GKZ(c,PPH) is an exterior wall
of GKZ(a,PPH), then dim Pc < dim Pa and there is a Mori fiber space f :
XPa → XPc . In this case, by Theorem 3.2.9 Pa is a Cayley-Mori polytope.
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Remark 4.1.9. In 4.1.3 we made a choice of a0 ∈ Zr such that Pa0 is an n-
dimensional simple lattice polytope having exactly r distinct facets. Suppose we
choose another element a1 ∈ Zn such that Pa1

is an n-dimensional simple lattice
polytope having exactly r distinct facets. Let (X ′, L′) be the polarized toric
variety associated to Pa1

. Then X and X ′ are T -isomorphic in codimension
one. So there is a natural identification ϕ : N1(X) → N1(X ′) sending the
class of a T -invariant prime divisor on X to the class of the corresponding T -
invariant prime divisors on X ′. In particular, ϕ identifies the cones Amp1(X)
and Eff(X) with Amp1(X ′) and Eff(X ′), respectively. Moreover, ϕ preserves
the GKZ decomposition on Eff(X) and Eff(X ′).

4.2 Adjoint Polytopes

In this section we will explain the MMP in terms of polytope geometry. Given
a polarized toric variety (X,L) we will define an operation on the associated
polytope that, under some assumptions, describes each step of the MMP with
scaling for (X,L).

Definition 4.2.1. Let P ⊂ Rn be an n-dimensional polytope, defined by the
facet presentation:

P := {u ∈ Rn | 〈u, vi〉 ≥ −ai, 1 ≤ i ≤ r},

where each vi ∈ Zn is primitive and ai ∈ R for 1 ≤ i ≤ r. The polarized toric
variety corresponding to P is denoted by (X,L), where L is an ample R-divisor
on X. For each s ∈ R≥0, define:

P (s) = {u ∈ Rn | 〈u, vi〉 ≥ −ai + s, 1 ≤ i ≤ r}.

This operation was introduced in [1] and the polytopes P (s) are called adjoint
polytopes in [28].

Remark 4.2.2. We note that in order to define the adjoint polytopes P (s) we
need P to be given by it facet presentation. This means that P has exactly r
facets. Otherwise P (s) would not be well defined, i.e., it could depend on the
presentation.

Example 4.2.3. Consider the polytope P defined by the following facet pre-
sentation :

 〈(501,−1000), x〉 ≥ −1000
〈(−1000, 501), x〉 ≥ −499
〈(0, 1), x〉 ≥ 1
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The polytopes P (s) have the same combinatorial type as P until the moment
in which the dimension of P (s) drops. In particular, P ( 2

5 ) is still a triangle. On
the other hand, if we add the inequality 〈(0,−1), x〉 ≥ −2, we still have the

same polytope P . However, P ( 2
5 ) is no longer a triangle.


〈(501,−1000), x〉 ≥ −1000
〈(−1000, 501), x〉 ≥ −499
〈(0, 1), x〉 ≥ 1
〈(0,−1), x〉 ≥ −2



〈(501,−1000), x〉 ≥ −1000 +
2

5

〈(−1000, 501), x〉 ≥ −499 +
2

5

〈(0, 1), x〉 ≥ 1 +
2

5

〈(0,−1), x〉 ≥ −2 +
2

5

Suppose that P is given by it facet presentation as in Definition 4.2.1. By
[28, Proposition 1.4], (P (s))(t) = P (s+t).

The nef threshold of P is the number

λ(P ) := sup{s ∈ R≥0 | P and P (s) have the same normal fan}

while the effective threshold of P is the number

σ(P ) := sup{s ∈ R≥0 | P (s) 6= ∅}.

Equivalently, σ(P ) = σ(L) = sup{s ∈ R≥0 | [L + sKX ] ∈ Eff(X)} and
λ(P ) = λ(L) = sup{s ∈ R≥0 | [L+ sKX ] ∈ Nef(X)}. The polytope P (σ(P )) is
called the core of P and is denoted by core(P ).

By Lemma 4.1.4, dimP (s) = n for 0 ≤ s < σ(P ), and dimP (σ(P )) < n.

Remark 4.2.4. By [28, Lemma 1.13] if P is a rational polytope, then the
number λ(P ) := sup{s ∈ R≥0 | [L + sKX ] ∈ Nef(X)} is positive if and only
if X is a Q-Gorenstein variety. This happens for instance when P is a simple
polytope.
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Suppose that P = Pa is simple and set H =
(
v1, · · · , vr

)
. Consider the linear

map:

γ : [ 0 , σ(P ) ] → PPH
s 7→ a− s ·

(
1, ..., 1

)
.

In order to relate adjoint polytopes with birational geometry, we will compose γ
with the map D : Rr → N1(X) defined in Section 4.1. Recall that D(1, · · · , 1) =[∑r

i=1
Di

]
= [−KX ], which lies in the interior of Eff(X). Set L =

∑r

i=1
aiDi.

Then we have

π = D ◦ γ : [ 0 , σ(P ) ] → Eff(X)
s 7→ [L+ sKX ].

This means that the polytope associated to the divisor L+ sKX is P (s).
When we increase s the adjoint polytope P (s) will change its combinatorial

type at some critical values, the first one being λ(P ). Our aim is to describe
the family of polytopes P (s) for values of s between 0 and σ(P ). Theorem 4.2.7
below describes P (s) as we vary s from 0 to σ(P ) under the assumption that
P is a general simple rational polytope. In this case we can say precisely what
happens with the adjoint polytope P (s) each time reaches one of finitely many
critical values. Moreover, we show that for ε > 0 sufficiently small, P (σ(P )−ε) is
a Cayley-Mori polytope.

We follow the notation introduced in Section 2.6

Lemma 4.2.5. Let (Σ, I) ∈ S and let f : X 99K XΣ be the associated rational

map. If A is a nef effective R-T -divisor on XΣ and λ = (λi)i is in R|I|≥0 then

PA = PD where D = f∗(A) +
∑
i∈I

λiDi.

Proof. It follows easily from [10, Proposition 6.2.7].

Definition 4.2.6. Let P be a simple polytope and set H =
(
v1, ..., vr

)
, where

{v1, ..., vr} are the primitive vectors of ΣP . Let the notations be as in 4.1.3. We
say that the polytope P is general if P = Pb for some

b ∈ D−1
(
Eff(X) \

⋃
Γ

(cone(Γ, [−KX ]))
)
,

where Γ runs over all (ρX − 2)-dimensional cones in GKZ(X) (see Remarks
4.1.8 and 4.1.9).

Theorem 4.2.7. Let (X,L) be a polarized n-dimensional Q-factorial toric va-
riety such that P := PL ⊂ Rn is a general rational polytope. Then there exist
sequences

0 = λ0 < λ1 < ... < λk = σ(P ), X = X1
f1
99K X2

f2
99K ...

fk
99K Xk+1

of rational numbers and rational maps, such that:
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1. For i ∈ {1, ..., k − 1}, fi is either a divisorial contraction or a flip.

2. For λi < s, t < λi+1, P
(s) and P (t) are n-dimensional simple polytopes

with the same normal fan.

3. At s = λi, one of the following occurs.

(a) Either P (λi) is simple and P (λi) has one less facet than P (λi−1)

(equivalently, fi is a contraction of divisorial type), or

(b) P (λi) is not simple and P (λi) has the same number of facets as P (λi−1)

(equivalently, fi is a flip).

4. For λk−1 < s < λk = σ(P ), P (s) is a Cayley-Mori polytope, (equiva-
lently fk is a Mori fiber space, and Xk+1 is the toric variety associated to
P (σ(P ))).

5. For each i ∈ {1, ..., k}, denote by mi the dimension of the locus where
fi is not an isomorphism. Then, for λi < s < λi+1, the polytope P (s)

has exactly one more mi-dimensional face than P (λi+1), and this face is a
Cayley-Mori polytope.

6. Let K(P ) be the linear space parallel to Aff(Core(P )) and consider the
natural projection πP : Rn → Rn/K(P ) associated to P . The toric variety
associated to the polytope Q := πP (P ) is the closure of the general fiber of
the rational map f := fk ◦ ... ◦ f1 : X 99K Xk+1.

Moreover, if P (λi) is simple then Xi+1 is the toric variety associated to it.
Otherwise, if P (λi) is not simple, the toric variety associated to P (λi) is the
image of the small contraction corresponding to the flip fi and Xi+1 is associated
to P (s) for λi < s < λi+1.

Remark 4.2.8. The polytope Q of item 6 was introduced in [28] but lacked
this geometric interpretation.

Proof. Set λ1 = λ(L,X). By definition, L + sKX ∈ Amp(X) for 0 ≤ s < λ1.
Then P (s) = PL+sKX has the same normal fan for 0 ≤ s < λ1. Since P is
general, L+ λ1KX belongs to the interior of a wall τ of Nef(X). Since the nef
cone is dual to the Mori cone, there is a unique extremal ray R1 of NE(X) such
that (L+ λ1KX) ·R1 = 0. Since L is ample, KX ·R1 < 0.

By Theorem 2.3.11, the complete linear system |m(L + λ1KX)| defines the
contraction f : X → Y of the extremal ray R1 for m sufficiently large and
divisible. Moreover, Y is the projective toric variety defined by P (λ1) and τ =
f∗(Nef(Y )).

We fall under one of the following 3 possibilities.

1. If dim Y < dim X then Y is Q-factorial. By Proposition 2.6.1, the cone
τ = GKZ(∆L+λ1KX , ∅) is an exterior wall of Eff(X). Thus λ1 = σ(P ),
k = 1 and f = f1. It follows from Theorem 3.2.9 that P (s) is a Cayley-
Mori polytope for 0 ≤ s < λ1.
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2. If f : X → Y is a divisorial contraction then Y is also Q-factorial. In this
case, using again Proposition 2.6.1 we conclude that τ is an interior wall
and therefore λ1 < σ(P ). We set X2 = Y and f1 = f . Since X2 is the
toric variety associated to the polytope PL+λ1KX = P (λ1) we have that
P (λ1) has one less facet than P .

Now, consider λ2 = λ((f1)∗L,X2). Then (f1)∗L+ λ2KX2
∈ ∂Nef(X2).

Notice that
L+ λ1KX = f∗1 ((f1)∗L+ λ1KX2).

This implies that (f1)∗L+λ1KX2
is nef since so is L+λ1KX . By Lemma

4.2.5 the divisor (f1)∗L+λ1KX2
determines the same variety as L+λ1KX ,

which is X2. Thus (f1)∗L + λ1KX2
is ample and λ1 < λ2. Moreover,

(f1)∗L+ sKX2 ∈ Amp(X2) for λ1 ≤ s < λ2.

From Lemma 4.2.5 we conclude that for λ1 ≤ s < λ2, the varieties defined
by (f1)∗L + sKX2

and L + sKX coincide and are equal to X2. Conse-
quently, for s in this interval, L + sKX is in a same cone of GKZ(X),
which means that the polytopes P (s) are n-dimensional, simple, and they
have the same normal fan.

Since the product of the exceptional divisor E of f1 by the ray R1 is
negative we have that, for every λ1 < s ≤ λ2, there exists as < 0 such
that f∗1 ((f1)∗L+ sKX2) = L+ sKX + asE.

Since (f1)∗L + λ2KX2
∈ ∂Nef(X2), the variety associated to L + λ2KX

(which is the same as the one defined by (f1)∗L+ λ2KX2
) is not X2. So,

since P is general, L + λ2KX is in the interior of a wall of the cone of
GKZ(X) given as the image of the map

Nef(X2) × R≥0 → N1(X).

It follows that (f1)∗L + λ2KX2 is in the interior of a wall of Nef(X2).
Hence, there exists a unique extremal ray R2 ∈ NE(X2) such that the
product ((f1)∗L + λ2KX2

) · R2 is equal to zero. Then we have again a
contraction g : X2 → Z of an extremal ray.

3. If f : X → Y is a small contraction, then Y is not Q-factorial. Let
ψ : X 99K X+ be the associated flip. Then X+ is Q-factorial. We set
X2 = X+ and f1 = ψ.

The polytope P (λ1) is not simple because Y is not Q-factorial. Since f
is an isomorphism in codimension one it follows from Lemma 3.2.6 that
P (λ1) and P have the same number of facets. Consider the flip diagram:

X

f ��@
@@

@@
@@

@
ψ //_______ X+

f+
}}||

||
||

||

Y
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By Proposition 2.6.1, GKZ(Σ+, ∅) is a maximal cone, where Σ+ denotes
the fan of X+. In addition, τ = GKZ(Σ, ∅) ∩ GKZ(Σ+, ∅). It follows
that for every ε > 0 such that L + (λ1 + ε)KX ∈ GKZ(Σ+, ∅), P (λ1+ε)

is associated to X2 = X+. This means that if we set λ2 = sup{s ∈
R≥0 | L + sKX ∈ GKZ(Σ+, ∅)} then P (s) has the same normal fan for
λ1 < s < λ2.

Since ψ is an isomorphism in codimension one, the divisors (ψ)∗L+sKX+

and L + sKX = ψ∗((ψ)∗L + sKX+) determine the same variety. Hence
λ2 = λ((ψ)∗L,X

+), and we have that (ψ)∗L+ λ2KX+ ∈ ∂Nef(X+).

As before, (ψ)∗L+λ2KX+ must belong to the interior of a wall of Nef(X2)
because P is a general polytope. This wall determines a contraction g :
X2 → Z of an extremal ray of NE(X2).

For the cases 2 and 3, if dim Z < dim X2 then λ2 = σ(P ). We set X3 = Z
and f2 = g. From Theorem 3.2.9 we have that P (s) is a Cayley-Mori polytope
for λ1 < s < λ2. Now, we conclude the items 1 to 4 by induction.

To prove item 5. note that the exceptional locus of the extremal contraction
fRi corresponding to fi is, by 2.3.12, an irreducible variety which corresponding
the mi-dimensional lost face of P (λi+1). Since the restriction of fRi to Exp(fRi)
is a Mori fiber space, item 5 follows from item 4.

To prove 6. notice that the rational map f : X 99K Xk+1 is induced by the
exact sequence

0 −→ K(P )⊥
j−→ (Rn)∗ −→ (Rn)∗/K(P )⊥ −→ 0,

whose the dual exact sequence is

0 −→ K(P ) −→ Rn πP−→ Rn/K(P ) −→ 0.

Given a vertex v̄ of Q there is a vertex v of P such that πP (v) = v̄. It follows that
the image of the cone Cv := cone(P − v) by πP is the cone Cv̄ := cone(Q− v̄).
Since each maximal cone of the fan ΣQ determined by Q is of the form (Cv̄)

∨

and j is the dual map to πP , we have that j induces an inclusion XQ ↪→ X.

Consider the toric variety U ⊂ X given by the open subset
⋃

v∈ΣX(1)

Uv of X.

The restriction f |U : U → Xk+1 is a morphism of toric varieties. We will see in
Section 5.2.2 that the general fiber of this morphism is the toric variety F ⊂ U
given by the fan {v | v ∈ K(P )⊥ ∩ΣX(1)}, that is, F is the open subset of XQ

given by
⋃

v̄∈ΣQ(1)

Uv̄. As XQ is a closed subset of X, we have F
X

= XQ.

Remark 4.2.9. It follows from the proof of Theorem 4.2.7 and from the de-
scription given in Section 2.5 that if P is general then each point of intersection
between the segment {[L + sKX ] | 0 ≤ s ≤ σ(P )} and the walls of the GKZ
decomposition of X corresponds to a step of the MMP of X with scaling of L.
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We can also reformulate the definition of general polytope as follows: P is
general if when we vary s from 0 to σ(P ), the polytopes P (s) lose exactly one
face at each critical value. More precisely, if λi is a critical value, then all lost
faces from P (λi−ε) to P (λi), for ε sufficiently small, are contained in a unique
face.

Example 4.2.10. Consider X := Blp(P1 × P1) the toric variety associated to
the fan defined by the following maximal cones:{

cone
(
(1, 0), (0, 1)

)
, cone

(
(0, 1), (−1, 0)

)
, cone

(
(−1, 0), (−1,−1)

)
,

cone
(
(−1,−1), (0,−1)

)
, cone

(
(0,−1), (1, 0)

)}
.

The invariant divisors corresponding to the primitive vectors are denoted by
D1, D2, D3, D4, E. The effective cone of X is generated by D3, D4, E and we
have the relations D1 ∼ D3 + E and D2 ∼ D4 + E.

Let L := 2D1 +D2 + 2D3 +D4 + 5
2E be an ample divisor on X and P the

corresponding polytope.

We have 2 critical values λ1 = 1/2 and λ2 = 1 that correspond to the maps

Blp(P1 × P1)
f1 //

OO

��

P1 × P1
f2 //

OO

��

P1
OO

��
P P (λ1) P (λ2)

The sequence of polytopes P, P (λ1) and P (λ2) correspond to the sequence of
varieties that appear in the MMP of X with scaling of L.

The picture that corresponds to this process in the GKZ decomposition of
X is given below.
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If we replace L by the ample divisor 6D1 + 5D2 + 6D3 + 5D4 + 2E then we
will have 3 critical values λ1 = 1/2, λ2 = 3/2 and λ3 = 5/2,

that correspond to the maps:

Blp(P1 × P1)
f1 //

OO

��

F1
f2 //

OO

��

P2
f3 //

OO

��

{q}
OO

��
P P (λ1) P (λ2) P (λ3)

Remark 4.2.11. If the polarized toric variety (X,L) corresponds to a non
general polytope P , then the adjoint polytopes P (s) do not give complete in-
formation about the sequence of varieties that appear in the MMP of X with
scaling of L.
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Example 4.2.12. Let (X,L) be the polarized toric variety associated to the
polytope P defined by the following inequalities:



〈(−1,−1), x〉 ≥ −1
〈(0,−1), x〉 ≥ −1
〈(1, 0), x〉 ≥ −1
〈(1, 1), x〉 ≥ −1
〈(0, 1), x〉 ≥ −1
〈(−1, 0), x〉 ≥ −1

Notice that L = −KX and thus λ(P ) = σ(P ) = 1, but the polytope P is
not a Cayley-Mori.

Remark 4.2.13. Let P := {u ∈ Rn | 〈u, vi〉 ≥ −ai, 1 ≤ i ≤ r} be a polytope
as in Definition 4.2.1. Let (X,L) be the polarized toric variety corresponding
to P . Let α :=

(
α1, ..., αr

)
∈ (Q≥0)r. For each s ∈ R≥0, define:

P (sα) = {u ∈ Rn | 〈u, vi〉 ≥ −ai + sαi, 1 ≤ i ≤ r}.

Consider the divisor D := −
r∑
i=1

αiDi on X. We can run the analogous steps

of MMP replacing KX with D. As in the usual MMP, the divisor D cannot
be made nef. So, we still end with a Mori fiber space. Then, all results of this
section can be generalized replacing KX by D and P (s) by P (sα).
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Chapter 5

On the Classification of
2-Fano Toric Varieties

A smooth projective variety X is said to be Fano if it has ample anti-canonical
divisor. These varieties have been studied by several authors and play an im-
portant role in birational algebraic geometry. Fano varieties are quite rare. It
was proved by Kollár, Miyaoka and Mori that, fixed the dimension, there exist
only finitely many smooth Fano varieties up to deformation (see [15], [16]). Fur-
ther, in the toric case, there exist finitely many isomorphism classes of them. In
dimension 2, smooth Fano varieties are classically known as Del Pezzo surfaces.
There are five isomorphism classes of toric Del Pezzo surfaces: P2, P1 × P1 and
P2 blown up in 1, 2 or 3 invariant points. In dimensions 3, 4, 5 and 6 there are
18, 124, 866 and 7622 isomorphism classes of smooth toric varieties respectively
(see [32], [33], [20] and [22]).

We are interested in toric varieties known as 2-Fano varieties. A Fano va-
riety X is said to be 2-Fano if its second Chern character is positive (i.e.,
ch2(TX) · S > 0 for every surface S ⊂ X). These varieties were introduced
by de Jong and Starr in [3] and [2] in connection with rationally simply con-
nected varieties, which in turn are linked with the problem of finding rational
sections for fibrations over surfaces. 2-Fano varieties are even rarer than Fano
varieties. One can check from the classification of Del Pezzo surfaces that the
only 2-Fano surface is P2. In [5] it is proved that the only 2-Fano threefolds are
P3 and the smooth hyperquadric in P4. In higher dimensions, few examples are
known. First de Jong and Starr gave some examples in [2], then Araujo and
Castravet found some more examples (see [6], Section 5). Among all examples
known, the only smooth toric 2-Fano varieties are projective spaces.

Question 1: Is Pn the only n-dimensional smooth projective toric 2-Fano
variety?
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We will go through the classification of toric Fano 4-folds, given by Batyrev
in [33], and we will check that the only one with positive second Chern character
is P4. This result was published in [12]. Then, we use a database provided by
Øbro in [22] to answer Question 1 positively in dimension 5 and 6. We remark
that in [14] Sato considers a similar problem. In particular, he classifies smooth
toric Fano varieties with Picard number 2 whose second Chern character is nef
(i.e., ch2(TX) · S ≥ 0 for every surface S ⊂ X). We can use Proposition 5.2.9
and Remark 5.2.4 to recover this result. In Section 5.2 we study the case of
dimension bigger than 6 and give some partial results.

5.1 2-Fano in Low Dimension

5.1.1 Batyrev Classification of Toric Fano 4-folds

Let Σ ⊂ NR ' Rn be a simplicial complete fan. Write Σ(1) = {v1, ..., vr} and
set X := XΣ.

Definition 5.1.1. A subset P = {vi1 , vi2 , ..., vid} of Σ(1) is a primitive col-
lection for Σ if the following conditions are satisfied:

1. P is not contained in any cone from Σ.

2. Any proper subset of P is contained in some cone from Σ.

Definition 5.1.2. Let P = {vi1 , vi2 , ..., vid} ⊆ Σ(1) be a primitive collection
for Σ and σP = 〈vj1 , ..., vjk〉 be the cone of minimal dimension in Σ such that
vi1 + vi2 + ...+ vid ∈ σP . Then, there is a unique linear relation

vi1 + ...+ vid = c1vj1 + ...+ ckvjk , ci ∈ Q>0.

We call R(P) := vi1 + ... + vid − c1vj1 − ... − ckvjk the primitive relation
associated to P. If X is smooth then ci ∈ Z>0, and we define the degree of the
primitive collection P by:

∆(P) := d− c1 − ...− ck.

By Proposition 2.3.10, we may interpret N1(X) as the space of linear rela-
tions among the minimal generators of Σ. Under this identification, we have
that N1(X) is generated by primitive relations. Moreover, if V (σ) is an invari-
ant curve on X then its class [V (σ)] in N1(X) is a positive linear combination
of primitive relations (see [10], Theorem 6.3.10).

Hence, NE(X) =
∑

P primitive
collection

R≥0R(P).

60



Note that a relation

r∑
i=1

aivi = 0, ai ∈ R, corresponds to an element ξ ∈

N1(X) that has intersection ai with V (〈vi〉) for all i ∈ {1, ..., r}.

Since c1(TX) =

r∑
i=1

V (〈vi〉) (see for instance, [10] Theorem 8.2.3), if X is smooth

and R(P) =

r∑
i=1

aivi is a primitive relation, then

∆(P) =

r∑
i=1

ai =

r∑
i=1

V (〈vi〉) · R(P) = −KX · R(P).

Hence, using Kleiman’s Criterion of ampleness (Theorem 2.3.3), we can give a
characterization of smooth toric Fano varieties in terms of primitive relations:

A smooth toric variety XΣ is a Fano variety if and only if ∆(P) > 0 for
every primitive relation P of Σ.

From now on, X := XΣ will denote a smooth projective toric variety.
In ([33], 2.2.4) we see that Fano toric varieties can be recovered from the set
of primitive relations. In that paper Batyrev gives a classification of toric Fano
4-folds by describing the possible sets of primitive relations in dimension 4. He
also gives a geometric description for these varieties. He found 123 isomorphism
classes of smooth toric Fano 4-fold. Then in [13] Sato noticed one missing
isomorphism class in Batyrev’s classification and he described the primitive re-
lations of this missing class, completing the classification of toric Fano 4-folds.
Note that if XΣ is a smooth toric variety then any set of primitive vectors that
generate a maximal cone of Σ can be chosen to be the canonical basis of Zn. By
definition of primitive collection, a simplicial cone σ generated by vectors from
Σ(1) belongs to Σ if and only if σ does not contain any primitive collection. In
the next example, we illustrate how to recover a smooth toric Fano variety from
its set of primitive relations.

Example 5.1.3. Let XΣ be the toric Fano 4-fold given by the following prim-
itive relations:
v1+v2 = v8, v7+v8 = v1, v1+v6 = v7, v2+v7 = 0, v6+v8 = 0, v3+v4+v5 = 2v1.

Then, the primitive collections are: {v1, v2}, {v7, v8}, {v1, v6}, {v2, v7},
{v6, v8}, {v3, v4, v5}. Thus, by definition of primitive collection, the fan Σ ob-
tained from primitive relations, satisfies:

σ = 〈vi, vj , vk, vl〉 ∈ Σ⇔



〈v1, v2〉 * σ
〈v7, v8〉 * σ
〈v1, v6〉 * σ
〈v2, v7〉 * σ
〈v6, v8〉 * σ
〈v3, v4, v5〉 * σ
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Since XΣ is smooth, every maximal cone in Σ provides a basis to N ' Z4.
The cone 〈v1, v2, v3, v4〉 is maximal in Σ, so we can take v1 = (1, 0, 0, 0), v2 =
(0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1). Thus, from the primitive relations,
we get v5 = (2, 0,−1,−1), v6 = (−1,−1, 0, 0), v7 = (0,−1, 0, 0), v8 = (1, 1, 0, 0).

In the table below we list all smooth toric 4-folds and its primitive collections
or geometric description. The last variety in our table follows Sato’s notation.
For the others, our notation differs from Batyrev’s notation used in [33] only
in the enumeration of minimal vectors. Whenever he enumerates the vectors
from 0 to k, we will enumerate them from 1 to k + 1. We denote by Si the Del
Pezzo surface obtained by the blow up of i points in general position on P2 for
i = 1, 2 and 3. It is clear that primitive collections are not enough to describe
the variety. They describe only its combinatorial type.

Notation Primitive Collections or Geometric Description
P4

B1, ..., B5 {v5, v6}, {v1, v2, v3, v4}
C1, ..., C4 {v1, v2, v3}, {v4, v5, v6}
D1, ..., D19 {v4, v5}, {v6, v7}, {v1, v2, v3}
E1, E2, E3 {v1, v7}, {v1, v2}, {v6, v7}, {v2, v3, v4, v5}, {v3, v4, v5, v6}
G1, ..., G6 {v1, v7}, {v2, v3, v4}, {v4, v5, v6}, {v5, v6, v7}, {v1, v2, v3}
H1, ...,H10 {v1, v2}, {v7, v8}, {v1, v6}, {v2, v7}, {v6, v8}, {v3, v4, v5}
I1, ..., I15 {v1, v2}, {v7, v8}, {v3, v6}, {v6, v8}, {v3, v4, v5}, {v4, v5, v7}
J1, J2 {v3, v6}, {v6, v8}, {v7, v8}, {v1, v2, v3}, {v1, v2, v7},

{v1, v2, v8}, {v3, v4, v5}, {v4, v5, v6}, {v4, v5, v7}
K1, ...,K4 {v7, v9}, {v1, v8}, {v8, v9}, {v2, v8}, {v6, v7}, {v1, v6},

{v6, v9}, {v1, v2}, {v2, v7}, {v3, v4, v5}
L1, ..., L13 {v1, v8}, {v2, v3}, {v4, v5}, {v6, v7}
M1, ...,M4 {v1, v8}, {v4, v5}, {v6, v7}, {v1, v2, v3}, {v4, v6, v8},

{v2, v3, v5}, {v2, v3, v7}
Q1, ..., Q17 {v1, v2}, {v1, v8}, {v2, v7}, {v3, v5}, {v4, v6}, {v8, v9}, {v7, v9}
R1, R2, R3 {v7, v9}, {v4, v8}, {v8, v9}, {v6, v7}, {v3, v5}, {v4, v6},

{v1, v2, v9}, {v3, v6, v8}, {v1, v2, v5}, {v1, v2, v7}, {v1, v2, v4}
108 {v7, v9}, {v8, v9}, {v3, v5}, {v4, v6}, {v1, v7}, {v3, v6},

{v1, v2, v5}, {v1, v2, v4}, {v2, v5, v8}, {v2, v4, v8}
U1, ..., U8 {v1, v3}, {v2, v4}, {v1, v4}, {v3, v5}, {v4, v6}, {v2, v5},

{v1, v5}, {v2, v6}, {v3, v6}, {v7, v8}, {v9, v10}
Z1, Z2 {v1, v8}, {v5, v7}, {v1, v2, v5}, {v1, v2, v6}, {v2, v4, v5},

{v2, v4, v6}, {v3, v7, v8}, {v3, v4, v6}, {v3, v4, v7}, {v3, v6, v8}
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117 {v4, v10}, {v1, v5}, {v2, v6}, {v3, v7}, {v8, v9}, {v1, v2, v10},
{v1, v3, v10}, {v2, v3, v10}, {v1, v2, v3}, {v1, v9, v10},
{v2, v9, v10}, {v3, v9, v10}, {v1, v2, v9}, {v1, v3, v9},
{v2, v3, v9}, {v4, v5, v6}, {v4, v5, v7}, {v4, v6, v7}, {v5, v6, v7},
{v4, v5, v8}, {v4, v6, v8}, {v4, v7, v8}, {v5, v6, v8}, {v5, v7, v8},
{v6, v7, v8}

118 {v4, v9}, {v1, v5}, {v2, v6}, {v3, v7}, {v1, v2, v9}, {v1, v3, v9},
{v2, v3, v9}, {v1, v2, v3}, {v4, v5, v8}, {v4, v6, v8}, {v4, v7, v8},
{v5, v6, v8}, {v5, v7, v8}, {v6, v7, v8}

119, 120, 121 S2 × S2, S2 × S3, S3 × S3

124 {v1, v4}, {v2, v5}, {v3, v6}, {v1, v2, v3}, {v4, v5, v6},
{v7, v8, v9}, {v1, v2, v9}, {v4, v5, v9}, {v1, v3, v8}, {v4, v6, v8},
{v2, v3, v7}, {v5, v6, v7}, {v1, v8, v9}, {v4, v8, v9}, {v2, v7, v9},
{v5, v7, v9}, {v3, v7, v8}, {v6, v7, v8}

5.1.2 Second Chern Class Computation

In this section, we will compute ch2(TX) in terms of the invariant divisors
Di := V (〈vi〉) and we will give an analogue of the Toric Cone Theorem 2.3.9.
We also give a formula for the second Chern character of a variety obtained by
a blow up.

Proposition 5.1.4. For a smooth toric variety X we have:

ch2(TX) =
1

2

(
r∑
i=1

D2
i

)
.

Proof. There are exact sequences (see [10, 4.0.28, 8.1.1]):

0→ Ω1
X → OnX → ⊕ri=1ODi → 0

0→ O(−Di)→ OX → ODi → 0

Where ODi is the structure sheaf on Di extended by zero to X.

Using Whitney sum we have:

0 = ch2(OnXΣ
) = ch2(Ω1

X) + ch2(⊕ri=1ODi)

ch2(ODi) = −ch2(O(−Di) = − 1
2D

2
i for all i ∈ {1, ..., r}.

⇒ ch2(TX) = ch2(Ω1
X) = −ch2(⊕ri=1ODi) =

1

2

(
r∑
i=1

D2
i

)
.
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By definition, a variety X has positive second Chern character if for any
surface S ∈ X we have ch2(X) ·S > 0. However, in the toric case, we only need
to check this inequalities for invariant surfaces, because of the following result.
The proof sketched below is due to D. Monsôres.

Proposition 5.1.5. Let X := XΣ be a complete toric variety of dimension
n ≥ 3. If S is a surface contained in X, then we have a numerical equivalence:

S ≡
∑

σ∈Σ(n−2)

aσ · [V (σ)]

with aσ ≥ 0, ∀σ ∈ Σ(n− 2).

Proof. The proof is by induction on the dimension of X. If n = 3 then S is

an efective divisor on X and by [34, Section 5.1], S ∼
∑

σ∈Σ(1)

aσ · [V (σ)] with

aσ ≥ 0,∀σ ∈ Σ(1). By induction hypothesis we can suppose that S intersects
the torus T of X. Consider the action C∗ ×X → X given by (t, x) 7→ tλ1 · x,
where λ1 ∈ N . This action induces a rational map f : C × S 99K X. Consider
a toric resolution on indeterminacy for this map:

Y

π

��

p

��

ψ

""FF
FF

FF
FF

F

C× S
q

��

f //___ X

C

By [25, III 9.6,9.7] π is a flat morphism whose fibers have pure dimension two.
Hence the cycles ψ∗(π

∗(0)) and ψ∗(π
∗(1)) are rationally equivalent. Since S =

ψ∗(π
∗(1)) we get a numerical equivalence S ≡

k∑
i=1

aiSi, where ai ≥ 0 and

Si ⊂ ψ(π−1(0)) ∀i = 1, ..., k. Note that by construction ψ∗(π
∗(0)) and therefore

every Si is invariant by the action of λ1. If each surface Si has empty intersection
with the torus then we conclude the proposition by induction. If Si intersects the
torus we take λ2 ∈ N such that {λ1, λ2} are linearly independent and repeat the

construction above to Si and λ2. We get Si ≡
r∑
j=1

bjS
′
j , where bj ≥ 0 and each

S′j is an invariant surface by the actions of λ1 and λ2. If S′j ∩T = ∅ ∀j = 1, ..., r
we are done. If for some S′j it fails, we repeat the process using a parameter

λ3 such that {λ1, λ2, λ3} are linearly independent and obtain S′j ≡
s∑

k=1

ckS
′′
k

where ck ≥ 0 and S′′k are invariant surfaces by the actions of λ1, λ2 and λ3. To

64



finish the proof we observe that S′′k ∩ T = ∅ ∀k = 1, ..., s. Since {λ1, λ2, λ3} are
linearly independent, if there were t ∈ S′′k ∩ T we would have an injective map

(C∗)3 → S′′k given by (t1, t2, t3) 7→ tλ1
1 · t

λ2
2 · t

λ3
3 · t. But this is absurd since S′′k

is a surface.

So, in order to check whether a smooth toric Fano variety is 2-Fano, we need

to compute

d∑
i=1

D2
i · S for invariant surfaces V (σ).

If V (σ) is not contained in the support of Di we can use the Remark 2.2.5
to compute Di · V (σ).

Suppose, otherwise, that V (σ) ⊆ supp(Di). Since Di is a Cartier divisor,
there exists u ∈ M such that (Di)|Uσ = div(χu)|Uσ . Hence, Di − div(χu) is

linearly equivalent to Di and the support of Di − div(χu) = Di −
r∑
i=1

〈u, vj〉Dj

does not contain V (σ). Thus, if we find an element u ∈M satisfying (Di)|Uσ =
div(χu)|Uσ then we can use again the Remark 2.2.5 to compute Di · V (σ) =
(Di − div(χu)) · V (σ).

By the cone-orbit correspondence, we have:

Uσ ∩Dj 6= ∅ ⇔ 〈vj〉 ⊆ σ.

Since div(χu)|Uσ =
∑
vj∈σ
〈u, vj〉(Dj)|Uσ , in order to have (Di) |Uσ= div(χu) |Uσ

we can take u to be any element in M such that 〈u, vi〉 = 1 and 〈u, vj〉 = 0 ∀j 6= i
such that vj ∈ σ. With this, we are ready to compute the product of ch2(TX)
with V (σ).

Next, we give a formula of the second Chern character of a variety obtained
by a blow up. This formula can be also found in [2]. For the convenience of the
reader we sketch the proof below.

Lemma 5.1.6. Let X be a smooth projective variety and Z ⊂ X a (smooth)
invariant subvariety of X of codimension c. Denote by π : X̃ → X the blowing
up of X along of Z, j : E ↪→ X̃ the natural inclusion of the exceptional divisor
E and f := π|E : E → Z. Then

ch2(TX̃) = π∗ch2(TX) +
c+ 1

2
E2 − j∗

(
f∗
(
c1(NZ|X)

))
.

In particular, the blow up of Pn along of a subvariety of codimension 2 is not
2-Fano.

Proof. Using the exact sequence

0 −→ π∗ΩX −→ ΩX̃ −→ j∗Ωf −→ 0
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we get
ch(ΩX̃) = π∗ch(ΩX) + ch(j∗Ωf ). (1)

Grothendieck-Riemann-Roch gives

ch(j∗Ωf ) · td(TX̃) = j∗(ch(Ωf ) · td(TE)). (2)

From the exact sequence

0 −→ TE −→ j∗TX̃ −→ j∗OX̃(E) −→ 0

we have

td(TE) = td(j∗TX̃) · td(j∗OX̃(E))−1 = j∗
( E

1− e−E
)−1

. (3)

Putting together (2) and (3) we obtain

ch(j∗Ωf ) = j∗(ch(Ωf )) ·
(1− e−E

E

)
. (4)

Using the isomorphism OE(−1) ' j∗OX̃(E) and the Euler sequence for Ωf ,

0 −→ Ωf ←→ f∗N∨Z|X ⊗OE(−1) −→ OE −→ 0,

we obtain
ch(Ωf ) = f∗ch(N∨Z|X) · j∗(1 + E)− 1. (5)

Putting together (1), (4) and (5) we arrive at

ch(ΩX̃) = π∗ch(ΩX) + j∗

(
f∗ch(N∨Z|X) · j∗(1 + E)− 1

)
·
(

1− e−E

E

)
.

Taking the degree 2 piece we prove the first part of the lemma. To prove the
last statement we take a curve C ⊂ Z and consider the surface S := f−1(C) '
P(N∨) where N denotes the normal bundle NZ|X |C .

Then, ch2(TX̃) ·S =
3

2
E2 ·S−E ·f∗c1(NZ|X) ·S = −1

2
deg(N) = −1

2
det(N) ·C.

If X is Pn then TX is ample, and thus so is NZ|X . So det(N) is ample and
ch2(TX̃) · S < 0.

5.1.3 The Main Result

Theorem 5.1.7. For n ≤ 6 the only toric Fano n-fold with positive second
Chern character is Pn.

Proof. For n ≤ 2 the theorem follows from the classification of toric Del
Pezzo surfaces and Lemma 5.1.6. For n = 3 the result follows from [5].

We claim that in the following cases ch2(TX) is not positive:

1. X = Z × Y is a product of positive-dimensional Fano manifolds.
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2. X = PY (E) is a projective bundle over a positive-dimensional Fano man-
ifold Y .

In the first case recall we have an isomorphism TZ×Y ' π∗ZTZ × π∗Y TY and
therefore ch(TX) = π∗Z(ch(TZ)) + π∗Y (ch(TY )). If A and B are curves in Z and
Y respectively, then ch2(TX) · (A × B) = 0. The second item follows from [2,
4.1] and can also be obtained as a special case of Theorem 5.2.6.

As consequence, the toric Fano 4-folds listed in the Batyrev’s classification
that are of type 1. or 2. do not have positive second Chern Character. They
are (see Batyrev’s description of these varieties in [33]):

B1, ..., B5,C1, ..., C4, D1, ..., D19, H8, L1, ..., L13, I7, I11, I13, Q6, Q8, Q10, Q11,
Q15,K4, U4, U5, U6, 119, 120, 121.

In the remaining 4-dimensional cases, we computed ch2(TX) ·S for all invari-
ant surfaces S ⊂ X, as described in Section 5.1.2. To make the computation we
used the program Maple. For all smooth toric Fano 4-folds X 6= P4 in Batyrev’s
list we found a surface S ⊂ X such that ch2(TX) · S ≤ 0.

The next table summarizes our results. The first column lists toric Fano
4-folds according Batyrev’s notation. The second column lists its primitive vec-
tors explicity. The third column gives an invariant surface S for which the
intersection number ch2(TX) · S (listed on the last column) is non positive.

Primitive Vectors Surface ch2(TX) · S
E1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 −

e2 − e3 − e4, v6 = e1 + e2, v7 = −e1

V (v2, v3) -2

E2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e2 − e3 − e4, v6 = e1 + e2, v7 = −e1

V (v2, v3) −3

2

E3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e2 −
e3 − e4, v6 = e1 + e2, v7 = −e1

V (v2, v3) -1

G1 v1 = e1, v2 = e2, v3 = e3, v4 = e1−e2−e3, v5 =
e4, v6 = e1 + e2 + e3 − e4, v7 = −e1

V (v1, v5) −1

2

G2 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e4, v5 =
e3, v6 = 2e1 − e3 − e4, v7 = −e1 + e4

V (v1, v5) -2

G3 v1 = e1, v2 = e2, v3 = e3, v4 = −e2 − e3, v5 =
e4, v6 = e1 + e2 + e3 − e4, v7 = −e1

V (v1, v5) -1

G4 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e4, v5 =
e3, v6 = e1 + e2 − e3 − e4, v7 = −e1 + e4

V (v1, v5) −1

2

G5 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e4, v5 =
e3, v6 = −e3 − e4, v7 = −e1 + e4

V (v2, v5) -2

G6 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e4, v5 =
e3, v6 = e1 − e3 − e4, v7 = −e1 + e4

V (v2, v5) −3

2
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H1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 −
e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 = e1 + e2

V (v3, v4) −3

2

H2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
e2 − e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 =
e1 + e2

V (v3, v4) -1

H3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
2e2 − e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 =
e1 + e2

V (v3, v4) −3

2

H4 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 = e1 + e2

V (v3, v4) −3

2

H5 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 =
e1 + e2

V (v3, v4) −3

2

H6 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
2e2 − e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 =
e1 + e2

V (v3, v4) −3

2

H7 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e2 −
e3− e4, v6 = −e1− e2, v7 = −e2, v8 = e1 + e2

V (v3, v4) −3

2

H9 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e2 −
e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 = e1 + e2

V (v3, v4) −3

2

H10 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e1 −
e3 − e4, v6 = −e1 − e2, v7 = −e2, v8 = e1 + e2

V (v3, v4) −3

2

I1 v1 = e1, v2 = −e1 + e3, v3 = e3, v4 = e4, v5 =
−2e2 + e3 − e4, v6 = e2 − e3, v7 = e2, v8 =
−e2 + e3

V (v1, v4) −3

2

I2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
2e2 − e3 − e4, v6 = −e1 − e2, v7 = −e1 − e2 +
e3, v8 = e1 + e2

V (v1, v4) −3

2

I3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
e2 − e3 − e4, v6 = −e1 − e2, v7 = −e1 − e2 +
e3, v8 = e1 + e2

V (v1, v4) −3

2

I4 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −2e1−
2e2+e3−e4, v6 = e1+e2−e3, v7 = e1+e2, v8 =
−e1 − e2 + e3

V (v1, v4) −3

2

I5 v1 = e1, v2 = e2, v3 = e3, v4 = e1 + e2, v5 =
−e1−e2−e3+2e4, v6 = −e4, v7 = e3−e4, v8 =
e4

V (v1, v4) −3

2

I6 v1 = e1, v2 = e2, v3 = e1 + e2, v4 = e4, v5 =
e3, v6 = −e1−e2−e3−e4, v7 = −e3−e4, v8 =
e1 + e2 + e3 + e4

V (v1, v4) −3

2
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I8 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e2 −
e3 − e4, v6 = e1 + e2, v7 = e1 + e2 + e3, v8 =
−e1 − e2

V (v1, v4) −3

2

I9 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e1 −
e2 − e4, v6 = e1 + e2 − e3, v7 = e1 + e2, v8 =
−e1 − e2 + e3

V (v1, v4) −3

2

I10 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3 − e4, v6 = −e1 − e2, v7 = −e1 − e2 +
e3, v8 = e1 + e2

V (v1, v4) −3

2

I12 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e1 −
e2−e3−e4, v6 = e1 +e2, v7 = e1 +e2 +e3, v8 =
−e1 − e2

V (v1, v4) −3

2

I14 v1 = e1, v2 = e2, v3 = e3, v4 = e1 + e2, v5 =
e4, v6 = −e1 − e2 − e3 − e4, v7 = −e1 − e2 −
e4, v8 = e1 + e2 + e3 + e4

V (v1, v4) −3

2

I15 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −2e1−
2e2−e3−e4, v6 = e1+e2, v7 = e1+e2+e3, v8 =
−e1 − e2

V (v1, v4) −3

2

J1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e3 −
e4, v6 = e1 + e2 + e3, v7 = e1 + e2 + 2e3, v8 =
−e1 − e2 − e3

V (v1, v3) -1

J2 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e4, v5 =
e3, v6 = e1 + e2 − e3 − e4, v7 = −e3 − e4, v8 =
−e1 − e2 + e3 + e4

V (v1, v3) −1

2

K1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
2e2 − e3 − e4, v6 = −e1, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) -3

K2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = 2e1 +
e2 − e3 − e4, v6 = −e1, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) -3

K3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3 − e4, v6 = −e1, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) -3

M1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 =
−e4, v6 = e1 + e2 + e3 − e4, v7 = −e1 − e2 −
e3 + e4, v8 = −e1

V (v2, v4) −5

2

M2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e4, v6 = e1+e2+e3−e4, v7 = −e2−e3+e4, v8 =
−e1

V (v2, v4) −5

2
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M3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e4, v6 = e1 + e2 + e3 − e4, v7 = −e2 − e3, v8 =
−e1

V (v2, v4) −5

2

M4 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e4, v6 = e1 + e2 + e3− e4, v7 = −e1− e2− e3 +
e4, v8 = −e1

V (v2, v4) −5

2

M5 v1 = e1, v2 = e2, v3 = −e1 − e2 + e4, v4 = e3,
v5 = e1 − e3 − e4, v6 = e4, v7 = e1 − e4,
v8 = −e3 − e4

V (v2, v4) −3

2

Q1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e3, v6 = e1 − e4, v7 = −e2, v8 = −e1 − e2, v9 =
e1 + e2

V (v3, v4) −3

2

Q2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e3, v6 = e3 − e4, v7 = −e2, v8 = −e1 − e2, v9 =
e1 + e2

V (v3, v4) −3

2

Q3 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2−e3, v6 = e1 +e2−e4, v7 = −e2, v8 = −e1−
e2, v9 = e1 + e2

V (v3, v4) −3

2

Q4 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e3, v6 = e1 + e2 − e4, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) −3

2

Q5 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3, v6 = e3 − e4, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) −3

2

Q7 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3, v6 = −e2 − e4, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) −3

2

Q9 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3, v6 = e2 − e4, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) −3

2

Q12 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 −
e3, v6 = e2 − e4, v7 = −e2, v8 = −e1 − e2, v9 =
e1 + e2

V (v3, v4) −3

2

Q13 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e2 −
e3, v6 = e2 − e4, v7 = −e2, v8 = −e1 − e2, v9 =
e1 + e2

V (v3, v4) −3

2

Q14 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e2 −
e3, v6 = e3 − e4, v7 = −e2, v8 = −e1 − e2, v9 =
e1 + e2

V (v3, v4) −3

2
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Q16 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e1 +
e2 − e3, v6 = −e1 − e2 − e4, v7 = −e2, v8 =
−e1 − e2, v9 = e1 + e2

V (v3, v4) −3

2

Q17 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = e2 −
e3, v6 = −e1 − e2 − e4, v7 = −e2, v8 = −e1 −
e2, v9 = e1 + e2

V (v3, v4) −3

2

R1 v1 = e1, v2 = e2, v3 = e3, v4 = −e1 − e2 +
e3, v5 = −e1 − e2, v6 = e4, v7 = −e4, v8 =
e1 + e2 − e3 − e4, v9 = −e1 − e2 + e3 + e4

V (v1, v3) -4

R2 v1 = e1, v2 = e2, v3 = e3, v4 = −e1 − e2 +
e3, v5 = −e1 − e2 + e4, v6 = e4, v7 = −e4, v8 =
e1 + e2 − e3 − e4, v9 = −e1 − e2 + e3 + e4

V (v1, v3) -4

R3 v1 = e1, v2 = e2, v3 = e3, v4 = −e1 − e2 +
e3, v5 = −e3, v6 = e4, v7 = −e4, v8 = e1 + e2−
e3 − e4, v9 = −e1 − e2 + e3 + e4

V (v1, v3) -4

108 v1 = e1, v2 = e2, v3 = e3, v4 = −e1 − e2 +
e4, v5 = −e1 − e2 − e3 + e4, v6 = −e3, v7 =
−e4, v8 = e1 − e4, v9 = e4

V (v4, v9) -1

U1 v1 = e1, v2 = e1 + e3, v3 = e3, v4 = −e1, v5 =
−e1 − e3, v6 = −e3, v7 = e2, v8 = e1 − e2, v9 =
e4, v10 = e1 − e4

V (v3, v7) −1

2

U2 v1 = e1, v2 = e1 + e3, v3 = e3, v4 = −e1, v5 =
−e1 − e3, v6 = −e3, v7 = e2, v8 = e1 − e2, v9 =
e4, v10 = e1 − e2 − e4

V (v3, v7) −1

2

U3 v1 = e1, v2 = e1 + e3, v3 = e3, v4 = −e1, v5 =
−e1 − e3, v6 = −e3, v7 = e2, v8 = e1 − e2, v9 =
e4, v10 = e1 + e3 − e4

V (v3, v9) −1

2

U7 v1 = e1, v2 = e1 + e3, v3 = e3, v4 = −e1, v5 =
−e1 − e3, v6 = −e3, v7 = e2, v8 = e1 − e2, v9 =
e4, v10 = e3 − e4

V (v3, v9) −1

2

U8 v1 = e1, v2 = e1 + e3, v3 = e3, v4 = −e1, v5 =
−e1 − e3, v6 = −e3, v7 = e2, v8 = e1 − e2, v9 =
e4, v10 = −e1 − e4

V (v3, v9) −1

2

Z1 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e1 −
e2, v6 = −e2 − e3 − e4, v7 = e1 − e3 − e4, v8 =
−e1 + e4

V (v1, v3) −5

2

Z2 v1 = e1, v2 = e2, v3 = e3, v4 = e4, v5 = −e1 −
e2, v6 = −e3 − e4, v7 = e1 + e2 − e3 − e4, v8 =
−e1 + e4

V (v1, v3) -2

117 v1 = e2, v2 = e3, v3 = e4, v4 = −e1, v5 =
−e2, v6 = −e3, v7 = −e4, v8 = e1 + e2 + e3 +
e4, v9 = −e1 − e2 − e3 − e4, v10 = e1

V (v1, v4) -5
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118 v1 = e2, v2 = e3, v3 = e4, v4 = −e1, v5 =
−e2, v6 = −e3, v7 = −e4, v8 = e1 + e2 + e3 +
e4, v9 = e1,

V (v1, v4) −5

2

124 v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = −e1 +
e4, v5 = e1 − e3 − e4, v6 = e3, v7 = e4, v8 =
e1 + e2 − e3 − e4, v9 = −e1 − e2 + e3,

V (v1, v7) −4

Remark 5.1.8. There is a misprint in [33, Proposition 3.4.1] concerning the
primitive relations for the toric Fano 4-fold 108.

Finally, we use a database provided by Øbro in [22] and the program Maple
to prove the theorem in dimension 5 and 6. We implement a function which,
given a smooth toric variety computes the product of the second Chern character
with an invariant surface. The code is provided in the Chapter 6.

Remark 5.1.9. We have concluded that there exists only one toric 2-Fano 4-
fold. However, using proposition 3.2 and computations with the program Maple
we see that there exist toric Fano 4-folds that have nef second Chern character
(i.e., ch2(TX) · S ≥ 0 for every surface S ⊂ X). They are:
P4, B1, B2, B3, B4, C4, D1, D2, D3, D5, D6, D8, D9, D12, D13, D15, L1, L2, L3, L4,
L5, L6, L7, L8, L9.

5.2 Higher Dimensions

5.2.1 Strategy

Our goal is to classify smooth toric 2-Fano n-folds. Our strategy is to investigate
what happens with the second Chern character of a toric variety X when we
run the Minimal Model Program for X. Since in the toric case the MMP ends
with a Mori fiber space, we start investigating the second Chern character of a
Mori fiber space. There are examples of singular 2-Fano varieties with Picard
number bigger than 1 with structure of Mori fiber space, see for instance 5.2.11.
However, we will show that is possible to find a birational model X ′ of X with
structure of Mori fiber space, such that the general fibers are projective spaces.
Then, in Section 5.2.2, we will see that a such variety X ′ cannot be 2-Fano.

Proposition 5.2.1. Let X be a smooth projective toric variety. Then, making
suitable choices of extremal rays, we can run MMP for X to obtain a birationally
equivalent variety X ′ and a Mori fiber space π : X ′ → Y whose general fiber is
Pk.

Proof. By [4, Corollary 6] there is an open subset X0 ⊂ X containing the torus,
a smooth variety Y0 and a Pk-bundle structure π0 : X0 → Y0. Let Y be the
closure of Y0 in Chow(X). Since π0 is flat and proper, there is a variety U ,
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called universal cycle over Y , and universal morphisms e : U → X, π : U → Y
such that e−1|X0 is an isomorphism and the diagram below is commutative.

X0

π0

��

� � // U

π

��

e // X

Y0
� � // Y

� � // Chow(X)

Consider a very ample effective divisor AY on Y . Set A := e∗(π
∗(AY )). Since

AY is very ample, the linear system |A| has no base points on X0. Let l be a
curve in a fiber of π0. Then, A · l = 0 and KX · l = KPk · l = −k − 1 < 0. It
follows that there is an extremal ray R of NE(X) such that KX · R < 0 and
A · R ≤ 0. We consider fR : X → X1 the contraction of R. If fR is a Mori
fiber space, then there is a curve C ⊂ X such that its class is in the ray R and
C ∩ X0 6= ∅. Since we choose R satisfying A · R ≤ 0 and AY very ample, we
must have that C is a curve in a fiber of π0. Thus, R = R≥0[l]. Since a fiber
space depends only on its contracted curves, we have fR|X0

= π0 and it proves
the theorem in this case. Suppose that fR is a birational morphism and let E
be the exceptional locus of fR. Then, E ∩ X0 = ∅. Otherwise, as before, R
would be generated by [l] and therefore X0 would be contained in E. Since fR
is an isomorphism outside E, the Pk-bundle structure of X0 is preserved in X1.
Continuing this process we prove the theorem.

5.2.2 Second Chern Computation for Mori Fiber Spaces

Now, we study the second Chern character of a variety associated to a Cayley-
Mori polytope. Throughout this section we will say that a Q-factorial toric
variety (non necessarily smooth) is Fano (resp. 2-Fano) if −KX (resp. −KX

and ch2(X)) is positive.

Lemma 5.2.2. Let X be the toric variety given by a Cayley-Mori lattice polytope
P = P0 ∗ ... ∗ Pk ⊂ R1+k. Suppose that the polytopes P ′is are intervals in
R and that the natural projection π : R1+k → Rk project P on a polytope
Q := conv(0, se1, ..., sek) for some positive integer s. Then, ch2(TX) is not
positive.

Remark 5.2.3. It follows from Theorem 3.2.9 that the hypothesis imposed in
the lemma above is equivalent to saying that X admits a structure of Mori fiber
space f : X → P1 whose the general fiber is Pk.

Proof. Recall from Section 3.1 that the fan Σ determined by P is of the follow-
ing form:

Write Pi = [−biu, biv]. Then DPi = biuV (1) + bivV (−1) = OP1(bi) where
bi := biu + biv. We may assume that 0 < b0 ≤ b1 ≤ ... ≤ bk. The primitive
vectors of Σ are:
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u := du(1, b1u − b0u, ..., bku − b0u), v := dv(−1, b1v − b0v, ..., bkv − b0v), e0 :=
(0,−1, ...,−1), e1 := (0, 1, 0, ..., 0), ..., ek := (0, 0, ..., 1), where

du =
s

gcd(s, b1u − b0u, ..., bku − b0u)

and
dv =

s

gcd(s, b1v − b0v, ..., bkv − b0v)
.

The maximal cones of Σ are: for i ∈ {0, 1, ..., k}, σi := 〈u, e0, ..., êi, ..., ek〉
and τi := 〈v, e0, ..., êi, ..., ek〉.

Consider the invariant surface S := V (e2, ..., ek) ⊂ X. We will use Proposi-
tions 2.2.4 and 5.1.4 to compute ch2(X) · S.

Set Du = V (u), Dv = V (v) and Di = V (ei), for i ∈ {0, 1, ..., k}.
Since div(χ(1,0,...,0)) = duDu − dvDv, we have that D2

u · S = D2
v · S = 0.

We want to compute Di · S for i ∈ {1, ..., k}.

D2
0 · S = D0 · V (e0, e2, ..., ek) = (D0 + div(χe1)) · V (e0, e2, ..., ek) =

[(b1u − b0u)Du + (b1v − b0v)Dv] · V (e0, e2, ..., ek) =
(b1u − b0u)

du
+

(b1v − b0v)
dv

.

D2
1 · S = D1 · V (e1, e2, ..., ek) = (D1 + div(χ−e1) · V (e1, e2, ..., ek) =

[−(b1u− b0u)Du− (b1v− b0v)Dv] ·V (e1, e2, ..., ek) = − (b1u − b0u)

du
− (b1v − b0v)

dv
.

If k = 1 then 2ch2(TX) · S = (D2
0 +D2

1 +D2
u +D2

v) · S = 0. Suppose k > 1.
Since

D2 ' (D2 + div(χ(−(b2v−b0v),0,−1,0,...,0)) = D0 − du[(b2v − b0v) + (b2u − b0u)]Du,

we have:

D2
2 · S = [D2

0 − 2du((b2v − b0v) + (b2u − b0u))Du · D0] · V (e2, ..., ek) =
(b1u − b0u)

du
+

(b1v − b0v)
dv

− 2[(b2v − b0v) + (b2u − b0u)] =

=
(b1u − b0u)

du
+

(b1v − b0v)
dv

− 2(b2 − b0).

Similarly, D2
i · S =

(b1u − b0u)

du
+

(b1v − b0v)
dv

− 2(bi − b0), i = 2, ..., k.

It follows that

2ch2(TX)·S =

k∑
i=2

[ (b1u − b0u)

du
+

(b1v − b0v)
dv

−2(bi−b0)
]
≤

k∑
i=2

[
(b1−b0)−2(bi−b0)

]

74



and then ch2(TX) · S ≤ 0.

Remark 5.2.4. Notice that if k > 1 then ch2(TX) · S = 0 if and only if
b0 = b1 = ... = bk. In other words, ch2(TX) · S = 0 if and only if the polytopes
P0, ..., Pk have the same size. In this case, it follows from Remark 5.2.10 that
ch2(TX) is nef. More generally, making a similar computation as in the previous
lemma, we conclude that if Pi is an n-dimensional simplex (i.e., the variety
defined by Pi is Pn), then ch2(TX) is nef if and only if P0, ..., Pk have the
same size. This means that, up to translations, there is an integer b such that
Pi = b∆n for every i ∈ {0, ..., k}.

Lemma 5.2.5. Let X be the toric variety given by a Cayley-Mori lattice polytope
P = P0 ∗ ... ∗ Pk ⊂ Rn+k and let f : X → Y be the associated fibration. If C is
an invariant curve on Y and XC := f−1(C) then ch2(TX) ·XC = ch2(TXC ).

Proof. Let C := V (τ) with τ = 〈v1, ..., vn−1〉 ⊂ ΣY .
It follows from Proposition 2.1.3 and the description of the fan ΣP that the

invariant variety XC := f−1(C) is given by V (τ̃) with τ̃ = 〈ṽ1, ..., ˜vn−1〉 and
f∗(V (vi)) = V (ṽi).

Our aim is to compute the restriction of ch2(TX) to XC . Let D be a prime
T -invariant divisor on X corresponding to the primitive vector v ∈ ΣX(1). If
we restrict D to XC we have three possibilities:

1. D ·XC = 0. This happens exactly when 〈v, τ̃〉 is not contained in any cone
of ΣX .

2. D · XC 6= 0 and XC is not contained in D. This happens exactly when
〈v, τ̃〉 is contained in some cone of ΣX but v /∈ τ̃ . In this case, D · XC

is the prime invariant divisor on XC corresponding to the image of v in
the fan Star(τ) of XC . Conversely, every prime invariant divisor on XC

appears in this way.

3. D ·XC 6= 0 and XC is contained in D. This happens when v ∈ τ̃ . In this
case, v = ṽi for some i ∈ {1, ..., n− 1}. Thus, D is the pull-back of V (vi).
Since C is a curve D2 ·XC = 0.

Now, the lemma follows from Proposition 5.1.4.

Theorem 5.2.6. Let X be a Q-factorial projective toric variety and suppose
that fR : X → Y is a contraction of fibering type of a ray R of the Mori cone
NE(X). If the general fiber is a projective space, then X is not 2-Fano unless
X is a projective space.
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Proof. From Theorem 3.2.9 we conclude that X is the toric variety associated
to a Cayley-Mori lattice polytope P = P0 ∗ ... ∗ Pk ⊂ Rn+k and fR is induced
by the natural projection π : Zn+k → Zk. If the general fiber of fR is Pk then
the projection of P by πR is a polytope of the form Q := conv(0, se1, ..., sek)
for some positive integer s and {e1, ..., ek} a basis for Zk. Suppose that X is
not a projective space. Then Y is positive dimensional. If C is an invariant
curve in Y then XC = f−1

R (C) is given by a Cayley-Mori polytope l0 ∗ ... ∗ lk
where li ⊂ Pi is an edge of Pi. So, the theorem follows from Lemmas 5.2.2 and
5.2.5.

Corollary 5.2.7. If X is a smooth projective toric variety with ρ(X) ≤ 2 then
X is not 2-Fano unless X is Pn.

Proof. By Corollary 3.2.7 ρ(X) = 1 implies X is a projective space. Otherwise,
by [24] X is a projective bundle over a positive dimensional base and by the
previous theorem X is not 2-Fano.

Remark 5.2.8. If X is a Q-factorial projective toric variety with ρ(X) = 1
then NE(X) and NE2(X) are unidimensional. Thus, X is 2-Fano.

If we do not require smoothness there are toric varieties with Picard number
2 that are 2-Fano as in example 5.2.11. This example also shows that the
hypothesis on the general fiber of fR made in Theorem 5.2.6 is necessary. In
order to explain this example we need some preliminaries on Mori fiber spaces
of Picard number 2.

Proposition 5.2.9. Let X be a toric variety corresponding to a Cayley-Mori
polytope P = P0 ∗ ... ∗ Pk where each Pi is an n-dimensional simplex. Then the
dimension of NE2(X) is at most 3. More precisely,

dim NE2(X) =

 1 if n = k = 1,
2 if n = 1and k > 1, or n > 1and k = 1,
3 otherwise.

Proof. As discussed in Section 3.1, writing DPi :=

n∑
j=0

aijDj for i = 0, ..., k, the

primitive vectors of the fan ΣP are:

ui := si(A
∗)−1(ei) for i ∈ {0, ..., k} and ṽj := dj [vj+

k∑
i=1

(aij−a0j )(A
∗)−1(ei)],

for every j ∈ {0, 1, ..., n}.
Denote the divisors V (ui) and V (ṽj) by Dui and Dṽj respectively.
For each i ∈ {0, ..., k} and j ∈ {0, 1, ..., n} there exist positive integers ci

and cj such that diciDṽi ' djcjDṽj (to see it compute div(χu) for u ∈ Zn ∩
(〈v0, ..., v̂i, ..., v̂j , ..., vn〉)⊥).

After renumbering the polytopes P ′is we may assume that

n∑
j=0

a0j

cj
≤

n∑
j=0

a1j

cj
≤ ... ≤

n∑
j=0

akj
cj
.
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For each i ∈ {0, ..., k} we have

div(χA(ei)) = −s0Du0
+ siDui +

n∑
j=0

dj(aij − a0j )Dṽj .

From this it follows that for every i ∈ {0, ..., k} we have:

Du0
= si

s0
Dui + d1c1

s0

n∑
j=0

(aij − a0j )

cj
Dṽ1 ,

Du1
= si

s1
Dui + d1c1

s1

n∑
j=0

(aij − a1j )

cj
Dṽ1

and

Du2
= = si

s2
Dui + d1c1

s2

n∑
j=0

(aij − a2j )

cj
Dṽ1

.

This means that for every j ∈ {0, ..., n}:

Du0
∈ cone(Di, Dṽj ) for i ∈ {0, ..., k},

Du1
∈ cone(Di, Dṽj ) for i ∈ {1, ..., k} and

Du2
∈ cone(Di, Dṽj ) for i ∈ {2, ..., k}.

We conclude that every invariant surface can be written as a non negative lin-
ear combination of S1 := V (u3, ..., uk, ṽ0, ..., ṽn−1), S2 := V (u2, ..., uk, ṽ0, ..., ṽn−2)
and S3 := V (u1, ..., uk, ṽ0, ..., ṽn−3).

If n = k = 1 then X is a surface. If n = 1 and k > 1 then S3 does not exists
and NE2(X) has {S1, S2} as a basis. If n > 1 and k = 1 then S1 does not exists
and {S2, S3} form a basis of NE2(X). Otherwise, NE2(X) has dimension 3
and {S1, S2, S3} is a basis.

Remark 5.2.10. Let X be as in Proposition 5.2.9. Using the same notation as
the proof of Proposition 5.2.9, we conclude that the Mori cone of X is generated
by the curves C1 := V (ṽ1, ..., ṽn, u2, ..., uk) and C2 := V (ṽ2, ..., ṽn, u1, ..., uk).

It is straightforward to check, using 2.2.4, 5.1.4 and the relations above, that
ch1(X) · C1 = −KX · C1, ch2(X) · S1 and ch2(X) · S3 are always positive. So,
the positivity of ch1(X) and ch2(X) depends only on the values −KX ·C2 and
ch2(X) · S2.

Now, we give an example of a singular 2-Fano variety with Picard number
2.

Example 5.2.11. Let X be the singular toric variety defined by the Cayley-
Mori polytope

Q := conv
(
(0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 0, 1), (0,−2, 1), (2,−2, 1)

)
.
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The primitive vectors of ΣQ are: u0 = (0, 0,−1), u1 = (0, 1, 2), u2 = (0,−1, 0),
ṽ0 = (1, 0, 0) and ṽ1 = (−1, 0, 1).

Consider C2 := V (u1, u2) and S2 = V (u2) = Du2
. Using the relations

Du1
+ div(χ−e2) = Du2

, Du0
+ div(χe3) = 2Du1

+ Dṽ1
and the Proposition

2.2.4, we get:

−KX · C2 = (Du0
+Du1

+Du2
+Dṽ0

+Dṽ1
V (u1, u2)) = 1.

ch2(X) · S2 =
1

2
((Du0

)2 + (Du1
)2 + (Du2

)2 + (Dṽ0
)2 + (Dṽ1

)2)V (u2)) =
1

4
.

We have studied the second Chern character of a Mori fiber space, which is
the variety obtained in the last step of the MMP. The next step is to understand
what happens to it when we apply a step of the MMP which is a divisorial
contraction or a flip. This seems to be a hard problem. Next, we give some
partial results in this direction.

Theorem 5.2.12. Let X be a smooth toric variety and fR : X → Y an extremal
contraction of a ray R of NE(X) of divisorial type. It follows from Corollary
3.2.12 that Exc(fR) = PZ(E) where Z ⊂ Y is an invariant subvariety and E
is a decomposable vector bundle on Z. Suppose that Z = P1 and E = OP1 ⊕
OP1(b1)⊕ ...⊕OP1(bk) with 0 ≤ b1 ≤ ... ≤ bk. Then X is not 2-Fano.

Proof. Suppose that X is 2-Fano. The minimal vectors of the fan of E :=
Exc(fR) are:

u = (1, b1, ..., bk), v = (−1, 0, ..., 0), e0 = (0,−1,−1, ...,−1), e1 = (0, 1, 0, ..., 0), ..,
ek = (0, 0, ..., 1).

It is well known that KE = π∗(KP1 + OP1(b1) + ... + OP1(bk)) − (k + 1)ξ,
where π : PP1(E) → P1 is the canonical projection and ξ = OP(E)(1) is the
tautological line bundle. By adjunction formula we have −KX |E = −KE+E|E .
Since ξ = V (e0) (see Lema 3,[27]), we obtain

−KX |E = −π∗(OP1(−2) +OP1(b1) + ...+OP1(bk)) + (k + 1)V (e0) + E|E .

Since E is the exceptional locus of fR, we can write E|E = aξ+ π∗(OP1(s)), for
some integer a < 0 and s ∈ Z (see [17]. lemma 14.1.7).

If we take C := V (u, e2, ..., ek) ⊆ E a curve contained in a fiber of fR|E , we
conclude:

−KX |E · C =
[
(k + 1)V (e0) + E|E

]
· C =

[
(k + 1)V (e0) + aV (e0)

]
· C > 0
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⇒ a > −(k + 1). (1)

If we take C ′ := V (e1, ..., ek) ⊆ E, we have:

−KX |E ·C ′ = 2− b1 − ...− bk +
[
(k + 1)V (e0) + aV (e0)

]
·C ′ + π∗(OP1(s)) ·C ′

⇒ −KX |E · C ′ = 2− b1 − ...− bk + s > 0

⇒ s ≥ b1 + ...+ bk − 1. (2)

Now, we will compute the intersection number between ch2(TX) and the
surface S := V (e2, ..., ek) ⊆ E.

From exact sequence 0→ TE → TX |E → E|E → 0 it follows that:

ch2(TX |E) = ch2(TE) + (E|E)2.

Using the formula ch2(TE) =
(k + 1)

2
ξ2−π∗c1(E)ξ+π∗(ch2(TP1)−ch2(E)),

given in [2, 4.1], we conclude:

ch2(TE) · S =
[ (k + 1)

2
V (e0)2 − π∗

(
OP1(b1) + ...+OP1(bk)big) · V (e0)

]
· S =

=
[ (k + 1)

2
V (e0)− π∗(OP1(b1) + ...+OP1(bk))

]
· V (e0, e2, ..., ek) =

=
(k + 1)

2

(
V (e0) + div(χe1)

)
· V (e0, e2, ..., ek)− b1 − ...− bk =

=
(k + 1)

2

(
V (e1) + b1V (u)

)
· V (e0, e2, ..., ek)− b1 − ...− bk =

=
(k + 1)

2
b1 − b1 − ...− bk.

If X is 2-Fano then, ch2(TX |E) · S = ch2(TE) · S + (E|E)2 · S > 0

⇒ (E|E)2 · S > − (k + 1)

2
b1 + b1 + ...+ bk > 0.

On the other hand,
(E|E)2 · S = [a2ξ2 + 2aπ∗(OPn(s)) · ξ] · V (e2, ..., ek) = a2b1 + 2as

⇒ a(ab1 + 2s) > 0⇒ s < −a
2
b1

(1)
<

(k + 1)

2
b1.

It follows that

b1 + ...+ bk − 1
(2)

≤ s ≤ (k + 1)

2
b1 − 1 (3)

This is possible only if k = 1. But this implies that dim X = 3. On the other
hand we know that the only toric 2-Fano 3-fold is P3.
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Proposition 5.2.13. Let X be a smooth projective toric variety and Z ⊂ X a
(smooth) invariant subvariety of X of codimension c. Denote by π : X̃ → X
the blowing up of X along of Z. If X̃ is 2-Fano then Z is Fano.

Proof. Denote by E the exceptional divisor and f := π|E : E → Z.Then E =
P(N∨), where N = NZ|X . Given an invariant (rational) curve C ⊂ Z there are
integers a1 ≤ · · · ≤ ac such that N∨|C = OC(a1) ⊕ · · · ⊕ OC(ac). Let l ⊂ E
be the minimal “pull back” curve of E, that is, f(l) = C and ξ · l = a1, where
ξ = OE(1). It is well known that KX̃ = π∗KX + (c− 1)E. This implies that

−KX · C = −KX̃ · l + (c− 1)E · l (1)

From the exact sequence 0→ TZ → TX|Z → NZ|X → 0 we conclude that

−KZ · C = −KX |Z − det(N) (2)

Putting (1) and (2) together we have that

−KZ ·C = −KX̃ · l+(c−1)E · l+a1 + · · ·+ac = −KX̃ · l−(c−1)a1 +a1 + · · ·+ac

⇒ −KZ · C ≥ −KX̃ · l + ac.

In order to prove that Z is Fano we will show that ac ≥ 0 if X̃ is 2-Fano. We

can write ch2(TX̃) = π∗ch2(TX) +
c+ 1

2
E2− j∗

(
f∗
(
c1(N)

))
, where j : E ↪→ X̃

is the natural inclusion (see Lemma 5.1.6).
Consider the invariant surface S := PC(OC(a1)⊕OC(a2)) ⊂ E. By projec-

tion formula π∗ch2(TX) ·S = 0. Since E2 = ξ we have that E2 ·S = a1 + a2. It
follows that:

ch2(TX̃) · S =
(c+ 1)

2
(a1 + a2)− E ·

(
f∗
(
c1(N)

))
=

(c+ 1)

2
(a1 + a2)− c1(N) · f∗(E · S)

=
(c+ 1)

2
(a1 + a2) + c1(N) · C

=
(c+ 1)

2
(a1 + a2)− (a1 + · · ·+ az).

If X̃ is 2-Fano then we have 0 ≤ (c+ 1)

2
(a1 + a2)− (a1 + · · ·+ ac) ≤ a2 ≤ · · · ≤

ac.
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Chapter 6

Appendix: Maple Code

In this appendix we provide the code used in the program Maple to compute
ch2(TX) ·S for X a smooth toric varieties and S an invariant surface. The code
is based in the theory given in 5.1.2. The reader who wishes to obtain the file
in Maple extension can access the webpage http://w3.impa.br/~edilaine/

Input: The primitive vectors and maximal cones which determine the toric
variety X; an invariant surface of X.

Output: ch2(TX) · S.

restart:

with(LinearAlgebra):

with(RandomTools):

with(RegularChains):

with(combinat):

with(Statistics):

with(ArrayTools):

A:=proc(L,m)

local i,j;

for j from 1 to Count(L) do i:=union(choose(convert(L[j],set),m),i)

end do;

return i;

end proc:

f:=(n,E,x)->if(convert(x,set) in A(E,n-2),convert(Concatenate(2,

Vector_row(x),Vector_row([0])),list),[seq(0, i = 1 .. (n-1))]):

g:= (n, E, y)->if(convert(y, set) in A(E, n-1),y,

[seq(0, i = 1 .. (n-1))]):
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k:= (v,z,m)->GramSchmidt([seq(v[z[i]], i = 2 .. m), v[z[1]]]):

h:= (n,v,z,r)->if(Count(k(v,z,r)) < r, Vector[column](n,i->0),

-k(v,z, r)[r]*DotProduct(v[z[1]],

k(v,z,r)[r])^-1):

e:=z->convert(convert(z, set)\{z[1]},list):

z:=(n,E,y)->if(is(y[1] in [seq(y[r],r=2..(n-1))])=false or

f(n,E,convert(Vector_column(n-2,i->y[i+1]),list))=

[seq(0,i=1..(n-1))],g(n,E,y),[seq(0,i=1..(n-1))]):

q:=(n,v,E,y)->if(is(y[1] in [seq(y[r],r=2..(n-1))])=false

or f(n,E,convert(Vector_column(n-2,i->y[i+1]),list))=

[seq(0,i=1..(n-1))],g(n,E,y),seq([z(n,E,convert(Concatenate(1,r,

Vector_column(n-2,i->y[i+1])),list)),DotProduct(v_r,h(n,v,

convert(Concatenate(2,y_1,convert(e(y),vector)),list),n-2))],

r=1..Count(v))):

u:=(n,E,w)->if(convert(w,set) in A(E,n),1,0):

t:=(n,v,E,w)->if(is(w[1] in [seq(w[r],r=2..n)])=false or

g(n,E,convert(Vector_column(n-1,i->w[i+1]),list))=

[seq(0,i=1..(n-1))],u(n,E,w),add(DotProduct(v_r,h(n,v,

convert(Concatenate(2,w_1,convert(e(w),vector)),list),n-1))*

u(n,E,convert(Concatenate(1,r,Vector_column(n-1,

i->w[i+1])),list)),r=1..Count(v))):

d:=(n,v,E,y)->if(q(n,v,E,y)=g(n,E,y),t(n,v,E,

convert(Concatenate(1,y_1,Vector_column(n-1,i->y_i)),list)),

add(t(n,v,E,convert(Concatenate(1,y_1,convert(q(n,v,E,y)[p][1],

Vector)),list))*q(n,v,E,y)[p][2],p=1..Count(v))):

c:=(v,E,x)->add(d(Count(v[1]),v,E,convert(Concatenate(2,s,

convert(x,vector)),list)),s=1..Count(v)):
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