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Abstract

We study the measure-theoretical properties of center foliations

of volume preserving partially hyperbolic diffeomorphisms with one-

dimensional center direction. Recent work of Avila, Viana, Wilkinson

[2] dealt with situations where the center leaves are compact or can

be compactified in a suitable way. Using different techniques we focus

on the non-compact case and obtain very different conclusions.

For one thing, in our context the disintegration of volume may be

neither atomic nor Lebesgue. Such examples are found even among

Anosov diffeomorphisms. An important tool in this setting is to prove

that the disintegration is atomic if and only if the center leaves form

a Rokhlin measurable partition. Moreover, even an Anosov may have

absolutely continuous center foliation without being C1-conjugate to

its linearization.
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1 Introduction

We study the measure-theoretical properties of the center foliation of par-

tially hyperbolic diffeomorphisms for which the center leaves are non-compact.

Two main issues are:

• absolute continuity: when is the center foliation absolutely continuous?

What can be said otherwise?

• rigidity: does absolute continuity imply greater regularity?

These issues are fairly well understood in situations when the center leaves are

”essentially compact” (it includes perturbations of certain skew-products or

of time-one maps of Anosov flows), by recent work of Avila, Viana, Wilkinson

[2]:

• Atomic disintegration: If the center foliation is non-absolutely contin-

uous, then there exists k ∈ N and a full volume subset that intersects

each center leaf on exactly k points/orbits.

• Rigidity : If the center foliation is absolutely continuous then the diffeo-

morphism is smoothly conjugate to a rigid model (a rotation extension

of an Anosov diffeomorphism or the time-one map of an Anosov flow);

We deal with a different class of partially hyperbolic diffeomorphisms,

whose center leaves are non-compact: DA (derived from Anosov) diffeo-

morphisms, that is, that lie in the isotopy class of some hyperbolic linear

automorphism (we refer to these automorphisms as the linearization of the

DA diffeomorphisms). The examples exhibited in the results that follow are,

actually, Anosov maps, with the weak (stable or unstable) foliation as the

center foliation. We also mention that all diffeomorphisms treated on this
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work are assumed to be at least C1+α. This means that volume preserving

Anosov on T3 are all ergodic.

For non-absolutely continuous foliations, our conclusion is different from

[2]. Indeed, we show that it is possible to have a disintegration which is

non-Lebesgue and non-atomic. This is the first example of this kind:

Theorem A. There exist volume preserving Anosov diffeomorphisms on T3

for which the center foliation is non-absolutely continuous and the disinte-

gration of volume on center leaves are not atomic.

In fact, such diffeomorphisms fill a dense subset of an infinite-dimensional

manifold in the neighborhood of any hyperbolic linear automorphisms in the

space of volume preserving maps.

The next result shows, in contrast with the compact setting of [2], that

absolute continuity has no rigidity implications in our case:

Theorem B. There exist volume preserving Anosov diffeomorphisms f on

T3 for which the center foliation is absolutely continuous but f is not C1-

conjugate to its linearization.

In fact, such diffeomorphisms fill a dense subset of an infinite-dimensional

manifold in the neighborhood of any hyperbolic linear automorphism in the

space of volume preserving maps.

The proofs of these results are given in Sections 3 and 4. In the remain-

ing of this Introduction we outline the structure of the arguments and also

present a number of related results. Section 2 contains some background

material.

As already mentioned, the partially hyperbolic diffeomorphisms treated

by Avila, Viana, Wilkinson [2] have atomic disintegration when the center
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foliation is non-absolutely continuous. For partially hyperbolic diffeomor-

phisms with non-compact center leaves there was no information on the na-

ture of these conditional measures when the center foliation is non-absolutely

continuous. Some understanding of the behavior of these conditional mea-

sures is presented on the following theorems, proved on section 3.

Theorem C. Let f be a volume preserving Anosov diffeomorphism on T3,

such that the center foliation is non-absolutely continuous. Then

i) the conditional measures are singular measures with respect to the vol-

ume on the center leaf;

ii) if the decomposition is atomic, then there is exactly one atom per leaf.

That is, there exists a set of full volume that intersects each center leaf

in one point.

We say that a partition P is measurable with respect to volume if there

exist a Borelian family {Ai}i∈N and a set of zero volume F such that for all

P ∈ P , P ∩ F =
⋂
i∈NBi ∩ F , where Bi ∈ {Ai, Aci}.

It turns out that measurability of a foliation is the right condition for

atomicity of the conditional measures.

Theorem D. Let f be a volume preserving Anosov diffeomorphism on T3.

The disintegration of volume is atomic if and only if the partition by center

leaves is a measurable partition.

Hence, to prove Theorem A we just need to construct an Anosov diffeo-

morphism with non-absolutely continuous foliation for which the partition

by center leaves is not a measurable partition.

We begin section 4 studying the implications of the C1-conjugacy.
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Let h be a diffeomorphism commuting with two Anosov diffeomorphisms

g and f , that is f◦h = h◦g, iterating we get fn◦h = h◦gn. Differentiating the

former expression on a periodic point p, gn(p) = p, we getDfn(h(p))Dh(p) =

Dh(gn(p)) ◦Dgn(p). Hence

Dgn(p) = (Dh(p))−1Dfn(h(p))Dh(p).

The similarity between the matrices Dgn(p) and Dfn(h(p)) on their re-

spective periodic points is a necessary condition for C1 conjugation. It turns

out that on T3 this is also a sufficient condition by Gogolev, Guysinsky [9].

We improve their result, as follows:

Theorem E. Let f be a volume preserving Anosov diffeomorphism on T3.

Then, for all p, q ∈ Per(f), λ∗(p) = λ∗(q), ∗ ∈ {s, c, u} if and only if f is

C1 conjugate to its linearization.

The strategy to prove Theorem B is to begin with a linear Anosov, keep

one of the exponents (which will give us the absolute continuity by the work

of Gogolev [8]) and change another exponent (to break the C1-conjugacy, by

Theorem E).

Although we have shown that absolute continuity of the center foliation

does not imply a rigid condition, we obtain a rigidity theorem imposing

stronger conditions on the center foliation:

Theorem F. Let f be a volume preserving DA diffeomorphism on T3, with

the linearization A of the form Es ⊕ Ewu ⊕ Euu. If the center foliation is a

C1 foliation and the center holonomies inside the leaves Fwu+uu
f and F s+wu

f

is uniformly bounded, then f is C1 conjugate to its linearization and, hence,

is an Anosov diffeomorphism.

Assuming that the center foliation is C1 and the bounded condition on

the center holonomies, we construct conditional measures, {mx}x∈T3 , on the
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center foliation with some dynamical meaning. That is, the push forward

of a conditional measure satisfies f∗mx = λ−1mf(x), where λ is the central

exponent of the linearization. By iteration

dfn∗mx

dmfn(x)

= λ−n.

Since λcf (x) = lim
n→∞

dfn∗mx

dmfn(x)

, the above relation implies that the central Lya-

punov exponent equals λ. As the center foliation is C1, these conditional

measures are defined everywhere. Consequently, the center exponent is de-

fined everywhere and equals λ. Therefore, f is an Anosov diffeomorphism.

We apply Theorem E to get the C1 conjugation, thus proving Theorem F.
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2 Prerequisites

The reader may consult this section when needed, we mainly state the results

that shall be used throughout this work. We make an exception to the

subsection on absolute continuity. Since this is a key concept we give a few

more words concerning this topic on subsection 2.6.

2.1 Measure theory

For some basic definitions of measure theory the reader may check Rudin’s

book [16].

Definition 2.1. Let X be a metric space and µ a Borel probability measure.

Then µ is a regular measure if for any measurable set B and ε > 0 given,

there are compact set Kε ⊂ B and open set Uε ⊃ B such that µ(B−Kε) < ε

and µ(Uε −B) < ε.

Proposition 2.1. A Borel probability measure µ on a metric space X is

regular.

Theorem 2.2 (Lusins’ theorem). Let (X,B, µ) be a Borel probability space

and f : X → R a measurable function. Then given ε > 0, there exists a set

Aε ⊂ X such that µ(A) ≥ 1− ε and f restricted to the set A is a continuous

function.

2.2 Decomposition of measure

Let (M,µ,B) be a probability space, where M is a compact metric space,

µ a probability and B the borelian σ-algebra. Given a partition P of M by

measurable sets, we associate the measurable set

(P , µ̃, B̃)
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by the following way. Let π :M → P be the canonical projection associate to

a point ofM the partition element that contains it. Then we define µ̃ := π∗µ

and B̃ := π∗B.

Definition 2.3. Given a partition P . A family {µP}p∈P is a system of

conditional measures for µ (with respect to P) if

i) given φ ∈ C0(M), then P 7→
∫
φµP is measurable;

ii) µP (P ) = 1 µ̂-a.e.;

iii) if φ ∈ C0(M), then

∫
M

φdµ =

∫
P
(

∫
P

φdµP )dµ̃.

Observe that the conditions i) and iii) also hold for bounded φ by the

Dominated Convergence theorem. When it is clear which partition we are

referring to, we say that the family {µP} disintegrates the measure µ.

Proposition 2.2. If {µP} and {νP} are conditional measures that disinte-

grate µ, then µP = νP µ̃-a.e.

Corollary 2.1. If T : M → M preserves a probability µ and the partition

P, then T∗µP = µP µ̃-a.e.

Proof. It follows from the fact that {T∗µP}P∈P is also a disintegration of

µ.

Definition 2.4. (Measurable partition) We say that a partition P is mea-

surable if there exists a borelian family {Ai}i∈N such that

P = {A1, A
c
1} ∨ {A2, A

c
2} ∨ . . .mod 0.

Theorem 2.5 (Rokhlin’ disintegration [18]). Let P be a measurable partition

of a compact metric space M and µ a borelian probability. Then there exists

a disintegration by conditional measures for µ.
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2.3 Anosov diffeomorphism

We collect a series of results concerning Anosov diffeomorphism, we restrict

to the results needed on forthcoming sections.

Consider f :M →M a diffeomorphism on a Riemannian manifold M .

A closed set Λ ⊂ M invariant by f is called a hyperbolic set if there

exist C > 0, λ ∈ (0, 1) and for every x ∈ Λ there are Es(x), Eu(x) ⊂ TxM

such that

1. TxM = Es(x)⊕ Eu(x);

2. ||dfnx vs|| ≤ Cλn||vs||, ∀vs ∈ Es(x) e n ≥ 0;

3. ||df−n
x vu|| ≤ Cλn||vu||, ∀vu ∈ Eu(x) e n ≥ 0;

4. dfxE
s(x) = Es(f(x)) e dfxE

u(x) = Eu(f(x)).

We say that a set Λ, as above, is an isolated hyperbolic set if there

exists a neighborhood U of Λ such that

Λ =
⋂
n∈Z

fn(U).

We call f an Anosov diffeomorphism if Λ =M , in particular M is an

isolated hyperbolic set.

We say that a sequence {xi} onM is a δ-pseudo orbit for f if d(f(xi), xi+1)

≤ δ. A point y ∈M ε-shadows a sequence {xi} if d(f i(y), xi) ≤ ε. Although

we’ll be using the next result for Anosov system we state it on its classical

version.

Theorem 2.6 (Shadowing lemma). Let Λ ⊂ M be a hyperbolic set for f .

Then, given ε > 0 there exist η, δ > 0 such that if {xi}j2i=j1 is a δ-pseudo orbit

for f with d(xi,Λ) < η, then there exists y ∈M with d(y,Λ) < η such that y

ε-shadows {xi}. Furthermore,
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• if j1 = −∞ and j2 = ∞, then y is unique;

• if {xi}j2i=j1 is periodic then y is a periodic point;

• if Λ is isolated, then y ∈ Λ.

The above theorem proves the structural stability of Anosov systems,

that is if f is an Anosov system and g is close enough to f , then there is a

homeomorphism h :M →M such that h ◦ f = g ◦ h.

Since we can describe the stable (and unstable) manifold topologically,

that is

W s
f (x) = {y ∈M | d(fn(x), fn(y)) → 0, n→ ∞},

then the conjugacy h, which is a homeomorphism, satisfies

h(W s
f (x)) = W s

g (h(x)).

Since h is a homeomorphism it might not be able to distinguish velocities

inside the unstable foliation. That is, suppose f is an Anosov diffeomorphism

with splitting Es ⊕ Ec ⊕ Euu and these distributions integrate to foliations,

as well for every diffeomorphism g on a neighborhood of f . Although we

know that h(Wu
f ) = Wu

g (Wu is tangent to Ewu ⊕Eu), we cannot guarantee

that h(Wc
f ) = Wc

g (Wc is tangent to Ec). At least in some cases we are able

to guarantee that center foliation goes to center foliation.

Proposition 2.3 (Gogolev, Guysinsky [9]). Consider a linear Anosov dif-

feomorphism A on T3 and U a small neighborhood of A. If f ∈ U , then the

conjugacy h satisfies

h(W c
f ) = W c

A.

The shadowing lemma implies the existence of a homeomorphism that

conjugates any two closed Anosov diffeomorphisms. In fact, it can be proved
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that the conjugation h is Hölder. It can’t always be C1, since there is a re-

stricted relation with the periodic points (see below) of both diffeomorphism.

But on T3 we have the following equivalence.

Theorem 2.7 ([9]). Let f and g be two Anosov diffeomorphism and h a

conjugacy between them, h ◦ f = g ◦ h.

For all x ∈ T3 such that fp(x) = x, Dfp(x) and Dgp(h(x)) are conjugated

matrices if and only if h is a C1 diffeomorphism.

We call this relation on the periodic points periodic data. Recall that

two matrices A and B are conjugated if there is an invertible matrix C such

that A = C−1BC.

2.3.1 Equilibrium state for Anosov system

We give the classical results concerning equilibrium states for Anosov diffeo-

morphism. For the results the reader may check Bowen’s book [7]. For the

definition of metric entropy and topological entropy we refer the reader to

the book of Walter [20].

Definition 2.8. Given a Hölder function ψ :M → R (we shall call it as the

potential ψ) we then define the pressure of f with respect to ψ as

P (f, ψ) = sup
µ∈M(f)

{hµ(f) +
∫
φdµ},

where M(f) is the set of invariant probabilities for f and hµ(f) is the metric

entropy for f with respect to µ.

Observe that the pressure of the zero potential gives the topological en-

tropy of the system: P (f, 0) = h(f).
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We say that an invariant measure µ for f is an equilibrium state for the

potential φ if it satisfies the following equality

hµ(f) +

∫
φdµ = Pf (φ).

From now on we consider f :M →M a C2 transitive Anosov diffeomor-

phism on a compact manifold M of any dimension.

Theorem 2.9. If φ :M → R is a Hölder continuous function, then φ has a

unique equilibrium state, µφ.

The next theorem relates the equilibrium state for different potentials.

Theorem 2.10. Let φ, ψ :M → R be two Hölder continuous functions. The

following are equivalent

• µφ = µψ;

• there exists a constant K such that for all periodic points x ∈ M we

have the equality 1
m

∑m
i=1 φ ◦ fn(x)− 1

m

∑m
i=1 ψ ◦ fn(x) = K.

Theorem 2.11. If f leaves invariant a probability measure µ absolutely con-

tinuous with respect to volume, then µ is the equilibrium state for the potential

φ(x) = −logφu(x), where φu is the Jacobian of Df : Eu → Eu.

Later on we shall consider volume preserving Anosov systems. By volume

we mean a smooth measure, that is, let M be a Riemannian manifold and

consider ω the volume induced by the metric. A smooth measure will be a

measure of the form ρω where the density ρ :M → R+ is a positive smooth

function. The next theorem provides a condition for a smooth measure to

be invariant by a transitive C2 Anosov diffeomorphism.

Theorem 2.12. Let f be a C2 Anosov diffeomorphism, the following are

equivalent:
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i) f admits an invariant measure µ absolute continuous to volume (in-

duced by a Riemannian metric);

ii) DfnTMx → TMx has determinant 1, for fn(x) = x.

This is particularly important for us, because when considering transitive

conservative Anosov diffeomorphism with a splitting TM = Es⊕Ec⊕Eu, the

above theorem gives us property ii), which implies that λs(p)+λc(p)+λu(p) =

0, where λ∗ is the Lyapunov exponent. It means that determining two of them

give us the other one.

2.4 Partially hyperbolic diffeomorphisms

We begin with the definition of partially hyperbolic diffeomorphisms, followed

by some classical facts.

Definition 2.13. A diffeomorphism f of a compact Riemannian manifold

M is called partially hyperbolic if there are constants λ < γ̂ < 1 < γ < µ

and C > 1 and a Df -invariant splitting of TM = Eu(x) ⊕ Ec(x) ⊕ Es(x)

where

1

C
µn||v|| < ||Dfnv||, v ∈ Es

x − {0};
1

C
γ̂n||v|| < ||Dfnv|| < Cγn||v||, v ∈ Ec

x − {0};

||Dfnv|| < Cλn||v||, v ∈ Eu
x − {0}.

Theorem 2.14. The stable and unstable subbundles Es and Eu integrate

uniquely into foliations F s and Fu which are transversely absolutely contin-

uous.

The reader may check [11, 12] for the proof of the above theorem. We

say that a partially hyperbolic diffeomorphism is dynamically coherent if
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the subbundles Es⊕Ec and Ec⊕Eu integrate into invariant foliations. This

implies in particular that there is a center foliation F c, which is obtained by

an intersection of the other two: F c
x = F sc ∩ F cu.

It was proved by Brin, Buragov, Ivanov [5] that

Theorem 2.15. Every partially hyperbolic diffeomorphism on T3 is dynam-

ically coherent.

We don’t want to get into the discussion of the different types of defini-

tions of partially hyperbolic, but we observe that we are working with the

one known as absolute partially hyperbolic. Another notion is the relative

partially hyperbolic. The difference is that in the absolute case we have uni-

formity on the comparison of contraction and expansions of the subbundles.

These two notions are quite similar, on both we have stable and unstable

foliations, transversely absolutely continuous. But to point out a difference,

in the relative case it was constructed a non-dynamically coherent diffeomor-

phism [14].

We state Proposition 0.3 from [3], that shall be used later on for the

proofs of theorems A and B.

Theorem 2.16. Let f be a linear conservative Anosov on T3, seen as par-

tially hyperbolic, and h be a Cr diffeomorphism volume preserving which pre-

serves the direction relative to Es or Eu. We assume h is C1 close enough

to the identity in order to have f ◦ h partially hyperbolic. Then∫
T3

logJ cf◦h(x)dV ol(x) 6=
∫
T3

logJ cf (x)dV ol(x).

2.5 Geometric property

By a Derived from Anosov (DA) diffeomorphism f : T3 → T3 we mean a

partially hyperbolic homotopic to a linear Anosov diffeomorphism A. We
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call this linear Anosov as the linearization of f . In fact, f is semi-conjugated

to its linearization. The semi-conjugacy has good properties. The proof of

the next result can be found on Sambarino [17].

Theorem 2.17. Let B : R3 → R3 be a linear hyperbolic isomorphism. Then,

there exists C > 0 such that if G : R3 → R3 is a homeomorphism such that

sup{||G(x) − Bx|| | x ∈ R3} = K < ∞ then there exists H : R3 → R3

continuous and surjective such that:

• B ◦H = H ◦G;

• ||H(x)− x|| ≤ CK for all x ∈ R3;

• H(x) is characterized as the unique point y such that

||Bn(y)−Gm(x)|| ≤ CK, ∀n ∈ Z;

• H(x) = H(y) if and only if ||Gn(x)−G(y)|| ≤ 2CK∀n ∈ Z and if and

only if supn∈Z{||Gn(x)−Gn(y)||} <∞;

• if B ∈ SL(3,Z) and G is the lift of g : T3 → T3 then H induces h :

T3 → T3 continuous and onto such that B◦h = h◦g and distC0(h, id) ≤

CdistC0(B, g).

The geometrical property we shall need later is given by Hammerlindl

[10]:

Proposition 2.4. Let f be a partially hyperbolic and A be its linearization.

Denote by f̃ and Ã the lift to Rn of f and A respectively. Then for each

k ∈ Z and C > 1 there is M > 0 and a linear map π : Rn → Rn such that

for all x, y ∈ Rn

||x− y|| > M ⇒ 1

C
<

||π(f̃k(x)− f̃k(y))||
||π(Ãk(x)− Ãk(y))||

< C.
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2.6 Absolute continuity

We show two notions of absolute continuity, namely leafwise and transverse

absolute continuity. The tranverse one has appeared in the proof of ergodicity

of certain Anosov systems via Hopf’s argument. It has been noted that

leafwise absolute continuity is as well appropriate. We are going to use

the weaker one, leafwise absolute continuity, when referring to just absolute

continuity.

Definition 2.18. A foliation F is called

• lower leafwise absolutely continuous if volL << mL;

• upper leafwise absolutely continuous if mL << volL;

where L is a leaf of the foliated box, mL the conditional measure of the

volume measure m and volL the Riemannian volume restricted to the leaf L.

Proposition 2.5. A foliation F is

• lower leafwise absolutely continuous if for every set Y such that m(Y ) =

0, then for almost every z ∈ M the leaf L through z meets Y in a set

of zero Lebesgue measure;

• upper leafwise absolutely continuous if given a measurable set Y such

that volL(Y ) = 0 for every leaf L through a full measure subset of points

z ∈M implies m(Y ) = 0.

Therefore a foliation is called leafwise absolutely continuous if it is

upper and lower leafwise absolutely continuous. Which, of course, is equiva-

lent to have the conditional measures equivalent to the volume on the leaf.
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Definition 2.19. A foliation F is transversely absolutely continuous if given

two differentiable transversal sections Σ1 and Σ2 to the foliation, the holon-

omy map h : Σ1 → Σ2 is absolutely continuous.

Theorem 2.20. The stable and unstable foliations for a partially hyperbolic

are transversely absolutely continuous with bounded Jacobians.

Theorem 2.21. Transverse absolute continuity implies leafwise absolutely

continuity.

Proof (Brin, Stuck [6]): Let F be the transverse absolutely continuous fo-

liation. Let T be a transversal to the foliation. Let us look on a foliated

box such that the foliations are horizontal and the transversal is vertical,

T = h(x0, I). Let T be a smooth foliation having T = T (x0) as a leaf. Since

T is smooth we can integrate the volume as

m(A) =

∫
F(x0)

∫
T (x)

χA(x, y)Γ(T (x), y) dmT (x)(y) dmF(x0)(x)

where Γ(T (x), y) are the densities for the conditional measure on T , since

the foliation is smooth these are continuous densities. Let hx : T (x0) → T (x)

be the holonomy through the foliation F . Then

∫
T (x)

χA(x, y)Γ(T (x), y) dmT (x)(y) =

=

∫
T (x0)

χA ◦ hx(x, ξ)Jac hx(ξ)Γ ◦ hx(T (x), ξ) dmT (x0)(ξ).

We substitute this equality in the former equality and change, by Fubini,

the order of the integral. Recalling that we can do this since T is smooth.

Since T (x0) = T , m(A) =

=

∫
T

∫
F(x0)

χA ◦ hx(x, ξ)Jac hx(ξ)Γ ◦ hx(T (x), ξ) dmF(x0)(x)dmT (x0)(ξ)
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we calculate
∫
F(x0)

χA ◦hx(x, ξ)Jac hx(ξ)Γ ◦hx(T (x), ξ) dmF(x0)(x) in terms

of F(ξ) by repeating the process analogously. That is, we now have to look

for the holonomy from F(ξ) → F(x0).

Proposition 2.6. If F is a leafwise absolutely continuous foliation, then for

every transversely absolute continuous foliation T which is also a transversal

local foliation to F , the local F-holonomy map hF between m-almost every

pair of T -leaves is transverse absolutely continuous.

Proof (Pugh, Viana, Wilkinson [13]): Fix a leaf F0 of F , identify this leaf

with Rn. Consider the group G = Rn acting on F0 by translations. Let T be

as in the hypothesis, then each element of G gives rise to a homeomorphism

hg in the ambient space U (of the foliation box) by F -holonomies such that

the restriction of hg to Tx is the F -holonomy to Tgx.

Since F is leafwise absolutely continuous

m(A) =

∫
T0

∫
Fy

1A(x, y)ρ(x, y) dmFy(x)dm̂(y),

then

m(hg(A)) =

∫
T0

∫
Fy

1A ◦ h−1
g (x, y)ρ(x, y) dmFy(x)dm̂(y)

=

∫
T0

∫
Fy

1A(x, y)ρ ◦ h−1
g (x, y) d(h−1

g )∗mFy(x)dm̂(y).

Since (h−1
g )∗mFy = mFy , using the formulas above, if m(A) = 0 then

m(hg(A)) = 0. That is, hg is absolutely continuous.

Lemma 2.1. For every g ∈ G there exists a set Xg ⊂ F0 of full measure,

such that for all x ∈ Xg the restriction of hg to Tx is absolutely continuous.

Proof. By contradiction, there exists a mF0-measure set B ⊂ F0 such that

for all x ∈ B there is a set Z ⊂ U such that m(Z) = 0 and m(hg(Z)) 6= 0.
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But we observed before that hg is absolutely continuous, therefore m(hg(Z))

should be zero. A contradiction.

Let us finish the proof of the proposition.

In the space F0 × F0 we have a foliation W which leaf through a point

(x0, g(x0)) is an affine space given by

Wg = {(x, g(x)) | x ∈ F0}.

By the above lemma, each leaf of W has a full measure set such that any

(x, x′) in this set has the property that the F -holonomy between Tx and Tx′

is absolutely continuous. Fubini implies that the union of these sets have full

measure. That is, m ×m-a.e. (x, y) the F -holonomy between Tx and Ty is

absolutely continuous.

Example 2.22. Leafwise absolute continuity, but not transverse ab-

solutely continuous. We present the Example 6.1 from Viana, Yang [19],

which is based on an example of Kan (see [4], Chapter 11). For more details

check the references therein.

Consider a map f0 : S
1×[0, 1] → S1×[0, 1], f0(x, t) = (2x, g(t)) preserving

the boundaries (i.e. g(0) = 0 and g(1) = 1), g(t) < t for t ∈ (0, 1), and

0 < g′(t) < 2 for t ∈ [0, 1]. Therefore f0 is a partially hyperbolic with the

vertical leaves as center foliations. We perturb f0 in such a way that

∂f

∂x
(0, 0) 6= ∂f

∂x
(0, 1).

This perturbed map f still has a center foliation by [11]. The property

above implies that the conjugacy (which is given by the holonomy of the

center foliations through the boundaries) of the boundaries is not absolutely

continuous. Therefore this center foliation is not absolutely continuous. On
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the other hand g is taken in such a way that the lower boundary is an at-

tractor and the perturbation f still has S1 × [0, 1) as its basin of attraction.

By Pesin’s theory it implies that on S1 × [0, 1) the center foliations is trans-

verse absolutely continuous. Which implies the center foliation to be leafwise

absolutely continuous by Proposition 2.6.

Finally we state a result due to Gogolev [8] which shall be our starting

point to understand absolute continuity for partially hyperbolic diffeomor-

phism with non-compact center leaves.

Theorem 2.23. Let f : T3 → T3 be an Anosov diffeomorphism with splitting

of the form Es ⊕ Ewu ⊕ Euu, then F c
f is absolutely continuous if and only

λuu(p) = λuu(q) for all periodic points p and q.
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3 Non-Absolute Continuity of F c

On this section we are interested on the behavior of the center foliation, for

when it is non-absolutely continuous. We begin by proving Theorem C.

Proof of Theorem C. By ergodicity we know that the Birkhoff set

B = {x ∈ T3 | 1/n
n−1∑
i=0

δf i(x) → V ol as n→ ∞}

has full measure.

Lemma 3.1. If there is a center leaf such that F c ∩B has positive Lebesgue

measure, then the center foliation is absolutely continuous.

Proof. Let D be any disc on the central foliation and consider the following

construction

µn =
1

n

n−1∑
j=0

f j∗ (
mD

mD(D)
),

where mD means the Lebesgue measure on the central leaf. It turns out that

these measures converge to a measure µ such that the disintegration of µ

on the center leaves are absolutely continuous with respect to the Lebesgue

measure. This is a well known construction of such measures, studied by

Pesin, Sinai in the eighties. For more references see [4] Chapter 11 and the

references therein. Although Pesin, Sinai studied these measures for the case

of the disc D in the unstable foliation, for the center foliation, in our case,

this construction is the same. Gogolev, Guysinsky [9] have worked explicitly

on this case and the reader may check at [9] the construction.

We consider a slightly different construction, we consider instead of the

discD, as above, we consider the discD∩B for which it has positive Lebesgue

measure on the center leaf, by hypothesis there exists such a disc. It turns

out that these measures still converge to a measure with conditional measures
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absolutely continuous to the Lebesgue measure on the center leaf (Lemma

11.12 [4]). Since the points on B have the property 1/n
∑n−1

i=0 δf i(x) → V ol,

it turns out that the sequence µn converges to volume. Hence, volume has

Lebesgue disintegration on the center leaves.

By the above lemma, since we are in the case where the center foliation is

non-absolutely continuous, we must have that the center foliation intersects

B on a set of zero Lebesgue measure. But the conditional measures give full

measure to B, since B has full measure. Therefore the conditional measures

are singular with respect to the Lebesgue measure. And item i) is proved.

For item ii), suppose that the disintegration of volume on center leaves is

atomic. Since f is Anosov, consider {R1, . . . , Rk} a Markov partition of T3.

Let us suppose that F c is expanding, the analogous argument works for the

contracting case. Note that since center leaf goes to center leaf, a Markov

property implies that f(F c
R(x)(x)) ⊃ F c

R(f(x))(f(x)).

The following lemmas conclude the proof of item ii).

Lemma 3.2. All the atoms have the same weight when considering the dis-

integration of volume on the center leaves of Ri.

Proof. On each Markov rectangle we may apply Rokhlin’s disintegration the-

orem on center leaves. Therefore, when writing mx we mean the conditional

measure for the disintegration on Markov rectangle that contains x. Consider

the set Aδ = {x ∈ A | mx(x) ≤ δ}. Since f(F c
R(x)(x)) ⊃ F c

R(f(x))(f(x)), we

have that f∗mx(I) ≤ mf(x)(I) where I is inside the connected component of

F c
f(x) ∩R(f(x)) that contains fn(x). If f(x) ∈ Aδ, then

mx(x) = f∗mx(f(x)) ≤ mx(f(x)) ≤ δ.

Hence, f−1(Aδ) ⊂ Aδ.
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By ergodicity, since our Anosov is volume preserving on T3, Aδ has full

measure or zero measure. Let δ0 be the discontinuity point of the function

δ ∈ [0, 1] 7→ V ol(Aδ). This implies that almost every atom has weight δ0.

Lemma 3.3. On every Markov partition Ri the conditional measures have

the same number of atoms, with the same weight.

Proof. This is a direct consequence from the above lemma. Since all the

atoms have the same weight δ0 the conditional measures must have 1/δ0

number of atoms.

Lemma 3.4. There is a set of full volume B1, of atoms, such that if x ∈ B1,

then B1 ∩ F c
x is contained in the connected component of Ri(x) ∩ F c

x that

contains x.

Proof. Let A be the set of atoms and T be the set of transitive points. Both

sets have full volume measure by ergodicity. Suppose, by contradiction, that

there is a subset A1 ⊂ A of positive volume measure such that ∀x ∈ A1 we

get A ∩ Rc
i(x) 6= ∅, where Rc

i(x) is the complement of the Markov partition

that contains x, note that V ol(A1 ∩ T ) > 0. Define the following map

h : A1 ∩ T → R

x 7→ h(x) = dFc
x
(Ri(x), R

′
i(x)),

where dFc
x
(Ri(x), R

′
i(x)) means the distance inside the center leaf of the Markov

rectangle Ri(x) to the closest Markov rectangle that has an atom which we

call R′
i(x).

Since h is a measurable map, there exists K1 ⊂ A1∩T , with V ol(K1) > 0

for which h is a continuous map when restricted to K1. And since volume is
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a regular measure, there is compact set K2 ⊂ K1, also with positive volume

measure.

Let α =Maxx∈K2h(x). Fix z0 ∈ Ri(z0), and consider a ball small enough

such that B(z0, r) ⊂ intRi(z0). Hence, ∀y ∈ K2, let ny ∈ N be an integer

big enough so that, since f is uniformly expanding in the center direction,

f−ny(F c(y, α)) ⊂ B(z0, r) ⊂ intRi(z0).

It means that we have at least doubled the number of atoms inside Ri(z0),

which is an absurd since we have already shown that the number of atoms

are constant on each Markov partition.

Lemma 3.5. There is a set of full volume B2 ⊂ B1 such that the center

foliation intersects B2 at most on one point.

Proof. By contradiction suppose that the number of atoms on all Markov

partition are greater than one. Let A2 be a set with full volume measure

inside the union of the Markov rectangle such that if x ∈ A2, then A2∩F c
x,loc

has the same number of points, in this case greater than one. Where F c
x,loc is

the connected set of the center foliation restricted to the Markov rectangle

that intersects x. We define the map

h : A2 → R

x 7→ h(x)

where h(x) is the smallest distance between the atoms of F c
x,loc. By Lusin’s

theorem there is a set K1 ⊂ A2 of positive measure for which h is continuous.

Since volume is regular, there is a compact subset K2 of K1 with positive

measure. Let α = min
x∈K2

h(x).

Let β > 0 be an inferior bound for the length of F c
loc. Let n0 ∈ N big

enough so that any segment of a center leaf with length greater than or

29



equal to α has the length of its n0th iterate greater than β. This means that

fn0(K2), which has positive measure, have all the atoms separated from each

other with respect to the Markov partition. Since we have a finite number of

Markov partition, one of them must have a set with positive measure such

that its leaves have only one atom. Hence all Markov partition must have

one atom, absurd.

Still on the same context, of volume preserving Anosov on T3, we have:

Theorem 3.1. The disintegration of volume is atomic if and only if the

partition by center leaves is a measurable partition.

Proof. Suppose {F c
x}x∈M is a measurable partition, then we can apply Rokhlin’s

theorem and we decompose volume on probabilities mx on center leaves. Let

AL = {x ∈M | mx(F c
L(x)) ≥ 0.6},

where F c
L(x) is the segment of F c(x) of length L on the induced metric and

centered at x.

Note that there is L ∈ R such that vol(AL) > 0. Let us suppose that f

contracts the center leaf, then f−1(F c
L(f(x))) ⊃ F c

L(x). Since f∗mx = mf(x),

for x ∈ AL,

mf(x)(F c
L(f(x))) = mx(f

−1(F c
L(f(x)))) ≥ mx(F c

L(x)) ≥ 0.6.

So f(x) ∈ AL, by ergodicity f(AL) ⊂ AL implies V ol(AL) = 1.

Claim: diamcAL ∩ F c
x ≤ 2L, where diamc means the diameter of the set

inside the center leaf.

Suppose there exist y1, y2 ∈ AL ∩ F c
x with dc(y1, y2) > 2L. Then

F c
L(y1) ∩ F c

L(y2) = ∅ and mx(F c
L(yi)) ≥ 0.6, i = 1, 2.
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Then

1 ≥ mx(F c
L(y1) ∪ F c

L(y2)) = mx(F c
L(y1)) +mx(F c

L(y2)) ≥ 0.6 + 0.6 = 1.2.

This absurd concludes the proof of the claim.

Claim: The decomposition has atom.

Define

L0 = inf{L ∈ [0,∞) | V ol(AL) = 1}.

Note that V ol(AL0) = 1, to see that take a sequence Ln → L0 and observe

that AL0 = ∩iALn . Let λ = inf ||Df−1|Ec||, let ε < 1 such that ελ > 1. For

x ∈ AλL0

mf(x)(F c
εL0

(f(x))) = mx(f
−1(F c

εL0
(f(x)))) ≥ mx(F c

L0
(x)) ≥ 0.6.

Therefore f(x) ∈ AεL0 . By ergodicity we may suppose AL0 f -invariant,

hence V ol(AεL0) = 1. Absurd since εL0 < L0. This means that L0 = 0,

which implies atom.

Let us prove the converse. Suppose we have atomic decomposition, we

want to see that the partition through center leaves is a measurable partition.

Lift f to R3, by Hammerlindl [10] we may find a disk D̃2 transverse to the

center foliation, by quasi-isometry of the center foliation we may take this

disk as big as we want. So take a disk such that its projection D2 = π(D̃2)

has the property:

F c
x ∩D2 6= ∅, ∀x ∈ T3.

Since the decomposition is atomic, we already know that it has one atom

per leaf. Let us define the following set of full measure:

M̂ =
⋃
p∈A

F c
loc(p),
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where A is the set of atoms, F c
loc(p) is the segment of center leaf such that the

right extreme point is p and the left extreme point is on D2 and #F c
loc(p) ∩

D2 = 1.

Since D2 is a separable metric space, {F c
loc(p)}p∈A is a measurable parti-

tion for M̂ . Therefore we have a family of subsets {Ai}i∈N of M̂ such for all

p ∈ A

F c
loc(p) =

⋂
i∈N

Bi, where Bi ∈ {Ai, Aci}.

3.1 Non-atomic singular measures

We are now ready to show the existence of a DA (in fact an Anosov) for

which the disintegration of volume on the center leaves is neither Lebesgue

nor atomic.

Proof of Theorem A. Consider a linear Anosov with the following split TM =

Ess ⊕ Ews ⊕ Eu. Let φ be a volume preserving diffeomorphism which pre-

serves the Eu direction. By Baraviera, Bonnatti [3]
∫
λwsA 6=

∫
λwsA◦φ. Let h

be the conjugacy between A and f , f ◦ h = h ◦ A. Let us see that

Claim: h∗V ol = V ol.

Note that h is a conjugacy of A and f , then they have the same topological

entropy λuA. Hence, h∗V ol is a measure of maximal entropy. Observe that

the perturbation A ◦ψ of A is such that it preserves the Eu direction, which

means that the potentials 0 and −logλuf are cohomological and therefore gives

the same equilibrium states. That is, h∗V ol = V ol.

We have already seen that on this case h(F c) = F c. This means that

{F c
A(x)}x∈T3 measurable partition ⇔ {F c

A◦ψ(x)}x∈T3 measurable partition.
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But we know that {F c
A(x)}x∈T3 is not a measurable partition, since its

decomposition is Lebesgue, and therefore not atomic.

Claim: F c
A◦ψ is not absolutely continuous.

Suppose it is absolutely continuous, then λssf (p) = cte for all periodic

point p, by construction λuf (p) = λuA. Since we are on the volume preserving

case, λws(p) is also constant. Hence f is C1-conjugate to A, but this would

imply
∫
λwsf dV ol =

∫
λwsA dV ol. Absurd.

The above claims imply that F c
f is non-absolutely continuous and form a

non-measurable partition, hence it is not atomic and the conditional measures

are singular with respect to the Lebesgue measure on the center leaves.
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4 Conjugacy and Foliation: A C1 point of

view

We begin by understanding how Lyapunov exponents vary with respect to

their linearization.

Proposition 4.1. Let f : T3 → T3 be a partially hyperbolic, not neces-

sarily ergodic nor volume preserving, and let A be its linearization. Then∫
λu(f)dV ol ≤ λu(A).

Proof. Suppose that
∫
λuf (x)dV ol(x) > λuA, then there exists a set B of pos-

itive volume and a constant α such that λuf (x) > α > λuf∗ ∀x ∈ B. Define

BN = {x ∈ B | ||Dfn|Eu
x || ≥ enα; ∀n ≥ N}.

Note that

B =
∞⋃
N=1

BN ,

this means that there is N0 such that V ol(BN0) > 0. Since Fu
f is absolutely

continuous then there is x ∈ B such that Fu
f (x) ∩ BN0 has positive volume

on the unstable leaf.

Let I ⊂ Fu
f (x) be a compact segment with V olc(I ∩ BN0) > 0 and

length(I) =: l(I) > M . Then

l(fn(I)) =

∫
fn(I)

dV olu =

∫
I

(fn)∗dV olu ≥
∫
I∩AN0

(fn)∗dV olu

≥
∫
I∩BN0

||Dfn|Eu
x ||dV olu(x) ≥ enαV olc(I ∩ AN0).

Consider x, y the extremes of I = [x, y]. Then du(fn(x), fn(y)) = l(fn(I)).

Using quasi-isometry on the first inequality below we get
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d(fn(x), fn(y))

d(An(x), An(y))
≥ cte

du(fn(x), fn(y))

d(An(x), An(y))

≥ cte
enα

enλ
u
A

V ol(I ∩BN0)

d(x, y)

−→ ∞ as n→ ∞.

By Proposition 2.4 this ratio should be bounded. Absurd.

The same type of argument above give us:

Corollary 4.1. ∫
λs(f) ≥ λs(A).

We consider the following for the case of Anosov systems, for it will be

used later.

Corollary 4.2. Let f be an Anosov diffeomorphism with the following split

on the tangent space TM = Ess ⊕Ews ⊕Eu and Fws absolutely continuous.

Then λwsf ≥ λwsA .

Proof. The prove goes as before, with a minor change. We proceed, as pre-

viously, applying Proposition 2.4 with the following linear map π : Rn → Rn

which is the projection onto a center foliation of the linearization. The pro-

jection is with respect to the system of coordinate given by the foliations of

the linearization (xss, xws, xu) ∈ Rn.

Proof of Theorem E: We only have to prove the implication, as the converse

is a direct consequence of the C1-conjugacy.

Let us suppose that f is partially hyperbolic with the following split of

the tangent space: TM = Ess ⊕ Ews ⊕ Eu. The next three lemmas concern

this case, the other case is reduced to this one by applying the inverse.
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Lemma 4.1.

λuf (m) = λuf (p), ∀p ∈ Per(f).

Proof. By ergodicity the set of transitive points T has total volume. We

may assume that all points of T have well defined Lyapunov exponents. For

x ∈ T ; given ε > 0 let δ > 0 be such that by uniform continuity

| log||Df |Eu
y1
|| − log||Df |Eu

y2
|| | < ε, if d(y1, y2) < δ.

From the Shadowing lemma there is α such that for every α-pseudo orbit

is δ shadowed by a real orbit. Given N0 ∈ N there is n0 ∈ N and n0 > N0 such

that {. . . , fn0−1(x), x, f(x), . . . , fn0−1(x), . . .} is an α-pseudo orbit. Since it

is a pseudo-periodic orbit it is δ shadowed by a periodic point with period

n0, call this point q. Using that Eu is one dimensional, then∣∣∣∣ 1

n0

log||Dfn0|Eu
y1
|| − 1

n0

log||Dfn0 |Eu
y2
||
∣∣∣∣ < ε

Since we already know that λuf (x) exists, this implies that λuf (x) = λuf (q),

hence λuf (m) = λuf (p) as we wanted.

Lemma 4.2.

λuf (m) = λuA.

Proof. We know that the topological entropy of A is λuA, the conjugacy gives

htop(f) = htop(A). From the theory of equilibrium states (section 2.3.1)

the measure of maximal entropy is given by the potential ψ = 0 and the

equilibrium state for the potential ψ = −logλu gives the SRB measure, which

ism in our case. And to see that both equilibrium states are the same we just

need to see that both potential are cohomologous (section 2.3.1). It means

that both measures coincide if, and only if,

1

n

n∑
i=1

(−log||Dff i(x)|Eu||) = cte, ∀x such that fn(x) = x.
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Which is true by hypothesis.

Finally Pesin’s formula gives that hf (m) =
∫
λufdm = λuf . Let us put all

this equalities below.

λuA = htop(A) = htop(f) = hf (m) =

∫
λufdm = λuf (p).

The lemma is then proved.

Lemma 4.3.

λwsf (p) = λwsA

Proof. By the above lemma we already know that λuf (p) = λuA; and λ
ss
f (p) ≥

λssA by Corollary 4.1. Hence, since we are on the volume preserving case

λssf +λwsf +λuf = λssA+λwsA +λuA, therefore we just need to see that λwsf (p) ≥ λwsA

which is the Corollary 4.2.

The above lemmas imply,

λ∗f (p) = λ∗A(h(p)), ∀p ∈ Per(f).

The above equality gives periodic data. Theorem 2.7 implies that f is C1

conjugate to the linear one.

4.1 Failure of the rigidity of center foliation

We are now ready to prove Theorem B.

Proof of Theorem B. We start from a linear Anosov with splitting TM =

Ess⊕Ews⊕Eu. Let φ be a volume preserving diffeomorphism which preserves

the Ess direction. This means it is absolutely continuous by Gogolev [8] and

by Theorem E it is not C1 conjugate to the linear since we changed the

integral of the center foliation. From Theorem F we indeed got an absolutely

continuous foliation that is not C1.
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4.2 Conditional measures with dynamical meaning

The goal of this subsection is to prove Theorem F. We shall associate to each

center leaf a class of measures differing from each other by a multiplication of

a positive real number in such a way that on each foliated box the normalized

element of this class will give the Rokhlin disintegration of the measure.

When the foliation satisfies the hypothesis on Theorem F we shall be able to

pick measurably on each leaf a representative with some dynamical meaning,

it will then help us to obtain some information on the center Lyapunov

exponent of f .

Lemma 4.4 (Avila, Viana, Wilkinson [2]). For any foliation boxes B, B′ and

m-almost every x ∈ B ∩ B′ the restriction of mB
x and mB′

x to B ∩ B′ coincide

up to a constant factor.

Proof. Let µB be the measure on Σ obtained as the projection of m|B along

local leaves. Consider any C ⊂ B and let µC be the projection of m|C on Σ,

dµC

dµB
∈ (0, 1], νC almost every point.

For any measurable set E ⊂ C

m(E) =

∫
Σ

mB
ξ (E) dµB(ξ) =

∫
Σ

mB
ξ (E)

dµB

dµC
(ξ) dµC(ξ).

By essential uniqueness, this proves that the disintegration ofm|C is given

by

mC
ξ =

dµB

dµC
(ξ) mB

ξ ; µC(ξ) almost every point.

Take C = B∩B′. Therefore dµB
dµC

(ξ)mB
ξ |C = mC

ξ =
dµB′
dµ′C

(ξ)mB′

ξ |C. Where µ′
C

is the projection of measure µ on the transversal Σ′ relative to the B′ box.

Hence
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mB
ξ |C = a(ξ)mB′

ξ |C,

where a(ξ) =
dµB′
dµ′C

(ξ)(dµB
dµC

(ξ))−1.

The above lemma implies the existence of a family {[mx] | x ∈ M} of

measures defined up to scaling and satisfying mx(M\Fx) = 0. The map

x 7→ [mx] is constant on leaves of F and the conditional probabilities mB
x

coincide almost everywhere with the normalized restrictions of [mx].

We observe that disintegration of a measure is an almost everywhere con-

cept, but in our case, since we shall be considering a C1 center foliation,

we look to the conditional measures, of volume, defined everywhere. And,

more important, the number a(ξ) =
dµB′
dµ′C

(ξ)(dµB
dµC

(ξ))−1 is indeed defined ev-

erywhere.

From now on we work on the lift. Let B := Wsu(0) which is the saturation

by unstable leaves of the stable manifold of 0 ∈ R3. By the semi-conjugacy

we know that every segment of center leaf which has size large enough keep

increasing by forward iteration. Let γ0 be a length with this property. Let

B0 be the two-dimensional topological surface such that each center leaf

intersects B and B0 on two points, that are on the same center leaf and at a

distance γ0 inside the center leaf. Let Bk := fk(B0) therefore, for each point

ξ ∈ B there is a unique point qk(ξ) ∈ Bk that is on the same center leaf as

ξ. Since it will be clear to which point ξ qk(ξ) is associate, we use qk instead

to simplify notation.

Define the measure mξ,k by

mξ,k([0, qk]) = λk,

where λ is the center eigenvalue of the linearization, [0, qk] means the segment

[ξ, qk(ξ)] inside the center leaf of ξ.
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Lemma 4.5.

f∗mx,k = λ−1mf(x),k+1.

Proof. Just see that

f∗mx,k([0, qk+1]) = λ−1mf(x),k+1([0, qk+1]).

Therefore if the sequence mx,k converges we would get

f∗mx = λ−1mf(x).

In general, by Lemma 4.4, for two foliated boxes B and B′ we have

mB
x

dνB
dνC

= mB′

x

dνB′

dν ′C
.

We apply this formula to the following boxes: B and Bk, where B compre-

hend the segment of center leaves between B and B0, similarly Bk is formed

by the segment of center leaves bounded by B and Bk. Then

mB
x .1 =

dµBk

dµB
mBk
x =

dµBk

dµB
λ−kmx,k.

Note that λkmx,k = mBk
x by the definition of the disintegration. The

above proves

Lemma 4.6. On B:

mx,k = (
dµBk

dµB
)−1λkmB

x .

To establish the convergence of the measures we shall need

Lemma 4.7. If F c satisfies the hypothesis of Theorem F then, there is a

uniform constant α such that

1

α

l(F c
x ∩ Bk)

l(F c
x ∩ B)

≤ dµBk

dµB
(x) ≤ α

l(F c
x ∩ Bk)

l(F c
x ∩ B)

.

40



Proof. To calculate l(Fc
x∩Bk)

l(Fc
x∩B)

we need to estimate the volume of a rectangular

box. The center holonomy on the center unstable and center stable folia-

tion are bounded by hypothesis. Therefore the volume can be calculated

(estimated) by height times base.

Hence,
dµBk

dµB
(x) = αx,k

l(F c
x ∩ Bk)

l(F c
x ∩ B)

,

where αx,k ∈ [1/α, α], for all x ∈ R3 and k ∈ N.

Therefore using Lemma 4.6 we get on B

mx,k =

(
αx,k

l(F c
x ∩ Bk)

l(F c
x ∩ B)

)−1

λkmB
x .

For each x there is a subsequence αx,ki(x) that converges to some α̃x as

i(x) → ∞.

Lemma 4.8. There is β > 0 such that λk/l(F c
x ∩ Bk) ∈ [1/β, β] for all x.

Proof. We need to estimate the fraction

||fn(H(x))− fn(H(y))||
||An(x)− An(y)||

=
||H ◦ An(x)−H ◦ An(x)||

||An(x)− An(y)||
.

By the triangular inequality:

||H ◦ An(x)−H ◦ An(y)||
||An(x)− An(y)||

≤ ||H(An(x))− An(x)||
||An(x)− An(y)||

+
||An(x)− An(y)||
||An(x)− An(y)||

+
||H(An(y))− An(y)||
||An(x)− An(y)||

,

and

||H ◦ An(x)−H ◦ An(y)||
||An(x)− An(y)||

≥ −||H(An(x))− An(x)||
||An(x)− An(y)||

+
||An(x)− An(y)||
||An(x)− An(y)||

− ||H(An(y))− An(y)||
||An(x)− An(y)||

.

We know thatH is at a bounded distance of the identity and ||An(x)−An(y)||

is big.
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By the above lemma we may assume that λk/l(F c
x ∩Bk) goes to one as k

increases, otherwise incorporate it to the constant αx,k. Then sending ki(x)

to infinity

mx := lim
ki(x)→∞

mx,ki(x) = (l(F c
x ∩ B)/α̃x)mB

x . (1)

By going to a subsequence we obtained a convergent measure, but we

want it to have a specific property. Therefore we have to be more careful

on how to define them. We’ve seen above that f∗mx,k = λ−1mf(x),k+1, hence

for fixed x there is ki(x) defined as above, but if we define ki(f(x)) = ki(x) + 1

we obtain the convergence satisfying f∗mx = λ−1mf(x). This means that for

fixed x we can define on the orbit of x measures satisfying the mentioned

dynamical property.

The measures are in fact indexed on a two dimensional plane manifold

W su. Hence, to define properly on the whole space, consider the rectangle A

as in the figure below representing W su, the intersection of A to the stable

manifold of the origin is a fundamental domain. The two biggest sides are

unstable leaves. Hence defining the measures as we mentioned above on A

and on its iterates we get measures with dynamical properties.

From the above we conclude that we did get measures on each center leaf

with the property that f∗mx = λ−1mf(x). The construction of such measures
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will help us to get information of the center Lyapunov exponent, since we

may recover λ by the equality

df∗mx

dmf(x)

= λ−1.

Let us explore more deeply the above relation.

Lemma 4.9. By the above notation, the center Lyapunov exponent of f

exists everywhere and it is equal to λ.

Proof. Note that
dfn∗mx

dmfn(x)

(fn(x)) = λ−n.

Let us calculate the Radon-Nikodym derivative by another way. Let Inδ ⊂

F c
fn(x) be a segment of length δ around fn(x). Then

dfn∗mx

dmfn(x)

(fn(x)) = lim
δ→0

fn∗mx(I
n
δ )

mfn(x)(Inδ )
.

And

dfn∗mx

dmfn(x)

(fn(x)) = lim
δ→0

mx(f
−n(Inδ ))

mfn(x)(Inδ )
= lim

δ→0

∫
f−n(Inδ )

ρxdλx∫
Inδ
ρfn(x)dλf(x)

≈
ρx(x)

ρfn(x)(fn(x))
lim
δ→0

∫
f−n(Inδ )

dλx∫
Inδ
dλf(x)

≈ lim
δ→0

ρx(x)

ρfn(x)

∫
Inδ
||Df−n||dλx∫
Inδ
dλf(x)

≈
ρx(x)

ρfn(x)(fn(x))
||Df−n(x)||.

We then have

lim
δ→0

dfn∗mx

dmfn(x)

(Inδ ) =
ρx(x)

ρfn(x)(fn(x))
||Df−n(x)||.

From the other equalities we have

ρx(x)

ρfn(x)(fn(x))
||Df−n(x)|| = λ−n.
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By applying ”limn→∞1/n log” to the above equality we get

λc(x) = λ,

since the densities of mx are uniformly limited.

We are now ready for the

Proof of Theorem F: First, let us prove that f is an Anosov diffeomorphism.

We just need to analyze the behavior of Df on the center direction. Let

ε > 0 be such that λε := λ − ε > 0. Since the center exponent exists for

every x then, given x ∈ T3, there are nx ∈ N and a neighborhood Ux of x

such that ∀x ∈ Ux |Dfnx |Ec| ≥ enxλε . Since T3 is a compact manifold take

a finite cover Ux1 . . .Uxl . Let Ci < 1 small enough so that for x ∈ Uxi then

|Dfn(x)|Ec| ≥ Cxie
nλε for all n ∈ {0, 1, . . . , nxi}. Let C := mini Cxi , we

then have that |Dfn(x)|Ec| ≥ Cenλε for all x ∈ T3 and n ∈ N.

Since, in particular, the center foliation is absolutely continuous, from

Gogolev [8], one of the extremal exponents is constant on periodic points.

On the other hand the above theorem gives that in particular on the periodic

points the central exponent is also constant. Since we are on the conservative

case all Lyapunov exponents are constant on periodic points. Then Theorem

E gives that f is C1-conjugate to its linearization.
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