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Abstract

This PhD thesis consists of two parts, both of them related to the study of stochastic processes over
discrete structures.

In the first part we study the relation between the performance of the randomized rumor spreading
(push model) in a d-regular graph G and the performance of the same algorithm in the percolated
graph Gp. We show that if the push model successfully broadcast the rumor within T rounds in the
graph G then only (1 + ε)T rounds are needed to spread the rumor in the graph Gp when T = o (pd).

In the second part we study the cover time C of a graph G. The expected value of C is well-
understood in several families of examples, but much less is known about its fluctuations. In this
paper, we give sufficient conditions under which the fluctuations of the cover time converges to the
Gumbel extreme value distribution, making progress on a well-known open problem. The distribution
of late points for the random walk is also determined under the same conditions. Our methods apply
to many “locally transient” families as discrete tori (Z/LZ)d with d ≥ 3 (also proven by Belius) and
high girth expanders, as well as to all examples where Gumbel limits were previously known to hold.

Keywords: Push model, cover time, Gumbel law.
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Resumo

Esta tese de doutorado é composta por duas partes, ambas relacionadas com o estudo de processos
estocásticos em estruturas discretas.

Na primeira parte estudamos a relação entre o desempenho de um algoritmo randomizado (push
model) em um grafo d-regular G e o desempenho do mesmo algoritmo no grafo percolado Gp. Nós
mostramos que se o algoritmo distribui informação para todos os vértices de G dentro de T rodadas
então apenas (1+ε)T rodadas são necessárias para espalhar informação no grafo Gp quando T = o (pd).

Na segunda parte estudamos o tempo de cobertura C de um grafo G. O valor esperado de C é bem
compreendido em muitas famílias de exemplos, mas muito pouco se sabe sobre suas flutuações. Neste
trabalho, damos condições suficientes sob as quais as flutuações do tempo de cobertura convergem para
a distribuição de Gumbel, fazendo progresso em um problema em aberto bem conhecido. A distribuição
dos pontos cobertos por último pelo passeio aleatório também é determinada sob as mesmas condições.
Nossos métodos se aplicam a muitas famílias “localmente transientes” como Toros discretos (Z/LZ)d

com d ≥ 3 e expansores com cintura larga, bem como todos exemplos onde a convergência para Gumbel
era previamente conhecida.

Palavras-chave: Push model, tempo de cobertura, lei de Gumbel.
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Notation

A concept used throughout this work is stochastic domination. If X and Y are random variables
taking values in R, we say that X is stochastically smaller than Y and denote this by X � Y if
P (X ≥ t) ≤ P (Y ≥ t) for any t ∈ R.

If X has distribution µ and Y has distribution ν, then X � Y if and only if∫
f dµ ≤

∫
f dν

for any continuous and increasing function f . By approximation, X � Y implies the relation above
for all increasing upper semicontinuous function f .

In this paper we write X ∼ Y when the random variables X and Y have the same distribution.
We let Geo(p), Be(p), Bin(n, p), Po(λ) denote, respectively, the geometric distribution with parameter
p, the Bernoulli distribution with parameter p, the binomial distribution with parameters (n, p) and
the Poisson distribution with parameter λ. We also denote µ⊗ ν the product measure with marginals
distributions µ and ν.
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Introduction

The subject of this PhD thesis is the study of stochastic processes over discrete structures. In this
introduction we clarify which problems have been addressed and what results have been obtained.

This work consists of two parts that can be read independently. Part I (Chapters 1 to 4) deal with
the problem of information spread in networks by a randomized algorithm. In Part II (Chapters 5 to
9) the interest is to study the fluctuations of the cover time and the structure of the last points covered
by a random walk in different families of graphs.

In Part I, Rumor Spreading on Percolation Graphs, we study the relation between the perfor-
mance of the randomized rumor spreading (push model) in a d-regular graph G and the performance of
the same algorithm in the percolated graph Gp. We show that if the push model successfully broadcast
the rumor within T rounds in the graph G then only (1 + ε)T rounds are needed to spread the rumor
in the graph Gp when T = o (pd). This a joint work with Roberto Oliveira.

Randomized rumor spreading or randomized broadcasting is a simple randomized algorithm to spread
information in networks. In this work we consider the classical push model for rumor spreading, which
is described as follows. Initially, one arbitrary vertex knows an information. In the succeding discrete
time steps each informed vertex chooses a neighbor independently and uniformly at random and forward
the information to it. The fundamental question is: how many time steps are needed until every vertex
of the network has been informed?

The push model has been extensively studied. Most of the papers analyze the runtime of this
algorithm on different graph classes. On the complete graph, Frieze and Grimmett [22] proved that
with high probability1 (1+o (1))(log2 n+logn) rounds are necessary and sufficient to inform all vertices.
In [20] Feige et al. gave general upper bounds holding for any graph and determined the runtime on
random graphs. Also, Chierichetti, Lattanzi and Panconesi [15] proved runtime bounds in terms of
the conductance and Sauerwald and Stauffer [34] obtained bounds in terms of the vertex expasion for
regular graphs.

1With high probability, also denoted w.h.p., refers to an event that holds with probability 1 − o (1) as the size of the
graph tends to infinity.
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The starting point of this part of the thesis is a recent article by Fountoulakis, Huber and Panagiotou
[21] which analyze the push protocol on the Erdös-Rényi random graph Gn,p where p� lnn

n . Among
other things, they show that the protocol will inform every vertex in (1 + o (1))(log2 n + lnn) steps
w.h.p.. One may restate this result as: the runtime of randomized broadcasting on a complete graph is
essentially not affected by random edge deletions, at least up to the connectivity threshold p = lnn/n.

In this part we prove a partial extension of this result to the case of arbitrary percolation graphs.
Here one starts with some arbitrary graph G and performs edge percolation on it. Under certain
conditions, we show that this will not increase the runtime of the protocol by more than a 1 + o (1)
factor. This suggests that the push protocol is robust against random edge failures, which is a desirable
quality for applications.

We need some definitions in order to state our main Theorem. Given a graph G = (V,E), we let
Gp denote the random subgraph of G where each edge is removed independently with probability 1−p
(the vertex set stays the same). We let Tv(G), Tv(Gp) denote the runtimes of the push protocol starting
at v over G and Gp (respectively).

Theorem 1. Let Gn = (Vn, En) be a sequence of dn-regular graph where |Vn| = n→∞ and vn ∈ Vn.
Suppose that exists (Tn)n≥1 such that Tvn(Gn) ≤ Tn with high probability. Then, given any ε > 0 and
0 < pn < 1, such that pn � Tn

dn
, we have that Tvn(Gn,pn) ≤ (1 + ε)Tn with high probability (here the

probability is over the choice of Gn,pn and over the additional randomness of the push protocol). In
particular, Gn,pn is connected with high probability.

One can check in our proofs that the same result holds if Gn has minimum degree dn. The case
where Gn = Kn is complete shows that the condition pn � Tn

dn
cannot be removed in general. We also

remark that proving lower bounds for Tvn(Gn,pn) in terms of Tvn(Gn) is an interesting open problem,
but the upper bound we give seems more interesting for applications.

In Part II, Fluctuations of cover times and the geometry of the set of uncovered points,
we study the cover time C of a graph G. We give sufficient conditions under which the fluctuations of
the cover time converges to the Gumbel extreme value distribution, making progress on a well-known
open problem. The distribution of the last points covered is also determined under the same conditions.
This is a joint work with Roberto Oliveira.

The cover time of a connected finite graph G is the time C it takes for simple random walk to visit
all vertices of G. This is one of the most natural random variables associated with simple random
walk, and it also has been intensely investigated (see [2, 3, 5, 13, 16, 24, 26, 30]). The expected value of
C is well-understood in a variety of examples, and there are also general estimates in terms of hitting
times and the Gaussian Free Field [23].

By contrast, relatively little is known about the fluctuations of the cover time around its mean and
about late points for the random walk. A general concentration result by Aldous [3] gives a necessary
and sufficient condition for C to concentrate around its expectation. However, this is quite far from
describing the actual limiting distribution of C at finer scales or the law of the set of uncovered points.

Our main motivation is to prove Gumbel law fluctuations for cover times. Recall that the Gumbel
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law is the distribution on R with cumulative distribution function:

FGumbel(t) ≡ e−e
−t (t ∈ R).

This law has been known since the early nineties to describe the distributional limit of C in large
complete graphs, hypercubes and binomial coefficient graphs [17]. It is a widespread belief that it
should also be obtained in much more general families of examples. For instance, the following concrete
question has been a well-known open problem for quite some time [5].

Question 1. Consider the discrete torus TdN with n = Nd vertices and d ≥ 3 dimensions, and let CN
denote its cover time. Is it true that as N → +∞,

CN
Gd(0)n − lnn converges in distribution to the Gumbel law,

where Gd(·) is Green’s function for random walk over Zd?

Here is a heuristic explanation for why this law might show up. Recall that the hitting time Ha of
a vertex a of G is the time it takes for random walk to visit a for the first time.

1. The cover time is a maximum of hitting times of vertices: CN = maxa∈TdN Ha;

2. the expected hitting time of a vertex in TdN is ≈ Gd(0)Nd;

3. rescaled hitting times Ha/Gd(0)Nd are approximately exponentially distributed with mean 1;

4. the Gumbel law describes fluctuations of maxi=1,...,nEi−lnn, where E1, . . . , En are iid exponential
random variables with mean 1.

Were it not for the independence requirement in the last item, this would be very close to a full proof
of the Gumbel limit for CN . This suggests that in order to prove the Gumbel limiting law, one needs
to show the approximate independence of hitting times, at least for “good" subsets of vertices. This
heuristic also suggests why Gumbel limits should not be specific to discrete tori: except for item 2,
which specifies the scaling factor Gd(0)Nd, what we described above holds for much more general
Markov chains (see [1]).

Very recently, Belius has answered Question 1 in the affirmative [10]. This proof is based on his
previous papers [8, 9] and uses several important tools, most notably the theory of random interlace-
ments in Zd and very strong couplings of that to the vacant set of random walk in TdN . His methods
also imply that the (rescaled) set of uncovered points at certain times is approximatelly a Poisson
process over the continuous torus. It seems likely that a similar proof could work for other graphs,
such as random regular graphs, for which the corresponding infinite interlacements model would work
out, but it is not clear if this could be generalized to other examples (eg. graphs with unbounded
degree, or oriented graphs).

In this paper we use an abstract version of Belius’s argument in [9], which deals with the coverage
of level sets in cylinders, to derive stronger and much more general statements. In particular, we

IMPA 3 March, 2012



Alan Prata Stochastic Processes over Finite Graphs

obtain a proof of his torus result via a partially independent route. In fact, our proof of the Gumbel
limit follows from the fact that the law of late uncovered points has an approximate product law with
marginals e−t

n . Our results are the first instance of a unified result that proves Gumbel limits (and
much more) for a general family of graphs, which includes all of the above examples. We also obtain
Gumbel limits in new examples such as high-girth expanders, oriented tori and the Cayley graph of
Sn generated by transpositions.

Remark 1. Our proof employs several ideas present in the paper [9], such as proving that the hitting
times of well-separated sets of points behaves as if the individual hitting times were independent. A
first version of the results obtained here was obtained shortly after Belius gave a talk at IMPA on [9].
Upon contacting Belius, we learned that he already had a proof of Gumbel law for the torus, which now
appears in [10]. His proof also uses many ideas present in [8, 9].

A key conceptual difference between our work and that of Belius is that we do not focus on the
specific structure of a given family of graphs. Rather, we obtain our results from a systematicmean field
approximation of hitting times that uses recent results by Oliveira [33]. There are important conceptual
similarities between our approach and that of Miller and Peres in [32, 31] at a high conceptual level,
but our conditions do not quite match theirs.

Our results on specific graphs will be derived from the abstract theorem stated below. The nat-
ural setting for these is that of continuous-time Markov chains. For simplicity, we will only consider
transitive chains, which are the chains for which the generator is invariant under a transitive group of
permutations of the state space.

Undefined terms will be defined in Chapter 6. We use asymptotic notation, as explained in the
same section. Recall also that Ha is the hitting time of a and HS is the hitting time of set S.

Theorem 2. Assume that we have a sequence Q of generators Q of transitive Markov chains over
finite state spaces VQ with |VQ| ≡ nQ → +∞ vertices. Let πQ denote the uniform measure over Q
and tQmix, tQunif are the standard and uniform mixing times of Q (respectively). Assume that for each
Q ∈ Q there exists a number h(Q) such that:

A0 EπQ [Ha] =
(
1 + o

(
1

lnnQ

))
h(Q), where a is any vertex in VQ;

A1 tQmix
h(Q) = o

(
1

ln2 nQ ln lnnQ

)
;

A2 For all {a, b} ∈
(VQ

2
)
, EπQ

[
H{a,b}

]
≤ h(Q)/(1 +φ), where φ > 0 is constant (ie. does not depend

on Q ∈ Q);

A3 There exists α3(Q) = o (1/ lnnQ) such that for all a ∈ VQ the set

BQ(a) ≡ {b ∈ VQ : Pa
(
Hb ≤ tQunif

)
+ Pb

(
Ha ≤ tQunif

)
≥ α3(Q)}

has cardinality |BQ(a)| = o
(
nφQ

)
.
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Finally, let UQt0 denote the set of uncovered points of VQ by Q in time t0 = h(Q)(lnnQ + β), for some
β ∈ R. Then:

dTV(LawπQ

(
UQt0

)
,
⊗
v∈VQ

Be e−β
nQ

) = o (1) , as nQ →∞. (1)

Remark 2. Since Q is transitive, any starting state gives the same Law for C.

Let us comment briefly on the assumptions of this Theorem. In principle, one could remove the
transitivity assumption by imposing A0 to all vertices a. It is not hard to show that we will not
obtain the theorem if we do not require nearly equal hitting times for all vertices. A1 is a “mean-field"
assumption that implies that hitting times are approximately exponentially distributed. It is quite
possible that it can be weakened to tQmix = o (h(Q)). In applications, A2 and A3 will be justified by
showing that Q is “locally transient". A2 will mean that a random walk from a has a chance of drifting
off up to time tQunif without ever hitting b (and vice-versa). Finally, A3 will be deduced from the fast
decay of the associated Green’s function.

As an immediate consequence of Theorem 2 we have the Gumbel law fluctuations for cover times.

Corollary 1. Assume that the conditions of Theorem 2 are satisfied. If CQ denotes the cover time of
VQ by Q, then

LawπQ

( CQ
h(Q) − lnnQ

)
converges weakly to the Gumbel law,

that is to say,
∀t ∈ R, PπQ

( CQ
h(Q) − lnnQ ≤ t

)
→ e−e

−t
.

Proof: Theorem 2 implies that |UQh(Q)(lnnQ+t)| has approximately the same law as a binomial random
variable with parameters nQ and e−t

nQ
, therefore

PπQ

(
CQ

h(Q) − lnnQ ≤ t
)

= PπQ
(
|UQh(Q)(lnnQ+t)| = 0

)
= P

(
Bin

(
nQ,

e−t

nQ

)
= 0

)
+ o (1)

= P
(
Po(e−t) = 0

)
+ o (1)

= e−e
−t + o (1) ,

where in the second equality we use equation (1) and in the third one we use the Law of Small Numbers.
2

Remark 3. Besides obtaining the Gumbel law, Belius also showed that the set of uncovered points
in the discrete torus, suitably rescaled, approximates a Poisson process over the continuous torus at a
fixed time of the form h(Q)n+ βn. Theorem 2 is stronger than this.

We also describe the evolution of the last points covered by Q. We prove that the distribution of the
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time-rescaled process ŨQc = UQh(Q)(lnn+c) after time β is approximately as the process AQ = {AQc }c≥β
defined as follows:

1. For c = β, sample AQβ from
⊗
v∈VQ

Be e−β
nQ

;

2. Each vertex of a ∈ AQβ survives for time Exp(1) independently.

The appropriate space for ŨQc is the set D
(
[β, β′], 2VQ

)
of set-valued trajectories with right-

continuous and left-hands limits. Consider the Prohorov metric dJ on probability measures over
D
(
[β, β′], 2VQ

)
induced by Skorohod metric J (both defined in Chapter 6). Then, we have that:

Theorem 3. Under A0 - A3, for all β, β′ ∈ R, with β < β′, there exists coupling between the process
{AQc }c∈[β,β′] and the process {ŨQc }c∈[β,β′] = {UQh(Q)(lnn+c)}c∈[β,β′] such that

dJ
(
LawπQ

(
{ŨQc }c∈[β,β′]

)
, {AQc }c∈[β,β′]

)
= o (1) , as nQ →∞.

Remark 4. Consider again the setting of Belius result. One may use this Theorem to show that, with
natural embedding into (R/Z)d, the process {Ũc}c∈[β,β′] converges to an evolving Poisson process where
each point disappears independently at rate 1.
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Part I

Rumor Spreading on Percolation
Graphs
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CHAPTER 1

Key ideas

As mentioned in the Introduction, in this part of the thesis we prove a partial extension of Fountoulakis,
Huber and Panagiotou’s result [21] to the case of arbitrary percolation graphs. The proof strategy of
[21] relies on the geometry of the Erdös-Rényi graph above the connectivity threshold. We have no
such information available in our general setting, and instead rely on a very different proof strategy:

Proof strategy: Construct a coupling of:

[push over Gn]↔ [random choice of Gn,p + push over Gn,pn .]

Then show that the runtimes over the two graphs are close under the coupling.

It is not hard to sketch a coupling that solves the analogous problem over oriented graphs. Assume
D = (V, F ) is a n-vertex digraph. Define Dp as the random digraph obtained from D by deleting
each oriented edge with probability 1 − p. We consider a variant of push over D and Dp, where each
informed vertex v pushes the rumour along outgoing edges chosen uniformly but without replacement.
We will assume that all vertices have the same out-degree d and that this modified push protocol over
D typically takes T � pd steps.

We now couple

[push over D up to time T ]↔ [random choice of Dp + push over Dp up to time T .]

For this we need two Bernoulli (indicator) random variables Av→w and Iv→w for each oriented edge
v → w. All of those variables will be assumed independent, and we take:

P (Av→w = 1) = p and P (Iv→w = 1) = CT

pd
for some C > 0.

9
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Notice that T ≥ log2 n as the number of informed vertices can only double at each time step. Chernoff
bounds (see [7]) imply that, if C is sufficiently large, then w.h.p., for all v ∈ V , the set

N (v) ≡ {w ∈ V : v → w ∈ F, Av→wIv→w = 1}

will have at least T elements, as each of the d out-neighbors of v belongs to this set with probability
CT/d. This means we can run modified push over D by having each v select the edges v → w with
w ∈ N (v) in a random order, up to time T . Notice that this gives the right distribution because,
conditionally on |N (v)| = k ≥ T , N (v) is uniform over all k-subsets of out-neighbors of v in D.

We now let Dp be the digraph whose oriented edges are the pairs v → w with Av→w = 1. To run
modified push on Dp, have each v select the edges v → w, w ∈ N (v), in the same order as in the
protocol over D. The key points are that:

• This gives the right distribution because conditionally on Dp and on |N (v)| = k, N (v) is uniform
over k-subsets of the out-neighbors of v in Dp.

• The set of informed vertices in D and Dp coincide up to time T . In particular, if all vertices are
informed in D up to time T w.h.p., the same will hold in Dp.

This shows that the modified push protocol cannot take longer in Dp than its typical runtime in D.
As presented, this proof strategy cannot work for non-oriented graphs. The first problem is that

the neighbors to be informed in the push protocol are chosen with replacement. This, however, is not
hard to deal with; see Proposition 1 below.

A second and more serious problem is that, if one tries to copy the above coupling, the events
w ∈ N (v) and v ∈ N (v) will be positively correlated given {v, w} ∈ Gn,pn . The solution to this will be
to introduce a few extra steps in the push protocol over Gn,pn . This is a kind of sprinkling idea. The
upshot will be that the set of neighbors of v chosen in push-over-Gn,pn will dominate the set chosen in
push-over-G, but the difference between the two sets will be so small that this will not matter much.
(Incidentally, this is where the ε in the Theorem 1 comes from).
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CHAPTER 2

Preliminaries

Let G = (V,E) be an unweighted, undirect, simple and connected graph, where V is the set of vertices,
E the set of edges and |V | denotes the size of the graph. We consider families of graphs Gn = (Vn, En)
where |Vn| = n. For a vertex v ∈ V , deg(v) denotes the degree of v and Γ(v) denotes the set of
neighbors of v.

Given some parameter p ∈ [0, 1], we consider bond percolation in G by removing each edge of G,
independently and with probability 1 − p. The graph obtained from this process is denoted by Gp.
Also, degp(v) denotes the degree of v in Gp and Γp(v) denotes the set of neighbors of v in Gp.

As mentioned before, we consider the randomized broadcasting algorithm called push algorithm.
In fact, the process just explained can be described as follows. Let I(t) be the set of vertices informed
at discrete time t. Initially t = 0 and I(0) = {v}, for some choice of v ∈ V . While I(t) 6= V , each
vertex u ∈ I(t) chooses a neighbor vtu independently and uniformly at random. The new informed set
is

I(t+ 1) = I(t) ∪ {vtu;u ∈ I(t)}.

The process stops when I(t) = V .
We are interested in how many time steps are needed for the process to stop. For this, define

Tv(G) = min{t ∈ N|I(t) = V } as the first time step in which every vertex of G has been informed.
The rest of this chapter is devoted to the study of the negative hypergeometric distribution. A

negative hypergeometric random variable X records the waiting time in trials until the r-th sucess is
obtained in repetead random sampling without replacement from a dichotomous population of size N
with d successes. In the following we show that a negative hypergeometric random variable is stochas-
tically smaller than a sum of geometric random variables. After that we can bound the probability
that the sum of negative hypergeometric distribution deviates above the mean using concentration
inequalities for the sum of geometric random variables.

Fix N ≥ 1, d ∈ {1, . . . , N} and r ∈ {1, . . . , d}. The random variable X is negative hypergeometric,
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denoted by X ∼ NH(N, d, r), if

P (X = k) =

(
k − 1
r − 1

)(
N − k
d− r

)
(
N

d

) ·

The expected value of X is rN+1
d+1 ·

We start studying the relation between geometric and negative hypergeometric random variables.

Lemma 1. For each j = 1, . . . , k1, let Xj be the waiting time until the jth sucess in trials without
replacement from a population of size k1 + k2 with k1 possibilities of sucess (each Xj has distribution
NH(k1 + k2, k1, j)). Then:

X1 � Geo
(

k1
k1 + k2

)
� Geo

(
k1

k1 + k2
− j

k1 + k2

)
; (2.1)

(Xj+1 −Xj) |Xj � Geo
(

k1
k1 + k2

− j

k1 + k2

)
. (2.2)

Proof: Since the number of failures in the population of size k1 + k2 is k2, we have that

P (X1 ≥ m) = k2
k1 + k2

k2 − 1
k1 + k2 − 1 · · ·

k2 − (m− 2)
k1 + k2 − (m− 2)

≤
(

k2
k1 + k2

)m−1

= P
(
Geo

(
k1

k1 + k2

)
≥ m

)
,

where the last inequality follows observing that k2−j
k1+k2−j ≤

k2
k1+k2

for all j ∈ {1, . . . ,min{k1, k2}}. The
second inequality in (2.1) is immediate.

Now to prove (2.2) observe that conditioned in Xj = k the remaining population has size k1 +k2−k
and k2 − (k − j) failures. Thus,

P (Xj+1 −Xj ≥ m|Xj = k) = k2 − (k − j)
k1 + k2 − k

k2 − (k − j)− 1
k1 + k2 − k − 1 · · ·

k2 − (k − j)− (m− 2)
k1 + k2 − k − (m− 2)

≤
(

k2
k1 + k2

+ j

k1 + k2

)m−1

= P
(
Geo

(
k1

k1 + k2
− j

k1 + k2

)
≥ m

)
,

where the above inequality holds because

k2 − (k − j)
k1 + k2 − k

=
k2

k1+k2
(k1 + k2)− k k2

k1+k2

k1 + k2 − k
+
−k k1

k1+k2
+ j

k1 + k2 − k

≤ k2
k1 + k2

+ j

k1 + k2

IMPA 12 March, 2012



Alan Prata Rumor Spreading on Percolation Graphs

and
k2 − (k − j)− l
k1 + k2 − k − l

≤ k2 − (k − j)
k1 + k2 − k

,

for l = 1, . . . ,m− 2. 2

The next lemma enables us to dominate a negative hypergeometric random variable by a sum of
geometric random variables. Its proof can be found in the appendix.

Lemma 2. Let X1, . . . , Xj and Y1, . . . , Yj be random variables taking values in R such that X0 ≡ 0
and Xi+1 −Xi|Xi � Yi+1, for i = 0, . . . , j − 1, then

Xj � Ỹ1 + · · ·+ Ỹj

where Ỹi ∼ Yi and Ỹi is independent of Ỹk for k 6= i.

We use Lemma 1 combined with Lemma 2 to obtain that if Xj ∼ NH(k1 + k2, k1, j) with j ≤ k1,
then Xj � G1+· · ·+Gj , where G1, . . . , Gj are independent geometric random variables with parameter
k1

k1 + k2
− j

k1 + k2
.

Now, consider the following standard fact about stochastic domination, which is a corollary of the
Lemma 2.

Corollary 2. Let X1, . . . , Xr, Y1, . . . , Yr be random variables taking values in R such that {X1, . . . , Xr}
are independent, as well as {Y1, . . . , Yr}. If Xi � Yi for i = 1, . . . , r, then

X1 + · · ·+Xr � Y1 + · · ·+ Yr.

If Xj ∼ NH(k1 +k2, k1, j) and Xl ∼ NH(k1 +k2, k1, l) are independent random variables, we can use
Lemma 2 to guarantee that Xj +Xl � G1 + · · ·+Gj+l, where G1, . . . , Gj+l are independent geometric
random variables with parameter k1

k1+k2
− max{j,l}

k1+k2
.

At this point, the problem of bounding the probability of the sum of negative hypergeometric
random variables deviations above the mean is transformed into the problem of bounding the sum of
geometric random variables. In the next lemma we give a bound for the sum of geometric random
variables with parameter 1− o (1).

Lemma 3. Given any ε > 0 and C > 1 there exists δ = δ(ε, C) > 0 such that if G1, . . . , Gr are
independent random variables with distribution geometric with parameter p ≥ 1− δ, then

P (G1 + · · ·+Gr > (1 + ε)r) ≤ exp (−(C − 1)r) .
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Proof: Begin by taking ε > 0 and C > 1. If the parameter is 1− δ,

P (G1 + · · ·+Gr ≥ (1 + ε)r) ≤ exp
(
−C
ε
rε

)
E
[
exp

(
C

ε

r∑
i=1

(Gi − 1)
)]

= exp(−Cr)
( ∞∑
k=1

(1− δ) δk−1 exp
(
C

ε
(k − 1)

))r

≤ exp(−Cr)
( ∞∑
k=1

(
δ exp

(
C

ε

))k−1
)r

.

For δ sufficiently small δ exp(Cε ) ≤ δ
1
2 ≤ 1

2 and so

exp(−Cr)
( ∞∑
k=1

(
δ exp

(
C

ε

))k−1
)r

= exp(−Cr)
(

1
1− δ

1
2

)r
≤ exp(−Cr)

(
1 + 2δ

1
2
)r

≤ exp
(
−
(
C − 2δ

1
2
)
r
)

≤ exp (− (C − 1) r) .

This gives the result if the parameter of the geometrics is 1−δ. The case p ≥ 1−δ follows via stochastic
domination. 2
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CHAPTER 3

Fast broadcast on Gp

We begin by defining another process, called push without replacement and denoted by PWR or PWR(G):
at time t = 0 an arbitrary vertex knows an information. In the succeeding time steps each informed
vertex chooses a neighbor independently and uniformly at random from its neighbors not yet chosen
and fowards the information according to this list.

In fact, let J(t) be the set of vertices informed by PWR at time t. Initially t = 0 and J(0) = {v},
for some choice of v ∈ V . While J(t) 6= V , each vertex u ∈ J(t) chooses a neighbor vtu independently
and uniformly at random in Γ(u)\{vsu; 0 < s < t}. The new informed set is

J(t+ 1) = J(t) ∪ {vtu;u ∈ J(t)}.

The process stops when J(t) = V .
Define Jv(G) = min{t ∈ N|J(t) = V } as the first time step in which every vertex of G has been

informed by the PWR. The next result relates Tv(G) and Jv(G). We assume that I(0) = J(0) = {vn}
and throughout this chapter we denote G = Gn, p = pn, T = Tn, d = dn and v = vn, we also omit v
from Tv(G) and Jv(G).

Proposition 1. For any graph G we have that J (G) � T (G). Moreover, let Gn = (Vn, En) be
a sequence of dn-regular graphs, with n → ∞, and Tn = o (dn) such that J (Gn) ≤ Tn with high
probability. Then given any ε > 0, T (Gn) ≤ (1 + ε)Tn with high probability.

Proof: Given any graph G, we start building a coupling between the push and the PWR in G as
follows. For each u ∈ V , let Θu = {Θu

i }∞i=1 be a sequence of independent random variables with
uniform distribution in Γ(u). Run the push in G according to the realization of {Θu}u∈V in the
following sense: the first neighbor to be chosen by a vertex u is Θu

1 , the second is Θu
2 and so on.

Now, for u ∈ V , define Xu
1 = 1 and, for each k ∈ N,

Xu
k = inf{m ∈ N|Θu

m /∈ {Θu
Xu

1
, . . . ,Θu

Xu
k−1
}}.
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Also, define Uuk = Θu
Xu
k
. We will use the following fact (proof omitted):

Claim 1. For an arbitrary u ∈ V , let deg(u) = s. The random variable (Uuj )sj=1 has uniform dis-
tribuition in the permutations of Γ(u). Moreover, for each k ≤ s, Xu

k −Xu
k−1 has geometric distribution

with parameter 1− k−1
s and the vector (Uuj )sj=1 and the random variables Xu

1 , X
u
2 −Xu

1 , . . . , X
u
s −Xu

s−1
are mutually independent.

Now, run the PWR according to the realization of {(Uu1 , . . . , Uudeg(u))}u∈V in the following sense:
each vertex u informs its neighbors in the order given by the list (Uu1 , . . . , Uudeg(u)).

With the processes constructed in this way, we have I(t) ⊂ J(t) for all t ∈ N, which implies
J (G) � T (G) and we have the first part of the Proposition.

It remains to prove the second assertion. Let v = I(0) = J(0) and G a d-regular graph with
T = o (d), then

P (T (G) > (1 + ε)T ) = P (T (G) > (1 + ε)T,J (G) ≤ T )

+ P (T (G) > (1 + ε)T,J (G) > T )

= P (T (G) > (1 + ε)T,J (G) ≤ T ) + o (1)

= P (∃w ∈ V ; Tv,w(G) > (1 + ε)T,J (G) ≤ T ) + o (1)

≤ n · P
(
Tv,w′(G) > (1 + ε)T,J (G) ≤ T

)
+ o (1) ,

where Tv,w(G) = min{t ∈ N|w ∈ I(t)} is the first time step in which w is informed and w′ is defined
by the equality maxw∈V P (Tv,w(G) > (1 + ε)T ) = P

(
Tv,w′(G) > (1 + ε)T

)
.

Observe that

1{Tv,w′(G) > (1 + ε)T,J (G) ≤ T} = f((Xu
k −Xu

k−1)k≤d,u∈V , (UXu
k
)k≤d,u∈V )

where f is a measurable function. Recall that {Xu
k −Xu

k−1|k ≤ d, u ∈ V } and {UXu
k
|k ≤ d, u ∈ V } are

mutually independent, then by the substitution principle, we have that

P
(
Tv,w′(G) > (1 + ε)T,J (G) ≤ T

)
= E

[
E
[
f({Xu

k −Xu
k−1}k,u, {(UXu

k
)dk}u)|{(UXu

k
)dk}u

]]
= E

[
φ(UXu

k
)k}u)

]
,

where φ({(xuk)k}u = E
[
f({Xu

k −Xu
k−1}k,u, {(xuk)k}u)

]
.

Fixed the realization {(UXu
k
)k}u = {(xuk)k}u, the event {J (G) ≤ T} implies the existence of a path

γ : v = v0 ∼ · · · ∼ vl = w′ such that Jv0,v1 + · · · + Jvl−1,vl ≤ T , where Jvj ,vj+1 is the first time step
in which vj choose vj+1 to transmit the information in the PWR. As {Tv,w′(G) > (1 + ε)T}, defining
Tvj ,vj+1 as the first time step in which vj choose vj+1 to transmit the information in the push in G, we
have that Tv0,v1 + · · ·+ Tvl−1,vl ≥ (1 + ε)T . So,

E
[
f({Xu

k −Xu
k−1}k,u, {(xuk)k}u)

]
≤ P

(
Tv0,v1 + · · ·+ Tvl−1,vl ≥ (1 + ε)T

)
.
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To bound the probability above we find the distribution of Tvj ,vj+1 ,

Tvj ,vj+1 = X
vj
Jvj,vj+1

= X
vj
1 + (Xvj

2 −X
vj
1 ) + · · ·+ (Xvj

tvj,vj+1
−Xvj

tvj,vj+1−1)

∼ Gj1 + · · ·+GjJvj,vj+1

where Gj1, . . . , G
j
Jvj,vj+1

, by the Claim 7.10, are independent random variables such that Gjk has geo-
metric distribution with parameter 1− k−1

d , for each k = 1, . . . , Jvj ,vj+1 .
As Geo(1− k−1

d ) � Geo(1− T
d ) and Jv0,v1 + · · ·+ Jvl−1,vl ≤ T , using Lemma 2 we have

Tv0,v1 + · · ·+ Tvl−1,vl � G
′
1 + · · ·+G′T ,

where G′1, . . . , G′T are independent geometric random variables with parameter 1− T
d . Then,

P
(
Tv0,v1 + · · ·+ Tvl−1,vl ≥ (1 + ε)T

)
≤ P

(
G′1 + · · ·+G′T ≥ (1 + ε)T

)
. (3.1)

Now, using Lemma 3 with C > 1 + ln 2 and n sufficiently large for T
d < δ,

P
(
G′1 + · · ·+G′T ≥ (1 + ε)T

)
≤ exp (−(C − 1)T ) ,

as T > log2 n we have that

P
(
G′1 + · · ·+G′T ≥ (1 + ε)T

)
≤ exp

(
−(C − 1) lnn

ln 2

)
= o

(
n−1

)
.

Thus, n · P
(
Tv,w′(G) > (1 + ε)T,J (G) ≤ T

)
= o (1) and the proof is finished. 2

The next lemma enables us to build a coupling between the PWR in G and the PWR in Gp.

Lemma 4. Let Gn be a sequence of dn-regular graphs, Tn and pn as in Theorem 1. Take C =(
pd
T

) 1
2 , then, for each u ∈ V , there exist random variables Np

u with distribution Bin(d, CTd ), Nu with
distribution Bin(d, CTd (1− CT

pd )), and random elements Nu in Γ(u), N p
u in Γp(u) such that:

P (Nu = S|Nu = k) = 1(
d

k

) , for each S ⊂ Γ(u) with |S| = k, (3.2)

and

P
(
N p
u = S′|Np

u = j
)

= 1(
degp(u)

j

) , for each S′ ⊂ Γp(u) with |S′| = j. (3.3)
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Moreover, Nu ⊂ N p
u and there exists δ = δn → 0 as n→∞ such that

P (|N p
u\Nu| ≤ δ · |Nu|,∀u ∈ V ) = 1− o

(
n−1

)
. (3.4)

Proof: Begin by taking independent random variables {I ′u→v|(u, v) ∈ V 2, u ∼ v} with distribution
Be(CTpd ), also take, for each e ∈ e(G), independent random variables Ae with distribution Be(p)
(independent of the I ′s).

Now defining, for each (u, v) ∈ V 2 with u ∼ v, Ipu→v = AeI
′
u→v and, for each u ∈ V , N p

u =
{v ∼ u|Ipu→v = 1} and Np

u = |N p
u |, we have that Ipu→v has distribution Be(CTd ) and therefore Np

u has
distribution Bin(d, CTd ) and N p

u satisfies (3.3).
We will use the following general fact to build Nu and Nu:

Strassen’s Lemma Let µ and ν be distributions on R2 such that µ � ν. Then, there exists a coupling
(X,Y ) of the (µ, ν) such that X ≤ Y in the coordinatewise partial order.

Let µ be the law of (Ipu→v, Ipv→u) and ν the distribution of (B1, B2) where B1, B2 are independent
random variables Be(q) such that q = CT

d (1 − CT
2pd). To show that ν � µ, by the symmetry of the

distributions, it suffices to show that S2 � S1, where S1 = Ipu→v + Ipv→u and S2 = B1 +B2.
Our choice of q implies, by simple calculations, that P (S2 ≥ 2) ≤ P (S1 ≥ 2) and P (S2 ≥ 1) ≤

P (S1 ≥ 1) so, S2 � S1. Now, using Strassen’s Lemma, we obtain that there exists (Iu→v, Iv→u) with
distribution Be(q)×Be(q) and such that Iu→v ≤ Ipu→v and Iv→u ≤ Ipv→u. Moreover, as

P (Ipu→v − Iu→v = 1) = E [Ipu→v − Iu→v] = 1
2p

(
CT

d

)2

we have that (Ipu→v − Iu→v) has distribution Be
(

1
2p

(
CT
d

)2
)
.

Defining, for each u ∈ V , Nu = {v ∼ u|Iu→v = 1} and Nu = |Nu|. It immediately follows that Nu

has distribution Bin
(
d, CTd

(
1− CT

2pd

))
, N p

u satisfies (3.2) and Nu ⊂ N p
u . It remains to prove (3.4).

Let us prove (3.4). Start by choosing δ = max
{
C−

1
2 ,
(
CT
pd

) 1
2
}

and defining N∗u = |N p
u\Nu| that

has distribution Bin

(
d, 1

2p

(
CT
d

)2
)
. Let A be the event {|Nu − E [Nu] | ≤ 1

2E [Nu]}. As T ≥ log2 n

and C →∞ we have that E [Nu]� lnn. So, we can use Chernoff bounds for the binomial distribution
to obtain P (Ac) = o

(
n−2). Thus,

P (N∗u > δNu) = P (N∗u > δNu, A) + P (Ac)

≤ P
(
N∗u > δ

3E [Nu]
2

)
+ o

(
n−2

)
= o

(
n−2

)
where in the last inequality we use Chernooff bounds again and our choice of δ which ensures δ·E [Nu]�
max{lnn,E [N∗u ]}. This finishes the proof of Lemma. 2
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The next result studies the relation between J (G) and J (Gp).

Proposition 2. Let Gn = (Vn, En) be a sequence of dn-regular graphs, with n → ∞, that satisfies
J (Gn) ≤ Tn with high probability. Then, given ε > 0 and choosing pn = o (1) such that Tn = o (pn · dn),
we have that J (Gn,pn) ≤ (1 + ε)Tn with high probability.

Proof: We begin building a coupling between the PWR in the graph G and the PWR in the graph Gp
using the previous lemma as follows. Take random variables Nu, Np

u and random elements Nu, N p
u as

in Lemma 4 and fix an arbitrary order {1, . . . , n} of the vertices of G. For each u ∈ V , order Γ(u) in
the following way:

• order Nu uniformly (from 1 to Nu);

• order Γ(u)\Nu uniformly (from Nu + 1 to deg(u)).

Equation (3.2) ensures that this is a uniform ordering of the neighbors of u. Denote by Ordu =
Ordu(wu1 , . . . , wud ), where wu1 < · · · < wud are the neighbors of u, the random vector built by the manner
above. Run the PWR(G) as follows. If t is the first time that the vertex u receives information then in
step t + 1 the vertex u informs wui1 if the i1−th coordinate of Ordu(wu1 , . . . , wud ) is equal to 1, in step
t+ 2 the vertex u informs wui2 if the i2−th coordinate of Ordu(wu1 , . . . , wud ) is equal to 2 and so on.

Let us run the PWR(Gp) similarly. For each u ∈ V , order Γp(u) in the following way:

• order N p
u uniformly, but conditioned to coincide with the order of Nu (from 1 to Np

u);

• order Γ(u)\N p
u uniformly (from Np

u + 1 to degp(u)).

Equation (3.3) ensures that this is a uniform ordering of the neighbors of u. Denote by Ordpu =
Ordpu(w̃u1 , . . . , w̃udegp(u)), where w̃

u
1 < · · · < w̃udegp(u) are the neighbors of u in Γp(u), the random vector

built by the manner above. Run the PWR(Gp) using {Ordpu}u∈V .
Now we will prove that if J (G) ≤ T with high probability then J (Gp) ≤ (1 + ε)T with high

probability. Take ε > 0, we have that

P (J (Gp) > (1 + ε)T ) = P (J (Gp) > (1 + ε)T,A) + P (J (Gp) > (1 + ε)T,Ac) , (3.5)

where A is the event {J (G) ≤ T}∩{Nu >
CT
2 , |N p

u\Nu| ≤ δ · |Nu|, Np
u >

CT
2 , ∀u ∈ V } with C =

(
pd
T

) 1
2

and δ = δn as in Lemma 4. First, we analyze the term P (J (Gp) > (1 + ε)T,Ac):

P (J (Gp) > (1 + ε)T,Ac) ≤ P (J (G) ≥ T )

+P
(
∃u;Nu ≤

CT

2

)
+P

(
∃u;Np

u ≤
CT

2

)
+P (∃u; |N p

u\Nu| > δ · |Nu|) .
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By hypothesis P (J (G) ≥ T ) = o (1). Using Chernoff bounds for the binomial distribution, T ≥ log2 n

and C →∞ we have that P
(
Nu ≤ CT

2

)
= o

(
n−1) and that P

(
Np
u ≤ CT

2

)
= o

(
n−1) . So,

P (J (Gp) > (1 + ε)T,Ac) = o (1) .

Next, let us estimate the other term in equation (3.5). For this, let Jv,u(G) = min{t ∈ N|u ∈ J(t)}
be the first time step in which u is informed by PWR(G) and let w′ be the vertex such that

P
(
Jv,w′(Gp) > (1 + ε)T,A

)
= max

u∈V
P (Jv,u(Gp) > (1 + ε)T,A) .

Then,

P (J (Gp) > (1 + ε)T,A) ≤ P (∃u ∈ V ;Jv,u(Gp) > (1 + ε)T,A)

≤ n · P
(
Jv,w′(Gp) > (1 + ε)T,A

)
,

and the last expression is equal to

n · E
[
1AP(Jv,w′(Gp) > (1 + ε)T |{Ordu}u∈V , {Nu}u∈V , {Np

u}u∈V )
]
, (3.6)

because A is σ({Ordu}u∈V , {Nu}u∈V , {Np
u}u∈V )-measurable.

Defining

Q(·) = P(·|{Ordu}u∈V = {(mu
1 , . . . ,m

u
d)}u∈V , {Nu}u∈V = {nu}u∈V , {Np

u}u∈V = {npu}u∈V )

and µ as the law of ({Ordu}u∈V , {Nu}u∈V , {Np
u}u∈V ), we obtain that expression (7.20) is equal to

n ·
∫

1
Ã

({m̃u}u, {nu}u, {npu}u) ·Q(Jv,w′(Gp) > (1 + ε)T ) dµ({m̃u}u, {nu}u, {npu}u). (3.7)

where m̃u = (mu
1 , . . . ,m

u
d) and Ã is a Borel measurable set such that 1A is equal to 1

Ã
({Ordu}u, {Nu}u, {Np

u}u).
For u ∼ w, let Ju,w(G) be the time until vertex u chooses w to transmit the information according to

the PWR(G) and Ju,w(Gp) the analogue for PWR(Gp). Fixed {Ordu = m̃u}u∈V , the event {J (G) ≤ T}
implies the existence of a path γ : v = v0 ∼ · · · ∼ vl = w′ such that Jv0,v1(G) + · · ·+ Jvl−1,vl(G) ≤ T .
Also note that Nvj > T and Jvj ,vj+1 ≤ T implies (vj , vj+1) ∈ Gp for each j = 0, . . . , l−1. So, expression
(3.8) is less than or equal to

n ·
∫

1
Ã

({m̃u}u, {nu}u, {npu}u) ·Q(Jv0,v1(Gp) + · · ·+ Jvl−1,vl(Gp) > (1 + ε)T ) dµ. (3.8)

Now, we will find the conditional distribution of Jvj ,vj+1(Gp). Take 0 ≤ r ≤ m ≤ l and 0 ≤ k ≤ l,
we want to calculate

P
(
Jvj ,vj+1(Gp) = k|Jvj ,vj+1(G) = r,Nvj = m,Np

vj = l
)
.

As r ≤ m, we have that vj+1 ∈ Nvj ⊂ N p
vj . Moreover, Jvj ,vj+1(G) = r implies that vj+1 is the
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(j + 1)-th vertex chosen in uniform ordering of Nvj . As the order of N p
vj preserves the order of

Nvj , we have that Jvj ,vj+1(Gp) is the time until the (j + 1)-th sucess is obtained in repetead random
sampling without replacement from a dichotomous population of size Np

vj with Nvj successes. Then,
in {Jvj ,vj+1(G) ≤ Nvj},

P
(
Jvj ,vj+1(Gp) = k|Jvj ,vj+1(G), Nvj , N

p
vj

)
= P

(
NH(Np

vj , Nvj , Jvj ,vj+1(G)) = k
)
.

So, the expression (3.8) can be written as

n ·
∫

1
Ã

({m̃u}u, {nu}u, {npu}u) · P (Y0 + · · ·+ Yl > (1 + ε)T ) dµ (3.9)

where, for each j = 0, . . . , l−1, Yj has distribution NH(Np
vj , Nvj , Jvj ,vj+1(G)) and Jv0,v1 +· · ·+Jvl−1,vl ≤

T in Ã.
Inside {∀u ∈ V ; |N p

u\Nu| ≤ δ · |Nu|, Np
u >

CT
2 } we have that

Nu

Np
u
−
Jvj ,vj+1(G)

Np
u

≥ Nu

Nu + |N p
u\Nu|

− T

Np
u

≥ 1
1 + δ

− 2T
CT

= 1− o (1) .

Then, using previous chapter

P (Y0 + · · ·+ Yl > (1 + ε)T ) ≤ P (G0 + · · ·+GT > (1 + ε)T )

where G0, . . . , GT are independent geometric random variables with parameter 1 − o (1). Thus, for n
sufficiently large, we can use Lemma 3 and obtain that

P (G0 + · · ·+GT > (1 + ε)T ) = o
(
n−1

)
,

because T ≥ log2 n. So, expression (3.9) is bounded by o (1) and this finishes the proof of the propo-
sition. 2

Proof of Theorem 1: By hypothesis, T (Gn) ≤ Tn with high probability. Then, using Proposition 1, we
have that J (Gn) ≤ Tn w.h.p.. As Tn = o (pn.dn) and pn = o (1) we can use Proposition 2 and obtain
that J (Gn,pn) ≤ (1 + ε′)Tn w.h.p.. Finally, we use the second part of Proposition 1 to conclude that
T (Gn,pn) ≤ (1 + ε′)2Tn w.h.p.. Choosing ε′ appropriately we have the result. 2
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CHAPTER 4

Appendix

In this appendix we prove Lemma 2. First, consider the following theorem (see [29]):

Proposition 3 (Disintegration). Let ξ and η be two random variables in a probability space (Ω,F ,P).
Consider a measurable function f on R× R with E [|f(ξ, η)|] <∞. Then

E [f(ξ, η)|η] =
∫
f(s, η)µ(η, ds), P− a.s.,

where µ(η, ·) is the regular conditional probability of ξ given η.

Proof of Lemma 2: We proceed by induction in r. For r = 1 the result follows becauseX1−X0|X0 ∼ X1

and X1 � Y1.
Now, define f(ξ, η) = 1{ξ + η ≥ t}. Hence

P (Xr ≥ t) = P (Xr−1 +Xr −Xr−1 ≥ t)

= E [f(Xr−1, Xr −Xr−1)]

= E [E [f(Xr−1, Xr −Xr−1)|Xr−1]]

Let µ(Xr−1, ·) be the regular conditional probability of Xr−Xr−1 given Xr−1 and ν the distribution
of Yr. By Proposition 3, the expression above is equal to

E
[∫

f(Xr−1, s)µ(Xr−1, ds)
]
.

By assumption, we have Xr−Xr−1|Xr−1 � Yr and this means that µ(Xr−1, ·) � ν, P-almost surely.
As f(ξ, ·) is increasing upper semicontinuos we have that

E
[∫

f(Xr−1, s)µ(Xr−1, ds)
]
≤ E

[∫
f(Xr−1, s) ν(ds)

]
.
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Now, take Ỹr ∼ Yr independent of Xr−1 and let ϑ be the distribution of Ỹr. The last expression is
equal to

E
[∫

f(Xr−1, s)ϑ(ds)
]

= P
(
Xr−1 + Ỹr ≥ t

)
.

Since Ỹr is independent of Xr−1, we can use the substitution principle to obtain

P
(
Xr−1 + Ỹr ≥ t

)
= E

[
E
[
f(Xr−1, Ỹr)|Ỹr

]]
= E

[
E [f(Xr−1, ỹr)] (ỹr = Ỹr)

]
= E

[
P (Xr−1 ≥ t− ỹr) (ỹr = Ỹr)

]
.

By the induction hypothesis, there exist Ỹi ∼ Yi, for i = 1, . . . , r−1, independent random variables
such that Xr−1 � Ỹ1 + · · ·+ Ỹr−1 (we can take Ỹ1, . . . , Ỹr−1 independent of Ỹr). Therefore,

P (Xr ≥ t) ≤ P
(
Xr−1 + Ỹr ≥ t

)
≤ P

(
Ỹ1 + · · ·+ Ỹr−1 + Ỹr ≥ t

)
and the result follows. 2
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Part II

Fluctuations of cover times and the
geometry of the set of uncovered points
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CHAPTER 5

Key ideas

The purpose of this part is to study the distribution of the cover time and the geometry of the last
points covered by the random walk on graphs.

Our starting point is the fact that hitting times of moderately large sets are approximately expo-
nentially distributed. That is to say, we show in Chapter 7 that, for moderately large |S|, if x is “far"
from S (ie. B(x) ∩ S = ∅),

Px (HS > t) ≈ e
− t

Eπ [HS ] . (5.1)

In particular, if S = {s} is a singleton,

Px (Hs > t) ≈ e−
t

h(Q) .

We will need strong, quantititative forms of these inequalities to get the kind of approximation we
need. In particular, it is important that the initial point of the trajectory of Xt is not stationary and
that we get tail bounds that decrease fast with t. This is not achieved by the classical papers [1, 4],
and we resort to recent inequalities by Oliveira [33].

By itself, formula (5.1) does not say much about Eπ [HS ] . An upshot of assumption A3 is that
“most" S of moderate size are “spread out" in the sense that that ∀(a, b) ∈ (S)2 b 6∈ B(a). We will use
further ideas from [33] to show (see Proposition 4) that in this case:

If S ∪ {x} is spread out, Px (HS > t) ≈ e−
t |S|
h(Q) . (5.2)

In particular, if S is spread out, the hitting time of S is about 1/|S| times the hitting time of a single
vertex.

Furthermore, we add a result about the point of S that is reached at time HS , which may have
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other applications. We show (see Theorem 5) that, under the restrictions described above,

Lawx

(
HS

h(Q) , XHS

)
≈ Exp

( 1
|S|

)
⊗Unif(S). (5.3)

That is, the location of XHS is approximately uniform over S, and HS
h(Q) and XHS are approximately

independent. This will determine the evolution of the set of uncovered points. In fact, it implies that
each vertex of S survives for time Exp(h(Q)) independently.

However, we have the restrictions that S is of moderate size and S∪{x} is spread-out. Our solution
to this is the same as Belius’s. We divide the process into two phases:

• Phase 1 lasts up to time t0 = h(Q)(lnn + β). We will see that at the end of this phase the
set Ut0 of uncovered vertices has approximate product law. This result uses the exponential
approximations just described as well as a variant of Brun’s Sieve described in Theorem 6 below.
The latter Theorem shows that in a “Poissonian” setting, it suffices to show that probabilities of
the type:

P (∀a ∈ S, a is uncovered)

behave as they should for “most” S of constant size, and that they are not too large for other
S. We note that in principle one could apply sharper bounds, such as those obtained by the
Chen-Stein method [6]. However, it seems difficult to check the assumptions of these results via
our techniques. Our Theorem might also prove useful in other circumstances.

As an immediate consequence of the approximate product law we have the Gumbel law fluc-
tuations for cover times as mentioned in the introduction. We also obtain as corollary of the
approximate product law that:

– |Ut0 | = (1 + o (1)) e−β, if e−β � 1;

– {Xt0} ∪ Ut0 is spread-out, in the sense described above.

• Assuming this typical event, phase 2 lasts from t0 up to the cover time. As described above,
each vertex of Ut0 survives for time Exp(h(Q)) independently.

Therefore we have a complete description of the set of uncovered points after time t0 = h(Q)(lnn+
β).

Remark 5. A direct proof of all of our results is quite trivial for complete graphs. Beliu’s main
conceptual contribution in [8, 9, 10] was to notice that the facts that we just described, which also hold
true for complete graphs, suffice to obtain Gumbel limits for tori. We add to his insight by showing
that a list of weaker and more abstract conditions actually gives stronger results.
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CHAPTER 6

Preliminaries

6.1 Basic notation

Given a set S, (S)k denotes the set of all ordered k-tuples of distinct elements of A whereas
(S
k

)
denotes

the set of all subsets of size k.
Given a function f : R→ R, we let

‖f‖Lip = sup
(x,y)∈(R)2

∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣ .
We allow suprema to be infinite.

M1(S) denotes the set of probability measures over a set S, with the “natural" σ-field (which we
will never specify explicitly). The total variation metric on M1(S) is given by:

dTV(µ, λ) = max{λ(A)− µ(A) : A ⊂ S measurable}.

If X is a A-valued random variable, Law (X) denotes the law or distribution of X.
We now define two distances over M1(R). The L1 Wasserstein distance on M1(R) is given by:

dW (η1, η2) ≡
∫
R
|η1((−∞, t])− η2((−∞, t])| dt (η1, η2 ∈M1(R)).

This expression defines a metric (with potentially infinite values) which is always finite when restricted
to measures with finite first moments. In that case we also have a dual formula [35]:

dW (η1, η2) ≡ sup
{∫

R
f d(η1 − η2) : f : R→ R, ‖f‖Lip ≤ 1

}
.

We will sometimes abuse notation and write dW (X,Y ) instead of dW (Law (X) ,Law (Y )), and note
that |E [X]− E [Y ] | ≤ dW (X,Y ).
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6.2 Markov chains

In this paper Q always denotes (the generator of) a continuous-time Markov chain over a finite state
space V, with transition rates q(x, y), (x, y) ∈ (V)2. Most concrete examples of Q’s we discuss come
from finite graphs. Indeed, a graph G over the set V, where each x ∈ V has degree dx, naturally
corresponds to a specific Q given by:

q(x, y) ≡
{ 1

dx
, if x and y are adjacent in G;

0, otherwise.

Trajectories of Q will be denoted by {Xt}t≥0, and the space of all trajectories is denoted by D ≡
D([0,+∞),V). The law of {Xt}t≥0 when started from x ∈ V or λ ∈ M1(V) will be denoted by Px
or Pλ. Moreover, if Y : D → S is a random variable, Lawx (Y ) and Lawλ (Y ) denote the law (or
distribution) of Y under Px or Py. All chains we consider will be assumed to be irreducible, meaning
that the digraph with vertex set V and arcs corresponding to (a, b) ∈ (V)2 with q(a, b) > 0 is strongly
connected. It is well-known that an irreducible Q has a unique stationary measure π ∈ M1(V).
Moreover, for any ε > 0 the ε-mixing-time of Q (defined below) is well-defined and finite.

tQmix(ε) ≡ inf{t ≥ 0 : max
x∈V

dTV(Px (Xt ∈ ·) , π) ≤ ε}.

Omitting ε correponds to taking ε = 1/4. We also define the uniform mixing time:

tQunif ≡ inf{t0 ≥ 0 : ∀t ≥ t0, ∀x, y ∈ V, Px (Xt = y) ≤ 2π(y)}.

The hitting time of a set ∅ 6⊂ S ⊂ V is:

HS ≡ inf{t ≥ 0 : Xt ∈ S}.

We write Ha or Ha,b when A = {a} for some a ∈ V or A = {a, b} ∈
(V

2
)
(resp.). Finally,

C(S) ≡ max
a∈S

Ha

and C ≡ C(V) = maxa∈VHa.
Now, fix T, T ′ ∈ R, with T < T ′, and let D([T, T ′], 2V(G)) be the space of functions w from [T, T ′] to

2V(G) that are right-continuous and have left-hands limits. Where 2V(G) denotes the space of subsets
of V(G).

Let Λ be the class of strictly increasing, continuous mapping of [T, T ′] onto itself with λ(T ) = T

and λ(T ′) = T ′. If we consider the metric defined by

J(w1, w2) = inf
λ∈Λ

{
ln ||λ||Lip + ln ||λ−1||Lip + 1{∃t ∈ [−T, T ] : w1(t) 6= w2(λ(t))}

}
,

where ||λ||Lip = supx,y∈[T,T ′];x 6=y

∣∣∣λ(x)−λ(y)
x−y

∣∣∣ . It is well known that D
(
[T, T ′], 2V(G)

)
is a Polish space

with the metric J(·, ·), see [12].
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Also denote the Prohorov metric dJ on probability measures over D
(
[β, β′], 2V(G)

)
by

dP (µ, ν) = inf
{
ε > 0 : ∀F ⊂ D

(
[T, T ′], 2V(G)

)
closed, µ(F ) ≤ ν(F ε) + ε and ν(F ) ≤ µ(F ε) + ε

}
,

where µ, ν are probability measures over D
(
[β, β′], 2V(G)

)
and

F ε = {w ∈ D
(
[β, β′], 2V(G)

)
: J(w,w′) ≤ ε for some w′ ∈ F}.
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CHAPTER 7

Exponential approximation

The main goal of this chapter is to collect the results on exponential approximation of hitting times
that we need in the proof of the Main Theorem. We will need the following definitions.

ε0(Q) = C

√√√√ tQmix
Eπ [HS ] ln

(
Eπ [HS ]

tQmix

)
(7.1)

ε1(Q) = C ε0(Q) ∨ α3(Q), where α3(Q) comes from A3 (7.2)

ε2(Q) = C lnn

√√√√ tQmix
Eπ [HS ] ln

(
Eπ [HS ]

tQmix

)
(7.3)

(7.4)

The constant C > 0 is universal, but we will not define it explicitly. We just need it to be big
enough so that the estimates presented below hold. There will also be a fourth universal constant
η > 0 which we will require to be small enough, and we will assume ε0(Q), ε1(Q), ε2(Q) ≤ η. Finally,
we will allow ourselves to increase C or decrease η in the middle of a proof, so that eg. we could write:

eε0(Q) ≤ 1 + ε0(Q).

Lemma 5. If C is large enough and η is small enough, we have the inequality

Pπ
(
HS ≤ tQmix(ε0(Q)2)

)
≤ ε0(Q)2.

Proof: This was proved for the hitting time of diagonal sets (ie. meeting times) in [33, Proposition
4.1]. The same argument applies to the present case. 2

Henceforth the Markov chain Q will be implicit in some notations. The following definition and
Theorem come from [33].
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Definition 1. Given α > 0, β ∈ (0, 1) and m > 0, we say that a distribution µ over [0,+∞) is
Exp(m,α, β) if for all t ≥ 0:

µ((t,+∞)) = (1± α)+ e
− t

(1±β)m .

We write Z =d Exp(m,α, β) if Law (Z) is Exp(m,α, β). We also define Exp(m) = Exp(m, 0, 0).

Theorem 4 ([33]). There exists a universal constant C > 0 such that the following holds. In the above
Markov chain setting, assume that 0 < ε ≤ δ < 1/10C are such that:

Pπ (HS ≤ tmix(δε)) ≤ δε.

Let tε(S) be the ε-quantile of Lawπ (HS), ie. the unique number tε(S) ∈ [0,+∞) with Pπ (HS ≤ tε(S)) =
ε (this is well-defined since Pπ (HS ≤ t) is a continuous and strictly increasing function of t in our
setting).Given λ ∈M1(V), write:

rλ(S) ≡ Pλ (HS ≤ tmix(δε)) .

Then:
Lawλ (HS) = Exp

(
tε(S)
ε

, C ε+ 2rλ(S), C δ
)
.

Moreover, ∣∣∣∣εEπ [HS ]
tε(S) − 1

∣∣∣∣ = O (δ + rλ)

and:
Lawλ (HS) =d Exp (Eπ [HS ] , C ε+ 2rλ, C δ) .

We will not prove this, but the main ideas in this proof are in Proposition 4 below. Let us begin
to prove the results we will need later on.

Lemma 6. If C0, C1 are large enough, for any t ≥ 0:

Pπ (Ha > t) = {1± ε0(Q)} exp
(
− t

(1± ε0(Q)) h(Q)

)
.

Moreover, there exists some universal η > 0 such that if S ⊂ V and 0 < |S| < η/ε0(Q),

Pπ (HS > t) = {1± |S| ε0(Q)} exp
(
− t

(1± |S| ε0(Q))Eπ [HS ]

)
.

and
Eπ [HS ] ≥ (1− |S| ε0(Q)) h(Q)

|S|
.

Proof: This proof will contain a few statements that are not necessary for the end result, which will
be useful for later lemmas.

If S = {a} is a singleton, one may apply Theorem 4 with

ε ∈ [ε0(Q), 2ε0(Q)], δ = 2ε0(Q)
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to deduce:

∀ε ∈ [ε0(Q), 2ε0(Q)] : Lawλ (Ha) = Exp (h(Q), C ε0(Q) + 2rλ({a}), C ε0(Q)) (7.5)

and tε({a}) = (1 +O (ε0(Q))) ε h(Q). (7.6)

Notice that this implies the Lemma in the case |S| = 1 since (increasing C0 if necessary) for |A| = 1,
by definition of Exp(m,α, β), since Pπ

(
Ha ≤ tQmix(2ε0(Q)2)

)
≤ ε0(Q)2.

Now consider some general set S with |S| ≤ η/ε0(Q). Choose:

δ = 2|S| ε0(Q) and ε ∈ [ε0(Q), 2ε0(Q)]

and again apply Theorem 4 (assuming η is small enough). We have

Pπ
(
HS ≤ tQmix(δε)

)
≤
∑
a∈S

Pπ
(
Ha ≤ tQmix(ε0(Q)2)

)
= |S| ε0(Q)2

4 ≤ δε.

Thus the conditions of the Theorem are satisfied, and we obtain:

∀ε ∈ [ε0(Q), 2ε0(Q)], Lawλ (HS) = Exp (Eπ [HS ] , C |S|ε0(Q) + 2rλ(S), C |S|ε0(Q)) (7.7)

and t|S|ε(S) = (1 +O (ε0(Q) |S|)) ε|S|Eπ [HS ] . (7.8)

This implies the two equations in the Theorem (by increasing C0 and decreasing δ, if necessary), as:

Pπ
(
HS ≤ tQmix(ε0(Q)2)

)
≤
∑
a∈S

Pπ
(
HS ≤ tQmix(ε0(Q)2)

)
≤ |S|ε0(Q)2.

The last step is the inequality relating Eπ [HS ] to h(Q). By transitivity, tε({a}) is independent of a,
therefore:

Pπ (HS ≤ tε({a})) ≤
∑
b∈S

Pπ (Hb ≤ tε({b})) = |S| ε.

Therefore, tε({a}) ≤ t|S| ε(S) and (7.8), (7.6) imply:

Eπ [HS ] ≥ (1−O (ε0(Q)|S|)) h(Q)
|S|

. (7.9)

2

We will also need the following definition.

Definition 2. We define the collection of well-separated sets:

S ≡ {S ⊂ V : S 6= ∅, ∀(a, b) ∈ (S)2, b 6∈ B(a).}.

Define the graph G = (V, {ab : a ∈ BQ(b) or b ∈ BQ(a)}). Also define Skl = {S ∈
(Vn
k

)
:

G[S] has l connected components}, this way
(Vn
k

)
= ∪kl=1Skl , moreover, S ∈ Skl is independent set

in the graph Gn if and only if l = k. For S ∈ Skl , we can write S = ∪li=1Si, where the Si’s are the
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connected components of S in G. We also have HS = min1≤i≤lHSi .

The following result show that if S ∈ Skl , then Pπ (HS > t) ≈
∏l
i=1 exp

(
− t

Eπ[HSi ]

)
.

Proposition 4. For S ∈ Skl and 0 ≤ t ≤ 2h(Q) lnn, we have that

Pπ (HS > t) = (1 + o (1)) exp
(
− t
µ

)
, (7.10)

where µ = 1∑l

i=1
1

Eπ[HSi ]
and the term o (1) is uniform for k = |S| fixed.

Proof: Initially, take S ∈ Skl , so S = ∪li=1Si. Define µi = Eπ [HSi ] and µ = 1∑l

i=1
1
µi

. First, we show

that Pπ (HSi ≤ ε0(Q)µ) ≈ ε0(Q)µ
µi

, that is, for 1 ≤ i ≤ l, we have that

Pπ (HSi ≤ ε0(Q)µ) = (1 +O (δ))ε0(Q)µ
µi

, (7.11)

where δ = 2ε0(Q)|S|.
Note that µi ≤ Eπ [Ha], for all a ∈ Si, and by A0 we have Eπ [Ha] ≤ (1 + o

(
1

lnn

)
)h(Q). For

other side, by Lemma 6, Eπ [HSi ] ≥ (1 − |Si|ε0(Q))h(Q)
|Si| . Then, for n large, µ

µi
≥ 1

2|S| . Taking
ε′ ∈ [ ε0(Q)µ

2|S|µi ,
ε0(Q)µ
µi

] follows that δε′ ≥ ε0(Q)2 and so tQmix(δε′) ≤ tQmix(ε0(Q)2). Therefore, by Lemma 5

Pπ
(
HSi ≤ tQmix(δε′)

)
≤
∑
s∈Si

Pπ
(
Hs ≤ tQmix(ε0(Q)2)

)
≤ |Si|ε0(Q)2 ≤ δε′.

So, we can use Theorem 4 and obtain that∣∣∣∣∣ ε′µitε′(Si)
− 1

∣∣∣∣∣ ≤ O (δ)

and then
(1−O (δ))ε0(Q)µ

µi
≤ Pπ (HSi ≤ ε0(Q)µ) ≤ (1 +O (δ))ε0(Q)µ

µi
,

and we have (7.11).
Now, we will show that

Pπ (HS ≤ ε0(Q)µ) = (1 +O (δ))ε0(Q). (7.12)

To get (7.12), first observe that, using (7.11), we have

Pπ (HS ≤ ε0(Q)µ) ≤
l∑

i=1
Pπ (HSi ≤ ε0(Q)µ)

≤ (1 +O (δ))ε0(Q)
l∑

i=1

µ

µi

= (1 +O (δ))ε0(Q).
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On the other hand,

Pπ (HS ≤ ε0(Q)µ) ≥
l∑

i=1
Pπ (HSi ≤ ε0(Q)µ)

−
∑

1≤i<j≤l
Pπ
(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ

)
.

The last term can be written as

Pπ
(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ

)
= Pπ

(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ,HSi < HSj

)
+Pπ

(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ,HSj < HSi

)
.

Using Markov property we arrive at

Pπ
(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ,HSi < HSj

)
≤ Pπ (HSi ≤ ε0(Q)µ) max

s∈Si
Ps
(
HSj ≤ ε0(Q)µ

)
.

Remember that sj /∈ B(s) for all sj ∈ Sj . So, for s ∈ Si, we can use Markov property and we get

Ps
(
HSj ≤ ε0(Q)µ

)
≤

∑
sj∈Sj

Ps
(
Hsj ≤ ε0(Q)µ

)
≤

∑
sj∈Sj

(
α3(Q) + 2Pπ

(
Hsj ≤ ε0(Q)µ

))

≤ |Sj |
(
α3(Q) + (1 +O (δ))ε0(Q)µ

µi

)
Using Lemma 6, the last inequality reduces to

Ps
(
HSj ≤ ε0(Q)µ

)
≤ ε1(Q)(1 +O (δ))2|S|.

So,

Pπ
(
HSi ≤ ε0(Q)µ,HSj ≤ ε0(Q)µ

)
≤ (1 +O (δ))3ε1(Q)|S|ε0(Q)µ

µi

and we can write

Ps (HS ≤ ε0(Q)µ) ≥ (1−O (δ))ε0(Q),

proving (7.12).
Finally, let us finish the proof of the claim. By (7.12) there exists a number ρ = (1 + O (δ))ε0(Q)

such that ε0(Q)µ = tρ(S). As δρ ≥ ε0(Q)2 we have that

Pπ (HS ≤ tmix(δρ)) ≤
l∑

i=1
Pπ (HSi ≤ tmix(δρ)) ≤ ε0(Q)2|S| = δρ.
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Then we can apply Theorem 4 and obtain that

Lawπ (HS) = Exp
(
tρ(S)
ρ

,O (δ) , O (δ)
)
,

with

tρ(S)
ρ

= ε0(Q)µ
(1 +O (δ))ε0(Q) = (1 +O (δ))µ.

Therefore,

Pπ (HS > t) = (1±O (δ))+e
− t

(1±O(δ))µ .

As µ ≥ (1−O (δ))h(Q)
|S| and t ≤ 2h(Q) lnn, we have

Pπ (HS > t) = (1±O (δ))+e
− t
µ e
±O(δ)t

µ

= (1±O (δ))+e
− t
µ e
±O(δ)
|S| .

Remember that δ = ε0(Q)|S| and ε0(Q) = o
(

1
lnn

)
, so

Pπ (HS > t) = (1 + o (1))e−
t
µ ,

and it finishes the proof of the Proposition. 2

The next result shows that if {x} ∪ S is well separated, then

Lawx

(
HS

h(Q) , XHS

)
≈ Exp

( 1
|S|

)
⊗Unif(S).

The marginal distribution of HS
h(Q) comes from [33] and we add here a new result about the point of S

reached.

Theorem 5. Let S = S1 ∪ S2 ∪ · · · ∪ Sl be a subset of V with |S| · l = O (lnn). Assume that for all
distinct 1 ≤ i, j ≤ l and all x ∈ Si we have that Px

(
HSj ≤ tQunif

)
≤ ε. Also let v ∈ V be such that

Pv
(
HS ≤ tQunif

)
≤ ε. If I = min{i ∈ [l];XHS ∈ Si} and pi = µ

µi
, then there exists a coupling of the pair

(HS , I) and (H̃S , Ĩ), where (H̃S , Ĩ) is a random vector with distribution Exp(µ)⊗ {pi}li=1, such that

P
(
I 6= Ĩ

)
= O

(
|S|2ε0(Q)

)
(7.13)

and

E
[
|HS − H̃S |

µ

]
= O

(
|S|2ε0(Q)

)
. (7.14)
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Proof: We start by showing (7.13). It is well known that we can couple I and Ĩ so that

P
(
I 6= Ĩ

)
= dTV (I, Ĩ) =

l∑
i=1

(Px (I = i)− pi)+

Let us find an upper bound for Px (I = i). Note that,

Px (I = i) =
∞∑
k=0

Px (I = i,HS ∈ (kε0(Q)µ, (k + 1)ε0(Q)µ]) . (7.15)

Observe that, for n sufficiently large, we have

Pπ
(
HS ≤ tQmix(δε0(Q))

)
≤ δε0(Q) < (1 +O (δ))ε0(Q) = Pπ (HS < ε0(Q)µ) (7.16)

then T := tQmix(δε0(Q)) < ε0(Q)µ. Using this, we can bound Px (I = i,HS ∈ (kε0(Q)µ, (k + 1)ε0(Q)µ])
by

Px
(
HS > kε0(Q)µ,HSi ◦Θkε0(Q)µ ≤ T

)
+ Px

(
HS > kε0(Q)µ,HSi ◦Θkε0(Q)µ+T ≤ ε0(Q)µ

)
. (7.17)

As T = tQmix(δε0(Q)), the conditional law of Xkε0(Q)µ+T given Fkε0(Q)µ and the conditional law of
X(k−1)ε0(Q)µ+T given F(k−1)ε0(Q)µ are δε0(Q) close to π. Then, using Markov property, the expression
(7.17) is less than or equal to

Px (HS > (k − 1)ε0(Q)µ) (Pπ (HSi ≤ T ) + δε0(Q)) + Px (HS > kε0(Q)µ) (Pπ (HSi ≤ ε0(Q)µ) + δε0(Q)).(7.18)

Now, we will proceed as in Lemma 3.2 of [33]. Using an idea as above, we can prove that, for all
k ∈ N\{1},

Px (HS > kε0(Q)µ) ≤ (1− ε0(Q) +O (δε0(Q)))k. (7.19)

The case k = 1 follows by Markov property and (7.16).
We can apply (7.17), (7.18) and (7.19) in (7.15), concluding

Px (I = i) ≤ (Pπ (HSi ≤ T ) + δε0(Q))
∞∑
i=0

(1− ε0(Q) +O (δε0(Q)))k−1

+ (Pπ (HSi ≤ ε0(Q)µ) + δε0(Q))
∞∑
i=0

(1− ε0(Q) +O (δε0(Q)))k

≤ (Pπ (HSi ≤ T ) + δε0(Q)) 1
ε0(Q)−O (δε0(Q))

+ (Pπ (HSi ≤ ε0(Q)µ) + δε0(Q)) 1
ε0(Q)−O (δε0(Q)) .

In Proposition 4 we have shown that Pπ (HSi ≤ ε0(Q)µ) = (1 + O (δ))ε0(Q)pi. As Pπ (HSi ≤ T ) ≤
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O (δε0(Q)), it follows that

Px (I = i) ≤ pi +O (δ)

and we have (7.13).
Now, we will study (7.14). Start building a coupling between HS and H̃S so that

E
[
|HS − H̃S |

∣∣I = i, Ĩ = k
]

= dW (Lawx (HS |I = i) ,Exp(µ)).

The existence of this coupling is discussed in [35].
We can write

E
[
|HS − H̃S |

∣∣I, Ĩ] =
l∑

i,k=1
E
[
|HS − H̃S |

∣∣I = i, Ĩ = k
]

1{I = i, Ĩ = k}. (7.20)

For {I = i, Ĩ = i}, we have

E
[
E
[
|HS − H̃S |

∣∣I = i, Ĩ = i
]

1{I = i, Ĩ = i}
]
≤ E

[∫ ∞
0
|Px (HS > t|I = i)− e−

t
µ |dt1{I = i}

]
,

using Fubini’s theorem we have that the last term is equal to∫ ∞
0
|Px (HS > t, I = i)− e−

t
µPx (I = i) |dt. (7.21)

Further,

|Px (HS > t, I = i)− Px (HS > t, I ◦Θt+T = i) | ≤ Px (HS ∈ (t, t+ T ], I = i) .

Therefore, equation (7.21) is less than or equal to∫ ∞
0
|Px (HS > t, I ◦Θt+T = i)− e−

t
µPx (I = i) |+

∫ ∞
0

Px (HS ∈ (t, t+ T ], I = i) dt. (7.22)

Summing the second term in equation (7.22), we get

∫ ∞
0

Px (HS ∈ (t, t+ T ]) dt = Ex

[∫ HS

HS−T
dt

]
= T

= o (µ) ,

where we use Fubini’s theorem in first equality.
Use Markov property to obtain

Px (HS > t, I ◦Θt+T = i) = Px (HS > t) (Pπ (I = i)± δε0(Q)).
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Now, note that (7.10) still valid with δx instead π. So, we can bound the first term in equation (7.22)∫ ∞
0
|(1 + o (1))e−

t
µPπ (I = i)− e−

t
µPπ (I = i) |dt = o (1)Pπ (I = i)µ.

Finally,

E
[

l∑
i=1

E
[
|HS − H̃S |

µ
|I = i, Ĩ = i

]
1{I = i, Ĩ = i}

]
= 1

µ
o (1)Pπ (I = i)µ+ T

µ

= o (1) .

The way which HS and H̃S were coupled implies that there exists a constant C such that

E
[
|HS − H̃S |

µ
|I = i, Ĩ = k

]
1{I = i, Ĩ = k} ≤ C.

As P
(
I 6= Ĩ

)
≤ l ·O (δ), we have that equation (7.14) follows using the statements above in (7.20). 2
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CHAPTER 8

The approximate product law

In this chapter we prove Theorem 2. We show that the uncovered set at time t0 = h(Q)(lnn + β) is
approximately distributed as

⊗
v∈V Be e−β

n

. We will deduce Theorem 2 from the following result, which
we prove at the end of this chapter.

Theorem 6. Suppose Gn = (Vn, En) is a sequence of graphs where each Gn has n vertices and maximal
degree ∆n = no(1). Assume that (Xn(v))v∈Vn is a collection of indicator random variables indexed by
Vn with pn(v) ≡ P (Xn(v) = 1) = (1 + o (1)) e−βn , where β ∈ R is a constant. Assume further that, as
n→ +∞,

∀k ∈ N : sup
S∈(Vn

k ) independent

∣∣∣∣E [
∏
v∈S Xn(v)]
e−βk/nk

− 1
∣∣∣∣ = o (1) , (8.1)

where the o (1) term may depend on k. Also assume that there exists a constant c > 0 such that:

∀k ∈ N, ∀U ∈
(

Vn

k

)
not independent : E

[∏
v∈U

Xn(v)
]
≤ n−c−r(U) (8.2)

where r(U) is the number of connected components in Gn[U ]. Then:

dTV(Law (Xn(v) : v ∈ Vn) ,
⊗
v∈Vn

Be e−β
n

) = o (1) .

Let us apply the above theorem to the current case. Consider the graph:

Gn = (Vn, {ab : a ∈ BQ(b) or b ∈ BQ(a)}).

If ∆n = max dGn(a), by A3, we have that ∆n = no(1). If we take S ∈
(Vn

k

)
with S independent set,

we can use A0 and Proposition 4 to conclude (8.1). For S = ∪li=1 ∈ Skl , with l < k, by A2 there
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exists some Si with at least two elements a, b, and then Eπ [HSi ] ≤ Eπ [Ha,b] ≤ h(Q)
1+φ . Again using A0,

it follows that:

Pπ (HS > t) ≤ (1 + o (1)) exp
(
− t(l + φ)

h(Q)

)
= (1 + o (1))n−(l+φ)

and we have (8.2). Therefore, we can apply Theorem 6 and we get

dTV(Lawπ (Ut0) ,
⊗
v∈Vn

Bee−β/n) = o (1) , (8.3)

proving Theorem 2.
The Bernoulli approximation immediately implies the concentration of |Ut0 |. Moreover, consider

the event:
E ≡ {{Xt0} ∪ Ut0 ∈ S} ∩ {||Ut0 | − e−β| ≤ δ e−β}

where δ ≥ 1/e−β. Theorem 2 implies the next result that will be needed after.

Lemma 7. Given ε > 0, there exists β = β(ε) ∈ R such that

Pπ (E) ≥ 1− ε,

for n large enough.

Proof of the Lemma 7: For a given t ≥ 0, define the set of bad pairs.

Bt0 ≡ {(a, b) ∈ (V)2 : b ∈ B(a), Ha,b > t0}.

Clearly,

{{Xt0} ∪ Ut0 ∈ S} = {Bt0 = ∅} ∩
( ⋂
a∈V
{Ha > t0 ⇒ Xt0 6∈ B(a)}

)
.

Hence:

Pπ (Ec) ≤ Pπ (Bt0 6= ∅) +
∑
a∈V

Pπ (Ha > t0 and Xt0 ∈ B(a)) + Pπ
(
||Ut0 | − e−β| > δ e−β

)
. (8.4)

We bound the three terms separately. We first compute:

Pπ (Bt0 6= ∅) = Pπ
(
Po(e−β) > 0

)
+ o (1)

= e−e
−β + o (1)

<
ε

2 ,

choosing β properly.
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Define s0 = t0 − tQunif . We now bound:

∑
a∈V

Pπ (Ha > t0 and Xt0 ∈ B(a)) ≤
∑
a∈V

Pπ (Ha > s0 and Xt0 ∈ B(a))

(Lemma 6 + “t0 ≤ 2h(Q) lnn") ≤
∑
a∈V

(1 + ε1(Q)) e−
s0

h(Q) Pπ
(
XtQunif

◦Θs0 ∈ B(a) | Ha > s0
)

(defn. of tQunif) ≤
∑
a∈V

(1 + ε1(Q)) e−
s0

h(Q) π(B(a))

(π uniform + A3) ≤
∑
a∈V

(1 + ε1(Q)) e−
s0

h(Q)
o
(
nφ
)

n

(defn. of s0) ≤ (1 + ε1(Q)) e
tQunif
h(Q) e−β

o
(
nφ
)

n

(tQunif ≤ h(Q)) ≤ (1 + ε1(Q)) e e−β
o
(
nφ
)

n
= o (1) .

Indeed, tQunif ≤ h(Q) follows from tQmix ≤ η h(Q)/ ln2 n ln lnn and tQunif ≤ C lnntQmix (which hold if C is
large enough).

Finally, by Theorem 6, we have |Ut0 | ≈ Binom(n, e−βn ). As Binom(n, e−βn ) is concentrated around
e−β, the same applies to |Ut0 |. It finishes the proof of the Lemma. 2

Proof of Theorem 6: We start by denoting Law (Xn(v) : v ∈ Vn) by µ and
⊗
v∈V Bee−β/n by ν. Also

denote S = {S ⊂ Vn : S is independent set in Gn} and take ε > 0. The total variation distance
between µ and ν can be calculated as

dTV(µ, ν) =
∑
S⊂Vn

(µ(S)− ν(S))+

≤
∑
S/∈S

µ(S) +
∑

S∈S, |S|>R
µ(S) +

∑
S∈S: |S|≤R

(µ(S)− ν(S))+

= (I) + (II) + (III).

Let us take care of the first term (I):

∑
S/∈S

µ(S) = P (∃v, w ∈ Vn : v ∼ w,Xn(v) = 1, Xn(w) = 1)

≤
∑
v∈Vn

∑
w∼v

E [Xn(v)Xn(w)]

= no(1)−c,

where we have the last equality because ∆n = no(1) and by (8.2). So,
∑
S/∈S µ(S) < ε for n large

enough.
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Now, we bound the second term (II). Choose R such that e−β(R+1)

(R+1)! ≤ ε, then∑
S∈S:|S|>R

µ(S) = P (∃W ⊂ {v ∈ Vn : Xn(v) = 1} : |W | = R+ 1,W ∈ S)

≤
∑

W∈S,|W |=R+1
E
[ ∏
v∈W

Xn(v)
]

≤ (1 + o (1))
(

n

R+ 1

)(
e−β

n

)R+1

≤ (1 + o (1))e
−β(R+1)

(R+ 1)!
≤ (1 + o (1))ε,

the last inequality follows by our choice of R.
At last, we study (III). By the inclusion-exclusion principle it can be shown that

ν(S) = E

∏
v∈S

Xn(v)
∏
w/∈S

(1−Xn(w))


=

n−|S|∑
l=0

(−1)l
∑

W∈(Vn\Sl )
E
[ ∏
v∈S∪W

Xn(v)
]
.

Using Bonferroni inequalities, we have that for all K = 1, . . . , n−|S|2

2K−1∑
l=0

(−1)l
∑

W∈(Vn\Sl )
E
[ ∏
v∈S∪W

Xn(v)
]
≤ ν(S) ≤

2K∑
l=0

(−1)l
∑

W∈(Vn\Sl )
E
[ ∏
v∈S∪W

Xn(v)
]
.

Choose K such that e−β(2K)

2K! < ε. We can bound
∑
S∈S:|S|≤K(µ(S)− ν(S))+ by

∑
S∈S:|S|≤R

2K∑
l=0

(−1)l
∑

W∈(Vn\Sl )

E [ ∏
v∈S∪W

Xn(v)
]
−
(
e−β

n

)|S|+l


+

+
∑

S∈S:|S|≤R

∑
W∈(Vn\S2K )

(
e−β

n

)|S|+2K

.(8.5)

To bound the second term in (8.5), note that

∑
S∈S:|S|≤R

∑
W∈(Vn\S2K )

(
e−β

n

)|S|+2K

≤
R∑
s=0

(
n

s

)(
n− s
2K

)(
e−β

n

)|S|+2K

≤
R∑
s=0

ns

s! ·
n2K

2K! ·
(
e−β

n

)s+2K

≤ e−β2Kee
−β

2K!
< εee

−β
,
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where the last inequality follows by our choice of K.
The other term in (8.5) is less than or equal to

∑
S∈S:|S|≤R

2K∑
l=0

∑
W∈(Vn\Sl ):S∪W∈S

∣∣∣∣∣∣E
[ ∏
v∈S∪W

Xn(v)
]
−
(
e−β

n

)|S|+l∣∣∣∣∣∣+ (8.6)

∑
S∈S:|S|≤R

2K∑
l=0

∑
W∈(Vn\Sl ):S∪W /∈S

∣∣∣∣∣∣E
[ ∏
v∈S∪W

Xn(v)
]
−
(
e−β

n

)|S|+l∣∣∣∣∣∣ . (8.7)

We want to show that

∑
S∈S:|S|≤R

2K∑
l=0

∑
W∈(Vn\Sl ):S∪W∈S

∣∣∣∣∣∣E
[ ∏
v∈S∪W

Xn(v)
]
−
(
e−β

n

)|S|+l∣∣∣∣∣∣ < ε, (8.8)

for n sufficiently large. Denoting supS∈(Vn
l ):S∈S

∣∣∣∣E[
∏
v∈S Xn(v)]
e−βl/nl

− 1
∣∣∣∣ = fl(n), by (8.1), we have that

sup0≤l≤2K fl(n) = o (1). Then, the left hand side of (8.8) is less than or equal to

∑
S∈S:|S|≤R

2K∑
l=0

∑
W∈(Vn\Sl ):S∪W∈S

fl(n)
(
e−β

n

)|S|+l
≤

∑
S∈S:|S|≤R

2K∑
l=0

fl(n) · n
l

l! ·
(
e−β

n

)|S|+l

≤
∑

S∈S:|S|≤R
o (1) · e

−β|S|

n|S|
· ee−β

≤
R∑
s=0

o (1) · n
s

s! ·
e−e

−β
s

ns
· ee−β

≤ o (1) e2e−β

and we have (8.8) for n large enough.
Now we will show that the other sum in (8.6) is small, that is,

∑
S∈S:|S|≤R

2K∑
l=0

∑
W∈(Vn\Sl ):S∪W /∈S

∣∣∣∣∣∣E
[ ∏
v∈S∪W

Xn(v)
]
−
(
e−β

n

)|S|+l∣∣∣∣∣∣ < ε. (8.9)

Let Smt = {U ⊂
(Vn
m

)
: U have t connected components}. Let us find an upper bound for the

number of elements in Smt . If S ∈ Smt , there exist S1, . . . , St connected components of S. First we
choose s1, . . . , st vertices in V to be the root of each connected component of S. Thereafter, we choose
an element st+1 adjacent to one of the si: we have at most t∆ possibilities. We may continue to choose
st+2, st+3, . . . , sk so that si is adjacent to sj for some 1 ≤ j < i: we have at most (k− 1)∆ possibilities
for each choice. It is easy to see that all choices of S ∈ Smt can be obtained in this way. So:

|Smt | ≤ nt∆k−t(k − 1)k = nt+o(1). (8.10)
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Then we have that there exists hmt (n)→ 0 as n→∞ such that |Smt | ≤ nt+h
m
t (n).

Therefore, the left hand side of (8.9) is bounded by

∑
U /∈S:|U |≤R+2K

E [∏
v∈U

Xn(v)
]

+
(
e−β

n

)|U | =
R+2K∑
m=1

∑
U /∈S:|U |=m

E [∏
v∈U

Xn(v)
]

+
(
e−β

n

)|U |
=

R+2K∑
m=1

R+2K∑
t=1

∑
U∈Smt

E [∏
v∈U

Xn(v)
]

+
(
e−β

n

)|U |
≤

R+2K∑
m=1

R+2K∑
t=1

nt+h
m
t (n)

(
n−c−t +

(
e−β

n

)m)
< ε,

and (8.9) follows for n large enough. Combining (8.8) and (8.9) we have that (III) is bounded by
(2 + ee

−β )ε.
Finally, using our bounds to (I), (II) and (III) we arrive at

dTV(Law (Xn(v) : v ∈ Vn) ,
⊗
v∈Vn

Be e−β
n

) = dTV(µ, ν) ≤ (4 + ee
−β )ε,

for n large enough. Since ε > 0 is arbitrary, this finishes the proof of the theorem. 2
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CHAPTER 9

The evolution of the last points covered

In this chapter we analyze the evolution of the uncovered set after time t0 = h(Q)(lnn+ β). For this,
define τ0 = t0, U0 = Ut0 and, for each i = 1, . . . , |Ut0 |,

τi = inf{t ≥ 0 : Xτi−1+t ∈ Ui−1},

Ii = Xτi−1+τi ,

Ui = Ui−1\{Ii}.

Now, define the process A = {Ac}c≥β as follows:

1. For c = β, sample Aβ from
⊗

v∈Vn
Be e−β

n

;

2. Each vertex of a ∈ Aβ survives for time Exp(1) independently.

The lack of memory property of exponentials implies that the process defined above is consistent. For
each a ∈ Vn, let Ea denote the exponential random variable with parameter 1 as described above. For
the process A denote τ0 = β and, for each i = 1, . . . , |A0|, define

τ i = min{Ea : a ∈ Aτ i−1},

Ii = {a ∈ Vn : τ i = Ea},

Ai = Ai−1\{Ii}.

Note that, for each i, τ i has distribution Exp
(

1
Ai−1

)
. Moreover, τ1, . . . , τ |A0| are independent random

variables.

Theorem 7. For all β, β′ ∈ R, with β < β′, there exists a coupling between {Ac}c∈[β,β′] and the process
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{Ũc}c∈[β,β′] = {Uh(Q)(lnn+c)}c∈[β,β′] such that

P
(
Ũβ 6= Aβ

)
= o (1) , (9.1)

P

|Ũβ |⋃
i=1
{Ii 6= Ii}

 = o (1) , (9.2)

and

E

min

|Ũβ |∑
i=1

| τih(Q) − τ i|

|Ũβ|
, 1


 = o (1) . (9.3)

Proof: The proof follows from Theorem 6 and Theorem 8 below. 2

Theorem 7 directly implies:

Theorem 3. For all β, β′ ∈ R, with β < β′, there exists coupling between the process {Ac}c∈[β,β′] and
the process {Ũc}c∈[β,β′] = {Uh(Q)(lnn+c)}c∈[β,β′] such that

dJ
(
LawπQ

(
{Ũc}c∈[β,β′]

)
, {Ac}c∈[β,β′]

)
→ 0, (9.4)

as n→∞, for all ε > 0.

Proof [sketch]: Define a function λ = λ(c) by λ(β) = β, λ(β′) = β′, and

λ

(∑i
i=1 τi

h(Q) − β
)

=
i∑
i=1

τ i − β,

when
∑
j≤i τj ≤ β′, for other c define λ(c) via linear interpolation.. By the properties of the coupling,

Uλ(c) = Aλ(c) for all c. Checking that ||λ||Lip, ||λ−1||Lip ≈ 1 since
∣∣∣ τi

h(Q) − τ̃i
∣∣∣� τ̃i, we will have

P
(
J
(
Lawπ

(
{Ũc}c∈[β,β′]

)
, {Ac}c∈[β,β′] > ε

))
→ 0. (9.5)

Moreover, equation (9.5) implies (9.4) and it finishes the proof of the Theorem. 2

We know, by Theorem 6, that Law (Ut0) ≈
⊗

v∈V Be e−β
n

. To prove Theorem 7, we will study

Law
(
τ1, . . . , τUt0 , I1, . . . , I|Ut0 ||Xt0 , Ut0

)
.

The next result completes the purpose of this chapter.

Theorem 8. There exists a coupling between
(
τ1, . . . , τ|Ut0 |, I1, . . . , I|Ut0 |

)
and

(
τ̃1, . . . , τ̃|Ut0 |, Ĩ1, . . . , Ĩ|Ut0 |

)
,
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such that Law
(
τ̃1, . . . , τ̃|Ut0 |, Ĩ1, . . . , Ĩ|Ut0 ||Xt0 , Ut0

)
has distribution

⊗
i=0,...,|Ut0 |−1

Exp
( h(Q)
|Ut0 | − i|

) ⊗
i=0,...,|Ut0 |−1

Unif(Ut0\{Ĩ0, . . . , Ĩi}), (9.6)

where Ĩ0 = ∅. Moreover,

P

|Ut0 |⋃
i=1
{Ii 6= Ĩi}

 = o (1) (9.7)

and

E

min

|Ut0 |∑
i=1

|τi − τ̃i|
h(Q)\|Ut0 |

, 1

 = o (1) . (9.8)

Proof: Begin by taking
F = {{Xt0} ∪ Ut0 ∈ S} ∩ {|Ut0 | ≤ K}

where K is chosen so that

Pπ (|Ut0 | > K) ≤ Eπ [|Ut0 ] |
K

≤ (1 + o (1))e
−β

K
= o (1)

and K2ε0(Q) = o (1). Note that Lemma 7 and our choice of K imply that

Pπ
(
FC
)
≤ Pπ ({Xt0} ∪ Ut0 /∈ S) + Pπ (|Ut0 | > K) = o (1) .

We prove Theorem 8 by induction. First, define IS = XHS and observe that, by the Markov
property,

Lawπ (τ1, I1|Xt0 , Ut0) = LawXt0

(
HUt0

, IUt0

)
.

So, we can use Theorem 5 and obtain a vector (τ̃1, Ĩ1) coupled to (τ1, I1) such that

Lawπ

(
τ̃1, Ĩ1|Xt0 , Ut0

)
= Exp

(h(Q)
|Ut0 |

)
× Unif(Ut0),

Pπ
(
I1 6= Ĩ1|Xt0 , Ut0

)
= O

(
|Ut0 |2ε0(Q)

)
in F

and
Eπ
[ |τ1 − τ̃1|

h(Q)\|Ut0 |
|Xt0 , Ut0

]
= O

(
|Ut0 |2ε0(Q)

)
in F.

The way in which K was chosen implies that O
(
|Ut0 |2ε0(Q)

)
= o (1). Moreover, as Pπ (F ) = 1− o (1),

we have that (τ̃1, Ĩ1) satisfies (9.6), (9.7) and (9.8) for the case j = 1.
Now, suppose that there exists

(
τ̃1, . . . , τ̃|Ut0 |, Ĩ1, . . . , Ĩj

)
coupled to

(
τ1, . . . , τ|Ut0 |, I1, . . . , Ij

)
satis-
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fying (9.6), (9.7) and (9.8). By Markov property,

Lawπ

(
τi+1, Ii+1|Xt0 , Ut0 , τ1, . . . , τ|Ut0 |, I1, . . . , Ij

)
is the same as

LawXt0+τ1+···+τj

(
HUt0\{I1,...,Ij}, IUt0\{I1,...,Ij}

)
.

In
⋂j
i=1{Ii = Ĩi}, event that occurs with probability 1 − o (1) by induction hypothesis, the above

distribution is the same as

LawXt0+τ1+···+τj

(
H
Ut0\{Ĩ1,...,Ĩj}

, I
Ut0\{Ĩ1,...,Ĩj}

)
.

In F , we have that {Xt0}∪Ut0 ∈ S, in particular {Xt0+τ1+···+τj}∪Ut0\{Ĩ1, . . . , Ĩj} ∈ S. So, we can
use Theorem 5 to obtain (τ̃j+1, Ĩj+1) coupled to (τj+1, Ij+1) such that Lawπ

(
τ̃j+1, Ĩj+1|Xt0 , Ut0\{Ĩ1, . . . , Ĩj}

)
has distribution

Exp
( h(Q)
|Ut0 | − j

)
× Unif(Ut0\{Ĩ1, . . . , Ĩj}),

moreover
Pπ
(
Ij+1 6= Ĩj+1|Xt0 , Ut0 , τ1, . . . , τj , I1, . . . , Ij

)
= O

(
|Ut0 |2ε0(Q)

)
in F

and
Eπ
[ |τj − τ̃j |

h(Q)\(|Ut0 | − j)
|Xt0 , Ut0 , τ1, . . . , τj , I1, . . . , Ij

]
= O

(
|Ut0 |2ε0(Q)

)
in F.

This way the vector (τ1, . . . , τj , I1, . . . , Ij) has the desired distribution. Further, using that Pπ (F ) =
1− o (1), more O

(
|Ut0 |2ε0(Q)

)
= o (1) in F and the induction hypothesis we get

Pπ

j+1⋃
i=1
{Ii 6= Ĩi}

 = o (1)

and

Eπ

min

j+1∑
i=1

|τi − τ̃i|
h(Q)\(|Ut0 | − i)

, 1

 = o (1) .

This finishes the proof of the theorem. 2
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CHAPTER 10

Examples

In this chapter we show that Theorem 2 is applicable when the graph studied is a torus or a high-girth
expander. We show that for each case there exists a number h(Q) satisfying the hypotheses of Theo-
rem 2. Theorem 2 also applies to hypercubes, oriented-tori and transposition random walks over Sn".

10.1 Preliminaries

In this section we prove a preliminary result that will be useful in the examples. Through this section,
Q denotes (the generator of) a continuous-time Markov chain over a finite state space V and uniform
stationary measure. Also denote n = |V|.

Define the probability of escape of the set A ⊂ V starting form x as

pesc(x,A) =
∑
y∈V

q(x, y)Py
(
HA > tQunif

)
(10.1)

and denote pesc(x) = pesc(x, {x}).
The next statement employs ideas present in [18], it relates Eπ [HA] and pesc(x,A).

Lemma 8. If A ⊂ V is such that tQmix
Eπ [HA] = o

(
1

ln2 n ln lnn

)
and

∑
x∈A pesc(x,A) = Ω(1), then

n =
(

1 + o

( 1
lnn

))(∑
x∈A

pesc(x,A)
)
Eπ [HA] .

Remark 6. In this setting is always the case that Eπ [HA] = Ω
(
n
|A|

)
, so it suffices that tQmix |A|

n =

o
(

1
ln2 n ln lnn

)
for the Claim to be applicable.
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Proof: Firstly, note that we can use Theorem 4 (this is possible by Lemma 5) to obtain

∑
u∈V

π(u)dW (Lawu (HA) ,Exp (Eπ [HA])) ≤ ε0(Q)|A|Eπ [HA] , (10.2)

remember the definiton of ε0(Q) in Chapter 7.
Kac’s theorem shows that

1
π(A) = 1 +

∑
x∈A

π(x)
π(A)

∑
y∈V

q(x, y)Ey [HA] .

Then, using Markov property, we get

1
π(A) ≤ 1 +

∑
x∈A

1
|A|

∑
y∈V

q(x, y)
(

tQunif +
∑
u∈V

Py
(
XtQunif

= u,HA > tQunif

)
Eu [HA]

)
.

As
|Eu [HA]− Eπ [HA] | ≤ dW (Lawu (HA) ,Exp (Eπ [HA])),

we have that

n− 1 ≤
∑
x∈A

∑
y∈V

q(x, y)tQunif

+
∑
x∈A

∑
y∈V

q(x, y)Py
(
HA > tQunif

)
Eπ [HA]

+
∑
x∈A

∑
y∈V

q(x, y)
∑
u∈V

Py
(
XtQunif

= u
)
dW (Lawu (HA) ,Exp (Eπ [HA])) .

Using the definition of tQunif , equation (10.2) and that
∑
x∈A pesc(x,A) = Ω(1), we obtain

n− 1 ≤
∑
x∈A

∑
y∈V

q(x, y)tQunif

+
∑
x∈A

pesc(x,A)Eπ [HA]

+
∑
x∈A

pesc(x,A)Cε0(Q)Eπ [HA].

Thus, using that tQmix
Eπ [HA] = o

(
1

ln2 n ln lnn

)
and ε0(Q) = o

(
1

lnn

)
, we have

n ≤
(

1 + o

( 1
lnn

))(∑
x∈A

pesc(x,A)
)
Eπ [HA] .

Analogously, we get

n ≥
(

1 + o

( 1
lnn

))(∑
x∈A

pesc(x,A)
)
Eπ [HA]
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and the Lemma 8 follows. 2

10.2 Discrete Tori

The d−dimensional torus TdL is a graph whose vertex set is the Cartesian product ⊗di=1{−L, . . . , L}
and edges j and k whenever j+L ≡ k+1 (mod 2L). Vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) are
neighbors in TdL if for some j ∈ {−L, . . . , L}, we have xi = yi for all i 6= j and xj+L ≡ yj±1 (mod 2L).

Define the Green’s function G(x, y) = G(y, x) = G(y − x) by

G(x) = Ex

[ ∞∑
t=0

1{St = 0}
]
,

where {St}t∈N is the simple random walk (SRW) in discrete time on Zd. We will show that choosing
h(Q) = Ld · G(0) the hypotheses of Theorem 2 will be satisfied for the torus case.

Remember that, for the torus with d ≥ 3 (see [26]), tQunif = O
(
L2) and by our choice of h(Q) we

have that A1 follows immediately, that is,

tQmix
h(Q) = o

( 1
ln2 Ld ln lnLd

)
.

For A ⊂ ZdL and A′ ⊂ Zd, we define

KL
A = inf{t ∈ N : SLt ∈ A}

and
KA = inf{t ∈ N : St ∈ A′},

where {SLt }t∈N is the SRW on ZdL and {St}t∈N is the SRW on Zd.
The next statement shows that pesc(x,A) ≈ Px

(
KA =∞

)
.

Claim 2. Take 0 6⊂ A ⊂ ZdL, we have that

|pesc(x,A)− Px
(
KA =∞

)
| = O

(
L−γ

)
,

for some γ > 0.

Proof: The constant C > 0 written below may change from one equation to another. As tQunif ≤ CL2,
we have that (10.1) implies that

pesc(x,A) ≤
∑
y∈V

q(x, y)Py
(
HA > CL2

)
.

Using the link between the continuous time and discrete walk, we have

pesc(x,A) ≤ Px
(
KCL
A > CL2

)
+O

(
L−γ

)
,
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for some γ > 0.
Assume without loss of generality that x = 0 and put KA = KCL

A . We want to bound

Px
(
KA ≤ CL2

)
≤ Px

(
KA ≤

CL2

ln2 L

)
+ Px

(
CL2

ln2 L
≤ KA ≤ CL2

)
.

Note that,

Px
(
KA ≤ CL2

)
≤ Px

KA ≤
CL2

ln2 L
, max

0≤t≤ CL2
ln2 L

|S(i)
t | ≤ CL


+

d∑
i=1

Px

 max
0≤t≤ CL2

ln2 L

|S(i)
t | > CL


+Px

(
CL2

ln2 L
≤ KA ≤ CL2

)
,

where S(i)
t is the i-th coordinates of St.

The first term can be bounded by

Px

KA ≤
CL2

ln2 L
, max

0≤t≤ CL2
ln2 L

|S(i)
t | ≤ L

 ≤ Px
(
KA <∞

)
.

Using martingale maximal inequality and Chernoff’s bounds (see [7]), we write the second one as

d∑
i=1

Px

 max
0≤t≤ CL2

ln2 L

|S(i)
t | > CL

 ≤ 2d exp
(
−C2L2

2C2L2

ln2 L

)

= O
(
L−C lnL

)
.

Finally, the last one

Px

(
CL2

ln2 L
≤ KA ≤ CL2

)
≤ Px

 max
0≤t≤ CL2

ln2 L

|S(i)
t | > CL


+

∑
y∈{−CL,...,CL}d

Px
(
S CL2

ln2 L
= y

)
Py
(
KA < CL2

)
.

Lawler (see [25]) show that Px (St = y) ≤ Ct−
d
2 , for all x, y ∈ Zd. Teixeira (see [14]) show that if

A′ = {−(CL)
1
2 , . . . , (CL)

1
2 }d, so A ∈ A′ for L large enough and there exists C > 0 such that

sup
x∈ZdCL\A′

Px
(
KA ≤ CL2

)
= O

(
L−δ

)
,
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for some δ > 0. Then, splitting the sum over y ∈ ZdCL in y ∈ ZdCL\A′ and A′ we obtain

Px

(
CL2

ln2 L
≤ KA ≤ CL2

)
≤ O

(
L−CL lnL

)
+ CLd · lnd L

Ld
· L−δ + CL

d
2 · lnd L

Ld
· 1

= O
(
L−γ

)
,

for some γ > 0.
This shows that, ∣∣∣Px (KA ≤ CL2

)
− Px

(
KA <∞

)∣∣∣ = O
(
L−γ

)
and it finishes the proof of Claim 2. 2

Now, we will show that the torus satisfies the others hypotheses of Theorem 2. For the torus (see
[26]) there exists constant C > 0 such that CLd ≤ Eπ [Hx], so the hypotheses of Lemma 8 are satisfied
and using Claim 2 also, we have

Eπ [Hx] =
(

1 + o

( 1
lnn

))
n

pesc(x)

=
(

1 + o

( 1
lnn

))
n

Px
(
Kx =∞

)
=

(
1 + o

( 1
lnn

))
nG(0).

Thus we have A0.
Also, we can use Lemma 8 to A = {x, y}. Then,

Eπ
[
H{x,y}

]
=

(
1 + o

( 1
lnn

))
n

pesc(x, {x, y}) + pesc(y, {x, y})

=
(

1 + o

( 1
lnn

))
n

Px
(
K{x,y} =∞

)
+ Py

(
K{x,y} =∞

)
=

(
1 + o

( 1
lnn

))
n

2 (G(0) + G(x− y))

≤ n

1 + φ
G(0),

for some φ > 0 and n large enough. The last inequality follows using supz 6=0 G(z) < G(0). Therefore
we have A2.

To finish let us prove A3. Consider the box B = {−l
1
d−2 , . . . , l

1
d−2 }, where l = ln2 Ld. So,

|B| = l
d
d−2 = (Ld)o(1). Moreover, for all y ∈ V \B we have

P0
(
Hy < tQunif

)
≤ P0

(
Ky <∞

)
+O

(
L−γ

)
≤ G(y) +O

(
L−γ

)
≤ O

(
||y||2−d

)
+O

(
L−γ

)
= o

( 1
lnLd

)
,
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where we use Claim 2 in the first inequality, in the third one we use the classical result G(y) =
O
(
||y||2−d

)
for d ≥ 3 (see [25]) and in the last one we use our choice of l. This shows that A3 is

satisfied.

10.3 High-Girth Expanders

For a graph G = (V, E) and S, T ⊂ V, denote the set of edges from S to T by E(S, T ) = {(x, y)|x ∈
S, y ∈ T, (x, y) ∈ E}. Also define the (edge) expasion rate of G by

h(G) = min
S⊂V:|S|≤n2

|E(S, SC)|
|S|

.

A family of expander graphs is a sequence of d-regular graphs {Gn}n∈N of size increasing with n
for which there exists ε > 0 such tht h(Gn) ≥ ε for all n ∈ N. The girth g(G) of a graph G is the
lenght of the shortest cycle in G. A graph G with size n is said to have high girth if g(G) = ω(ln lnn).
In this example we consider a family of vertex-transitive high girth expanders for instance Ramanujan
graphs (see [28]). A proof that these graphs have high girth is available from [11].

For A ⊂ Zd and A′ ⊂ Td, where Td is the infinite d−regular tree, we define

KA = inf{t ∈ N : St ∈ A}

and
KA′ = inf{t ∈ N : St ∈ A′},

where {St}t∈N and {St}t∈N are, respectively, the SRW in discrete time on G and Td.

Define the Green’s function on Td, denoted by G(x, y) = G(y, x) = G(y − x) as

G(x) = Ex

[ ∞∑
t=0

1{St = 0}
]
.

We will show that choosing h(Q) = n · G(0) the hypotheses of Theorem 2 will be satisfied for the
high girth expanders case. Note that for expanders praphs tQmix = O (lnn) (see [19]), then A1 follows
immediately by our choice of h(Q).

For each x ∈ V , let φx : G|
BG(x, g(G)

2 ) 7→ Td|BTd (0, g(G)
2 ) be the natural isomorphism which takes the

g(G)
2 −neighborhood of x in G on the g(G)

2 −neighborhood of 0 in Td, where 0 is the root of Td. We
define BG(x, r) = {y ∈ G : d(x, y) ≤ r}, where d(·, ·) is the distance on graph G.

Claim 3. Take x ∈ G and A ⊂ V. If d(x,A) ≤ g(G)
2 , we have that

|pesc(x,A)− P0
(
Kφx(A) =∞

)
| ≤ C(lnn)−ω(1).
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If d(x,A) > g(G)
2 , then

|pesc(x,A)| ≤ C(lnn)−ω(1).

Proof: Using the link between continuous time and discrete time walk it is enough show that

|Px (KA < tunif)− P0
(
Kφx(A) <∞

)
| ≤ C(lnn)−ω(1).

Take r = g(G)
2 , and denote

τr = inf t ∈ N : d(x, St) = r

and
τ r = inf t ∈ N : d(x, St) = r.

As G|B(x,r) is isomorphic to Td|B(0,r), for y ∈ V, we have that

Px (Sτr = y) =

 0 , d(x, y) 6= r;
1

d(d−1)r−1 , d(x, y) = r.

Suppose that d(x,A) ≤ g(G)
2 and denote A′ = φ

(
A|

B
(
x,
g(G)

2

)). Therefore
Px
(
KA ≤ tQunif

)
= Px (KA ≤ τr) + Px

(
τr < KA ≤ tQunif

)
≤ P0

(
KA′ ≤ τ r

)
+

∑
0≤t≤tQunif−r

∑
a∈A

Px (Sτr+t = a)

≤ P0
(
KA′ ≤ τ r

)
+O

(
|A|tQunif

1
d(d− 1)r

)
≤ P0

(
KA′ ≤ τ r

)
+ C(lnn)−ω(1),

where in the second inequality we use that for a simple random walk in a regular graph we have
maxv∈V Px (Sτr+t = v) ≤ maxv∈V Px (Sτr = v). In the last one we use that tQmix = O (lnn) and that
r = ω(ln lnn). The case d(x,A) > g(G)

2 follows immediately.
For other side,

P0
(
KA′ <∞

)
= P0

(
KA′ ≤ τ r

)
+ P0

(
τ r < KA′ <∞

)
,

and note that

P0
(
τ r < KA′ <∞

)
≤ P0

(
r < KA′ <∞

)
≤

∑
l>r

|A| 1
d(d− 1)l

= C(lnn)−ω(1).

It finishes the proof of the Claim. 2
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For a expander graph (see [27]) we have that Ex [Hy] = Θ(n) for all x and y in V, so the hypotheses
of Lemma 8 are satisfied for A = {y} and A = {x, y}. Therefore A0 and A2 follow as in the torus
case.

To finish let us show that A3 is satisfied. For this, note that for all y ∈ V \B
(
x, g(G)

2

)
we have

that
Px
(
Hy < tQunif

)
≤ C(lnn)−ω(1),

moreover |B
(
x, g(G)

2

)
| = o

(
nφ
)
for all φ > 0.
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