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Abstract. The main goal of this work is to give some necessary and some suffi-

cient conditions for endomorphisms on compact manifolds without boundary to

be robustly transitive. More concretely, under what conditions a differentiable

map, not necessarily invertible, having a dense orbit, verifies that a sufficiently

close perturbed map also exhibits a dense orbit.

In the case of robustly transitive diffeomorphisms is known that a necessary

condition is that the tangent bundle admits a dominated splitting. For the

case of endomorphisms, that is no longer true. In consequence, conditions

that guarantee robustness for transitive endomorphisms cannot depend on the

existence of decomposition of the tangent bundle.

For local diffeomorphisms, we show that a necessary condition for robust transi-

tivity is to be volume expanding. Although volume expanding is not a sufficient

condition to have endomorphisms robustly transitive. Because of this, we must

ask for more hypothesis that guarantee robustness. Indeed the additional hy-

pothesis that we ask is: given any arc in a certain region with a large enough

diameter to have a point that its future orbit remains in the expanding region,

which implies the existence of a locally maximal expanding invariant set for the

original system that intersects every arc big enough.





Fácilmente aceptamos la realidad,

acaso porque intuimos que nada es real.

J.L. Borges
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Introduction

One goal in dynamics is to look for conditions that guarantee that certain phenomena are

robust under perturbations, that is, some main feature of a dynamical system is shared

by all nearby systems. In particular, we are interested in the hypotheses under which an

endomorphism would be robust transitive.

In the diffeomorphism case, there are many examples of robust transitive systems. The

best known is the transitive Anosov diffeomorphism; the example given by Shub in T
4 in

1971, see for instance [PS06b]; another example is the Mañé’s Derived from an Anosov in

T
3 in [Mañ78]; Bonatti and Dı́az gave some geometrical construction that induces a robust

transitive system in [BD96]. One of the newest examples is one from Bonatti-Viana that

gives a robust transitive diffeomorphism with dominated splitting which is not partially

hyperbolic, see [BV00].

On the other hand, any C1−robust transitive diffeomorphism exhibits a dominated

splitting. This is not true anymore for endomorphisms (see endomorphisms version of

Bonatti-Viana example, it is explained in example 1 in section § 3.1). Therefore, conditions
that imply robust transitivity cannot hinge on the existence of splitting.

The first question that arises is what necessary condition a robust transitive local

diffeomorphism has to verify. We show in the first chapter that volume expanding would

iii



iv Introduction

be a C1 necessary condition. However, volume expanding is not a sufficient condition

that guarantees robust transitivity for a local diffeomorphism, for instance a product of an

expanding endomorphism times an irrational rotation is volume expanding and transitive

but not robust transitive. Hence, we have to ask for extra conditions that allow us to

conclude the robustness, more precisely, we need a property over the initial system that

would be robust. As we said before this property cannot depend on the existence of any

type of splitting. In fact, the hypothesis that we require is to ask for any arc of large

enough diameter to have a point such that its forward iterates remain in the expanding

region, implying the existence of an invariant expanding locally maximal set for the initial

system that intersects every large arc. Therefore, that topological property persists under

perturbations for a certain class of arc.

Instead of transitivity we may ask for the density of the pre-orbit of any point. This

hypothesis implies transitivity, but we do not know if the reciprocal holds. But the fact

of having just one point which pre-orbit is dense is not enough to conclude transitivity.

We must note that if the initial system verifies the density of every pre-orbit, then the

perturbed one has “almost” density of the pre-orbit of any point.

This thesis is divided in three chapters, each one with a brief introduction giving the

main goals of every chapter. We also define many of the concepts involved throughout the

work and pose many questions and remarks related to our results.

In the first chapter, we address the main problem, to find necessary and sufficient

conditions in order to have robust transitive endomorphisms. In section § 1.1.1, we present
the main result of this work:

Main Theorem Let f ∈ E1(Tn) be a volume expanding map satisfying the following

properties:

1. There is an open set U0 in T
n such that f |Uc

0
is expanding and diamext(U0) < 1.

2. {f−k(x)}k≥0 is dense for every x ∈ T
n.
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3. There exists 0 < δ0 < diamint(U
c
0) and there exists an open neighborhood U1 of U0

such that for every arc γ in U c
0 with diameter larger than δ0, there is a point y ∈ γ

such that fk(y) is not in U1 for any k ≥ 1.

4. For every z ∈ U c
1 , there exists z̄ ∈ U c

1 such that f(z̄) = z.

Then, for every g close enough to f, {g−k(x)}k≥0 is dense for every x ∈ T
n.

We recommend to the reader before entering into the proof of the Main Theorem, to

give a glance to section § 1.1.2 in order to gain some insight about the proof. We want

to highlight that this theorem as it is enunciated, it is not assumed the existence of any

tangent bundle splitting. In the case that there exists a partially hyperbolic splitting

we may get the same conclusion but with weaker hypotheses. This is given in Theorem

2 in section § 1.2. One question that arises from this formulation is: if a map satisfies

the hypotheses of the Main Theorem, is it true that this map is isotopic to an expanding

endomorphism? The Main Theorem can be recasted in terms of the geometrical properties,

see Main Theorem Revisited in section § 1.1.8.

In the second chapter, we show some geometrical and topological consequences from

the Main Theorem. Besides, we study the existence of Markov Partitions for maps of our

type, via semiconjugation with linear expanding endomorphisms, and how it allows us to

extract some information about the transitivity of the map isotopic to a linear expanding

endomorphism. Also, we pose some related questions.

In the third and last chapter, we construct examples of robust transitive endomor-

phisms verifying the hypotheses of the Main Theorem, the Main Theorem Revisited and

Theorem 2.
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Chapter 1
Main Result

In this chapter, our goal is to give sufficient conditions to get robust transitivity for

n−dimensional torus endomorphisms.

§ 1.1 Volume expanding endomorphisms without invariant

splitting

An endomorphism of a differentiable manifold M is a differentiable function f : M → M

of class Cr with r ≥ 1. Throughout this work we will assume the endomorphism f to be

a local diffeomorphism. That means that given any point x, there exists an open set V

containing x such that f from V to f(V ) is a diffeomorphism. For the main result we

do not assume the existence of any invariant splitting for f. Let us denote by E1(M) the

space of C1−endomorphisms of M endowed with the usual C1 topology.

Before entering into the Main Theorem, let us recall some definitions that are involved.

Definition 1.1 (Volume expanding map)

We say that a map f is volume expanding if there exists σ > 1 such that |det(Df)| > σ.

1



2 1. Main Result

Definition 1.2 (Invariant set)

We say that a set Λ ⊂M is a forward invariant set for f ∈ E1(M) if f(Λ) ⊂ Λ and it

is invariant for f if f(Λ) = Λ.

Let us introduce some notation that we will use throughout this work: if L : V → W

is a linear isomorphism between normed vector spaces, we denote by m{L} the minimum

norm of L, i.e. m{L} = ‖L−1‖−1.

Definition 1.3 (Expanding map)

We say that a map f of class C1 is expanding in U a subset of M if there exists λ > 1

such that min
x∈U

{m{Dxf}} > λ. It is said that a compact invariant set Λ is an expanding

set for an endomorphism f if f |Λ is an expanding map.

Definition 1.4 (Locally maximal set)

Let Λ be an expanding set for f ∈ E1(M). If there is an open neighborhood V of Λ

such that Λ =
⋂
k≥0 f

−k(V ) then Λ is said to be locally maximal (or isolated) set. V is

called the isolating block of Λ.

Definition 1.5 (Full orbit)

A sequence {xk}k∈Z
is called a full orbit for f if f(xk) = xk+1 for every k ∈ Z.

Definition 1.6 (Topologically transitive)

Let Λ be an invariant set for an endomorphism f : M → M. It is said that Λ is

topologically transitive if there exists a point x ∈ Λ such that its forward orbit {fk(x)}k≥0

is dense in Λ.We say that f is topologically transitive if {fk(x)}k≥0 is dense inM for some

x ∈M.

Lemma 1 Let f :M → M be a continuous map of a locally compact separable metric

space M into itself. The map f is topologically transitive if and only if for any two



§ 1.1 Volume expanding endomorphisms without invariant splitting 3

nonempty open sets U, V ⊂ M, there exists a positive integer N = N(U, V ) such that

fN(U) ∩ V is nonempty.

Proof. See for instance [KH95, pp.29].

Definition 1.7 (Topologically mixing)

A topological dynamical system f : M → M is called topologically mixing if for any

two nonempty open sets U, V ⊂ M, there exists a positive integer N = N(U, V ) such that

for every k > N the intersection fk(U) ∩ V is nonempty.

Definition 1.8 (Locally eventually onto)

A map f ∈ E1(M) is called locally eventually onto if for any nonempty open set

U ⊂M, there exists a positive integer N = N(U) such that fN(U) =M.

Remark 1.1 In general, it holds that if a map is locally eventually onto, then it is

topologically mixing. If a map is topologically mixing, then it is topologically transitive.

The reciprocals are not true for endomorphisms case.

Remark 1.2 For endomorphisms, if the pre-orbit of every point is dense in the ma-

nifold, then the map is transitive. Note that if there exists just one point whose pre-orbit

is dense, it is not enough to conclude that the map is transitive.

Definition 1.9 (Robustly transitive)

The set Λf(U) =
⋂
n∈Z f

n(U) is Cr−robustly transitive if Λg(U) =
⋂
n∈Z g

n(U) is

transitive for every endomorphism g Cr−close enough to f . It is said that a map f is

Cr−robustly transitive if there exists a Cr neighborhood U(f) such that every g ∈ U(f)
is transitive.



4 1. Main Result

Definition 1.10 (Robust non existence of splitting)

We say that f restricted to an invariant set Λ has no splitting in a Cr−robust way if

there exists a Cr open neighborhood U(f) of f such that for every g ∈ U(f) the tangent

space TΛ does not admit invariant subbundles.

Theorem 1 Let f ∈ E1(M) be a local diffeomorphism and U open set in M such that

Λf (U) =
⋂
n∈Z f

n(U) is C1−robustly transitive set and it has no splitting in a C1−robust

way. Then f is volume expanding.

Proof. The proof of this theorem is similar to the one of Theorem 4 in [BDP03,

pp.361], nevertheless we include the main steps of the proof.

Let us consider f ∈ E1(M) a local diffeomorphism and denote by Λf(U) the C
1−robustly

transitive (nontrivial) set for f, note that U could be the entire manifold. The idea

of the proof is to assume that f is not volume expanding and show that for every

C1−neighborhood of f U(f) ⊂ E1(M), there exists ψ ∈ U(f) such that ψ has a sink

and therefore ψ cannot be transitive.

Suppose that f is not volume expanding. Since f is onto, it cannot be uniform volume

contracting in the entire manifold, so there are points in the manifold such that we have

expansion, i.e. 1 ≤ |det(Dfk(x))| for some k ≥ 0, but it does not expand too much, i.e.

|det(Dfk(x))| ≤ 1 + ǫ, with ǫ small. Then there are sequences xn ∈ Λf(U), kn ∈ N and

τn > 1, with kn → ∞ and τn → 1+, such that

1 ≤ |det(Dfkn(xn))| < τknn .

This is equivalent to say that

1

kn

kn−1∑

i=0

log(|det(Df(f i(xn)))|) < log(τn).
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We may take kn such that f i(xn) 6= f j(xn) for all i 6= j, i, j ∈ {0, . . . , kn}. Consider for each
n the Dirac measure δn supported in {xn, f(xn), . . . , fkn(xn)}, i.e. δn = 1

kn

∑kn−1
i=0 δf i(xn).

As the space of probabilities is compact with the weak star topology, there exists a subse-

quence of {δn}n that converges to an invariant probability measure µ such that

∫
log |det(Df(x))|dµ(x) ≤ 0.

In fact, a classical argument proves that µ is invariant by f, since f∗(µ) − µ is the weak

star limit of 1
kni

(δ
f
kni (xni

) − δxni
), which converge to zero. Observe that

∫
log |det(Df(x))|dδn =

1

kn

kn−1∑

i=0

log(|det(Df i(xn))|) =
1

kn
log(|det(Dfkn(xn))|) ≤ log(τn),

then because τn → 1+ we deduce that

∫
log |det(Df(x))|dµ(x) ≤ 0.

By the ergodic decomposition theorem, there is an ergodic and f−invariant measure ν

such that ∫
log |det(Df(x))|dν(x) ≤ 0.

Using the ergodic closing lemma for nonsingular endomorphisms, given ε > 0 there is

g close to f and a g−periodic point y such that

1

mε

mε−1∑

i=0

log(|det(Dg(gi(y)))|) < ε,

where mε is the period of y. Note that if ε → 0, then mε → ∞. So, taking ε > 0

arbitrarily small and mε big, using Franks’ Lemma [Fra71] we get ϕ close to g such that

ϕmε(y) = y ∈ Λϕ(U) and

1

mε

mε−1∑

i=0

log(|det(Dϕ(ϕi(y)))|) < 0,
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this means that |det(Dϕmε(y))| < λ < 1. Observe that we are assuming the dimension of

the manifold greater or equal to 2, so the fact that the modulus of the jacobian of ϕ be

lower than 1 does not imply that all the eigenvalues have modulus smaller than 1.

Since Λϕ(U) is C
1−robustly transitive, after a perturbation, we may assume that the

relative homoclinic class H(y, ϕ, U) of y is the whole Λϕ(U). Now, consider the dense

subset Σ ⊂ Λϕ(U) consisting of all the hyperbolic periodic points of Λϕ(U) homoclinically

related to y.

If ϕ is close enough to f, then the tangent bundle does not admit a splitting as well.

Using the idea of the proof of Lemma 6.1 in [BDP03, pp. 407] and, after that, Franks’

Lemma, we obtain that there exists ψ a perturbation of ϕ and a point p ∈ Σ such that all

the eigenvalues of Dψm(p)(p) have modulus strictly lower than 1, where m(p) is the period

of p. This means that the maximal invariant set in U of ψ contains a sink, but this is a

contradiction since we choose ψ sufficiently close to f such that Λψ(U) is still transitive.

Remark 1.3 If Λf(U) admits a splitting, then the extremal indecomposable subbun-

dle is volume expanding.

Remark 1.4 Theorem 1 implies that volume expanding is a necessary condition for

an endomorphism, which is local diffeomorphism, to be a robust transitive map. However,

volume expanding is not a sufficient condition that guarantees robust transitivity for a

local diffeomorphism. For instance, consider a product of an expanding endomorphism

times an irrational rotation: this map is volume expanding and transitive but not robust

transitive.

Remark 1.5 It is expected that if f is robustly transitive and has no invariant sub-

bundles in a robust way, then f is a local diffeomorphism. It depends on whether the

Ergodic Closing Lemma holds even if there are critical points, since for maps with critical
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points already exists a version of Connecting Lemma, Closing Lemma and Franks’ Lemma,

which are the principal results involved in the proof of Theorem 1.

Henceforth, we work in the n−torus T
n. Since in dimension one volume expanding

endomorphism is equivalent to be expanding map, we also assume that the dimension n

is at least 2.

Definition 1.11 (Internal diameter)

Let U be an open set in T
n. Denote by Ũ the lift of U restricted to a fundamental

domain. Define the internal diameter of U c by

diamint(U
c)= min

k∈Zn\{0}
dist(Ũ , Ũ + k),

where dist(A,B) := inf{max1≤i≤n |xi − yi| : x = (x1, . . . , xn) ∈ A, y = (y1, . . . , yn) ∈ B}.

Definition 1.12 (External diameter)

Let U be an open set in T
n. Denote by Ũ the lift of U restricted to a fundamental

domain. We say that external diameter of U is less than 1, denoting by diamext(U) < 1,

if the closure of Ũ is contained in the interior of [0, 1]n.

Remark 1.6 Observe that volume expanding implies that the map is a local diffeo-

morphism.

§ 1.1.1 The Main Result

Our main result gives sufficient conditions for volume expanding endomorphisms to be

robustly transitive, independently of the existence or not of an invariant splitting.
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Main Theorem Let f ∈ E1(Tn) be a volume expanding map, n ≥ 2, satisfying the

following properties:

1. There is an open set U0 in T
n such that f |Uc

0
is expanding and diamext(U0) < 1.

2. {f−k(x)}k≥0 is dense for every x ∈ T
n.

3. There exist 0 < δ0 < diamint(U
c
0) and an open neighborhood U1 of U0 such that for

every arc γ in U c
0 with diameter larger than δ0, there is a point y ∈ γ such that fk(y)

is not in U1 for any k ≥ 1.

4. For every z ∈ U c
1 there exists z̄ ∈ U c

1 such that f(z̄) = z.

Then, for every g close enough to f, {g−k(x)}k≥0 is dense for every x ∈ T
n.

Let us point out the following observations:

Remark 1.7 The hypothesis of external diameter less than 1 and hypothesis (4) are

technical. This means that they are necessary conditions for proving our result, but we

do not know if there exist weaker conditions that implies the thesis of our theorem.

Remark 1.8 The condition diamext(U0) < 1 implies that the closure of Ũ0 is contained

in the interior of [0, 1]n, where Ũ0 is the lift of U0 restricted to [0, 1]n. Note that U0 do

not need to be simply connected and could have finitely many connected components.

Actually the important fact is that the closure of the convex hull of the lift of U0 restricted

to [0, 1]n is still contained in (0, 1)n. Moreover, diamint(U
c
0) = diamint(U

c
0), where U0 is the

convex hull of Ũ0.

Remark 1.9 If f ∈ E1(Tn) satisfies the hypotheses of the Main Theorem, then f is

topologically transitive. Indeed, as a consequence of the Main Theorem, f is C1 robustly

topologically transitive.
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Remark 1.10 The Main Theorem is formulated for n−dimensional torus but we be-

lieve that it can be extended to any manifold that at least supports an expanding endo-

morphisms, for example nilmanifolds (see [Shu69]).

Remark 1.11 Λ0 :=
⋂
n≥0 f

−n(U c
0) is an expanding set. Moreover, we know that

given any arc γ in U c
0 with diameter greater than δ0, there exists a point x ∈ γ such that

fk(x) is not in U1 for any k ≥ 1. Therefore, γ ∩ Λ0 6= ∅ and Λ0 is not trivial.

Remark 1.12 Using hypothesis (4) of the Main Theorem, given any point x ∈ U c
1 , we

can construct a sequence {xk}k≥0 such that x0 = x, xk ∈ U c
1 and f(xk+1) = xk for every

k ≥ 0. We call this sequence by inverse path.

Remark 1.13 Let us denote Λ1 :=
⋂
n≥0 f

−n(U c
1). This set has the following proper-

ties:

1. Λ1 is an expanding set.

2. By hypothesis (3) of the Main Theorem, given any arc γ in U c
0 with diameter greater

than δ0, there exists a point x ∈ γ such that f(x) ∈ Λ1.

3. Since the hypothesis 0 < δ0 < diamint(U
c
0) is an open condition, we may take U1 an

open neighborhood of U0 such that δ0 < diamint(U
c
1) < diamint(U

c
0). Then for every

arc γ in U c
1 with diameter greater than δ0 holds that γ ∩ Λ1 is non empty.

4. Λ1 is invariant, i.e. f(Λ1) = Λ1. It is clear that Λ1 is forward invariant. So let

us prove that Λ1 ⊂ f(Λ1). Pick a point x ∈ Λ1 and consider the sequence {xk}k≥0

given by remark (1.12). Let us show that xk 6∈ W for any k ≥ 0, where W =

∪n≥0f
−n(U1) = Λc1. If this is not true, there exist k ≥ 0 and nk ≥ 0 such that

fnk(xk) ∈ U1. First, observe that remark (1.12) implies that fn(xk) = xk−n for 0 ≤
n ≤ k. In particular, fk(xk) = x0 if k ≥ 0. And fn(xk) = fn−k(fk(xk)) = fn−k(x0)
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for n > k ≥ 0. Therefore, if −k ≤ −nk ≤ 0, then fnk(xk) = xk−nk
. Since every xk

belongs to U c
1 , we obtain that fnk(xk) belongs to U

c
1 which is a contradiction because

it was supposed that fnk(xk) ∈ U1. If −nk < −k < 0, then fnk(xk) = fnk−k(x0).

Since x0 ∈ Λ1, every positive iterate of x0 by f belongs to U c
1 , thus f

nk(xk) ∈ U c
1 ,

which contradicts the fact that fnk(xk) ∈ U1. Thus, xk ∈ Λ1 for every k ≥ 0.

5. In section § 1.1.3, we prove that this set is locally maximal or it is contained in an

expanding locally maximal set.

Question 1.1 If f satisfies the hypotheses of the Main Theorem, does this implies

that f is isotopic to an expanding endomorphism?

§ 1.1.2 Sketch of the Proof of Main Theorem

We want to prove that any small perturbation g of the initial system f has the property

that the pre-orbit of any point is dense in the manifold. The mechanism to prove that

is the following: given any open set V, there exist x ∈ V and k ∈ N such that gk(V )

contains a ball of a fixed radius R0 centered in gk(x). If we have the latter property, we

may conclude our claim, since given 0 < ε < R0 for g ε/2−close to f the pre-orbit of any

point by g are ε−dense, hence gk(V ) intersects {g−n(z)} for any z. Therefore, V intersects

{g−n(z)} for any z.

Note that because f is expanding outside U0, if x is a point in U c
0 such that its forward

orbit stays outside U0, then fk(Br(x)) ⊃ Bλk
0
r(f

k(x)), where λ0 > 1 is the expanding

constant of f . The goal is to show that for any open set V , there exists a point x ∈ V

such that the forward orbit of some iterate fm(x) stay outside U0.

Now, working in the covering space, since U0 has external diameter less than 1 and the

volume increases, follows that the diameter of the forward iterates of the lift of V grows.

Hence there is some iterate with diameter big enough such that we may use hypothesis
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(3) to obtain such a point x. The aim is to show that this mechanism is robust.

In order to prove the statement we use a geometrical approach:

1. Hypothesis (3) implies that there is an expanding subset that “separates”, meaning

that a nice class of arcs in U c
0 intersects this set. (See Lemma 3 in section § 1.1.5)

2. Properly chosen, this set is locally maximal. (See Lemma 2 in section § 1.1.3)

3. Hence, it has a continuation conjugated to the initial one. (See Claim 1.1 in section

§ 1.1.4)

4. Therefore, that topological property of separation persists. (See Lemma 4 in section

§ 1.1.5)

Finally, since the initial system has the pre-orbit of any point dense, the perturbed has

the pre-orbit of any point “almost” dense. Then using the geometrical approach as above

we conclude the density of the pre-orbit of any point.

§ 1.1.3 Existence of a Locally Maximal Set for f

Lemma 2 Either Λ1 is a locally maximal set or there exists Λ∗ an expanding locally

maximal set for f such that Λ1 ⊂ Λ∗ and Λ∗ verifies that every arc γ in U c
0 with diameter

greater than δ0 has a point such that the image by f belongs to Λ∗. Moreover, every arc γ

in U c
1 with diameter greater than δ0 intersects Λ∗.

Proof. We may divide the proof in two cases:

Case I. Λ1 ∩ ∂U1 = ∅.

Let us observe that Λ1∩∂U1 = ∅ implies that Λ1 is contained in the open neighborhood

V = int(U c
1). Then V is an isolating block for Λ1, therefore Λ1 is locally maximal.
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Case II. Λ1 ∩ ∂U1 6= ∅.

Choose ε > 0 sufficiently small such that the open ball Bε(x) is contained in U c
0 for all

x ∈ Λ1 and for every x ∈ Λ1, since f is a local diffeomorphism, there exists an open set Ux

such that f |Ux
: Ux → Bε(x) is a diffeomorphism. Note that the collection {Bε(x)}x∈Λ1

is

an open cover of Λ1. Since Λ1 is compact, there is a finite subcover, let us say {Bε(xi)}Ni=1.

Fix λ−1
0 < λ′ < 1, where λ0 is the expansion constant of f and pick N ′ greater or

equal to N, the cardinal of the finite subcover of Λ1, such that for every y ∈ Λ1, there is

i = i(y) ∈ {1, . . . , N ′} such that Bλ′ε(y) ⋐ Bε(xi), i.e. Bλ′ε(y) ⊂ Bε(xi).

Let us define W =

N ′⋃

i=1

Bε(xi) and Ŵ =

N ′⋃

i=1

Bε(xi).

By remark (1.13) Λ1 is invariant, then we have that for every xi, there exists at least

one xji ∈ Λ1 such that f(xji ) = xi. Let us consider for every 1 ≤ i ≤ N ′ all the possible

pre-images by f of xi that belongs to Λ1, i.e. recall that f is a local diffeomorphism,

hence for every point x ∈ M, the cardinal ♯{f−1(x)} = Nf is constant, then for every

i ∈ {1, . . . , N ′}, there exist Ki ⊂ {1, . . . , Nf} such that if j ∈ Ki then xji ∈ Λ1 and

f(xji ) = xi. Therefore for every i ∈ {1, . . . , N ′} and for every j ∈ Ki, there exist open sets

U j
i such that xji ∈ U j

i and f |
U

j
i
: U j

i → Bε(xi) is a diffeomorphism. Given i ∈ {1, . . . , N ′},
for every j ∈ Ki consider the inverse branches, ϕi,j : Bε(xi) → U j

i such that

ϕi,j(xi) = xji ,
fϕi,j(x) = x, ∀ x ∈ Bε(xi).

Now, consider Λ∗ =
⋂
n≥0 f

−n(Ŵ ). Clearly, Λ1 ⊂ Λ∗ ⊂ U c
0 and Λ∗ is an expanding

set. In order to show that Λ∗ is locally maximal, it is enough to show that Λ∗ ∩ ∂Ŵ = ∅,
which is equivalent showing that f−1(Ŵ ) is contained in W. Just to make more clear what

follows, let us rewrite f−1(Ŵ ) in terms of the inverse branches,

f−1(Ŵ ) = f−1(

N ′⋃

i=1

Bε(xi)) =

N ′⋃

i=1

⋃

j∈Ki

ϕi,j(Bε(xi)).



§ 1.1 Volume expanding endomorphisms without invariant splitting 13

So, it is enough to show that ϕi,j(Bε(xi)) ⊂ Bε(xmi,j
), for some xmi,j

∈ {x1, . . . , xN ′}.

In fact,

ϕi,j(Bε(xi)) = U j
i ⊂ Bλ−1

0
ε(ϕi,j(xi)) ⊂ Bλ′ε(ϕi,j(xi)) = Bλ′ε(x

j
i )

then, there exists mi,j ∈ {1, . . . , N ′} such that Bλ′ε(x
j
i ) ⋐ Bε(xmi,j

), and the assertion

holds. Easily follows that Λ∗ has the property that every arc γ in U c
0 with diameter larger

than δ0 has a point such that its image by f belongs to it.

Λf

Figure 1.1: Λf looks like a net which is an expanding set that “separates”

Remark 1.14 We want to highlight that for diffeomorphisms there exist examples

of hyperbolic sets that are not contained in any locally maximal hyperbolic set, see for

instance [Cro02] and [Fis06]. A similar construction seems feasible for endomorphisms.

The hypothesis (4) guarantees that Λ1 is an invariant set. Moreover, we can consider a

finite covering {Bε(xi)}N ′

i=1 for Λ1, with xi ∈ Λ1, in such a way that for every point y ∈ Λ1,

there is xi such that Bλ′ε(y) ⊂ Bε(xi). Thus we conclude that Λ
∗ is contained in the interior

of Ŵ and therefore the expanding set Λ1 is either locally maximal or is contained in a

locally maximal expanding set.
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§ 1.1.4 Continuation of the Locally Maximal Set

Definition 1.13 (δ−pseudo orbit)

The sequence {xn}n∈Z
is said to be a δ−pseudo orbit for f if d(f(xn), xn+1) ≤ δ for

every n ∈ Z.

Definition 1.14 (ε−shadowed)

We say that a δ−pseudo orbit {xn}n∈Z
for f is ε−shadowed by a full orbit {yn}n∈Z

for

f if d(yn, xn) ≤ ε for every n ∈ Z.

Definition 1.15 (Topological conjugacy)

f :M → M is topologically conjugate to g : N → N if there exists a homeomorphism

h :M → N such that h ◦ f = g ◦ h.

In order to fix some notation for what follows, we will denote by Λf the expanding

locally maximal set for f, it means that Λf is either Λ1, in the case it is locally maximal,

or it is Λ∗ given in Lemma 2; and denote by U the isolating block of Λf .

Claim 1.1 There exists V1(f) an open neighborhood of f in E1(M) such that if g ∈
V1(f), then g is expanding on Λg =

⋂
n≥0 g

−n(U) and there exists an homeomorphism

hg : Λg → Λf that gives the topological conjugacy and hg is closed to the identity.

Proof. In order to get the conjugacy we use the Shadowing Lemma for expanding

endomorphisms, see for instance [Liu91].

Since Λf is an expanding locally maximal set for f, there exists β > 0 such that f is

expansive with constant β in Λf .

Fix 0 < η < β. By the endomorphism version of the Shadowing Lemma, there exists

ε > 0 such that any ε−pseudo orbit for f within ε of Λf is uniquely η−shadowed by a full
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orbit in Λf .

Take N such that
N⋂

j=0

f−j(U) ⊂ {q : d(q,Λf) < ε/2}.

There exists a C0 neighborhood V(f) of f such that for g in V(f)
N⋂

j=0

g−j(U) ⊂ {q : d(q,Λf) < ε/2}

and for any x ∈ ⋂N
j=0 g

−j(U), we may consider {xn}n∈Z
a full orbit for g, where x0 = x,

getting that {xn}n is an ε−pseudo orbit for f.

Let Λg =
⋂
n≥0 g

−n(U). Taking an open subset V1(f) of V(f) small enough in the C1

topology, then for g ∈ V1(f), Λg is an expanding locally maximal set for g. If g is close

enough to f , then g is also expansive with constant β. Moreover, the Shadowing Lemma

also holds for g.

Take g ∈ V1(f). Given x ∈ Λg, consider {xn}n∈Z
a full orbit for g, where x0 = x.

As {xn}n is an ε−pseudo orbit for f, there exists a unique full orbit {yn}n∈Z
for f with

y0 = y ∈ Λf that η−shadows {xn}n∈Z
.

Let us define hg : Λg → Λf by hg(x) = y, where y is given by the Shadowing Lemma.

By the uniqueness of the shadowing point, this map is well defined. The continuity of hg

follows from the shadowing lemma.

Moreover, hg ◦ g = f ◦ hg. In fact, consider the sequence {zn}n∈Z
where zn = g(xn) =

xn+1. This ε−pseudo-orbit is η−shadowed by a unique full orbit {wn}n∈Z
for f, with

w0 = w ∈ Λf . Then, for every n ∈ Z,

d(wn, zn) = d(fn(w0), xn+1) = d(fn(hg(z0)), g
n(g(x0)))

= d(fn(hg ◦ g(x0)), gn(g(x0))) = d(fn+1 ◦ f−1 ◦ hg ◦ g(x0), gn+1(x0)) < η

Observe that f−1 ◦ hg ◦ g(x0) = w−1 is η−shadowing x0. So, by uniqueness, we have

that f−1 ◦ hg ◦ g(x0) = y0; i.e. hg ◦ g(x) = f ◦ hg(x).
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Since we can apply the Shadowing Lemma for Λg using the same constants as in the

construction of hg, we define a map hf : Λf → Λg such that hf ◦ f = g ◦ hf . In fact,

if {yn}n∈Z is a full orbit for f with y0 ∈ Λf , then it is an ε−pseudo orbit for g. Hence,

this pseudo orbit is uniquely shadowed by a full orbit {xn}n∈Z for g, with x0 ∈ Λg. Thus,

hf (y0) = x0 and d(yn, xn) < η for every n ∈ Z; moreover, hf is continuous and satisfies

hf ◦ f = g ◦ hf just as hg.

Next, let us verify that hg is one to one. Let p1, p2 ∈ Λg be two points such that

hg(p1) = hg(p2). Note that d(fn(hg(p1)), g
n(p1)) < η and d(fn(hg(p2)), g

n(p2)) < η by

construction. Then hg(p1) is η−shadowed by p1 and p2, which by uniqueness gives that

p1 = p2.

Finally, for y ∈ Λf , consider a full orbit of hf(y) by g. Since d(gn(hf(y)), f
n(y)) is

small for all n and some f full orbit of y shadows the g full orbit of hf (y), we have that

hg(hf(y)) = y. Hence, hg is onto and therefore is a homeomorphism.

The next claim is a version for expanding endomorphisms that was already provided

for the case of hyperbolic diffeomorphisms in [Rob76, Theorem 4.1]. The goal is to show

that we can extend the conjugation between f|Λf
and g|Λg

to an open neighborhood U of

Λf in such a way that still is an homeomorphism that conjugate f|U and g|U , noting that

the conjugation is unique just in Λf . We are going to use this extension in next section

for proving the robustness of the property of Λf disconnects a “nice” class of sets.

Claim 1.2 The homeomorphism hf : Λf → Λg in claim (1.1) can be extended as an

homeomorphism H to an open neighborhood of Λf such that H ◦ f = g ◦H.

Proof. This geometrical proof is inspired in the proof given by Palis in [Pal68] and

also used to prove the Grobman-Hartman Theorem in [Shu87, pp.96].

Other alternative proof consist in using inverse limit space, by this an expanding
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endomorphism becomes a hyperbolic diffeomorphism and so Theorem 4.1 in [Rob76] could

be applied.

The goal is to choose U an isolating neighborhood of Λf and to construct an homeo-

morphism from U onto itself, using the inverse branches of f and g, and a fundamental

domain Df for f , i.e. for every x ∈ U \ Λf , there exists n ∈ N such that fn(x) ∈ Df .

Observe that the isolating block of Λf is also an isolating block of Λg. Now we can take

in the same way a fundamental domain for g, Dg. After it is taken an homeomorphism H

between both fundamental domains Df and Dg. Then this homeomorphism is saturated

to U \ Λf by backward iteration, i.e. if x ∈ U \ Λf , let n be such that fn(x) ∈ Df , take

H ◦ fn(x) and then g−n ◦H ◦ fn(x) where g−n is taken carefully using the corresponding

inverse branches.

Denote by Nf the cardinal of {f−1(x)}, since f is a local diffeomorphism, Nf is cons-

tant. Let K ⊂ {1, . . . , Nf} be such that for every i ∈ K, there exist Uf
i ⊂ U and

ϕfi : U → Uf
i inverse branch of f such that ϕfi (U) = Uf

i and f(Uf
i ) = f ◦ϕfi (U) = U. Also,

for g as in claim (1.1), for every i ∈ K, there exist Ug
i ⊂ U and ϕgi : U → Ug

i the inverse

branch of g such that ϕgi (U) = Ug
i and g(Ug

i ) = g ◦ ϕgi (U) = U.

We wish to construct an homeomorphism H on U satisfying H ◦ f = g ◦ H and

H |Λf
= hf . We can begin as follows. Suppose that the restriction H : ∂U → ∂U is any

well-defined orientation preserving diffeomorphism. The restriction of H to ∂Uf
i is then

defined as follows H(x) = ϕgi ◦H ◦ f(x) if x ∈ ∂Uf
i because H conjugate f and g. Extend

H to a diffeomorphism which send U \∪i∈KUf
i bounded by ∂U and ∂Uf

i onto U \∪i∈KUg
i

bounded by ∂U and ∂Ug
i . We may assume that the Hausdorff distance between U and

Λf is small, see Lemma 2, then the initial H is close to the identity. Let us say that

d(H(x), x) < η, where η > 0 is given arbitrarily.

Given i, j ∈ K, denote Uf
j,i = ϕfj ◦ ϕfi (U) and Uf

2 i = Uf
i \⋃j∈K U

f
j,i. If x ∈ ∂Uf

j,i then

H(x) = ϕgj ◦ ϕgi ◦H ◦ f 2(x) ∈ ∂Ug
j,i. If x ∈ Uf

2 i \ Λf then H(x) = ϕgi ◦H ◦ f(x) ∈ Ug
2 i.
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Doing this process inductively we have that: Given i1, . . . , in ∈ K, denote Uf
in,...,i1

=

ϕfin ◦ · · · ◦ϕ
f
i1
(U) and Uf

n (in−1,...,i1)
= Uf

in−1,...,i1
\⋃in∈K

Uf
in,...,i1

. If x ∈ ∂Uf
in,...,i1

then H(x) =

ϕgin ◦ · · ·◦ϕ
g
i1
◦H ◦fn(x). If x ∈ Uf

n (in−1,...,i1)
\Λf then H(x) = ϕgin−1

◦ · · ·◦ϕgi1 ◦H ◦fn−1(x).

And H(x) = hf(x) if x ∈ Λf .

Let us prove that H is continuous.

Given x ∈ Λf , let (xn)n be a sequence in U \ Λf such that xn → x, when n→ ∞. Let

us prove that H(xn) → H(x), when n→ ∞.

First, consider {zk}k∈Z an f−full orbit in Λf such that z0 = x and for every n ∈ N,

consider {znk }k∈Z a full orbit by f associated to each xn using the corresponding inverse

branches (for the backward iterates) given by the full orbit of x, where zn0 = xn. Since f

is continuous, for every k ∈ Z, we have that znk → zk when n→ ∞.

Note that for every n ∈ N, there exists kn > 0 such that znkn ∈ U\∪i∈KUf
i . Furthermore,

znk ∈ U for every k ∈ [−kn, kn]. Since H ◦ f = g ◦H, we get that H(xn) ∈
⋂kn
k=−kn

gk(U).

Hence, for η and ε as in claim (1.1) and for every n ∈ N, we have that {znk}knk=−kn
is

a finite ε−pseudo orbit for g and it is η−shadowed by a g−orbit of H(xn) until kn for

forward iterates and −kn for backward iterates.

Observe that as m goes to infinity, the finite pseudo orbit ymn = {znk }mk=−m becomes

longer. Consider now the sequence {ymn }n. Then ymn → {zk}mk=−m when n → ∞. Hence,

the sets of shadowing points of the finite pseudo orbits yknn converge to the shadowing

point of the infinite pseudo orbit {zk}k, then H(xn) → hf(x) = H(x) when n→ ∞.

§ 1.1.5 The Locally Maximal Set “Separates”

The main goal of this section is to show that the locally maximal set for f has a topo-

logical property that persist under perturbation, roughly speaking means that Λf and Λg
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disconnect small open sets. We prove that Λf intersects “some nice” class of arcs in U c
1

and which Λg also intersects for all g nearby f . The first question that arise is: which

arcs belong to this “nice” class?, the second questions in the context of proving the Main

Theorem is: why is this property enough? and the third question is: why do the “nice

class” exist? All these questions are answered along the section, but to give some brief

insight about the main ideas observe that:

1. These “nice” arcs have the property that we can build a “nice cylinder” (see definition

1.18) containing the initial arc and Λf “separates” (see definition 1.20) this cylinder

in a “robust way”.

2. It is enough to consider these “nice” class of arcs to finish the proof of the Main

Theorem. Suppose we have the existence of this class of arcs and suppose that given

any open set there is an iterate by g that has a “nice” arc. Then there is a point in

this iterate which its forward orbits stay in the expanding region, hence the internal

radius growth until a fixed radius in finitely many iterates. It allows us to conclude

the density of the pre-orbit of any point by the perturbation, just noting that the

density of every pre-orbit by the initial map implies ε−density of the pre-orbit by

the perturbed map.

3. We show in claim (1.3) that every large arc admits a “nice” arc.

Let us define the concepts involved in this section.

Definition 1.16 (Cylinder)

Given γ a differentiable arc and r > 0, it is said that C(γ, r) is a cylinder centered at

γ with radius r if

C(γ, r) :=
⋃

x∈γ

([Txγ]
⊥)r,
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where ([Txγ]
⊥)r denotes the ball Br(x) centered at x with radius r intersected with [Txγ]

⊥

the orthogonal to the tangent to γ in x.

Definition 1.17 (Simply connected cylinder)

Given γ a differentiable arc and r > 0, it is said that a cylinder C(γ, r) is simply

connected if it is retractile to a point.

Remark 1.15 Fixed the radius, the cylinder could be not retractile to a point. In

this case, working in the universal covering space, consider the convex hull of its lift and

then project it on the manifold. We call the resulting set as simply connected cylinder as

well and denote in the same way as above.

Definition 1.18 (Nice cylinder)

Given γ an arc and r > 0, it is said that a cylinder C(γ, r) is a nice cylinder if it

is simply connected cylinder and if xA and xB are the extremal points of γ then A :=

([TxAγ]
⊥)r ⊂ ∂C(γ, r) and B := ([TxBγ]

⊥)r ⊂ ∂C(γ, r). In this case, we say that A and B

are the top and bottom sides of the cylinder.

Remark 1.16 Note that in general a cylinder does not have top and bottom sides

and does not be simply connected.

Hereafter, fix U2 an open set such that U1 ⊂ U2 and δ0 < diamint(U
c
2) < diamint(U

c
0).

Let d1 = dH(U2, U1) > 0, where dH denotes the Hausdorff metric, and let k ∈ N such that

δ′0 = δ0 +
d1
3k
< diamint(U

c
2).

Let us denote by Ũ the lift of U0, π the projection of Rn onto M and U0 the convex

hull of Ũ ∩ [0, 1]n. Consider Pi(U0) the projection of U0 in the i−th coordinate in the

n−dimensional cube [0, 1]n. Since diamext(U0) < 1 and remark (1.8), for every 1 ≤ i ≤ n,

there exist 0 < k−i < k+i < 1 such that k−i < Pi(U0) < k+i . Note that 1 + k−i − k+i > δ′0 for

every i, because 1 + k−i − k+i > diamint(U
c
0) by construction.
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Let Rm
i = {x ∈ R

n : k−i + m < xi < k+i + m} with m ∈ Z, 1 ≤ i ≤ n and xi is the

i−th coordinate of x. Thus, U0 ⊂
⋂

m∈Z,1≤i≤n

Rm
i . Denote by L+

i = {x ∈ R
n : xi = k+i } and

L−
i = {x ∈ R

n : xi = k−i }. Let f̃ be the lift of f .

The next claim answer the third question stated at the beginning of the section.

Claim 1.3 Let m > 2
√
n be fixed. Given any arc γ in R

n with diam(γ) > m, there

exist an arc γ′ ⊂ γ, 1 ≤ i ≤ n and j ∈ Z such that ∂γ′ ∩ (L+
i + j), ∂γ′ ∩ (L−

i + j + 1)

and P j
i (γ

′) ⊂ [k+i + j, k−i + j+1]. Moreover, γ′ admits a nice cylinder, γ∗ = π(γ′) is in U c
2 ,

diameter of γ∗ is larger than δ0 and γ∗ also admits a nice cylinder contained in U c
1 .

Proof. Take γ an arc with diameter larger than m, then the projection of γ in the

i−th coordinate contains an interval of the kind formed by k+i and 1 + k−i for some i

(or formed by k+i + j and k−i + j + 1 for some j ∈ Z). If it is not true, γ would be in

a n−dimensional cube with sides smaller than k+i − k−i < 1 and this cube has diameter

smaller than
√
n, but this contradict the fact that diam(γ) > m. Hence, we may pick an

arc γ′ in γ such that ∂γ′ ∩ L+
i + j, ∂γ′ ∩ L−

i + j + 1 and P j
i (γ

′) ⊂ [k+i + j, k−i + j + 1]

for some 1 ≤ i ≤ n and some j ∈ Z. Therefore, diameter of γ′ is greater than δ0 and in

consequence its projection in M also has diameter greater than δ0.

Moreover, since the property of the arc γ′ to have a projection in between k+i + j and

k−i +1+ j, we may construct a cylinder centered at γ′ and radius d1
2
such that this cylinder

is “far” away from Ũ , so this cylinder could be simply connected or, if it is not simply

connected cylinder, it has holes that are different from Ũ . In the case that the cylinder

is not simply connected, we consider the convex hull of the cylinder, since the original

cylinder is bounded by L+
i + j and L−

i + j +1, then the convex hull stay in between these

two hyperplanes and therefore it does not intersect Ũ . By abuse of notation, let us denote

this set by C(γ′, d1
2
), it is a simply connected cylinder. Observe that by construction, this

cylinder will have top and bottom sides, thus C(γ′, d1
2
) is a nice cylinder.
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Take γ∗ = π(γ′), note that γ′ can be choose such that γ∗ is contained in U c
2 and the

diameter of γ∗ is larger than δ0, then projecting the nice cylinder for γ′ in M we obtain a

nice cylinder for γ∗ which is denoted by C(γ∗, d1
2
). This nice cylinder has the property that

every arc that goes from bottom to top side has diameter at least δ0 and all this process

can be made in such a way that the nice cylinder is in U c
1 .

Figure 1.2: Nice cylinders

Definition 1.19 (Lateral border)

Given γ a differentiable arc and r > 0. The lateral border S of the cylinder C(γ, r) is

∂C(γ, r) minus the top and bottom sides of the cylinder if they exist.

Definition 1.20 (Separated horizontally)

We say that a nice cylinder C(γ, r) is separated horizontally by a set Λ if there exists a

connected component of Λ such that intersects the nice cylinder across the lateral border

and C(γ, r) minus that connected component of Λ has at least two connected component.
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Now, we are going to prove that the locally maximal set for f, found in section § 1.1.3,
has the geometrical property of separating horizontally these nice cylinders of a certain

radius.

Lemma 3 Given any arc γ in U c
2 with diameter greater than δ0 that admits a nice

cylinder as in claim (1.3) holds that Λf separates horizontally this nice cylinder.

Proof. Let us denote by T the nice cylinder associated to γ as in the statement and

let A and B denote the top and bottom sides of T respectively. Let ε > 0 be arbitrarily

small.

Let T ′ be a bigger cylinder containing T joint together with two security regions, denote

by SA and SB, and such that the distance between the lateral border of T and the lateral

border of T ′ is small, for instance dH(T, T
′) = d1

6k
, see figure (1.3). For security regions SA

and SB we means two strips of d1
6k

thickness glued to the sides A and B of T , or in other

words, SA (respectively SB) is the set of points in T c such that the distance from these

points to A (respectively B) is less or equal to d1
6k
. This set T ′ was constructed in such a

way that its diameter is greater than δ′0.

Since γ is in U c
2 and diameter is greater than δ0, we can assure that T ∩ Λf is non

empty. Consider all the connected components of T ∩Λf . For every x ∈ T ∩Λf , we assign

Kx the connected component of T ∩ Λf that contains x. Observe that we may define an

equivalence relation: x ∼ x′ if and only if Kx = Kx′. Then we pick one component from

each class, or in other words we pick just the connected components that are two by two

disjoints.

We claim that Λf separates T horizontally. If there exists one component Kx that

separates T horizontally in more than one connected component, the assertion holds.

Suppose it does not happen, i.e. none of the Kx separates T horizontally. Take Ux

open set in T ′ such that Kx ⊂ Ux, ∂Ux ∩ Λf = ∅, ∂Ux is connected and ∂Ux does not
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divides T horizontally. If there are many Ky accumulating in one Kx, then we could have

a same open set Ux containing more than one connected component Ky.

Observe that the collection {Ux} is an open cover of T ∩Λf . Since it is compact, there

is a finite subcover {Ui}Ni=1, i.e. T ∩ Λf ⊂ U = ∪Ni=1Ui.

If the connected components of U does not separates horizontally T, it is easy to cons-

truct a curve going from A to B with diameter greater than δ0 and empty intersection

with the Ui’s; hence, this curve does not intersects the set Λf . But this contradicts the

fact that every curve in U c
1 with diameter larger than δ0 intersects Λf . Then the connected

components of U separate T horizontally, denote by Cj the connected components of T

minus these connected components of U that separates T horizontally.

Observe that every Cj is path connected, since they are the complement of a finite

union of open sets in a simply connected set T . There exist a finite quantity of Cj, let us

say m. We can reorder these sets enumerating from the top side. If we denote by Vj each

of the connected components of T ∩ U that separate T horizontally, we have two cases,

either Cj is in between two consecutive Vj and Vj+1 (or Vj−1 and Vj) or Cj just intersects

one Vj on the border.

The idea is to build a curve from top to bottom of T connecting Cj with Cj+1 in such

a way that the diameter of the arc is greater than δ0 but without intersecting Λf , which

is an absurd because it is again in U c
1 and has diameter greater than δ0, then this curve

must intersects Λf .

It is enough to show that we can pass from Cj to Cj+1 without touching Λf . For this,

we must observe that every Vj is a union of finitely many Ui, let us say Ui1, . . . ,Uij . Pick a

curve γj in Cj going from top to bottom, i.e. γj goes from ∂Vj to ∂Vj+1 (or ∂Vj−1 and ∂Vj)

and γj does not intersects the interior of Vj and Vj+1 (or Vj−1 and Vj), then there exists

is ∈ {i1, . . . , ij} such that γj∩∂Uis 6= ∅. After that continue this arc picking a curve follow-

ing by the border of Uis until Cj+1, which has empty intersection with Λf by construction,
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if it is not possible to do in one step, pick another Uik and repeat the process. Note that

this process finish in finitely many times. The resulting arc from joint together all this

segment has diameter greater than δ0 and with empty intersection with Λf as we wanted.

Figure 1.3: Λf splits ”horizontally” every nice cylinder in at least two connected component

Remark 1.17 In claim (1.1), remembering that d(h, id) < η, we may fix η < min{ d1
6k
, δ0, β}.

So for this η, there exists ε0 > 0 given by the shadowing lemma and this determine V1(f)

given in claim (1.1).

Lemma 4 Given g ∈ V1(f) and given γ an arc in U c
2 with diameter greater than δ′0

such that it admits a nice cylinder C(γ, d1
2
), then γ ∩ Λg is not empty.

Proof. Let g ∈ V1(f), it means that g is an endomorphism within distance of f less

than ε0 in the C1 topology. Take γ an arc in U c
2 with diameter greater than δ′0 such that

C(γ, d1
2
) is a nice cylinder.

By construction, we may assume that every arc taken in the nice cylinder that goes

from top to bottom has diameter greater or equal to the diameter of γ. Take two security

regions inside the cylinder, in the top and bottom sides of the cylinder respectively, with
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d1
6k

of thickness each one, i.e. two strips glued to the top and bottom sides of the cylinder

such that each one is the set of points in the cylinder within distance to top (respectively

bottom) side less or equal to d1
6k
, see figure (1.4). Let us denote by C ′ the cylinder resulting

of taking out these two security strips from the original cylinder C(γ, d1
2
), then the diameter

of C ′ is still greater than δ0.

Hence, the diameter of γ′ = γ ∩C ′ is greater than δ0 and it is in U c
1 . Lemma 3 implies

that Λf separates horizontally C ′, hence γ′ intersects Λf , let us denote by xf the point in

the intersection.

Since xf ∈ Λf , claim (1.1) and remark (1.17), there exists xg ∈ Λg ∩Bη(xf ). Note that

Λf separates Bη(xf ) in at least two connected component. Hence, Λg separates Bη(xf ) in

at least two connected component as well, because f |U and g |U are conjugated. There-

fore, Λg must intersects γ.

Figure 1.4: Λg intersects γ

§ 1.1.6 Getting Sets of Large Diameter

Lemma 5 There exist V2(f) and R > 0 such that for every g ∈ V2(f), if there is

x ∈ M such that gn(x) 6∈ U0 for every n ≥ 0, then there is ε0 > 0 such that for every

0 < ε < ε0, there exists N = N(ε) ∈ N such that BR(g
N(x)) ⊂ gN(Bε(x)).
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Proof. We may pick U3 an open subset contained in U0 such that m{Df |Uc
3
} > λ′,

with 1 < λ′ < λ0. Take V2(f) an open subset perhaps smaller than V1(f) such that

m{Dg |Uc
3
} > λ′ holds for every g ∈ V2(f). Let us fix R = dH(U0, U3) > 0.

Given 0 < ε < R, take N ∈ N such that (λ′)−NR < ε/2. Then B(λ′)−NR(x) ⊂ Bε(x).

Observe that BR(g
n(x)) ∩ U3 = ∅, for every n ≥ 0. Also,

gk(B(λ′)−NR(x)) = B(λ′)−N+kR(g
k(x)) ⊂ BR(g

k(x)),

for every 0 ≤ k ≤ N. In particular, gk(B(λ′)−NR(x)) ∩ U3 = ∅, for every 0 ≤ k ≤ N. Then

gN(B(λ′)−NR(x)) = BR(g
N(x)) ⊂ gN(Bε(x)).

Remark 1.18 Let us note that Lemma 5 holds for every point in Λg.

Lemma 6 For every g ∈ V2(f) and given V an open path connected set in M, there

exists m0 = m0(V, g) ∈ N such that diam(g̃m0(Ṽ )) > m, where g̃ and Ṽ are the lift of g

and V, respectively. In particular, it contains an arc with diameter greater than m.

Proof. Let g ∈ V2(f) and V be an open path connected set in M. Since g is volume

expanding, let us say with expanding constant λ > 1, we have that vol(g̃k(Ṽ )) > λkvol(Ṽ ),

for k ≥ 1. Iterating by g̃, the volume increase and furthermore the diameter of its iterates

growth also in the covering space. Hence, there exists m0 ∈ N such that diam(g̃m0(Ṽ )) >

m.

Remark 1.19 For the case that V is an open connected set, observe that given a point

in V there exists an open ball centered in this point and contained in V such that it is
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path connected. Then we may apply Lemma 6 to this ball and obtain a similar statement

for V .

§ 1.1.7 Proof of The Main Theorem

Let f ∈ E1(Tn) be such as in the statement. Lemma 2 implies that we may assume the

existence of Λf an expanding locally maximal set for f .

Fix 0 < α < R, arbitrarily small. Given x ∈ T
n, since

⋃
i∈N{f−i(x)} is dense, there

exists n0 ∈ N such that

n0⋃

i=0

{f−i(x)} is α/2-dense.

Take a neighborhood U(f) ⊂ V2(f), where V2(f) was given in Lemma 5, such that for

every g ∈ U(f) follows that

n0⋃

i=0

{g−i(x)} is α/2-close to

n0⋃

i=0

{f−i(x)}.

Hence,

n0⋃

i=0

{g−i(x)} is α-dense.

Let V be an open connected set in T
n. By Lemma 6, there exists m0 ∈ N such that

diam(g̃m0(Ṽ )) > m. Then we may pick an arc γ in g̃m0(Ṽ ) with diameter larger than

m and applying claim (1.3) follows that there exists a connected piece γ′ of γ such that

γ∗ = π(γ′) is in U c
2 , diameter of γ∗ is larger than δ′0 and it admits a nice cylinder C(γ∗, d1

2
).

By Lemma 4 follows that γ∗ ∩ Λg is not empty, let y be a point in the intersection.

Hence, for this point y, there exists ε0 = ε0(y) > 0 such that Bε0(y) ⊂ gm0(V ), by

Lemma 5 taking 0 < ε < ε0, we get that there exists N = N(ε) ∈ N such that

BR(g
N(y)) ⊂ gN(Bε(y)) ⊂ gm0+N(V ).
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Hence, Bα(g
N(y)) ⊂ gm0+N(V ). Since the α−density, we have that

n0⋃

i=0

{g−i(x)} ∩ Bα(g
N(y)) 6= ∅.

Therefore, denoting by p = m0 +N,

n0⋃

i=0

{g−i(x)} ∩ gp(V ) 6= ∅.

Taking the p−th pre-image by g, we obtain that there is i0 ∈ N such that

i0⋃

i=0

{g−i(x)} ∩ V 6= ∅.

Thus, for every g ∈ U(f) follows that ⋃i∈N{g−i(x)} is dense in T
n for every x ∈ T

n.

Bε0(y)

Bα(g
N (y))

BR(g
N (y))

γ∗

Figure 1.5: Iterations by the perturbed map

§ 1.1.8 The Main Theorem Revisited

In this section, we enunciate a weaker version of the Main Theorem. Observe that using

hypothesis (3) and (4) of the Main Theorem, we showed in sections § 1.1.3 and § 1.1.5 the
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existence of a locally maximal expanding set for f which separates large nice cylinders,

and by section § 1.1.4 follows that this geometrical property persist under perturbation,

i.e. there is a set Λf locally maximal which intersects a nice class of arcs in U c
0 and

this property also holds for the perturbed. The hypothesis of f being volume expanding

guarantees that given any open set in the covering space, we are able to choose some

iterates such that it contains an arc with diameter big enough to apply claim (1.3) and

Lemma 3. Hence, the Main Theorem may be enunciated in a weaker version as follows:

Main Theorem Revisited Let f ∈ E1(Tn) be volume expanding such that the pre-

orbit of every point are dense. Suppose that there exist an open set U0 with diamext(U0) < 1

and Λf a locally maximal expanding set for f in U c
0 such that every arc γ in U c

0 with

diameter large enough intersect Λf . Then, the pre-orbit of every point are C1 robustly

dense.

Remark 1.20 Observe that the Main Theorem implies the Main Theorem Revisited,

the reciprocal could be false. The hypotheses of the Main Theorem assures the existence

of a nice Λf with certain geometrical properties, but there might exist weaker conditions

that guarantee the existence of such a set.

§ 1.2 Volume expanding endomorphisms with invariant

splitting

Definition 1.21 (Unstable cone family)

Given f : M → M a local diffeomorphism, let V be an open subset of M such that

f|V is a diffeomorphism onto its image. Denote by ϕ the inverse branches of f restricted

to V ; more precisely, ϕ : f(V ) → V such that f ◦ϕ(x) = x if x ∈ f(V ). A continuous cone
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field Cu = {Cux}x
defined on V is called unstable if it is forward invariant:

Df(x′) Cux′ ⊂ Cuf(x′)

for every x′ ∈ V ∩ ϕ(V ).

Remark 1.21 Given a point x, there is not necessarily a unique unstable subbundle,

i.e. for each inverse path {xk}k≥0, it means x0 = x and f(xk+1) = xk for k ≥ 0, there

exists an unstable direction belonging to Cu.

Definition 1.22 (Complementary splitting)

We say that a splitting E
c
x + Cux is complementary if the unstable cone Cux contains an

invariant subspace whose dimension is equal to the dimension of the manifold minus the

dimension of the central subbundle.

Definition 1.23 (Partially hyperbolic endomorphism with expanding

extremal direction)

It is said that an endomorphism f is partially hyperbolic with expanding extremal di-

rection provided the tangent bundle splits into two non-trivial subbundles TM = E
c⊕E

u

which are invariant under the tangent map Df , i.e. for every x ∈ M, there exists a com-

plementary splitting E
c
x + Cux , where {Cux}x

is a family of unstable cones, and there exists

0 < λ < 1 such that for every inverse branches ϕ of f follows that

1. ‖Dϕ(x) v‖ < λ, for all v ∈ Cux .

2. ‖Df(x′) |Ec(x′) ‖‖Dϕ(x)v‖ < λ, for all v ∈ Cux , where ϕ(x) = x′, f(x′) = x.

§ 1.2.1 Theorem 2: Splitting Version

In section § 1.1.1, we gives sufficient conditions for volume expanding local diffeomorphisms

without invariant subbundles be robustly transitive. Now, we state a version for the
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case when tangent bundle splits into two non-trivial subbundles, one with an expanding

behavior and the other one with nonuniform behavior but dominated by the expanding

one.

Theorem 2 Let f ∈ E1(Tn) be a locally diffeomorphism partially hyperbolic with ex-

panding extremal direction satisfying the following properties:

1. {f−k(x)}k≥0 is dense for every x ∈ T
n.

2. There exist δ0 > 0, λ0 > 1 and k0 ∈ N such that for every x ∈ T
n, if γ is a disc

tangent to the unstable cone Cux with internal diameter larger than δ0, there exists a

point y ∈ γ such that m{Df i |Ec(fk(y))} > λi0, for all i > 0, for all k > k0.

Then, for every g close enough to f, {g−k(x)}k≥0 is dense for every x ∈ T
n.

§ 1.2.2 Proof of Theorem 2

The proof of Theorem 2 is pretty similar to the proof given in [PS06b], where it is proved

that any partially hyperbolic diffeomorphism satisfying a hypothesis like the one stated

in Theorem 2 and such that the strong stable foliation is minimal, then the strong stable

foliation is robustly minimal. That property says that in any compact piece of the unstable

foliation, there exists a point such that the central bundle has uniform expanding behavior

along the forward orbit, and this is exactly what we have. The key is to prove that this

property is robust under perturbation.

Given a local diffeomorphism f as in the statement of Theorem 2, we want to show

that any small perturbation g preserve the property of density of the pre-orbit of any

point. Our strategy is to prove that given any disc tangent to the unstable cones for g

with large enough internal diameter has a point such that the central direction along the

forward orbit by g is uniformly expanding.
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Observe that given any open set, since we have a direction that is indeed expanding,

the diameter along the unstable direction of the iterates growth. Then we are able to pick

a disc inside this iterate such that the disc is tangent to the unstable cones with diameter

large enough to apply the last property. Hence, there exists a point which its forward

orbit is expanding in all direction, then there is some iterate such that it contains a ball

of a fix radius ε.

Since g is close enough to f, we have that the pre-orbit by g are ε−dense. Therefore,

given any open set, by the property of the unstable discs, there exists an iterate such that

it intersects the pre-orbit by g of any point. Thus, we conclude the density of the pre-orbit

of any point by the perturbation.

Moreover, the proof of Theorem 2 can also be performed in the spirit of Main Theorem.

In fact, it is possible to show that

⋂

l≥0

f−l({x : m{Dfn |Ec(fk(x))} > λn0 , n > 0, k > k0})

is an invariant expanding set such that separates unstable discs. This provides a geome-

trical interpretation.

§ 1.3 Remarks About the Main Theorem and Theorem 2

On regard the similarities between Main Theorem and Theorem 2, we must note that in

both theorems we assume that f is volume expanding, since we know by Theorem 1 that

volume expanding is a necessary condition in order to have robust transitivity. Also, we

assume that the pre-orbit by f of every point is dense, actually this hypothesis is stronger

than transitivity. Moreover, this hypothesis does not depend on the existence of splitting.

Besides, in the Main Theorem we asked for large arcs to contain points such that its

forward iterations remain in the expanding region. The same is required in Theorem 2 but
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just for unstable discs, and the equivalent for the splitting version to say that the forward

orbit is “in an expanding region” is that the central bundle along the forward orbit of such

points has uniform expanding behavior.

The main difference in their proof arise from the fact that in the version with splitting,

since we know that we have uniform expansion in one direction, any disc with internal

diameter larger than δ0 and tangent to this direction, growth until length δ1 > δ0 in a

bounded uniform time, independently of the disc. Note that we cannot guarantee that

this happens just having volume expansion.

Observe that in the Main Theorem is not assumed that f does not have any splitting.

In fact, it could also be partially hyperbolic. However, knowing in advance that the

endomorphism is partially hyperbolic then it is possible to get sufficient conditions for

robust transitivity weaker than the one requires by the Main Theorem.



Chapter 2
Existence of a semiconjugation to a

linear expanding endomorphism

In this chapter, we show some consequences from the Main Theorem. The main goals are

to study the properties of the semiconjugation between a linear expanding endomorphism

and an isotopic endomorphism to the initial one, and the relation between the Markov

Partition and Transitivity of these maps.

§ 2.1 Dynamical Consequences: Geometrical and Topological

Definition 2.1 (Totally disconnected set)

A set Λ is said to be totally disconnected if every point is a connected component.

By Lemma 3 we have that

Corollary 1 Λf is not totally disconnected. Furthermore, Λf intersects every large

arc in U c
0 . If the connected components of U0 are simply connected, then Λf is a basic set.

Remark 2.1 Since hypothesis (3) of the Main Theorem, the connected components

of ∪n≥1f
−n(U0) have diameter less than δ0.

35
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Remark 2.2 The fact of Λf be expanding locally maximal set implies that there exists

a Markov Partition for this set.

§ 2.2 The Case f is Isotopic to a Linear Expanding

Endomorphism E

In this section, given an endomorphism f isotopic to a linear expanding endomorphism E ,
we construct the semiconjugation between these two maps and study the properties of the

semiconjugation and the relation with the existence of Markov Partition for f and how

it can help us to deduce if f is transitive. Moreover, we are interested in the case that

we know that there exists an expanding locally maximal set Λf with the properties given

in the Main Theorem and how this gives some information about the Markov partition.

Finally, we pose some related questions.

§ 2.2.1 Existence of the Semiconjugation

Let E : T
n → T

n be a linear expanding endomorphism and let f : T
n → T

n be an

endomorphism isotopic to E .

Let us remember that the lift of f is given by f̃ = Ẽ + p, where Ẽ ∈ SL(n,Z) (called

the linear part) is the lift of E and p is Zn−periodic isotopic to a constant.

Lemma 7 There exists a semiconjugation between f̃ and Ẽ; i.e. there exists H : Rn →
R
n continuous, onto and H ◦ f̃ = Ẽ ◦H. Moreover, there exists a constant K1 > 0 such

that ‖H − I‖ < K1. Also, for any m ∈ Z
n we have that H(x+m) = H(x) +m.

Proof.

Since f̃ = Ẽ + p and p is bounded, fixing K > ‖p‖, every full orbit {xk}k∈Z for f̃ is a

K−pseudo-orbit for Ẽ. In fact, given x in R
n, we may associate a full orbit {xk}k∈Z for f̃ ,
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this means that f̃(xk) = xk+1 and x0 = x, then for every k ∈ Z follows that

‖Ẽ(xk)− xk+1‖ = ‖Ẽ(f̃k(x0))− f̃k+1(x0)‖ = ‖(Ẽ − f̃)(f̃k(x0))‖

≤ ‖Ẽ − f̃‖ = ‖p‖.

Note that Ẽ is an expanding map and linear, therefore it has global product structure

and in consequence the (endomorphism version) shadowing lemma holds for any pseudo

orbit of Ẽ; that is, for any K > 0, there is K1 = K1(K) > 0 such that for any pseudo

orbit, ‖Ẽ(xk) − xk+1‖ < K for every k ∈ Z, there exists a unique y ∈ R
n such that y

K1−shadows {xk}k∈Z. Then for every x there is a unique point y = H(x) such that

‖Ẽk(H(x))− f̃k(x)‖ < K1, ∀ k ∈ Z. (2.1)

As a consequence of the shadowing lemma, the map H : Rn → R
n is well defined and

continuous. Furthermore, H ◦ f̃ = Ẽ ◦H and ‖H − I‖ < K1. Hence H is onto.

Now, given m ∈ Z
n we have that

‖Ẽk(H(x) +m)− f̃k(x+m)‖ = ‖Ẽk(H(x)) + Ẽk(m)− [Ẽk(x+m) + pk(x+m)]‖

= ‖Ẽk(H(x))− [Ẽk(x) + pk(x)]‖

= ‖Ẽk(H(x))− f̃k(x)‖ < K1, ∀ k ∈ Z.

Then by uniqueness follows that H(x+m) = H(x) +m.

Consider π : R
n → T

n the canonical projection. Let us define h : T
n → T

n by

h(π(x)) = π(H(x)). Hence, we have the following

Corollary 2 There exists a semiconjugation between f and E , i.e. there exists a map

h : Tn → T
n continuous, onto and h ◦ f = E ◦ h.

Remark 2.3 The semiconjugation h has the following properties:
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1. f transitive implies int(h−1(x)) = ∅ for every x ∈ T
n. In fact, let us suppose

that there exists a point x such that the interior of h−1(x) is not empty, call

U= int(h−1(x)), so h(U)=x. Since f is transitive, there is n > 0 such that fn(U)∩U
is nonempty. Then h(fn(U)) = En(h(U)) = En(x), hence h(fn(U)∩U) = x = En(x).
Therefore, x is periodic and U is an open periodic set for f, but this is not possible

since f is transitive.

2. h−1(x) is connected. Let π(x̃) = x, by the construction of h, h−1(x) is connected if

and only if H−1(x̃) is connected. So, let us suppose that H−1(x̃) is not connected,

then there exist z̃, ỹ ∈ H−1(x̃) in two different connected components, i.e. there

exists L hyperplane dividing R
n in two component such that z̃ and ỹ are in different

components. Since H(z̃) = H(ỹ) = x̃, we have that Ẽn(H(z̃)) = Ẽn(H(ỹ)) = Ẽn(x̃),

for every n ≥ 0, then H(f̃n(z̃)) = H(f̃n(ỹ)). Hence, by (2.1), ‖f̃n(z̃) − f̃n(ỹ)‖ ≤
‖f̃n(z̃)−H(f̃n(z̃))‖+‖H(f̃n(ỹ))−f̃n(ỹ)‖ < 2K1. On the other hand, we have that for

any w̃ ∈ L, H(w̃) 6= x̃, then ‖H(f̃n(w̃))−H(f̃n(z̃))‖ = ‖Ẽn(H(w̃))− Ẽn(H(z̃))‖ ≥
λn‖H(w̃)−H(z̃)‖, with λ > 1. Since ‖f̃n(w̃)− f̃n(z̃)‖ ≥ ‖H(f̃n(w̃))−H(f̃n(z̃))‖ −
‖H(f̃n(w̃)) − f̃n(w̃)‖ − ‖H(f̃n(z̃)) − f̃n(z̃)‖ ≥ λn‖H(w̃) − H(z̃)‖ − 2K1, we have

that the distance between f̃n(z̃) and L goes to infinity and the same happen for

f̃n(ỹ). So, the distance between f̃n(z̃) and f̃n(ỹ) cannot be bounded contradicting

that ‖f̃n(z̃) − f̃n(ỹ)‖ < 2K1. Thus, H
−1(x̃) is connected and therefore h−1(x) is

connected.

§ 2.2.2 Markov Partition and Transitivity

Let us define Markov Partition for an endomorphism

Definition 2.2 (Markov partition for endomorphism)

A Markov Partition for an endomorphism E : M → M is a family P = {R1, . . . , RN}
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of compact sets covering M such that:

1. For every 1 ≤ i < j ≤ N, Ri ∩Rj = ∂Ri ∩ ∂Rj .

2. For all 1 ≤ i ≤ N, E |int(Ri) is injective.

3. For all 1 ≤ i ≤ N, int(Ri) = Ri.

4. If E(Rj) ∩ int(Ri) 6= ∅, then Ri ⊂ E(Rj).

Remark 2.4 All expanding endomorphism has a Markov Partition.

Let PE be a Markov Partition of the linear map E , denote by Ri every element of the

partition. Then T
n =

⋃N

i=1Ri. Consider the following family

Pf := {h−1(Ri) : i = 1, . . . , N}.

Claim 2.1 Pf is a Markov Partition for f.

Proof. Let us denote by R̃i = h−1(Ri).

• First, observe that int(Ri)∩int(Rj) = ∅ if i 6= j, so int(R̃i)∩int(R̃j) = h−1(int(Ri))∩
h−1(int(Rj)) = ∅. Then R̃i ∩ R̃j = ∂R̃i ∩ ∂R̃j .

• f |int(R̃i)
is a diffeomorphism. Let us suppose that f |int(R̃i)

is not an homeomorphism.

So, take x, y ∈ int(R̃i) such that f(x) = f(y). Note that h(x) and h(y) belong to int(Ri),

where E restricted to it is injective, then E ◦ h(x) = h ◦ f(x) = h ◦ f(y) = E ◦ h(y)
imply that h(x) = h(y). Pick a curve γ in int(R̃i) from x to y, then f(γ) is a curve with

homology, and therefore h(f(γ)) has homology also. On the other hand, h(γ) does not

have homology and E |int(Ri) is an homeomorphism, then E(h(γ)) = h(f(γ)) does not have

homology as well.

• int(R̃i) = R̃i holds for all 1 ≤ i ≤ N.
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• If f(R̃j)∩ int(R̃i) 6= ∅, then R̃i ⊂ f(R̃j). Suppose that y ∈ f(R̃j)∩ int(R̃i), therefore

h(y) = h ◦ f(ȳ) = E ◦h(ȳ) belongs to E(Rj)∩ int(Ri), where ȳ ∈ R̃j is such that f(ȳ) = y.

Then holds that Ri ⊂ E(Rj). Given z̄ ∈ R̃i, there exist z ∈ Ri and ẑ ∈ Rj such that

z̄ ∈ h−1(z) and E(ẑ) = z. Then z̄ ∈ h−1 ◦ E(ẑ) = f ◦ h−1(ẑ), i.e. z̄ ∈ f(R̃j).

For what follows, we study the refinement of the partition of f induced by the semicon-

jugation and see what information can be deduced from it, such as under which condition

on the refinement can be concluded that h is an homeomorphism. Moreover, we give

necessary and sufficient conditions on the refinement that characterize the transitivity of

f .

Given a point x ∈ T
n, denote by P0(x) the element of the partition Pf that contains

x. Let us consider a refinement of the partition,

Pf
n(x) = {y : fk(y) ∈ P0(f

k(x)), k = 0, . . . , n}.

Claim 2.2 Pf
n(x) = h−1(PE

n (h(x))) for every n ∈ N.

Proof. First observe that PE
n (h(x)) = {z : Ek(z) ∈ R0(Ek(h(x))), k = 0, . . . , n},

where R0(w) denote the element of the partition for E that contains w.

Let us show first that h−1(PE
n (h(x))) ⊂ Pf

n(x). Given z ∈ PE
n (h(x)), we have that

fk ◦ h−1(z) = h−1 ◦ Ek(z) ∈ h−1(R0(Ek(h(x)))). Since Ek(h(x)) = h(fk(x)), fk(h−1(z)) ∈
P0(f

k(x)).

Now, let us prove the equality. Given y ∈ Pf
n(x) follows that Ek(h(y)) = h(fk(y)) ∈

h(P0(f
k(x))). Therefore, Ek(h(y)) ∈ R0(h(f

k(x))) = R0(Ek(h(x))). Thus, the equality

holds.
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Let us define

Pf
∞(x) :=

⋂

n≥0

Pf
n(x).

Claim 2.3 Pf
n(x) is a compact connected set for every n. Moreover, Pf

∞(x) is a com-

pact connected set.

Proof. First observe that

Pf
n(x) = P0(x) ∩ f−1(P0(f(x))) ∩ . . . ∩ f−n(P0(f

n(x)))

and f−1(R̃j)∩ R̃i is a compact connected set contained in R̃i for every 1 ≤ i, j ≤ N. Then,

we get that Pf
1 (x) is a compact connected set. Let us assume that Pf

n−1(x) is compact and

connected, then Pf
n(x) = Pf

n−1(x) ∩ f−n(P0(f
n(x))) is a compact connected set, because

f−n(P0(f
n(x))) has one connected component in Pf

n−1(x) and it is compact as well.

Now, since {Pf
n(x)}n is a nested sequence of compact and connected sets, we have that

Pf
∞(x) is a compact connected set.

Claim 2.4 h is a conjugacy if and only if for every x ∈ T
n, Pf

∞(x) = {x}.

Proof. Take z ∈ Pf
∞(x) and suppose that z and x are not equals. Since h is a

conjugacy, h(x) 6= h(z). Because E is an expanding endomorphism, let us call λ0 > 1 the

expanding constant, d(Ek(h(x)), Ek(h(z))) > λk0d(h(x), h(z)). Then, there exists k0 > 0

such that Ek(h(z)) 6∈ R0(Ek(h(x))) for all k ≥ k0. On the other hand, z ∈ Pf
∞(x) implies

that h(z) ∈ PE
n (h(x)), consequently Ek(h(z)) ∈ R0(Ek(h(x))) for all k ≥ 0. Thus, x = z.

Now let us assume that Pf
∞(x) = {x}.We have to prove that h is one-to-one. Consider x

and y such that h(x) = h(y). Then h(y) ∈ PE
∞(h(x)). Thus, y ∈ h−1(PE

∞(h(x))) = Pf
∞(x).
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Question 2.1 How can transitivity be recovered from the partition?

Lemma 8 If the set of points {x : Pf
∞(x) = {x}} is dense in T

n, then f is transitive.

Proof. Let us suppose that {x : Pf
∞(x) = {x}} is a dense set. So, it is enough

to show that given x in that set, P0(x) the element of the partition that contain it

for finitely many iterates by f cover T
n. Observe that fn(Pf

n(x)) = P0(f
n(x)). Then

fn+1(Pf
n(x)) = f(P0(f

n(x))) = T
n.

Remark 2.5 Actually, if the set of points {x : Pf
∞(x) = {x}} is dense in T

n, then f

is locally eventually onto. In fact, given V an open set, there exists z ∈ {x : Pf
∞(x) =

{x}} ∩ V. So, P0(z) ∩ V 6= ∅. Taking n large enough we get that Pf
n(z) ⊂ V. Therefore,

fn+1(V ) = T
n.

Question 2.2 In the case that f is isotopic to a linear expanding endomorphism E . If
f is transitive, does it imply that the pre-orbit of any point by f are dense? does it imply

that the set {x : Pf
∞(x) = {x}} is dense in T

n? Do they have total (Lebesgue) measure?

Question 2.3 Knowing that there exists an expanding locally maximal set Λ with

certain geometrical properties such as the ones given by the Main Theorem. What can it

be said about the Markov Partition?

Definition 2.3 (Physical measure)

An invariant Borel probability measure µ for a dynamical system f : M → M is said

to be a physical or Sinai-Ruelle-Bowen(SRB) measure if its basin of attraction,

B(µ) = B(µ; f) := {z ∈M :
1

n

n−1∑

i=0

δf i(z) → µ weakly* as n→ ∞},

has positive Lebesgue measure in M .
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Question 2.4 Does there exist physical measures? If there exists, is it unique?

Question 2.5 Since f is semiconjugated to E , by the Bowen’s formula, see [Bow71], we

get that the topological entropy of f is bounded by below by the topological entropy of the

linear map. There are examples, such as Derived from an expanding linear endomorphism

where the central direction is one dimensional, the topological entropy of the original map

and the semiconjugated are equal. Are there examples such as the topological entropy of

the semiconjugated map is greater than the initial map’s entropy?

Remark 2.6 The linear expanding maps preserve volume, they are Lebesgue inva-

riant.

So, this make us ask the following:

Question 2.6 Is it possible to construct a map f satisfying the hypotheses of the

Main Theorem and being volume preserving?

Remark 2.7 If f satisfy the hypotheses of the Main Theorem and assuming that f

is C2 and volume preserving, then f is ergodic respect to Lebesgue measure.
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Chapter 3
Existence of Robust Transitive

Endomorphisms

In this chapter we show that there exist examples of robust transitive endomorphisms

verifying the hypotheses of our main results.

§ 3.1 Example 1: Applying Main Theorem

Consider E : Tn → T
n an expanding endomorphism, with n ≥ 2. Note that taking a

large m > 1, Em has the topological degree to the power m − th elements in the Markov

Partition, so without loss of generality we may assume that the initial map has many

elements in the partition. More precisely, if N = deg(E), we may assume that N is large

and therefore the Markov partition has N elements. Denote by Ri the elements of the

partition, with 1 ≤ i ≤ N ; Ri is closed, int(Ri) is nonempty and int(Ri) ∩ int(Rj) = ∅ if

i 6= j.

Now, consider ψ : Tn → T
n a map isotopic to the identity and denote by R̂i = ψ(Ri)

for every i. The idea of using this map is to deform the elements of the Markov partition

and get a new partition which elements are not all of the same size, there could be some

45
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very small, others very big.

Set U0 an open set in T
n such that if Ũ is the convex hull of the lift of U0, then Ũ∩[0, 1]n

is contained in the interior of [0, 1]n, i.e. diamext(U0) < 1. Note that there exist R̂i such

that R̂i∩U0 is nonempty. We ask one more condition for U0, there are many R̂i contained

in U c
0 , this condition is feasible since we asked for the initial map to have many elements

in the partition.

ψ

Ri R̂j

Figure 3.1: Deforming the initial Markov Partition

Define f0 : Tn → T
n by f0 = ψ ◦ E . We assume that there exist p ∈ U0 and qi ∈ U c

0

fixed points for f0, with 1 ≤ i ≤ n − 1, this is possible because we may start with an

expanding map which has as many fixed points as we need.

Let us suppose that p and qi are expanding by f0 in all directions, it means that all

the eigenvalues associated to these points are in modulus greater than 1. Pick ε > 0 small

enough such that Bε(qi) ∩ U0 = ∅ and Bε(qi) ∩ Bε(qj) = ∅ if i 6= j.

Let us denote the decomposition of the tangent space as follows

Tx(T
n) = E

u
1 ≺ E

u
2 ≺ · · · ≺ E

u
n−1 ≺ E

u
n,

where ≺ denotes that Eui dominates the expanding behavior of Eui−1.

Next we deform f0 by a smooth isotopy supported in U0 ∪ (
⋃

Bε(qi)) in such a way

that:
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1. The continuation of p goes through a pitchfork bifurcation, appearing two periodic

points r1, r2, such that both are repeller and p becomes a saddle point. But the new

map f still expand volume in U0.

2. Two expanding eigenvalues of qi become complex expanding eigenvalues. More pre-

cisely, we mix the two expanding subbundles of Tqi(T
n) corresponding to E

u
i (qi) and

E
u
i+1(qi), obtaining Tqi(T

n) = E
u
1 ≺ E

u
2 ≺ · · · ≺ F

u
i ≺ E

u
n−1 ≺ E

u
n, where Fi is two

dimensional and correspond to the complex eigenvalues.

3. Outside U0 ∪ (
⋃

Bε(qi)), f coincides with f0.

4. f is expanding in U c
0 .

5. There exists σ > 1 such that |det(Df(x))| > σ for every x ∈ T
n.

p

qi

Figure 3.2: f isotopic to f0

§ 3.1.1 Property of Large Arcs

Claim 3.1 Every large arc in U c
0 has a point such that its forward orbits remain in

U c
0 .

Proof. Take d the maximum of the diameter of the elements of the partition contained

in U c
0 . Note that every arc in U c

0 with diameter larger than d cannot be contained in the
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interior of any element of the partition, more precisely has to intersect at least two elements

of the partition. Hence, the image by f of this arc γ has diameter 1. So there exists a

piece of f(γ) in U c
0 intersecting at least one element of the partition across two parallel

sides, let us call γ1. Choose a pre-image of γ1 in γ and call it γ1.

Repeating the process for γ1, we have that there is γ2 a piece of f(γ1) verifying the

same condition as γ1. Then, choose γ2 a pre-image of γ2 by f 2 in γ.

Thus, we construct a sequence of nested arcs in γ. The intersection is non empty, a

point in this intersection satisfy our claim.

§ 3.1.2 Remarks About Example 1

1. qi’s are fixed points for f with complex expanding eigenvalues. Note that the exis-

tence of these points ensures that the tangent bundle does not admit any invariant

subbundle. We could also start with an expanding map having, besides p, periodic

points qi with complex eigenvalues. In such a case, it is enough to make p goes

through a pitchfork bifurcation.

2. This example shows that U0 can be as big as we desired while it verifies the hypothesis

of having external diameter less than 1.

3. It can be constructed in any dimension.

§ 3.2 Example 2: Applying the Main Theorem Revisited

Let us consider E : Tn → T
n an expanding endomorphism, with n ≥ 2. Assume that the

initial map has many elements in the Markov partition, let us say N elements.

Denote by Ri the elements of the partition, with 1 ≤ i ≤ N . Since E is expanding, Ri
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are closed, int(Ri) are nonempty and int(Ri)∩ int(Rj) = ∅ if i 6= j. Choose finitely many

of these elements, {Rij}kj=1, such that Rij ∩ Ris = ∅ if ij 6= is, i.e. they are two by two

disjoints. Consider the pre-images of every Rij , let us say E−1(Rij ) = {P l
ij
}Nl=1. Denote by

P 0
ij
= Rij . Next, we keep P r

ij
such that P r

ij
∩ P l

is
= ∅ whenever 0 ≤ r 6= l ≤ N and ij 6= is.

Finally, let us denote by {Pi}i the collection of these latter subsets, so they are two by

two disjoints.

Figure 3.3: {Pi}i collection

Now, consider ψ : Tn → T
n a map isotopic to the identity and denote by P̂i = ψ(Pi)

for every i.

Choose P̃i an open connected subset such that its closure is contained in the interior

of P̂i. Let φi : T
n → T

n be a map isotopic to the identity such that

• φi |P̃i
is not expanding.
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• φi |P̂ c
i
is the identity.

Define φ : Tn → T
n by

φ(x) =





φi(x), if x ∈ P̂i

x, if x 6∈ ⋃
i P̂i

Hence, φ is equal to the identity in [
⋃
i P̂i]

c, expands volume but is not expanding in
⋃
i P̂i.

Once we have defined all these maps, we consider the map f = φ ◦ ψ ◦ E from T
n onto

itself and denote by U0 = int(
⋃
i P̂i). Observe that f verifies that:

(i) f is a volume expanding endomorphism.

(ii) f is an expanding map in U c
0 .

(iii) Λf =
⋂
n≥0 f

−n(U c
0) is an expanding locally maximal set for f which has the property

that separate large nice cylinders.

Since (i) and (ii) are immediate from the construction of f, we concentrate our interest

in to prove (iii).

§ 3.2.1 Λf Separates Large Nice Cylinders

Note that by the construction of U0, we have that the elements of the pre-orbit of U0 are

two by two disjoints. Let us consider d0 = max{diamext(c.c.
⋃
n≥0 f

−n(U0))}. Since the

definition of U0, 0 < d0 < 1.
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Claim 3.2 If γ is an arc in U c
0 with diameter 1, then γ intersects Λf .

Proof. Let γ be an arc in U c
0 such that diam(γ) = 1. Suppose that γ does not intersect

Λf .

Remember that Λf = T
n \ ⋃

n≥0 f
−n(U0), it means that if x ∈ Λf , then fn(x) 6∈ U0.

Therefore, γ is contained in one pre-image of U0 or in a union of pre-images of U0.

Observe that γ cannot be contained in just one pre-image of U0, because if it is con-

tained in f−n(U0) for some n ≥ 0, then diam(γ) < diam(f−n(U0)) < d0, which is absurd

because d0 < 1.

Hence, γ should be contained in a union of pre-images of U0, since γ is compact we can

cover with a finite union of pre-images of U0. But we know that the pre-images of U0 are

two by two disjoints, hence there exist points in γ that cannot be covers by the pre-images

of U0. In particular, γ intersects Λf .

Figure 3.4: Λf looks like a Sierpinski set

Remark 3.1 We have already the existence of the invariant expanding locally max-

imal set Λf . Moreover, by claim (3.2) we get that this invariant set intersects every arc
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with large diameter. Then by the Main Theorem Revisited follows that this map is robust

transitive.

§ 3.2.2 Remarks About Example 2

1. We can apply our Main Theorem Revisited to this example, obtaining in particular

that f is robustly transitive.

2. The P̂i’s can be as many and as big as we want.

3. We can construct many examples starting with this initial map. In particular, we

can construct examples without invariant subbundles, such as putting a fix point in

the complement of the U0 with complex eigenvalues and doing a derived from an

expanding endomorphisms inside of some P̂i.

§ 3.3 Example 3: Applying Theorem 2

The idea of next example is to build an endomorphism in the 2-Torus which is a skew-

product and in the dynamic there is a blender. This example is more or less a standard

adaptation for endomorphisms of examples obtained in [BD96] for diffeomorphisms.

First, let us establish some notation before defining the map. Pick 0 < a < 1/2 < b < 1

and denote I12 = [a, 1] and I34 = [0, b]. Note that I12 ∩ I34 = [a, b]. This decomposition is

associated to the horizontal fibers.

Next, fix N > 3 and pick 0 < a1 < b1 < a2 < b2 < a3 < b3 < a4 < b4 < 1 such that

bi− ai = 1/N. Let us denote by Ii = [ai, bi] with 1 ≤ i ≤ 4. Note that they are two by two

disjoint and do not contain 0 or 1. We associate this decomposition to the vertical fibers.

Let us call Ri = I12 × Ii with i = 1, 2, and Ri = I34 × Ii with i = 3, 4.
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Now, define Φ : T2 → T
2 by

Φ(x, y) = (ϕy(x), E(y)),

where ϕy, E : S1 → S1 are defined as follows:

1. E is an expanding endomorphism such that:

• E(Ii) = [0, 1] for every i.

• There exist ai < ci < bi such that E(ci) = ci.

2. ϕy is defined by ϕy(x) = fi(x), if y ∈ Ii, where fi : S
1 → S1 are differentiable maps

defined as follows:

• f1 and f2 satisfy the following properties:

(i) f1 has two fixed points, 0 and a. 0 is a repeller and a is an attractor for f1.

(ii) f2 has two fixed points, 0 and a′, where 0 < a′ < a. 0 is an attractor and

a′ is a repeller for f2.

(iii) f1(I12) overlaps f2(I12) and f1(I12) ∪ f2(I12) = I12.

(iv) |f ′
1 |I12 | < 1 and |f ′

2 |I12 | < 1.

• f3 and f4 satisfy the following properties:

(i ’) f3 has two fixed points, 0 and b′, where b < b′ < 1. 0 is a repeller and b′ is

an attractor for f3.

(ii ’) f4 has two fixed points, b and 1. b is an attractor and 1 is a repeller for f4.

(iii ’) f3(I34) overlaps f4(I34) and f3(I34) ∪ f4(I34) = I34.

(iv ’) |f ′
3 |I34 | < 1 and |f ′

4 |I34 | < 1.

3. |det(Df)| = |∂ϕy

∂x
E ′| > 1.

4. E ′ ≫ ∂ϕy

∂y
.
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Hence, the horizontal fibers Fi = S1×ci are invariant by f. Moreover, by condition (4),

the image of every vertical fiber is almost a vertical fiber, in the sense that the tangent

vector is close to a vertical one; more precisely, the unstable cones family are almost

vertical.

Next, we consider Λ+
1 =

⋂
n≥0Φ

−n(R1 ∪ R2) and Λ+
2 =

⋂
n≥0Φ

−n(R3 ∪ R4). Let Λ1 =
⋂
n∈Z Φ

−n(R1 ∪ R2) and Λ2 =
⋂
n∈ZΦ

−n(R3 ∪ R4), note that both sets are expanding

invariant locally maximal sets.

§ 3.3.1 Λ1 and Λ2 Separate Large Vertical Segments

Let us denote by ℓu1(p) the vertical segment passing through p and length 1.

Claim 3.3 For every p ∈ R1 ∪ R2, follows that ℓ
u
1(p) ∩ Λ+

1 6= ∅.

Proof. Let us suppose that p ∈ R1 ∪ R2. Note that for i = 1, 2, the image of Li =

ℓu1(p)∩Ri by Φ has length 1 and by property (4) of Φ follows that Φ(Li) is almost vertical.

Moreover, Li∩Fi 6= ∅ and Φ(Li∩Fi) ∈ Fi ⊂ Ri with i = 1, 2. Then Φ(ℓu1(p))∩(R1∪R2) 6= ∅.
Take Ki

1 one connected component of Φ(ℓu1(p)) ∩ Ri, for i = 1, 2, such that P2(K
i
1) = Ii,

where P2 is the projection in the second coordinate. Consider the pre-image of Ki
1 by Φ

in Li and call it Si1.

Now, iterate Ki
1 by Φ, doing a similar process we obtain Ki

2 a connected component

of Φ(Ki
1) ∩ Ri such that P2(K

i
2) = Ii. Again take a pre-image of Ki

2 by Φ2, giving a

compact segment Si2 ⊂ Si1. Repeating this process, we may construct a nested sequence

of compact segment {Sik}k in each Ri. Thus,
⋂
k S

i
k is not empty and belong to ℓu1(p)∩Λ+

1 .

Claim 3.4 For every p ∈ R1 ∪ R2, follows that ℓ
u
1(p) ∩ Λ1 6= ∅.

Proof. By claim (3.3), we know that there exist a point z ∈ ℓu1(p) ∩ Λ+
1 , this means
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that Φn(z) ∈ R1 ∪R2 for every n ≥ 0.

Then, just remain to show that there exist a sequence {zk}k≥0 ⊂ R1 ∪ R2 such that

z0 = z and Φ(zk) = zk−1. The idea of the construction of such a sequence is to use now

the property (2-iii) of overlapping in the horizontal dynamics.

Knowing that Φ(R1) = f1(I12) × [0, 1] and Φ(R2) = f2(I12) × [0, 1], since property

(2-iii) we get that Φ(R1) ∩ Φ(R2) = f1(I12) × [0, 1]. Hence, z0 ∈ (R1 ∪ R2) ∩ Φ(R1) or

z0 ∈ (R1 ∪ R2) ∩ Φ(R2), then there exists z1 ∈ R1 ∪ R2 such that Φ(z1) = z0. Repeating

this process we construct the requires sequence.

Claim 3.5 For every p ∈ R3 ∪ R4, follows that ℓ
u
1(p) ∩ Λ2 6= ∅.

Proof. The proof is similar to claim (3.4) just making the necessary arrangement.

Claim 3.6 For every q ∈ T
2, we have that either ℓu1(q) ∩ Λ1 6= ∅ or ℓu1(q) ∩ Λ2 6= ∅.

Proof. Given any point q ∈ T
2, note that ℓu1(q) ∩ Ri 6= ∅ for every 1 ≤ i ≤ 4. Hence,

taking pi ∈ ℓu1(q) ∩ Ri and noting that ℓu1(pi) = ℓu1(q), we may use claim (3.4) or (3.5) to

conclude that either ℓu1(q) ∩ Λ1 6= ∅ or ℓu1(q) ∩ Λ2 6= ∅.

§ 3.3.2 Remarks About Example 3

This example was constructed in the 2-Torus with one dimensional central bundle, but we

can construct it in any T
n and the dimension of the central bundle not need to be 1. Also,

we can use more than 4 dynamics in the horizontal, more precisely we put 2 blenders in

the dynamic but we can consider as many blenders as we want.
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§ 3.4 Example 4: Applying Theorem 2

Let B0 be an open ball in T
m centered at 0 with radius α < 1 and ϕ0 : Tm → T

m be a

differentiable map isotopic to the identity such that:

• ϕ0(0) = 0

• There exist 0 < λ0 < λ1 < 1 such that λ0 < m{Dϕ0} < |Dϕ0 |B0
| < λ1, i.e. ϕ0 is a

contraction in a disk.

Let us consider D0 the lift of B0 to R
m and ϕ̃0 the lift of ϕ0. Note that ϕ̃0(0) = 0 and

λ0 < m{Dϕ̃0} < |Dϕ̃0 |D0
| < λ1. By Proposition 2.3 of Nassiri’s PhD Thesis [Nas06],

there exists k ∈ N such that for every small ε > 0, there exist c1, . . . , ck ∈ Bε(0) and

δ > 0 such that Bδ(0) ⊂ Orbit+G (0), where G = G(ϕ̃0, ϕ̃0 + c1, . . . , ϕ̃0 + ck) and Orbit
+
G (0)

is the set of points lying on some orbit of 0 under the iterated function system (IFS)

G; more precisely, if we denote by φ̃0 = ϕ̃0 and φ̃i = ϕ̃0 + ci for i = 1, . . . , k, then

Orbit+G (0) is the set of sequence {φ̃Σl
(0)}∞l=1 where Σl = (σ1, . . . , σl), φ̃Σl

= φ̃σl ◦ · · · ◦ φ̃σ1
and {σi}i∈N ∈ {0, . . . , k}N. (For more details about IFS see Nassiri’s PhD Thesis)

Now choose p1, . . . , pr ∈ T
m such that Tm ⊂ ⋃

j Bδ(pj).

If φi is the projection of φ̃i on T
m, define for every j the IFS Gj = Gj(φ0 + pj, φ1 +

pj , . . . , φk + pj). Then Bδ(pj) ⊂ Orbit+Gj
(0). Therefore, there exists an open set D0 ⊂ B0

such that
⋃
φi(D0) ⊃ D0, i.e. the IFS has the covering property. Hence,

⋃
i φi(Bδ′(pj)) ⊃

Bδ′(pj), with 0 < δ′ ≤ δ. Moreover, Gj has also the overlapping property as in Example 3,

in the previous section.

Define the skew-product F : Tm × T
n → T

m × T
n by

F (x, y) = (ψy(x), E(y)),

where:
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• E : Tn → T
n is an expanding map with (k+ 1)r fixed points, let us denote the fixed

points by ei1, . . . , e
i
r with 0 ≤ i ≤ k.

• For every y ∈ T
n, ψy : T

m → T
m is a differentiable map isotopic to the identity such

that ψeij = φi + pj, with 0 ≤ i ≤ k and 1 ≤ j ≤ r.

Hence, every fiber Tm × {eij} is invariant by F. Set Ri
j = Bδ′(pj) × Qi

j , where Q
i
j is a

small neighborhood of eij in T
n such that E(Qi

j) = T
n and they are all disjoints for every

i, j. Note that Ri
j are the analogous of Ri in the previous example.

Let ΛF :=
⋂

n∈Z

F n(
⋃

i,j

Ri
j).

§ 3.4.1 ΛF Separate Large Unstable Discs

Claim 3.7 ΛF verifies that for every z ∈ ⋃
i,j R

i
j follows that ℓu1(z) ∩ ΛF 6= ∅, where

ℓu1(z) is an unstable disc of internal diameter 1 passing through z.

Proof. We may prove that there exists a point z ∈ ⋃
i,j R

i
j such that F n(z) ∈ ⋃

i,j R
i
j

for every n ≥ 0 in a similar way as we proved claim (3.3) in previous example.

Moreover, for this z there exist z1 ∈ ⋃
i,j R

i
j such that F (z1) = z. In fact, the idea is

more or less the same as in previous example, we must note that F (Ri
j) = ψeij (Bδ′(pj))×

E(Qi
j) = φi(Bδ′(pj))× T

n.

On the other hand, using the property of covering and overlapping follows that

⋃

i,j

Ri
j =

⋃

i,j

Bδ′(pj)×Qi
j ⊂

⋃

i,j

φi(Bδ′(pj))× E(Qi
j) = F (

⋃

i,j

Ri
j).

Therefore, since z ∈ ⋃
i,j R

i
j , there exist z1

⋃
i,j R

i
j such that F (z1) = z. Inductively we can

construct a sequence {zk}k≥0 ⊂
⋃
i,j R

i
j such that z0 = z and F (zk) = zk−1.

Thus, z ∈ ℓu1(z) ∩ ΛF .
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§ 3.4.2 Remarks About Example 4

This example is a generalization of Example 3. The intention here is to show that we may

apply Theorem 2 without taking into account the dimension of the central bundle and

this could be as large as we want. Another observation is that the existence of blenders

guarantee that our examples are robust transitive and this example verifies the property

over the unstable discs with sufficiently large internal diameter intersecting the invariant

expanding locally maximal set for the skew-product.
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