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Abstract

In this work we consider two towers of function fields over finite fields with cubic
cardinality. For the first of these towers (which was introduced by Bassa, Garcia and
Stichtenoth) we explicitly calculate the genus of each one of its steps, using the rami-
fication theory of Artin-Schreier extensions of function fields. For the second tower
(which was introduced by Ihara) we prove by structural arguments that its limit is
greater or equal than generalized Zink’s lower bound, showing in this way its asymp-
totic goodness; for the proof we use the machinery of completions. We also exhibit
the relations between these towers and the tower introduced by Bezerra, Garcia and
Stichtenoth.

Keywords: Towers of function fields, cubic finite fields, limits of towers, general-
ized Zink’s bound, completions.





Acknowledgments

Hay muchos a quienes quiero agradecer, pues ciertamente la culminación de este trabajo no
fue apenas un esfuerzo académico personal, sino que requirió del apoyo de muchas personas a
través de estos largos años.

A Dios, por preservarme (¡por segunda vez!), por darme “salud, dinero y amor” en las
justas proporciones, y por haberme agraciado con el gusto por la Matemática.

A mi familia, por haber inculcado en mí tantos valores, incluyendo el amor al estudio, y
apoyarme en mi proyecto de vida a pesar de las diversas dificultades.

A mi esposa Milena, por su inagotable amor y paciencia ante la adversidad de la distancia
todos estos años, y por el constante soporte anímico y los buenos consejos (los cuales incluían
tirones de orejas en los momentos apropiados). No solamente a ella, sino a su familia, por
acogerme como un miembro más, y pretendo que estas pocas líneas lo que reflejen en realidad
sea la profundidad de mis sentimientos al respecto.

Al IMPA, por concederme esta oportunidad de oro de recibir educación de primera en un
ambiente tan favorable, y al CNPq y a CAPES por permitirme llevar a cabo estos estudios
sin las odiosas preocupaciones de tipo financiero. Esto no habría sido posible sin el apoyo
previo de los profesores (de mi alma mater la Universidad Nacional de Colombia, sede Bogotá)
Leonardo Rendón, Myriam Campos, Rodrigo De Castro y Stella Huérfano, quienes gentilmente
me recomendaron ante el IMPA (recomendaciones, que, felizmente, fueron tenidas en cuenta a
mi favor).

A los funcionarios del IMPA, por la constante amabilidad y disposición para ayudarme en
los diversos asuntos referentes a mis estudios.

A mi madre en Brasil, la señora Yeda Correia da Costa, In Memoriam, por el cariño, las
atenciones y su buen humor durante mi estadía en su casa en Rio de Janeiro. Sinceramente
espero que ahora esté en un lugar mejor.

A los profesores del IMPA por la excelente formación matemática recibida. Agradezco
en particular a los profesores Eduardo Esteves y Arnaldo Garcia por los cursos de álgebra, a
la profesora Carolina Araujo por aceptar hacer parte del jurado de mi examen de calificación
a última hora, y al profesor Karl-Otto Stöhr por los cursos impartidos y por las discusiones
matemáticas fuera de clase, las cuales abarcaban desde aclaraciones en demostraciones técnicas
hasta datos históricos, pasando por inquietudes sobre problemas misceláneos del álgebra.

i



ii

A los miembros del jurado de mi tesis Arnaldo Garcia, Eduardo Esteves, Karl-Otto Stöhr,
Amilcar Pacheco y Juscelino Bezerra, particularmente por aceptar juzgar este trabajo a pesar
de las imposiciones de tiempo.

A mi orientador, el profesor Arnaldo Garcia, por su disposición hacia mí durante la maestría
y principalmente durante el doctorado, pues no solamente recibí de su parte la instrucción ade-
cuada para afrontar un problema de tesis, sino que constante e incondicionalmente me mostró
su confianza en mis capacidades (la cual por cierto no tuve durante muchos momentos).

A mis colegas de álgebra Jhon Mira, Saeed Tafazolian, Rodrigo Salomão y André Contiero,
por su amistad y camaradería durante nuestra formación en álgebra, principalmente durante la
última fase de nuestros respectivos estudios.

A mis compañeros de oficina Francisco Valenzuela y Manuel Canario, por los felices mo-
mentos de esparcimiento y compañía durante el doctorado, y por haberme brindado su amistad
a pesar de mi carácter: a Francisco por transmitirme una visión más neutral, relajada y optimista
acerca de las relaciones humanas, y por intercambiar conmigo sin cuestionamientos todo tipo
de modalidades de “perder el tiempo”; a Manuel, por ser un ejemplo de coraje en cuanto a la
defensa de las ideas se refiere, y por las clases de Historia Universal recibidas durante nuestras
conversaciones informales.

A mis colegas coterráneos Javier Solano, Freddy Hernández, Elio Espejo y Juan Carlos
Galvis, quienes me acogieron durante mi llegada al Brasil, pues además de la ayuda con los
detalles logísticos referentes a mi instalación en Rio de Janeiro, me ayudaron a habituarme a
ser por primera vez extranjero (principalmente en lo emocional).

A mis amigos del IMPA, por brindarme una amistad sincera (después de hacer un lado la
primera impresión, claro está). Más que nombrarlos uno a uno (es decir, por “extensión”), los
nombraré por “comprensión”: la característica que los distingue es que ellos saben quiénes
son ;-) . Sin embargo, hago mención especial de mis más frecuentes compañeros de almuerzo
Damián “wikidamian” Fernández, Dalia Bonilla y Juan Gonzalez, por las relajantes (aunque
ocasionalmente exaltadas) discusiones sobre los temas más diversos, gracias a las cuales en-
riquecimos y diversificamos nuestras respectivas nociones de cultura e incultura general.

Un agradecimiento “nerd” a Rodrigo De Castro y a Till Tantau: al primero, por su excelente
libro “El universo LATEX”, lleno de guías, trucos y consejos que seguirán sacándome de apuros
TEXnicos a pesar de la creciente ayuda brindada por la internet; al segundo, por los paquetes
gráficos TikZ y pgf, los cuales me permitieron realizar los gráficos presentes en este trabajo, y
por el paquete beamer por las (para mí y mis colegas matemáticos) obvias razones. Gracias a
ellos pude ajustar la presentación de este trabajo de acuerdo a mi (a veces meticuloso, intrincado
y obsesivo) gusto.

Finalmente, un agradecimiento muy “peculiar” a Ana Tercia Monteiro y a Alien Herrera
Torres, pues con su (por muchos conocida) particular forma de ser me mostraron que la mezquin-
dad humana puede alcanzar niveles insospechados, y por esto la mía en particular viene estando,
al final de cuentas, dentro de los parámetros normales. . . bueno, en realidad sería insensato pre-
tender plasmar mi gratitud hacia ellos en tan pocas líneas, así que la siguiente página está
enteramente dedicada a ello, y para que sea universalmente comprendida y difundida, excep-
cionalmente voy a redactarla en inglés:



This page intentionally left blank.





Contents

Acknowledgments i

Introduction vii

0 Preliminaries 1

0.1 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Algebraic function fields and AG codes . . . . . . . . . . . . . . . . . . . . . 2

0.3 Ramification in function fields . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.4 The “Key Lemma” for completions . . . . . . . . . . . . . . . . . . . . . . . . 12

1 The genus of the Bassa-Garcia-Stichtenoth tower 17

1.1 Preliminaries and some calculations . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 The ramification behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The genus of the tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 A new tower over cubic finite fields 55

2.1 The basic (and the auxiliary) equation . . . . . . . . . . . . . . . . . . . . . . 55

2.2 The ramification behavior of the tower . . . . . . . . . . . . . . . . . . . . . . 58

2.3 The genus of the tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4 The splitting rate and the limit of the tower . . . . . . . . . . . . . . . . . . . . 75

Bibliography 79

v





Introduction

Counting solutions of equations defined on finite sets is an interesting and useful sub-
ject. Although it is of combinatorial nature, in some cases it can be resorted to more
sophisticated machinery in order to solve it; a good example is the study of solutions
of algebraic equations over finite fields.

Some history (“The past”)

For the historic background of this subject we refer to the surveys [Ge],[To],[Ro]: the
latter restricts to the elliptic case of the Riemann hypothesis for function fields over
finite fields; the former give a bird’s-eye view, but they also include recent develop-
ments, which are the concern of this thesis. We also refer to the book [GaSt] for the
most recent developments in the application of the theory of function fields in various
aspects of coding theory and cryptography.

Already in the 19th century, some works of Gauss (no surprisingly!) and Jacobi
deal with the number of solutions of certain algebraic equations over prime subfields
Z/pZ; for example, in the “Last Entry” in Gauss’ diary, the number of solutions of the
congruence x2y2 + x2 + y2 ≡ 1 (mod p) for a prime number p ≡ 1 (mod 4) is stated
explicitly (yet Gauss did not actually give a proof)†. Also, in his Disquisitiones of 1801
he counts the number of solutions of the Fermat equation x3 + y3 + z3 ≡ 0 (mod p),
being p a prime greater than 3. After that the problem was ignored for a long time.

In 1924 Emil Artin introduced the notion of zeta function for certain hyperelliptic
function fields over finite fields with odd cardinality, inspired by the notion of Dedekind
zeta function for number fields. Later Friedrich Karl Schmidt defined the zeta function
for a smooth absolutely irreducible projective curve over a finite field. He proved that
it is indeed a rational function, whose numerator can be written as a polynomial of
degree 2g, being g the genus of the curve. Around 1932, Helmut Hasse noticed (based

†We refer to [Ro, Part 1,3], where it is pointed out the connection of this result with the Riemann
hypothesis for quadratic function fields

vii



viii INTRODUCTION

on a conjecture by Artin concerning his respective zeta function) that the following
inequality should hold (later known as the Hasse-Weil inequality):∣∣∣#X(�q) − (q + 1)

∣∣∣ ≤ 2g
√

q.

Here X denotes a (smooth absolutely irreducible projective) curve over the finite field
�q with genus g, and #X(�q) denotes its number of �q-rational points. Shortly after
he proved Artin conjecture (which is an analog of the analytic Riemann hypothesis)
for the case of elliptic curves (i.e., for curves of genus 1), using the so-called theory
of correspondences. Max Deuring observed then that the theory of correspondences
should be generalized in order to extend the Hasse method of proof to higher genus.
This was precisely the achievement made by André Weil, who proved that the nume-
rator in Schmidt’s zeta function can be written in the form L(t) =

∏2g
i=1(1 − αit), where

the αi are algebraic integers satisfying |αi| =
√

q (The “Riemann hypothesis”), which
implies the Hasse-Weil inequality.

We remark that an elementary proof of the Riemann hypothesis for function fields
over finite fields (i.e., using only the machinery of function fields rather than the the-
ory of correspondences) was given by Enrico Bombieri in [Bo] (using ideas of Sergei
Stepanov). A self-contained exposition of this proof can be found on [St, Chapter
V]. About improvements and other proofs of this result, we refer the reader to [Se83],
[StVo] and the commentary following Theorem 0.2. We also point out that the the-
ory of Karl-Otto Stöhr and José Felipe Voloch (see [StVo]) has been a fundamental
tool for the classification of maximal curves (that is, those algebraic curves attaining
Hasse-Weil upper bound).

At this point, the theory of rational points on curves over finite fields took a short
hiatus, which ended around 1980, when Valerii Goppa discovered an unexpected con-
nection between linear codes and function fields over finite fields (see [Go]; for the
basic definitions on linear codes, see section 0.1). In fact, for a long time coding the-
orists were unable to exhibit codes with relative parameters surpassing the so-called
Gilbert-Varshamov bound. Already in 1973 Goppa constructed codes attaining this
bound by using values of rational functions over the rational function fields. Later he
generalized this construction by taking values of rational functions on algebraic curves,
that is, by working on function fields. These are the so-called AG codes (see section
0.2 for the definitions). For this class of codes, the relative parameters are related with
the number of rational places and the genus of the underlying function field, and “long
and good” AG codes are obtained whenever the genus is large and at the same time the
number of rational places is not small compared with the genus.

For this reason, the interest in knowing the relation between the number of rational
points of a curve and its genus was renewed. On this direction, Yasutaka Ihara defined
in [Ih82] the function A(q), which measures how large can be the number of rational
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points of curves with large genus (see equation (0.1)). Among other things, he proved
that A(q) ≥

√
q − 1 when q is a square, and later Vladimir Drinfeld and Sergei Vladut

proved that A(q) ≤
√

q − 1 for all q (an outline of the proof of these facts can be found
on [TsVl]). Using these results, they managed to prove (in joint work with Thomas
Zink) the existence of codes of arbitrary length, with parameters above the Gilbert-
Varshamov bound for q ≥ 49 (see Proposition 0.3), which came as a surprising but
welcomed novelty for coding theorists.

More generally, positive lower bounds for the function A imply the existence of ar-
bitrary long codes with good parameters; unfortunately, for non-square values of q the
value of A(q) is unknown. Some isolated lower bounds are the following: A(2) ≥ 2/9
([Sc]), A(3) ≥ 1/3 and A(5) ≥ 1/2 ([Xi]), and A(q`) ≥

( √
`(q − `) − 2`

)
/(` − 1) for `

a prime number such that q > 4` + 1 and q ≡ 1 (mod `) ([Pe]). On the other hand, as
examples of general lower bounds we have the Serre bound (A(q) ≥ c log q for a posi-
tive constant c and every q; see [Se83]) and Zink’s bound A(p3) ≥ 2(p2 − 1)/(p + 2) for
all prime p ([Zi]). However, the proofs of these results involve deep results from class
field theory and modular curves, and in particular they do not provide explicit presen-
tations for the function fields involved, which is necessary for the explicit construction
of asymptotic good codes (for a reference describing nonexplicit constructions, using
class-field-theoretic techniques, we refer to the book [NiXi]).

For this reason it is convenient to consider sequences of explicit function fields with
increasing genus, and afterwards to study the number of rational places of such fields.
In particular we limit ourselves to the case of increasing sequences of function fields:
these are known as towers of function fields (see Definition 0.7). More specifically, a
tower is a strictly increasing sequence (Fn)n≥0 of function fields over a fixed finite field
�q, such that all the steps Fn+1/Fn are separable, and the genera g(Fn) of the fields Fn

go to infinity along with n. If N(Fn) denotes the number of �q-rational places of Fn,
it is easily shown that limn→∞ N(Fn)/g(Fn) exists (see Definitions 0.5 and 0.6). This
number is called the limit of the tower, and it provides lower bounds for the quantity
A(q). The “holy grail” of this theory is to determine explicit towers whose limit is the
best possible, namely the Ihara quantity A(q). By “explicit” we mean that the equations
defining each field are given in explicit form.

The first breakthrough in this setting occurred in 1995, when Arnaldo Garcia and
Henning Stichtenoth exhibited in [GaSt95] an explicit tower over a square finite field,
where each step is an Artin-Schreier extension of function fields, whose limit attains
the Drinfeld-Vladut bound. Moreover, the proof of this result is quite elementary, using
only basic results on ramification in separable extensions of function fields. Later in
1996 the same authors obtained another example of “optimal” tower over the field �q,
being q a square, but this time all the steps of the tower are simultaneously defined
by the same equation (see [GaSt96-1]); more precisely, the tower (Fn)n≥0 is given as
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follows: F0 = �q(X0) is the rational function field over �q, and for n ≥ 0 we have
Fn+1 = Fn(Xn+1), where f (Xn, Xn+1) = 0 and f (X,Y) is a fixed polynomial f (X,Y) ∈
�q[X,Y], which is separable in both variables X and Y . Towers defined in this way (not
only when the base field is a finite field) are called recursive, and the function field
F1 is called the basic function field. A deep understanding of the ramification in the
function field F1 often enables us to estimate the limit of the tower.

Of course, recursive towers form a small subset of the family of towers, but in con-
trast they have been systematically studied along these years. There are miscellaneous
criteria that ensure the asymptotic goodness of a tower, which are based on the notions
of “ramification locus” and “total splitting”; ee Propositions 0.30 and 0.31. On the
other hand, for “good” recursive towers (i.e., towers with positive limit) the defining
polynomial must have equal degree in both variables (see [GaSt00]), and not all the
extensions can be Galois abelian (in other words, if the tower F = (Fn)n≥0 satisfies
that all the extensions Fn/F0 are Galois abelian, then F is asymptotically bad; see
[FrPeSt] for a proof). Finally, in [BeeGaSt] the authors derive strong conditions on
the defining equation of a recursive Artin-Schreier tower of prime degree in order to be
asymptotically good.

When all the places in the ramification locus of a tower are tame, and such ramifi-
cation locus if finite, it is easy to show that the tower is good; see [GaStTh, Theorem
2.1]. On the other hand, most interesting towers exhibit the so-called wild ramification
phenomenon, so the usual approach (via Abhyankar’s Lemma) does not work, and it
makes necessary to design some different strategies in order to estimate the genus of
the function fields involved.

Returning to the history of towers of function fields, it was not until 2002 that
an explicit tower attaining Zink’s lower bound for cubic finite fields appeared. This
recursive tower was constructed by Gerard van der Geer and Marcel van der Vlugt
using Artin-Schreier extensions of degree 2 over the finite field with eight elements
(see [GV]), and they showed (after long calculations) that the limit of this tower is
equal to 3/2, which is the Zink bound for p = 2.

This construction was later generalized for any cubic finite field �q3 by Juscelino
Bezerra, Garcia and Stichtenoth in [BezGaSt], and they showed (again after long and
detailed calculations) that its limit γ satisfies γ ≥ 2(q2 − 1)/(q + 2). Therefore Zink’s
bound can be generalized as follows:

A(q3) ≥
2(q2 − 1)

q + 2
, for all q (Bezerra-Garcia-Stichtenoth bound). (1)

Finally, in 2008 Alp Bassa, Garcia and Stichtenoth constructed in [BaGaSt] a tower
of Galois extensions of function fields which attains the generalized Zink bound. The
merit of this construction lies in its simplicity, since it does not resort to complicated
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calculations in order to estimate the genera, instead giving a structural argument. More-
over, the limit obtained in the Bezerra-Garcia-Stichtenoth tower is obtained as a coro-
llary: in fact, this tower turns to be a subtower of the Bassa-Garcia-Stichtenoth tower
(if F = (Fn)n≥0 and G = (Gn)n≥0 are towers over �q, we say that F is a subtower of
G if the inclusion ∪Fn ⊆ ∪Gn holds), and it is known that the limit of a subtower is
at least as big as the limit of the original tower (see [GaSt96-1, Corollary 2.4]). As in
the case of the Bezerra-Garcia-Stichtenoth tower, the case q = 2 of the Bassa-Garcia-
Stichtenoth tower reduces to the tower of van der Geer and van der Vlugt.

As a matter of fact, the towers constructed in [GaStTh, Example 2.3] show that
A(q) ≥ 2/(q − 2) for q a nonprime. Of course, this is a far weaker estimate for the
function A(q) than that given by Serre, Zink or Ihara (and others...), but at least shows in
an elementary fashion that the function A is positive for all nonprime q. Unfortunately,
this construction does not work for prime fields, as shown in [Le], so the construction
of explicit towers over prime finite fields with positive limit remains as a challenge.

We remark that there is indeed a link between the theory of explicit optimal towers
over square finite fields and the theory of modular curves. Noam Elkies showed in
[El98] that some instances of the towers constructed in [GaSt96-2] are in fact modu-
lar curves. The same author shows in [El01] that the tower given in [GaSt95] is an
example of Drinfeld modular tower. Finally Elkies conjectured in the appendix of the
paper [LiMaSt] that all optimal recursively constructed towers over square finite fields
should be modular.

As a final commentary, it should be pointed up that the range of applications of
the theory of function fields over finite fields is not restricted to linear codes. In fact
many branches of cryptography and code theory are devoted to function-field-theoretic
methods, such as nonlinear codes, hash families, sequences with low discrepancy and
bilinear complexity of multiplication in finite fields¶, among others. For a survey on
the state of the art of these topics we recommend the book [GaSt].

About this work (“The present”)

Now we outline the contents of this thesis. Our results concern two towers over finite
cubic fields that are related. The first of these is the Bassa-Garcia-Stichtenoth tower;
the second is a subtower of the Bezerra-Garcia-Stichtenoth tower, defined by Ihara.

Chapter 0 is devoted to set all the background and preliminaries required in this
¶Roughly speaking, the bilinear complexity of multiplication for a field extension �qn/Fq is the mi-

nimum number of “nonscalar” multiplications required to perform all the multiplications of elements
in �qn , with the aid of “scalar” multiplication by elements in �q; see for example [Ch] for the rigorous
definitions and their relation with the theory of function fields.
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work; it is written in crash-course style, and except for the Section 0.4, it can be omit-
ted by the reader acquainted with the basic theory of function fields and linear codes.
Section 0.1 contains the basic definitions regarding the theory of linear codes, including
the Gilbert-Varshamov bound. In Section 0.2 the rudiments of the theory of algebraic
function fields in one variable (more briefly, function fields) are presented: places (and
rational places), divisors, Riemann-Roch spaces and genus. Afterwards the definition
of the so-called algebraic geometric codes (which depends on these notions) is given,
along with the relation between the parameters of such codes and the number of ratio-
nal places and the genera of the corresponding function fields. Is at this point where the
Hasse-Weil bound (Theorem 0.2) and the Ihara function (see (0.1)), which have to do
with the ratio “number of rational places/genus”, come into the scene, along with some
lower and upper bounds for this function (Ihara, Drinfeld and Vladut, Serre, Zink).
Finally, we define the notion of tower of function fields and its asymptotic parameters
(genus and splitting rate).

In Section 0.3 we consider ramification in function fields. Basic definitions (rami-
fication and inertial indices, tamely and wild ramification) are given. Moreover, basic
results such as the fundamental equality (Lemma 0.8), Kummer’s Theorem (Proposi-
tion 0.9) and Hurwitz genus formula (Proposition 0.10) are stated, the latter involving
the so-called different exponents. We do not define rigorously such numbers, but in-
stead we provide with a plethora of results which allow us to calculate them (or at least
to estimate them), such that Dedekind’s Different Theorem (Proposition 0.11), transi-
tivity of the different (Lemma 0.13), Abhyankar’s Lemma (Proposition 0.14), a result
concerning constant field extensions of function fields over perfect fields (Proposition
0.17), and ramification and different exponents in Kummer and Artin-Schreier exten-
sions (Propositions 0.20 and 0.21). Apart from these, a specific result (Proposition
0.15) about ramification in some special cases is stated and proved. This result proves
to be quite useful in the determination of the genus of the new tower (Chapter 2).

All the material of these three sections was borrowed from [St], which provides
an excellent introduction to the subject. On the other hand, Section 0.4 concerns the
problem of estimation of the different exponent for some non-Galois extensions of
function fields. In many cases where the extensions involved are Galois, a very nice
result that permit us to go through this problem is the so-called “Key Lemma” (see
Proposition 0.27). Our interest is to device a technique which allow us to use this result
even in non-Galois instances. The theory of completions comes in handy in order to
achieve this purpose ‖. We set the basic definitions and results concerning completions
of valued fields and ramification in such fields (completions of valued fields are also
valued fields). The main results on this direction are: 1) Determination of the degree of
field extensions given by completions of valued fields, as a function of the ramification

‖In other words, completions are the “key” for the generalized “Key Lemma”.
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and inertial indices of the places involved, and 2) The invariance of the different when
passing to such field extensions. These results are contained in Propositions 0.22 and
0.23. The reference we used for this theory of valued fields (not just function fields)
is the book of Serre [Se79]. Finally we “dissect” the proof of the usual Key Lemma,
and we determine the condition that can be imposed even for fields not being function
fields, in order to the result remains valid. It turns to be that we only require that the
residue field of the “lower” place involved must be a perfect field; see Proposition 0.29
for a precise statement of this formulation. In the final part of this section we state
two results that provide upper (respectively, lower) bounds for the genus (respectively,
splitting rate) of a tower under certain conditions.

Now we discuss Chapter 1, in which we study the Bassa-Garcia-Stichtenoth tower
(BaGS for short). In [BaGaSt] the authors proved that this tower attains the generalized
Zink’s bound (1) (see page x), yet they did not determine explicitly the genera of each
step.

In Section 1.1 we recall some basic results about the ramification structure in the
BaGS tower, and we state two results involving certain basic calculations which will
be widely used in the next section. Section 1.2 is the heart of this chapter: since all
the steps of the tower are of Artin-Schreier type, we can use Proposition 0.21 in order
to determine the ramification behavior of all the places in the tower. For this pur-
pose it becomes necessary to apply the process of “Artin-Schreier reduction”. Roughly
speaking, if ℘ is the additive separable polynomial defining an Artin-Schreier exten-
sion, say L = F(y), with ℘(y) = u ∈ F (in our case we have ℘(T ) = T q − T for the
extensions Fn+1/Fn, with n ≥ 1), we are interested in rewrite the element u in the form
u = v+℘(u′), in such form that v is either holomorphic at the considered place, or it has
pole order relative prime to the characteristic of the field. Lemma 1.4 provides a first
result on this direction. A further refinement of this result is given in Lemma 1.7, which
is of recursive character. The first application of these results imply total ramification
at certain places (see the commentary after equality (1.14), and (1.16),(1.17)). After-
wards a slight but crucial Artin-Schreier reduction is made in Lemma 1.8 in order to
determine ramification at the upper levels. For pedagogical purposes the Artin-Schreier
reduction process using Lemmas 1.7 and 1.8 is carried out until the fifth iteration (see
equations (1.21)-(1.39)), in order to motive the general construction. Already in these
steps we observe an alternating ramification behavior, changing from totally ramified
to unramified (and vice versa) in each step. Moreover, the elements Ln+i defined for
i = 1, 2, 3, 4, 5 (see (1.16),(1.25),(1.31),(1.37),(1.39)) obey certain common pattern,
which we exploit in order to make a general definition, which settle all the remaining
cases§. This is the content of the main technical result of this chapter, Lemma 1.9. It

§In my case, it took me up to the ninth iteration to become convinced about the pattern, due to my
diffidence (the autor).
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states that alternation of ramification (in the sense described above) occurs up to certain
point, followed by total ramification in all the remaining upper steps. This deals with
the majority of the cases of interest, and the remaining case (the infinite place at the
bottom function field F0) is handled in Theorem 1.10.

Finally, in Section 1.3 we collect the results of our previous work. We know that
the different exponent is equal to 2(q − 1) for all the ramified places in the extensions
Fn+1/Fn for n ≥ 1, so the determination of the genus gn+1 of the function field Fn+1

as function of gn (the genus of Fn) via Hurwitz genus formula reduces to the counting
of ramified places in each step Fn+1/Fn for n ≥ 1, which is a reasonable (but tricky!)
task. It involves considerations on the numbers bn/4c (where b c stands for the integer
part), which forces us to work by cases. Finally the genus g(F1) is obtained using
the ramification behavior of the basic function field, which was already determined in
[BaGaSt], so we are able to give a general formula for the genera of the BaGS tower
(we also deduce a one-line expression for this genera, not involving congruences mod
4, just as a curiosity). We remark that the ramification behavior of the BaGS tower
is exactly the same as the van der Geer-van der Vlugt tower (introduced in [GV]): in
fact, all the recursive definitions and results of this chapter are generalizations of the
corresponding ones given in such paper. Obviously, further difficulties arise in this
more general setting (only to cite a specific example, Lemma 1.8 is unnecessary in the
context of the vdG-vdV tower, because of the far simpler form of the defining equation
of the tower).

Now we discuss the final chapter of this work. It is related to a new tower over
cubic fields introduced by Ihara; see equation (3) in [Ih07]. Actually we will work
with a modified version of this equation (via a linear fractional change of variables,
which is discussed at the end of the chapter). In Section 2.1 we define the equation of
our new recursive tower. This equation is not irreducible (that is, its degree is greater
than the degree of the corresponding field extension), but this presentation turns to be
very convenient for the determination of the splitting rate of the tower. After a change
of variables, we obtain a nice, symmetric in two variables, presentation of the basic
function field F1, which enables us to determine the ramification behavior of this basic
function field rather easily (see Proposition 2.2; some of its statements are obtained
simply by invert the roles of the variables involved).

Section 2.2 concerns the ramification of the tower itself. Using the results of the
previous section (actually we only need to do a change of variable) we determine the
ramification behavior at all the basic function fields appearing in the tower (that is, the
field extensions k(Xn, Xn+1)/k(Xn) and k(Xn, Xn+1)/k(Xn+1) for each n ≥ 0, where k is
the base field, which is assumed to be perfect, and the Xn are the generators of the
function fields Fn). This enables us to determine the set known as ramification locus of
the tower (relative to the field F0). The study of the ramification behavior of the tower
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is reduced, by definition, to the determination of the ramification at the places in this
set.

In this context, five possibilities arise (the “Cases”). As a notation we introduce the
terminology of “pyramids” and “diamonds”, the latter being simply the basic field ex-
tensions obtained from composita of fields of the form k(Xi−1, Xi, . . . , X j) and k(Xi, Xi+1,
. . . X j+1). Cases 1,3 and 4 are easily solved, because they lie in the situation of tame
ramification, and in these cases we know that Abhyankar’s Lemma allows to deter-
mine both the ramification index and the different exponent. Case 2 is reduced to one
of Cases 3,4 and 5. Finally, the more interesting part of the reasoning deals with Case
5: this is the only part where wild ramification occurs at both “bottom edges” of a di-
amond. It is at this point where the results of Section 0.4 are invoked. Since the field
extensions involved are not even Galois, we cannot apply directly the “Key Lemma”.

The strategy that we adopt (successfully!) can be briefly described as follows: first,
we take the Galois closures of the field extensions involved, and we determine the rami-
fication of the “bottom” place at these new extensions. The construction of these Galois
closures involves Kummer extensions, so we use Proposition 0.20. It turns out that the
(total) ramification index at both Galois extensions is equal to a power of p =char(k).
Taking completions, after which the field extensions become Galois of degree equal to
the corresponding ramification indices (by Proposition 0.22, assuming of course that
the base field is algebraically closed, which is harmless since the ramification is invari-
ant under constant field extensions), we are in the situation of the General Key Lemma
(Proposition 0.29), which enables us to determine the different exponent at the top
edges of the completed diamond (as functions of the respective ramification indices).
Using again Proposition 0.22 we return to our original diamond, obtaining the desired
estimates for the different exponent.

In Section 2.3, using the results of the five Cases considered in the previous section,
we are able to estimate the genus of the tower respect to the field F0, by applying
Propositions 0.15,0.16 and 0.30. Finally, in Section 2.4 we obtain a lower bound for
the splitting rate of the tower over F0 for the particular case in that the tower is defined
over the field �q3 . As we said before, it is easily done using the nice form of the
equation defining the tower, which enables us to conclude that enough places in the
field F0 split totally in all extensions Fn/F0. Putting together these results we conclude
that the limit of the tower is at least as big as the generalized Zink bound, which is the
main result of this chapter. At the end of this chapter we show how this new tower is
related to the Bezerra-Garcia-Stichtenoth tower: it is in fact a subtower of the BeGS
tower. Since the limit of a subtower is greater or equal to that of the original tower,
this provides an immediate proof of our main result; however, it is always worthy to
prove the asymptotic goodness of a tower more directly, that is, by trying to determine
explicitly the genera of the tower and the nature of its rational places.
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As a final remark, another generalization of the Key Lemma can be found in the
PhD thesis of Bassa (see [Ba, Proposition 5.8]). The author also mentions the po-
ssibility of using completions in order to use the Key Lemma in a broader setting
([Ba, Remark 3.4]), but ultimately he opted by a more elementary (but equally worthy)
approach.

Some perspectives (“The future?”)

We close this Introduction by listing some future possibilities for further research on
the matters treated in this thesis (beginning with the most “reasonable”, and ending
with the more “platonic”).

• Maybe in the future we can add to the data on the Bassa-Garcia-Stichtenoth tower
the exact knowledge of the number of rational places at every step Fn (or, even
better, the knowledge of the rational places themselves).

• Determine precisely the genera of the fields in the tower of Ihara. The result
concerning admissible sequences (see Proposition 2.4) can be useful for this pur-
pose. Afterwards (of course), try to determine the exact number of rational places
in the tower (as in the previous item).

• Construct towers over cubic finite fields with limit greater than the generalized
Zink bound. On this direction, the search for subtowers of good towers can prove
to be useful, since limits of subtowers are greater or equal than the limits of the
original ones. Of course, it can happen that the Ihara quantity A(q3) is actually
equal to this bound, but the proof of this fact is probably far more difficult♠ .

• Construct asymptotically good explicit towers over prime finite fields (we remind
the reader that no example of such tower currently exists; the construction of
asymptotically good towers for nonprime fields exhibited in [GaStTh, Example
2.3] no longer works for prime finite fields, as shown by Lenstra in [Le]), and
if possible, with limit comparable to, say, the Serre bound. Similarly for finite
fields with cardinality other than square and cubic. It might be that the theory
of recursive towers is not enough to deal with these cases, so perhaps a new
approach is necessary.

♠ I personally believe that Zink’s bound is not optimal (the autor).



Chapter 0
Preliminaries

In this chapter we define the basic notions involved in our work, namely of function
fields, along with basic auxiliary results. Apart from it, we state and prove a result
about ramification of places in more general valued fields (that is, not necessarily being
function fields), which will be crucial in the proof of the asymptotic goodness of the
new tower introduced in Chapter 2.

0.1 Linear codes

For the definitions and results in this section we refer to [St, Chapter II and VII]. Let
�q be the finite field with q elements. A linear code over �q is just a �q-subspace C
of � n

q . The elements of C are called codewords, the field �q is called the alphabet, and
we call n the length of C and dim�qC the dimension of C.

Obviously we are interested in non-trivial linear codes, so from now on we assume
that C , 0. Denoting the elements x of � n

q by x = (x1, . . . , xn), we define the Hamming
distance in � n

q as the function d(x, y) B
∣∣∣{k : xk , yk}

∣∣∣, which indeed defines a metric on
� n

q . The minimum distance of C is defined as d(C) B min{d(a, b) : a, b ∈ C and a , b}.
Finally, we say that C is a [n, k, d]-code if it has length n, dimension k and minimum
distance d.

For a [n, k, d]-code C set t B
⌊
(d−1)/2

⌋
, where b c stands for the integer part. From

the definition of t it follows that for each word u ∈ � n
q there is at most one word c ∈ C

satisfying d(u, c) ≤ t. For this reason we say that C is t-error correcting. We also define
the transmission rate of C by R = R(C) B k/n, and its relative minimum distance by
δ = δ(C) B d/n.

1
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Let Vq B
{
(δ(C),R(C)) : C is a code over �q

}
. The limit set Uq of Vq is called the

domain of codes over �q. By a Theorem of Yuri Manin (see [Ma]) the region Uq is
bounded by δ and R axis, and by the graph of the continuous function αq : [0, 1] →
[0, 1] defined by αq(δ) = sup

{
R : (δ,R) ∈ Uq

}
. The function αq is nonincreasing in the

interval [0, 1 − q−1], αq(0) = 1 and αq(δ) = 0 for 1 − q−1 ≤ δ ≤ 1.

If Hq : [0, 1 − q−1]→ R is defined by

Hq(δ) =

0, if δ = 0;
δ logq(q − 1) − δ logq(δ) − (1 − δ) logq(1 − δ), if 0 < δ ≤ 1 − q−1,

then the have the so-called Gilbert-Varshamov bound: αq(δ) ≥ 1 − Hq(δ) for 0 ≤ δ ≤
1 − q−1 (see [St, Proposition VII.2.3]). Since Hq(δ) < 1 for 0 < δ ≤ 1 − q−1, this lower
bound for αq guarantees the existence of long codes over �q (i.e., with arbitrarily large
lengths) with positive transmission rate (the value R), which are capable of correct a
positive percentage of errors by word (the value δ).

0.2 Algebraic function fields and AG codes

In this section we introduce the basic notions on function fields. These, along with
the definition and basic properties of AG codes can be found on [St]. The reader
acquainted with the theory of function fields (and with its usual notation) can safely
skip this section.

An algebraic function field on one variable over a field k is a finitely generated
extension F/k with transcendence degree 1. For brevity we refer to this as a function
field over k. The field k is called the base field. In particular, if kF denotes the algebraic
closure of k in F, it follows that F/kF is also a function field.

A place of a function field F/k is simply the maximal ideal of a discrete valuation
ring of F containing k. This ring is denoted by OP, and the corresponding discrete
valuation is denoted by vP . The set of places of F/k is denoted by �(F); we can omit
the base field k in this notation because it is easily seen that OP ⊇ kF for any place P of
F/k; actually, for the subsequent development of the theory (divisors, Riemann-Roch
theorem, etc.), it is convenient to suppose that the base field is algebraically closed in
the function field, so from now on we add this condition to the definition of function
field.

For a place P ∈ �(F) we define the residue field at P as the field OP/P. Note that the
field k is canonically embedded in this field, and in fact we have [OP/P : k] < ∞ ([St,
Proposition I.1.14]). This degree is called the degree of the place P, and it is denoted
by deg P. Places of degree 1 are called rational places of F/�q or simply �q-rational
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places. Now, the elements of P are precisely those x in F satisfying vP(x) > 0; for
such x we say that x has a zero at the place P. If vP(x) = 1, then P is equal to the
principal ideal OPx, and we say in this case that x is a local parameter at P. Similarly,
the complement of OP in F is constituted by the elements y ∈ F such that vP(y) < 0, and
for such y we say that y has a pole at the place P. For each x ∈ OP we denote by x(P)
its equivalence class in OP/P, and we define x(P) = ∞ for any x having a pole at P.
For this reason the elements of F are also called functions (with values in {∞}∪OP/P).
Note that in particular we have x(P) ∈ k and vP

(
x − x(P)

)
> 0 whenever P is a rational

place and x ∈ OP.

For a divisor of F/k we meant to be an element, say D, of the free abelian group
with basis �(F), so it is equal to a formal sum

∑
P∈�(F) nP P, with nP ∈ Z and nP = 0

for almost all P. We write vP(D) for the integer nP . For a non-zero function x in F
we define the principal divisor of x as (x) B

∑
P∈�(F) vP(x)P. Since x has only a finite

number of zeros and poles ([St, Corollary I.3.4]), this indeed defines a divisor. If D is
any divisor of F/k, we define the degree of D as deg D B

∑
P∈�(F) vP(D) deg P, and we

define the Riemann-Roch space of the divisor D as the set L(D) B
{
x ∈ F : vP(x) ≥

−vP(D) for all P ∈ �(F)
}
∪{0

}
. It is a finite-dimensional space over k, whose dimension

is denoted by `(D). Finally, we define the genus of the function field F/k as the number
g(F) B max

{
deg D− `(D) + 1 : D is a divisor of F/k

}
. This number indeed exists, and

it is a nonnegative integer ([St, Proposition I.4.14]).

Now we can define the so-called algebraic geometric codes (briefly, AG codes) as
follows: for a function field F/�q over a finite field and a set P = {P1, . . . , Pn} of n
distinct places Pi ∈ �(F) of degree 1, let L be a linear �q-subspace of F such that
L ⊆ OPi for each i. The mapping α : L → � n

q given by α(x) =
(
x(P1), . . . , x(Pn)

)
is

well-defined and �q-linear, so its image is a code over �q. When L is a Riemann-Roch
space of a divisor, say L = L(D), such that vPi(D) = 0 for each i, the corresponding
code is called algebraic geometric code, and it is denoted by CL(P,D) (In [St] these
are called geometric Goppa codes, after V.D. Goppa, who introduced such codes in
[Go]).

The following result, which is a direct consequence of Riemann-Roch theorem,
allow us to estimate the parameters of an AG code:

Proposition 0.1 ([St, Corollary II.2.3]). If n > deg D, then CL(P,D) is a [n, k, d]-code
with k = `(D) ≥ deg D + 1− g(F), and equality occurs if deg D ≥ 2g(F)− 1; moreover,
d ≥ n − deg D.

As a consequence, if we are able to construct function fields with increasing number
n of �q-rational places, and we fix the value deg D/n (obviously we must modify the
divisor D for each function field), then the relative minimum distance of the corres-
ponding AG codes is positive, and their respective transmission rates increase along
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with the value n/g(F). For this reason, it is important to estimate the relation between
the number of rational points of a function field F/�q and its genus g(F). On this
direction we have the following celebrated result, which was proved first by Helmut
Hasse in the case g(F) = 1 ([Ha]), and after by André Weil in the general case ([We]):

Theorem 0.2 (Hasse-Weil bound). Let F/�q be a function field over the finite field
�q. If we denote by N(F) the number of �q-rational places of F, then we have

N(F) ≤ q + 1 + 2g(F)
√

q .

Actually this result also provides a lower bound for the number of rational places, but
for our purposes this additional result is not necessary. We remark that the bound above
is sharp: in fact, there are examples of function fields attaining this bound, the so-called
maximal function fields. Further improvements of this bound were given by J.-P. Serre
(the ‘Explicit Formulas’; see [Se83]) and J. Oesterlé, the latter providing the ultimate
strengthening of the Hasse-Weil bound in terms of the genus alone. We also mention
that the work of K.-O. Stöhr and J. Voloch provides bounds for the number of rational
places, which depend on the geometry of the curve associated to the function field (see
[StVo]).

When the genus of the function field is large with respect to the cardinality of the
base field, the Hasse-Weil bound can be improved substantially. In [Ih82], Y. Ihara
introduced the following real number:

A(q) B lim sup
g(F)→∞

N(F)
g(F)

, (0.1)

where F runs over all the function fields over �q. He showed that A(q) ≤
√

2q for any
q, thus improving the estimate given by the Hasse-Weil bound A(q) ≤ 2

√
q, and he also

showed that A(q) ≥
√

q − 1 when q is a square. Later V. G. Drinfeld and S. G. Vladut
showed in [DrVl] by elementary methods that the reverse inequality A(q) ≤

√
q − 1

holds for every q. Thus, the value of A(q) is exactly
√

q − 1 when q is a square. For
other cardinalities much less is known. For example, there exists a constant c > 0 such
that A(q) ≥ c log q for all q (see [Se83] for the proof, which uses class field theory). For
q a cubic power of a prime number, T. Zink found, by using degeneration of Shimura
modular surfaces, the following lower bound (see [Zi]):

A(p3) ≥
2(p2 − 1)

p + 2
, for all primes p .

The drawback of these proofs lies in the fact that they are too hard to carry out expli-
citly, that is, they do not provide an explicit description of the function fields in terms
of generators and equations. On the other hand, the success of the AG codes method
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depends heavily on the knowledge of the function fields involved and of their genera
and �q-rational places, so in particular the defining equations of the function fields
involved are highly desirable� .

In any case, good lower bounds for the function A imply the existence of arbitrarily
long codes with good parameters, via the following result (see [TsVlZi]; the proof can
also be found on [St, Proposition VII.2.5]):

Proposition 0.3. If A(q) > 1, then αq(δ) ≥ 1 − A(q)−1 − δ for all δ ∈ [0, 1 − A(q)−1] .

Now we define the concept of tower of function fields, which is the central object
of study in this work.

Definition 0.4. A tower of function fields over a field k is a sequence F = (Fn)n≥0 of
function fields over k such that the following conditions hold:

(i) Each field extension Fn+1/Fn is finite and separable of degree > 1.

(ii) The field k is algebraically closed in each field Fn (so Fn is indeed a function field
over k, according to our definition).

(iii) The genera of the fields Fn satisfy g(Fn)→ ∞ when n→ ∞.

Definition 0.5 ([GaStTh]). Given a tower F = (Fn)n≥0 over �q, the following limits
do exist, the first as a positive real number; the second, as an extended real number:

ν(F /F0) B lim
n→∞

N(Fn)
[Fn : F0]

; γ(F /F0) B lim
n→∞

g(Fn)
[Fn : F0]

.

The (extended) real numbers ν(F /F0) and γ(F /F0) are called, respectively, the split-
ting rate and the genus of the tower F , both relatively to the field F0.

Sometimes we also refer to the sequence
(
g(Fn)

)
n≥0 as the genus of the tower.

Clearly the knowledge of the genus of the tower in this sense allow us to determine
the genus of the tower in the sense of the definition above (as a limit).

Definition 0.6. For a tower F = (Fn)n≥0 over �q, the real number

λ(F ) B lim
n→∞

ν(F /F0)
γ(F /F0)

is called the limit of the tower F (note that λ(F ) indeed does not depend on F0).

From the definition of tower we clearly have 0 ≤ λ(F ) ≤ A(q) ≤
√

q − 1.

� Of course, it remains to tackle the computational implementation issues, but this is another story...
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Definition 0.7. A tower F of function fields over �q is said to be:

• Asymptotically bad, if λ(F ) = 0.

• Asymptotically good, if λ(F ) > 0.

• Asymptotically optimal, if λ(F ) = A(q).

It is clear that a tower F is asymptotically good if and only if its genus γ(F /F0) is
finite and its splitting rate ν(F /F0) is positive.

0.3 Ramification in function fields

Let F/k be a function field, and let L be an algebraic extension of F. From now on we
suppose that the extension L/K is separable. Then L is a function field over k′, where
k′ is the algebraic closure of k in L. We know that [k′ : k] < ∞ iff [L : F] < ∞ ([St,
Lemma III.1.2]).

If P ∈ �(F) and Q ∈ �(L), we say that Q divides P whenever Q ⊇ P. This
is denoted by Q|P. This is equivalent to say that for some integer e ≥ 1 we have
vQ(x) = evP(x) for all x ∈ F, or that Q ∩ F = P (see [St, Proposition III.1.4]). The
integer e is called the ramification index of Q over P, and it is denoted by e(Q|P). If
e(Q|P) > 1, we say that (the extension of places) Q|P is ramified; otherwise, we say
that Q|P is unramified. Finally, we say that a place P ∈ �(F) is ramified in L/F if Q|P
is ramified for some Q ∈ �(L) dividing P; otherwise, we say that P is unramified in
L/F.

On the other hand, if Q|P, then there is a canonical embedding OP/P ↪→ OQ/Q.
The degree [OQ/Q : OP/P] is called the inertial degree of Q over P, and it is denoted
by f (Q|P).

If L/F is a separable algebraic field extension and if Q ∈ �(L), then the restriction
Q ∩ F is a place of F. Finally, if M/L is another separable algebraic extension of
fields, and P ∈ �(F),Q ∈ �(L),R ∈ �(M), then we have e(R|P) = e(R|Q)e(Q|P) and
f (R|P) = f (R|Q) f (Q|P).

Lemma 0.8 (Fundamental equality). If L/F is a finite extension of function fields,
and P ∈ �(F), then ∑

Q∈�(L)
Q|P

e(Q|P) f (Q|P) = [L : F] .
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For a finite extension L/F of function fields, we say that a place P ∈ �(F) is totally
ramified in L/F if e(Q|P) = [L : F]. According to fundamental equality, this implies
that there is an unique place Q ∈ �(L) dividing P; the converse is true, provided that
f (Q|P) = 1, which happens if k is algebraically closed, for example. We also say that
P is totally decomposed in L/F (or that P splits completely in L/F) whenever there are
[L : F] distinct places in �(L) dividing P. By fundamental equality, this amounts to
say that e(Q|P) = f (Q|P) = 1 for each place Q ∈ �(L) dividing P.

In determining the ramification behavior of a place in certain field extensions, the
following result proves to be useful, but first we need to set some notation. Let P ∈
�(F). For any polynomial f (T ) ∈ OP[T ], say f (T ) =

∑
i aiT i, with ai ∈ OP, we define

the reduction mod P of f as the polynomial fP(T ) B
∑

i ai(P)T i ∈
(
OP/P

)
[T ]. Now we

state the result:

Proposition 0.9. Suppose that the field extension L/F is simple, say L = F(y). More-
over, suppose that y is OP-integral, so its minimal polynomial over F, say ϕ(T ), belongs
to OP[T ]. Consider the decomposition of ϕP(T ) into irreducible factors on

(
OP/P

)
[T ],

that is,

ϕP(T ) =

r∏
i=1

γi(T )εi ,

where the polynomials γi(T ) are monic, pairwise distinct and irreducible in
(
OP/P

)
[T ].

Choose polynomials ϕi(T ) ∈ OP[T ] such that deg γi = degϕi and (ϕi)P = γi . Then there
are places P1, . . . , Pr ∈ �(L) such that Pi|P, ϕi(y) ∈ Pi and f (Pi|P) ≥ deg γi for each i.

Moreover, if εi = 1 for each i, then there exists, for each i between 1 and r, exactly
one place Pi ∈ �(L) such that Pi|P and ϕi(y) ∈ Pi . Each extension Pi|P is unramified
and satisfies f (Pi|P) = deg γi (so by fundamental equality the places P1, . . . , Pr are
precisely the places in �(L) dividing P).

This result is commonly known as Kummer’s Theorem. For a proof see [St, Propo-
sition III.3.8].

For finite separable extensions of function fields we have the following classic for-
mula relating the genus of the function fields involved:

Proposition 0.10 (Hurwitz genus formula). Let F/k be a function field over k, and let
L/F be a finite separable field extension, so L is a function field over k′, the algebraic
closure of k in L . Then we have

(
2g(L) − 2

)
=

[L : F]
[k′ : k]

(
2g(F) − 2

)
+ deg Diff(L/F) ,

where Diff(L/F) denotes the different of L/F.
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The different of L/F is a divisor of L of the form:

Diff(L/F) =
∑

P∈�(F)

∑
Q∈�(L)

Q|P

d(Q|P)Q .

The integer d(Q|P), which is nonnegative, is called the different exponent of Q|P. We
refer to [St, Section III.4] for the rigorous definition of d(Q|P). We are more inter-
ested in the effective determination (or, at least, the estimation) of such numbers. The
following results will allow us to do this in our cases of interest.

Proposition 0.11 (Dedekind’s Different Theorem). With notation as before, we have
that d(Q|P) ≥ e(Q|P) − 1, and equality holds if and only if char(k) does not divide
e(Q|P). In particular d(Q|P) = 0 whenever Q|P is unramified.

Let Q and P be places such that Q|P. We say that Q|P is tamely ramified if char(K)
does not divide e(Q|P); otherwise we say that Q|P is wildly ramified. If Q|P is wildly
ramified for some Q dividing P, we say that P is wildly ramified in the field extension
L/F; otherwise we say that P is tamely ramified in L/F.

Proposition 0.12 ([St, Proposition III.5.12]). With the notation above, suppose that a
extension of places Q|P is totally ramified. Let t ∈ L be a local parameter at Q (that is,
vQ(t) = 1). Then we have d(Q|P) = vQ

(
ϕ′(t)

)
, where ϕ(T ) is the minimal polynomial of

t over F.

The following result relates the different exponent of a field extension with the
different exponents at intermediate fields.

Lemma 0.13 (Transitivity of the different). Let M/L and L/F be finite separable ex-
tensions, where F is a function field, and let P ∈ �(F),Q ∈ �(L),R ∈ �(M) be places
such that R|Q and Q|P. Then we have

d(R|P) = d(R|Q) + e(R|Q)d(Q|P).

For a proof, see [St, Corollary III.4.11].

The following fundamental result allow us to determine the ramification index and
the different exponent of a compositum of two function fields from the respective data
on the subfields, provided that tame ramification occurs in one of them.

Proposition 0.14 (Abhyankar’s Lemma). Let L/F be a finite separable extension of
function fields, and suppose that L is the compositum of two intermediate subfields
L1, L2 ⊆ L. Let P ∈ �(F) and Q ∈ �(L), and let Qi = Q∩ Li ∈ �(Li) for i = 1, 2. If one
of the extensions Qi|P is tamely ramified, then

e(Q|P) = LCM
{
e(Q1|P), e(Q2|P)

}
,

where LCM stands for the least common multiple.
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Actually in our work we only need to determine the ramification index and the
different exponent in very particular cases. For this reason it will be convenient to state
these results explicitly. In the following two results the function fields involved have
characteristic p > 0, and q is a power of p.

Proposition 0.15. Let L/F and M/L be finite separable field extensions of function
fields, and let P ∈ �(F),Q ∈ �(L) and R ∈ �(M) be places such that R|Q and Q|P.
Then the following holds:

(i) If e(Q|P) = 1 then e(R|P) = e(R|Q) and d(R|P) = d(R|Q).

(ii) If e(R|Q) = 1 then e(R|P) = e(Q|P) and d(R|P) = d(Q|P) (Thus, if one of the in-
termediate extensions is unramified, the global ramification behavior is the same
as in the other intermediate extension).

(iii) If e(R|Q) = d(R|Q) = q then e(R|P) = qe(Q|P) and d(R|P) = q
(
d(Q|P) + 1

)
.

(iv) If d(Q|P) = 2
(
e(Q|P)−1

)
and d(R|Q) = 2

(
e(R|Q)−1

)
, then d(R|P) = 2

(
e(R|P)−1

)
.

(v) If e(Q|P) = q − 1 and d(R|Q) = 2
(
e(R|Q) − 1

)
, then e(R|P) = e(R|Q)(q − 1) and

d(R|P) =
(

q
q−1

)
e(R|P) − 2.

Proof. They are direct consequences of Lemma 0.13 and the multiplicativity of the
ramification index. We only prove (v); the proof of the remaining items is even easier.
By Proposition 0.11 we have d(Q|P) = q − 2, so by Lemma 0.13 we have d(R|P) =

d(R|Q) + e(R|Q)d(Q|P) = 2
(
e(R|Q)− 1

)
+ e(R|Q)(q− 2) = qe(R|Q)− 2, the latter being

equal to
(

q
q−1

)
e(R|P) − 2 because e(R|P) = (q − 1)e(R|Q). �

Proposition 0.16. Let L/F be a finite separable field extension of function fields, and
suppose that L = L1 L2 for two intermediate subfields L1, L2. Let P ∈ �(F) and Q ∈
�(L) be places such that Q|P, and for i = 1, 2 let Qi = Q ∩ Li. Then the following
holds:

(i) If e(Q1|P) = 1 then e(Q|Q2) = 1, e(Q|Q1) = e(Q2|P) and d(Q|Q1) = d(Q2|P)
(Thus, if one of the extensions is unramified, then the liftings of the respective
field extensions inherit the ramification behavior).

(ii) If e(Q1|P) = q − 1 and e(Q2|P) = d(Q2|P) = q, then e(Q|Q2) = q − 1 and
e(Q|Q1) = q, d(Q|Q1) = 2(q − 1).

Proof. Item (i) is an immediate consequence of items (i) and (ii) of Proposition 0.15,
together with Proposition 0.14. As for (ii), note that we have e(Q|Q1) = q and e(Q|Q2) =

q − 1 by Proposition 0.14, so by Lemma 0.13 we have

d(Q|P) = d(Q|Q1) + e(Q|Q1)d(Q1|P) = d(Q|Q1) + q(q − 2) = d(Q|Q1) + q2 − 2q
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and
d(Q|P) = d(Q|Q2) + e(Q|Q2)d(Q2|P) = q − 2 + (q − 1)q = q2 − 2 .

Comparing the equalities we get d(Q|Q1) = 2q − 2, as desired. �

Let F be a function field over k. When k is algebraically closed, nice things can
happen: for example, “unramified” becomes equivalent to “totally decomposed”, and it
is possible (in some cases) to conclude directly from Kummer’s Theorem (Proposition
0.9) that a given place is totally decomposed. As a consequence the calculation of
the genus g(F) becomes easier (at least theoretically). The following result shows that
whenever we want to calculate the genus of a function field F, we can replace the base
field k by any algebraic extension of it, provided that k is a perfect field♣.

Proposition 0.17. Let F/k be a function field over a perfect field k, and let k′ be an
algebraic extension of k (for example k′ = k). Consider the constant field extension
L B F k′ of F/k. Then L is a function field over k′ (i.e., k′ is algebraically closed in L).
Moreover, every place P ∈ �(F) is unramified in L/F, and we have g(L) = g(F).

For the proof see [St, Theorem III.6.3].

Corollary 0.18. Let F be a function field over a perfect field k, and let L/F be a finite
separable extension. If there exists a place P ∈ �(F) that is totally ramified in L/F,
then k is algebraically closed in L (so L is also a function field over k).

Proof. Let k′ be the algebraic closure of k in L, and let L′ = F k′. Let Q ∈ �(L) be a
place of L dividing P, and let Q′ = Q ∩ L′. Note that we have L ⊇ L′ ⊇ F. By Propo-
sition 0.17 we have e(Q′|P) = 1; on the other hand, the condition e(Q|P) = [L : F]
clearly implies e(Q|Q′) = [L : L′] and e(Q′|P) = [L′ : F] (because the multiplicativity
of both the degree of field extensions and the ramification index). Therefore we have
[L′ : F] = 1, so k′ ⊆ L′ = F. Since k is algebraically closed in F by hypothesis, it
follows that k′ = k. This finishes the proof. �

Corollary 0.19. Let L/F be a finite separable extension of function fields over the same
perfect field k (that is, k is algebraically closed in L). Let k′ be any algebraic extension
of k, and let L′ = Lk′, F′ = Fk′. Let P ∈ �(F),Q ∈ �(L), P′ ∈ �(F′) and Q′ ∈ �(L′) be
places such that Q′|Q|P and Q′|P′|P. Then we have e(Q|P) = e(Q′|P′).

Proof. Since k is algebraically closed in both F and L, then by Proposition 0.17 we
have e(Q′|Q) = e(P′|P) = 1. Using that e(Q′|P) = e(Q′|Q)e(Q|P) and e(Q′|P) =

e(Q′|P′)e(P′|P), the result follows. �

♣This assumption is essential: the corresponding result is no longer true if we drop this restriction.
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Corollaries 0.18 and 0.19 together are very useful in order to determine the ramification
behavior of a separable field extension of function fields: in fact, let L/F be a such
extension, where F is a function field over a perfect field k. If we manage to prove
(with “bare hands”) the existence of a place P ∈ �(F) totally ramified in L/F, the
first result shows that L is also a function field over k, and the determination of the
ramification behavior in the extension L/K becomes more easy if we suppose that k is
algebraically closed (especially when we try to apply Kummer’s Theorem), and such
assumption is possible by the second result.

Now we turn our attention to two special kind of extensions of function fields: the
tower studied in Chapter 1 is made of Artin-Schreier extensions, whereas Kummer
extensions are considered in a crucial step of the proof of the asymptotic goodness of
the new tower (Chapter 2). Now we state just the basic facts about ramification in such
extensions that will be needed in the sequel.

Proposition 0.20 (Kummer extensions). Let F/k be a function field over a perfect field
k. Suppose that k contains a primitive n-root of unity, with n ≥ 1 (so n is relative prime
to the characteristic of k). Let u ∈ F and let L = F(y), where y satisfies yn = u. Then
we have:

(i) The extension L/F is Galois of degree [L : F] = d, where d divides n, and the
minimal polynomial of y over F is of the form T d − w, with w ∈ F.

(ii) If P ∈ �(F) and Q ∈ �(L) are places such that Q|P, then we have e(Q|P) = d/rP,
where rP B GCD

(
d, vP(w)

)
(so d(Q|P) = e(Q|P) − 1 because d/rP is relative

prime to the characteristic of k). Here GCD denotes the greatest common divisor.

(iii) With P and Q as in item (ii), if n divides vP(u), then Q|P is unramified.

Proof. Item (i) is a standard fact from Galois theory. For item (ii) we refer to [St,
Proposition III.7.3]. Finally, suppose that n divides vP(u), with P and Q as in item
(ii). From equalities yn = u and yd = w we get u = wn/d (recall that d divides n),
and therefore vP(u) = nvP(w)/d. Since n divides vP(u), it follows that d divides vP(w),
hence rP = GCD

(
d, vP(w)

)
= d, and so e(Q|P) = d/rP = 1 by item (ii). �

Let k be a perfect field of characteristic p > 0. A polynomial ℘(T ) ∈ k[T ] is said to
be additive if it has the form ℘(T ) = anT pn

+ an−1T pn−1
+ · · · + a1T p + a0T , with ai ∈ k.

Since ℘ ′(T ) = a0, the necessary and sufficient condition for ℘(T ) to be separable is that
a0 , 0.

Proposition 0.21 (Artin-Schreier extensions). Let F/k be a function field over a perfect
field k of characteristic p > 0, and let q be a power of p. Let ℘(T ) ∈ k[T ] be an additive
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separable polynomial of degree q which has all its roots in k. Let u ∈ F and suppose
that for any place P ∈ �(F) there is an element z ∈ F (depending on P) such that either

vP
(
u − ℘(z)

)
≥ 0

or
vP

(
u − ℘(z)

)
= −m, with m > 0 and GCD{m, p} = 1 .

Define mP B −1 in the first case and mP B m in the second case. Them mP is a well-
defined integer. Suppose that exists a place Q ∈ �(F) with mQ > 0, and let L = F(y),
where y satisfies ℘(y) = u. Then the following holds:

(i) The extension L/F is elementary abelian of exponent p, and Gal(L/F) is isomor-
phic to the additive group {a ∈ k : ℘(a) = 0}.

(ii) Any place P ∈ �(F) with mP = −1 is unramified in L/F.

(iii) Any place P ∈ �(F) with mP > 0 is totally ramified in L/F, and if Q denotes the
unique place in �(L) dividing P, then the different exponent is given by d(Q|P) =

(q − 1)(mP + 1).

(iv) k is algebraically closed in L (by Corollary 0.18 and item (ii), because mP > 0
for some place P).

For the proof, see [St, Proposition III.7.10].

0.4 The “Key Lemma” for completions

In this section we state and indicate a proof of a generalization of the result known
as “Key Lemma”, which gives information about ramification in composita of Galois
extensions of function fields of degree a power of p, being p > 0 the characteristic of
the base field. This result cannot be directly used because the field extensions involved
in the new tower (Chapter 2) are not even Galois; however, we resort to the technique
of completions in order to solve this problem. Of course, we must assure us that the
results about ramification continue to hold in this new setting. The basic reference for
this section is [Se79, Chapters I-IV].

We remark that ramification theory can be developed in the more general setting of
fields of fractions of Dedekind domains. Discrete valuation rings are examples of such
rings, and in fact Dedekind domains can be characterized as the noetherian integral
domains that are discrete valuation rings locally. The unique additional restriction in
the case of function fields is that the discrete valuation rings involved must contain the
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base field. By dropping this restriction we obtain the definition of discrete valuation
ring in more general fields, and if we assume that the field extensions involved are all
separable, then all the basic results on ramification remain to be true in this new setting;
see [Se79, Chapter I].

Now we discuss completions. Since we are more interested in the properties rather
than the rigorous definitions, we just set the definitions and state the corresponding
properties. Let P be a place of a field F, that is, the maximal ideal of a discrete valuation
ring of F, which is denoted (as in the case of function fields) by OP. Associated to P
we have a field F̂P , the P-adic completion of the OP -module F respect to P ; moreover
we have a canonical embedding F ↪→ F̂P (though this fact will not be needed). We
also consider the P-adic completions of the OP-modules OP and P, which are denoted
respectively by ÔP and P̂ . It turns out that ÔP is a discrete valuation ring of F̂P, with
maximal ideal P̂ . Moreover, its residue field ÔP/P̂ is isomorphic to the residue field
OP/P.

Consider now a field extension L/F. Let P ∈ �(F) and Q ∈ �(L) be places such
that Q|P. Then we have that L̂Q is a field extension of F̂P . The following result relates
the ramification behavior of Q|P with that of Q̂| P̂ :

Proposition 0.22 ([Se79, II.§3, Theorem 1, Corollary 4]). With the hypotheses above,
we have the following:

(i) The field L̂Q is an extension of F̂P
♠ of degree e(Q|P) f (Q|P).

(ii) The place Q̂ ∈ �(L̂Q) is the unique place dividing P̂ , and we have e(Q|P) =

e(Q̂ | P̂ ) and f (Q|P) = f (Q̂ | P̂ ).

(iii) If L/F is a Galois extension, then L̂Q/F̂P is also a Galois extension.

Let L/F be a finite separable extension of fields. The numbers d(Q|P) are also
defined in this more general setting (see [Se79, II.§3]), and the same results from the
theory of function fields continue to hold; moreover, such exponents are preserved after
completions. This is the content of the following result:

Proposition 0.23. Let L/F be a finite separable extension of fields, and let P ∈ �(F),
Q ∈ �(L) be places such that Q|P. Then we have the following:

(i) (Transitivity) If M/L is another finite separable field extension, and R ∈ �(M)
satisfies R|Q, then we have d(R|P) = d(R|Q) + e(R|Q)d(Q|P) .

(ii) d(Q|P) = d(Q̂ | P̂).
♠ There is a misprint in this result: in page 31 of [Se79], line 3 we should read “K̂” instead of “K”.

The original French version of this book is typed correctly at this point.
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Proof. For (i), see [Se79, II.§4, Proposition 8]. Item (ii) is the content of [Se79, II.§4,
Proposition 10].

Now we state the required preliminary results used to prove the “Key Lemma” for
function fields.

Lemma 0.24 ([GaSt05, Lemma 1]). Let F/k be a function field over a perfect field k
with char (k) = p > 0, and let L1/F and L2/F be two distinct Artin-Schreier extensions
of degree p. Denote by L the compositum L1L2. Let P ∈ �(F) and Q ∈ �(L) be places
such that Q|P, and let Qi = Q ∩ Li for i = 1, 2. If d(Qi|P) ∈ {0, 2p − 2} for each i, then
we also have d(Q|Qi) ∈ {0, 2p − 2} for i = 1, 2.

In the following two lemmas, we have the following setting: F/k is a function field
over a perfect field k of characteristic p > 0, L and M are fields such that M ⊇ L ⊇ F
and M/F is a finite separable field extension. Finally, P ∈ �(F),Q ∈ �(L) and R ∈
�(M) are places such that R|Q and Q|P.

Lemma 0.25 ([GaSt07, Proposition 1.2]). If B > 0 satisfies d(R|Q) ≤ B
(
e(R|Q) − 1

)
and d(Q|P) ≤ B

(
e(Q|P) − 1

)
, then we also have d(R|P) ≤ B

(
e(R|P) − 1

)
.

Lemma 0.26 ([GaSt07, Proposition 1.8]). Suppose that M/L is a p-extension, and that
both M/L and L/F are Galois extensions. If d(R|P) ≤ 2

(
e(R|P) − 1

)
, then d(R|Q) ≤

2
(
e(R|Q) − 1

)
and d(Q|P) ≤ 2

(
e(Q|P) − 1

)
Let F, L, P and Q as in the previous lemmas. If L/F is a Galois p-extension and

d(Q|P) ≤ 2
(
e(Q|P) − 1

)
, then we actually have d(Q|P) = 2

(
e(Q|P) − 1

)
. In fact, from

the theory of higher ramification groups for Galois extensions of function fields (see
[St, Section III.8]) we obtain the inequality d(Q|P) ≥ 2

(
e(Q|P) − 1

)
. Now we state the

“Key Lemma” for function fields:

Proposition 0.27 ([GaSt07, Proposition 1.8]). Let F/k be a function field over a perfect
field k of characteristic p > 0. Let L1/F and L2/F be Galois p-extensions, and let
M = L1L2. Let P ∈ �(F) and Q ∈ �(M) be places such that Q|P, and let Qi = Q ∩ Li

for i = 1, 2. Suppose that d(Qi|P) = 2
(
e(Qi|P) − 1

)
for i = 1, 2. Then we also have

d(Q|Qi) = 2
(
e(Q|Qi) − 1

)
for i = 1, 2.

The proof of Lemma 0.24 relies on the following result:

Lemma 0.28 ([St, Lemma III.7.7]). Let F be a function field over a perfect field k of
characteristic p > 0. Given an element u ∈ F and a place P ∈ �(F), the following
holds:

(a) Either there exists an element z ∈ F such that vP
(
u − (zp − z)

)
≥ 0,
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(b) or else, for some z ∈ F we have vP
(
u − (zp − z)

)
= −m < 0, with GCD(p,m) = 1.

Actually the proof of this result uses the fact that k is perfect only to conclude that
the residue field at P is also perfect. As a consequence, we can replace the perfectness
of the base field in the statement of the previous lemma with the perfectness of the
residue field at the place considered. The rest of the proof of Lemma 0.24, along with
the proofs of Lemmas 0.25 and 0.26 and Proposition 0.27, depend only on the basic
results on ramification, which are also true for more general fields (the theory of higher
ramification groups in Galois extensions also continues to hold; see [Se79, Chapter
IV]). In other words, we can apply these proofs in our more general context, mutatis
mutandis. Therefore we can state the following strengthening of “Key Lemma”, which
will allow us (with the aid of completions) to estimate completely the ramification
behavior of the new tower introduced in Chapter 2:

Proposition 0.29 (General Key Lemma). Let F be a field of characteristic p > 0, and
let P be a place of F such that the residue field OP/P is perfect. Let L1/F and L2/F be
Galois p-extensions, and let M = L1L2. Let P ∈ �(F) and Q ∈ �(M) be places such
that Q|P, and let Qi = Q ∩ Li for i = 1, 2. Suppose that d(Qi|P) = 2

(
e(Qi|P) − 1

)
for

i = 1, 2. Then we also have d(Q|Qi) = 2
(
e(Q|Qi) − 1

)
for i = 1, 2.

Let F be a function field over a perfect field k, and let B > 0 be a real constant. A finite
separable field extension L/F is said to be B-bounded if for all places P ∈ �(F) and
Q ∈ �(L) such that Q|P the inequality d(Q|P) ≤ B

(
e(Q|P) − 1

)
holds. If F = (Fn)n≥0 is

a tower of function fields over k, then we say that the tower F is B-bounded whenever
each field extension Fn/F0 is B-bounded. We also define the ramification locus of F
over F0 as the set

V(F /F0) B {P ∈ �(F0) : P ramifies in some extension Fn/F0} .

We have the following results:

Proposition 0.30 ([GaSt07, Proposition 1.5]). Let B > 0 and suppose that a tower
F = (Fn)n≥0 of function fields is B-bounded and its ramification locus V(F /F0) over
F0 is finite. Then the genus γ(F/F0) satisfies the inequality

γ(F/F0) ≤ g(F0) − 1 +
B
2

∑
P∈V(F /F0)

deg P .

Proposition 0.31. Let F = (Fn)n≥0 be a tower of function fields over �q. If P1, . . . , Pr ∈

�(F0) are distinct �q-rational places such that each Pi splits completely in each exten-
sion Fn/F0, then the splitting rate of the tower F (relative to F0) satisfies ν(F /F0) ≥ r.
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Proof. Let i between 1 and r and let Q ∈ �(Fn) be a place such that Q|Pi. Since Pi is
totally decomposed in Fn/F0, then f (Q|P) = 1, and since deg Pi = 1 by hypothesis, it
follows that deg Q = f (Q|Pi) deg Pi = 1, so Q is also a �q-rational place. Since there
are [Fn : F0] places in �(Fn) dividing each Pi, it follows that N(Fn) ≥ r[Fn : F0] for
each n ≥ 0. This proves the assertion. �



Chapter 1
The genus of the
Bassa-Garcia-Stichtenoth tower

In this chapter we determine explicitly the genera of the fields in the Bassa-Garcia-
Stichtenoth (BaGS for short) tower.

1.1 Preliminaries and some calculations

In this section we define and state some properties of the BaGS tower. We refer to
[BaGaSt] for further details.

Let K be a perfect field of characteristic p > 0, let q be a power of p and assume that
�q ⊆ K. The BaGS tower is the sequence F = (Fi) i≥0 of function fields over K defined
recursively as follows: F0 = K(X 0) is the rational function field, and for i ≥ 0 let
Fi+1 = Fi(X i+1), where X i+1 satisfies the equation

℘(X i+1)q−1 + 1 =
−X q(q−1)

i(
X q−1

i − 1
) q−1 , (1.1)

being ℘ is the Artin-Schreier operator defined by ℘(T ) = T q − T .

The tower F has the following properties (see [BaGaSt, Thm. 2.2]):

1) The extensions Fi+1/Fi are Galois for all i ≥ 0.

2) K is the full constant field of Fi, for all i ≥ 0.

3) [F1 : F0] = q(q − 1) and [Fi+1 : Fi] = q, for all i ≥ 1.

17
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Regarding property 3), we can say more: in fact, after recursive multiplication of the
generators Xi by suitable elements in �×q , they satisfy the relations

℘(Xi+1) = z i for all i ≥ 1, where z i B
Xq

i−1

(Xq−1
i−1 − 1)(Xq−1

i − 1)
(1.2)

(see [BaGaSt, Lemma 2.7]) ; moreover, the new elements Xi also satisfy relations (1.1).
Thus, the extensions Fi+1/Fi are of Artin-Schreier type for each i ≥ 1, so we can try to
use Proposition 0.21 in order to find recursive formulas for the genera gi of the function
fields Fi.

As a first step, we can extend the constant field such that �q2 ⊆ K without changing the
genera gi (see Proposition 0.17). Let (Pi) i≥0 be a chain of places such that Pi ∈ �(Fi)
and Pi+1|Pi for all i ≥ 0, and denote by vi the normalized discrete valuation associated
to Pi. We want to determine the ramification behavior of a such chain.

Define ai ∈ �q ∪ {∞} as the value of Xi at the place Pi. From now on, let

α B �×q and β B �q2 \ �q .

Now we state the following preliminary result:

Lemma 1.1.

(i) For each i ≥ 0 we have the following:

a) ai ∈ α∪{∞} if and only if ai+1 = ∞; moreover, a0 ∈ α∪{∞} implies e(P1|P0) =

q and d(P1|P0) = 2(q − 1).
b) ai = 0 if and only if ai+1 ∈ β, and a0 = 0 implies e(P1|P0) = 1.

c) ai ∈ β if and only if ai+1 ∈ α ∪ {0} = �q; moreover, a0 ∈ β implies e(P1|P0) =

q − 1 and d(P1|P0) = q − 2.

(ii) If i ≥ 0 and ai < α ∪ β ∪ {∞}, then the place Pi is unramified in Fi+1/Fi .

(iii) If i ≥ 1 and ai < α ∪ {∞}, then the place Pi is unramified in Fi+1/Fi .

Proof. (i) and (ii) are direct consequences of Lemmas 5.2 and 6.1 of [BaGaSt]. As
for (iii), note that if i ≥ 1 satisfies ai ∈ β, then by (i) we have ai−1 = 0, so we have
vi(Xi−1) > 0 and vi(X

q−1
i−1 − 1) = vi(X

q−1
i − 1) = 0. Thus, vi(zi) > 0, so by (ii) of

Proposition 0.21 the place Pi is unramified in Fi+1/Fi . �

Suppose that the chain (Pi) is ramified in some step Fn+1/Fn, for some n ≥ 1. It
follows from (iii) of Lemma 1.1 that an ∈ α ∪ {∞}. By (i) of the same lemma, either
ak = ∞ for k = 0, . . . , n, or for some i between 1 and n we have ak = ∞ for i ≤ k ≤ n
and ai−1 ∈ α. Therefore we must determine the ramification behavior of the chain
(Pi) i≥0 in the following cases:
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(a) an ∈ α for some n ≥ 1,

(b) a0 ∈ α, and

(c) a0 = ∞.

In case (a), by (i) of Lemma 1.1 we have an−i ∈ β for i odd, an−i = 0 for i > 0 even,
and a j = ∞ for all j > n. In particular, for 0 ≤ k ≤ n − 1 we have vk+1(Xk+1) ≥ 0,
so vk(zk) = vk

(
℘(Xk+1)

)
≥ 0 for 1 ≤ k ≤ n − 1. As a consequence, each place Pk with

1 ≤ k ≤ n − 1 is unramified in Fk+1/Fk by (ii) of Proposition 0.21, and therefore the
place P1 is unramified in Fn/F1.

In the general case, if j ≥ 2 is given, then by (1.2) we have

℘(X j+1) =
Xq+1

j−1 X j

℘(X j−1)℘(X j)
and ℘(X j) =

Xq+1
j−2 X j−1

℘(X j−2)℘(X j−1)
.

Replacing the value of ℘(X j) into the first equality above we obtain

℘(X j+1) =
℘(X j−2)Xq

j−1

Xq+1
j−2

· X j = −℘(X−1
j−2)Xq

j−1X j , for all j ≥ 2. (1.3)

The following two results will be frequently used in the next section, the first of these
being an elementary result on discrete valuations:

Lemma 1.2. Let v be a (normalized discrete) valuation and let y, d, yk, dk be elements
such that v(y) = v(yk) = v(d) = v(dk) = 0 for k = 1, . . . ,m. Then we have:

(i) v(y−1 − d−1) = v(y − d).

(ii) v
(
℘(y) − ℘(d)

)
= v(y − d) if v(y − d) > 0.

(iii) v
( m∏

k=1
yk −

m∏
k=1

dk

)
≥ min

1≤k≤m
v(yk − dk), and equality holds if the minimum is attained

exactly once.

(iv) v(yq−1 − dq−1) = v(y − d) if v(y − d) > 0.

Proof.

(i) v(y−1 − d−1) = v
(
(y−1 − d−1)yd

)
= v(y − d).

(ii) v
(
℘(y)−℘(d)

)
= v

(
(y− d)q − (y− d)

)
. Now we apply the strict triangle inequality.
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(iii) Immediate from the equality
m∏

k=1

yk −

m∏
k=1

dk =

m∑
k=1

[ (∏
j<k

y j

)
(yk − dk)

(∏
j>k

d j

) ]
(expand the summand to obtain a telescopic sum) and the triangle inequality.

(iv) We have v(yq−dq) = v
(
(y−d)q) = qv(y−d) > v(y−d). Since v(y−d) = v(y−1−d−1)

by (i), we conclude that v(yq − dq) > v(y−1 − d−1) = v(y − d). Finally, using (iii)
together with the equality yq−1 − dq−1 = yq · y−1 − dq · d−1 we get the desired
result. �

Lemma 1.3. Let n ≥ 0, and suppose that an ∈ α. Then we have:

(i) For each i ≥ 0 even such that n − i − 2 ≥ 0,

vn(Xn−i − an−i) = q vn(Xn−i−2 − an−i−2).

(ii) For each i ≥ 0 even such that n − i − 1 ≥ 0,

(q − 1)vn(Xn−i − an−i) = vn(Xn−i−1 − an−i−1).

Proof.

(i) Since an−i ∈ �q in this case, then ℘(an−i) = 0, so

vn
(
℘(Xn−i)

)
= vn

(
℘(Xn−i − an−i)

)
= vn(Xn−i − an−i)

by (ii) of Lemma 1.2; but an−i−1 ∈ β and an−i−2 = 0, and since cq−1 − 1 , 0 for all
c ∈ β ∪ {0}, it follows that

vn(zn−i−1) = vn

(
Xq

n−i−2

(Xq−1
n−i−2 − 1)(Xq−1

n−i−1 − 1)

)
= qvn(Xn−i−2) = qvn(Xn−i−2 − an−i−2).

Now the equality follows since ℘(Xn−i) = zn−i−1.

(ii) By (1.1) we have

℘(Xn−i)q−1 = − Xq(q−1)
n−i−1 ·

Xq−1
n−i−1 − 1(

Xq−1
n−i−1 − 1

)q − 1

=
−Xq2−1

n−i−1 + Xq(q−1)
n−i−1 −

(
Xq(q−1)

n−i−1 − 1
)(

Xq−1
n−i−1 − 1

)q

=
−Xq2−1

n−i−1 + 1(
Xq−1

n−i−1 − 1
)q . (1.4)



1.2. THE RAMIFICATION BEHAVIOR 21

Since Xq2−1
n−i−1 − 1 =

∏
λ∈α∪β (Xn−i−1 − λ) and an−i−1 ∈ β, then vn(Xq2−1

n−i−1 − 1) =

vn(Xn−i−1 − an−i−1). Moreover, since aq−1
n−i−1 − 1 , 0, then vn(Xq−1

n−i−1 − 1) = 0.
Applying these results to (1.4) we obtain

vn
(
℘(Xn−i)q−1) = vn(Xn−i−1 − an−i−1),

which gives the desired result, because an−i ∈ �q, and therefore vn
(
℘(Xn−i)q−1) =

vn
(
℘(Xn−i − an−i)q−1) = (q − 1)vn(Xn−i − an−i) by (ii) of Lemma 1.2. �

1.2 The ramification behavior

Now we are prepared to carry out the necessary calculations in order to determine the
ramification behavior of the tower F . We will deal with a chain (Pi) i≥0 of places such
that Pi ∈ �(Fi) and Pi+1|Pi for all i ≥ 0. We must consider two separate cases:

(a) an ∈ α for some n ≥ 0, and

(b) a0 = ∞.

Case (a) is the most difficult, so we will treat this case first. Some of the calculations
involved in this case are also valid for case (b), and they will allow us to handle this
case as well.

From now on, we will assume that an ∈ α for some n ≥ 0 fixed, where ai ∈ �q∪{∞}

is the value of Xi at the place Pi. Recall that this implies an−i ∈ β for i ≥ 0 odd, an−i = 0
for i > 0 even and a j = ∞ for all j > n. Furthermore, e(Pn|P1) = 1 whenever n ≥ 1.
We will introduce the following notation:

• We write Oi for the valuation ring associated to the place Pi , and vi for the nor-
malized discrete valuation associated to Oi . We also write Oi(1) for any element
in the valuation ring Oi .

• For any element λ in some ring Oi , we denote its value λ(P) at the place Pi by
λ. If Pi ⊆ P j, then there is a canonical inclusion Oi/Pi ↪→ O j/P j , so there is no
ambiguity in this notation.

• For each integer k we define m(k) B bk/2c, where b c stands for the integer part.

Lemma 1.4. Let n ≥ 0 and suppose that an ∈ α. For k = 0, . . . ,m(n) we define

Γk B
℘(Xn−2k+1)Xn

Xn−2k
.
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Then we have

Γ j = ℘

(
−1

Xq−1
n−2 j−1 − 1

Γ j+1

)
+ Γ j+1 + On(1), for j = 0, . . . ,m(n) − 1.

Proof. Since n − 2 j ≥ 2 (because j ≤ m(n) − 1, so 2 j ≤ 2m(n) − 2 ≤ n − 2), it follows
from (1.3) that

℘(Xn−2 j+1) =
Xn−2 jX

q
n−2 j−1

Xq+1
n−2 j−2

(Xq
n−2 j−2 − Xn−2 j−2) ,

hence

Γ j =
Xn

Xn−2 j
℘(Xn−2 j+1) = XnXq

n−2 j−1

(
1

Xn−2 j−2
−

1
Xq

n−2 j−2

)
.

On the other hand,

−1

Xq−1
n−2 j−1 − 1

Γ j+1 =
−℘(Xn−2 j−1)Xn

Xn−2 j−2(Xq−1
n−2 j−1 − 1)

= −
XnXn−2 j−1

Xn−2 j−2
,

and therefore we have

Γ j − ℘

(
−1

Xq−1
n−2 j−1 − 1

Γ j+1

)
= Γ j + ℘

(
XnXn−2 j−1

Xn−2 j−2

)

=
XnXq

n−2 j−1

Xn−2 j−2
−

XnXq
n−2 j−1

Xq
n−2 j−2

+
Xq

n Xq
n−2 j−1

Xq
n−2 j−2

−
XnXn−2 j−1

Xn−2 j−2

=
Xn

Xn−2 j−2
℘(Xn−2 j−1) +

Xq
n−2 j−1

Xq
n−2 j−2

℘(Xn) (1.5)

= Γ j+1 +
Xq

n−2 j−1

Xq
n−2 j−2

℘(Xn) .

Now vn
(
℘(Xn)

)
= vn

(
℘(Xn − an)

)
= vn(Xn − an). Iteration of (i) of Lemma 1.3 yields

vn(Xn − an) = q j+1vn(Xn−2 j−2), and since Xn−2 j−1 ∈ β (so aq
n−2 j−1 , 0) and an−2 j−2 = 0, it

follows that

vn

(Xq
n−2 j−1

Xq
n−2 j−2

℘(Xn)
)

= vn
(
℘(Xn)

)
− q vn(Xn−2 j−2) = (q j+1 − q) vn(Xn−2 j−2) ≥ 0 . �

Remark 1.5. The “tricky” definition of the elements Γk in Lemma 1.4 is justified as
follows: if n ≥ 2, then by (1.3) we have

Γ0 = ℘(Xn+1) =
1

Xq
n−2

θ, where θ = XnXq
n−1(Xq−1

n−2 − 1) ∈ O ×
n ,
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so in this particular case we can apply the method of “pole order reduction” (see [St,
Lemma III.7.7] for the case q = p, which always applies). In fact, we are looking for
a q-th root of θ , and since an = aq

n and an−2 = 0, it follows that θ = aq
naq

n−1(−1) = δ
q
,

being δ = −XnXn−1. Therefore we have

zn =
1

Xq
n−2

(δq + θ − δq) ,

so

zn − ℘

(
δ

Xn−2

)
=
θ − δq

Xq
n−2

+
δ

Xn−2

=
θ − δq + δXq−1

n−2

Xq
n−2

=
XnXq

n−1(Xq−1
n−2 − 1) + Xq

n Xq
n−1 − XnXn−1Xq−1

n−2

Xq
n−2

=
XnXn−1

Xq
n−2

[
Xq−1

n−1(Xq−1
n−2 − 1) + Xq−1

n Xq−1
n−1 − Xq−1

n−2
]

=
XnXn−1

Xq
n−2

[
Xq−1

n−2(Xq−1
n−1 − 1) + Xq−1

n−1(Xq−1
n − 1)

]
=
℘(Xn−1)Xn

Xn−2
+
℘(Xn)Xq

n−1

Xq
n−2

,

which agrees with (1.5) in the case j = 0; actually, this process can be repeated, now
with Γ1 instead of Γ0, after which we obtain formula (1.5) with j = 1. As the reader
can check, the proof of Lemma 1.4 is just the polished form of this pole order reduction
process, applied in all the cases.

For 0 ≤ j ≤ m(n)−1, let w j+1 B −1/
(
Xq−1

n−2 j−1−1
)
. We would like to change the elements

w j+1 appearing in the statement of Lemma 1.4 by constants. Since w j+1 ∈ O ×
n , we can

define
b j+1 B w j+1 , 0, for j = 0, . . . ,m(n) − 1, (1.6)

and these elements are natural candidates for our purpose. By (i) and (iv) of Lemma
1.2 we have vn(w j+1 − b j+1) = vn(Xn−2 j−1 − an−2 j−1). Since n − 2 j − 2 ≥ 0, we can take
i = 2 j in both parts of Lemma 1.3 to obtain

vn(w j+1 − b j+1) = vn(Xn−2 j−1 − an−2 j−1) = q(q − 1)vn(Xn−2 j−2) . (1.7)

On the other hand, since both ℘(an−2 j−1) and an are not zero, then

vn(Γ j+1) = vn

(
℘(Xn−2 j−1)Xn

Xn−2 j−2

)
= −vn(Xn−2 j−2) . (1.8)
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Putting together (1.7) and (1.8) we get

vn
(
(w j+1 − b j+1) Γ j+1

)
=

(
q(q − 1) − 1

)
vn(Xn−2 j−2) > 0,

hence

Γ j =℘(w j+1 Γ j+1) + Γ j+1 + On(1)
=℘(b j+1 Γ j+1) + Γ j+1 + ℘

(
(w j+1 − b j+1) Γ j+1

)
+ On(1)

=℘(b j+1 Γ j+1) + Γ j+1 + On(1), for j = 0, . . . ,m(n) − 1. (1.9)

Formula (1.9) above represents the expected improvement of Lemma 1.4.

Now let c ∈ �q2 . Using the identities ℘(ab) = aq ℘(b) + b℘(a) and ℘(cq) = −℘(c),
which are valid for all a, b in the fields Fi and for all c ∈ �q2 , we obtain from (1.9), for
each k between 0 and m(n) − 1 and any c ∈ �q2:

c Γk = c℘(bk+1 Γk+1) + c Γk+1 + On(1)
=℘(cq bk+1 Γk+1) +

(
c − bk+1 ℘(cq)

)
Γk+1 + On(1)

=℘(cq bk+1 Γk+1) +
(
c + bk+1 ℘(c)

)
Γk+1 + On(1). (1.10)

For any d in �q, let Tr (d) = dq + d. Note that Tr (d) ∈ �q if and only if d ∈ �q2 . We
have aq(q−1)

n−2k−1 = aq2−q
n−2k−1 = a1−q

n−2k−1, so

Tr (bk+1) =
−1

aq(q−1)
n−2k−1 − 1

+
−1

aq−1
n−2k−1 − 1

=
−1

a1−q
n−2k−1 − 1

+
−1

aq−1
n−2k−1 − 1

=
1 − aq−1

n−2k−1 + 1 − a1−q
n−2k−1

(aq−1
n−2k−1 − 1)(a1−q

n−2k−1 − 1)
= 1, for k = 0, . . . ,m(n) − 1. (1.11)

In particular, bk+1 ∈ �q2 and bk+1 = 1 − bq
k+1 = (1 − bk+1)q, and therefore

c + bk+1 ℘(c) = (1 − bk+1)c + bk+1 cq

= Tr
(
(1 − bk+1)c

)
= Tr (bq

k+1c) , for all c ∈ �q2 . (1.12)

Remark 1.6. Recall that the elements bk are defined only for 1 ≤ k ≤ m(n), and they
are all not zero; see (1.6).
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Lemma 1.7. Let j , ` be such that 0 ≤ j ≤ j + ` ≤ m(n). Then for any elements
C j, j ,C j, j+1, . . . ,C j, j+` in �q2 , and for any b0 in �q2 whenever j = 0 (see Remark 1.6)
we have the equality

j+∑̀
k= j

C j, k bk Γk = ℘

( j+∑̀
k= j+1

C j+1, k bk Γk

)
+ C q

j+1, j+`+1 Γ j+` + On(1) ,

where C j+1, j ,C j+1, j+1, . . . ,C j+1, j+`+1 are defined recursively as follows: C j+1, j = 0, and

C j+1, k = (C j, k−1bk−1)q + Tr (C j+1, k−1bk−1) , for k = j + 1, j + 2, . . . , j + ` + 1.

In particular we have

℘(C j+1, k) = −℘(C j, k−1bk−1), for k = j + 1, j + 2, . . . , j + ` + 1.

Proof. By induction on `. The result holds for ` = 0 because C j+1, j+1 = (C j, j b j)q, so
C q

j+1, j+1 = (C j, j b j)q2
= C j, j b j. For the induction step, let ` be such that the result holds,

with 0 ≤ j ≤ j + ` < m(n). If C j, j ,C j, j+1, . . . ,C j, j+`+1 are in �q2 , then

j+`+1∑
k= j

C j, kbk Γk = C j, j+`+1b j+`+1 Γ j+`+1 +

j+∑̀
k= j

C j, kbk Γk

=℘

( j+∑̀
k= j+1

C j+1, kbk Γk

)
+ C q

j+1, j+`+1 Γ j+` + C j, j+`+1b j+`+1 Γ j+`+1 + On(1) .

(∗)

Taking k = j + ` and c = C q
j+1, j+`+1 in (1.10) and (1.12) we obtain

C q
j+1, j+`+1 Γ j+` =℘

(
C q2

j+1, j+`+1 b j+`+1 Γ j+`+1

)
+ Tr

(
bq

j+`+1C
q
j+1, j+`+1

)
Γ j+`+1 + On(1)

=℘
(
C j+1, j+`+1 b j+`+1 Γ j+`+1

)
+ Tr

(
C j+1, j+`+1b j+`+1

)
Γ j+`+1 + On(1) .

(∗∗)

Substituting (∗∗) into (∗) yields

j+`+1∑
k= j

C j, kbk Γk =℘

( j+∑̀
k= j+1

C j+1, kbk Γk

)
+ ℘

(
C j+1, j+`+1 b j+`+1 Γ j+`+1

)
+

(
Tr

(
C j+1, j+`+1b j+`+1

)
+ C j, j+`+1b j+`+1

)
Γ j+`+1 + On(1)

=℘

( j+`+1∑
k= j+1

C j+1, kbk Γk

)
+ C q

j+1, j+`+2 Γ j+`+1 + On(1) ,

by the definition of C j+1, j+`+2. This finishes the proof. �
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Suppose that an ∈ α, with n ≥ 0. Summing up the equalities (1.9) from j = 0 to
j = m(n) − 1 we obtain

Γ0 − Γm(n) =

m(n)−1∑
j=0

℘(b j+1 Γ j+1) + On(1) .

Since Γ0 = ℘(Xn+1), equality above is equivalent to

℘(Xn+1) = ℘

( m(n)∑
k=1

bk Γk

)
+ Γm(n) + On(1) . (1.13)

If n ≥ 2 then m(n) ≥ 1, so 0 ≤ n − 2m(n) + 1 < n, which implies an−2m(n)+1 ∈ β. In
particular we have ℘(an−2m(n)+1) , 0. Since we also have an , 0, it follows that

vn
(
Γm(n)

)
= vn

(
℘(Xn−2m(n)+1)Xn

Xn−2m(n)

)
= −vn(Xn−2m(n)) = −vn(Xn−2m(n) − an−2m(n)),

because n − 2m(n) < n, so an−2m(n) = 0 in this case. On the other hand, if n = 1 then
a0 ∈ β, so aq

0, a
q−1
0 − 1 , 0. Since in this case we have Γm(n) = ℘(X2) = z1, it follows

that

vn
(
Γm(n)

)
=vn

(
Xq

0

(Xq−1
0 − 1)(Xq−1

1 − 1)

)
= − vn(Xq−1

1 − 1)
= − vn(Xn − an) (by (iv) of Lemma 1.3)
= − vn(Xn−2m(n) − an−2m(n)) (because m(n) = 0 in this case).

This shows that vn
(
Γm(n)

)
= −vn(Xn−2m(n) − an−2m(n)) for all n ≥ 1, whenever an ∈ α,

and since the place P1 is unramified in Fn/F1 and n − 2m(n) is 0 or 1, it follows that

vn(Xn−2m(n) − an−2m(n)) = v1(Xn−2m(n) − an−2m(n)).

If n − 2m(n) = 0, then e(P1|P0) = 1 by (i),b) of Lemma 1.1, so

v1(Xn−2m(n) − an−2m(n)) = v1(X0 − a0) = v0(X0 − a0) = 1 ;

if n−2m(n) = 1, taking i = 2m(n) in (ii) of Lemma 1.3 we get the equality v1(X0−a0) =

(q − 1)v1(Xn−2m(n) − an−2m(n)). Since e(P1|P0) = q − 1 by (i),c) of Lemma 1.1, then
v1(X0 − a0) = (q − 1)v0(X0 − a0), so

v1(Xn−2m(n) − an−2m(n)) = v0(X0 − a0) = 1 .
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In either case, we conclude that an ∈ α with n ≥ 1 implies

vn
(
Γm(n)

)
= − vn(Xn−2m(n) − an−2m(n))
= − v1(Xn−2m(n) − an−2m(n))
= − 1. (1.14)

This fact, together with equality (1.13), imply that the place Pn is totally ramified in
Fn+1/Fn, so e(Pn+1|Pn) = [Fn+1 : Fn] = q, and its respective different exponent satisfies
d(Pn+1|Pn) = 2(q−1), by (iii) of Proposition 0.21. We remark that the same result holds
when n = 0, that is, if a0 ∈ α, then e(P1|P0) = q and d(P1|P0) = 2(q − 1); see (i),a) of
Lemma 1.1.

On the other hand, the following equality holds for all n ≥ 0, whenever an ∈ α :

vn(Xn − an) = qm(n)vn(Xn−2m(n) − an−2m(n))

= qm(n) . (1.15)

In fact, the equality is obvious when n = 0 (recall the F0 is the rational function field),
whereas for n ≥ 1 it is obtained applying repeatedly (i) of Lemma 1.3 for i = 2 j,
with j = 0, 1, . . . ,m(n) − 1, and using (1.14).

If

Ln+1 = Xn+1 −

m(n)∑
k=1

bkΓk , (1.16)

then by (1.13) we have
℘(Ln+1) = Γm(n) + On(1) , (1.17)

and therefore we have vn+1(Ln+1) < 0 whenever n ≥ 1 by (1.14), so vn+1
(
℘(Ln+1)

)
=

qvn+1(Ln+1). Since vn+1( Γm(n)) = e(Pn+1|Pn)vn( Γm(n)) = −q, it follows that

vn+1(Ln+1) = −1, whenever n ≥ 1. (1.18)

Now, for every n ≥ 0 and every j ≥ n + 1 we have (see (1.2))

℘(X j+1) = λ jX j , being λ j =
Xq

j−1

(Xq−1
j−1 − 1)℘(X j)

. (1.19)

Suppose that an ∈ α. We would like to change the element λ j by a constant (similarly
as in Lemma 1.4; see (1.9)). As before, a natural choice is the value of λ j at the place
P j , provided that λ j belongs to the valuation ring O j . This is indeed the case, as we
will see in the following (more general) result.
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Lemma 1.8. Let n ≥ 0 and suppose that an ∈ α ∪ {∞}. Then the following holds:

(i) λ j ∈ O ×
j , Tr

(
λ j

)
= 0 and λ j+1 λ j = 1, for all j ≥ n + 1.

(ii) v j
(
(λ j − λ j )X j

)
> 0, which implies ℘(X j+1) = λ j X j + O j(1), for all j ≥ n + 1.

(iii) v j (z j) = −qm(n)+n− j e(P j |Pn) for all j ≥ n + 1, whenever an ∈ α.

(iv) v j (z j) = −q1− j e(P j |P1) for all j ≥ 1, whenever a0 = ∞.

Proof.

(i) We claim that v j(λ
q−1
j + 1) > 0 for all j ≥ n + 1 whenever an ∈ α∪ {∞}. In fact,

λ
q−1
j + 1 =

( Xq
j−1

(Xq−1
j−1 − 1)℘(X j)

)q−1

+ 1

=
Xq(q−1)

j−1

(Xq−1
j−1 − 1)q−1

·
1

℘(X j)q−1 + 1

= −
(
℘(X j)q−1 + 1

)
·

1
℘(X j)q−1 + 1 (by (1.1))

=
−1

℘(X j)q−1 ,

and since an ∈ α ∪ {∞} implies a j = ∞ for all j ≥ n + 1 by (i),a) of Lemma 1.1,
it follows that v j

(
℘(X j)q−1) < 0 for all j ≥ n + 1, which proves the assertion. In

particular we have λ j ∈ O ×
j and λ j

q−1
+ 1 = 0, so Tr

(
λ j

)
= 0 (and λ j ∈ �q2).

On the other hand, if j ≥ n + 1 then

λ j+1 =
Xq+1

j

℘(X j)℘(X j+1)
=

Xq+1
j

℘(X j)
·

1
λ jX j

=
Xq

j

℘(X j)
·

1
λ j
,

so λ j+1λ j is equal to the value of Xq
j
/
℘(X j) at P j+1; but since a j = ∞, then

v j

( Xq
j

℘(X j)
− 1

)
= v j

(
X j

℘(X j)

)
= (1 − q)v j(X j) > 0 ,

so the value of Xq
j
/
℘(X j) at the place P j+1 is equal to 1, and thus λ j+1λ j = 1.
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(ii) If an ∈ α ∪ {∞}, then λ j ∈ �q2 and λ j
q−1

= −1 for all j ≥ n + 1 by (i), so
v j

(
λ j−λ j

)
= v j(λ

q−1
j +1) by (iv) of Lemma 1.2; but v j(λ

q−1
j +1) = (1−q)v j

(
℘(X j)

)
=

(1− q)qv j(X j) (again by (i)). Therefore v j
(
(λ j −λ j )X j

)
=

(
(1− q)q + 1)v j(X j) > 0

and

℘(X j+1) = λ j X j + (λ j − λ j )X j

= λ j X j + O j(1) .

(iii),(iv) Let r ≥ 0 be such that ar ∈ α∪{∞}. Then vr+1(λr+1) = 0 by (i), and vr+1
(
℘(Xr+1)

)
=

qvr+1(Xr+1) (because ar+1 = ∞ in this case). Using (1.19) we get

0 = vr+1(λr+1) = qvr+1(Xr) − vr+1(Xq−1
r − 1) − qvr+1(Xr+1) . (†)

If ar = ∞, then vr+1(Xq−1
r − 1) = (q − 1)vr+1(Xr). Replacing into (†) we obtain

qvr+1(Xr+1) = vr+1(Xr) = e(Pr+1|Pr)vr(Xr), whenever ar = ∞ . (‡)

If ar ∈ α, then vr(X
q−1
r − 1) = vr(Xr − ar) by (iv) of Lemma 1.2, and vr+1(Xr) = 0.

Moreover, vr(Xr − ar) = qm(r) by (1.15). Substituting into (†) we obtain

vr+1(Xr+1) = −e(Pr+1|Pr)qm(r)−1, whenever ar ∈ α . (‡‡)

If n ≥ 0 satisfies an ∈ α ∪ {∞}, then ar = ∞ for all r ≥ n + 1, and for each j ≥ n
we have v j+1(λ j+1) = 0 and z j+1 = λ j+1X j+1. Therefore

v j+1(z j+1)
vn+1(Xn+1)

=

j∏
r=n+1

vr+1(Xr+1)
vr(Xr)

=

j∏
r=n+1

e(Pr+1|Pr)
q

(by (‡))

=
e(P j+1|Pn+1)

q j−n . (z)

If an ∈ α, then vn+1(Xn+1) = −e(Pn+1|Pn) qm(n)−1 by (‡‡), so by (z) we have
v j+1(z j+1) = qn− j e(P j+1|Pn+1)vn+1(Xn+1) = −qm(n)+n− j−1 e(P j+1|Pn), which proves
(iii). Finally, if a0 = ∞, then e(P1|P0) = q by (i),a) of Lemma 1.1. Taking
r = 0 in (‡) we obtain v1(X1) = v0(X0) = −1. Taking n = 0 in (z) we get
v j+1(z j+1) = −q− j e(P j+1|P1) for all j ≥ 0, which proves (iv), and the proof is
finished. �

From now on, we denote λn+ j by θ j, for each j ≥ 1. Since Tr (θ j) = 0 for each j ≥ 1
(by (i) of Lemma 1.8), the following equality holds for any element y in the fields Fi:

℘(θ j y) = θ
q
j yq − θ j y = −θ j(yq + q) = −θ j Tr (y) . (1.20)
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Now we study the ramification behavior of Pn+1 in Fn+2/Fn+1, assuming that m(n) ≥ 1.
We have, by (ii) of Lemma 1.8 and (1.16):

℘(Xn+2) = θ1Xn+1 + On+1(1)

= θ1Ln+1 +

m(n)∑
k=1

θ1bkΓk + On+1(1) . (1.21)

Applying Lemma 1.7 we obtain

m(n)∑
k=1

θ1bkΓk = ℘

( m(n)∑
k=2

A2,kbkΓk

)
+ A q

2,m(n)+1Γm(n) + On+1(1) ; (1.22)

on the other hand, by (1.17) we have, for any c ∈ �q2:

cq Γm(n) = cq℘(Ln+1) + On+1(1)
=℘(cLn+1) − ℘(c)Ln+1 + On+1(1) . (1.23)

Substituting both (1.23) with c = A2,m(n)+1 and (1.22) into (1.21) we obtain

℘(Xn+2) =℘

(
A2,m(n)+1Ln+1 +

m(n)∑
k=2

A2,kbkΓk

)
+

(
θ1 − ℘(A2,m(n)+1)

)
Ln+1 + On+1(1)

=℘

(
A2,m(n)+1Ln+1 +

m(n)∑
k=2

A2,kbkΓk

)
+ On+1(1) ,

because ℘(A2,m(n)+1) = θ1. In fact, ℘(A2,m(n)+1) = −℘(θ1bm(n)) by the definition of
A2,m(n)+1 in (1.22) and Lemma 1.7. But ℘(θ1bm(n)) = −θ1Tr (bm(n)) by (1.20) and
Tr (bm(n)) = 1 by (1.11) (recall that we suppose m(n) ≥ 1; see Remark 1.6). Therefore
we have

℘(Ln+2) = On+1(1) , (1.24)

where

Ln+2 = Xn+2 − A2,m(n)+1Ln+1 −

m(n)∑
k=2

A2,kbkΓk , (1.25)

so the place Pn+1 is unramified in Fn+2/Fn+1 by (ii) of Proposition 0.21; in particular,

vn+2(Ln+1) = −1 . (1.26)
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Now we arrive at the third stage of our calculation, again assuming that m(n) ≥ 1. We
have

℘(Xn+3) = θ2Xn+2 + On+2(1)

= θ2A2,m(n)+1Ln+1 + θ2Ln+2 +

m(n)∑
k=2

θ2A2,kbkΓk + On+2(1) (by (1.25))

= θ2A2,m(n)+1Ln+1 +

m(n)∑
k=2

θ2A2,kbkΓk + On+2(1) , (1.27)

because Ln+2 = On+2(1) by (1.24). By Lemma 1.7 and (1.23),

m(n)∑
k=2

θ2A2,kbkΓk =℘

( m(n)∑
k=3

A3,kbkΓk

)
+ Aq

3,m(n)+1Γm(n) + On+2(1)

=℘

(
A3,m(n)+1Ln+1 +

m(n)∑
k=3

A3,kbkΓk

)
− ℘(A3,m(n)+1)Ln+1 + On+2(1) .

(1.28)

Now, ℘(A3,m(n)+1) = −℘(θ2A2,m(n)bm(n)) = θ2Tr (A2,m(n)bm(n)) by Lemma 1.7 and (1.20),
so

θ2A2,m(n)+1 − ℘(A3,m(n)+1) = θ2
(
A2,m(n)+1 − Tr (A2,m(n)bm(n))

)
= θ2(θ1bm(n))q (by Lemma 1.7 and (1.22))
= − θ2θ1bq

m(n) (because Tr (θ1) = 0)

= − bq
m(n) (by (i) of Lemma 1.8) . (1.29)

As a consequence, equality (1.27) takes the form

℘(Xn+3) =℘

(
A3,m(n)+1Ln+1 +

m(n)∑
k=3

A3,kbkΓk

)
+ (θ2A2,m(n)+1 − ℘(A3,m(n)+1))Ln+1 + On+2(1)

=℘

(
A3,m(n)+1Ln+1 +

m(n)∑
k=3

A3,kbkΓk

)
− bq

m(n)Ln+1 + On+2(1).

In other words, we have

℘(Ln+3) = −bq
m(n)Ln+1 + On+2(1) , (1.30)

where

Ln+3 = Xn+3 − A3,m(n)+1Ln+1 −

m(n)∑
k=3

A3,kbkΓk . (1.31)
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We have vn+2(−bq
m(n)Ln+1) = −1 by (1.26) and the fact that bm(n) , 0 (because m(n) ≥ 1;

see remark 1.6). Hence the place Pn+2 is totally ramified in Fn+3/Fn+2 , and the different
exponent satisfies d(Pn+3|Pn+2) = 2(q− 1), by (iii) of Proposition 0.21. Reasoning as in
(1.18) we conclude that

vn+3(Ln+3) = −1 . (1.32)

At this point, we have not yet found a clear pattern that allow us to proceed by induc-
tion. Indeed, a such pattern exists, but it is instructive to develop a few more steps in
our reasoning in order to make the definitive statement of the result clear. So here we
go with the fourth step, but this time we assume that m(n) ≥ 2.

We have, by (1.31),

℘
(
Xn+4) = θ3Xn+3 + On+3(1)

= θ3Ln+3 + θ3A3,m(n)+1Ln+1 +

m(n)∑
k=3

θ3A3,kbkΓk + On+3(1) . (1.33)

By Lemma 1.7 and (1.23),

m(n)∑
k=3

θ3A3,kbkΓk =℘

( m(n)∑
k=4

A4,kbkΓk

)
+ Aq

4,m(n)+1Γm(n) + On+3(1)

=℘

(
A4,m(n)+1Ln+1 +

m(n)∑
k=4

A4,kbkΓk

)
− ℘(A4,m(n)+1)Ln+1 + On+3(1) .

(1.34)

Now, ℘(A4,m(n)+1) = −℘(θ3A3,m(n)bm(n)) = θ3Tr (A3,m(n)bm(n)) by Lemma 1.7 and (1.20),
so

θ3A3,m(n)+1 − ℘(A4,m(n)+1) = θ3
(
A3,m(n)+1 − Tr (A3,m(n)bm(n))

)
= θ3(θ2A2,m(n)bm(n))q (by Lemma 1.7 and (1.28))
= − θ3θ2(A2,m(n)bm(n))q (because Tr (θ2) = 0)
= − (A2,m(n)bm(n))q (by (i) of Lemma 1.8) . (1.35)

On the other hand, by (1.30) we have, for any c ∈ �q2:

−cqLn+1 = (cb−1
m(n))

q℘(Ln+3) + On+2(1)

=℘(cb−1
m(n)Ln+3) − ℘(cb−1

m(n))Ln+3 + On+2(1) . (1.36)
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Substituting (1.36) with c = A2,m(n)bm(n), together with (1.35) and (1.34) into (1.33), we
get

℘(Xn+4) =℘

(
A4,m(n)+1Ln+1 +

m(n)∑
k=4

A4,kbkΓk

)
− (A2,m(n)bm(n))qLn+1 + θ3Ln+3 + On+3(1)

=℘

(
A2,m(n)Ln+3 + A4,m(n)+1Ln+1 +

m(n)∑
k=4

A4,kbkΓk

)
+

(
θ3 − ℘(A2,m(n))

)
Ln+3 + On+3(1) .

Since ℘(A2,m(n)) = −℘(θ1bm(n)−1) = θ1Tr (bm(n)−1) by Lemma 1.7 and (1.20), Tr (bm(n)−1) =

1 by (1.11) (we are assuming that m(n) ≥ 2) and θ3 = θ1 by (i) of lemma 1.8, it follows
that

℘(Ln+4) = On+3(1) ,

where

Ln+4 = Xn+4 − A2,m(n)Ln+3 − A4,m(n)+1Ln+1 −

m(n)∑
k=4

A4,kbkΓk . (1.37)

so the place Pn+3 is unramified in Fn+4/Fn+3 by (ii) of Proposition 0.21, and we have
Ln+4 = On+4(1) .

Now a last step before the general case: we assume again that m(n) ≥ 2. By (1.37) and
the fact that Ln+4 = On+4(1):

℘(Xn+5) = θ4 Xn+4 + On+4(1)

= θ4 A2,m(n)Ln+3 + θ4 A4,m(n)+1Ln+1 +

m(n)∑
k=4

θ4 A4,kbkΓk + On+4(1) .

Using Lemma 1.7 and (1.23), and proceeding as in (1.35) we obtain

℘(Xn+5) = ℘

(
A5,m(n)+1Ln+1 +

m(n)∑
k=5

A5,kbkΓk

)
−(A3,m(n)bm(n))qLn+1 +θ4A2,m(n)Ln+3 +On+3(1) .

(1.38)
Taking c = A3,m(n)bm(n) in (1.36) we obtain

−(A3,m(n)bm(n))qLn+1 =℘(A3,m(n)Ln+3) − ℘(A3,m(n))Ln+3 + On+4(1)
=℘(A3,m(n)Ln+3) − θ2Tr (A2,m(n)−1bm(n)−1)Ln+3 + On+4(1) ,

by Lemma 1.7 and (1.20). Finally, θ4A2,m(n) − θ2Tr (A2,m(n)−1bm(n)−1) = −bq
m(n)−1 by

Lemma 1.7 and the fact that θ4 = θ2 (by (i) of Lemma 1.8); the proof is similar to that
in (1.29). Replacing these equalities into (1.38) we conclude that

℘(Ln+5) = −bq
m(n)−1Ln+3 + On+4(1) ,
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where

Ln+5 = Xn+5 − A3,m(n)Ln+3 − A5,m(n)+1Ln+1 −

m(n)∑
k=5

A5,kbk Γk , (1.39)

and since vn+4(−bq
m(n)−1Ln+3) = vn+3(Ln+3) = −1 by (1.32) and the fact that bm(n)−1 , 0

(because m(n) ≥ 2; see Remark 1.6), it follows from (iii) of Proposition 0.21 that
the place Pn+4 is totally ramified in Fn+5/Fn+4 and the different exponent satisfies
d(Pn+5|Pn+4) = 2(q − 1). Moreover vn+5(Ln+5) = −1.

Before we state the main result of this chapter in full generality, we recall some facts
and fix some notation. Recall that for all j ≥ 1 we defined θ j as λn+ j, where λn+ j is given
by (1.19). If we define θ0 B θ−1

1 , then Tr (θ0) = Tr (θ1)/θ q+1
1 , so we have Tr (θ j) = 0

for all j ≥ 0 by (i) of Lemma 1.8. The same result, together with the definition of θ0,
imply that

θs = θt whenever s ≡ t (mod 2) and θsθt = 1 otherwise. (1.40)

Let b0 = 1 and A0,0 = θ1 (see remark 1.6), and let A0,k = 0 for k = 1, 2, . . . ,m(n) . For
0 ≤ j ≤ m(n), let

m(n)∑
k= j

θ jA j, kbk Γk = ℘

( m(n)∑
k= j+1

A j+1,kbk Γk

)
+ A q

j+1, m(n)+1 Γm(n) + On(1) , (1.41)

where the coefficients bk are defined as in (1.6) (see Remark 1.6), and the coefficients
A j+1, k are given by Lemma 1.7, that is, A j+1, j = 0 and

A j+1, k = (θ jA j, k−1bk−1)q + Tr (A j+1, k−1bk−1)
= − θ j(A j, k−1bk−1)q + Tr (A j+1, k−1bk−1), for j + 1 ≤ k ≤ m(n) + 1 (1.42)

(recall that θq
j = −θ j for all j ≥ 0). In particular we have

℘(A j+1, k) =℘
(
−θ j(A j, k−1bk−1)q)

= θ j Tr (A j, k−1bk−1), for j + 1 ≤ k ≤ m(n) + 1 , (1.43)

where the latter equality is consequence of (1.20) (note that (1.20) also holds for j = 0
because Tr (θ0) = 0).

Finally, if we define

B j =


m(n)∑
k= j

A j, kbk Γk, for j = 0, 1, . . . ,m(n),

0, for j = m(n) + 1,m(n) + 2, . . . , 2m(n) ,

(1.44)
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and we define A j+1,m(n)+1 = 0 for m(n) + 1 ≤ j ≤ 2m(n), then by (1.41) we have

θ jB j = ℘(B j+1) + A q
j+1,m(n)+1 Γm(n) + On(1), for j = 0, 1, . . . , 2m(n) . (1.45)

Note that θ0B0 = Γ0 because A0,0 = θ1b−1
0 and A0,k = 0 for 1 ≤ k ≤ m(n); on the

other hand, by (1.42) we have A1,1 = (θ0A0,0b0)q + Tr (A1,0b0) = (θ0θ1)q = 1, and
if k between 2 and m(n) + 1 satisfies A1, k−1 = 1, then using (1.42) again we obtain
A1, k = (θ0A0, k−1bk−1)q + Tr (A1, k−1bk−1) = Tr (bk−1), the latter being equal to 1 by (1.11)
since k − 1 ≥ 1. Thus,

A1,k = 1 for 1 ≤ k ≤ m(n) + 1, (1.46)

which shows that equation (1.45) in the case j = 0 reduces to equality (1.13), as ex-
pected.

Looking at the elements Ln+r already defined (that is, for 1 ≤ r ≤ 5; see (1.16),
(1.25), (1.31), (1.37) and (1.39)) we are motivated to define the elements Ln+r, for
r ≥ 2, in the following manner:

Ln+r = Xn+r − Br −
∑

i

Ar−2i,m(n)+1−iLn+2i+1 , (1.47)

where i varies over a certain interval. Now we try to determine this interval in the
most natural way. First, clearly we must have i ≥ 0 and 2i + 1 < r (this is a recursive
definition after all), that is, r − 2i ≥ 2. Now, for any j ≥ 0, the elements A j+1, k are
defined only if j ≤ k ≤ m(n) + 1; but A j+1, j = 0 by definition, so we may ignore this
term, and therefore we can impose the conditions 1 ≤ j + 1 ≤ k ≤ m(n) + 1. In our
case j + 1 = r − 2i and k = m(n) + 1 − i (because we are dealing with the elements
Ar−2i,m(n)+1−i). Thus, we are led to impose the conditions

1 ≤ r − 2i ≤ m(n) + 1 − i ≤ m(n) + 1, r − 2i ≥ 2 and i ≥ 0,

which are clearly equivalent to

2i ≤ r − 2, i ≥ r − m(n) − 1 and i ≥ 0.

The first inequality is equivalent to i ≤ br/2c − 1 = m(r) − 1, whereas the second and
third inequalities together are equivalent to i ≥ γ(r), being γ(r) B max{ 0, r−m(n)−1}.
Finally, we impose the condition that the summation interval be nonempty, that is,
γ(r) ≤ m(r) − 1. Since γ(r) is an integer, this is equivalent to γ(r) ≤ (r/2) − 1, that is,
2γ(r) = max{ 0, 2r − 2m(n) − 2} ≤ r − 2. This happens if and only if r − 2 ≥ 0 and
r − 2 ≥ 2r − 2m(n) − 2, which can be expressed as 2 ≤ r ≤ 2m(n). As we will see in
the following theorem, which is the heart of this chapter, this choice of the summation
interval for the parameter i indeed works.
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Theorem 1.9. Let n ≥ 0 and suppose that an ∈ α. With the previous notation, let

Ln+1 = Xn+1 − B1 ,

and for 2 ≤ r ≤ 2m(n) define γ(r) B max{ 0, r − m(n) − 1}, and let

Ln+r = Xn+r − Br −

m(r)−1∑
i=γ(r)

Ar−2i,m(n)+1−iLn+2i+1 . (1.48)

Then the elements Ln+r satisfy the following properties:

(i) ℘(Ln+1) = Γm(n) + On(1), and vn(Γm(n)) = −1 whenever n ≥ 1♠ ; moreover, we have
e(Pn+1|Pn) = q, d(Pn+1|Pn) = 2(q − 1), and vn+1(Ln+1) = −1 whenever n ≥ 1.

(ii) For 3 ≤ r ≤ 2m(n) and r odd we have ℘(Ln+r) = −bq
m(n)−m(r)+1Ln+r−2 + On+r−1(1)

and vn+r−1(Ln+r−2) = −1; in particular, the place Pn+r−1 is totally ramified in
Fn+r/Fn+r−1 (i.e., e(Pn+r|Pn+r−1) = [Fn+r : Fn+r−1] = q), vn+r(Ln+r) = −1 and
the different exponent satisfies d(Pn+r|Pn+r−1) = 2(q − 1)� .

(iii) For 2 ≤ r ≤ 2m(n) and r even we have ℘(Ln+r) = On+r−1(1); in particular, the
place Pn+r−1 is unramified in Fn+r/Fn+r−1, and Ln+r = On+r(1).

(iv) For every i ≥ n + 2m(n) we have e(Pi+1|Pi) = q and d(Pi+1|Pi) = 2(q − 1).

Proof. Property (i) was already proved; see (1.14),(1.17) and (1.18), and the commen-
tary after equation (1.46). In order to prove properties (ii) and (iii) we proceed by
induction on r. By (1.24) and (1.25) we know that the result holds in the case r = 2
(note that (1.22) is the equality (1.45) for j = 1). Now let s be such that 2 ≤ s < 2m(n)
and suppose that both (ii) and (iii) hold for every r such that 2 ≤ r ≤ s. Then by (ii) of
Lemma 1.8, (1.48) and (1.45) we have

℘(Xn+s+1) = θsXn+s + On+s(1)

= θsLn+s + θsBs +

m(s)−1∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 + On+s(1)

= θsLn+s + ℘(Bs+1) + A q
s+1, m(n)+1 Γm(n) +

m(s)−1∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 + On+s(1) .

(1.49)

♠ For n = 0 the expression vn(Γm(n)) makes no sense because in this case Γm(n) = ℘(X1) does
not belong to F0 for q > 2; see (1.1) with i = 0.
� Because m(n) − m(r) + 1 ≥ 1, so bm(n)−m(r)+1 , 0 (see Remark 1.6), which implies

vn+r−1
(
−bq

m(n)−m(r)+1Ln+r−2
)

= vn+r−1
(
Ln+r−2

)
= −1. Now we apply (iii) of Proposition 0.21.
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Claim. The following equality (1.50) holds for each t such that γ(s) ≤ t ≤ m(s)− 1, no
matter if s is even or odd. The equality also holds for t = m(s), whenever s is odd:

A q
s+1,m(n)+1 Γm(n) +

t∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1

=℘

( t∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−1−2t,m(n)−t bm(n)−t)qLn+2t+1 + On+s(1) . (1.50)

The proof of this claim is by induction on t. For t = γ(s) we must treat separately
the cases s ≤ m(n) and s ≥ m(n) + 1. Suppose at first that s ≤ m(n). Then γ(s) =

γ(s + 1) = 0. Taking c = As+1,m(n)+1 in (1.23) we get

A q
s+1,m(n)+1 Γm(n) = ℘(As+1,m(n)+1Ln+1) − ℘(As+1,m(n)+1)Ln+1 + On+s(1),

and since 0 ≤ s ≤ m(n), we can take j = s and k = m(n) + 1 in (1.43), obtaining

℘(As+1,m(n)+1) = θsTr (As,m(n)bm(n)) .

Therefore we have

θsAs,m(n)+1 − ℘(As+1,m(n)+1) = θs
(
As,m(n)+1 − Tr (As,m(n)bm(n))

)
= θs

(
−θs−1(As−1,m(n)bm(n))q) (by (1.42))

= − (As−1,m(n)bm(n))q (by (1.40)) .

Putting together these equalities we conclude that

A q
s+1,m(n)+1 Γm(n) + θsAs,m(n)+1Ln+1 =℘(As+1,m(n)+1Ln+1) − (As−1,m(n)bm(n))qLn+1 + On+s(1) ,

which proves (1.50) in the case t = γ(s)( = 0) when s ≤ m(n). On the other hand, if
s ≥ m(n) + 1, then As+1,m(n)+1 = 0 by definition. Moreover, γ(s) = s − m(n) − 1 and
γ(s + 1) = s − m(n). Therefore we have s − 2γ(s) = m(n) + 1 − γ(s), so

A q
s+1,m(n)+1 Γm(n) +

γ(s)∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 = θsAs−2γ(s),m(n)+1−γ(s)Ln+2γ(s)+1

= θsAs−2γ(s), s−2γ(s)Ln+2γ(s)+1 ,

whereas

℘

( γ(s)∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−1−2γ(s),m(n)−γ(s) bm(n)−γ(s))qLn+2γ(s)+1

= − (As−1−2γ(s), s−1−2γ(s) bs−1−2γ(s))qLn+2γ(s)+1
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(because γ(s+1) > γ(s), so the sum above is equal to 0). Now, s−2γ(s) = 2m(n)+2− s
≥ 1 because s− 1 ≤ 2m(n), and s− 2γ(s) = m(n) + 1− γ(s) ≤ m(n) + 1, so we can take
j + 1 = k = s − 2γ(s) in (1.42) and use the fact that A j+1, j = 0 to obtain

θsAs−2γ(s), s−2γ(s)Ln+2γ(s)+1 = θs
(
−θs−1−2γ(s)(As−1−2γ(s), s−1−2γ(s)bs−1−2γ(s))q)Ln+2γ(s)+1

= − (As−1−2γ(s), s−1−2γ(s)bs−1−2γ(s))qLn+2γ(s)+1 (by (1.40)) .

This proves equality (1.50) for t = γ(s) when s ≥ m(n) + 1.

Now let t be such that either

(a) γ(s) ≤ t < m(s) − 1, or

(b) t = m(s) − 1 and s is odd,

and suppose that equality (1.50) holds. Then

A q
s+1,m(n)+1 Γm(n) +

t+1∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1

=

(
A q

s+1,m(n)+1 Γm(n) +

t∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1

)
+ θsAs−2t−2,m(n)−tLn+2t+3

=℘

( t∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−1−2t,m(n)−t bm(n)−t)qLn+2t+1

+ θsAs−2t−2,m(n)−tLn+2t+3 + On+s(1) (by induction hypothesis) . (1.51)

In case (a) we have 0 ≤ t ≤ m(s) − 2, so 3 ≤ 2t + 3 ≤ 2m(s) − 1 ≤ s − 1, whereas
in case (b) we have 3 ≤ 2t + 3 = 2m(s) + 1 ≤ s + 1 and s is odd, so necessarily
2t + 3 ≤ s. In either case we see that 3 ≤ 2t + 3 ≤ s, so property (ii) holds for
r = 2t + 3 by the induction hypothesis. Since m(2t + 3) = t + 1, this means that
℘(Ln+2t+3) = −b q

m(n)−tLn+2t+1 + On+2t+2(1), and so for any c ∈ �q2 we have

−cqLn+2t+1 = (cb−1
m(n)−t)

q℘(Ln+2t+3) + On+2t+2(1)

=℘(cb−1
m(n)−tLn+2t+3) − ℘(cb−1

m(n)−t)Ln+2t+3 + On+2t+2(1) .

Taking c = As−1−2t,m(n)−tbm(n)−t we obtain

−(As−1−2t,m(n)−t bm(n)−t)qLn+2t+1 =℘(As−1−2t,m(n)−tLn+2t+3)
− ℘(As−1−2t,m(n)−t)Ln+2t+3 + On+2t+2(1) . (1.52)

On the other hand, if t ≤ m(s) − 2 then 1 ≤ s − 2 − 2t, and if t = m(s) − 1, then s
is odd, so s = 2m(s) + 1, hence s − 2 − 2t = s − 2 − 2m(s) + 2 = 1. Now, since
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s − m(n) − 1 ≤ γ(s) ≤ t, it follows that s − 1 − 2t ≤ m(n) − t. Finally, we have trivially
m(n) − t ≤ m(n) + 1. As a consequence, we have the following inequalities:

1 ≤ s − 2 − 2t < s − 1 − 2t ≤ m(n) − t ≤ m(n) + 1 . (1.53)

In particular, we can take j + 1 = s − 1 − 2t and k = m(n) − t in (1.43) to obtain
℘(As−1−2t,m(n)−t) = θs−2−2tTr (As−2−2t,m(n)−t−1bm(n)−t−1). Since θs−2−2t = θs by (1.40), it
follows that

θsAs−2t−2,m(n)−t − ℘(As−1−2t,m(n)−t) = θs
(
As−2−2t,m(n)−t − Tr (As−2−2t,m(n)−t−1bm(n)−t−1)

)
.

Again by (1.53) we can take j + 1 = s − 2 − 2t and k = m(n) − t in (1.42), obtaining
As−2−2t,m(n)−t − Tr (As−2−2t,m(n)−t−1bm(n)−t−1) = −θs−3−2t(As−2t−3,m(n)−t−1bm(n)−t−1)q, so the
previous equality becomes

θsAs−2t−2,m(n)−t − ℘(As−1−2t,m(n)−t) = θs
(
−θs−3−2t(As−2t−3,m(n)−t−1bm(n)−t−1)q)

= − (As−2t−3,m(n)−t−1bm(n)−t−1)q (by (1.40)) . (1.54)

Replacing (1.52) and (1.54) into (1.51) yields

A q
s+1,m(n)+1 Γm(n) +

t+1∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1

=℘

( t∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
+ ℘(As−1−2t,m(n)−tLn+2t+3)

+
(
θsAs−2t−2,m(n)−t − ℘(As−1−2t,m(n)−t)

)
Ln+2t+3 + On+s(1)

=℘

( t+1∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−2t−3,m(n)−t−1bm(n)−t−1)qLn+2t+3 + On+s(1) ,

which proves equality (1.50) for t + 1. This finishes the proof of our claim.

If s is even, taking t = m(s) − 1 in (1.50) and substituting into (1.49) yields

℘(Xn+s+1) = θsLn+s + ℘(Bs+1) + ℘

( m(s)−1∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−1−2(m(s)−1),m(n)−(m(s)−1) bm(n)−(m(s)−1))qLn+2(m(s)−1)+1 + On+s(1) .

We have Ln+s = On+s(1) by the induction hypothesis (property (iii)). Now s = 2m(s), so
s−1−2(m(s)−1) = 1, and since m(n)− (m(s)−1) ≥ 1 (because 2m(s) = s ≤ 2m(n), so
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m(s) ≤ m(n)), then As−1−2(m(s)−1),m(n)−(m(s)−1) = 1 by (1.46). Moreover, m(s) = m(s + 1).
Using these facts we can rewrite the equality above as

℘(Xn+s+1) =℘(Bs+1) + ℘

( m(s+1)−1∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− bq

m(n)−m(s+1)+1Ln+(s+1)−2 + On+s(1) ,

which implies

℘(Ln+s+1) =℘

(
Xn+s+1 − Bs+1 −

m(s+1)−1∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
(by (1.48))

= − bq
m(n)−m(s+1)+1Ln+(s+1)−2 + On+(s+1)−1(1).

Since Pn+s−1 is unramified in Fn+s/Fn+s−1 by property (iii), it follows that

vn+(s+1)−1(Ln+(s+1)−2) = vn+s−1(Ln+s−1),

the latter being equal to −1 by property (i) (whenever s − 1 = 1) or (ii) (whenever
s − 1 ≥ 3). This proves that property (ii) holds for r = s + 1.

Now, if s is odd, then s − 2m(s) = 1 and m(s + 1) = m(s) + 1. Moreover we have
m(n) − m(s) ≥ 1 (because 2m(s + 1) = s + 1 ≤ 2m(n), so m(s + 1) = m(s) + 1 ≤ m(n)),
and thus As−2m(s),m(n)+1−m(s) = 1 by (1.46). Therefore

θsLn+s +

m(s)−1∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 =

m(s)∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 .

Replacing into (1.49) yields

℘(Xn+s+1) = ℘(Bs+1) + A q
s+1,m(n)+1 Γm(n) +

m(s)∑
i=γ(s)

θsAs−2i,m(n)+1−iLn+2i+1 + On+s(1) . (1.55)

Taking t = m(s) in (1.50) (which is permissible because s is odd) and replacing into
(1.55) we obtain

℘(Xn+s+1) =℘(Bs+1) + ℘

( m(s)∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
− (As−1−2m(s),m(n)−m(s)bm(n)−m(s))qLn+2m(s)+1 + On+s(1)
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Since s − 1 − 2m(s) = 0 and m(n) −m(s) ≥ 1, then As−1−2m(s),m(n)−m(s) = A 0,m(n)−m(s) = 0
by definition. Using this and the fact that m(s) = m(s + 1) − 1 we can rewrite the
equation above as

℘(Xn+s+1) = ℘(Bs+1) + ℘

( m(s+1)−1∑
i=γ(s+1)

As+1−2i,m(n)+1−iLn+2i+1

)
+ On+s(1) ,

or, equivalently,
℘(Ln+s+1) = On+s(1) ,

according with the definition of Ln+s+1 (see (1.48)). This proves that property (iii) holds
for r = s+1 in this case, and this finishes the proof by induction of the properties (i)-(iii)
stated in the theorem.

Finally, we want to show property (iv), i.e., that e(Pi+1|Pi) = q and d(Pi+1|Pi) =

2(q − 1) for all i ≥ n + 2m(n). We proceed by induction on i . First of all, for all r such
that 0 ≤ r ≤ 2m(n) we have

e(Pn+r|Pn) = e(Pn+r|Pn+2m(r))
m(r)−1∏

t=0

e(Pn+2t+2|Pn+2t+1) e(Pn+2t+1|Pn+2t)

= e(Pn+r|Pn+2m(r))
m(r)−1∏

t=0

1 · q (by properties (i)-(iii))

= e(Pn+r|Pn+2m(r)) qm(r) .

If r is even then r = 2m(r), so e(Pn+r|Pn+2m(r)) = 1; otherwise (i.e., if r = 2m(r) + 1) we
have e(Pn+r|Pn+2m(r)) = q by (i) and (ii) of Theorem 1.9. In either case we conclude that
e(Pn+r|Pn+2m(r)) = qr−2m(r), so

e(Pn+r|Pn) = qr−m(r) for 0 ≤ r ≤ 2m(n), whenever an ∈ α. (1.56)

In particular, taking r = 2m(n) and using that m(2m(n)) = m(n) we get e(Pn+2m(n)|Pn) =

qm(n). Since e(Pn+1|Pn) = q and d(Pn+1|Pn) = 2(q − 1) by (i), the case i = n + 2m(n) is
solved whenever m(n) = 0. Otherwise (i.e., if m(n) ≥ 1), taking j = n + 2m(n) in (iii)
of Lemma 1.8 we obtain

vn+2m(n)(zn+2m(n)) = −qm(n)+n−n−2m(n)e(Pn+2m(n)|Pn) = −1.

This implies that e(Pn+2m(n)+1|Pn+2m(n)) = [Fn+2m(n)+1 : Fn+2m(n)] = q and the different
exponent satisfies d(Pn+2m(n)+1|Pn+2m(n)) = 2(q − 1), by (iii) of Proposition 0.21.

For the induction step, let i ≥ n + 2m(n) be such that e(Pk+1|Pk) = q and d(Pk+1|Pk) =

2(q − 1) for k = n + 2m(n), n + 2m(n) + 1, . . . , i. Then e(Pi+1|Pn+2m(n)) = qi+1−n−2m(n).
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Taking j = i + 1 in (iii) of Lemma 1.8 we obtain

vi+1(zi+1) = − qm(n)+n−i−1 e(Pi+1|Pn+2m(n)) e(Pn+2m(n)|Pn)

= − qm(n)+n−i−1 qi+1−n−2m(n) qm(n)

= − 1,

so from (iii) of Proposition 0.21 we conclude that e(Pi+2|Pi+1) = q and d(Pi+2|Pi+1) =

2(q − 1). The proof by induction is done. �

Theorem 1.10. If a0 = ∞, then e(Pi+1|Pi) = q and d(Pi+1|Pi) = 2(q − 1) for all i ≥ 0.

Proof. By induction on i . The case i = 0 is consequence of (i),a) of Lemma 1.1,
and if i ≥ 0 satisfies e(Pk+1|Pk) = q and d(Pk+1|Pk) = 2(q − 1) for k = 0, 1, . . . , i,
then e(Pi+1|P1) = q i. Taking j = i + 1 in (iv) of Lemma 1.8 we obtain vi+1(z i+1) =

−q1−i−1 e(Pi+1|P1) = −1. Therefore the place Pi+1 is totally ramified in Fi+2/Fi+1 (i.e.,
e(Pi+2|Pi+1) = [Fi+2 : Fi+1] = q) and the different exponent satisfies d(Pi+2|Pi+1) =

2(q − 1) by (iii) of Proposition 0.21. This finishes the proof. �

1.3 The genus of the tower

In this section we will determine the genus of the tower F in the case K = �q3 . Now
that the ramification behavior of the tower is completely determined (that is, we know
in what cases ramification occurs in some step of the tower, along with the respective
ramification index and different exponent), we can calculate explicitly its genus.

We already proved (see Theorems 1.9, 1.10 and Lemma 1.1) that for all n ≥ 1
the places P ∈ �(Fn) that are ramified in Fn+1/Fn satisfy e(Q|P) = q and d(Q|P) =

2(q − 1), where Q denotes the unique place in �(Fn+1) above the place P. Thus, it
remains to determine the number of ramified places in each step Fn+1/Fn for all n ≥ 1,
which, together with Hurwitz genus formula (Proposition 0.10), will provide recursive
formulas for the genus gn of the field Fn/K, for n > 1. On the other hand, the genus g1

of the field F1/K will be explicitly calculated using (i) and (ii) of Lemma 1.1.

Since the genus is invariant under constant field extensions (see Proposition 0.17),
we extend our field K of constants to all �q

♣ . In this case all the inertial degrees are

♣so we indeed will calculate the genus of the tower whenever the base field K is a finite field con-
taining �q2 .
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equal to 1, so the places satisfy the duality “ramified/totally decomposed”, which will
make easier our counting task. For each n ≥ 0 let

Λ(r)
n B {P ∈ �(Fn) : P is ramified in Fn+1/Fn}. (1.57)

If n ≥ 1 and P ∈ Λ
(r)
n , then by Lemma 1.1 we have two options: either X0(P) = ∞, or

Xi(P) ∈ α for some i such that 0 ≤ i ≤ n. In the second case, by Theorem 1.9 we have
n ∈ Di, where

Di B {i + 2k : 0 ≤ k ≤ m(i)} ∪ {k : k > i + 2m(i)}. (1.58)

For each i, r ≥ 0 and each place P ∈ �(Fi), let

Ci,r(P) B {Q ∈ �(Fi+r) : Q ⊇ P}. (1.59)

We have the following preliminary result.

Lemma 1.11. Let i ≥ 0 and P ∈ �(Fi) with Xi(P) ∈ α. Then the sets Ci,r(P) satisfy

|Ci,r(P)| =

δiqm(r), for r = 0, 1, . . . , 2m(i);
δiqm(i), for r > 2m(i),

where δi = q − 1 if i = 0 and δi = 1 otherwise.

Proof. Let (Pk)k≥i be any chain of places such that Pi = P, Pk ∈ �(Fk) and Pk+1 ⊇ Pk

for all k ≥ i. For any s ≥ 0, the extension Fi+s+1/Fi+s is Galois, so the formula
[Fi+s+1 : Fi+s] = e(Pi+s+1|Pi+s) f (Pi+s+1|Pi+s) |Ci+s,1(Pi+s)| holds ([St, Corollary III.7.2]).
Since f (Pi+s+1|Pi+s) = 1, then we have [Fi+s+1 : Fi+s] = e(Pi+s+1|Pi+s) |Ci+s,1(Pi+s)|.

On the other hand, the number e(Pi+s+1|Pi+s) depends only on i + s by Theorem
1.9 (recall that we are assuming Xi(Pi) ∈ α), and therefore |Ci+s,1(Pi+s)| depends only
on i + s, provided that Xi(Pi+s) ∈ α. In particular, if Q ∈ Ci,s(P), then |Ci+s,1(Q)| =

|Ci+s,1(Pi+s)|. Consequently we have |Ci,s+1(P)| =
∑

Q∈Ci,s(P) |Ci+s,1(Q)|, this sum being
equal to |Ci,s(P)| |Ci+s,1(Pi+s)|, so we can write, for any r ≥ 0:

|Ci,r(P)| =
|Ci,r(P)|
|Ci,0(P)|

=

r−1∏
s=0

|Ci,s+1(P)|
|Ci,s(P)|

=

r−1∏
s=0

[Fi+s+1 : Fi+s]
e(Pi+s+1|Pi+s)

=
[Fi+r : Fi]
e(Pi+r|Pi)

.
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According to the definition of δi we have [Fi+r : Fi] = δiqr (because [F1 : F0] =

q(q − 1) and [Fk+1 : Fk] = q for all k ≥ 1). On the other hand, if 0 ≤ r ≤ 2m(i),
then by (1.56) we have e(Pi+r|Pi) = qr−m(r), and in particular e(Pi+2m(i)|Pi) = qm(i);
if r > 2m(i), then we know that e(Pi+r|Pi+2m(i)) = qr−2m(i) by Theorem 1.9, and so
e(Pi+r|Pi) = e(Pi+r|Pi+2m(i))e(Pi+2m(i)|Pi) = qr−2m(i)qm(i) = qr−m(i). Putting these results
together we conclude that

[Fi+r : Fi]
e(Pi+r|Pi)

=


δiqr

qr−m(r) , for 0 ≤ r ≤ 2m(i);

δiqr

qr−m(i) , for r > 2m(i),

which gives the desired result. �

Thus, the number |Ci,r(P)| does not depend on the place P, as long as Xi(P) ∈ α.
From now on, we will denote this cardinality simply by Ci,r in this case.

If n ≥ 1 and i ≥ 0 satisfy n ∈ Di (see (1.58)), then each place P ∈ �(Fi) such
that Xi(P) ∈ α has exactly Ci,n−i places above in �(Fn), all of which belong to Λ

(r)
n , by

Theorem 1.9 and the definition of the set Di. On the other hand, for every k ≥ 0 and
every place P ∈ �(Fk) above the infinite place in F0, the ramification index of P in the
extension Fk+1/Fk is equal to q by Theorem 1.10, and therefore the number of places
in �(Fk+1) above P is equal to [Fk+1 : Fk]/q by fundamental equality (Lemma 0.8). In
particular, the infinite place in F0 has exactly q− 1 places above in F1, all of which are
totally ramified in Fk/F1 for all k ≥ 1, and so for every n ≥ 1 there are exactly q − 1
places above the infinite place in F0, which belong to Λ

(r)
n .

The discussion preceding definition (1.58) shows that, conversely, all the places in
Λ

(r)
n with n ≥ 1 are necessarily of the form described above. Consequently, if we define

Λ
(α)
k B {P ∈ �(Fk) : Xk(P) ∈ α}, for all k ≥ 0, (1.60)

then we conclude for all n ≥ 1 that the cardinality of the set Λ
(r)
n is given by∣∣∣Λ(r)

n

∣∣∣ = q − 1 +
∑
i≥0

n∈D i

Ci,n−i

∣∣∣Λ(α)
i

∣∣∣. (1.61)

Thus, we are led to calculate
∣∣∣Λ(α)

k

∣∣∣ for all k ≥ 0. But if Q ∈ Λ
(α)
k and k ≥ 1, then

P = Q∩Fk−1 satisfies Xk−1(P) ∈ β by (i),c) of Lemma 1.1, so we are forced to consider,
for all k ≥ 0, the sets

Λ
(β)
k B {P ∈ �(Fk) : Xk(P) ∈ β}; (1.62)

Λ
(0)
k B {P ∈ �(Fk) : Xk(P) = 0}. (1.63)
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Lemma 1.12. For each k ≥ 0 we have the following:

(i)
∣∣∣Λ(α)

k+1

∣∣∣ = (q − 1)
∣∣∣Λ(β)

k

∣∣∣ .
(ii)

∣∣∣Λ(0)
k+1

∣∣∣ =
∣∣∣Λ(β)

k

∣∣∣ .
(iii)

∣∣∣Λ(β)
k+1

∣∣∣ = [Fk+1 : Fk]
∣∣∣Λ(0)

k

∣∣∣ .
Proof. Let w = Xq(q−1)

0 /(Xq−1
0 − 1)q−1 and define

g(T ) =

℘(T ) − zk, if k ≥ 1;
℘(T )q−1 + 1 + w, if k = 0.

Then by (1.1) and (1.2) we have Fk+1 = Fk(Xk+1), where Xk+1 satisfies g(Xk+1) = 0;
moreover, g(T ) is the minimal polynomial of Xk+1 over Fk. Let P ∈ �(Fk) and Q ∈
�(Fk+1) be such that Q ⊇ P.

If Xk(P) ∈ β, then by (i),c) of Lemma 1.1 we have Xk+1(Q) ∈ α∪{0}, so ℘
(
Xk+1(Q)

)
=

0. This implies zk = ℘(Xk+1) ∈ Q ∩ Fk = P whenever k ≥ 1, and 1 + w = −℘(X1)q−1 ∈

Q ∩ F0 = P whenever k = 0. In either case we have g(T ) ∈ OP [T ], and the reduction
mod P of g is given by

gP(T ) =

℘(T ), if k ≥ 1;
℘(T )q−1, if k = 0.

As a consequence, each polynomial of the form T −λ, with λ ∈ α∪{0}, is an irreducible
factor of gP (recall that by assumption the residue field at P is equal to �q). By Ku-
mmer’s Theorem (Proposition 0.9), for each λ ∈ α ∪ {0} there exists a place Qλ ∈

�(Fk+1) above P such that Xk+1(Qλ) = λ. On the other hand, for every place Q ∈
�(Fk+1) above P we have e(Q|P) = [Fk+1 : Fk]/q by (i),c) and (iii) of Lemma 1.1,
so it follows from fundamental equality (Lemma 0.8) that the Qλ are all the places in
�(Fk+1) above P (because

∑
λ∈α∪{0} e(Qλ|P) =

∣∣∣α ∪ {0}∣∣∣ [Fk+1 : Fk]/q = [Fk+1 : Fk]).
Thus, there are exactly q − 1 places in Λ

(α)
k+1 above P and exactly one place in Λ

(0)
k+1

above P, which proves both (i) and (ii).

Finally, if P ∈ �(Fk) satisfies Xk(P) = 0, then for all place Q ∈ �(Fk+1) above P we
have e(Q|P) = 1 and Xk+1(Q) ∈ β by (i),b) and (ii) of Lemma 1.1, so by fundamental
equality (Lemma 0.8) there are exactly [Fk+1 : Fk] places in Λ

(β)
k+1 above P, which

proves (iii). �

Since F0 is the rational function field, then we have
∣∣∣Λ(α)

0

∣∣∣ = |α| = q − 1,
∣∣∣Λ(β)

0

∣∣∣ =

|β| = q(q−1) and
∣∣∣Λ(0)

0

∣∣∣ = 1. From this, together with the previous lemma, we conclude
that

∣∣∣Λ(α)
k

∣∣∣, ∣∣∣Λ(β)
k

∣∣∣ and
∣∣∣Λ(0)

k

∣∣∣ are not zero for all k ≥ 0. Now, if k ≥ 1 and 0 ≤ j < m(k),
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then k − 2 j ≥ 2, so [Fk−2 j : Fk−2 j−1] = q; moreover, by (ii) and (iii) of the previous
lemma we have ∣∣∣Λ(β)

k−2 j

∣∣∣ = [Fk−2 j : Fk−2 j−1]
∣∣∣Λ(0)

k−2 j−1

∣∣∣
= [Fk−2 j : Fk−2 j−1]

∣∣∣Λ(β)
k−2 j−2

∣∣∣
= q

∣∣∣Λ(β)
k−2 j−2

∣∣∣ ,
hence ∣∣∣Λ(β)

k

∣∣∣∣∣∣Λ(β)
k−2m(k)

∣∣∣ =

m(k)−1∏
j=0

∣∣∣Λ(β)
k−2 j

∣∣∣∣∣∣Λ(β)
k−2 j−2

∣∣∣
=

m(k)−1∏
j=0

q

= qm(k).

If k is even, then k − 2m(k) = 0, so
∣∣∣Λ(β)

k−2m(k)

∣∣∣ =
∣∣∣Λ(β)

0

∣∣∣ = q(q − 1); if k is odd, then
k − 2m(k) = 1, so by (iii) of the previous lemma we have

∣∣∣Λ(β)
k−2m(k)

∣∣∣ = [F1 : F0]
∣∣∣Λ(0)

0

∣∣∣ =

q(q − 1). In either case we conclude that
∣∣∣Λ(β)

k

∣∣∣ = qm(k)+1(q − 1) for all k ≥ 1. Since this
equality also holds when k = 0, it follows from (i) of the previous lemma that∣∣∣Λ(α)

k

∣∣∣ = (q − 1)
∣∣∣Λ(β)

k−1

∣∣∣ = qm(k−1)+1(q − 1)2 = qm(k+1)(q − 1)2, for all k ≥ 1,

and since
∣∣∣Λ(α)

0

∣∣∣ = q − 1, then we can write∣∣∣Λ(α)
k

∣∣∣ = qm(k+1)(q − 1)2/δk, for all k ≥ 0,

where δk is as in Lemma 1.11. Thus, equality (1.61) can be rewritten as∣∣∣Λ(r)
n

∣∣∣ = q − 1 + (q − 1)2
∑
i≥0

n∈D i

Ci,n−i
qm(i+1)

δi
, for all n ≥ 1. (1.64)

Now, Di is the disjoint union of the sets Hi and Ei, where Hi = {i + 2k : 0 ≤ k ≤ m(i)}
and Ei = {k : k > i + 2m(i)}. If n ∈ Hi, then n = i + 2k, with 0 ≤ k ≤ m(i), and so
0 ≤ 2k = n− i ≤ 2m(i). Therefore Ci,n−i = δiqm(n−i) by Lemma 1.11. On the other hand,
if n ∈ Ei, then n−i > 2m(i), so Ci,n−i = δiqm(i) by the same lemma. Since {i ≥ 0 : n ∈ Di}

is the disjoint union of the sets {i ≥ 0 : n ∈ Hi} and {i ≥ 0 : n ∈ Ei}, equality (1.64)
becomes∣∣∣Λ(r)

n

∣∣∣ = q−1+(q−1)2
( ∑

i≥0
n∈H i

δiqm(n−i) qm(i+1)

δi
+
∑
i≥0

n∈E i

δiqm(i) qm(i+1)

δi

)
, for all n ≥ 1. (1.65)
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If n ∈ Hi, then n = i + 2k, with 0 ≤ k ≤ m(i). Therefore we have 0 ≤ 2k ≤ 2m(i) =

2m(n−2k) ≤ n−2k and so 0 ≤ k ≤ bn/4c. Conversely, if i = n−2k, with 0 ≤ k ≤ bn/4c,
then n ∈ Hi ,m(n − i) = k and m(i + 1) = m(n + 1) − k. Consequently,∑

i≥0
n∈ i

δiqm(n−i) qm(i+1)

δi
=

bn/4c∑
k=0

qkqm(n+1)−k =
(
bn/4c + 1

)
qm(n+1). (1.66)

Now, if n ∈ Ei, then n > i + 2m(i). If i = 2k + `, with k ≥ 0 and ` = 0 or 1, then
i + 2m(i) = 4k + `, so we have 4k + ` ≤ n − 1, and thus 2i = 4k + 2` ≤ n − 1 + `.
Therefore i ≤ m(n− 1 + `); conversely, if i ≥ 0 satisfies i ≤ m(n− 1 + `), where ` is the
residue of i modulo 2, then n ∈ Ei. In particular, {i ≥ 0 : n ∈ Ei} ⊆ {0, 1, . . . ,m(n)}, and
since m(n) − 1 = m(n − 2) ≤ m(n − 1 + `) for ` = 0, 1, it follows that {i ≥ 0 : n ∈ Ei}

contains the set {i ∈ N : 0 ≤ i ≤ m(n) − 1}. Thus, in order to determine precisely the
set {i ≥ 0 : n ∈ Ei}, it is suffices to determine when n belongs to Em(n).

We claim that n < Em(n) if and only if n ≡ 0 (mod 4). In fact, if m(n) is odd,
then ` = 1, so certainly m(n) ≤ m(n − 1 + `); this is the case when n ≡ 2 or 3
(mod 4). If n ≡ 1(mod 4), say n = 4k + 1, then m(n) = 2k is even, so ` = 0, and
m(n − 1 + `) = m(4k) = 2k = m(n). Finally, if n = 4k, then m(n) = 2k, so ` = 0 and
m(n − 1 + `) = m(n − 1) = 2k − 1 < m(n). This proves that

{i ≥ 0 : n ∈ Ei} =

{0, 1, . . . ,m(n)}, if n . 0 (mod 4);
{0, 1, . . . ,m(n)} \ {m(n)} otherwise.

On the other hand, for all integer i we have m(i) + m(i + 1) = i. Putting together these
facts we obtain∑

i≥0
n∈E i

δiqm(i) qm(i+1)

δi
=

∑
i≥0

n∈E i

qi =
qm(n)+b(n) − 1

q − 1
, where b(n) =

1, if n . 0 (mod 4);
0 otherwise.

(1.67)
Replacing (1.66) and (1.67) into (1.65) we obtain, for all n ≥ 1:∣∣∣Λ(r)

n

∣∣∣ = q − 1 + (q − 1)2
( (
bn/4c + 1

)
qm(n+1) +

qm(n)+b(n) − 1
q − 1

)
= q − 1 + (q − 1)2( bn/4c + 1

)
qm(n+1) + (q − 1)(qm(n)+b(n) − 1)

= q − 1 + (q − 1)2( bn/4c + 1
)

qm(n+1) + (q − 1)qm(n)+b(n) − (q − 1)

= (q − 1)2( bn/4c + 1
)

qm(n+1) + (q − 1)qm(n)+b(n). (1.68)

For n ≥ 0, let gn be the genus of the function field Fn/K. If n ≥ 1, then [Fn+1 : Fn] = q,
so by Riemann-Hurwitz formula we have

2gn+1 − 2 = (2gn − 2)q +
∑

P∈Λ(r)
n

∑
Q∈�(Fn+1)

Q⊇P

d(Q|P).
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By Theorems 1.9 and 1.10, each place P ∈ Λ
(r)
n has an unique place Q ∈ �(Fn+1)

(because P is totally ramified in Fn+1/Fn), and d(Q|P) = 2(q − 1). Therefore

2gn+1 − 2 = (2gn − 2)q + 2(q − 1)
∣∣∣Λ(r)

n

∣∣∣ ,
so

gn+1 = qgn + (q − 1)
∣∣∣Λ(r)

n

∣∣∣ − q + 1

= qgn + (q − 1)
( ∣∣∣Λ(r)

n

∣∣∣ − 1
)
.

Dividing both sides of the equality above by qn+1 we get

gn+1

qn+1 =
gn

qn +
(q − 1)

( ∣∣∣Λ(r)
n

∣∣∣ − 1
)

qn+1 .

Consequently, for each n ≥ 0 we have

gn+1

qn+1 −
g1

q
=

n∑
k=1

(
gk+1

qk+1 −
gk

qk

)

=

n∑
k=1

(q − 1)
( ∣∣∣Λ(r)

k

∣∣∣ − 1
)

qk+1 .

From this we obtain the following formula for the genus gn, for all n ≥ 1:

gn = qn−1g1 + (q − 1)
n−1∑
k=1

qn−k−1( ∣∣∣Λ(r)
k

∣∣∣ − 1
)

= qn−1g1 + (q − 1)
n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ − (q − 1)
n−1∑
k=1

qn−k−1

= qn−1g1 + 1 − qn−1 + (q − 1)
n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ . (1.69)

For ` = 1, 2, 3, 4, let

S ` =
∑
k∈A`

qn−k−1
∣∣∣Λ(r)

k

∣∣∣, where A` =
{
k ∈ N : 1 ≤ k ≤ n − 1 and k ≡ ` (mod 4)

}
.

We have A` =
{
4s + ` : 0 ≤ s ≤ d(`)

}
, where d(`) =

⌊n − 1 − `
4

⌋
. Note that d(`) ≥ −1

(because n ≥ 1) and
n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ =

4∑
`=1

S ` . (1.70)



1.3. THE GENUS OF THE TOWER 49

Using (1.68) we get

S ` =

d(`)∑
s=0

qn−(4s+`)−1
(
(q − 1)2

( ⌊4s + `

4

⌋
+ 1

)
qm(4s+`+1) + (q − 1)qm(4s+`)+b(4s+`)

)
.

Now
⌊4s + `

4

⌋
= s +

⌊
`

4

⌋
, b(4s + `) = b(`) and m(4s + t) = 2s + m(t) for any t, so

equality above becomes

S ` = (q − 1)2
d(`)∑
s=0

(
s + 1 +

⌊
`

4

⌋)
qn−4s−`−1+2s+m(`+1) + (q − 1)

d(`)∑
s=0

qn−4s−`−1+2s+m(`)+b(`)

= (q − 1)2
d(`)∑
s=0

(
s + 1 +

⌊
`

4

⌋)
qn−`−1+m(`+1)−2s + (q − 1)

d(`)∑
s=0

qn−`−1+m(`)+b(`)−2s

= (q − 1)2qn−`−1+m(`+1)
d(`)∑
s=0

(s + 1) q−2s + (q − 1)qn−`−1G(`)
d(`)∑
s=0

q−2s,

where G(`) = (q−1) b`/4c qm(`+1) + qm(`)+b(`). If ` = 1, 2, 3, then b(`) = 1 and b`/4c = 0,
so G(`) = qm(`)+1; if ` = 4, then b(`) = 0 and b`/4c = 1, so in this case we have
G(`) = (q − 1)qm(4+1) + qm(4) = (q − 1)q2 + q2 = q3 = qm(`)+1. This proves that
G(`) = qm(`)+1, and therefore we have

S ` = (q − 1)2qn−`−1+m(`+1)
d(`)∑
s=0

(s + 1) q−2s + (q − 1)qn−`+m(`)
d(`)∑
s=0

q−2s

= (q − 1)2qn−m(`)−1
d(`)∑
s=0

(s + 1) q−2s + (q − 1)qn−m(`+1)
d(`)∑
s=0

q−2s (1.71)

(because m(`)+m(`+1) = ` for all `). On the other hand, for any integer k with k ≥ −1
and all x > 0 with x , 1 we have

k∑
s=0

xs+1 =
xk+2 − x

x − 1

(the sum with k = −1 is meant to be 0). Differentiating with respect to x gives

k∑
s=0

(s + 1)xs =
(x − 1)

(
(k + 2)xk+1 − 1

)
− (xk+2 − x)

(x − 1)2

=
(k + 1)xk+2 − (k + 2)xk+1 + 1

(x − 1)2 . (1.72)
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Suppose at first that n ≡ 1 (mod 4). Then for ` = 1, 2, 3, 4 we have

d(`) =
n − 1

4
+

⌊
−`

4

⌋
=

n − 1
4
− 1 ,

so in this case d(`) is independent of `, say c. Using (1.71) we get

4∑
`=1

S ` = (q − 1)2qn−1
( c∑

s=0

(s + 1) q−2s

)( 4∑
`=1

q−m(`)
)

+ (q − 1)qn

( c∑
s=0

q−2s

)( 4∑
`=1

q−m(`+1)
)
.

Now
4∑̀
=1

q−m(`) = q−0 + q−1 + q−1 + q−2 = (q2 + 2q + 1)/q2 = (q + 1)2/q2, whereas

4∑̀
=1

q−m(`+1) = q−1 + q−1 + q−2 + q−2 = 2(q + 1)/q2. Using these values and the value of

(1.72) with k = c the previous sum becomes

4∑
`=1

S ` = (q − 1)2qn−1 (q + 1)2

q2

[
(c + 1)q−2c−4 − (c + 2)q−2c−2 + 1

]
(q−2 − 1)2

+ (q − 1)qn 2(q + 1)
q2

1 − q−2c−2

1 − q−2

= (q2 − 1)2qn−1 q2

q4

[
cq−2c−4(1 − q2) + q−2c−4(1 − 2q2) + 1

]
(q−2 − 1)2

+
2(q2 − 1)qn(1 − q−2c−2)

q2 − 1

=
(q2 − 1)2qn+1[cq−2c−4(1 − q2) + q−2c−4(1 − 2q2) + 1

]
(q2 − 1)2 + 2qn(1 − q−2c−2)

= qn+1[cq−2c−4(1 − q2) + q−2c−4(1 − 2q2) + 1
]
+ 2qn(1 − q−2c−2)

= c(1 − q2)qn−2c−3 + (1 − 2q2)qn−2c−3 + qn+1 + 2qn − 2qn−2c−2

= qn+1 + 2qn + qn−2c−3(c(1 − q2) + 1 − 2q2 − 2q
)
.

Now 2c + 3 = 3 + 2(n − 5)/4 = 3 + (n − 5)/2 = (n + 1)/2, so n − 2c − 3 = (n − 1)/2.
Moreover we have bn/4c = (n − 1)/4 (because n ≡ 1 (mod 4)) = c + 1. Using these
facts together with the equality above and replacing into (1.70) we get the following
equality, which is valid whenever n ≥ 1 and n ≡ 1 (mod 4):

n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ = qn+1 + 2qn + q(n−1)/2( bn/4c(1 − q2) − 1 + q2 + 1 − 2q2 − 2q
)

= qn+1 + 2qn + q(n−1)/2( bn/4c(1 − q2) − q2 − 2q
)
. (1.73)
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Now suppose n ≥ 1 and n ≡ 2 (mod 4). Then necessarily n − 1 ≥ 1 and n − 1 ≡
1 (mod 4). On the other hand, we have

n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ = qn−(n−1)−1
∣∣∣Λ(r)

n−1

∣∣∣ +

n−2∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣
=

∣∣∣Λ(r)
n−1

∣∣∣ + q
(n−1)−1∑

k=1

q(n−1)−k−1
∣∣∣Λ(r)

k

∣∣∣ . (1.74)

The first summand can be calculated using (1.68), whereas the second can be calculated
using (1.73). We also have b(n − 1)/4c = bn/4c. Thus, we have∣∣∣Λ(r)

n−1

∣∣∣ = (q − 1)2( b(n − 1)/4c + 1
)

qm(n) + (q − 1)qm(n−1)qb(n−1)

= (q − 1)2( bn/4c + 1
)

qn/2 + (q − 1)q(n−2)/2 q

= (q − 1)2( bn/4c + 1
)

qn/2 + (q − 1)qn/2 ,

whereas

q
(n−1)−1∑

k=1

q(n−1)−k−1
∣∣∣Λ(r)

k

∣∣∣ = q
(
qn + 2qn−1 + q(n−2)/2( b(n − 1)/4c(1 − q2) − q2 − 2q

))
= qn+1 + 2qn + qn/2( bn/4c(1 − q2) − q2 − 2q

)
.

Replacing these equalities into (1.74) we obtain the following equality, which is valid
for n ≥ 1 and n ≡ 2 (mod 4):

n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ = qn/2
(
(q − 1)2( bn/4c + 1

)
+ q − 1

)
+ qn/2

(
bn/4c(1 − q2) − q2 − 2q

)
+ qn+1 + 2qn

= qn+1 + 2qn + qn/2( bn/4c(2 − 2q) − 3q
)
. (1.75)

Now suppose n ≥ 1 and n ≡ 3 (mod 4). Then n − 1 ≥ 1 and n − 1 ≡ 2 (mod 4). We
have again b(n − 1)/4c = bn/4c. By (1.68) we have∣∣∣Λ(r)

n−1

∣∣∣ = (q − 1)2( b(n − 1)/4c + 1
)

qm(n) + (q − 1)qm(n−1)qb(n−1)

= (q − 1)2( bn/4c + 1
)

q(n−1)/2 + (q − 1)q(n−1)/2 q

= (q − 1)2( bn/4c + 1
)

q(n−1)/2 + (q2 − q)q(n−1)/2 ,

and from (1.75) we get

q
(n−1)−1∑

k=1

q(n−1)−k−1
∣∣∣Λ(r)

k

∣∣∣ = q
(
qn + 2qn−1 + q(n−1)/2( b(n − 1)/4c(2 − 2q) − 3q

))
= qn+1 + 2qn + q(n−1)/2( bn/4c(2q − 2q2) − 3q2) .
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Replacing these values into (1.74) we obtain the following equality for n ≥ 1 and
n ≡ 3 (mod 4):

n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ = q(n−1)/2
(
(q − 1)2( bn/4c + 1

)
+ q2 − q

)
+ q(n−1)/2

(
bn/4c(2q − 2q2) − 3q2

)
+ qn+1 + 2qn

= qn+1 + 2qn + q(n−1)/2( bn/4c(1 − q2) − q2 − 3q + 1
)
. (1.76)

Finally, suppose n ≥ 1 and n ≡ 4 (mod 4). Then n − 1 ≥ 1 and n − 1 ≡ 3 (mod 4).
Unlike the previous cases, in this case we have b(n − 1)/4c = bn/4c − 1. By (1.68) we
have ∣∣∣Λ(r)

n−1

∣∣∣ = (q − 1)2( b(n − 1)/4c + 1
)

qm(n) + (q − 1)qm(n−1)qb(n−1)

= (q − 1)2 bn/4c qn/2 + (q − 1)q(n−2)/2 q

= (q − 1)2 bn/4c qn/2 + (q − 1)qn/2 ,

and from (1.76) we get

q
(n−1)−1∑

k=1

q(n−1)−k−1
∣∣∣Λ(r)

k

∣∣∣ = q
(
qn + 2qn−1 + q(n−2)/2( b(n − 1)/4c(1 − q2) − q2 − 3q + 1

))
= qn+1 + 2qn + qn/2(( bn/4c − 1)(1 − q2) − q2 − 3q + 1

)
.

Replacing these values into (1.74) we obtain the following equality for n ≥ 1 and
n ≡ 4 (mod 4):

n−1∑
k=1

qn−k−1
∣∣∣Λ(r)

k

∣∣∣ = qn/2
(
(q − 1)2 bn/4c + q − 1

)
+ qn/2

(
( bn/4c − 1)(1 − q2) − q2 − 3q + 1

)
+ qn+1 + 2qn

= qn+1 + 2qn + qn/2( bn/4c(2 − 2q) − 2q − 1
)
. (1.77)

Now we will calculate g1. This can be done using Hurwitz genus formula (Proposition
0.10) and Lemma 1.1. The only ramified places in F1/F0 are of the form (X0 = a),
with a ∈ α ∪ β ∪ {∞}. Therefore we have

2g1 − 2 = (2g0 − 2)[F1 : F0] +
∑

a∈α∪{∞}

∑
P∈�(F1)
X0(P)=a

d
(
P |(X0 = a)

)
+

∑
a∈β

∑
P∈�(F1)
X0(P)=a

d
(
P |(X0 = a)

)
= − 2q(q − 1) +

∑
a∈α∪{∞}

∑
P∈�(F1)
X0(P)=a

2(q − 1) +
∑
a∈β

∑
P∈�(F1)
X0(P)=a

(q − 2) .
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Now if a ∈ α ∪ {∞}, then e
(
P |(X0 = a)

)
= q for any place P ∈ �(F1) such that

P |(X0 = a) by (i),a) of Lemma 1.1. Since we are assuming that the base field is
algebraically closed, all the inertial indices are equal to 1. Therefore the number of
places P ∈ �(F1) such that P |(X0 = a) is equal to [F1 : F0]/q = q − 1, by fundamental
equality (Lemma 0.8). Similarly, for each a ∈ β the number of places P ∈ �(F1) such
that P |(X0 = a) is equal to [F1 : F0]/(q − 1) = q (by (i),c) of Lemma 1.1), so the
equality above becomes

2g1 − 2 = − 2q(q − 1) + 2(q − 1)
∣∣∣α ∪ {∞} ∣∣∣ ∣∣∣ {P ∈ �(F1) : X0(P) = a}

∣∣∣
+ (q − 2) |β |

∣∣∣ {P ∈ �(F1) : X0(P) = a}
∣∣∣

= − 2q(q − 1) + 2(q − 1)q(q − 1) + (q − 2)(q2 − q)q
= q(q − 1)

(
−2 + 2(q − 1) + (q − 2)q

)
= q(q − 1)(q2 − 4)

= q4 − q3 − 4q2 + 4q .

Thus, the genus g1 is given by

g1 =
q3(q − 1)

2
− 2q2 + 2q + 1 . (1.78)

Using (1.69),(1.73),(1.75),(1.76),(1.77) and (1.78) we obtain our main result:

Theorem 1.13. The genera gn of the tower of function fields given by (1.1) is given by

gn = qn−1(g1 − 1) + 1 + (q − 1)Tn ,

where g1 is given by (1.78) and

Tn = qn+1 + 2qn +


q(n−1)/2( bn/4c(1 − q2) − q2 − 2q

)
, if n ≡ 1 (mod 4),

qn/2( bn/4c(2 − 2q) − 3q
)
, if n ≡ 2 (mod 4),

q(n−1)/2( bn/4c(1 − q2) − q2 − 3q + 1
)
, if n ≡ 3 (mod 4),

qn/2( bn/4c(2 − 2q) − 2q − 1
)
, if n ≡ 4 (mod 4).

For those who dislike formulas given by cases.
Let n ≥ 1. We have bn/4c(1 − q2) − q2 − 2q =

(
bn/4c + 1

)
(1 − q2) − 2q − 1, whereas

bn/4c(1 − q2) − q2 − 3q + 1 =
(
bn/4c + 1

)
(1 − q2) − 3q. Therefore we can write

Tn − qn+1 − 2qn =


q(n−1)/2((bn/4c + 1)(1 − q2) − 2q − 1

)
, if n ≡ 1 (mod 4),

qn/2( bn/4c(2 − 2q) − 3q
)
, if n ≡ 2 (mod 4),

q(n−1)/2((bn/4c + 1)(1 − q2) − 3q
)
, if n ≡ 3 (mod 4),

qn/2( bn/4c(2 − 2q) − 2q − 1
)
, if n ≡ 4 (mod 4).
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Now if n ≡ 1 or 4 (mod 4) then m(n) is even, that is, m(n) = 2m
(
m(n)

)
= 2bn/4c, so we

have −2q− 1 = −2q− q0 = −2q− qm(n)−2bn/4c; similarly, if n ≡ 2 or 3 (mod 4) then m(n)
is odd, so m(n) = 2bn/4c + 1, and therefore −3q = −2q − q1 = −2q − qm(n)−2bn/4c. Thus,
we can “simplify” the expression above, obtaining

Tn−qn+1−2qn =


q(n−1)/2((bn/4c + 1)(1 − q2) − 2q − qm(n)−2bn/4c), if n ≡ 1 (mod 4),

qn/2( bn/4c(2 − 2q) − 2q − qm(n)−2bn/4c), if n ≡ 2 (mod 4),
q(n−1)/2((bn/4c + 1)(1 − q2) − 2q − qm(n)−2bn/4c), if n ≡ 3 (mod 4),

qn/2( bn/4c(2 − 2q) − 2q − qm(n)−2bn/4c), if n ≡ 4 (mod 4).

Finally, if n ≡ 2 or 4 (mod 4) then n is even, so we have m(n) = n/2 and 0 = n− 2m(n),
which implies 2−2q = 2(1−q) = (1+1)(1−q) = (1+q0)(1−q) = (1+qn−2m(n))(1−q);
on the other hand, if n ≡ 1 or 3 (mod 4) then n is odd, so we have m(n) = (n− 1)/2 and
1 = n−2m(n), and therefore 1−q2 = (1+q)(1−q) = (1+q1)(1−q) = (1+qn−2m(n))(1−q).
Putting together these facts we can write the formula above as the following single
expression� :

Tn = qn+1 + 2qn + qm(n)
((
bn/4c + n − 2m(n)

)
(1 + qn−2m(n))(1 − q) − 2q − qm(n)−2bn/4c

)
.

�Which is, admittedly, rather unnatural...



Chapter 2
A new tower over cubic finite fields

In this chapter we introduce a new tower over cubic finite fields attaining the general-
ized Zink bound. This tower was considered by Ihara (see equation (3) in [Ih07]) as a
subtower of the Bezerra-Garcia-Stichtenoth tower (introduced in [BezGaSt]), in order
to point out some interesting features of the BeGS tower. Ihara’s presentation of the
tower is slightly different from ours; in Section 2.4 we prove that this tower is indeed
a subtower of the BeGS tower, and that the tower constructed by Ihara and the tower
described in this work are the same.

2.1 The basic (and the auxiliary) equation

Let k be a perfect field of characteristic p > 0, and let q be a power of p. Let F =

(Fn)n≥0 be the sequence of function fields over k defined recursively as follows: F0 =

k(X0), the rational function field over k, and for n ≥ 0 let Fn+1 = Fn(Xn+1), where Xn+1

satisfies the following:

f (Xn, Xn+1) = 0, where f (X,Y) = Yq+1 + Y −
(

X + 1
Xq+1

)
and Xn+1 < k(Xn) . (2.1)

Remark 2.1. Regarding equation (2.1) above, we claim that equation f (X,Y) = 0 has
an unique root Y in k(X), namely, Y = −(X +1)/X. In fact, let z B −1/X. If Y ∈ k(X) =

k(z) satisfies f (X,Y) = 0, then Yq+1 + Y = Y(Y + 1)q = (−z)q + (−z)q+1 = (z − 1)zq.
Thus, Y is k[z]-integral, so Y belongs to k[z] (because k[z] is an UFD, hence integrally
closed). Comparing degrees we get degz Y = 1, so Y + 1 = cz, with c ∈ k×. Replacing
we obtain (cz− 1)cqzq = (z− 1)zq, so cq+1 = 1 and cq = 1. Consequently we have c = 1
and Y = z − 1, and since the polynomial f (X,Y) is separable respect to the variable

55
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Y (because ∂Y f (X,Y) = (q + 1)Yq + 1 = (Y + 1)q, so f and ∂Y f are relative prime in
k(X)[Y]), our claim is proved.

Now let x = −1/Xn and y = Xn+1 + 1. Imitating the calculations made in the remark
above we get Xq+1

n+1 + Xn+1 = (y−1)yq and (Xn +1)/Xq+1
n = (x−1)xq. Since Xn+1 < k(Xn),

this means that
(y − 1)yq = (x − 1)xq and x , y . (2.2)

Note the symmetry on this equation. For this reason, we will first study the ramification
behavior in this more abstract setting. Let k be a perfect field of characteristic p > 0,
and let x, y be such that (2.2) holds. Clearly x is transcendent over k iff y is too, so we
assume that x is transcendent over k. If Q ∈ �(k(x, y)), then by (2.2) we have

x(Q) = ∞ iff y(Q) = ∞, and x(Q) ∈ {0, 1} iff y(Q) ∈ {0, 1}. (2.3)

On the other hand, by (2.2) we have yq+1− xq+1 = yq− xq = (y− x)q. Since yq+1− xq+1 =

yq+1−yxq +yxq− xq+1 = y(y− x)q + xq(y− x), it follows that xq(y− x)+y(y− x)q = (y− x)q,
and since y , x, we conclude that

xq + (y − 1)(y − x)q−1 = 0. (2.4)

This polynomial is symmetric in x and y (being the quotient of two symmetric polyno-
mials), so we also have

yq + (x − 1)(x − y)q−1 = 0. (2.5)

Now, dividing (2.4) by (y − x)q we obtain
(

x
y − x

)q

+
y − 1
y − x

= 0. Since
y − 1
y − x

=

x − 1 + y − x
y − x

= 1 +
x − 1

x
x

y − x
, then we can write

Zq + (1 − x−1)Z + 1 = 0, with Z =
x

y − x
. (2.6)

Similarly, dividing (2.5) by (x − y)q we obtain

Wq + (1 − y−1)W + 1 = 0, with W =
y

x − y
. (2.7)

Now we will determine the ramification in the extensions k(x, y)/k(x) and k(x, y)/k(y)
of function fields over k. Let P ∈ �(k(x)) and Q ∈ �(k(x, y)) be such that Q|P.

Suppose at first that x(P) = 1. Then by (2.3) we have y ∈ OQ. Using (2.5) we
get y(Q)q + (x(P) − 1)(y(Q) − x(P))q−1 = 0, so y(Q) = 0. Thus, (y − x)(Q) = −1, so
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y − x ∈ O ×
Q , and therefore Z ∈ OQ and Z(Q) = x(Q)/(y − x)(Q) = −1. We can rewrite

(2.6) as

Zq + (1 − x−1)Z + 1 = (Z + 1)q + (1 − x−1)(Z + 1 − 1)

= (Z + 1)q + (1 − x−1)(Z + 1) + x−1 − 1 (2.8)
= 0 .

Since vQ(Z + 1) > 0, then vQ
(
(1 − x−1)(Z + 1)

)
> vQ(x−1 − 1), so by triangle inequality

we necessarily have vQ
(
(Z + 1)q) = vQ(x−1 − 1), that is, qvQ(Z + 1) = vQ(x−1 − 1); but

vQ(x) = 0 (because x(Q) = 1), which implies vQ(x−1−1) = vQ
(
x(x−1−1)

)
= vQ(x−1) =

e(Q|P)vP(x − 1) = e(Q|P). Consequently we have qvQ(Z + 1) = e(Q|P).

On the other hand, by (2.5) we have [k(x, y) : k(x)] ≤ q, so in particular we have
e(Q|P) ≤ q. Putting these facts together we conclude that e(Q|P) = q = [k(x, y) : k(x)]
and vQ(Z + 1) = 1. In particular, the element Z + 1 is a local parameter at the place Q,
with minimal polynomial over k(x) equal to ϕ(T ) = T q +(1− x−1)T + x−1−1 by (2.8), so
by Proposition 0.12 we have d(Q|P) = vQ

(
ϕ′(Z + 1)

)
= vQ(1− x−1) = e(Q|P) = q. Note

that since the place P is totally ramified in k(x, y)/k(x), it follows that k is algebraically
closed in k(x, y) by Corollary 0.18. Using this fact together with Corollary 0.19, we
can suppose in the sequel that the field k is algebraically closed in order to determine
the ramification behavior.

Now suppose x(P) = 0. Again by (2.3) we have y ∈ OQ. Since [k(x, y) : k(x)] = q
by the previous case, it follows from (2.5) that the minimal polynomial of y over k(x)
is given by θ(T ) = T q + (x − 1)(T − x)q−1. Its reduction mod P is given by θP(T ) =

T q − T q−1 = T q−1(T − 1), hence by Kummer’s Theorem (Proposition 0.9) there exist
Qi ∈ �(k(x, y)) with i = 0, 1 such that Qi|P and y(Qi) = i. Using (2.4) we get the
equality vQ0(xq) = vQ0

(
(y − 1)(y − x)q−1), that is, qvQ0(x) = (q − 1)vQ0(y − x) (because

vQ0(y − 1) = 0). As a consequence, q − 1 divides vQ0(x) = e(Q0|P)vP(x) = e(Q0|P).

Now by fundamental equality we have q = [k(x, y) : k(x)] =
∑

Q e(Q|P) f (Q|P),
where Q ranges over the places in �(k(x, y)) dividing P. Since e(Q0|P) ≥ q − 1 and
e(Q1|P) ≥ 1, then necessarily Q0 and Q1 are the unique places in �(k(x, y)) above the
place P, and we have e(Q0|P) = q − 1 and e(Q1|P) = f (Q0|P) = f (Q1|P) = 1.

Finally, it remains to consider the case vP(x) ≤ 0 and x(P) , 1. By (2.6) we
have k(x, y) = k(x)(Z), and if ψ(T ) denotes the minimal polynomial of Z over k(x),
then ψ(T ) = T q + (1 − x−1)T + 1. Since x(P) , 1, it follows that x−1 ∈ OP, and
x−1(P) = x(P)−1. The reduction mod P of this polynomial is given by ψP(T ) = T q +

(1−x(P)−1)T +1, which is separable because ψ′P(T ) = 1−x(P)−1 , 0. In particular, since
we are assuming that k is algebraically closed, then ψP(T ) decomposes completely into
distinct linear factors in (OP/P)[T ] = k[T ], so by Kummer’s Theorem (Proposition
0.9) the place P is totally decomposed in k(x, y)/k(x).
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We recall that similar results hold for the field extension k(x, y)/k(y), by the sym-
metry of equation (2.2). Now we summarize all these results.

Proposition 2.2. Let k be a perfect field of characteristic p > 0, and let q be a power
of p. Let x, y be transcendent elements over k satisfying relation (2.2). For the function
fields k(x), k(y) and k(x, y) over k the following holds:

(i) The field extensions k(x, y)/k(x) and k(x, y)/k(y) are both separable of degree q,
and k is algebraically closed in k(x, y).

(ii) For a place Q ∈ �(k(x, y)), let Px = Q ∩ k(x) and Py = Q ∩ k(y). Then x(Q) = ∞

iff y(Q) = ∞, and x(Q) ∈ {0, 1} iff y(Q) ∈ {0, 1}. More specifically, the following
relations hold:

a) x(Q) = 1 implies y(Q) = 0. In that case we have e(Q|Px) = d(Q|Px) = q and
e(Q|Py) = 1.

b) y(Q) = 1 implies x(Q) = 0. In that case we have e(Q|Py) = d(Q|Py) = q and
e(Q|Px) = 1.

c) x(Q) = 0 implies y(Q) = 0 or 1. If y(Q) = 0, then e(Q|Px) = e(Q|Py) = q − 1.
Moreover, exactly two places Q in �(k(x, y)) satisfy x(Q) = 0, say Q0 and Q1,
and {y(Q0), y(Q1)} = {0, 1} (so both possibilities on y(Q) indeed occur).

d) y(Q) = 0 implies x(Q) = 0 or 1. If x(Q) = 0, then e(Q|Px) = e(Q|Py) = q − 1.
Moreover, exactly two places Q in �(k(x, y)) satisfy y(Q) = 0, say Q0 and Q1,
and {x(Q0), x(Q1)} = {0, 1}.

e) The places (x = 0) and (x = 1) are the unique ramified places in k(x, y)/k(x),
and similarly (y = 0) and (y = 1) are the unique ramified places in k(x, y)/k(y).
In particular e(Q|Px) = e(Q|Py) = 1 whenever x(Q) = ∞ (which is equivalent
to y(Q) = ∞).

Figure 2.1 (page 60) describes succinctly the ramification behavior in the field exten-
sions k(x, y)/k(x) and k(x, y)/k(y). From now on, whenever no confusion arises, we will
denote by e the ramification index, and we denote by d the respective different expo-
nent. Moreover, we will omit the value of d in the figures whenever tame ramification
occurs, because in that case we know that d = e − 1.

2.2 The ramification behavior of the tower

Now we return to our original sequence of function fields over k, which is defined
recursively by equation (2.1). Recall that equation (2.2) was obtained after the change
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of variables x = −1/Xn and y = Xn+1 + 1. By reversing this substitution we translate
the contents of Proposition 2.2 to our original context, obtaining the following result:

Proposition 2.3. Let k be a perfect field of characteristic p > 0, and let q be a power
of p. Let F = (Fn)n≥0 be the sequence of function fields over k defined recursively by
equation (2.1). Then we have the following:

(i) For each n ≥ 0, the field extensions k(Xn, Xn+1)/k(Xn) and k(Xn, Xn+1)/k(Xn+1) are
both separable of degree q, and k is algebraically closed in k(Xn, Xn+1).

(ii) For a place Q ∈ �(Fn+1), let Pn = Q ∩ k(Xn), Pn+1 = Q ∩ k(Xn+1) and P =

Q ∩ k(Xn, Xn+1). Then the following relations hold:

a) Pn = (Xn = −1) implies Pn+1 = (Xn+1 = −1). In that case, e(P|Pn) = d(P|Pn) =

q and e(P|Pn+1) = 1.

b) Pn+1 = (Xn+1 = 0) implies Pn = (Xn = ∞). In that case, e(P|Pn+1) =

d(P|Pn+1) = q and e(P|Pn) = 1.

c) Pn = (Xn = ∞) implies Pn+1 = (Xn+1 = α), with α ∈ {−1, 0}. If α = −1, then
e(P|Pn) = e(P|Pn+1) = q − 1.

d) Pn+1 = (Xn+1 = −1) implies Pn = (Xn = α), with α ∈ {−1,∞}.

e) The places (Xn = ∞) and (Xn = −1) are the unique ramified places in the
extension k(Xn, Xn+1)/k(Xn), and (Xn+1 = −1) and (Xn+1 = 0) are the unique
ramified places in k(Xn, Xn+1)/k(Xn+1).

f) Pn = (Xn = 0) iff Pn+1 = (Xn+1 = ∞). In that case e(P|Pn) = e(P|Pn+1) = 1.

Proof. As we said before, we take x = −1/Xn and y = Xn+1 + 1, so we are in the
situation of Proposition 2.2. Moreover, for a place Q ∈ �(Fn+1) we have the following
relations between the values of x, y, Xn and Xn+1 at the place Q:

x(Q) Xn(Q)
1 -1
0 ∞

∞ 0

y(Q) Xn+1(Q)
0 -1
1 0
∞ ∞

Now we simply rewrite the statements of Proposition 2.2 using the table above, obtain-
ing items i) and ii). This finishes the proof. �

We remark that, for each n ≥ 0, all the possibilities stated in item (ii) of the previ-
ous result can be realized. More precisely, we call a sequence (αn)n≥0 of elements in
{−1, 0,∞} admissible if the following holds for each n ≥ 0:
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e =
q −

1

(x = 0)

e
=

q
−

1
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d
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e
=

1

(y = 0)

e =
1
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e
=

d
=

q

(y = 1)

Figure 2.1: Ramification in k(x, y)/k(x) and k(x, y)/k(y).
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1
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e
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q
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1
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e =
1

(Xn = 0)

e
=

1

(Xn+1 = ∞)

e =
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d

(Xn = −1)

e
=

1

(Xn+1 = −1)

e =
1

(Xn = ∞)

e
=

d
=

q
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Figure 2.2: Ramification in k(Xn, Xn+1)/k(Xn) and k(Xn, Xn+1)/k(Xn+1).

• αn = −1 implies αn+1 = −1.

• αn+1 = 0 implies αn = ∞.

• αn = ∞ implies αn+1 = −1 or 0.

• αn+1 = −1 implies αn = −1 or∞.

• αn = 0 iff αn+1 = ∞.

Proposition 2.4. For any admissible sequence (αn)n≥0, there exists a sequence (Qn)n≥0

of places Qn ∈ �(Fn) such that Xn(Qn) = αn and Qn+1|Qn for all n ≥ 0.
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The proof of this result will be given after Corollary 2.6.

Recall that the ramification locus of the tower F is defined as the set

V(F /F0) = {P ∈ �(F0) : P is ramified in Fm/F0 for some m = m(P) ≥ 1} .

In order to estimate the genus of the tower, we first need to know which are the places
in �(F0) belonging to V(F /F0), and afterwards to estimate the ramification behavior
(i.e., the ramification index and the different exponent) of such places. Since the genus
is invariant under constant field extensions (Proposition 0.17), we can assume that the
base field k is algebraically closed. A straight application of Proposition 2.3 in this case
solves the first problem.

Lemma 2.5. Suppose that k is algebraically closed. Then the ramification locus of F
over F0 satisfies

V(F /F0) ⊆ {(X0 = α) : α = −1, 0 or ∞} .

Proof. Let n ≥ 0 and suppose that a place Q ∈ �(Fn) is ramified in Fn+1/Fn. For
i = 0, . . . , n, let Qi = Q ∩ k(Xi). Then we have the following situation

R ∩ k(Xn, Xn+1)

R ∈ �(Fn+1)
e >

1

Q

Qn

so by Abhyankar’s Lemma (Proposition 0.14) we have that Qn ramifies in the extension
k(Xn, Xn+1)/k(Xn). Therefore we have Qn = (Xn = α), with α ∈ {−1,∞}, by (ii) of
Proposition 2.3. The same result, together with (descending) induction, allow us to
conclude that Qi = (Xi = α), with α ∈ {−1, 0,∞}, for i = n, n − 1, . . . , 1, 0. This proves
the lemma. �

Our next step is to estimate (or, if possible, to determine) the ramification behavior
of the places (X0 = α), with α ∈ {−1, 0,∞}. On the other hand, two conditions remain
to be verified in order to conclude that the sequence F = (Fn) indeed defines a tower
of function fields over any perfect field k, namely, that the base field k is algebraically
closed in each field Fn, and that the genera of the fields Fn satisfy g(Fn) → ∞ when
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n→ ∞ (see Definition 0.4). Later we will prove these assertions using the ramification
behavior at the places (X0 = −1) and X0 = ∞, together with Proposition 2.4.

From now on, let

F i, j = k(Xi, Xi+1, . . . , X j), for each i, j in N with i ≤ j . (2.9)

In particular we have Fn = F0,n and k(Xn) = Fn,n for all n ≥ 0. The pyramid associated
to the sequence F of function fields is just the lattice of fields (F i, j)0≤i≤ j ordered by
inclusion. In particular, the sequenceF corresponds to the left edge of the pyramid, and
the basic fields k(Xi) correspond to its basement. Note that the pyramid is composed
of “diamonds”, which correspond to field extensions of the form F i−1, j+1/F i, j, with
1 ≤ i ≤ j, together with the two intermediate fields F i−1, j and F i, j+1; see Figure 2.3
below.

k(X0) k(X1) k(X2) k(X3) k(X4) . . .

. .
.

. .
.

. .
.

. .
.

. .
.

F4

F3

F2

F1

F 1,3

F 3,4 F i−1, j F i, j+1

F i−1, j+1

F i, j

Figure 2.3: The pyramid and a diamond.

Consider a family (Pi, j)0≤i≤ j of places Pi, j ∈ �(F i, j), such that Pk,` contains Pi, j

whenever Fk,` ⊇ F i, j (i.e., whenever k ≤ i ≤ j ≤ `). Moreover, suppose that we have
P0,0 = (X0 = α), with α ∈ {−1, 0,∞}. We want to estimate the values e(P0,n|P0,0) and
d(P0,n|P0,0) for each n ≥ 0, in order to estimate the genus of the tower F .

Suppose that, for every diamond, we can determine the ramification behavior at
the top edges from the ramification behavior at the bottom ones (we call it “solving”
the diamond). By Proposition 2.2, we know the ramification behavior at the basement
of the pyramid, so by the hypothesis we can solve all the diamonds at the bottom of
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the pyramid. In particular, we know the ramification behavior at the bottom edges of
the diamonds at the second level of the pyramid. Repeating this argument, (that is,
“climbing up” the pyramid), we manage to solve all the diamonds, and in particular
we are able to determine the values e(P0,n+1|P0,n) and d(P0,n+1|P0,n) for each n ≥ 0.
Using the multiplicativity of the ramification index and the transitivity of the different
exponent (Lemma 0.13) we attain our objective.

If tame ramification occurs at some bottom edge of a given diamond, then by Propo-
sition 0.14 and Lemma 0.13 we can determine the ramification behavior at the top edges
of the diamond; this will be indeed the situation of the majority of the diamonds in-
volved in our reasoning, so in that cases we will be able to “solve” explicitly those
diamonds. But what happens if we have wild ramification at both bottom edges?. This
is, of course, the interesting (and hard) case to deal with, which requires a more sophis-
ticated approach (the use of completions, as it was said in the Introduction). We will
treat this case at the end of the section.

Finally, we note that in some cases we do not need to restrict ourselves to the
“basic diamonds” discussed above, but instead we can work directly with larger field
extensions (in the presence of unramified extensions, for instance). With all these
remarks in mind, we can start our reasoning. According to (ii) of Proposition 2.2,
we can distinguish the following cases:

Case 1: X0(P0,0) = −1. Then Xn(Pn,n) = −1 for all n ≥ 0.

Case 2: X0(P0,0) = 0. Then X1(P1,1) = ∞.

Case 3: X0(P0,0) = ∞ and X1(P1,1) = −1. Then Xn(Pn,n) = −1 for all n ≥ 1.

Case 4: X0(P0,0) = ∞, X1(P1,1) = 0 and Xn(Pn,n) , −1 for all n ≥ 3. In this case
Xn(Pn,n) = ∞ for all n even and Xn(Pn,n) = 0 for all n odd.

Case 5: X0(P0,0) = ∞, X1(P1,1) = 0 and Xn(Pn,n) = −1 for some n ≥ 3. Supposing
that n is minimal, then since we started with X0(P0,0) = ∞, plus the fact that the
values ∞ and 0 alternate at the bottom for k < n, we conclude that n is odd,
Xk(Pk,k) = ∞ for k = 2, 4, . . . , n − 1 and Xk(Pk,k) = 0 for k = 1, 3, . . . , n − 2. Of
course, we also have Xk(Pk,k) = −1 for all k ≥ n.

Case 1 (Xn(Pn,n) = −1 for all n ≥ 0)
In this case we conclude from Proposition 2.3 that the basement of the pyramid has the
following form:
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Using (i) of Proposition 0.16, we see that both the bottom left and top right edges of all
the diamonds are unramified. The same result implies that for the bottom right and top
left edges of all the diamonds we have e = d = q. Thus, the tower is explicitly solved
in this case as depicted in Figure 2.4 below:
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Figure 2.4: Case 1.

On the other hand, for any diamond in the tower, each one of its edges is a lifting of an
edge on the basement of the pyramid, which is a separable field extension of degree q.
Therefore all the edges are separable extensions of degree less or equal than q. Since
e = q for all the bottom right and top left edges, it follows that such edges have degree
equal to q. In particular, all the diamonds at the basement of the pyramid satisfy that
three of its edges have degree q. By multiplicativity of the degree of field extensions,
we conclude that the remaining edge (of the diamond) also has degree q. This in turn
implies that all the diamonds appearing at the second level of the tower satisfy that
three of its edges have degree q. Repeating this argument we conclude that all the
“basic” edges are separable field extensions of degree q.

Corollary 2.6. The field k is algebraically closed in Fn for each n ≥ 0. Moreover, for
each i, j ≥ 0 with i ≤ j, the field extensions F i, j+1/F i, j and F i−1, j/F i, j (whenever i ≥ 1)
are separable of degree q.

Proof of Proposition 2.4 (page 60). We construct recursively the places Qn: first we
take Q0 = (X0 = α0), and assuming that Q0, . . . ,Qn are constructed satisfying the
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desired conditions, let Pn = Qn ∩ k(Xn). If αn = −1 or 0, any place Qn+1 ∈ �(Fn+1)
dividing Qn will work. On the other hand, if αn = ∞, then αn+1 = −1 or 0. Taking
x = −1/Xn and y = Xn+1 + 1, and using (ii),c) of Proposition 2.2, we obtain a place
Q′ ∈ �(k(Xn, Xn+1)) such that Q′|Pn and Xn+1(Q′) = αn+1. In order to finish the proof, it
is suffices to find a place Qn+1 ∈ �(Fn+1) lying above both Q′ and Qn simultaneously. It
is easy to see from Corollary 2.6 (by comparing degrees) that the fields Fn and Fn,n+1 =

k(Xn, Xn+1) satisfy Fn ∩ Fn,n+1 = Fn,n = k(Xn), and they are linearly disjoint over k(Xn).
The existence of the place Qn+1 follows from the following result:

Lemma 2.7 ([Wu, Lemma 2.1.3]). Let F1, F2 be function fields over a perfect field k.
Suppose that F1 and F2 are linearly disjoint over F = F1 ∩ F2, and let P ∈ �(F) and
Pi ∈ �(Fi) for i = 1, 2 be places such that P1|P and P2|P. If the compositum F1F2 is
defined, then exists a place Q ∈ �(F1F2) such that Q|P1 and Q|P2.

Case 2 (X0(P0,0) = 0 and X1(P1,1) = ∞)
Consider the “truncated” pyramid (F i, j)1≤i≤ j , that is, that obtained from the original
by suppressing the variable X0, and denote by F ′ the sequence of function fields co-
rresponding to the left edge of this truncated pyramid. Since we are dealing with a
recursive tower, then in particular the tower F ′ has the same ramification behavior
as the original tower, and since X1(P1,1) = ∞, we conclude that F ′ lies in some of
the Cases 3-5. Moreover, since e(P0,1|P0,0) = e(P0,1|P1,1) = 1 by ii),f) of Proposition
2.3, it follows from (i) of Proposition 0.16 that the tower F ′′ = (Fn)n≥1 inherits the
ramification behavior of F ′; see Figure 2.5 below. In other words, we see that this case
can be reduced to the remaining Cases 3,4 and 5.

e =
1 e

=
1

(X0 = 0) (X1 = ∞)

. . .

. . .

F1

F ′′

F ′

Figure 2.5: Case 2. Bold-faced edges have the same ramification behavior.



66 CHAPTER 2. A NEW TOWER OVER CUBIC FINITE FIELDS

Case 3 (X0(P0,0) = ∞ and Xn(Pn,n) = −1 for all n ≥ 1)
As in Case 2, we consider the truncated pyramid (F i, j)1≤i≤ j. Since X1(P1,1) = −1, we are
in the situation of Case 1, which was already solved. Moreover, by ii),c) of Proposition
2.3 we have e(P0,1|P0,0) = e(P0,1|P1,1) = q − 1. Thus, we have the following:

e =
q −

1 e
=

q
−

1

(X0 = ∞) (X1 = −1)

. . .

. . .

F1 Case 1

e =
d =

q

e =
d =

q

e =
d =

q

e =
d =

q

Repeated applications of (ii) of Proposition 0.16 yield e(P0,n|P1,n) = q− 1 for all n ≥ 1.
The same result allows to solve all the diamonds at the left side of the original pyramid,
and we obtain e(P0,n+1|P0,n) = q and d(P0,n+1|P0,n) = 2(q − 1) for all n ≥ 1. This solves
the tower in this case, as depicted in Figure 2.6 below:
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Figure 2.6: Case 3.



2.2. THE RAMIFICATION BEHAVIOR OF THE TOWER 67

Corollary 2.8. The genera g(Fn) of the function fields Fn satisfy g(Fn) → ∞ when
n→ ∞.

Proof. By Riemann-Hurwitz formula and Corollary 2.6 we have, for all n ≥ 0:

2g(Fn+1) − 2 =[Fn+1 : Fn]
(
2g(Fn) − 2

)
+ deg Diff(Fn+1/Fn)

= q
(
2g(Fn) − 2

)
+ deg Diff(Fn+1/Fn) .

Now if α0 = −1, β0 = ∞ and αn = βn = −1 for all n ≥ 1, then the sequences (αn) and
(βn) are admissible, so by Proposition 2.4 there exist sequences (Qn), (Q′n) of places
Qn,Q′n ∈ �(Fn) such that for each n ≥ 0 we have Qn+1|Qn ,Q′n+1|Q

′
n , Xn(Qn) = αn and

Xn(Q′n) = βn. From Case 1 we conclude that d(Qn+1|Qn) = q for each n ≥ 0, and
similarly from Case 3 we get that d(Q′n+1|Q

′
n) ≥ q−1 for each n ≥ 0. As a consequence

we have deg Diff(Fn+1/Fn) ≥ d(Qn+1|Qn) + d(Q′n+1|Q
′
n) ≥ 2q − 1, hence

2g(Fn+1) − 2 ≥ q
(
2g(Fn) − 2

)
+ 2q − 1 ,

which implies 2g(Fn+1) > 2g(Fn)q. From this our assertion easily follows. �

Note that Cases 1 and 3 were solved without assuming that the base field k is alge-
braically closed, so from Corollaries 2.6 and 2.8, together with i) of Proposition 2.3 we
conclude the following:

Corollary 2.9. For any perfect field k of characteristic p > 0 and for every power q of
p, the sequence F = (Fn)n≥0 of function fields defined recursively by equation (2.1) is
indeed a tower of function fields over k.

In that follows, we will assume that the base field k is algebraically closed. In par-
ticular we have �q ⊆ k, which will be needed specifically in Case 5.

Case 4 (Xn(Pn,n) = ∞ for all n even and Xn(Pn,n) = 0 for all n odd)
This is the most trivial case: in fact, by ii), b) and f) of Proposition 2.3 we have that the
bottom right edges of the diamonds in the basement of the pyramid are all unramified.
Since each field extension Fn+1/Fn is a lifting from a such edge, it follows from (i) of
Proposition 0.16 that e(P0,n+1|P0,n) = 1 for all n ≥ 0, so in this case the place (X0 = ∞)
is unramified in Fn/F0 for all n ≥ 0.

Now we draw some additional results about this case, which will be useful in the
study of the remaining case. Let m ≥ 0 even, and suppose that Xi(Pi,i) = ∞ for
i = 0, 2, 4, . . . ,m and Xi(Pi,i) = 0 for i = 1, 3, 5, . . . ,m − 1. In other words, we restrict
our attention to the finite subpyramid (F i, j)0≤i≤ j≤m. The same reasoning used above
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shows that the bottom right and the top left edges of all the diamonds appearing in this
subpyramid are unramified. As a consequence, we have the situation depicted in Figure
2.7 below:
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Figure 2.7

Note that in particular the place (X0 = ∞) is unramified in Fm/F0 .

Case 5 (Xk(Pk,k) = −1 for all k ≥ n, Xk(Pk,k) = ∞ for k = 0, 2, 4, . . . , n − 1,
and Xk(Pk,k) = 0 for k = 1, 3, 5, . . . , n − 2, for some n ≥ 3 odd)

As we said earlier, this is the only case when wild ramification occurs at both bottom
edges of some diamonds.

Consider the subpyramids G = (F i, j)0≤i≤ j≤n−1 and H = (F i, j)n−1≤i≤ j . Note that G
corresponds to the finite subpyramid studied in Case 4 (taking m = n − 1; see Figure
2.7), so we can solve it. Similarly, subpyramidH corresponds to Case 3, henceH can
be also solved. Figure 2.8 (page 69) illustrates the solutions of both pyramids, which
together constitute a partial solution to our original pyramid¶.

¶Since notation becomes cumbersome at this point, we strongly encourage the reader to follow the
reasoning through the figures.
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Figure 2.8

Note that the steps of the right edge of pyramidG (that is, the extensions Fk−1,n−1/Fk,n−1,
with 1 ≤ k ≤ n − 1) alternate non-ramification and total ramification, in the latter case
the different exponent d being equal to q. Since e(Pn−1,n|Pn−1,n−1) = q − 1, it follows
that e(Pk,n|Pk,n−1) = q − 1 for k = 0, 1, . . . , n − 1, by (i) and (ii) of Proposition 0.16. If
k between 1 and n − 1 satisfies e(Pk−1,n−1|Pk,n−1) = 1, then obviously e(Pk−1,n|Pk,n) = 1;
otherwise, we must have e(Pk−1,n−1|Pk,n−1) = d(Pk−1,n−1|Pk,n−1) = q, and in this case
from (ii) of Proposition 0.16 we get e(Pk−1,n|Pk,n) = q and d(Pk−1,n|Pk,n) = 2(q − 1).

Thus, if R denotes the lattice bounded below by the edges F0,n/Fn−1,n (the left-
side finite edge) and (Fn−1,k)k≥n (the right-side infinite edge), then it remains to solve
all the diamonds contained in R. Now, for each k between 1 and n − 1 we have that
e(Pk−1,n|Pk,n) divides q and d(Pk−1,n|Pk,n) = 2

(
e(Pk−1,n|Pk,n) − 1

)
. The same situation

holds in the extensions Fn−1,k+1/Fn−1,k for k ≥ n, that is, e(Pn−1,k+1|Pn−1,k) divides q and
d(Pn−1,k+1|Pn−1,k) = 2

(
e(Pn−1,k+1|Pn−1,k) − 1

)
. In other words, at each step of the edges

F0,n/Fn−1,n and (Fn−1,k)k≥n we have e divides q and d = 2(e − 1). Moreover, both edges
are “surrounded” below by extensions with ramification index e = q − 1. We describe
pictorially this situation in Figure 2.9 below:
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Figure 2.9: Shadowed region corresponds to lattice R.

Finally, since e(Pn−2,n|Pn−1,n) = 1, then applying (i) of Proposition 0.16 we get the
equalities e(Pn−2,n+1|Pn−2,n) = q and d(Pn−2,n+1|Pn−2,n) = 2(q−1); see Figure 2.10 below:
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Figure 2.10: Boldfaced diamond cannot be solved directly because it has wild
ramification at both bottom edges.
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Let L/K be a field extension, and let P ∈ �(K),Q ∈ �(L) be places such that Q|P.
We say that L/K has propertyF at places P and Q if e(Q|P) divides q and d(Q|P) =

2
(
e(Q|P) − 1

)
. When no confusion arises about Q and P, we simply say that L/K has

property F. In our situation, all the steps in the lower edges of the lattice R have
propertyF, as depicted in Figure 2.11 below:

(Xn−1 = ∞) (Xn = −1)

R

. . .

. . .Fn−1

Fn . . .
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=
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e
=
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=
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1
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=
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1

e
=

q
−

1

e
=

q
−

1
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F
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1

e =
q −

1

e =
q −

1

e =
q −

1

e =
q −

1

Figure 2.11

Now we state the main technical result of this chapter: it will permit us to solve the
lattice R.

Proposition 2.10. For any given diamond in R, if both bottom edges have propertyF,
then the top edges also have propertyF.

It follows from repeated applications of Proposition 2.10 that, for each diamond in
R, all of its edges have property F, and in particular for all k ≥ n we have that
e(P0,n+1|P0,n) divides q and d(P0,n+1|P0,n) = 2

(
e(P0,n+1|P0,n) − 1

)
.

Proof of the Proposition. The bottom vertex of any diamond in R is a field of the form
K = F i, j, with 1 ≤ i ≤ n − 1 and j ≥ n (see Figure 2.11 above). The other vertices of
such diamond are the fields L = F i−1, j, M = F i, j+1 and E = LM = F i−1, j+1, and the
corresponding places are P = Pi, j, Q = Pi−1, j, R = Pi, j+1 and S = Pi−1, j+1. Suppose
that the following holds:
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FF

P

Q

S

R

Let L/K be the Galois closure of L/K. If x = −1/Xi−1, y = Xi + 1 and W = y/(x − y),
then we have L = K(W) and h(W) = 0, where h(T ) = T q + (1 − y−1)T + 1: this follows
directly from the equation (2.7). Since [L : K] = q by Corollary 2.6, it turns out that
h(T ) is indeed the minimal polynomial of W over K. If W + a is a root of h(T ), then we
have (W +a)q + (1−y−1)(W +a)+1 = 0 = h(W)+aq + (1−y−1)a, hence aq = (y−1−1)a.
Consequently, ifω satisfiesωq−1 = y−1−1, then the roots of h(T ) are of the form W+tω,
with t ∈ �q ⊆ k. This proves that L = L(ω), so L/L is a Kummer extension with degree
dividing q − 1.

Similarly, letM/K be the Galois closure of M/K. If x0 = −1/X j, y0 = X j+1 + 1 and
Z = x0/(y0−x0), then we have M = K(Z) and g(Z) = 0, where g(T ) = T q+(1−x−1

0 )T +1
(by (2.6)), and g(T ) is the minimal polynomial of Z over K by Corollary 2.6. If σ
satisfies σq−1 = x−1

0 − 1, then we conclude that M = M(σ), so M/M is a Kummer
extension whose degree divides q − 1.

Let v,w be, respectively, the discrete valuations associated to the places Q and R.
Let Q′ ∈ �(L) and R′ ∈ �(M) be places such that Q′|Q and R′|R. Now y−1 − 1 ∈
k(Xi), so v(y−1 − 1) is an integer multiple of e(Pi−1, j|Pi,i), which is in turn a multiple of
e(Pi,n|Pi,n−1) = q − 1, and similarly, x−1

0 − 1 belongs to k(X j), so w(x−1
0 − 1) is multiple

of e(Pi, j+1|P j, j), which is multiple of e(Pn−1, j|Pn, j) = q− 1 (see Figure 2.11). Therefore,
by (iii) of Proposition 0.20 we obtain e(Q|Pi−1, j) = e(R|Pi, j+1) = 1. Consequently, we
are in the situation depicted below:

FF

(K) P

(L) Q (M) R

(E) S

e
=

1 e =
1

(L) Q′ (M) R′

Figure 2.12: Auxiliary Kummer extensions; the respective fields are indicated in
parentheses.
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We have e(Q′|P) = e(Q|P) (which divides q) and d(Q′|P) = d(Q|P), by (ii) of Propo-
sition 0.15, so d(Q′|P) = 2

(
e(Q′|P) − 1

)
. Similarly, e(R′|P) = e(R|P) divides q and

d(R′|P) = 2
(
e(R′|P) − 1

)
. Passing to completions (see Section 0.4) we have the follow-

ing picture:

K̂P

L̂Q M̂R

ÊS

F F

e
=

1 e =
1

L̂Q′ M̂R′

FF

K̂P

L̂Q′ = L̂Q M̂R′ = M̂R

ÊS

Figure 2.13: Edges in braces are Galois p-extensions with propertyF (left), and
unramification collapse field extensions (right).

In fact, by (i) and (iii) of Proposition 0.22 we have that L̂Q′/K̂P is a Galois extension of
degree equal to e(Q′|P) f (Q′|P) = e(Q′|P) (because we are assuming that the base field
k is algebraically closed, so all the inertial indices are equal to 1), and the same result
shows that [L̂Q′ : L̂Q] = e(Q′|Q) f (Q′|Q) = 1, that is, L̂Q′ = L̂Q. Therefore L̂Q/K̂P is a
Galois extension of degree e(Q|P); similarly we have M̂R′ = M̂R and M̂R/K̂P is a Galois
extension of degree e(R|P). On the other hand, we know by (ii) of Proposition 0.22 that
the places P̂ ∈ �(K̂P), Q̂ ∈ �(L̂Q), R̂ ∈ �(M̂R) and Ŝ ∈ �(ÊS ) satisfy e(Q̂ | P̂ ) =

e(Q|P), e(R̂ |P̂ ) = e(R|P), e(Ŝ |Q̂) = e(S |Q) and e(Ŝ |R̂ ) = e(S |R), and similar equalities
hold for the different exponent (by (ii) of Proposition 0.23). Finally, the residue fields at
P and P̂ are isomorphic, and since we are assuming that the base field k is algebraically
closed, it follows that k = OP/P = ÔP/ P̂ .

As a consequence, we are in the situation of Proposition 0.29 (the “General Key
Lemma”), so we conclude that both e(Ŝ |Q̂) and e(Ŝ |R̂) divide q, and moreover d(Ŝ |Q̂) =

2
(
e(Ŝ |Q̂) − 1

)
, d(Ŝ |R̂) = 2

(
e(Ŝ |R̂) − 1

)
. Turning back to our original field extensions

via Propositions 0.22 and 0.23, we conclude that both E/L and E/M have propertyF,
which finishes the proof. �

2.3 The genus of the tower

Now we are able to estimate the genus of the tower F , using the results from the
previous section. As before, we suppose that the field k is algebraically closed. Let
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(Pn)n≥0 be a chain of places Pn ∈ �(Fn) such that Pn+1|Pn for all n ≥ 0. If some place
Pk is ramified in Fk+1/Fk, then we know from Lemma 2.5 that X0(P0) ∈ {−1, 0,∞}, and
therefore we are in some of the Cases 1,2,3 of 5 of the previous section (recall that in
Case 4 we get that the corresponding place is unramified in all the extensions). Now
we will write the different exponent d(Pn|P0) in terms of e(Pn|P0) in all these cases. For
brevity we denote e(Pn|P0) by En and d(Pn|P0) by Dn.

e =
1

F0

Fn−1

F

F

F

e =
q −

1

. . .

Fn−1

Fn

Fn+1

Fn+2

Fn+3

Figure 2.14: Case 5.

Case 1: In this case we have e(Pn+1|Pn) = d(Pn+1|Pn) = q for all n ≥ 0, so clearly
we have En = qn. If m ≥ 0 satisfies Dm = q(qm − 1)/(q − 1), then by (iii) of
Proposition 0.15 we have Dm+1 = q(Dm + 1), and so Dm+1 = q(qm+1 − 1)/(q − 1).
As a consequence, Dn = q(En − 1)/(q − 1) for all n ≥ 0.

Case 3: We have E1 = q − 1,D1 = q − 2 and e(Pn+1|Pn) = q, d(Pn+1|Pn) = 2(q − 1)
for all n ≥ 1. Therefore for each n ≥ 1 we have En = qn−1(q − 1). Repeated
applications of (iv) of Proposition 0.15 yields d(Pn|P1) = 2

(
e(Pn|P1) − 1

)
for all

n ≥ 1, so from (v) of Proposition 0.15 we obtain Dn =
(

q
q−1

)
En − 2 for all n ≥ 1.

Case 5: Let k be such that X j(P j) = ∞ for j = 0, 2, 4, . . . , k − 1, X j(P j) = 0 for
j = 1, 3, . . . , k − 2 and X j(P j) = −1 for all j ≥ k. We know that E j = 1 for
j = 0, 1, . . . , k−1 and e(Pk|Pk−1) = q−1, so Ek = q−1 and Dk = q−2. Moreover,
for all j ≥ k the extensions Fk+1/Fk have propertyF, that is, e(Pk+1|Pk) divides
q and d(Pk+1|Pk) = 2

(
e(Pk+1|Pk) − 1

)
; see Figure 2.14. In particular, for all j ≥ k

we have d(P j|Pk) = 2
(
e(P j|Pk) − 1

)
, by (iv) of Proposition 0.15, and therefore

D j =
(

q
q−1

)
E j − 2 for all j ≥ k by (v) of the same Proposition.

As a consequence, in all these cases we have Dn ≤ q(En − 1)/(q − 1) for all n ≥ 0
(because q

q−1 ≤ 2). It remains to consider Case 2; but as we already saw, for this case
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we have E1 = 1, and the ramification behavior of the remaining places is exactly as in
one of the Cases 3,4 or 5. In other words, for all n ≥ 1 we have e(Pn|P1) = E′n−1 and
d(Pn|P1) = D′n−1, where (E′m)m≥0 and (D′m)m≥0 are sequences as in Cases 1,3 or 5 above,
so they satisfy D′m ≤ q(E′m − 1)/(q − 1) for all m ≥ 0. Since e(P1|P0) = 1, it follows
from (i) of Proposition 0.15 that En = e(Pn|P1) and Dn = d(Pn|P1) for all n ≥ 1, and
therefore we again obtain Dn ≤ q(En − 1)/(q − 1) for all n ≥ 0.

We remark that the inclusion in Lemma 2.5 is actually an equality. In fact, by
Proposition 2.4 each one of Cases 1,2,3 and 5 indeed occurs, and we saw that in all
these cases we have ramification at some step of the tower. If B = q/(q − 1), then
for all place Q of the tower (i.e., of some function field Fn) lying above P we have
d(Q|P) ≤ B

(
e(Q|P) − 1). Applying Proposition 0.30 we obtain that the genus of the

tower F relative to F0 satisfies

γ(F /F0) ≤ g(F0) − 1 +
1
2

∑
P∈V(F /F0)

B · deg P

= − 1 +
3
2

B

=
q + 2

2(q − 1)
. (2.10)

2.4 The splitting rate and the limit of the tower

In this section we restrict our attention to the case k = �q3 of the tower F . We will
show that at least q + 1 places in F0 are totally splitting over �q3 in all the extensions
Fn/F0, so the splitting rate of the tower relative to F0 satisfies ν(F /F0) ≥ q + 1 by
Proposition 0.31.

We claim that the equation T q+1 + T = −1 in �q has q + 1 distinct solutions, all
of them belonging to �q3 . In fact, since the polynomial φ(T ) = T q+1 + T + 1 ∈ �q[T ]
satisfies φ′(T ) = (q + 1)T q + 1 = T q + 1 = (T + 1)q and φ(−1) , 0, it follows that φ
and φ′ have no common roots in �q, so φ is separable. Moreover, if a ∈ �q satisfies
aq+1 + a + 1 = 0, then

aq2+q+1 = a(aq+1)q

= a
(
−(a + 1)

)q

= − a(a + 1)q

= − a(aq + 1)

= − aq+1 − a = 1 ,

so aq3−1 = (aq2+q+1)q−1 = 1, so a ∈ �q3 . This proves our claim.
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Recall that the tower is given recursively by Yq+1 + Y = (X + 1)/Xq+1 (see (2.1)),
hence Xq+1 + X + 1 = 0 implies that Yq+1 + Y + 1 = 0. From this it follows that the
places (X0 = a) ∈ �(F0), with a ∈ �q3 satisfying φ(a) = 0 split completely in all the
steps Fn/F0 of the tower, as we want to show.

Now we can state the main result of this chapter:

Theorem 2.11. The tower F over k = �q3 defined recursively by equation (2.1) is

asymptotically good, with limit λ(F ) ≥
2(q2 − 1)

q + 2
.

Proof. We already saw that ν(F /F0) ≥ q + 1, and γ(F /F0) ≤
q + 2

2(q − 1)
by (2.10)).

Since λ(F ) = ν(F /F0)/γ(F /F0), the result follows. �

Remark 2.12. In this note we show the relationship between the tower given by (2.1)
and the tower given by Ihara in [Ih07].

Let p be a prime number, q a power of p, and let k be a perfect field with char(k) =

p. The Bezerra-Garcia-Stichtenoth tower over k is the sequence E = (En)n≥0 of function
fields defined as follows: E0 = k(v0) is the rational function field over k, and for n ≥ 0,
let En+1 = En(vn+1), where vn+1 satisfies the following equation:

1 − vn+1

v q
n+1

=
v q

n + vn − 1
vn

. (2.11)

For each n ≥ 0, let yn = (v q
n + vn − 1)/vn. Then we have the following recursive relation

(equation (3) in [Ih07]), which is used to define the Ihara tower:

−y q
n

(1 − yn)q+1 =
yn+1 − 1

y q+1
n+1

, for all n ≥ 0 . (2.12)

The proof of this equality is as follows: for simplicity write V = vn,W = vn+1. Let

Y B
Vq + V − 1

V
=

1 −W
Wq (by (2.11))

and
Z B

Wq + W − 1
W

=
(W − 1)q

W
+ 1 .

Then we have
YWq = 1 −W and ZW = (W − 1)q + W . (2.13)
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We want to show that
−Yq

(1 − Y)q+1 =
Z − 1
Zq+1 ,

which is equivalent to

−YqWq2

(1 − Y)q+1Wq(q+1) ·
Wq(q+1)

Wq2 =
(Z − 1)W
Zq+1Wq+1 ·

Wq+1

W
,

that is,
−(YWq)q

(Wq − YWq)q+1 · Wq =
ZW −W
(ZW)q+1 · Wq .

Thus, we are reduced to prove the following equality:

−(YWq)q(ZW)q+1 = (ZW −W)(Wq − YWq)q+1 .

Replacing the values given by (2.13) in the equality above, we are led to prove that

−(1 −W)q[(W − 1)q + W
]q+1

= (W − 1)q(Wq − 1 + W)q+1 ,

which is trivially true (recall that (−1)q = −1). This proves our claim.

If Yn B (1/yn)−1, then k(Yn) = k(yn), so the tower of Ihara coincides with the tower
F = (Fn)n≥0, where Fn = k(Y0,Y1, . . . ,Yn). Now we prove that F is precisely the tower
considered in this chapter. In fact, we can write equality (2.12) as

−y q
n (Yn + 1)q

(1 − yn)q+1(Yn + 1)q+1 · (Yn + 1) =
(yn+1 − 1)(Yn+1 + 1)

y q+1
n+1 (Yn+1 + 1)q+1

· (Yn+1 + 1)q ,

and so

−
[
yn(Yn + 1)

]q(Yn + 1)[
Yn + 1 − yn(Yn + 1)

]q+1 =

[
yn+1(Yn+1 + 1) − Yn+1 − 1

]
(Yn+1 + 1)q[

yn+1(Yn+1 + 1)
]q+1 .

Since yn(Yn + 1) = 1, it follows that

−(Yn + 1)

Yq+1
n

= −Yn+1(Yn+1 + 1)q ,

which is precisely our basic equation (2.1). Thus, we conclude that our tower is the
same as the tower of Ihara, which is a subtower of the Bezerra-Garcia-Stichtenoth
tower E given by (2.11).
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