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Abstract

We study the measure-theoretical properties of center foliations
of volume preserving partially hyperbolic diffeomorphisms with one-
dimensional center direction. Recent work of Avila, Viana, Wilkinson
[2] dealt with situations where the center leaves are compact or can
be compactified in a suitable way. Using different techniques we focus
on the non-compact case and obtain very different conclusions.

For one thing, in our context the disintegration of volume may be
neither atomic nor Lebesgue. Such examples are found even among
Anosov diffeomorphisms. An important tool in this setting is to prove
that the disintegration is atomic if and only if the center leaves form
a Rokhlin measurable partition. Moreover, even an Anosov may have
absolutely continuous center foliation without being C'-conjugate to

its linearization.
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1 Introduction

We study the measure-theoretical properties of the center foliation of par-
tially hyperbolic diffeomorphisms for which the center leaves are non-compact.

Two main issues are:

e absolute continuity: when is the center foliation absolutely continuous?

What can be said otherwise?

e rigidity: does absolute continuity imply greater regularity?

These issues are fairly well understood in situations when the center leaves are
"essentially compact” (it includes perturbations of certain skew-products or

of time-one maps of Anosov flows), by recent work of Avila, Viana, Wilkinson

[2]:

e Atomic disintegration: If the center foliation is non-absolutely contin-
uous, then there exists kK € N and a full volume subset that intersects

each center leaf on exactly k points/orbits.

e Rigidity: If the center foliation is absolutely continuous then the diffeo-
morphism is smoothly conjugate to a rigid model (a rotation extension

of an Anosov diffeomorphism or the time-one map of an Anosov flow);

We deal with a different class of partially hyperbolic diffeomorphisms,
whose center leaves are non-compact: DA (derived from Anosov) diffeo-
morphisms, that is, that lie in the isotopy class of some hyperbolic linear
automorphism (we refer to these automorphisms as the linearization of the
DA diffeomorphisms). The examples exhibited in the results that follow are,
actually, Anosov maps, with the weak (stable or unstable) foliation as the

center foliation. We also mention that all diffeomorphisms treated on this
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work are assumed to be at least C1*®. This means that volume preserving
Anosov on T? are all ergodic.

For non-absolutely continuous foliations, our conclusion is different from
[2]. Indeed, we show that it is possible to have a disintegration which is

non-Lebesgue and non-atomic. This is the first example of this kind:

Theorem A. There exist volume preserving Anosov diffeomorphisms on T3
for which the center foliation is non-absolutely continuous and the disinte-
gration of volume on center leaves are not atomic.

In fact, such diffeomorphisms fill a dense subset of an infinite-dimensional
manifold in the neighborhood of any hyperbolic linear automorphisms in the

space of volume preserving maps.

The next result shows, in contrast with the compact setting of [2], that

absolute continuity has no rigidity implications in our case:

Theorem B. There exist volume preserving Anosov diffeomorphisms f on
T3 for which the center foliation is absolutely continuous but f is not C*-
conjugate to its linearization.

In fact, such diffeomorphisms fill a dense subset of an infinite-dimensional
manifold in the neighborhood of any hyperbolic linear automorphism in the

space of volume preserving maps.

The proofs of these results are given in Sections 3 and 4. In the remain-
ing of this Introduction we outline the structure of the arguments and also
present a number of related results. Section 2 contains some background
material.

As already mentioned, the partially hyperbolic diffeomorphisms treated

by Avila, Viana, Wilkinson [2] have atomic disintegration when the center



foliation is non-absolutely continuous. For partially hyperbolic diffeomor-
phisms with non-compact center leaves there was no information on the na-
ture of these conditional measures when the center foliation is non-absolutely
continuous. Some understanding of the behavior of these conditional mea-

sures is presented on the following theorems, proved on section 3.

Theorem C. Let f be a volume preserving Anosov diffeomorphism on T3,

such that the center foliation is non-absolutely continuous. Then

i) the conditional measures are singular measures with respect to the vol-

ume on the center leaf;

ii) if the decomposition is atomic, then there is exactly one atom per leaf.
That is, there exists a set of full volume that intersects each center leaf

1 one point.

We say that a partition P is measurable with respect to volume if there
exist a Borelian family {A;};en and a set of zero volume F' such that for all
PecP, PNF =),y BiNF, where B; € {A;, A}

It turns out that measurability of a foliation is the right condition for

atomicity of the conditional measures.

Theorem D. Let f be a volume preserving Anosov diffeomorphism on T3.
The disintegration of volume is atomic if and only if the partition by center

leaves is a measurable partition.

Hence, to prove Theorem A we just need to construct an Anosov diffeo-
morphism with non-absolutely continuous foliation for which the partition
by center leaves is not a measurable partition.

We begin section 4 studying the implications of the C*-conjugacy.



Let h be a diffeomorphism commuting with two Anosov diffeomorphisms
gand f, thatis foh = hog, iterating we get f"oh = hog". Differentiating the
former expression on a periodic point p, g"(p) = p, we get D f"(h(p))Dh(p) =
Dh(g"(p)) o Dg" (p). Hence

Dg"(p) = (Dh(p))~"Df"(h(p)) Dh(p).

The similarity between the matrices Dg"(p) and D f"(h(p)) on their re-
spective periodic points is a necessary condition for C'! conjugation. It turns
out that on T? this is also a sufficient condition by Gogolev, Guysinsky [9].

We improve their result, as follows:

Theorem E. Let f be a volume preserving Anosov diffeomorphism on T3.
Then, for all p,q € Per(f), X(p) = X\(q), *x € {s,c,u} if and only if f is

C' conjugate to its linearization.

The strategy to prove Theorem B is to begin with a linear Anosov, keep
one of the exponents (which will give us the absolute continuity by the work
of Gogolev [8]) and change another exponent (to break the C''-conjugacy, by
Theorem E).

Although we have shown that absolute continuity of the center foliation
does not imply a rigid condition, we obtain a rigidity theorem imposing

stronger conditions on the center foliation:

Theorem F. Let f be a volume preserving DA diffeomorphism on T2, with
the linearization A of the form E° ® E** ® E*. If the center foliation is a
C! foliation and the center holonomies inside the leaves ]:}”“Jr“" and .7:]‘?+w“
is uniformly bounded, then f is C' conjugate to its linearization and, hence,

is an Anosov diffeomorphism.

Assuming that the center foliation is C' and the bounded condition on

the center holonomies, we construct conditional measures, {m; },ers, on the
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center foliation with some dynamical meaning. That is, the push forward
of a conditional measure satisfies f,m, = A7'm f(z), Where A is the central
exponent of the linearization. By iteration

dfimy,

="
dmfn (.ZL')

d n
Since A¢(z) = lim fime

punov exponent equals A\. As the center foliation is C!, these conditional

, the above relation implies that the central Lya-
measures are defined everywhere. Consequently, the center exponent is de-

fined everywhere and equals A\. Therefore, f is an Anosov diffeomorphism.

We apply Theorem E to get the C! conjugation, thus proving Theorem F.
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2 Prerequisites

The reader may consult this section when needed, we mainly state the results
that shall be used throughout this work. We make an exception to the
subsection on absolute continuity. Since this is a key concept we give a few

more words concerning this topic on subsection 2.6.

2.1 Measure theory

For some basic definitions of measure theory the reader may check Rudin’s

book [16].

Definition 2.1. Let X be a metric space and i a Borel probability measure.
Then p is a regular measure if for any measurable set B and € > 0 given,
there are compact set K. C B and open set U, D B such that u(B—K.) < ¢
and pu(U. — B) < e.

Proposition 2.1. A Borel probability measure p on a metric space X 1is

reqular.

Theorem 2.2 (Lusins’ theorem). Let (X, B, i) be a Borel probability space
and f: X — R a measurable function. Then given € > 0, there exists a set
A. C X such that u(A) > 1—¢ and f restricted to the set A is a continuous

function.

2.2 Decomposition of measure

Let (M, u, B) be a probability space, where M is a compact metric space,
it a probability and B the borelian o-algebra. Given a partition P of M by

measurable sets, we associate the measurable set

(P, i, B)
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by the following way. Let m : M — P be the canonical projection associate to
a point of M the partition element that contains it. Then we define 1= m,

and B = ..

Definition 2.3. Given a partition P. A family {pp}yep is a system of

conditional measures for p (with respect to P) if

i) given ¢ € C°(M), then P — [ ¢up is measurable;
i) up(P) =1 p-a.e;

iii) if ¢ € C°(M), then /M by = /P ( /P ddup)dJi.

Observe that the conditions ) and i) also hold for bounded ¢ by the
Dominated Convergence theorem. When it is clear which partition we are

referring to, we say that the family {up} disintegrates the measure p.

Proposition 2.2. If {up} and {vp} are conditional measures that disinte-

grate [, then pup = vp ji-a.e.

Corollary 2.1. If T : M — M preserves a probability . and the partition
P, then T.pup = pup pi-a.e.

Proof. Tt follows from the fact that {T.up}pep is also a disintegration of

I 0

Definition 2.4. (Measurable partition) We say that a partition P is mea-

surable if there exists a borelian family {A;};en such that

P ={A1, AT} vV {Ay, A5} V... mod 0.

Theorem 2.5 (Rokhlin’ disintegration [18]). Let P be a measurable partition
of a compact metric space M and p a borelian probability. Then there exists

a disintegration by conditional measures for .
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2.3 Anosov diffeomorphism

We collect a series of results concerning Anosov diffeomorphism, we restrict
to the results needed on forthcoming sections.
Consider f: M — M a diffeomorphism on a Riemannian manifold M.
A closed set A C M invariant by f is called a hyperbolic set if there
exist C' > 0, A € (0,1) and for every x € A there are E*(x), E*(x) C T, M
such that

1. T,M = E*(z) & E*(z);
2. ||dfrvs|] < CA™[[v?||, Yv* € E*(x) e n > 0;
3. ||df ™M < CA™ o], Vo' € E*(x) e n > 0;

4. df,E*(z) = E*(f(2)) e df. E"(x) = E*(f(x)).
We say that a set A, as above, is an isolated hyperbolic set if there
exists a neighborhood U of A such that

A=) ).

nel
We call f an Anosov diffeomorphism if A = M| in particular M is an
isolated hyperbolic set.
We say that a sequence {z;} on M is a J-pseudo orbit for f if d(f(z;), zi+1)
< 4. A point y € M e-shadows a sequence {z;} if d(f*(y), z;) < e. Although
we’ll be using the next result for Anosov system we state it on its classical

version.

Theorem 2.6 (Shadowing lemma). Let A C M be a hyperbolic set for f.
Then, given € > 0 there exist n,6 > 0 such that if {x; '32:]‘1 s a 0-pseudo orbit

for f with d(x;, N) < n, then there exists y € M with d(y, A) < n such that y

e-shadows {z;}. Furthermore,
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o if j1 = —0o0 and jy = 0o, then y is unique;

o if {z; {ijl is periodic then y is a periodic point;

e if A is isolated, then y € A.

The above theorem proves the structural stability of Anosov systems,
that is if f is an Anosov system and ¢ is close enough to f, then there is a
homeomorphism A : M — M such that ho f = goh.

Since we can describe the stable (and unstable) manifold topologically,
that is

Wi(z) = {y € M | d(f"(x), f*(y)) = 0, n — oo},

then the conjugacy h, which is a homeomorphism, satisfies
h(W§(x)) = W3 (h(x)).

Since h is a homeomorphism it might not be able to distinguish velocities
inside the unstable foliation. That is, suppose f is an Anosov diffeomorphism
with splitting £° & E° & E* and these distributions integrate to foliations,
as well for every diffeomorphism g on a neighborhood of f. Although we
know that h(W§) = W; (W is tangent to E*" @ E"), we cannot guarantee
that h(W§) = Wy (W¢ is tangent to E°). At least in some cases we are able

to guarantee that center foliation goes to center foliation.

Proposition 2.3 (Gogolev, Guysinsky [9]). Consider a linear Anosov dif-
feomorphism A on T® and U a small neighborhood of A. If f € U, then the
conjugacy h satisfies

h(W§) = W5

The shadowing lemma implies the existence of a homeomorphism that

conjugates any two closed Anosov diffeomorphisms. In fact, it can be proved
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that the conjugation h is Holder. It can’t always be C!, since there is a re-
stricted relation with the periodic points (see below) of both diffeomorphism.

But on T? we have the following equivalence.

Theorem 2.7 ([9]). Let f and g be two Anosov diffeomorphism and h a
conjugacy between them, ho f = goh.
For all x € T? such that fP(x) = x, DfP(x) and Dg?(h(x)) are conjugated

matrices if and only if h is a C' diffeomorphism.

We call this relation on the periodic points periodic data. Recall that
two matrices A and B are conjugated if there is an invertible matrix C' such

that A = C~'BC.

2.3.1 Equilibrium state for Anosov system

We give the classical results concerning equilibrium states for Anosov diffeo-
morphism. For the results the reader may check Bowen’s book [7]. For the

definition of metric entropy and topological entropy we refer the reader to

the book of Walter [20].

Definition 2.8. Given a Hoélder function ¢ : M — R (we shall call it as the

potential 1)) we then define the pressure of f with respect to ¢ as

PULY) = s (IS / bdu},

neM(f

where M( f) is the set of invariant probabilities for f and h,(f) is the metric

entropy for f with respect to p.

Observe that the pressure of the zero potential gives the topological en-

tropy of the system: P(f,0) = h(f).
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We say that an invariant measure p for f is an equilibrium state for the

potential ¢ if it satisfies the following equality

haf) + / b = Py(o).

From now on we consider f : M — M a C? transitive Anosov diffeomor-

phism on a compact manifold M of any dimension.

Theorem 2.9. If ¢ : M — R is a Holder continuous function, then ¢ has a

unique equilibrium state, fi4.
The next theorem relates the equilibrium state for different potentials.

Theorem 2.10. Let ¢, : M — R be two Holder continuous functions. The

following are equivalent

o iy = Hy;

e there exists a constant K such that for all periodic points v € M we

have the equality % Yoo fr(x) — % Yo o fr(x) = K.

Theorem 2.11. If f leaves invariant a probability measure p absolutely con-
tinuous with respect to volume, then u is the equilibrium state for the potential

o(x) = —logp®(x), where ¢* is the Jacobian of Df : E* — E".

Later on we shall consider volume preserving Anosov systems. By volume
we mean a smooth measure, that is, let M be a Riemannian manifold and
consider w the volume induced by the metric. A smooth measure will be a
measure of the form pw where the density p : M — R, is a positive smooth
function. The next theorem provides a condition for a smooth measure to

be invariant by a transitive C? Anosov diffeomorphism.

Theorem 2.12. Let f be a C? Anosov diffeomorphism, the following are

equivalent:
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i) [ admits an invariant measure p absolute continuous to volume (in-

duced by a Riemannian metric);
ii) Df"TM, — TM, has determinant 1, for f"(z) = x.

This is particularly important for us, because when considering transitive
conservative Anosov diffeomorphism with a splitting T'M = E°*® E°® E", the
above theorem gives us property ii), which implies that A*(p)+A°(p)+A%(p) =
0, where \* is the Lyapunov exponent. It means that determining two of them

give us the other one.

2.4 Partially hyperbolic diffeomorphisms

We begin with the definition of partially hyperbolic diffeomorphisms, followed

by some classical facts.

Definition 2.13. A diffeomorphism f of a compact Riemannian manifold
M is called partially hyperbolic if there are constants A < 4 <1 < v < p
and C' > 1 and a Df -invariant splitting of TM = E"(x) & E°(z) & E*(x)

where
1, n s
ot o]l < [|Df o], ve by —{0};
5%"Hv|| < |[Df™]] < Cy"[|v]], ve By —{0};

[Df o] < CA"|Jv]], v e By —{0}.

Theorem 2.14. The stable and unstable subbundles E° and E“ integrate
uniquely into foliations F° and F* which are transversely absolutely contin-

uous.

The reader may check [11, 12] for the proof of the above theorem. We

say that a partially hyperbolic diffeomorphism is dynamically coherent if
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the subbundles £* @ E° and E°@® E* integrate into invariant foliations. This
implies in particular that there is a center foliation F¢, which is obtained by
an intersection of the other two: F¢ = F*¢ N F.

T

It was proved by Brin, Buragov, Ivanov [5] that

Theorem 2.15. Every partially hyperbolic diffeomorphism on T3 is dynam-

wcally coherent.

We don’t want to get into the discussion of the different types of defini-
tions of partially hyperbolic, but we observe that we are working with the
one known as absolute partially hyperbolic. Another notion is the relative
partially hyperbolic. The difference is that in the absolute case we have uni-
formity on the comparison of contraction and expansions of the subbundles.
These two notions are quite similar, on both we have stable and unstable
foliations, transversely absolutely continuous. But to point out a difference,
in the relative case it was constructed a non-dynamically coherent diffeomor-
phism [14].

We state Proposition 0.3 from [3], that shall be used later on for the

proofs of theorems A and B.

Theorem 2.16. Let f be a linear conservative Anosov on T3, seen as par-
tially hyperbolic, and h be a C" diffeomorphism volume preserving which pre-
serves the direction relative to E* or E*. We assume h is C' close enough

to the identity in order to have f o h partially hyperbolic. Then

/logJ]‘?Oh(:p)dVOZ(x)#/ logJ¢(x)dV ol(z).

2.5 Geometric property

By a Derived from Anosov (DA) diffeomorphism f : T — T3 we mean a

partially hyperbolic homotopic to a linear Anosov diffeomorphism A. We

19



call this linear Anosov as the linearization of f. In fact, f is semi-conjugated
to its linearization. The semi-conjugacy has good properties. The proof of

the next result can be found on Sambarino [17].

Theorem 2.17. Let B : R® — R3? be a linear hyperbolic isomorphism. Then,
there exists C' > 0 such that if G : R — R? is a homeomorphism such that
sup{||G(xz) — Bz|| | x € R*} = K < oo then there exists H : R® — R?

continuous and surjective such that:

e BoH=HoG;

||H(z) — z|| < CK for all z € R3;
e H(x) is characterized as the unique point y such that

1B™(y) — G"(2)|| < CK, Vn € Z;

o H(z) = H(y) if and only if ||G™(x) — G(y)|| < 2CKVn € Z and if and
only if supnez{||G™(x) — G"(y)[[} < o0

o if B € SL(3,Z) and G is the lift of g : T2 — T then H induces h :
T3 — T3 continuous and onto such that Boh = hog and distco(h,id) <
Cdistco (B, g).

The geometrical property we shall need later is given by Hammerlindl

[10]:

Proposition 2.4. Let [ be a partially hyperbolic and A be its linearization.
Denote by f and A the lift to R™ of f and A respectively. Then for each
k€ Z and C > 1 there is M > 0 and a linear map w : R" — R" such that
for all z,y € R"

1 (|7 (F* ) — FE)ll
| f A C.
o=yl > M =5 < T — )l
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2.6 Absolute continuity

We show two notions of absolute continuity, namely leafwise and transverse
absolute continuity. The tranverse one has appeared in the proof of ergodicity
of certain Anosov systems via Hopf’s argument. It has been noted that
leafwise absolute continuity is as well appropriate. We are going to use
the weaker one, leafwise absolute continuity, when referring to just absolute

continuity.

Definition 2.18. A foliation F is called
o Jower leafwise absolutely continuous if vol;, << mp;
e upper leafwise absolutely continuous if mj << voly;

where L is a leaf of the foliated box, my the conditional measure of the

volume measure m and vol;, the Riemannian volume restricted to the leaf L.
Proposition 2.5. A foliation F is

e lower leafwise absolutely continuous if for every setY such that m(Y') =
0, then for almost every z € M the leaf L through z meets Y in a set

of zero Lebesque measure;

o upper leafwise absolutely continuous if given a measurable set'Y such
that vol (Y') = 0 for every leaf L through a full measure subset of points
z € M implies m(Y') = 0.

Therefore a foliation is called leafwise absolutely continuous if it is
upper and lower leafwise absolutely continuous. Which, of course, is equiva-

lent to have the conditional measures equivalent to the volume on the leaf.
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Definition 2.19. A foliation F is transversely absolutely continuous if given
two differentiable transversal sections >; and Y5 to the foliation, the holon-

omy map h : ;3 — ¥, is absolutely continuous.

Theorem 2.20. The stable and unstable foliations for a partially hyperbolic

are transversely absolutely continuous with bounded Jacobians.

Theorem 2.21. Transverse absolute continuity implies leafwise absolutely

continuity.

Proof (Brin, Stuck [6]): Let F be the transverse absolutely continuous fo-
liation. Let 7" be a transversal to the foliation. Let us look on a foliated
box such that the foliations are horizontal and the transversal is vertical,
T = h(xo,I). Let T be a smooth foliation having T'= T (x¢) as a leaf. Since

T is smooth we can integrate the volume as

m(A) = /f » /T AT, 0) dmry) dm s (2

where T'(7(x),y) are the densities for the conditional measure on T, since
the foliation is smooth these are continuous densities. Let h, : T (o) — T (x)

be the holonomy through the foliation F. Then

/ yal, ) T(T (), ) dmgey (y) =
T(x)

- /T a0 kel )0 ha(E)T o ha(T(2), ) drra €)

We substitute this equality in the former equality and change, by Fubini,
the order of the integral. Recalling that we can do this since T is smooth.

Since T (xzo) =T, m(A) =

_ /T /f X hul@ e RO o Aa(T(2),€) oy (e ()
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we calculate f]:(ﬂﬁo) Xa0hg(x,§)Jac hy(§)T 0 hy(T(x),€) dmpy)(x) in terms
of F(&) by repeating the process analogously. That is, we now have to look
for the holonomy from F (&) — F(zo). O

Proposition 2.6. If F is a leafwise absolutely continuous foliation, then for
every transversely absolute continuous foliation T which is also a transversal
local foliation to F, the local F-holonomy map hy between m-almost every

pair of T -leaves is transverse absolutely continuous.

Proof (Pugh, Viana, Wilkinson [13]): Fix a leaf Fy of F, identify this leaf
with R”. Consider the group G = R" acting on Fj by translations. Let T be
as in the hypothesis, then each element of G gives rise to a homeomorphism
hg in the ambient space U (of the foliation box) by F-holonomies such that
the restriction of h, to 7, is the F-holonomy to 7.

Since F is leafwise absolutely continuous

= / / lA(xvy)p(xvy) dm}-y(x)dm<y)’
To JFy

then

ming(4) = [ [ taen @ pte.y) dms, @)
_ /T/Fuxypoh e, y) d(h; ) eme, (2)din(y).

Since (h,').mz, = myg,, using the formulas above, if m(A) = 0 then

m(hy(A)) = 0. That is, h, is absolutely continuous.

Lemma 2.1. For every g € G there exists a set Xy C Fy of full measure,

such that for all x € X, the restriction of hy to T, is absolutely continuous.

Proof. By contradiction, there exists a mz,-measure set B C Fy such that

for all x € B there is a set Z C U such that m(Z) = 0 and m(hy(Z)) # 0.
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But we observed before that h, is absolutely continuous, therefore m(h,(Z))

should be zero. A contradiction. O]

Let us finish the proof of the proposition.
In the space Fy x Fy we have a foliation VYW which leaf through a point

(x0,9(z0)) is an affine space given by
Wy ={(,9(x)) | = € Fo}.

By the above lemma, each leaf of W has a full measure set such that any
(z,2') in this set has the property that the F-holonomy between 7, and 7,
is absolutely continuous. Fubini implies that the union of these sets have full
measure. That is, m x m-a.e. (x,y) the F-holonomy between 7, and 7, is
absolutely continuous.

O

Example 2.22. Leafwise absolute continuity, but not transverse ab-
solutely continuous. We present the Example 6.1 from Viana, Yang [19],
which is based on an example of Kan (see [4], Chapter 11). For more details
check the references therein.

Consider amap fy : S1x[0,1] — Stx[0,1], fo(z,t) = (2, g(t)) preserving
the boundaries (i.e. ¢(0) = 0 and ¢g(1) = 1), g(t) < t for t € (0,1), and
0 < ¢(t) <2forte[0,1]. Therefore fy is a partially hyperbolic with the

vertical leaves as center foliations. We perturb f; in such a way that

of of
8_95(0’0) # %(0, 1).

This perturbed map f still has a center foliation by [11]. The property
above implies that the conjugacy (which is given by the holonomy of the
center foliations through the boundaries) of the boundaries is not absolutely

continuous. Therefore this center foliation is not absolutely continuous. On
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the other hand g is taken in such a way that the lower boundary is an at-
tractor and the perturbation f still has S x [0, 1) as its basin of attraction.
By Pesin’s theory it implies that on S* x [0, 1) the center foliations is trans-
verse absolutely continuous. Which implies the center foliation to be leafwise

absolutely continuous by Proposition 2.6.

Finally we state a result due to Gogolev [8] which shall be our starting
point to understand absolute continuity for partially hyperbolic diffeomor-

phism with non-compact center leaves.

Theorem 2.23. Let f : T3 — T3 be an Anosov diffeomorphism with splitting
of the form E* @ E"" @& E", then F§ is absolutely continuous if and only

AU (p) = A"(q) for all periodic points p and q.
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3 Non-Absolute Continuity of F*¢

On this section we are interested on the behavior of the center foliation, for

when it is non-absolutely continuous. We begin by proving Theorem C.

Proof of Theorem C. By ergodicity we know that the Birkhoff set

n—1
B={zecT| 1/nZ<5fi(r) — Vol as n — oo}

i=0
has full measure.

Lemma 3.1. If there is a center leaf such that F°N B has positive Lebesque

measure, then the center foliation is absolutely continuous.

Proof. Let D be any disc on the central foliation and consider the following

construction

i = % > ff(m?:(DD)),
j=0

where mp means the Lebesgue measure on the central leaf. It turns out that
these measures converge to a measure p such that the disintegration of p
on the center leaves are absolutely continuous with respect to the Lebesgue
measure. This is a well known construction of such measures, studied by
Pesin, Sinai in the eighties. For more references see [4] Chapter 11 and the
references therein. Although Pesin, Sinai studied these measures for the case
of the disc D in the unstable foliation, for the center foliation, in our case,
this construction is the same. Gogolev, Guysinsky [9] have worked explicitly
on this case and the reader may check at [9] the construction.

We consider a slightly different construction, we consider instead of the
disc D, as above, we consider the disc DN B for which it has positive Lebesgue
measure on the center leaf, by hypothesis there exists such a disc. It turns

out that these measures still converge to a measure with conditional measures
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absolutely continuous to the Lebesgue measure on the center leaf (Lemma
11.12 [4]). Since the points on B have the property 1/n 3" dfiy — Vol,
it turns out that the sequence p, converges to volume. Hence, volume has

Lebesgue disintegration on the center leaves. O]

By the above lemma, since we are in the case where the center foliation is
non-absolutely continuous, we must have that the center foliation intersects
B on a set of zero Lebesgue measure. But the conditional measures give full
measure to B, since B has full measure. Therefore the conditional measures
are singular with respect to the Lebesgue measure. And item i) is proved.

For item ii), suppose that the disintegration of volume on center leaves is
atomic. Since f is Anosov, consider {Ry, ..., Ry} a Markov partition of T®.
Let us suppose that F¢ is expanding, the analogous argument works for the
contracting case. Note that since center leaf goes to center leaf, a Markov
property implies that f(Fp,)(2)) D Fp s (f(@)).

The following lemmas conclude the proof of item ii).

Lemma 3.2. All the atoms have the same weight when considering the dis-

integration of volume on the center leaves of R;.

Proof. On each Markov rectangle we may apply Rokhlin’s disintegration the-
orem on center leaves. Therefore, when writing m, we mean the conditional
measure for the disintegration on Markov rectangle that contains x. Consider
the set A5 = {z € A [ my(z) < 6}. Since f(Fp,(2)) D Fpp) (f(@)), we
have that fim,(I) < my(,) (/) where [ is inside the connected component of

) N R(f(x)) that contains f"(z). If f(x) € As, then

my(z) = fema(f(2)) < ma(f(2)) < 6.

Hence, f~'(As) C As.
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By ergodicity, since our Anosov is volume preserving on T3, As has full
measure or zero measure. Let dp be the discontinuity point of the function

d € [0,1] = Vol(As). This implies that almost every atom has weight §o. [

Lemma 3.3. On every Markov partition R; the conditional measures have

the same number of atoms, with the same weight.

Proof. This is a direct consequence from the above lemma. Since all the
atoms have the same weight Jy the conditional measures must have 1/9,

number of atoms. O]

Lemma 3.4. There is a set of full volume By, of atoms, such that if v € By,
then By N Fy is contained in the connected component of Ry N F; that

T

contains x.

Proof. Let A be the set of atoms and T be the set of transitive points. Both
sets have full volume measure by ergodicity. Suppose, by contradiction, that
there is a subset A; C A of positive volume measure such that Vo € A; we
get AN Rf(x) # (), where Rf(x) is the complement of the Markov partition
that contains z, note that Vol(A; N'T) > 0. Define the following map

h:ANT — R

where dre (R, R;.(x)) means the distance inside the center leaf of the Markov
rectangle R;(,) to the closest Markov rectangle that has an atom which we
/
call ;).
Since h is a measurable map, there exists K; C Ay NT, with Vol(K;) > 0

for which A is a continuous map when restricted to K;. And since volume is
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a regular measure, there is compact set Ky C K7, also with positive volume
measure.

Let @ = Maz,ex,h(x). Fix 29 € Ry(.,), and consider a ball small enough
such that B(zp,7) C intR;.,. Hence, Yy € Ky, let n, € N be an integer
big enough so that, since f is uniformly expanding in the center direction,
T (Fy, ) C B(zo,7) CintRy.y).

It means that we have at least doubled the number of atoms inside R;(.),
which is an absurd since we have already shown that the number of atoms

are constant on each Markov partition. O

Lemma 3.5. There is a set of full volume By C By such that the center

foliation intersects By at most on one point.

Proof. By contradiction suppose that the number of atoms on all Markov
partition are greater than one. Let Ay be a set with full volume measure

inside the union of the Markov rectangle such that if x € Ay, then Ay N F¢

,Jloc

has the same number of points, in this case greater than one. Where F¢, _ is

the connected set of the center foliation restricted to the Markov rectangle

that intersects x. We define the map

hZAQ — R

x +— h(x)

where h(z) is the smallest distance between the atoms of F¢, .. By Lusin’s

Joc*

theorem there is a set K; C A, of positive measure for which A is continuous.
Since volume is regular, there is a compact subset K, of K; with positive

measure. Let o = m}p h(z).
TEK2
Let S > 0 be an inferior bound for the length of F° . Let ng € N big

loc*

enough so that any segment of a center leaf with length greater than or
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equal to a has the length of its ngth iterate greater than . This means that
/™ (Ks3), which has positive measure, have all the atoms separated from each
other with respect to the Markov partition. Since we have a finite number of
Markov partition, one of them must have a set with positive measure such
that its leaves have only one atom. Hence all Markov partition must have

one atom, absurd. O
m
Still on the same context, of volume preserving Anosov on T2, we have:

Theorem 3.1. The disintegration of volume is atomic if and only if the

partition by center leaves is a measurable partition.

Proof. Suppose { F¢}enr is a measurable partition, then we can apply Rokhlin’s

theorem and we decompose volume on probabilities m, on center leaves. Let
Ap ={xz € M | m,(F;(z)) > 0.6},

where Fj(x) is the segment of F¢(x) of length L on the induced metric and
centered at .

Note that there is L € R such that vol(Az) > 0. Let us suppose that f
contracts the center leaf, then f~'(Ff(f(x))) D Fi(z). Since fimg = my (),

for x € Ay,

M) (FL(f () = ma (fH(FL(f (@) = ma(FL(x)) > 0.6.

So f(z) € Ar, by ergodicity f(Ar) C A implies Vol(AL) = 1.

Claim: diam®Ap N FS < 2L, where diam® means the diameter of the set
inside the center leaf.

Suppose there exist yi,y, € Ap N FS with d°(yq,y2) > 2L. Then

Fi(yr) N Fi(ye) =0 and m,(F7(y;)) > 0.6, i = 1,2.
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Then
1> mg(FL(y1) U FL(y2)) = ma(FL(y1)) + ma(FL(y2)) = 0.6 4 0.6 = 1.2.

This absurd concludes the proof of the claim.
Claim: The decomposition has atom.
Define
Ly =inf{L € [0,00) | Vol(AL) = 1}.

Note that Vol(AL,) = 1, to see that take a sequence L,, — Ly and observe
that Ar, = M;Ar,. Let A =inf||Df'|E°||, let € < 1 such that e\ > 1. For

xr e A/\Lo

M) (Fepy (F(2))) = ma(f7HFL, (f(2))) = ma(Fiy(2)) > 0.6.

Therefore f(x) € A.r,. By ergodicity we may suppose Ay, f-invariant,
hence Vol(A.r,) = 1. Absurd since eLy < Lg. This means that Ly = 0,
which implies atom.

Let us prove the converse. Suppose we have atomic decomposition, we
want to see that the partition through center leaves is a measurable partition.

Lift f to R3, by Hammerlindl [10] we may find a disk D? transverse to the
center foliation, by quasi-isometry of the center foliation we may take this
disk as big as we want. So take a disk such that its projection D* = 7(D?)
has the property:

FND* 0, Vo € T

Since the decomposition is atomic, we already know that it has one atom

per leaf. Let us define the following set of full measure:

M = U lcoc(p)7

peEA
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where A is the set of atoms, F_(p) is the segment of center leaf such that the
right extreme point is p and the left extreme point is on D? and #F¢,.(p) N
D? =1.

Since D? is a separable metric space, {Ff.(p)}pea is a measurable parti-
tion for M. Therefore we have a family of subsets {4; };en of M such for all
peA
oe(D) = ﬂ B;, where B; € {A;, A7}

loc
ieN

3.1 Non-atomic singular measures

We are now ready to show the existence of a DA (in fact an Anosov) for
which the disintegration of volume on the center leaves is neither Lebesgue

nor atomic.

Proof of Theorem A. Consider a linear Anosov with the following split M =
E** @ EY* @ E*. Let ¢ be a volume preserving diffeomorphism which pre-
serves the E* direction. By Baraviera, Bonnatti 3] [[A4® # [ X42,. Let h
be the conjugacy between A and f, f oh = ho A. Let us see that

Claim: h.Vol = Vol.

Note that A is a conjugacy of A and f, then they have the same topological
entropy \%. Hence, h,Vol is a measure of maximal entropy. Observe that
the perturbation A o1 of A is such that it preserves the E* direction, which
means that the potentials 0 and —logA} are cohomological and therefore gives
the same equilibrium states. That is, h,Vol = Vol.

We have already seen that on this case h(F¢) = F¢. This means that

{Fa(z)}sers measurable partition < {F4,, () }sers measurable partition.
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But we know that {F§(z)}.ers is not a measurable partition, since its
decomposition is Lebesgue, and therefore not atomic.

Claim: Fj,,, is not absolutely continuous.

Suppose it is absolutely continuous, then )\jf(p) = cte for all periodic
point p, by construction A\%(p) = A§. Since we are on the volume preserving
case, \“(p) is also constant. Hence f is C'-conjugate to A, but this would
imply [ A7?*dVol = [ X4*dVol. Absurd.

The above claims imply that F7 is non-absolutely continuous and form a
non-measurable partition, hence it is not atomic and the conditional measures

are singular with respect to the Lebesgue measure on the center leaves. [J
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4 Conjugacy and Foliation: A C' point of
view

We begin by understanding how Lyapunov exponents vary with respect to

their linearization.

Proposition 4.1. Let f : T3 — T3 be a partially hyperbolic, not neces-
sarily ergodic mnor volume preserving, and let A be its linearization. Then

[ Ae(f)dVol < X“(A).

Proof. Suppose that [ X¢(z)dVol(x) > X4, then there exists a set B of pos-

itive volume and a constant « such that A¢(z) > a > A} Vo € B. Define
By = {z € B| [IDf"|E| = ™ ¥n > N},

Note that
B = | By,
N=1

this means that there is Ny such that Vol(By,) > 0. Since F} is absolutely
continuous then there is z € B such that F§(z) N By, has positive volume
on the unstable leaf.

Let I C F{(z) be a compact segment with Vol°(I N By,) > 0 and
length(I) =:I(I) > M. Then

(D) = / dVolt — / (Fr) dVol* > / (Fr) Vol
fr(I) I INAn,
> / | Df*|E||dVol*(z) > e™*Vol°(I N An,).
INBy,

Consider z, y the extremes of I = [z, y]. Then d“(f™(x), f*(y)) = I(f™(1)).

Using quasi-isometry on the first inequality below we get
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L @)
d(A™(z), A™(y)) d(A"(x), A™(y))
e Vol(I N By,)
ea d(z,y)
— 00 asn — 0o.

> cte

By Proposition 2.4 this ratio should be bounded. Absurd.

The same type of argument above give us:

Corollary 4.1.
/)\S(f) > N (A).

We consider the following for the case of Anosov systems, for it will be

used later.

Corollary 4.2. Let f be an Anosov diffeomorphism with the following split
on the tangent space TM = E* & E"° @& E* and F"° absolutely continuous.
Then A§% > N§°.

Proof. The prove goes as before, with a minor change. We proceed, as pre-
viously, applying Proposition 2.4 with the following linear map = : R” — R"
which is the projection onto a center foliation of the linearization. The pro-
jection is with respect to the system of coordinate given by the foliations of

the linearization (s, Tys, T,) € R™. O

Proof of Theorem E: We only have to prove the implication, as the converse
is a direct consequence of the C''-conjugacy.

Let us suppose that f is partially hyperbolic with the following split of
the tangent space: TM = E* @& E"* @& E". The next three lemmas concern

this case, the other case is reduced to this one by applying the inverse.
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Lemma 4.1.

A¢(m) = X§(p), Vp € Per(f).

Proof. By ergodicity the set of transitive points 7 has total volume. We
may assume that all points of 7 have well defined Lyapunov exponents. For

x € T; given € > 0 let § > 0 be such that by uniform continuity
| Log||[Df|E, | = logl[DFIE,I| | <&, if d(y1,y2) <.

From the Shadowing lemma there is o such that for every a-pseudo orbit
is 6 shadowed by a real orbit. Given Ny € N there is ng € N and ng > Ny such
that {..., f Yz),x, f(z),..., f Y(z),...} is an a-pseudo orbit. Since it
is a pseudo-periodic orbit it is ¢ shadowed by a periodic point with period

ng, call this point ¢. Using that E" is one dimensional, then
1 no u 1 no u
g IIIDI By [ = T-log DB | <

Since we already know that A%(z) exists, this implies that A}(z) = A}(q),
hence A¢(m) = A\}(p) as we wanted. O

Lemma 4.2.

A4(m) = A4

Proof. We know that the topological entropy of A is A\, the conjugacy gives
hiop(f) = hiop(A). From the theory of equilibrium states (section 2.3.1)
the measure of maximal entropy is given by the potential v = 0 and the
equilibrium state for the potential v = —logA\" gives the SRB measure, which
is m in our case. And to see that both equilibrium states are the same we just
need to see that both potential are cohomologous (section 2.3.1). It means

that both measures coincide if, and only if,

1 n
= E (—log||D friw)| E"||) = cte, Ya such that f"(z) = =.
n

i=1
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Which is true by hypothesis.
Finally Pesin’s formula gives that hy(m) = [ Afdm = X%. Let us put all

this equalities below.

Ny = hiy(A) = By £) = hy(m) = [ Xy = X (p)

The lemma is then proved. O

Lemma 4.3.

AP (p) = A
Proof. By the above lemma we already know that A%(p) = A%; and A¥*(p) >
A% by Corollary 4.1. Hence, since we are on the volume preserving case
AP AT = AT+ N+ NG, therefore we just need to see that A\¥*(p) > \%®
which is the Corollary 4.2. O]

The above lemmas imply,

A(p) = Na(h(p)), Vp € Per(f).

The above equality gives periodic data. Theorem 2.7 implies that f is C*

conjugate to the linear one. O]

4.1 Failure of the rigidity of center foliation
We are now ready to prove Theorem B.

Proof of Theorem B. We start from a linear Anosov with splitting TM =
E*@E"@FE". Let ¢ be a volume preserving diffeomorphism which preserves
the £*° direction. This means it is absolutely continuous by Gogolev [8] and
by Theorem E it is not C! conjugate to the linear since we changed the
integral of the center foliation. From Theorem F we indeed got an absolutely

continuous foliation that is not C*. O
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4.2 Conditional measures with dynamical meaning

The goal of this subsection is to prove Theorem F. We shall associate to each
center leaf a class of measures differing from each other by a multiplication of
a positive real number in such a way that on each foliated box the normalized
element of this class will give the Rokhlin disintegration of the measure.
When the foliation satisfies the hypothesis on Theorem F we shall be able to
pick measurably on each leaf a representative with some dynamical meaning,
it will then help us to obtain some information on the center Lyapunov

exponent of f.

Lemma 4.4 (Avila, Viana, Wilkinson [2]). For any foliation boxes B, B' and
m-almost every x € BN B' the restriction of mB and mZ to BN B' coincide

up to a constant factor.

Proof. Let ug be the measure on ¥ obtained as the projection of m|B along

local leaves. Consider any C C B and let ue be the projection of m|C on X,

d
dhe o

(0,1], ve almost every point.
dpi

For any measurable set F C C

m(E) = / mE(E) dus(€) = / m?<E>fﬁ<§> e (€).

By essential uniqueness, this proves that the disintegration of m|C is given

by

d
mg = dL,ul;(g) m? i pe(§) almost every point.
Take C = BN B'. Therefore %’;—?(ﬁ)m?\c =m§ = 'Z"TZZ(S)m?/]C. Where pf,

is the projection of measure i on the transversal >’ relative to the B’ box.

Hence
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mg|C = a(§)m¢'|C,

where a(€) = 5 (€)(4:£(€)) " m

dpg dyc
The above lemma implies the existence of a family {|m,| | + € M} of

measures defined up to scaling and satisfying m,(M\F,) = 0. The map
B

x +— [my] is constant on leaves of F and the conditional probabilities m;

coincide almost everywhere with the normalized restrictions of [m,].
We observe that disintegration of a measure is an almost everywhere con-
cept, but in our case, since we shall be considering a C' center foliation,

we look to the conditional measures, of volume, defined everywhere. And,

more important, the number a(§) = ‘igz (S)(Z“Tg(f))_l is indeed defined ev-
erywhere.

From now on we work on the lift. Let B := W?**(0) which is the saturation
by unstable leaves of the stable manifold of 0 € R®. By the semi-conjugacy
we know that every segment of center leaf which has size large enough keep
increasing by forward iteration. Let vy be a length with this property. Let
By be the two-dimensional topological surface such that each center leaf
intersects B and By on two points, that are on the same center leaf and at a
distance v, inside the center leaf. Let By, := f*(B,) therefore, for each point
¢ € B there is a unique point g;(§) € By that is on the same center leaf as
€. Since it will be clear to which point £ gx(&) is associate, we use g instead

to simplify notation.

Define the measure mgj by

mﬁJﬁ([Oﬂ Qk]) = /\kv

where ) is the center eigenvalue of the linearization, [0, ¢x] means the segment

(€, q1(€)] inside the center leaf of &.
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Lemma 4.5.
f*m:c,k = /\_1mf(x),k+1~

Proof. Just see that

f*mx,k([oa Qk—i-l]) = A_lmf(a;),k-&-l([ov Qk+1])-

Therefore if the sequence m, j converges we would get
fimg = Ailmf(z).

In general, by Lemma 4.4, for two foliated boxes B and B’ we have

B dVB - dVB/

x dl/c v dVé .

We apply this formula to the following boxes: B and By, where B compre-
hend the segment of center leaves between B and By, similarly B is formed
by the segment of center leaves bounded by B and Bj. Then

mB.1 = %mg’f = %)\_kmm.

dus *  dug
Note that )\kmx,k = mfk by the definition of the disintegration. The

above proves
Lemma 4.6. On B:
d:U’Bk )71)\kmB_

dps

To establish the convergence of the measures we shall need

My = (

Lemma 4.7. If F¢ satisfies the hypothesis of Theorem F then, there is a
uniform constant o such that

ll(}—;ﬂ[)’k) < d/uLB,C (.13 al(}—;ﬂlgk)
al(FenB) — dug "~ UFenB) '

40



UFZNBk)
1(FSNB)

Proof. To calculate we need to estimate the volume of a rectangular
box. The center holonomy on the center unstable and center stable folia-
tion are bounded by hypothesis. Therefore the volume can be calculated

(estimated) by height times base.

Hence,
diip, [(FEN Bg)
d,uB l(f§ N B) 7
where o, ; € [1/a, o], for all z € R* and k € N.

(x) = Ok

Therefore using Lemma 4.6 we get on B

_ UFenB)\ ™ kB
ek = (‘“ 1<f;m8>) A

For each x there is a subsequence Oz oy ) that converges to some a, as

i(x) — 0.
Lemma 4.8. There is 8 > 0 such that \*/I(F< N By) € [1/8, 8] for all z.

Proof. We need to estimate the fraction

/" (H () = ["(H)I| _ [[H o A™(x) — H o A"(2)[|

|A™(z) — A (y)] ||A™(z) — A"(y)]]
By the triangular inequality:

[ o A%z) — Ho A"w)l| . |IH(A"()) — A*)]| | ||A™(z) — A"(W)]
|A™(z) — A™(y)]| - [AMe) = AM(y)] |[A™(z) — A™(y)]|
|[H(A"(y)) — A"(y)l|
[An(z) — An(y)l|
and
[ o A%z) — Ho A"w)l| _ _[[H(A2)) - A™@)l| | [|A"(z) — A*(y)l]

[|A™(2) — A™(y)]] B |A™(z) = An(y)l|  [[A(z) = A™(y)]|
|| H (A" (y)) = A" ()]l
A () = Al
We know that H is at a bounded distance of the identity and ||A™(z)—A"(y)||

is big. ]
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By the above lemma we may assume that \*/I(F¢N By,) goes to one as k
increases, otherwise incorporate it to the constant a, . Then sending ;)

to infinity

m, = lim mgp, = ((FSNB)/a,)m?. (1)

Ki() 00

By going to a subsequence we obtained a convergent measure, but we
want it to have a specific property. Therefore we have to be more careful
on how to define them. We’ve seen above that f.m,; = A im f(x),k+1, hence
for fixed x there is k;(,) defined as above, but if we define k;(s)) = ki) + 1
we obtain the convergence satisfying fim, = A"'my(,. This means that for
fixed = we can define on the orbit of z measures satisfying the mentioned
dynamical property.

The measures are in fact indexed on a two dimensional plane manifold
W, Hence, to define properly on the whole space, consider the rectangle A
as in the figure below representing W**  the intersection of A to the stable
manifold of the origin is a fundamental domain. The two biggest sides are
unstable leaves. Hence defining the measures as we mentioned above on A

and on its iterates we get measures with dynamical properties.

From the above we conclude that we did get measures on each center leaf

with the property that f.m, = A™'mg). The construction of such measures
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will help us to get information of the center Lyapunov exponent, since we
may recover A by the equality

dfimy

=\ L
dmig(z)

Let us explore more deeply the above relation.

Lemma 4.9. By the above notation, the center Lyapunov exponent of f

exists everywhere and it is equal to .

Proof. Note that

dfl'm, B
———(f"(x)) =A"".
dmgn (s

Let us calculate the Radon-Nikodym derivative by another way. Let I§ C
Fin(zy Pe a segment of length ¢ around f"(z). Then

dfima

M e (f"(z)) = lim —=——-75

6—0 mfn(x) (Igl) '

And

df'my .
——(f"(x)) = hm—n =

dm g (o 020 mn(e)(IF) 020 [ pynydAsa

Sy @ paf) S 1011

~

P (["(2)) 050 [ dApm) 550 ppny [ dAs)

Q

2
s
'\H

:
&

We then have

| Iy=——————||D )

From the other equalities we have

() ()| = N
—pfn(x)<fn(l'))||Df (@[l =Ar""
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By applying ”lim,_,~1/n log” to the above equality we get
X(x) = A,
since the densities of m, are uniformly limited. O]

We are now ready for the

Proof of Theorem F': First, let us prove that f is an Anosov diffeomorphism.
We just need to analyze the behavior of Df on the center direction. Let
¢ > 0 be such that A\, := A — e > 0. Since the center exponent exists for
every x then, given x € T3, there are n, € N and a neighborhood U, of x
such that Vo € U, |Df"=|E¢| > e™=*<. Since T? is a compact manifold take
a finite cover U, ... U,,. Let C; < 1 small enough so that for x € U,, then
|Df*(z)|E¢| > Cpe™ for all n € {0,1,...,n,,}. Let C := min; C,,, we
then have that |Df"(z)|E¢| > Ce™: for all z € T3 and n € N.

Since, in particular, the center foliation is absolutely continuous, from
Gogolev [8], one of the extremal exponents is constant on periodic points.
On the other hand the above theorem gives that in particular on the periodic
points the central exponent is also constant. Since we are on the conservative
case all Lyapunov exponents are constant on periodic points. Then Theorem

E gives that f is C''-conjugate to its linearization. O]
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