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Resumo

Nesta tese, estudamos certas propriedades dos operadores monótonos
em dois contextos diferentes. No primeiro contexto, mostramos sob
que condições podemos construir operadores lineares que não são de
tipo (D) em espaços de Banach não reflexivos. Além disso, damos
resposta negativa a duas conjeturas dadas por Marques-Alves e Svaiter,
e Borwein, respectivamente. No segundo contexto, estudamos a rela-
ção existente entre o fecho monótono polar e o fecho representável de
um operador monótono num espaço topológico localmente convexo
e Hausdorff. Isto estende um resultado dado por Martı́nez-Legaz e
Svaiter.

Palavras chave: operadores monótonos de tipo (D), fecho polar mo-
nótono, fecho representável
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Abstract

In this thesis, we study certain properties of monotone operators in
two different contexts. In the first context, we show under which
conditions we can construct linear monotone operators which are not
of type (D). Moreover, we give negative answers to two conjectures
due to Marques-Alves and Svaiter, and Borwein, respectively. In the
second context, we study the relationship between the monotone polar
closure and the representable closure of a monotone operator in a
Hausdorff and locally convex topological vector space. This extends
a result due to Martı́nez-Legaz and Svaiter.

Keywords: type (D) monotone operators, monotone polar closure,
representable closure
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Notations

X∗ dual space of X
X∗∗ bidual space of X

〈x, x∗〉 x∗(x)
π, 〈·, ·〉 duality product

‖·‖−→ strong convergence
w−→ weak convergence
w∗−→ weak∗ convergence
S
O O-closure, where O is a topology
S strong topology closure

f : X −→ R ∪ {+∞} extended real valued function
cl(f) largest lsc function majorized by f

conv(f) largest convex function majorized by f
cl conv(f) largest lsc convex function majorized by f

ed(f) efective domain of f
∂f subdifferential of f
f ∗ Fenchel conjugate of f

T : X ⇒ X∗ multivalued operator
dom(T ) domain of T
ran(T ) range of T
gra(T ) graph of T

ϕT Fitzpatrick function of T
f ≤ g f(x) is less or equal than g(x), for every x ∈ X

{f ≤ g} set of points in which f is less or equal than g
{f = g} set of points in which f is equal than g

δT indicator function of gra(T )
c0 real sequences convergent to 0
c convergent real sequences
`1 absolutely convergent real sequences
`∞ bounded sequences
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Introduction

Monotone operators were defined and used in the early sixties as a theoretical
framework for the study of electrical networks, and, later on, for the study of non-
linear partial differential equations. The first works on monotone operators were
due to Zarantonello [50], Minty [39], Kato [30], Browder [14], Rockafellar [41],
Brézis [11], among others. Since then, monotone operators were object of intense
study. See [10] for a survey on the subject.

One of the most important developments in the theory of monotone operators
was the use of convex functions to represent them. This breakthrough was due to
Fitzpatrick, which proved that any maximal monotone operator is representable
by a convex function [22]. This work remained unnoticed until Martı́nez-Legaz
and Therá, and Burachik and Svaiter independently rediscovered this result. Since
then, the use of convex representations of maximal monotone operators was sub-
ject of intense research.

This thesis has two parts: the first one deals with non-type (D) monotone
operators in non-reflexive Banach spaces and the second one is about closures of
monotone operators in topological vector spaces. We provide negative answers
to two conjectures which appeared in this research area, and extend one previous
result to topological vector spaces.

Non-type (D) operators in Banach spaces

In a Banach space X , a maximal monotone operator T : X ⇒ X∗ is of type (D)

if every point (x∗∗, x∗) ∈ X∗∗ ×X∗ such that

〈x∗∗ − y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ gra(T ),

xiii



is the σ(X∗∗, X∗)×strong limit of a bounded net in gra(T ). This class, which
was originally called “dense type”, was introduced by Gossez in [26], to recover
some very nice properties maximal monotone operators have in reflexive Banach
spaces. Later on, many other classes with nice properties were defined, as for
example, type (NI) operators, by Simons [45], and locally maximal monotone
operators, by Fitzpatrick and Phelps [23]. Very recently, type (D) and type (NI)
classes were proved to be equivalent by Marques-Alves and Svaiter [36], and later
on, the complete equivalence of the three aforementioned classes was given by
Borwein, et al. [6].

The most important examples of maximal monotone operators of type (D)
are: maximal monotone operators in reflexive Banach spaces and subdifferentials
of lower semi-continuous proper convex functions. An essential property of type
(D) operators in non-reflexive Banach spaces is the uniqueness of its extension to
the bidual. This property does not hold in general, as showed by Gossez in [28].

If f : X −→ R ∪ {+∞} is a convex, proper and lower semi-continuous
function, then its subdifferential ∂f : X ⇒ X∗ is a type (D) operator whose
unique maximal monotone extension to the bidual is (∂f∗)−1 : X∗∗ ⇒ X∗, where
f ∗ : X∗ −→ R ∪ {+∞} is the Fenchel conjugate of f . Thus, the inverse of such
extension is also a subdifferential, explicitly, ∂f ∗ : X∗ ⇒ X∗∗, and hence of type
(D). So, in the case of subdifferentials, the property of being of type (D) is “hered-
itary”, that is, the inverse of their extensions to the bidual is also of type (D). This
fact led Marques-Alves and Svaiter to formulate the following conjecture [31]:

The inverse of the unique maximal monotone extension to the bidual
of a type (D) maximal monotone operator is also of type (D).

This leads to the following problem:

Problem 1. Given a maximal monotone type (D) operator T : X ⇒ X∗ and its
unique extension to the bidual T̃ : X∗∗ ⇒ X∗: is T̃−1 : X∗ ⇒ X∗∗ also of type
(D)?

In chapter 2, we answer negatively Problem 1, by giving an explicit example
of a type (D) operator for which the inverse of its unique extension to the bidual is
not of type (D) (Proposition 2.9 in section 2.3). Moreover, we also give sufficient
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conditions for such an operator be constructed in general non-reflexive Banach
spaces (Theorem 2.7 in section 2.3).

Examples of non-type (D) operators are scarce. The first example is due to
Gossez, who defined an example of a non-type (D) operator on `1 [27]. This ope-
rator, which is called the Gossez operator, has a unique extension to the bidual
despite being non-type (D). Not long after that, Gossez gave an example, also in
`1, of a non-type (D) operator which has infinite extensions to the bidual [28].
Later, Fitzpatrick and Phelps gave an example of a non-type (D) operator on
L1[0, 1] [24].

In [3], Borwein and Bauschke proved that if a monotone continuous linear
operator in a Banach space has a monotone conjugate, then this operator is of
type (D), and defined conjugate monotone spaces as those Banach spaces X such
that the conjugate of any continuous monotone linear operator form X to X∗

is monotone as well. Also in [3], it was observed that c0, c, `∞ and L∞[0, 1]

are conjugate monotone spaces while `1, L1[0, 1], (`∞)∗ and (L∞[0, 1])∗ are not
conjugate monotone spaces. These facts led Borwein to define Banach spaces of

type (D) as those Banach spaces where every maximal monotone operator is of
type (D), and to formulate the following conjecture [10, §4, question 3]:

• . . . I conjecture ‘weakly’ that if X contains no copy of `1(N) then
X is type (D) as would hold in X = c0.

This leads to the following problem:

Problem 2. Can a non-type (D) operator be defined in c0? What about in spaces
containing a isometric copy of c0?

In chapter 2, we present an example of a linear non-type (D) operator on c0

(Proposition 2.11 in section 2.4). Moreover, if there exists a non-type (D) operator
in a Banach space X , and X can be embedded norm-isomorphically into a bigger

Banach space Ω, then there also exists a non-type (D) operator in Ω (section 2.4.1).
In particular, a non-type (D) operator can be found in every space which contains
a norm-isomorphic (in particular, isometric) copy of c0 (Theorem 2.18).
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Closures of monotone operators

The use of convex functions to represent monotone operators was due to Fitz-
patrick, by defining the Fitzpatrick function of a maximal monotone operator.
Fitzpatrick’s work was not widely recognized until its rediscovery by Martı́nez-
Legaz and Théra [38] and Burachik and Svaiter [20]. Following this, convex re-
presentations of maximal monotone operators were subject of intense study, and
have many theoretical and practical applications [2, 25, 43, 46, 48, 51].

In 2005, Martı́nez-Legaz and Svaiter [37], extended the notion of represen-
tability to a broader class of monotone operators in Banach spaces, by defining
representable operators. Moreover, they defined for a monotone operator two
kinds of closures: its representable closure, which is the smallest (in sense of
graph inclusion) representable operator which contains it; and its monotone polar

closure which is the intersection of every maximal monotone operator containing
it.

Theorem 31 in [37] states that these two closures coincide in finite dimensional
spaces. Furthermore, an example in Hilbert spaces where these two closures are
different was given in [47]. So we state the following problem.

Problem 3. In a topological vector space, under which conditions the two closures
are identical (or different)?

In chapter 3, we study the relationship between these two closures, in the con-
text of Hausdorff locally convex topological vector spaces. Our main result is
Theorem 3.5, which states that, when the closures do not coincide, the mono-
tone operator has a unique maximal monotone extension, and such extension has
a very particular structure. In its proof, we must stand out Lemma 3.9, which
guarantees such particular structure, under a condition on the effective domain of
the Fitzpatrick function of the operator. We also give a new proof of Theorem 31
in [37] (Theorem 3.13) and corollaries concerning monotone operators with non-
monotone affine hull (Corollary 3.14), and studying the case of Banach spaces
(Corollary 3.15). Moreover, we give a proposition on the structure of monotone
operators with unique maximal monotone extension (Proposition 3.18). Finally,
we study the closures of an explicit operator defined in c0 (section 3.4). For this,
we use the operator defined in section 2.5.
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Chapter 1

Basic results

Let X be a real Banach space with norm ‖ · ‖, and let X∗ be its topological dual.
For x ∈ X and x∗ ∈ X∗, we will use the notation 〈x, x∗〉 = x∗(x), and thus we
have the duality product π : X ×X∗ −→ R, π(x, x∗) = 〈x, x∗〉.

Since X∗ is also a Banach space, it has its own dual, which is is denoted by
X∗∗ = (X∗)∗ and called bidual of X . The canonical injection J : X −→ X∗∗ is
defined, for x ∈ X , as the (continuous) linear functional

J(x) : X∗ −→ R
x∗ 7→ 〈x, x∗〉 . (1.1)

It follows from (1.1) that J is everywhere defined, linear, continuous and em-
beds X isometrically into X∗∗. If J is also surjective then X is called reflexive.
Thus, we can identify X with its canonical image in the bidual space X∗∗ and, for
the sake of notation, to consider X as included in X∗∗. Clearly, this inclusion will
be proper when X is not reflexive.

In X∗ is defined the weak∗ topology, σ(X∗, X), as the smallest topology
which makes the functionals {J(x)}x∈X ⊂ X∗∗ continuous. In addition, the
topology induced by the norm of X∗ is called strong topology.

For C ⊂ X , denote

C⊥ = {x∗ ∈ X∗ | 〈x, x∗〉 = 0, ∀x ∈ C}.

Similarly, for D ⊂ X∗,

⊥D = {x ∈ X | 〈x, x∗〉 = 0, ∀x∗ ∈ D}.

From the above definitions, readily follows that C⊥ and ⊥D are linear subspaces
and closed in the weak∗ and strong topologies, respectively.

1



1.1 Monotone operators
Let U , V arbitrary sets. A multivalued (or point-to-set) operator T : U ⇒ V is a
map T : U −→ P(V ), where P(V ) is the power set of V . Given T : U ⇒ V , the
graph of T is the set

gra(T ) := {(u, v) ∈ U × V | v ∈ T (u)},

the domain and the range of T are, respectively,

dom(T ) := {u ∈ U | T (u) 6= ∅}, ran(T ) := {v ∈ V | ∃u ∈ U, v ∈ T (u)},

and the inverse of T is the multivalued operator T−1 : V ⇒ U ,

T−1(v) = {u ∈ U | v ∈ T (u)}.

A multivalued operator T : U ⇒ V is called single valued, if T (u) has only one
element, for every u ∈ dom(T ).

Remark 1.1. It is also customary [15, 32, 33, 35, 36, 37] to define the notion
of multivalued operator not as a function but as a relation, which is equivalent
to the former. We will use this modified definition in chapter 3, by identifying
multivalued operators with their graph.

Let X be a real Banach space. An operator T : X ⇒ X∗ is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀ (x, x∗), (y, y∗) ∈ gra(T ).

and it is maximal monotone if it is monotone and maximal (with respect to the
graph inclusion) in the family of monotone operators of X into X∗. In the same
way, an operator T : X∗ ⇒ X is monotone (resp. maximal monotone) if its
inverse is monotone (resp. maximal monotone).

Remark 1.2. By using Zorn’s Lemma, we can guarantee the existence of a maxi-
mal monotone extension for any monotone operator.

Definition 1.3 ([37, Definition 35]). A monotone operator is called pre-maximal
monotone, if it has a unique maximal monotone extension.

We will say that (x, x∗), (y, y∗) ∈ X ×X∗ are monotonically related, if

〈x− y, x∗ − y∗〉 ≥ 0.

We will also say that a point (x, x∗) ∈ X × X∗ and an operator T : X ⇒ X∗

are monotonically related, if (x, x∗) is monotonically related to every point in the

2



graph of T . Furthermore, for an operator T : X ⇒ X∗, its monotone polar or
µ-polar [37] is the operator T µ : X −→ X∗, such that

gra(T µ) := {(x, x∗) | (x, x∗) is monotonically related to T}.

Completely analog definitions apply when working in X∗ ×X .
The following propositions follow immediately from the above definitions.

Proposition 1.4. Let T : X ⇒ X∗ be a multivalued operator. Then the following
conditions are equivalent:

1. T is monotone;

2. every point in gra(T ) is monotonically related to T ;

3. every two points in gra(T ) are monotonically related;

4. gra(T ) ⊂ gra(T µ).

Proposition 1.5. Let T : X ⇒ X∗ be a multivalued operator. Then the following
holds:

1. T is maximal monotone if, and only if, T = T µ;

2. T µ is maximal monotone if, and only if, T and T µ are monotone.

Proposition 1.6. Let T, S : X ⇒ X∗ be multivalued operators. If gra(T ) ⊂
gra(S) then gra(Sµ) ⊂ gra(T µ).

1.2 Linear monotone operators
Definition 1.7. A multivalued operator T : X ⇒ X∗ is linear, if gra(T ) is a
linear subspace of X ×X∗.

It follows from the above definition the following facts.

Proposition 1.8 (Cross [21, §I]). Let T : X ⇒ X∗ be a linear multivalued ope-
rator.

1. T (0) is a linear subspace of X∗.

2. For every (x, x∗) ∈ gra(T ), T (x) = x∗ + T (0).

3. T is single valued if, and only if, T (0) = {0}.

3



Proposition 1.9. A linear multivalued operator T : X ⇒ X∗ is monotone if, and
only if,

〈x, x∗〉 ≥ 0, ∀ (x, x∗) ∈ gra(T ).

In particular, the linear single valued operators are simply the linear maps
studied in Linear Algebra.

The following results were presented by Bauschke et al. [8] in reflexive Ba-
nach spaces and then in general Banach spaces in [4].

Lemma 1.10 ([4, Proposition 5.1, item (i)]). If T : X ⇒ X∗ be a monotone linear
operator then

T (0) ⊆ dom(T )⊥. (1.2)

Corollary 1.11. Let T : X ⇒ X∗ be a monotone linear operator. If dom(T ) is
dense in X then T is single valued.

Moreover, under the assumption of maximal monotonicity, equality can be
obtained in equation (1.2).

Proposition 1.12 ([4, Proposition 5.2, item (i)]). Let T : X ⇒ X∗ be a linear
maximal monotone operator. Then

T (0) = dom(T )⊥.

We will use the following lemma in section 2.1. For the sake of completeness,
we include its proof here.

Lemma 1.13. Let T : X ⇒ X∗ be a monotone linear operator. If dom(T ) = X
then T is a maximal monotone single valued operator.

Proof. Take (x, x∗) monotonically related to T . Since T is everywhere defined,
there exists w∗ ∈ T (x). Using the linearity of T ,

〈(ty + x)− x, (ty∗ + w∗)− x∗〉 ≥ 0, ∀ (y, y∗) ∈ gra(T ), t ∈ R.

This implies, for arbitrary (y, y∗) ∈ gra(T ), that

t2〈y, y∗〉+ t〈y, w∗ − x∗〉 ≥ 0, ∀t ∈ R,

which in turn implies

〈y, w∗ − x∗〉 ≥ 0, ∀ y ∈ dom(T ) = X.

Thus 〈y, w∗ − x∗〉 = 0, for all y ∈ X , that is w∗ = x∗ and (x, x∗) ∈ gra(T ).

4



1.3 The adjoint operator
For X and Y Banach spaces, we consider X × Y as a Banach space with norm
‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y , dual (X × Y )∗ = X∗ × Y ∗ and duality product

〈(x, y), (x∗, y∗)〉 := 〈x, x∗〉+ 〈y, y∗〉.

The definition of the adjoint of an operator is defined in several different con-
texts along the literature [1, 12, 44]. The following definition is a unified version
of such definitions and it is based on [8] and [49].

Definition 1.14. Let X and Y be real Banach spaces and let T : X ⇒ Y be a
multivalued operator. Define the multivalued operator T+ : Y ∗ ⇒ X∗ as

(y∗, x∗) ∈ gra(T+) ⇐⇒ (x∗, y∗) ∈ gra(T )⊥. (1.3)

Moreover, define the adjoint operator T ∗ : Y ∗ ⇒ X∗ as T ∗(y∗) = −T+(y∗).

Clearly T+ and T ∗ are linear multivalued operators. Density of the domain of
T gives us an important property.

Proposition 1.15. Let T : X ⇒ Y be densely defined. Then T+, T ∗ : Y ∗ ⇒ X∗

are single valued.

Proof. Is enough to proof that T+ is single valued. Take y∗ ∈ dom(T+) and take
x∗, w∗ ∈ T+(y∗). Then, by equation (1.3),

〈x, x∗〉+ 〈y, y∗〉 = 0,

〈x,w∗〉+ 〈y, y∗〉 = 0,

for all (x, y) ∈ gra(T ). Substracting these equations we obtain 〈x,w∗ − x∗〉 = 0,
for all x ∈ dom(T ). Density of dom(T ) now implies that w∗ = x∗ and, hence,
T ∗ is single valued.

Remark 1.16. Definition 1.14 generalizes several concepts, for instance:

1. When T : X −→ Y is a bounded linear map, then T ∗ coincides with the
conjugate operator T ′ : Y ∗ −→ X∗ defined in [1, §17.3] as T ′(y∗) = y∗◦T ,
which is also the adjoint operator defined in [44, §4].

2. When X, Y are Hilbert spaces and T : X ⇒ Y is single valued and densely
defined, then T ∗ is the adjoint defined in [1, §20.1].

3. When Y = X∗ and T : X ⇒ X∗ is a multivalued operator, then T+|X :
X ⇒ X∗ coincides with the T ` operator, defined in [49, Equation (11)].
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4. Also when Y = X∗ and T : dom(T ) ⊂ X −→ X∗ is a densely defined lin-
ear map, T ∗ : dom(T ∗) ⊂ X∗∗ −→ X∗ coincides with the adjoint defined
in [40, Definition 4.1] or [12, §II.6].

5. If Y = X∗ and X is reflexive then, for T : X ⇒ X∗, T ∗ is the adjoint
defined in [8, §1].

Definition 1.17 ([49, Definition 2.1]). A linear operator T : X ⇒ X∗ is called
self-canceling if

〈x, x∗〉 = 0, ∀ (y, y∗) ∈ gra(T ).

Clearly, every self-canceling operator is monotone. This definition is equiva-
lent to the definition of anti-symmetric operator: a linear operator T : X ⇒ X∗

is anti-symmetric if gra(T ) ⊂ gra(T+). We will usually use the term “anti-
symmetric” for linear single valued operators and “self-canceling” for linear multi-
valued operators.

1.4 The Fitzpatrick function and enlargements of
maximal monotone operators

Fitzpatrick, in [22], associated to a monotone operator T : X ⇒ X∗, the function
ϕT : X ×X∗ −→ R ∪ {+∞}, defined as

ϕT (x, x
∗) := sup

(y,y∗)∈gra(T )

〈y, x∗〉+ 〈x, y∗〉 − 〈y, y∗〉.

Direct manipulation of the last definition yields

ϕT (x, x
∗) = sup

(y,y∗)∈gra(T )

〈x− y, y∗ − x∗〉+ 〈x, x∗〉,

= βT (x, x
∗) + 〈x, x∗〉,

where βT is the Brezis-Haraux function [13]. Clearly, ϕT is a convex and lower
semi-continuous function, and

gra(T ) ⊂ {(x, x∗) | ϕT (x, x
∗) = 〈x, x∗〉},

so ϕT is proper.
When T is maximal monotone, then ϕT (x, x

∗) ≥ 〈x, x∗〉, for all (x, x∗) ∈
X ×X∗, and the last inclusion holds as an equality, that is

gra(T ) = {(x, x∗) | ϕT (x, x
∗) = 〈x, x∗〉}.

6



Moreover, the Fitzpatrick function of a monotone operator T is related with its
monotone polar. Indeed,

gra(T µ) = {(x, x∗) | ϕT (x, x
∗) ≤ 〈x, x∗〉}.

Let T : X ⇒ X∗ be a maximal monotone operator. By Proposition 1.5, item
1, T = T µ, that is,

gra(T ) = {(x, x∗) | 〈x− y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ gra(T )}.

The ε-enlargement of T , defined by Burachik, Iusem and Svaiter in [19], is the
operator T ε : X ⇒ X∗, defined via its graph as

gra(T ε) = {(x, x∗) | 〈x− y, x∗ − y∗〉 ≥ −ε, ∀ (y, y∗) ∈ gra(T )},

From this definition, readily follows

gra(T ε) = {(x, x∗) | ϕT (x, x
∗) ≤ 〈x, x∗〉+ ε},

gra(T ) ⊂ gra(T ε), ∀ ε ≥ 0,

and T = T 0.
We say that T is non-enlargeable if T = T ε, for every ε > 0. Follows from

this that T is non-enlargeable if, and only if,

T = ed(ϕT ),

where ed stands for effective domain. Since T is maximal monotone and ϕT is a
convex function, using Lemma 1.2 in [34] (or Theorem 4.2 in [8]), T is an affine
linear subspace in X × X∗. This is an extension of a result given by Burachik
and Iusem, for linear operators in finite dimensional spaces with certain condi-
tions [18, Theorem 2.15].
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Chapter 2

On non-type (D) operators

This chapter is concerned with the study of type (D) operators in non-reflexive
Banach spaces.

In section 2.1 we give the preliminary definitions we will use along the chap-
ter, in particular, the definition of a maximal monotone operator of type (D). In
section 2.2, we study the Gossez operator, which is one of the most important
examples of non-type (D) operators, and it is central in our study. Section 2.3 is
devoted to the study of Problem 1. We first give conditions to construct a type
(D) operator with non-type (D) extension and then we construct an explicit exam-
ple of operator with this behavior. In section 2.4 we give a counterexample for
problem 2. In addition, in section 2.4.1, we extend a monotone operator defined
in a Banach space to a larger Banach space, and study the relationship between
the original operator and the embedded operator, in particular, what happens with
the maximal monotonicity and type (D) properties of the latter. We later use these
results to proof that we can define non-type (D) operators in any Banach space
which contains a norm-isomorphic copy of c0. Finally, in section 2.5 we define an
example of non-maximal monotone linear operator which will be further studied
in section 3.4.

The results of this chapter were published in [16, 17].

2.1 Classes of monotone operators

Let X be a Banach space. Since X ⊆ X∗∗, any multivalued operator T : X ⇒ X∗

induces an operator T̂ : X∗∗ ⇒ X∗,

T̂ (x∗∗) =

{
T (x∗∗), if x∗∗ ∈ X,

∅, otherwise.
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If T is monotone then T̂ is also monotone. Moreover, in reflexive Banach spaces,
T̂ is maximal monotone when T is, but, in non-reflexive Banach spaces, T̂ can
fail to be maximal monotone even if T is.

Definition 2.1. Let T : X ⇒ X∗ be a maximal monotone operator. Then we say
T is

1. of dense type or type (D) ([26]), if for every (x∗∗, x∗) ∈ X∗∗×X∗ such that

〈x∗ − y∗, x∗∗ − y〉 ≥ 0, ∀ (y, y∗) ∈ gra(T ),

there exists a bounded net (xα, x
∗
α)α in gra(T ) such that xα

w∗
−→ x∗∗ and

x∗
α

‖·‖−→ x∗;

2. of negative infimum type or type (NI) ([45]), if

inf
(y,y∗)∈T

〈x∗ − y∗, x∗∗ − y〉 ≤ 0,

for all (x∗, x∗∗) ∈ X ×X∗∗.

Note that in reflexive Banach spaces, all maximal monotone operators are of
type (D). Gossez proved that a maximal monotone operator T : X ⇒ X∗ of
type (D) has a unique maximal monotone extension to the bidual [29], namely,
(T̂ )µ : X∗∗ ⇒ X∗, the monotone polar of T̂ . Furthermore, maximal monotone
operators of type (D) share many properties with maximal monotone operators
defined in reflexive Banach spaces, as for example, convexity of the closure of the
domain and convexity of the closure of the range [26].

Beside maximal monotone operators in reflexive Banach spaces, the most im-
portant examples of type (D) operators are the subdifferentials of lower semi-
continuous convex functions [42].

The notion of type (NI) operator, given by Simons in 1996, was recently
proved to be equivalent to the notion of type (D) operator by Marques Alves and
Svaiter. Along this chapter, we will use many times this characterization of type
(D) operator.

Theorem 2.2 ([36, eq. (5) and Theorem 4.4, item 2]). An operator T : X ⇒ X∗

is of type (D) if, and only if, is of type (NI), that is

inf
(y,y∗)∈T

〈x∗ − y∗, x∗∗ − y〉 ≤ 0,

for all (x∗, x∗∗) ∈ X∗ ×X∗∗.
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Moreover, when working with linear operators, the next proposition gives us
an alternative characterization of type (D) operator, which we will use in sec-
tion 2.2.

Proposition 2.3 ([3, Theorem 4.1]). Let T : X −→ X∗ be a continuous monotone
linear map. Then T is of type (D) if, and only if, T ∗ is monotone.

This result was recently extended to general monotone linear operators by
Bauschke et al., [7].

To study the behavior of T̂ in X∗∗ × X∗, in [3, Definition 2.1] were defined
the operators T , T̃ : X∗∗ ⇒ X∗, as follows:

1. (x∗∗, x∗) ∈ gra(T ) if, and only if, there exists a bounded net (xα, x
∗
α)α in

gra(T ) such that xα
w∗−→ x∗∗ and x∗

α

‖·‖−→ x∗;

2. (x∗∗, x∗) gra(T̃ ) if, and only if,

inf
(y,y∗)∈gra(T )

〈x∗ − y∗, x∗∗ − y〉 ≥ 0;

Thus, if T is monotone then

gra(T̂ ) ⊆ gra(T ) ⊆ gra(T̃ ) = gra(T̂ µ). (2.1)

And from this, a nicer characterization of Definition 2.1 is easily obtained.

Proposition 2.4 ([26, §2]). Let T : X ⇒ X∗ be a maximal monotone operator.
Then,

1. T has a unique maximal monotone extension to the bidual if, and only if, T̃
is monotone.

2. T is of type (D) if, and only if, T = T̃ .

Using the previous proposition and Lemma 1.13, we obtain the following
lemma, which is a generalization of Theorem 6.7 in [40].

Lemma 2.5. Let T : X ⇒ X∗ be a monotone linear operator. If T is surjective
then T̂ is maximal monotone and T̂−1 is single valued. Moreover, T is of type (D).

Proof. Since ran(T ) = X∗, T̂−1 : X∗ ⇒ X∗∗ is an everywhere defined mono-
tone linear operator. Then, by Lemma 1.13, T̂−1 is a maximal monotone single
valued operator, thus T̂ is maximal monotone. Moreover, this implies that all the
inclusions in equation 2.1 become equalities and, by Proposition 2.4, item 2, T is
of type (D).
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2.2 The Gossez operator

One of the most important examples of non-type (D) operators was given by
Gossez. Gossez defined in [27] the following operator

G : `1 −→ `∞, (Gx)n :=
∑
k>n

xk −
∑
k<n

xk, (2.2)

which is everywhere defined, linear, continuous, anti-symmetric and maximal
monotone, but not of type (D). Also, as proved by Gossez, G∗ is not monotone.

Recall that c0, `1 and `∞ are real Banach spaces, and

`1 = (c0)
∗, `∞ = (`1)∗ = (c0)

∗∗.

From now on, let
e = (1, 1, . . .) ∈ `∞ \ c0. (2.3)

Additional properties of the Gossez operator are the following.

Proposition 2.6. Let G be the Gossez operator defined as above. Then:

1. If x = (xn)n ∈ `1 and y = (yn)n = G(x) ∈ `∞ then

yn − yn+1 = xn + xn+1. (2.4)

2. G is injective.

3. For any x ∈ `1, G(x) + 〈x, e〉e ∈ c0.

4. G(x) ∈ c0 if, and only if, 〈x, e〉 = 0.

Proof.

1. Let x = (xn)n ∈ `1 and y = (yn)n = G(x). Then

yn − xn − xn+1 =
∑
k>n

xk −
∑
k<n

xk − xn − xn+1

=
∑

k>n+1

xk −
∑

k<n+1

xk

= yn+1,

which proofs (2.4).
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2. Since G is linear, it suffices to prove that its kernel is trivial. Suppose that
x = (xn)n ∈ `1 and G(x) = 0. Using (2.4),

0 = xn + xn+1, ∀n ∈ N.

Hence xn = (−1)n+1x1 and, since x ∈ `1, we conclude xn = 0, for all
n ∈ N.

3. Let x ∈ `1. Taking limits when n −→ ∞ in (2.2), we obtain

lim
n−→∞

G(x)n = −
∞∑
k=1

xk. (2.5)

The result follows by observing that 〈x, e〉 =
∞∑
k=1

xk.

4. Follows immediately from (2.5).

2.3 Non-type (D) extensions of type (D) linear ope-
rators

The main results of this section are: to give conditions for a type (D) operator
to have a non-type (D) extension; and to give an explicit example of a type (D)
operator with non-type (D) extension, that is, a negative answer to problem 1.

A somewhat different version of this theorem was given by the authors in [17].

Theorem 2.7 ([17, Theorem 2.1]). Suppose that A : X∗ −→ X∗∗ is a linear
(single valued) operator, that ran(A) ⊆ X and that there exists ζ ∈ X∗∗ \X such
that

〈A(x∗), x∗〉 = 〈x∗, ζ〉2, ∀x∗ ∈ X∗. (2.6)

Define T : X ⇒ X∗ as

gra(T ) = {(A(x∗), x∗) | x∗ ∈ X∗}.

Then,

1. T is maximal monotone of type (D);

2. T̃ = T̂ = A−1;

3. T̃−1 is not of type (D) on X∗ ×X∗∗.
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Proof. Condition (2.6) trivially implies that A is monotone. Since ran(A) ⊂ X ,
T̂ = A−1 and T is surjective. Therefore, T is a surjective monotone linear operator
and, using Lemma 2.5, we conclude that T̂ is maximal monotone, T̂ = T̃ and T
is of type (D). This proves items 1 and 2.

Now we prove 3. Since X is a closed subspace of X∗∗ and ζ ∈ X∗∗ \X , there
exists L ∈ X∗∗∗, such that

L(x) = 0, ∀x ∈ X; 〈ζ, L〉 > 1

4
.

Therefore, using also the assumption ran(A) ⊂ X and (2.6), we have

inf
(y∗,y∗∗)∈gra(A)

〈ζ − y∗∗, L− y∗〉 = inf
y∗∈X∗

〈ζ − A(y∗), L− y∗〉

= inf
y∗∈X∗

〈ζ, L〉 − 〈ζ, y∗〉 − 〈A(y∗), L〉+ 〈A(y∗), y∗〉

= inf
y∗∈X∗

〈ζ, L〉 − 〈ζ, y∗〉+ 〈ζ, y∗〉2

= 〈ζ, L〉+ inf
t∈R

t2 − t

= 〈ζ, L〉 − 1

4
> 0,

that is, A is not of type (NI). Using Theorem 2.2, we conclude that T̃−1 = A is
not of type (D).

Remark 2.8. In [17], instead of condition (2.6) the authors used the slightly
weaker condition

sup
x∗∈X∗

〈x∗, ζ〉 − 〈A(x∗), x∗〉 < ∞.

However, condition (2.6) gives additional information about the structure of the
operator A. Under such condition, A can be decomposed as

A = G+ E,

where G : X∗ −→ X∗∗ is an anti-symmetric operator and E : X∗ −→ X∗∗ is
such that E(x∗) = 〈x∗, ζ〉ζ.

The following proposition uses the Gossez operator to construct an operator
which meets Theorem 2.7 conditions.

Proposition 2.9 ([17, Proposition 3.2]). Define A : `1 −→ `∞,

A(x∗) = G(x∗) + 〈x∗, e〉e,
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where G is the Gossez operator and e is defined as in equation (2.3). Then
ran(A) ⊂ c0 and the operator T : c0 ⇒ `1 defined as

gra(T ) = {(A(x∗), x∗) | x∗ ∈ `1}, (2.7)

is maximal monotone of type (D), but the inverse of its unique maximal monotone
extension to the bidual, T̃−1 : `1 ⇒ `∞, is not of type (D).

Proof. The inclusion ran(A) ⊂ c0 is proved in Proposition 2.6, item 3.
To prove the second part of this proposition, is enough to proof that A satisfies

the assumptions of Theorem 2.7 with X = c0 and ζ = e. Clearly A is linear,
continuous and everywhere defined, since G and 〈·, e〉e are. Moreover, for any
x∗ ∈ `1,

〈A(x∗), x∗〉 = 〈G(x∗), x∗〉+ 〈〈x∗, e〉e, x∗〉
= 〈x∗, e〉〈e, x∗〉
= 〈x∗, e〉2,

where the second equality holds since G is anti-symmetric.

2.4 A non-type (D) operator in c0

In this section we give a negative answer to problem 2. In order to do this, also
using the Gossez operator, we define an operator with domain in c0 which is not
of type (D). Furthermore, in section 2.4.1, we extend this result proving that if a
Banach space contains a closed subspace which is norm-isomorphic to c0, then
there also exist non-type (D) maximal monotone operators in such space.

The following results are taken from [16].

Lemma 2.10 ([16, Lemma 2.1]). The operator S : c0 ⇒ `1 defined as

gra(S) = {(−G(x∗), x∗) |G(x∗) ∈ c0, x
∗ ∈ `1},

is single valued in its domain, linear, anti-symmetric, maximal monotone and

ran(S) = {x∗ ∈ `1 | 〈x∗, e〉 = 0}.

Proof. Observe that S = −G−1|c0 . Therefore, since the Gossez operator is injec-
tive, linear and anti-symmetric, so are G−1 and S.

By Proposition 2.6, item 4, and the definition of S, we can write

gra(S) = {(−G(x∗), x∗) | 〈x∗, e〉 = 0}.
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Therefore, x∗ ∈ ran(S) if, and only if, 〈x∗, e〉 = 0.

To prove maximal monotonicity of S, take (x, x∗) ∈ c0 × `1 monotonically
related to S, that is,

〈x− y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ gra(S).

Fix i ∈ N and define, for m > i, um = (um
k )k ∈ `1 as

um
k =


−1, k = i,

1, k = m,

0, otherwise,
(2.8)

and let vm = (vmk )k = G(um). Then, using equations (2.2) and (2.8), we have

vmk =


1, k = i or k = m,

2, i < k < m,

0, otherwise.
(2.9)

Since vm ∈ c0 and S is linear, for any t ∈ R,

(−tvm, tum) ∈ gra(S).

Therefore, for any t ∈ R,

〈x+ tvm, x∗ − tum〉 ≥ 0

which is equivalent to

〈x, x∗〉+ t[〈vm, x∗〉 − 〈x, um〉] ≥ 0.

Since the above inequality holds for any t ∈ R,

〈x, um〉 = 〈vm, x∗〉, ∀m > i, (2.10)
〈x, x∗〉 ≥ 0. (2.11)

Equation (2.10), together with (2.8) and (2.9), imply

xm − xi = x∗
i + 2

m−1∑
k=i+1

x∗
k + x∗

m.

Using the assumptions x ∈ c0, x∗ ∈ `1 and taking the limit m −→ ∞ in the above
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equation, we conclude that

xi = −

[
x∗
i + 2

∞∑
k=i+1

x∗
k

]
= −

[
G(x∗)i +

∞∑
k=1

x∗
k

]
.

This implies that x = −G(x∗)− 〈x∗, e〉e. Using equation (2.11) and the fact that
G is anti-symmetric,

0 ≤ 〈x, x∗〉 = −〈G(x∗), x∗〉 − 〈x, e〉2 = −〈x, e〉2.

Follows that 〈x∗, e〉 = 0 and x = −G(x∗). Thus (x, x∗) ∈ gra(S) which proves
the maximal monotonicity of S.

As a consequence of Lemma 2.10, we can write

gra(S) = {(−G(x∗), x∗) | x∗ ∈ `1 〈x∗, e〉 = 0},
= {(−A(x∗), x∗) | x∗ ∈ `1 〈x∗, e〉 = 0}.

where A is the operator defined in Proposition 2.9.
We now give a negative answer to Problem 2.

Proposition 2.11 ([16, Proposition 2.2]). The maximal monotone operator S :
c0 ⇒ `1 (defined in Lemma 2.10),

gra(S) = {(−G(x∗), x∗) |G(x∗) ∈ c0, x
∗ ∈ `1},

has infinitely many maximal monotone extensions to `∞ × `1. In particular, S is a
maximal monotone non-type (D) operator in c0.

Proof. Given y∗ ∈ `1 and α ∈ R, we claim that

〈x− (−G(y∗) + αe), x∗ − y∗〉 = α〈y∗, e〉, ∀ (x, x∗) ∈ gra(S). (2.12)

Take (x, x∗) ∈ gra(S). Then, by Lemma 2.10, x = −G(x∗) and 〈x∗, e〉 = 0.
Moreover

〈x+G(y∗), x∗ − y∗〉 = −〈G(x∗ − y∗), x∗ − y∗〉 = 0,

which readily implies (2.12).
Take ỹ ∈ `1 such that 〈ỹ, e〉 > 0 and define

xτ = −G(τ ỹ) +
1

τ
e, 0 < τ < ∞.
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In view of (2.12),

(xτ , τ ỹ) ∈ gra(T̃ ), 0 < τ < ∞.

Therefore, for each τ ∈ (0,∞), there exists a maximal monotone extension Tτ :
`∞ ⇒ `1 of T such that

(xτ , τ ỹ) ∈ G(Tτ ).

However, these extensions are distinct because if τ, τ ′ ∈ (0,∞) and τ 6= τ ′ then

〈xτ − xτ ′ , τ ỹ − τ ′ỹ〉 = (τ − τ ′)(1/τ − 1/τ ′)〈ỹ, e〉 < 0.

From the proof of the above proposition, we can state the following.

Corollary 2.12. Let S : c0 ⇒ `1 be defined as in Lemma 2.10. Then

gra(Ŝµ) = {(−G(x∗) + αe, x∗) ∈ `∞ × `1 | α〈x∗, e〉 ≥ 0}.

2.4.1 Immersions of monotone operators
In this section we will show that if a Banach space contains a (closed) subspace
norm-isomorphic to c0, then there exist non-type (D) maximal monotone operators
in such space. In order to do this we extend a monotone operator defined in a
Banach space to a larger Banach space and study the relationship between the
original operator and the extended operator.

Let X and Ω be real Banach spaces. A linear map A : X −→ Ω is a norm-
isomorphism from X into a subspace of Ω, if A is injective, continuous and A−1 :
ran(A) ⊂ Ω −→ X is continuous.

Recall the definition of adjoint for bounded linear maps, given in Remark 1.16,
item 1: for a bounded linear map A : X −→ Ω, its adjoint A∗ : Ω∗ −→ X∗ is
given by A∗(w∗) = w∗ ◦ A. We will use the following well known result.

Lemma 2.13. If A : X −→ Ω is a norm-isomorphism then A∗ : Ω∗ −→ X∗ is
surjective.

Proof. Take any x∗ ∈ X∗. Since A−1 is continuous, ξ∗ = x∗ ◦ A−1 is a conti-
nuous linear functional defined in ran(A). Using the Hahn-Banach Theorem, we
conclude that there exists w∗ ∈ Ω∗ which extends ξ∗. Therefore, as w∗ and ξ∗

coincides in ran(A), w∗ ◦ A = ξ∗ ◦ A = x∗ and so, A∗(w∗) = x∗.

Definition 2.14 ([16, Equation (11)]). Let X , Ω be real Banach spaces, and let
A : X −→ Ω be a norm-isomorphism from X onto a closed subspace of Ω.
Consider the application ΨA : ran(A)× Ω∗ −→ X ×X∗, defined as

ΨA(w,w
∗) = (A−1(w), A∗(w∗)). (2.13)
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For T : X ⇒ X∗ define TA : Ω ⇒ Ω∗ as

gra(TA) =

{
(w,w∗) ∈ Ω× Ω∗

∣∣∣∣ ∃ (x, x∗) ∈ gra(T ),
w = A(x),
x∗ = A∗(w∗)

}
,

= Ψ−1
A (gra(T )). (2.14)

A resumed version of the following lemma was given by the authors in [16].

Lemma 2.15 ([16, Lemma 3.2]). Consider ΨA as in equation (2.13) and, for
T : X ⇒ X∗, TA as in equation (2.14). Then

1. ΨA is surjective.

2. ΨA maps gra(TA) onto gra(T ).

3. For every (w,w∗) ∈ TA, w∗ + ker(A∗) ⊂ TA(w).

4. dom(T µ
A) ⊂ ran(A).

5. If (x, x∗) and (y, y∗) are monotonically related, (w,w∗) ∈ Ψ−1
A (x, x∗) and

(z, z∗) ∈ Ψ−1
A (y, y∗), then (w,w∗) and (z, z∗) also are.

6. ΨA maps gra(T µ
A) onto gra(T µ).

7. If T is monotone then TA is monotone.

8. If T is maximal monotone then TA is maximal monotone.

Proof. 1. This follows from the fact that A is an norm-isomorphism from X
onto ran(A) and A∗ is surjective, by Lemma 2.13.

2. Note that dom(TA) ⊂ ran(A). Hence ΨA is well defined. To prove that this
application takes gra(TA) onto gra(T ), take (x, x∗) ∈ gra(T ) and, by item
1, let (w,w∗) be such that ΨA(x, x

∗) = (w,w∗). Therefore, w = A(x),
x∗ = A(w∗) and, by Definition 2.14, (w,w∗) ∈ gra(TA) and ΨA maps this
point into (x, x∗).

3. This follows from item 2 and the fact that ΨA(w,w
∗) = ΨA(w,w

∗ + u∗),
for all u∗ ∈ ker(A∗).

4. Note that the assumptions on A imply that ran(A) is a closed subspace. Let
w0 ∈ dom(T µ

A) and suppose that w0 /∈ ran(A). Take w∗
0 ∈ T µ

A(w0) and
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(w,w∗) ∈ gra(TA). Since w ∈ ran(A), w0 − w /∈ ran(A) and, using the
Hahn-Banach theorem, we conclude that there exists u∗ ∈ Ω∗ such that

〈z, u∗〉 = 0, ∀ z ∈ ran(A), (2.15)
〈w0 − w, u∗〉 > 〈w0 − w,w∗

0 − w∗〉. (2.16)

Equation (2.15) implies that u∗ ∈ ker(A∗) and, by item 3, w∗+u∗ ∈ TA(w).
Thus

0 ≤ 〈w0 − w,w∗
0 − (w∗ + u∗)〉

= 〈w0 − w,w∗
0 − w∗〉 − 〈w0 − w, u∗〉 < 0,

where the first inequality comes from the fact that (w0, w
∗
0) is monotonically

related to (w,w∗ + u∗) and the last comes from (2.16). This contradiction
proves the result.

5. Since (x, x∗) = ΨA(w,w
∗) = (A−1(w), A∗(w∗)) and (y, y∗) = ΨA(z, z

∗) =
(A−1(z), A∗(z∗)),

〈w − z, w∗ − z∗〉 = 〈A(x)− A(y), w∗ − z∗〉
= 〈A(x− y), w∗ − z∗〉
= 〈x− y, A∗(w∗ − z∗)〉
= 〈x− y, x∗ − y∗〉.

This easily implies the result.

6. Take (x, x∗) ∈ gra(T µ) and let (w,w∗) such that (x, x∗) = (A−1(w), A∗(w∗)).
Now, take (z, z∗) ∈ gra(TA) and let (y, y∗) = (A−1(z), A∗(z∗)) ∈ gra(T ).
Since (x, x∗) ∈ gra(T µ) and (y, y∗) ∈ gra(T ), (x, x∗) and (y, y∗) are mono-
tonically related and, by item 5, (w,w∗) and (z, z∗) also are. Therefore, as
(z, z∗) ∈ gra(TA) was taken arbitrarily, (w,w∗) ∈ gra(T µ

A).

7. Assume T is monotone. Take (w,w∗), (z, z∗) ∈ gra(TA) and let (x, x∗) =
ΨA(w,w

∗) and (y, y∗) = ΨA(z, z
∗). By item 2, (x, x∗), (y, y∗) ∈ gra(T )

and, since T is monotone, (x, x∗) and (y, y∗) are monotonically related.
Item 5 now implies that (w,w∗), (z, z∗) ∈ gra(TA) also are monotonically
related, therefore TA is monotone.

8. Assume T is maximal monotone. By item 7, TA is monotone, so remains to
prove that TA is maximal. Since T is maximal monotone, T = T µ and, by
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items 2 and 6,

gra(T µ
A) = Ψ−1

A (gra(T µ)) = Ψ−1
A (gra(T )) = gra(TA).

Therefore TA = T µ
A and TA is maximal monotone.

Lemma 2.16 ([16, Lemma 3.2]). Let T : X ⇒ X∗ be a maximal monotone
operator and consider TA : Ω ⇒ Ω∗ as in Definition 2.14. If TA is of type (D) on
Ω× Ω∗ then T is of type (D) on X ×X∗.

Proof. Suppose that (x̂∗, x̂∗∗) ∈ X∗ × X∗∗. Using Lemma 2.13, we can find
ŵ∗ ∈ (A∗)−1(x̂∗). Using Lemma 2.15, item 2, we have

inf
(x,x∗)∈gra(T )

〈x̂∗ − x∗, x̂∗∗ − x〉 = inf
(w,w∗)∈gra(TA)

〈x̂∗ − A∗(w∗), x̂∗∗ − A−1(w)〉

= inf
(w,w∗)∈gra(TA)

〈A∗(ŵ∗)− A∗(w∗), x̂∗∗ − A−1(w)〉

= inf
(w,w∗)∈gra(TA)

〈ŵ∗ − w∗, A∗∗(x̂∗∗)− A(A−1(w))〉

= inf
(w,w∗)∈gra(TA)

〈ŵ∗ − w∗, A∗∗(x̂∗∗)− w〉

Since (x̂∗, x̂∗∗) is a generic element of X∗ × X∗∗ and TA is type (D), in view of
the above result and Theorem 2.2, we conclude that T is also of type (D).

Using Lemmas 2.15 and 2.16, we obtain the following Theorem.

Theorem 2.17 ([16, Theorem 3.3]). Let X and Ω be Banach spaces for which
there exists a linear map A : X −→ Ω such that A is a norm-isomorphism from
X onto a closed subspace of Ω. If there exists a non-type (D) maximal monotone
operator on X × X∗, then there also exists a non-type (D) maximal monotone
operator on Ω× Ω∗.

Proof. Let T : X × X∗ be a non-type (D) operator on X × X∗ and define TA :
Ω ⇒ Ω∗ as in Definition 2.14. Using Lemma 2.15 we conclude that TA is maximal
monotone. If TA is of type (D) then, by Lemma 2.16, T is also of type (D), in
contradiction with the assumptions of the theorem. Therefore TA is a maximal
monotone non-type (D) operator.

Combining Proposition 2.11 and Theorem 2.17, we have

Theorem 2.18 ([16, Corollary 3.4]). Any real Banach space Ω which contains a
norm-isomorphic copy of c0 has a non-type (D) maximal monotone operator.
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Remark 2.19. Not long after the submission of [16], Borwein et al. [5] extended
our results by giving conditions similar to Theorem 2.7 to construct non-type (D)
operators in general Banach spaces. Combining Theorem 2.7 and Theorem 3.6
in [5] we can state the following result.

Theorem 2.20. Let A : X∗ −→ X∗∗ be a linear single valued operator. Assume
that ran(A) ⊆ X and that there exists ζ ∈ X∗∗ \X such

〈A(x∗), x∗〉 = 〈x∗, ζ〉2, ∀x∗ ∈ X∗.

Consider the operators T, S : X ⇒ X∗ be defined as

gra(T ) = {(A(x∗), x∗) | x∗ ∈ X∗},
gra(S) = {(−A(x∗), x∗) | x∗ ∈ X∗, 〈x∗, ζ〉 = 0}.

Then,

1. T is maximal monotone of type (D).

2. T̃ = T̂ = A−1.

3. T̃−1 is not of type (D) on X∗ ×X∗∗.

4. −S is not maximal monotone.

5. S is anti-symmetric and maximal monotone but not of type (D).

2.5 Further examples

We now present an operator in c0 × `1, which will be used in section 3.4. Recall
the definition of T : c0 ⇒ `1, defined as in equation (2.7),

gra(T ) = {(A(x∗), x∗) | x∗ ∈ `1},
= {(G(x∗) + 〈x∗, e〉e, x∗) | x∗ ∈ `1}.

Lemma 2.21. The operator N : c0 ⇒ `1 defined as

gra(N) = {(G(x∗), x∗) |G(x∗) ∈ c0, x
∗ ∈ `1}, (2.17)

is single valued in its domain, anti-symmetric and monotone, but not maximal
monotone. Moreover, ran(N) = {x∗ ∈ `1 | 〈x∗, e〉 = 0} and Nµ = T .
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Proof. Clearly N = −S hence, by Lemma 2.10, N is single valued in its domain,
anti-symmetric, monotone and

ran(N) = ran(S) = {x∗ ∈ `1 | 〈x∗, e〉 = 0}.

Moreover, by Proposition 2.6, item 4, we can write

gra(N) = {(G(x∗), x∗) | x∗ ∈ `1, 〈x∗, e〉 = 0}.

Now we prove that Nµ = T . Take (G(x∗), x∗) ∈ gra(N), then 〈x∗, e〉 = 0
and

(G(x∗), x∗) = (G(x∗) + 〈x∗, e〉e, x∗) = (A(x∗), x∗) ∈ gra(T ).

Thus, gra(N) ⊂ gra(T ). This implies,

gra(T ) = gra(T µ) ⊂ gra(Nµ),

where the equality follows from Proposition 1.5, item 1, and the fact that T is
maximal monotone, and the inclusion follows from Proposition 1.6.

On the other hand, take (x, x∗) ∈ c0 × `1 monotonically related to N , that is,

〈x−G(y∗), x∗ − y∗〉 ≥ 0, ∀ y∗ ∈ `1, 〈y∗, e〉 = 0.

Fix i ∈ N and, for every m > i, consider um and vm defined as in equations (2.8)
and (2.9). Now we proceed as in the proof of Lemma 2.10. Since, for any t ∈ R
and m > i, (tvm, tum) ∈ gra(N), we conclude that

〈x, um〉 = −〈vm, x∗〉, ∀m > i

〈x, x∗〉 ≥ 0.

which implies,

xi − xm = x∗
i + 2

m−1∑
k=i+1

x∗
k + x∗

m.

Taking the limit m −→ ∞,

xi = x∗
i + 2

∞∑
k=i+1

x∗
k = G(x∗)i +

∞∑
k=1

x∗
k.

This implies that x = G(x∗) + 〈x∗, e〉e = A(x∗). Therefore, (x, x∗) ∈ gra(T )
and T = Nµ. This also implies that N is not maximal monotone, since ran(N) 6=
ran(T ) = `1.
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Chapter 3

Representable and monotone polar
closures of monotone operators

This chapter is concerned to Problem 3, that is, the study of the relationship be-
tween the representable and the polar monotone closures of monotone operators
in topological vector spaces. In sections 3.1 and 3.2 we give the definitions and
properties of the representable and polar monotone closures, respectively. In sec-
tion 3.3, we give an extension of Theorem 31 in [37], along with several corollar-
ies. Finally, in section 3.4 we study the closures of an explicit operator defined in
c0

Most of the results in this chapter are in [15].

In this chapter, X is a real topological vector space, Hausdorff and locally
convex, with topology τ , X∗ is its topological dual and w∗ = σ(X∗, X) is the
weak∗ topology of X∗.

For the sake of notation, from now on, we will identify a multivalued operator
T : X ⇒ X∗ with its graph gra(T ), that is, we will write (x, x∗) ∈ T instead of
(x, x∗) ∈ gra(T ) and T ⊂ S will mean gra(T ) ⊂ gra(S).

As in the case of Banach spaces, the duality product π : X × X∗ −→ R is
defined as

π(x, x∗) = 〈x, x∗〉 = x∗(x), ∀x ∈ X, x∗ ∈ X∗.

Furthermore, the definitions of monotone and maximal monotone operator (page 2),
linear operator (Definition 1.7), Fitzpatrick function and non-enlargeable opera-
tors (section 1.4) are the same as in chapter 1.
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3.1 The representable closure

If h : X ×X∗ −→ R ∪ {+∞} is a convex and proper function, such that

h(x, x∗) ≥ π(x, x∗), ∀ (x, x∗) ∈ X ×X∗,

then the set
{(x, x∗) ∈ X ×X∗ | h(x, x∗) = π(x, x∗)}

is a monotone operator [37, Theorem 5]. In this case, it is said that such operator is
represented by h. We are interested in monotone operators which are represented
by lower semi-continuous functions.

Definition 3.1. Let O be a topology in X×X∗. A multivalued operator A : X ⇒
X∗ is representable in the O topology if there exists h : X ×X∗ −→ R ∪ {+∞}
convex, proper and O-lower semi-continuous such that

h ≥ π, A = {h = π}.

For instance, maximal monotone operators in a Hausdorff locally convex real
topological vector space are τ × w∗-representable, as proved by Fitzpatrick [22].
Indeed, if A : X ⇒ X∗ is a maximal monotone operator, then it is represented —
in the τ×w∗ topology— by its Fitzpatrick function, ϕA : X×X∗ −→ R∪{+∞},

ϕA(x, x
∗) = sup

(y,y∗)∈A
〈x− y, y∗ − x∗〉+ 〈x, x∗〉

= sup
(y,y∗)∈A

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉, (3.1)

which was defined in section 1.4. On the other hand, in general not every mono-
tone operator is τ × w∗-representable. For instance, take T : R ⇒ R, T =
{(0, 0), (0, 1)}.

Let R be the family of the τ × w∗-representable operators in X ×X∗, that is,

R = {R : X ⇒ X∗ |R is τ × w∗-representable}.

From now on, unless otherwise stated, we will always use the τ × w∗ topology.
Given a monotone operator A : X ⇒ X∗, a representable extension of A is any
operator R ∈ R such that A ⊂ R. Thus, the family of representable extensions of
A is

R(A) = {R ∈ R | A ⊂ R}.

The following proposition was proved by Martinez-Legaz and Svaiter [37] in the
context of Banach spaces, but its extension to topological vector spaces is trivial.
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Proposition 3.2 ([37, Corollary 10]). Let A : X ⇒ X∗ be a multivalued ope-
rator. Then A is monotone if, and only if, R(A) 6= ∅. Moreover, for any family
{Ri}i∈I ⊂ R(A), ⋂

i∈I

Ri ∈ R(A).

The representable closure of a monotone operator A : X ⇒ X∗, is defined as

clR(A) =
⋂

R∈R(A)

R. (3.2)

By Proposition 3.2, clR(A) ∈ R(A), so it is the smallest (in the sense of graph
inclusion) representable extension of A.

For A : X ⇒ X∗, consider δA : X ×X∗ −→ R ∪ {+∞} defined as

δA(x, x
∗) =

{
0, if (x, x∗) ∈ A,

+∞, otherwise.

This function is known as the indicator function of A. Moreover, the S-function
of A is SA = cl convτ×w∗(π + δA), which is the largest convex and τ × w∗-lower
semi-continuous function majorized by π + δA. The next proposition, also given
in [37] for Banach spaces, relates the S-function and the representable closure of
a monotone operator.

Proposition 3.3 ([37, §3]).

1. A is representable if, and only if, SA = cl convτ×w∗(π + δA) represents A.

2. If A is monotone then clR(A) = {SA ≤ π}.

3. Let A be monotone, (x0, x
∗
0) ∈ X ×X∗ and define

τ(x0,x∗
0)
(A) = A− {(x0, x

∗
0)} = {(x− x0, x

∗ − x∗
0) | (x, x∗) ∈ A}. (3.3)

Then clR
(
τ(x0,x∗

0)
(A)

)
= τ(x0,x∗

0)

(
clR(A)

)
.

3.2 The monotone polar closure
Monotonicity can also be analyzed using the classical notion of polarity [9], as
follows. Recall the definition of monotone polar of an operator A : X ⇒ X∗,
given in section 1.1,

Aµ = {(x, x∗) ∈ X ×X∗ | 〈x− y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ A}.
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Thus, the monotone polar closure or µ-polar closure of A [37, §4] is

Aµµ = (Aµ)µ .

Let M be the family of maximal monotone operators in X ×X∗, that is

M = {T : X ⇒ X∗ |M is maximal monotone},

and for a monotone operator A : X ⇒ X∗, consider the family of maximal mono-
tone extensions of A,

M(A) = {T ∈ M | A ⊂ T}.

The following proposition subsumes some properties of the monotone polar, which
were also proved for Banach spaces [37], but also trivially holds for topological
vector spaces. Some of these properties were already stated in sections 1.1 and 1.4.

Proposition 3.4 ([37, §4]).

1. If A ⊂ B ⊂ X ×X∗ then Bµ ⊂ Aµ.

2. A is monotone if, and only if, A ⊂ Aµ.

3. A is maximal monotone if, and only if, A = Aµ.

4. Aµ is maximal monotone if, and only if, A and Aµ are monotone.

5. Aµ = {ϕA ≤ π}.

6. If A is monotone then
Aµ =

⋃
M∈M(A)

M

and
Aµµ =

⋂
M∈M(A)

M

7. If A is monotone then A ⊂ Aµµ ⊂ Aµ ⊂ ed(ϕA).

8. Let A be monotone, (x0, x
∗
0) ∈ X × X∗ and define τ(x0,x∗

0)
(A) as in (3.3).

Then (
τ(x0,x∗

0)
(A)

)µ
= τ(x0,x∗

0)

(
Aµ

)
.
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3.3 Relationship between the closures
Let A : X ⇒ X∗ be a monotone operator. Since any maximal monotone operator
is representable, by Proposition 3.2, equation (3.2) and Proposition 3.4, item 6,
Aµµ is representable and

clR(A) ⊆ Aµµ.

Our aim is to prove the following theorem.

Theorem 3.5 ([15, Theorem 2.2]). Assume that X × X∗ is endowed with the
τ ×w∗ topology. Let A : X ⇒ X∗ be a monotone operator. If clR(A) 6= Aµµ then
Aµ is affine linear, maximal monotone, non-enlargeable and there exists (x0, x

∗
0)

such that ϕA(x0, x
∗
0) < 〈x0, x

∗
0〉. In particular, A is pre-maximal monotone.

Observe that for any A : X ⇒ X∗,

(0, 0) /∈ Aµµ ⇐⇒ Aµ ∩ {π < 0} 6= ∅.

The following proposition gives sufficient conditions for (0, 0) /∈ Aµµ, and it was
proved in the context of Banach spaces in [37]. For the sake of completeness, we
provide its proof in the context of topological vector spaces.

Proposition 3.6 ([37, Propositions 26, 28 and 30]). Let A be monotone. Then any
of the following conditions are sufficient for (0, 0) /∈ Aµµ:

1. ϕA(0, 0) < 0 and ed(ϕA) ∩ {π < 0} 6= ∅;

2. ϕA(0, 0) = 0 and {ϕA < 0} ∩ {π < 0} 6= ∅;

3. ϕA(0, 0) > 0.

Proof. Suppose that item 1 holds. Take (y, y∗) ∈ ed(ϕA) such that 〈y, y∗〉 < 0.
Using the convexity of ϕA and the assumptions ϕA(0, 0) < 0 and ϕA(y, y

∗) < ∞,
we conclude that there exists t ∈ (0, 1), small enough, such that

ϕA((1− t)(0, 0) + t(y, y∗)) ≤ (1− t)ϕA(0, 0) + tϕA(y, y
∗)

< t2〈y, y∗〉
< 0,

where the first inequality follows from the convexity of ϕA. Define

(yt, y
∗
t ) = (1− t)(0, 0) + t(y, y∗) = t(y, y∗).

Since t2〈y, y∗〉 = 〈yt, y∗t 〉, we conclude that

ϕA(yt, y
∗
t ) < 〈yt, y∗t 〉 < 0.
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Using item 5 of Proposition 3.4 we conclude that (yt, y∗t ) ∈ Aµ, and the last
inequality in the above equation imply that (0, 0) /∈ Aµµ.

Item 2 is proved by the same reasoning. Indeed, if this item holds, take (y, y∗)
such that ϕA(y, y

∗) < 0 and 〈y, y∗〉 < 0. Since ϕA is convex and ϕA(0, 0) = 0,
for any t ∈ [0, 1],

ϕA((1− t)(0, 0) + t(y, y∗)) ≤ (1− t)ϕA(0, 0) + tϕA(y, y
∗)

= tϕA(y, y
∗)

(3.4)

Since ϕA(y, y
∗) < 0, there exists t ∈ (0, 1) small enough, such that

tϕA(y, y
∗) < t2〈y, y∗〉 < 0. (3.5)

Define again (yt, y
∗
t ) = t(y, y∗). Since t2〈y, y∗〉 = 〈yt, y∗t 〉, and combining equa-

tions (3.4) and (3.5),
ϕA(yt, y

∗
t ) < 〈yt, y∗t 〉 < 0,

which implies (yt, y∗t ) ∈ Aµ ∩ {π < 0} and (0, 0) /∈ Aµµ.
If item 3 holds, direct use of Definition 3.1 shows that 0 /∈ Aµ. Since A is

monotone, A ⊂ Aµ, Aµµ ⊂ Aµ and the conclusion follows.

The next lemma generalizes to topological linear spaces a result proved in
reflexive Banach spaces.

Lemma 3.7 ([37, Proposition 29]). Let A be monotone. If ϕA(0, 0) = 0 and
SA(0, 0) > 0 then (0, 0) /∈ Aµµ.

Proof. Since ϕA(x, x
∗) = (π+ δA)

∗(x∗, x) for all (x, x∗) ∈ X ×X∗, by Fenchel-
Moreau Theorem for locally convex spaces,

SA(x, x
∗) = (π + δA)

∗∗(x, x∗) = (ϕA)
∗(x∗, x),

= sup
(y,y∗)

〈y, x∗〉+ 〈x, y∗〉 − ϕA(y, y
∗). (3.6)

In particular, sup(y,y∗)−ϕA(y
∗, y) = SA(0, 0) > 0, so there exists (y, y∗) ∈ X ×

X∗ such that
ϕA(y, y

∗) < 0. (3.7)

The above inequality trivially implies that there exists t ∈ (0, 1), small enough,
such that

t
(
t〈y, y∗〉+ (1− t)ϕA(y, y

∗)
)
= t2〈y, y∗〉+ t(1− t)ϕA(y, y

∗) < 0,

Since sup(x,x∗)∈A−〈x, x∗〉 = ϕA(0, 0) = 0 and t, 1 − t ∈ (0, 1), there exists
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(z, z∗) ∈ A such that

t2〈y, y∗〉+ t(1− t)ϕA(y, y
∗) + (1− t)〈z, z∗〉 < 0, (3.8)

tϕA(y, y
∗) + (1− t)〈z, z∗〉 < 0 (3.9)

where we used again (3.7) for the second inequality. Define

(z0, z
∗
0) = t(y, y∗) + (1− t)(z, z∗).

Then

〈z0, z∗0〉 = t2〈y, y∗〉+ t(1− t)(〈z, y∗〉+ 〈y, z∗〉) + (1− t)2〈z, z∗〉
= t2〈y, y∗〉+ t(1− t)

(
〈z, y∗〉+ 〈y, z∗〉 − 〈z, z∗〉

)
+ (1− t)〈z, z∗〉

≤ t2〈y, y∗〉+ (1− t)tϕA(y, y
∗) + (1− t)〈z, z∗〉, (3.10)

where the last inequality follows from the inclusion (z, z∗) ∈ A and (3.1). On
the other hand, using the convexity of ϕA and again the inclusion (z, z∗) ∈ A, we
have

ϕA(z0, z
∗
0) ≤ tϕA(y, y

∗) + (1− t)ϕA(z, z
∗)

= tϕA(y, y
∗) + (1− t)〈z, z∗〉. (3.11)

From equations (3.8) and (3.10) we conclude that (z0, z∗0) ∈ {π < 0}. In addi-
tion, combining equations (3.9) and (3.11) we obtain that ϕA(z0, z

∗
0) < 0, which,

combined with Proposition 3.6, item 2, ends the proof.

Remark 3.8. Notice that the last equality in (3.6) uses the fact that X∗ is endowed
with w∗ topology. This is the reason why in Theorem 3.5 and Corollary 3.15 the
space X × X∗ is endowed with the τ × w∗ and the strong×weak∗ topologies,
respectively.

The following lemma is central in our study. Imposing a condition on the Fitz-
patrick function of a monotone operator, we can obtain a rather strong structure
of such operator.

Lemma 3.9 ([15, Lemma 4.4]). Let A be monotone. If ed(ϕA) ⊂ {π ≥ 0}
then Aµ = ed(ϕA) and Aµ is maximal monotone and affine linear. Moreover,
ed(ϕAµ) = Aµ, so Aµ is non-enlargeable.

Proof. First, we prove that ed(ϕA) is monotone. Since ed(ϕA) is convex,(
x+ y

2
,
x∗ + y∗

2

)
∈ ed(ϕA), ∀ (x, x∗), (y, y∗) ∈ ed(ϕA).
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Hence

0 ≤ 4

〈
x+ y

2
,
x∗ + y∗

2

〉
= 〈x+ y, x∗ + y∗〉, ∀ (x, x∗), (y, y∗) ∈ ed(ϕA).

(3.12)
Fix (x, x∗) ∈ ed(ϕA), then, by (3.12),

〈y − (−x), y∗ − (−x∗)〉 = 〈x+ y, x∗ + y∗〉 ≥ 0, ∀ (y, y∗) ∈ A ⊂ ed(ϕA).

Thus, (−x,−x∗) ∈ Aµ ⊂ ed(ϕA) and, again by (3.12),

〈x− y, x∗ − y∗〉 = 〈(−x) + y, (−x∗) + y∗〉 ≥ 0, ∀ (y, y∗) ∈ ed(ϕA),

which implies that (x, x∗) ∈ ed(ϕA)
µ. Therefore,

ed(ϕA) ⊂ ed(ϕA)
µ,

proving that ed(ϕA) is monotone.
Since A is monotone, A ⊂ ed(ϕA). Therefore, ed(ϕA)

µ ⊂ Aµ ⊂ ed(ϕA),
which, combined with the above inclusion, shows that Aµ = ed(ϕA). Proposi-
tion 3.4, item 4, now implies that Aµ is maximal monotone. Furthermore, since
ed(ϕA) is convex and maximal monotone, it is affine linear by [34, Lemma 1.2].

Now we prove that Aµ is non-enlargeable. From A ⊂ Aµ, we have ϕA ≤
ϕAµ . This means that ed(ϕAµ) ⊂ ed(ϕA) = Aµ. The other inclusion follows
trivially from the monotonicity of Aµ. Hence Aµ = ed(ϕAµ) and Aµ is non-
enlargeable.

Lemma 3.10 ([15, Lemma 4.5]). Let A be monotone. If ϕA(0, 0) < 0 and (0, 0) ∈
Aµµ then Aµ = ed(ϕA) and Aµ is maximal monotone, affine linear and non-
enlargeable.

Proof. First use Proposition 3.6, item 1, to conclude that under these assumptions,
{π < 0} ∩ ed(ϕA) = ∅. But this is equivalent to ed(ϕA) ⊂ {π ≥ 0}, which is
precisely the condition needed by Lemma 3.9.

We now are in conditions to present the proof of our main result, Theorem 3.5.

Proof of Theorem 3.5. Suppose clR(A) 6= Aµµ, that is, Aµµ \ clR(A) 6= ∅. Since
clR(A) and Aµµ are preserved by translations, without loss of generality, we can
assume that (0, 0) ∈ Aµµ \ clR(A), that is,

(0, 0) ∈ Aµµ, (3.13)
(0, 0) /∈ clR(A). (3.14)
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By Proposition 3.6, item 3, equation (3.13) implies ϕA(0, 0) ≤ 0. On the other
hand, by Proposition 3.3, item 2, equation (3.13) is equivalent to SA(0, 0) > 0,
which combined with (3.14) and Lemma 3.7 allow us to conclude that

ϕA(0, 0) < 0.

This inequality, equation (3.13) and Lemma 3.10 now imply that Aµ = ed(ϕA)
and Aµ is maximal monotone, affine linear and non-enlargeable. Moreover, A is
pre-maximal monotone, Aµ is the unique maximal monotone extension of A and
Aµµ = Aµ = ed(ϕA).

Finally, if (x0, x
∗
0) ∈ Aµµ\clR(A), then (0, 0) ∈ (τ(x0,x∗

0)
(A))µµ\clR(τ(x0,x∗

0)
(A)).

Therefore ϕτ(x0,x∗0)
(A)(0, 0) < 0, which implies

ϕA(x0, x
∗
0) = sup

(x,x∗)∈A
〈x− x0, x

∗
0 − x∗〉+ 〈x0, x

∗
0〉 < 〈x0, x

∗
0〉.

Remark 3.11. Follows from the proof of Theorem 3.5 that

Aµµ \ clR(A) ⊂ {ϕA < π}.

The general setting in which we state Theorem 3.5 allow us to have many
important cases as a particular case. We begin giving a new proof of Theorem
31 in [37]. For this, we need first to state the following lemma, which is due
to Svaiter [49]. Recall that for a linear operator T : X ⇒ X∗, T ` = T+|X
(Remark 1.16, item 3) or, explicitly,

T ` = {(x, x∗) ∈ X ×X∗ | 〈x, y∗〉+ 〈y, x∗〉 = 0,∀ (y, y∗) ∈ T}.

Lemma 3.12 ([49, Lemma 2.1]). Let T : X ⇒ X∗ be a maximal monotone linear
operator. Then

1. T ` ⊂ {(x, x∗) | ϕT (x, x
∗) = 0}.

2. T ∩ T ` = T ∩ {(x, x∗) | 〈x, x∗〉 = 0}.

Theorem 3.13 ([15, Theorem 31]). Let X be finite dimensional and A ⊂ X×X∗

be monotone. Then clR(A) = Aµµ.

Proof. By Theorem 3.5, if clR(A) 6= Aµµ then Aµ is affine linear, maximal mono-
tone, non-enlargeable and there exists (x0, x

∗
0) such that ϕA(x0, x

∗
0) < 〈x0, x

∗
0〉.

Without loss of generality, since clR(A) and Aµµ are preserved by translations,
we can assume that (x0, x

∗
0) = (0, 0) ∈ Aµ. Thus, Aµ is linear and ϕA(0, 0) < 0.

Let T = Aµ. By Lemma 3.12, item 1,

T ` ⊂ {(x, x∗) | ϕT (x, x
∗) = 0} ⊂ ed(ϕT ) = T.
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We now prove the opposite inclusion. Since X is finite dimensional, dimT ` =
2n− dimT . Furthermore, since T is maximal monotone, dimT = n by Minty’s
Theorem. Hence dimT ` = 2n− n = n = dimT and

T ` = T.

But this implies T ⊂ {(x, x∗) | 〈x, x∗〉 = 0}, by Lemma 3.12, item 2; thus, since
ϕA(0, 0) < 0 and A ⊂ Aµ = T ⊂ {π = 0},

0 = 〈a, 0〉+ 〈0, a∗〉 − 〈a, a〉 ≤ ϕA(0, 0) < 0,

for any (a, a∗) ∈ A. This is clearly a contradiction.

For those monotone operators that do not admit an affine linear maximal
monotone extensions, the representable closure and the monotone polar closure
are identical.

Corollary 3.14 ([15, Corollary 2.3]). If A : X ⇒ X∗ is monotone, X × X∗ is
endowed with the τ × w∗ topology and the convex hull of A is not monotone then

clR(A) = Aµµ.

Proof. Suppose clR(A) 6= Aµµ. Then Aµ is affine linear and maximal monotone.
In particular Aµ is convex and so,

A ⊂ conv(A) ⊂ Aµ.

This contradicts the fact of conv(A) not being monotone.

In the particular case where X is a Banach space and τ is the norm-topology,
we have the following corollary.

Corollary 3.15 ([15, Corollary 2.4]). Let X be a real Banach space and let
A : X ⇒ X∗ be a monotone operator. Assume that X ×X∗ is endowed with the
strong×weak∗ topology. If clR(A) 6= Aµµ then Aµ is affine linear, maximal mono-
tone, non-enlargeable and there exists (x0, x

∗
0) such that ϕA(x0, x

∗
0) < 〈x0, x

∗
0〉.

In particular, A is pre-maximal monotone.

Remark 3.16. If X is a reflexive Banach space, then X×X∗ is also reflexive and,
for proper convex functions, lower semi-continuity in the strong, weak, weak∗ and
hence strong×weak∗ topologies are equivalent. Therefore, in this case, Corol-
lary 3.15 still holds if we replace the strong×weak∗ topology by the strong topo-
logy of X ×X∗.

34



On the other hand, when X is a non-reflexive Banach space, the strong topo-
logy of X × X∗ is finer than the strong×weak∗ topology. So, for a monotone
operator A : X ⇒ X∗,

A ⊂ cls×s−R(A) ⊂ clR(A) ⊂ Aµµ.

To finalize this section, we present two results on the structure of pre-maximal
monotone operators.

Lemma 3.17. Let A : X ⇒ X∗ be a monotone operator. Then 1 =⇒ 2 =⇒ 3.

1. A is pre-maximal monotone and ϕA(0, 0) < 0;

2. (0, 0) ∈ Aµµ and ϕA(0, 0) < 0;

3. ed(ϕA) ⊂ {π ≥ 0}.

Proof. Assume item 1 holds. Since ϕA(0, 0) < 0, by Proposition 3.4, item 5,
(0, 0) ∈ Aµ. This trivially implies item 2, since Aµ = Aµµ.

On the other hand, using Proposition 3.6, item 2, we see that (0, 0) ∈ Aµµ and
ϕA(0, 0) < 0 implies that ed(ϕA) ∩ {π < 0} is empty.

Proposition 3.18. Let A : X ⇒ X∗ be a pre-maximal monotone operator. Then,
either ϕA ≥ π, or Aµ = ed(ϕA), Aµ is affine linear and non-enlargeable.

Proof. Suppose that doesn’t hold the condition ϕA ≥ π. Without loss of general-
ity, we can assume that ϕA(0, 0) < 〈0, 0〉 = 0. This, together with the hypothesis
of pre-maximality of A implies, by Lemma 3.17, that ed(ϕA) ⊂ {π ≥ 0}. The
result now follows by Lemma 3.9.

Remark 3.19. In a non-reflexive Banach space X , a maximal monotone operator
T : X ⇒ X∗ has a unique extension to the bidual if, and only if, T̂−1 : X∗ ⇒ X∗∗

is pre-maximal monotone. Thus, by Proposition 3.18, if T : X ⇒ X∗ has a
unique extension to the bidual then, either ϕT̂ ≥ π, or T is affine linear and non-
enlargeable. This is precisely Theorem 1.3 in [34].

3.4 An example in Banach spaces

In this section we apply the above stated results to a particular operator defined in
the Banach space c0, and study the relationship between the representable closures
in the two different topologies, strong×strong and weak×weak∗.
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Let N : c0 ⇒ `1 be the operator defined in (2.17), that is,

gra(N) = {(G(x∗), x∗) |G(x∗) ∈ c0, x
∗ ∈ `1}

= {(G(x∗), x∗) | x∗ ∈ `1, 〈x∗, e〉 = 0}, (3.15)

which, by Lemma 2.21, is single valued, anti-symmetric, monotone but not maxi-
mal monotone, ran(N) = {x∗ ∈ `1 | 〈x∗, e〉 = 0} and

Nµ = {(G(x∗) + 〈x∗, e〉e, x∗) | x∗ ∈ `1}. (3.16)

By Proposition 2.9 and equation (2.7), Nµ is maximal monotone. Therefore, N is
pre-maximal monotone and Nµµ = Nµ.

On the other hand, equation (3.15) implies that N−1 = G|ran(N) and, since G
is continuous and ran(N) is closed in `1, gra(N) is (strongly-)closed in c0 × `1.
Therefore, the function δN + π : c0 × `1 −→ R ∪ {+∞} is proper, convex and
(strongly-)lower semi-continuous, and it represents N . Thus N is representable
in the strong topology of c0 × `1. In conclusion,

cls×s−R(N) = N ( Nµµ.

Now we deal with the weak×weak∗ topology. For every m ∈ N, define em =
(emi )i, as

emi =

{
1 i = m,

0 otherwise.

Clearly em ∈ `1 ⊂ c0 ⊂ `∞, for all m ∈ N. Is also clear, from (2.2) and (3.16),
that (e1, e1) ∈ Nµ.

Define, for ε > 0, the neighborhoods of e1 in the weak and weak∗ topologies
of c0 and `1, respectively,

V = {x ∈ c0 | |〈x− e1, ei〉| < ε, i = 1, 2, 3},
W = {x∗ ∈ `1 | |〈ei, x∗ − e1〉| < ε, i = 1, 2, 3},

so V ×W is a weak×weak∗ neighborhood of (e1, e1). Note that a generic element
of W has the form

x∗ = (1 + ε1, ε2, ε3, x
∗
4, x

∗
5 . . .),

where |εi| < ε, for i = 1, 2, 3.

We will prove that, for ε ∈ (0, 1), V ×W does not intersect N . Suppose, on
the contrary, that there exists (x, x∗) ∈ (V × W ) ∩ N . Therefore, x = G(x∗),
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x∗ ∈ W ∩ ran(N) and we can write x∗ = (1 + ε1, ε2, ε3, x
∗
4, x

∗
5, . . .), where

〈x∗, e〉 = 1 + ε1 + ε2 + ε3 +
∑
k≥4

x∗
k = 0.

Using the fact that x = G(x∗), and writing x = (x1, x2, x3, . . .), we obtain

x1 = −1− ε1,

x2 = −2− 2ε1 − ε2,

x3 = −2− 2ε1 − 2ε2 − ε3.

Since x ∈ V ,
|〈x− e1, e1〉| = |2 + ε1| < ε,

which implies
2− ε < 2− |ε1| ≤ |2 + ε1| < ε.

This is a contradiction to the fact that ε < 1. Therefore (V ×W ) ∩ N = ∅ and,
thus, Nµµ 6= N

w×w∗

. Using the same argument as in the strong case, δ
N

w×w∗ + π

is a proper, convex and weak×weak∗-lower semi-continuous function, so N
w×w∗

is weak×weak∗ representable. Therefore

N ⊂ clw×w∗−R(N) ⊂ N
w×w∗

( Nµµ.

This implies that the representable closure of N in any topology finer than
the weak×weak∗ topology is properly contained in its monotone polar closure, in
particular, the representable closure in the strong×weak∗ topology. In addition,
Theorem 3.5 implies that Nµ is non-enlargeable.
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(50).

[12] H. Brezis and J. Esteban. Análisis funcional: teorı́a y aplicaciones. Alianza
Universidad Textos Series. Alianza, 1984.

[13] H. Brezis and A. Haraux. Image d’une somme d’opérateurs monotones et
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[48] S. Simons and C. Zălinescu. Fenchel duality, Fitzpatrick functions and maxi-
mal monotonicity. J. Nonlinear Convex Anal., 6(1):1–22, 2005.

[49] B. F. Svaiter. Non-enlargeable operators and self-cancelling operators. J.
Convex Anal., 17(1):309–320, 2010.

[50] E. Zarantonello. Solving functional equations by contractive averaging, vol-
ume 160 of MRC technical summary report. Mathematics Research Center,
United States Army, Univ. of Wisconsin, 1960.

42
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