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On Asymptotic Behavior of Economies with Complete
Markets: the role of ambiguity aversion

Carlo Pietro Souza da Silva

Adviser: Aloisio Araujo

Tese apresentada para a obtenção do grau

de Doutor em Ciências

Rio de Janeiro, Brasil

February 2011



ii



Agradecimentos
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Abstract

The aim of this work is to analyze some equilibrium consequences of the behavior of

heterogeneous ambiguity averse agents in inter-temporal general equilibrium models. As

the focus is on the influence of ambiguity aversion, the choice of the models treated

here was based on their previous use to attain similar results, allowing their use as a

parameter. Because of that, it is considered here a general equilibrium model which fits

in frameworks like in Araujo and Sandroni (1999), Sandroni (2000), Blume and Easley

(2006) and Condie (2008).

Two different approaches have been used: in the first (Chapter 2) we strive to find

out what condition of beliefs is necessary to achieve equilibrium, and in the second

(Chapter 3) we want to know what conditions are related to survival. There is also a

chapter of preliminaries where the framework is discussed and some auxiliary results are

presented.

The first results are within the framework of Araujo and Sandroni (1999) where

there is a complete market of contingent claims and bankruptcy is permitted, though

incurring a penalty. Agents have the smooth ambiguity preferences presented by Klibanoff

et al. (2005, 2009). The main result follows those others presented in the literature,

but provides quite a different interpretation. It proves that a necessary condition for

equilibrium existence is the convergence of ambiguity perception reduction.

Other results are placed within the context of Blume and Easley (2006), where be-

havior is analyzed from the point of view of Pareto Optimal allocations. In this case,

agents’ behavior is determined by variational preferences (axiomatized by Macheroni

et al. (2006a,b)). These preferences are more general than the expected utility (used

by Sandroni (2000) and Blume and Easley (2006)) and maxmin utility (used by Condie

v
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(2008)). The main result contrasts with the result derived by Condie (2008). Under

conditions in which a maxmin agent does not survive, another ambiguity averse agent

can survive.
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Chapter 1

Preliminaries

This chapter provides essential definitions and results for the development of this the-

sis. The first section presents the basic framework where the main results are attained.

The next section contains the needed background on ambiguity averse preferences and

explanations about the motivation behind them. Finally, the third section presents the

Blackwell-Dubins theorem and related results.

1.1 Dynamic Model of General Equilibrium

This thesis is grounded on general equilibrium models with infinite time horizon. At

first, models with infinite time horizon would appear quite unrealistic. However, such

models provide theorists an environment in with to test how robust some hypotheses are.

Rubinstein (1991)’s defense of the use of infinite horizon models, despite dealing with

game models, can be invoked to enrich the discussion.

(...) By using infinite horizon games we do not assume that the real world

is infinite. Models are not supposed to be isomorphic with reality. (...) Using

the terminology of formal logic, we can say that finite horizon models are

suitable only for modeling situations in which the last period appears as an

“individual constant” (a specified element) in the players’ model. (Rubinstein,

1991, p. 918)

1



2 CHAPTER 1. PRELIMINARIES

To suppose that decision makers have finite lives is useful when one wants to analyze

the effect of taking this particular fact into account; assuming they have infinite lives is

useful to analyze the effects of their long-term decisions. Long-term must be understood

as something that occurs within a remote period, assuming also that the individual knows

that he is going to be alive. The option to use directly a model of infinite time instead

of using limits for finite horizons follows the same reasoning.

Consider a dynamic model with discrete time T = {0, 1, . . . }. There is a finite set

of agents I = {1, . . . , I}, which have common information modeled by a filtered space

(Ω, (Ft)t∈T ), where Ω := {ω0} ×
∏

t≥1 St, with ω0 the sure state occurring for the first

time and St = {1, . . . , St} the set of possible states occurring at each time t ≥ 1. A

representative element of Ω will be denoted by ω = (ω0, ω1, . . . ) and time-t history

ωt = (ω0, . . . , ωt) ∈ Ωt := {ω0} ×
∏t

τ=1 Sτ . Let Ft be the σ-algebra generated by (t+ 1)-

dimensional cylinders, i.e., Ft = σ({Gt(ω);ω ∈ Ω}), where Gt(ω) := {ωt} ×
∏

τ>t Sτ .

Let F0 = ∪t∈TFt be the algebra of finite-time events and F = σ(F0) the σ-algebra

generated by F0. The filtered space (Ω, (Ft)t∈T ,F) represents the informational process

known by agents. Process ωt is governed by probability P(·|ωt−1) on St, which can be

understood as the conditional probability given ωt−1 in the past. These probabilities

generate law P on (Ω,F) by constructing the partials P(ωt) = P(ωt−1)P(ωt|ωt−1) on

Ft for each t ∈ T , and evoking Kolmogorov’s extension theorem (see Shiryayev (1984)

chapter II, section 3).

The set of all probabilities on a measurable space (A,A) is denoted by ∆(A,A), or

∆(Ω) instead ∆(Ω,F) for simplicity. If P ∈ ∆(Ω), Pt denotes its restriction to Ft, and

Pt+1(s|ωt) := Pt+1(ωt,s)
Pt(ωt)

denotes the conditional one-step-ahead probability from P . Note

that we can consider Pt+1(·|ωt) ∈ ∆(Gt(ω),Ft+1).

For two probabilities, P and Q, we say that Q is absolutely continuous with respect

to P if for A ∈ F , P (A) = 0 implies Q(A) = 0, and we denote Q � P . We say that

Q is locally absolutely continuous with respect to P if for A ∈ F0 , P (A) = 0 implies

Q(A) = 0, and we denote Q
loc
� P . If Q � P and P � Q we say that P and Q are
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equivalents and denote Q ∼ P . Again for P and Q we denote the total variation distance1

between P and Q by ‖P −Q‖.

The acts considered by the agents must be based on their knowledge of the world,

hence the consequences of an act at period t will be contingent to events at Ft. The

individual choice space is a subset of

X =

{
(xt)t∈T ; xt : Ω→ R is Ft-adapted and sup

t,ω
|xt(ω)| <∞

}
,

and the space of prices is

Y =

{
(pt)t∈T ; pt : Ω→ R is Ft-adapted and

∑
t,ω

|pt(ω)| <∞

}
,

considering the duality pair 〈x, p〉 =
∑
t,ω

xt(ω)pt(ω) that generates the Mackey topology

τ(X, Y ) on X and the weak topology σ(Y,X) on Y . It is interesting to note that X

could be identified by{
x :
⋃
t∈T

({t} × Ωt)→ R; sup
t,ω
|x(t, ωt)| <∞

}
,

which in turn is basically `∞.

1.2 Ambiguity Averse Preferences

In recent years the ambiguity aversion phenomenon, indicated by Ellsberg (1961), has

had a lot of attention from economists. While researchers devoted to Decision Theory

have created axiomatic models that incorporate this kind of behavior, other economists

have used such models to provide new interpretations for various economic phenomena

(see Epstein and Schneider (2010) for example).

One of the most successful models that incorporates ambiguity aversion is the maxmin

model by Gilboa and Schmeidler (1989), where ambiguity aversion is represented by

pessimism in face of a set of multiple priors

V (c) = min
P∈C

EP [U(c)] . (1.1)

1For two probabilities on a σ-algebra G the total variation distance is defined by

‖ P − Q ‖ := supA∈G |P (A)−Q(A)|
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Despite the widespread theoretic improvement that has been made based on this

model, it does present some setbacks. The most evident is the homogeneous treatment

for beliefs in set C. An individual with utility function (1.1) behaves as if his confidence

were the same over beliefs in C (see Chateaneuf and Faro (2009) for details). This feature

is not natural in some cases. Other models do not present this problem, such as smooth

ambiguity and variational preferences.

1.2.1 Smooth Ambiguity Preferences

This kind of preference, differently from the maxmin preferences, allows for smoother

behavior face uncertainty. An agent i has such a preference if his utility has the form

V i(c) =

∫
∆(Ω)

φi

(∫
Ω

Ui(c(ω))P (dω)

)
µi(dP )

Here, ambiguity is understood as an uncertainty about what probability governs the

system and this is modeled with a subjective probability µi with finite support on ∆(Ω),

whereas ambiguity attitude is captured by φi. Such a separation between ambiguity

and the attitude toward ambiguity has been claimed by Klibanoff et al. (2005, 2009)2

as an important feature of this model. A probability P ∈ ∆(Ω) is considered by agent

i if µi assigns positive valuefor P , therefore supp(µi) represents ambiguity perceived by

agent i. Probability µi is called second-order belief, and its reduction Eµi [P (·)] ∈ ∆(Ω)

corresponds to subjective belief in expected utility case. Function φi works with respect

to ambiguity aversion as utility index ui does with respect to risk aversion; concavity of

φi represents ambiguity aversion while convexity means ambiguity propensity, and if it

is linear, agent i is ambiguity neutral.

Within Klibanoff et al. (2005) decision makers have preferences on first and second-

order acts, but here it is inconvenient because we consider only assets that are first-order

acts, hence markets would be incomplete. Fortunately, Seo (2009) presents an alternative

approach based on Anscombe and Aumann (1963) that avoids such a problem.

2Epstein (2010) argues that this separation does not occur, but Epstein and Schneider (2010) still

classify smooth ambiguity preference as an important model.
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1.2.2 Variational Preferences

To make his decision, the agent behaves as if considering, at first, every belief (probability)

in ∆(Ω). His utility is determined as if he were playing a game against a malevolent

Nature that tries to choose a model that minimizes agent’s expected utility, but Nature

has a kind of cost to realize a probability as effective model. Variational preferences were

developed by (Macheroni et al. (2006a,b)), and there they explore in detail the behavioral

properties of this kind of preference.

Agent i’s utility functional is given by

V i(c) = min
P∈∆(Ω)

{
EP

[∑
t∈T

βtui(ct)

]
+ Γi(P )

}
and by its recursive form

V i
t (ω, c) = ui(ct(ω)) + min

P∈∆(Ω,Ft+1)

{
EP
[
V i
t+1(ω, c)

]
+ γit(ω, P )

}
.

Where β ∈ (0, 1) is the inter-temporal discount factor, common to all agents, ui : R+ → R

is agent i’s utility index, Γi : ∆(Ω) → [0,∞] and γit(ω, ·) : ∆(Ω,Ft+1) → [0,∞] are the

ambiguity index and dynamic ambiguity index, respectively.

It is supposed that Γi and γit are convex, lower semi-continuous and with 0 in their

image; furthermore, γit satisfies: fixed P , γit(·, P ) is Ft-measurable and fixed ω

domγit(ω, ·) := {P ∈ ∆(Ω); γit(ω, P ) <∞} ⊂ ∆(Gt(ω),Ft+1).

Conditions on ambiguity indexes ensure that beliefs in domΓ are updated according

to Bayes’ rule3. By recursiveness we need to treat only with one-step-ahead decisions

and beliefs, and it simplifies the analysis.

Examples of variational preferences are the maxmin preferences where

Γ(P ) =

 0; if P ∈ C

∞; otherwise

and

γt(ω, P ) =

 0; if P = Qt+1(·|ωt) for some Q ∈ C

∞; otherwise

3For details see Macheroni et al. (2006b).
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where C ⊂ ∆(Ω) is closed, convex and rectangular (for definitions see Epstein and

Schneider (2003)), the expected utility preferences that are maxmin with C = {Q}, and

the Q-multiplier preferences where

Γ(P ) =

 θEP
[
log
(
dP
dQ

)]
; if P � Q

∞; otherwise

and

γt(ω, P ) =

 θβ−tEP
[
log
(

dP
dQt+1(·|ωt)

)]
; if P � Qt+1(·|ωt)

∞; otherwise

with θ > 0.

While maxmin individuals deal with beliefs in an “all or nothing” way, the multiplier

individual has a “smoother” method of dealing with beliefs. We can see that variational

preferences are able to encompass several kinds of behavior.

1.3 Blackwell-Dubins Theorem

All results about asymptotic behavior of agents in a general equilibrium model make

use of a theorem which was presented in Blackwell and Dubins (1962). In short, such

a theorem tells us that if a belief agrees with another belief, then the posterior beliefs

generated by the first will converge to that generated by the second.

Adapted to our notation and purposes, the Blackwell-Dubins Theorem sets the fol-

lowing:

Theorem (Blackwell-Dubins). Let P and Q probabilities on (Ω,F), if Q� P then there

exists A ∈ F with Q(A) = 1 such that for all ω ∈ A

‖P (·|ωt)−Q(·|ωt)‖ t→∞−−−→ 0.

It is interesting to compare the power of hypothesis and its consequence. It is obvious

that convergence of posterior beliefs does not imply absolute continuity between proba-

bilities, because what happens in a specific time t is irrelevant for such a convergence,

but it is important for ensure positiveness of probability of an event. Indeed, agreement



1.3. BLACKWELL-DUBINS THEOREM 7

over finite-time null events4 is the additional hypothesis that is sufficient for a converse

result5.

Theorem 1. If P,Q ∈ ∆(Ω) satisfies Q
loc
� P and

‖P (·|ωt)−Q(·|ωt)‖ t→∞−−−→ 0 Q-a.s.,

then Q� P .

Let us suppose two probabilities on Ω = {0, 1}∞ generated by i.i.d. trials, being

Pt(1|ωt−1) = p and Qt(1|ωt−1) = q with 0 < p, q < 1. If p < q, then posterior beliefs

do not converge, although P and Q agree over finite-time null events, we can see that,

according to the Law of Large Numbers, the event {limT
1
T

∑T
t=1 ωt <

p+q
2
} ∈ F has total

P -probability and has Q-probability equals to zero. This gap between events in F0 and

events in F is related to asymptotic phenomena that are subject of this thesis.

4Q
loc
� P denotes that finite-time null events of P are null events of Q.

5Its proof can be found in Kalai and Lehrer (1994).
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Chapter 2

Convergence of Expectations

2.1 Introduction

When markets are complete, one necessary condition for existence of a sequential equi-

librium is that beliefs must be locally equivalent1, i.e., all agent’s beliefs assign null

probability over the same finite-time events. Araujo and Sandroni (1999) shown that if

bankruptcy is permitted, with a penalty for it, then equivalence of beliefs is a necessary

condition for equilibrium existence. In turn, according to Blackwell-Dubins Theorem,

equivalence implies convergence of posterior beliefs.

Whereas within the context of expected utility equilibrium existence condition tells

us about homogeneity of expectations, when we deal with ambiguity averse preferences,

expectations is not a clear concept. Klibanoff et al. (2005) approach gives us a preference

that provides a notion of ambiguity perception based on a probability on probabilities.

Such a class of preferences allows us to obtain a similar result within the Araujo-Sandroni

framework.

This chapter is organized as follows: in Section 2.2 the market structure of and how

agents make their decisions is presented; the main result follows in Section 2.3; Section 2.4

brings one equilibrium existence result; the following section concludes; and Appendix

presents some auxiliary results.

1Without this assumption some agent will believe in an arbitrage opportunity.

9
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2.2 Framework

At period 0 agent i can trade contingent claims for all periods, in other words, each agent

i choose an asset allocation ki = (kit)t>0 ∈ X, where kit(ω) represents the amount that i

will receive (deliver in the negative case) at time t if ωt occurs. Agent i has a positive

consumption at period 0

c0 = ei0 − 〈q, k〉, (2.1)

where q ∈ Y+ is the price of assets. Each agent is endowed with an initial consumption

stream ei ∈ X+ satisfying, for all i ∈ I

e < ei <
∑
j

ej < ē,

for positive constants e and ē. For t > 0, agent i’s consumption stream derived of his

choice ki is cit = (eit + kit)
+, and dit = (eit + kit)

− is the amount which he is short of.

Agent i makes his decision by maximizing his penalized utility given by

V i(c) = Eµi

{
φi

(
EP

[
ui(c0) +

∑
t>0

βtvi(e
i
t + kt)

])}
, (2.2)

where

vi(x) =

 ui(x) if x > 0

−M ix if x ≤ 0
.

We suppose that the penalty for unity of dit is constant M i > 0 and utility index and

function φi satisfy ui(0) = 0, u′i, φ
′
i > 0, u′′i < 0, φ′′i ≤ 0 and ui(x)

x→0−−→∞.

Definition 1. An equilibrium with penalties is allocations and price ((c̄i, k̄i)i∈I , q̄) such

that each agent i optimizes and markets clear, i.e.∑
i

ci =
∑
i

ei,

∑
i

ki = 0.

Lemma 1. In every equilibrium with penalties, agent i’s first order conditions

βtu′i(c
i
t(ω

t))Eµi{φ′i(EP [Ui(c
i)])P (ωt)} = λ(i)qt(ω

t) (2.3)

are satisfied, where Ui(c
i) :=

∑
t β

tui(c
i
t), ωt ∈ Ωt and λ(i) > 0 is agent i’s Lagrange

multiplier.
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Proof: Under equilibrium with penalties there is no default, in fact

cit − dit = eit + kit

by summing over i we get ∑
i∈I

(cit − dit) =
∑
i∈I

(eit + kit)

and by equilibrium conditions ∑
i∈I

dit = 0.

By assumption of Inada conditions equilibrium allocations are positive. So, because

they are interior solutions of maximization problems we get first order conditions (see

Luenberger (1969) section 9.3, theorem 1).

2

2.3 Convergence of Expectations

Second-order belief of an agent i with utility form (2.2) induces a probability

Pi(·) = Eµi [P (·)],

called its reduction. Such a reduction coincides with agent’s (first-order) belief in the

ambiguity neutral case. Therefore we can think that a phenomenon which depends on

Pi rather than µi does not consider ambiguity aversion.

The next proposition asserts that a necessary condition for existence of equilibrium is

equivalence between reductions of every individual. Araujo and Sandroni (1999) assumed

that individuals are risk averse, and further features on attitude toward risk plays no role.

Similarly, here is assumed that agents are either ambiguity averse or ambiguity neutral,

that is φ′′i ≤ 0, the level of attitude toward ambiguity is not mentioned.

Proposition 1. Let ((c̄i, k̄i)i∈I , q̄) be an equilibrium with penalties, then

Pi � Pj ∀i, j ∈ I.
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Proof: Suppose Pi is not absolutely continuous with respect to Pj for some i, j ∈ I.

Thus, by Lemma 2 in the Appendix, there is a sequence of events At ∈ Ft such that

Pj(At)→ 0 but Pi(At) ≥ δ > 0.

By the first order conditions 2.3〈
qt,

1

βt
χAt

〉
=

1

λi
Eµi
{
φ′i
(
EP
[
Ui(c̄

i)
])

EP
[
u′i(c̄

i)χAt

]}
≥ 1

λi
φ′i(Ui(ē))u

′
i(ē)Pi(At)

≥ 1

λi
φ′i(Ui(ē))u

′
i(ē)δ =: η > 0.

As supp(µj) is finite, Pj(At) → 0 implies that for any n ∈ N there is t ∈ T such that

P (At) <
1
n

for all P ∈ supp(µj). So, let t̄ ∈ T such that for P ∈ supp(µj) we get

P (At̄) <
K

Mj + uj(ē)

where K := uj(c̄
j
0 + η)− uj(c̄j0) > 0. Define (ĉj, k̂j) by ĉj0 := c̄j0 + η and k̂jt := k̄jt if t 6= t̄

and k̂jt̄ := k̄jt̄ −
χAt̄

βt̄ , that is in restrictions because

ĉj0 − e
j
0 +

〈
q, k̂j

〉
= c̄j0 + η − ej0 +

〈
q, k̄j

〉
−
〈
qt,
χAt̄

β t̄

〉
≤ 0

increasing ĉj0 if we need to.

Now, we can verify that (ĉj, k̂j) is better than (c̄i, k̄i) for j, and this gives us one

contradiction.

V j(ĉj) = Eµj
{
φi

(
EP
[
uj(ĉ0) +

∑
βtvj(ĉ

j
t)
])}

= Eµj
{
φi

(
EP
[
uj(c̄0) +

∑
βtvj(c̄

j
t) + (uj(ĉ

j
0)− uj(c̄j0)) + β t̄(vj(ĉ

j
t̄)− vj(c̄

j
t̄))
])}

≥ Eµj
{
φi

(
EP
[
uj(c̄0) +

∑
βtvj(c̄

j
t) +K − χAt̄

β t̄(β−t̄Mj + uj(ē))
])}

> Eµj
{
φi

(
EP
[
uj(c̄0) +

∑
βtvj(c̄

j
t)
]

+K − P (At̄)(Mj + uj(ē))
)}

> V j(c̄j).

2

Corollary below is similar to convergence of expectations result found in the literature,

but it provides a different interpretation. While posterior beliefs homogeneity within
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context of expected utilities gives to us an idea that knowledge must be the same between

individuals to ensure equilibrium, when agents are smooth ambiguity their perception

about how model governs the events could ever differ. For example, let us suppose

that there are two agents and consider two non-equivalent probabilities P,Q ∈ ∆. If

second-order beliefs are given by µ1(P ) = µ1(Q) = 1/2 and µ2(1/2P + 1/2Q) = 1, then

P1 ∼ P2 and equilibrium is possible even if agent 1 is ambiguity averse, but perception

of ambiguity is distinct for agents. But if supp(µ2) = {R}, R is not equivalent to P or

Q, and R /∈ co({P,Q})2, then P1 and P2 are not equivalent and there is no equilibrium

with penalties.

Corollary 1. Under equilibrium with penalties ‖Pi(·|ωt) − Pj(·|ωt)‖ t→∞−−−→ 0 Pi-a.s., for

all i, j ∈ I.

Proof: It is an immediate consequence of the Blackwell-Dubins Theorem.

2

2.4 Existence of Equilibrium

Definition 2. We say that a set of probabilities P displays strong compatibility condition

if there is a constant K > 0 such that

P (A) ≤ KQ(A), ∀A ∈ F

for any P,Q ∈ P.

The following result presents sufficient conditions for existence of an equilibrium with

penalties. It is supposed that agents’ reductions are strongly compatible, condition that

implies equivalence.

Proposition 2. Suppose that {Pi}i∈I displays strong compatibility condition, then there

exists (Mi)i∈I such that one equilibrium with penalties exists.

2co(A) denotes the convex hull of set A.
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Proof: If we consider the utilities

Ṽi(c) = Eµi {φi (EP [Ui(c)])} ,

by Bewley (1972)3 there exists ((c̄i)i∈I , p̄) ∈ XI
+ ×X∗+ such that

i)
∑
i

(c̄i − ei) = 0;

ii) c̄i=arg max
{
Ṽ (ci); p̄(ci − ei) ≤ 0, ci ≥ 0

}
.

Define k̄i by k̄i0 := 0, k̄it := c̄it − ēit, t ≥ 1 and q̄ by q̄0 := 0, q̄t := 1
p0
p̄t t ≥ 1. We claim

that ((c̄i, k̄i)i∈I , q̄) is equilibrium with penalty for suitable (Mi)i∈I .

Note that (c̄i, k̄i) is in the constraint (2.1) since by 〈p̄, c̄i − ei〉 = 0 we get c̄i0 − ei0 +

〈q̄, k̄i〉 = 0, furthermore
∑

i k̄
i =

∑
i(c̄

i − ei).

Now, consider an arbitrary (ci, ki) satisfying the constraint (2.1). As cit−dit = eit +kit,

multiplying both sides by p̄t and summing over t > 0 we get∑
t>0

p̄tc
i
t −
∑
t>0

p̄td
i
t =

∑
t>0

p̄te
i
t + p̄0

∑
t>0

q̄tk
i
t,

by summing over all nodes and rearranging we get

〈p̄, ci〉 = 〈p̄, ei〉+ 〈p̄, di〉.

Denote by r̄ = 〈p̄, ei〉 and

ψi(r) = max
{
Ṽi(c

i); ci ∈ X+ and 〈p̄, ci〉 ≤ r
}
.

Since ψi is concave (see Lemma 3) if r < r′

ψi(r)− ψi(r′) ≥ −D+ψi(r)(r
′ − r)

where D+ψi(r) denotes the derivative from the right of ψi at r.

By the first order conditions for (ii)

βtu′i(c
i
t(ω

t))Eµi
{
φ′i
(
EP
[
Ui(c

i)
])
P (ωt)

}
= λip̄t(ω

t), ∀ωt ∈ Ωt,

3Since µi has finite support (see Section 1.2.1) Ṽi is a finite sum of Mackey continuous functions,

hence is also Mackey continuous.
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so, by Lemma 5 we get quota qt(ω
t) ≤ Liβ

tPi(ωt), where the constant incorporates p0.

Therefore, by this bound and the concavity of φi and ψi

Vi(c̄
i)− Vi(ci)=Eµi

{
φi

(
EP
[∑

βtui(c̄
i
t)
])}
− Eµi

{
φi

(
EP
[∑

βt(ui(c
i
t)−Mid

i
t)
])}

≥Eµi
{
φi

(
EP
[∑

βtui(c̄
i
t)
])}
− Eµi

{
φi

(
EP
[∑

βtui(c
i
t)
])}

+Eµi
{
φ′i

(
EP
[∑

βtui(c
i
t)
])

EP
[∑

βtMid
i
t

]}
≥ψi(r̄)− ψi(r̄ + 〈p̄+ di〉) + φ′i(Ui(ē))MiEPi

[∑
βtdit

]
≥−D+ψi(r̄)〈p̄, di〉+ φ′i(Ui(ē))MiEPi

[∑
βtdit

]
≥(φ′i(Ui(ē))Mi −D+ψi(r̄)Li)EPi

[∑
βtdit

]
,

thus, if Mi ≥ D+ψi(r̄)Li

φ′i(Ui(ē))
, ((c̄i, k̄i)i∈I , q̄) is an equilibrium with penalties.

2

2.5 Conclusion

The main result of this chapter extends conclusions of Araujo and Sandroni (1999) within

a wider context where ambiguity aversion is included. While compatibility over beliefs is

a necessary condition for ensuring equilibrium when agents have expected utilities and

attitudes toward risk play no role in such a case, if agents have smooth ambiguity prefer-

ences there exits equilibrium only if their second-order beliefs’ reduction are equivalents

and ambiguity attitudes have no importance.

On the other hand, for attain an equilibrium existence result it is found constants M i

that depends on risk and ambiguity attitude. The importance of Proposition 2 resides

in the guarantee of non-vacuity of Proposition 1.

2.6 Appendix

Lemma 2. Let P,Q ∈ ∆, if P is not absolutely continuous with respect to Q then there

exists a sequence At ∈ Ft such that Q(At)→ 0 and P (At) > δ > 0 ∀t ∈ T .
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Proof: By hypothesis there exists A ∈ F such that Q(A) = 0 but P (A) > δ for some

δ ∈ (0, 1). Since F = σ(∪tFt) and ∪tFt is an algebra, by Carathéodory extension (see

Shiryayev (1984)) Q(A) = inf{Q(B);A ⊂ B ∈ ∪tFt}. So, for each n ∈ N, ∃Atn ∈ Ftn
such that A ⊂ Atn and Q(Atn) < 1

n
, with tn < tn+1 because Ft ⊂ Ft+1. On the other

hand P (Atn) ≥ P (A) > δ. For t ∈ (tn, tn+1) put At = Atn .

2

Lemma 3. ψi is an increasing and concave function.

Proof: If r < r′, then
{
Ṽi(c); 〈p̄, c〉 ≤ r, c ≥ 0

}
⊂
{
Ṽi(c); 〈p̄, c〉 ≤ r′, c ≥ 0

}
, and so

ψi(r) ≤ ψi(r
′).

If r, r′ > 0 and α ∈ [0, 1], by concavity of Vi

Ṽi(αc+ (1− α)c′) ≥ αṼi(c) + (1− α)Ṽi(c
′),

therefore

max
{
Ṽi(αc+ (1− α)c′); 〈p̄, c〉 ≤ r, 〈p̄, c′〉 ≤ r′ and c, c′ ≥ 0

}
≥ max

{
αṼi(c) + (1− α)Ṽi(c

′); 〈p̄, c〉 ≤ r, 〈p̄, c′〉 ≤ r′ and c, c′ ≥ 0
}

= max
{
αṼi(c); 〈p̄, c〉 ≤ r, c ≥ 0

}
+ max

{
(1− α)Ṽi(c

′); 〈p̄, c′〉 ≤ r′, c′ ≥ 0
}

= αψi(r) + (1− α)ψi(r
′).

On the other hand

ψi(αr + (1− α)r′)

= max
{
Ṽi(αc+ (1− α)c′); 〈p̄, αc+ (1− α)c′〉 ≤ αr + (1− α)r′ and c, c′ ≥ 0

}
≥ max

{
Ṽi(αc+ (1− α)c′); 〈p̄, c〉 ≤ r, 〈p̄, c′〉 ≤ r′ and c, c′ ≥ 0

}
.

2

Lemma 4. If {Pi}i∈I displays strong compatibility condition and (ci)i∈I is an equilibrium,

then there exists li > 0 (depending on the equilibrium) such that cit ≥ li for each i ∈ I

and all t ∈ T .
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Proof: Fix i ∈ I and t ∈ T , since e <
∑

i e
i =

∑
i c
i, fixed ωt either cit(ω

t) ≥ e or for

some j ∈ I cjt(ωt) ≥ e. Assume the last case, from the first order conditions (2.3)

u′j(c
j
t(ω

t))Eµj{φ′j(EP [Uj(c
j)]P (ωt))}

u′i(c
i
t(ω

t))Eµi{φ′i(EP [Uj(ci)]P (ωt))}
=
λj
λi
,

so
u′j(e)

u′i(c
i
t(ω

t))

φ′j(uj(c
j
0))KPi(ωt)

φ′i(Ui(ē))Pi(ωt)
≥ λj
λi
,

therefore u′i(c
i
t(ω

t)) ≤ λiu
′
j(e)φ′j(uj(cj0))K

λjφ′i(Ui(ē))
and cit(ω

t) ≥ u′−1
i

(
λiu
′
j(e)φ′j(uj(cj0))K

λjφ′i(Ui(ē))

)
> 0.

Finally, put li = min

{
e, u′−1

i

(
λiu
′
j(e)φ′j(uj(cj0))K

λjφ′i(Ui(ē))

)
; j ∈ I \ {i}

}
, which is independent

of ωt.

2

Lemma 5. Under the same assumptions of the previous lemma, we get qt(ω
t) ≤ Liβ

tPi(ωt),

where Li is a positive constant.

Proof: This is achieved only by using the Lemma 4 bound and first order conditions

(2.3).

2
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Chapter 3

Survival

3.1 Introduction

The market selection hypothesis has long been invoked by economists to justify the as-

sumption that economic agents have rational expectations, i.e., that their beliefs are

identical to the probabilistic model that governs the events. The rationale is the follow-

ing: in an economy populated by heterogeneous agents, those who have such a feature

will obtain advantages over others and in the long-term will accumulate more wealth;

their decisions will be more important to the economy; asymptotically, such individuals

will be the ones to influence prices and dominate the market. However, for this reason-

ing to work, it is necessary to assume certain hypotheses. To achieve positive results,

i.e., those where selection for who makes accurate predictions happen, Sandroni (2000)

and Blume and Easley (2006) suppose that agents have expected utilities and markets

are complete. Without market completeness there are negative results as in Blume and

Easley (2006), Beker and Chattopadhyay (2010) and Coury and Sciubba (2010).

Our focus is on the exclusion of the first assumption, since we want to study the effects

of ambiguity aversion. An important work in such a direction is that of Condie (2008),

whose main result indicates that the influence of maxmin agents in complete markets

becomes irrelevant when compared with rational expectations individuals. Such a result

could make it seem that ambiguity averse preferences are economically unimportant, but

this is not true. This kind of preference has been used to improve economic theory in

19
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many areas, providing new approaches and solving problems with a realistic appeal (see

Epstein and Schneider (2010) for a brief survey in finance).

The survival analysis by Sandroni (2000) and Blume and Easley (2006) shows that if

agents behave according to expected utilities, then what matters in determining survival

are the inter-temporal discount factors and beliefs. Condie (2008) analyzes survival of

maxmin agents, who are ambiguity averse, and concludes that survival for this type

of agent is difficult to happen if a rational expectation agent is present, due to the

aggregate risk. By considering a general type of ambiguity averse preference, we can

reconcile survival of ambiguity averse agents with the presence of aggregate risk.

Considerations with respect to Pareto optimality are in Section 3.2. The Section 3.3

brings examples of asymptotic behavior of consumption decisions in different situations

where optimality conditions are met. The mean results are presented in Section 3.4 and

the Section 3.5 concludes.

3.2 Pareto Optimality

Following Blume and Easley (2006) the analysis will be made from the Pareto optimal

allocations, hence, the consequences will be valid for complete markets.

We suppose that each agent is endowed with an initial consumption stream ei ∈ X+.

Definition 3. An allocation (ci)i∈I is called Pareto optimal if it is feasible, that is,∑
i c
i =

∑
i e
i, and there is no feasible allocation (ċi)i∈I such that V i(ċi) ≥ V i(ci) ∀i and

V i0(ċi0) > V i0(ci0) for some i0 ∈ I.

We consider only consumptions in X++, and if c∗ = (c1∗, . . . , cI∗) ∈ XI++ is Pareto

optimal, there is (λ1, . . . , λI)� 0 such that c∗ is the solution for problem
max

(c1,...,cI)

∑
i

λiV
i(ci)

s.t.
∑
i

(ci − ei) ≤ 0.
(3.1)

By the first order conditions (Ekeland and Turnbull, 1983, 124) for that problem there

are constants ηt(ω) > 0 such that

λip
i
t(ω) = ηt(ω) (3.2)



3.2. PARETO OPTIMALITY 21

for some pi = (pit) ∈ ∂V i(ci∗), for any i ∈ I.

Next lemma is part of Theorem 18 of Macheroni et al. (2006a) and characterizes the

superdifferential of a variational utility.

Lemma 6. The superdifferential of variational utility V has the form

∂V (c) =

{
(βtu′(ct)dPt);P ∈ arg min

Q∈∆(Ω)

{
EQ

[∑
t∈T

βtu(ct)

]
+ Γ(Q)

}}
,

for any c ∈ X++.

Proof: This follows by proposition 6 of section 4.3.3 in Aubin (1982).

2

If (c1, . . . , cI) is Pareto optimal, by equation (3.2) and by previous lemma we get

for each i ∈ I a probability Pi ∈ arg minQ∈∆(Ω)

{
EQ
[∑

t∈T β
tu(ct)

]
+ Γ(Q)

}
that is the

effective belief of agent i. Such probabilities are related with the fixed allocation and

carry all information needed to determine survival1.

We can derive from (3.2) some useful relations: for all t ∈ T , ω ∈ Ω and i, j ∈ I

λiβ
tu′i(c

i
t(ω))Pit(ω) = λjβ

tu′j(c
j
t(ω)) Pjt(ω), (3.3)

moreover, we get for every s ∈ St

u′i(c
i
t(ω

t−1, s))

u′i(c
i
t−1(ωt−1))

Pit(s|ωt−1) =
u′j(c

j
t(ω

t−1, s))

u′j(c
j
t−1(ωt−1))

Pjt(s|ωt−1) (3.4)

and, ∀r, s ∈ St

u′i(c
i
t(ω

t−1, s))

u′j(c
j
t(ω

t−1, s))

Pit(s|ωt−1)

Pjt(s|ωt−1)
=
u′i(c

i
t(ω

t−1, r))

u′j(c
j
t(ω

t−1, r))

Pit(r|ωt−1)

Pjt(r|ωt−1)
. (3.5)

By Lemma 6 and recursive form of utilities we get

Pit(·|ωt−1) ∈ arg min
P∈∆(Gt(ω),Ft+1)

{
EP
[
u(cit)

]
+ γit(ω, P )

}
.

1Remember that we assume the same inter-temporal discount factor for every agent.
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3.3 Examples

This section presents some representative situations for general results about the survival

problem. The context, in terms of uncertainty and endowments, is the same in all cases.

There are two states of nature and two agents, S = {1, 2} = I, P is generated by i.i.d.

trials uniformly on S, i.e., Pt(1|ωt−1) = 1/2, ∀ t. Agent 1 always has expected utility

with correct belief and his utility is given by

V1(c1) = EP

[
∞∑
t=0

(
1

2

)t
log c1

t

]
.

Agent 2 is different in each case, allowing for a comparative analysis. The endowments

depend only on the current nature state, e1
t (1) = e2

t (1) = 1/2, e1
t (2) = e2

t (2) = 1/2 + δ/2,

with δ > 0.

3.3.1 Expected Utility Example

Beginning with a well known example based on Sandroni (2000) where there are two

agents with expected utilities, one of whom has a wrong belief, being driven out of the

market by the other one with correct belief. The key to achieve this result is the law of

large numbers.

Here, agent 2 also has expected utility, but with wrong belief, his utility is given by

V2(c2) = EP̄

[
∞∑
t=0

(
1

2

)t
log c2

t

]
,

with P̄t(1|ωt) = 1/2− ε and 0 < ε < 1/2.

By (3.3) we get
(1

2
)tc2

t (ω
t)

(1
2
− ε)n(1

2
+ ε)t−nc1

t (ω
t)

=
λ2

λ1

, ∀t ∈ N,

where n is the number of times that state 1 occurs.

The law of large numbers gives us n ≈ t/2, then

(1
2
)t

(1
2
− ε)n(1

2
+ ε)t−n

≈
(1

2
)t

(1
2
− ε)t/2(1

2
+ ε)t/2

=

( 1
4

1
4
− ε2

)t/2
t→∞−−−→∞.

Whereas λ2

λ1
is a positive constant,

c2t (ωt)

c1t (ωt)
→ 0 with probability 1, and by c1

t (ω
t) ≤ 1 + δ

we get c2
t (ω

t)→ 0 P a.s.



3.3. EXAMPLES 23

This example is related to Proposition 2 (1) of Sandroni (2000) and Theorem 3 (ii)

of Blume and Easley (2006). Note that the only important fact about endowments is

their limitation. Below we will show that for survival of an averse ambiguity agent, other

features matter.

3.3.2 Maxmin Utility Example

The next example is based on Condie (2008) where an agent with maxmin utility cannot

survive in the presence of an expected utility with correct belief. In turn, this conclusion

strongly depends on the aggregate risk. The ambiguity averse customer acts as if he were

an expected utility with wrong belief, and he cannot survive as well as in the previous

case. But there is a particularity of maxmin utility that does not occur in the more

general model of variational utilities. A maxmin agent deals with his possible beliefs in

a homogeneous way, so aggregate risk forces him to take a precautionary attitude that

moves away from the one that ensures survival.

In this example the utility of agent 2 is given by

V2(c2) = min
P∈∆(Ω)

[
EP

(
∞∑
t=0

(
1

2

)t
log c2

t

)
+ Γ(P )

]
,

where γt(Pt) =

 0; if Pt(1|ω) ∈ [1/3, 2/3]

∞; otherwise.

Figure 3.1: γ2
t (Pt) versus Pt(1|ωt−1)
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By (3.5) we get

c2
t (ω

t−1, 1)

c1
t (ω

t−1, 1)

Pt(1|ωt−1)

P2
t (1|ωt−1)

=
c2
t (ω

t−1, 2)

c1
t (ω

t−1, 2)

Pt(2|ωt−1)

P2
t (2|ωt−1)

.

and by market clearing

1 + δ − c2
t (ω

t−1, 2)

1− c2
t (ω

t−1, 1)

c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
=

P2
t (1|ωt−1)

P2
t (2|ωt−1)

. (3.6)

If c2
t (ω

t−1, 1) > c2
t (ω

t−1, 2) then Pt(1|ωt−1) = 1/3, because P2
t (·|ωt−1) minimizes

EP
[(

1
2

)t
(log c2

t (ω
t−1, ·))

]
subject to P (1) ∈ [1/3, 2/3], and by (3.6)

1+δ−c2t (ωt−1,2)

1−c2t (ωt−1,1)
< 1/2 whence we get

1 + δ − c2
t (ω

t−1, 2) < 1/2− 1/2c2
t (ω

t−1, 1) < 1− c2
t (ω

t−1, 1)

so c2
t (ω

t−1, 2) > c2
t (ω

t−1, 1), a contradiction.

If c2
t (ω

t−1, 1) = c2
t (ω

t−1, 2), since consumption is positive, from equation (3.6) we get2

P2
t (1|ωt−1)

P2
t (2|ωt−1)

> 1 + δ. If c2
t (ω

t−1, 2) > c2
t (ω

t−1, 1), then agent 2 acts like an expected utility

assigning probability 2/3 for state 1. In both cases we get
P2
t (1|ωt−1)

P2
t (2|ωt−1)

≥ min{1 + δ, 2}, so

agent 2 does not survive as in the previous example because he always makes inaccurate

predictions. Such an example fits Theorem 1 of Condie (2008).

3.3.3 Motivating Example

The last example gives an idea of how a variational agent can survive even in a presence

of an expected utility with correct belief agent, and with aggregate risk. An individual

could be ambiguity averse and survive as long as his ambiguity index is not so small.

Such a constraint depends on how big the aggregate risk is.

While agent 1 has expected utility with correct belief, agent 2’s utility is given by

V2(c2) = min
P∈∆(Ω)

[
EP

(
∞∑
t=0

(
1

2

)t
log c2

t

)
+ Γ(P )

]
,

where

γt(Pt) =

 (1
2
− Pt(1|ωt−1))ε; if Pt(1|ωt−1) ≤ 1

2

(Pt(1|ωt−1)− 1
2
)ε; if Pt(1|ωt−1) ≥ 1

2
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Figure 3.2: γ2
t (Pt) versus Pt(1|ωt−1)

Again, as in (3.6)

1 + δ − c2
t (ω

t−1, 2)

1− c2
t (ω

t−1, 1)

c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
=

P2
t (1|ωt−1)

P2
t (2|ωt−1)

by rearranging this expression

P2
t (1|ωt−1)

(
1

c2
t (ω

t−1, 1)
− 1

)
= P2

t (2|ωt−1)

(
1 + δ

c2
t (ω

t−1, 2)
− 1

)
Consider the possibilities for P2

t (·|ωt−1).

If P2
t (1|ωt−1) < P2

t (2|ωt−1) we get
c2
t (ω

t−1, 2)

c2
t (ω

t−1, 1)
> 1 + δ > 1, then

P2
t (1|ωt−1) log c2

t (ω
t−1, 1) + P2

t (2|ωt−1) log c2
t (ω

t−1, 2) + γt(Pt)

> 1/2 log c2
t (ω

t−1, 1) + 1/2 log c2
t (ω

t−1, 2)

and P2
t is not a minimizer.

If P2
t (1|ωt−1) > P2

t (2|ωt−1) we get
c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
>

1

1 + δ
. Therefore

EP2
t (·|ωt−1)[log c2

t (ω
t−1, ·)] + γt(ω, Pt)− EPt(·|ωt−1)[log c2

t (ω
t−1, ·)]

= (P2
t (1|ωt−1)− 1/2) log c2

t (ω
t−1, 1) +

+(P2
t (2|ωt−1)− 1/2) log c2

t (ω
t−1, 2) + (P2

t (1|ωt−1)− 1/2)ε

= (P2
t (1|ωt−1)− 1/2)[log

(
c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)

)
+ ε]

> (P2
t (1|ωt−1)− 1/2)[log

(
1

1 + δ

)
+ ε]

So if ε− log(1 + δ) > 0, Pt = Pt is the only minimizer.

2Note that 1 + δ < 1+δ−x
1−x <∞, ∀ 0 < x < 1.
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Therefore, agent 2 acts as an expected utility with correct belief if, for example,

ε = δ = 1, which fits into the context of previous examples. The message given to us by

these examples is that the relation between survival of an ambiguity averse agent and

the presence of aggregate risk could be made in a more precise way than that found in

Condie (2008). Proposition 4 is an effort in that direction.

3.4 Survival

A Pareto optimal allocation (ci)i∈I and beliefs Pi given in (3.3), for each i ∈ I, are fixed.

Definition 4. Agent i survives on the path ω if lim cit(ω) > 0. We say that i survives if

there is A ∈ F with P(A) = 1 such that i survives on all ω ∈ A.

Some assumptions are needed to achieve the results.

Assumption 1. Let e :=
∑

i e
i. For every i ∈ I endowments satisfy e < ei < e < ē, for

positive constants e and ē.

Assumption 2. u′i > 0, u′′i < 0 and u′i(x)
x→0−−→∞ for all i ∈ I.

Assumption 3. For all path ω, suppose that Pt(·|ωt−1) > 0 and

dom γit(ω, ·)⊂∆+(Gt(ω),Ft+1) := {r ∈ ∆(Gt(ω),Ft+1); r(A) > 0 ∀A ∈ Ft+1\{∅}}.

Assumption 4. Agent 1 has expected utility with correct belief.

Assumptions 1 and 2 guarantee that the solutions to (3.1) are in X++. Assumption 3

says that every state has a positive chance of occurring any time and after any history;

furthermore, relevant beliefs have this same property. Assumption 4 is supposed to

test other agents in an unfavorable environment, since they are competing with a well

informed agent.

The next lemmata are known results and can be found in Blume and Easley (2006).

Lemma 7. Consider i 6= j. Agent i does not survive on the event

{
u′i(c

i
t(ω))

u′j(cjt (ω))
→∞

}
. If

agent i does not survive on ω, then for some j ∈ I, lim
u′i(c

i
t(ω))

u′j(cjt (ω))
=∞.
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Proof: If
u′i(c

i
t(ω))

u′j(cjt (ω))
→∞, then cit(ω)→ 0, by assumptions 1 and 2.

On the other hand, if cit(ω)→ 0, by assumption 1 there is j ∈ I such that cjt > e/I for

infinite indexes t. Hence, the denominator of
u′i(c

i
t(ω))

u′j(cjt (ω))
is upper bounded, and the result

follows by assumption 2.

2

Lemma 8. Agent i survives Pi almost surely.

Proof: Let j 6= i in I. Define the following random variables on (Ω,F),

Lt(ω) =
Pjt(ω)

Pit(ω)
.

Will be proven that {Lt} is martingale with respect to (Ft) and Pi. Indeed,

EPi [Lt+1|Ft](ω) =
∑
s∈S

Pjt+1(ωt, s)

Pit+1(ωt, s)

Pi({(ωt, s)} × Ω)

Pi({ωt} × Ω)
=
∑
s∈S

Pjt+1(ωt, s)/Pit(ωt) = Lt(ω).

It is also easy to see that E[Lt] = 1, ∀t. Therefore, by martingale convergence (see

Shiryayev (1984)) (Lt) converges and its limit is finite Pi almost surely. Finally, by

equation (3.3) and by Lemma 7 agent i survives Pi almost surely.

2

By the previous lemma, a criterion for survival of an agent i is that P is absolutely

continuous with respect to Pi, Lemma 9 in the Appendix shows that this condition is

also necessary.

The main results of this chapter are presented below. Proofs are left to the Appendix.

First, though, let us look at a definition for aggregate risk.

Definition 5. Define the functional δ : X × Ω→ R by

δ(x, ω) := lim
t

(
sup{|xt(ωt−1, r)− xt(ωt−1, s)|; r, s ∈ St}

)
.

There is aggregate risk on the path ω if δ(e, ω) > 0, if there is aggregate risk P

almost surely we simply say that there is aggregate risk.
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The next definition is analogous to the strict minimum consensus property of Condie

(2008), and the following proposition is a generalization of his Theorem 1 for variational

preferences.

Definition 6. We say that agent i satisfies property P if ∃ T ∈ T and ε > 0 such that

∀t > T , if P ∈ ∆(Gt(ω),Ft+1) satisfies ‖P (s)−Pt(s|ωt−1)‖ ≤ ε, then γit(ω, P ) = 0.

Proposition 3. Assume that there is aggregate risk. If agent i satisfies property P, then

i does not survive.

The subsequent result can be understood as limiting the scope of maxmin utilities in

survival analysis, because a variational agent can survive even believing in “distributions

which differ from the truth in all feasible directions”3.

Proposition 4. Suppose that ui(0) > −∞ and St = S for all t > 0. If there is T ∈ T

such that for every t > T , γit−1(ω,Pt(·|ωt−1)) = 0 and

γit−1(ω, P ) ≥ Smax{|ui(0)|, |ui(ē)|}‖P (s)− Pt(s|ωt−1)‖,

then i survives on ω.

Lemma 8 and Theorem 1 together compose the main tool to attain survival results.

Lemma 8 tell us that an individual always acts to guarantee his survival based on his

effective belief, and if its posteriors converge to the truth posteriors then, according to

Theorem 1, such an agent survives.

According to the proof of Proposition 4, we can see that relevant one-step-ahead

beliefs at time t belongs to set

Ait(ω) =
{
P ∈ ∆(Gt(ω),Ft+1); γit(ω, P ) ≤ S(|ui(0)| ∨ |ui(ē)|)‖P − Pt+1(·|ωt)‖

}
,

for each t ∈ T . So, if Bi
t = {P ∈ ∆(Ω);Pτ+1(·|ωτ ) ∈ Aiτ (ω) ∀τ ≤ t} the set of relevant

beliefs4 is Bi = ∩t∈TBt.

3This quotation from Condie (2008) is part of his explanation about property P that ensures the non

survival of maxmin agents.
4We refer to belief as relevant when it is a candidate to minimize EQ

[∑
t∈T β

tui(ct)
]

+ Γi(Q).
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Figure 3.3: γ2
t (Pt) versus Pt(1|ωt−1)

In many situations it is natural to suppose that ambiguity aversion vanishes over

time. In such a case, dynamic ambiguity indexes will increase with t and sets Ait will

decrease, as sketched in Figure 3.3. If sets Ait collapse in a point, by the same hypotheses

made in Proposition 4, any probability in Bi will be equivalent to P5. Therefore, we have

conditions on ambiguity indexes that ensure survival.

In the next proposition we assume that there are only two agents. While agent 1

has an expected utility, agent 2 has a more general variational utility. For agent 2 we

consider that two distinct types are possible, a and b. Type a is less ambiguity averse

than b, so their utility index are the same and the ambiguity index of a is greater than

the ambiguity index of b. Note that if (c1, c2) is a Pareto optimal allocation when agent 2

is of type b, then, assuming that Γa(Pb) = Γb(Pb), the same allocation is Pareto optimal

even when agent 2 is of type a. Proposition 5 gives an inverse relationship between the

level of ambiguity aversion and survival.

Proposition 5. Suppose that a is less ambiguity averse than b and Γa(Pb) = Γb(Pb). If

type b survives, then type a also survives.

5If γit(ω,Pt+1(·|ωt)) = 0, then Pt+1(·|ωt) ∈ Ait(ω). We know that Pit+1(·|ωt) ∈ Ait(ω), so if the

sequence of sets Ait(ω) collapses into a single point we get ‖Pt+1(·|ωt)− Pit+1(·|ωt)‖ → 0.
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Figure 3.4: γ2
t (Pt) versus Pt(1|ωt−1)

3.5 Conclusion

Survival of individuals behaving according to expected utility depends on inter-temporal

discount factors and compatibility between beliefs and the truth as shown in Sandroni

(2000) and Blume and Easley (2006). To study the influence of ambiguity aversion, the

step taken by Condie (2008) was to introduce agents with maxmin utilities.

Considering βi = βj ∀i, j to isolate aversion ambiguity effects, he finds that ambiguity

averse agents survive under aggregate risk only in special cases. By introducing varia-

tional preferences that are more general than maxmin, we find that ambiguity averse

individuals, with analogous characteristics to those in Condie (2008)’s case, can survive

under aggregate risk. Moreover, in particular cases it is possible to make finer relations

between the level of ambiguity aversion and the magnitude of aggregate risk that lead to

survival.

3.6 Appendix

Lemma 9. Agent i survives if, and only if, P� Pi.

Proof: If P� Pi then, by Lemma 8, agent i survives P almost surely.

Note that, by Assumption 3, Pt and Pit are equivalents. If i survives then, according

to Lemma 7,

P
(
u′i(c

i
t(ω))

u′1(c1
t (ω))

9∞
)

= P (Lt(ω) 9∞) = 1,
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where Lt(ω) = Pt(ω)

Pi
t(ω)

. By the proof of Theorem 1 p. 493 of Shiryayev (1984) we get

P(∃ limLt(ω)) = 1, therefore P(limLt(ω) < ∞) = 1. Finally, by Theorem 2 p. 495 of

Shiryayev (1984), P� Pi.

2

Proof of Proposition 3: Suppose that i survives.

If cit(ω
t−1, ·) is constant for a large enough t, by (3.4) and Theorem 1 for any j that

survives we get

u′i(c
i
t(ω

t−1, s))

u′i(c
i
t−1(ωt−1))

≈
u′j(c

j
t(ω

t−1, s))

u′j(c
j
t−1(ωt−1))

.

Since cit(ω
t−1, ·) is constant, cjt(ω

t−1, ·) is asymptotically constant, i.e., δ(cj)=0. Then

δ(e) = δ(
∑

j survives c
j) = 0, a contradiction.

So, for any τ ∈ T there is t > τ such that cit(ω
t−1, ·) is not constant. Then

‖Pit(·|ωt−1)− Pt(·|ωt−1)‖ ≥ ε

for a sequence t↗∞, and by Theorem 1 again, i does not survive.

2

Proof of Proposition 4: Let c ∈ X and ω ∈ Ω. For any P ∈ dom γit−1(ω, ·) we get

{
EP
[
ui(ct(ω

t−1, ·))
]
+γit−1(ω, P )

}
−
{
EPt(·|ωt−1)

[
ui(ct(ω

t−1, ·))
]
+γit−1(ω,Pt(·|ωt−1)

}
=

∑
s∈S

ui(ct(ω
t−1, s))(P (s)− Pt(s|ωt−1)) + γit−1(ω, P )

≥
∑
s∈S

ui(ct(ω
t−1, s))(P (s)− Pt(s|ωt−1))

+ Smax{|ui(0)|, |ui(ē)|}‖P (s)− Pt(s|ωt−1)‖

≥ 0.

So {Pt(·|ωt−1)} = arg min
P∈dom γ2

t−1(ω,·)

{
EP
[
u2(ct(ω

t−1, ·))
]

+ γ2
t−1(ω, P )

}
.

2
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Proof of Proposition 5: An agent a with utility V a is less ambiguity averse than

another with utility V b if ua = ub and Γa ≥ Γb. If Pb minimizes EP [ub(c2)] + Γb(P ) and

Γa(Pb) = Γb(Pb), then, ∀P ∈ ∆(Ω)

EPb [ua(c2)] + Γa(Pb) = EP[ub(c2)] + Γb(Pb) ≤ EP [ub(c2)] + Γb(P ) ≤ EP [ua(c2)] + Γa(P ).

So Pb minimizes EP [ua(c2)] + Γa(P ) too, and if b survives then a survives.

2



Conclusion

Ambiguity aversion plays an important role in dynamic models, but it cannot be seen

in a simplistic way like “ambiguity aversion implies that...”. There are many levels of

ambiguity aversion and many ways to model it. This thesis attempts to show through

distinct problems that such two directions matter in the analysis.

We deal with two models of decision under uncertainty that are more general than

those used in literature about related problems. Despite the criticism involving it, the

smooth ambiguity model provides a tractable way of tackling problems in which there

is a need to compare beliefs taken a priori. Specifically, within the problem approached

in Chapter 2, second-order beliefs allow for a similar analysis to that of the subjective

first-order beliefs case, without leaving its ambiguity modeling. On the other hand, in

Chapter 3 we explore the potential of variational preference that has the advantage of

being a generalization of the maxmin model, which is the most successful model for

ambiguity, and encompasses many different ambiguity averse behaviors.

Problems approached in this thesis are distinct in their formulation but share the same

interest in knowing whether ambiguity aversion is robust within a context of dynamic

general equilibrium. In both cases we get positive answers, but restricted. In Chapter 2

we have a result which generalizes the one found in the literature about expectation con-

vergence. The necessity of equivalence between reductions for second-order beliefs enables

one to embody an ambiguity averse individual within an equilibrium model, but restricts

the discrepancy between ambiguity perceptions. In Chapter 3 we generalize the existing

results as those considered expected utility and maxmin preference, but our analysis has

the virtue of relating intensities of ambiguity aversion and aggregate risk in a more pre-

cisely way with the survival problem.

33
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