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La recherche de la vérité doit être le but de notre activité;
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Abstract

We first obtain a height estimate for a compact embedded surface Σ with
positive constant mean curvature H in a product spaceM2

×R, whereM2

is a Hadamard surface with curvature KM2 ≤ −κ ≤ 0 and we show that this
estimate is optimal. After, we give a condition that implies Σ, a compact
H-surface embedded inH2

×R whose boundary is a convex planar curve,
stays in a half-space.

Moreover we prove that if Γn ⊂ Q =H2
×{0} is a sequence of embedded

curves converging to point q, and Σn ⊂ H2
× R+ are embedded compact

H-surfaces with Γn = ∂Σn, then there is a subsequence of Σn that either
converges to point q or to the rotationally invariant constant mean curvature
sphere S2

H ⊂H
2
×R+ tangent to Q at q.

Finally, we prove that isolated singularities of sections with precribed
mean curvature of a Riemanninan submersion fibered by geodesics of a
vertical Killing field, are removable. Also we obtain information on the
growth of the difference of two sections u, v : Ω → M̄, having the same
prescribed mean curvature and u = v on ∂Ω.

Keywords: H-surfaces, Half-Space, removable singularities, Riemannian
submersions
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Resumo

Primeiramente obtemos uma estimativa de altura para superfı́cie Σ com-
pacta mergulhada com curvatura média constante H emM2

×R, ondeM2

uma superfı́cie de Hadamard com curvatura KM2 ≤ −κ ≤ 0 e mostramos
que esta estimativa é ótima. Apresentamos, em seguida, uma condição que
implica que uma H-superfı́cie Σ compacta mergulhada cujo bordo é uma
curva convexa plana, permaneça em um dos semiespaços.

Além disso provamos que se Γn ⊂ Q = H2
× {0} é uma sequência de

curvas mergulhadas convergindo a q e Σn ⊂H2
×R+ são H-superfı́cies com-

pactas com Γn = ∂Σn, então existe uma subsequência de Σn que converge a
q ou a S2

H ⊂H
2
×R+ tangente a Q.

Finalmente, provamos que singularidades isoladas de seções com cur-
vatura média prescrita de uma submersão Riemanniana cujas fibras são
geodésicas de um campo Killing são removı́veis. Também obtemos
informações sobre o crescimento da diferença de duas

Palavras-chave: H-superfı́cie, semiespaço, singularidade removı́vel,
submersão Riemanniana
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Introduction

In the last decade the geometry of surfaces in the three dimensional
homogeneous manifolds has been actively studied. In 1978, when Thurston
gave a course at Princeton University, whose subject was the geometry
and topology of three dimensional manifolds, he showed that these spaces
admit ”nice” metrics, i.e, can be endowed with a complete metric with a
large isometry group.

Indeed, in Scott’s work [28], which is based on Thurston’s results, we can
see the classification of the homogeneous simply connected 3-dimensional
manifolds. Such a manifold has an isometry group of dimension 3, 4 or 6.
When the dimension of the isometry group is 6, then we have a space form.
When the dimension of the isometry group is 4, these manifolds, E(κ, τ),
admit natural equivariant Riemannian submersions over 2-dimensional
space forms M2(κ); M2(κ) = S2(κ) for κ ≥ 0, R2 for κ = 0, and H2(κ)
for κ < 0 with 1-dimensional, totally-geodesic fibers and are classified, up
to isometry, by the curvature κ of the base surface of the fibration and the
bundle curvature τ, whereκ and τ can be any real number satisfyingκ , 4τ2.
They are the Berger spheres, the Heisenberg group, the special linear group
Sl(2,R) and the Riemannian product S2(κ) × R and H2(κ) × R. When the
dimension of the isometry group is 3, the manifold has the geometry of the
Lie group Sol3.

In recent years the theory of constant mean curvature surfaces in these
three-dimensional homogeneous spaces has been rapidly developed by
many mathematicians, see for example [1], [2], [7], [8], [12], [18], [20], [29].
One reason for this was the work of Abresch and Rosenberg [1], where they
found a holomorphic quadratic differential on any constant mean curvature

1
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surface of a homogeneous Riemannian 3-manifold with isometry group of
dimension 4.

In this thesis we make some contributions to this theory. First we
will begin to obtain an a priori estimate for the height of a embedded
compact constant mean curvature surface in M2

× R, where M2 is a
Hadamard surface with Gaussian curvature KM ≤ −κ ≤ 0, κ constant,
with boundary belonging to the planeM2

× {0} and transverse to the plane.
More specifically, if Σ is a compact H-surface embedded in M2

× R, with
boundary belonging to Q = M2

× {0}, Γ = ∂Σ, and transverse to the plane
Q, we denote Σ+ = Σ ∩M2

× R+ and Σ− = Σ ∩M2
× R−. We call Σ1 the

connected component of Σ+ that contains Γ.
Let Σ̂1 be the symmetry of Σ1 through the plane Q. Then Σ̂1 ∪ Σ1 is

a compact surface with no boundary and bounds a domain U inM2
× R.

Let U1 be the intersection of U with the half-space above Q. Thus U1 is a
bounded domain inM2

×R, whose boundary, ∂U1, consists of the smooth
connected surface Σ1, and the union Ω of finitely smooth, compact and
connected surfaces in Q.

We define A+ the area of Σ1. Then, using this notation we get

Let M2 be a Hadamard surface with Gaussian curvature
KM ≤ −κ ≤ 0. Let Σ be a compact H-surface embedded
inM2

× R, with boundary belonging to Q = M2
× {0} and

transverse to the plane Q. If h denotes the height of Σ with
respect to Q, we have that

h ≤
HA+

2π
−
κVol (U1)

4π
(1)

where A+ is and U1 are as defined above. The equality
holds if, and only if, K ≡ −κ inside U1 and Σ is a rotational
spherical cap.

The study of height estimates for a constant mean curvature surface
started with Serrin [27]. Serrin observed that a compact constant mean
curvature graph in R3, with curvature H > 0, with planar boundary has
height at most 1

H above the plane, and by Alexandrov reflection technique
[3], one has that a compact constant mean curvature surface with planar
boundary cannot extend more than 2

H . Observe that this estimate is optimal
because it is attained by the hemisphere of radius 1

H .
Later N. Korevaar, R. Kusner, W. Meeks and B. Solomon [16] gave an

optimal bound for graphs and for compact embedded surfaces in the hyper-
bolic 3-spaceH3 with non zero constant mean curvature and boundary on

Instituto de Matemática Pura e Aplicada 2 April 13, 2010
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a plane. On the other hand, for the product spaceM2
×R of a Riemannian

surfaceM2 and the real line R, Aledo, Espinar and Gálvez [2] obtained the
following

Theorem 1 (Aledo, Espinar, Gálvez). LetM2 be a Riemannian surface without
boundary. Let Σ be a compact graph in a set Ω ⊆ M2

× R, with constant mean
curvature H > 0 and whose boundary belongs to Q = M2

× {0}. Let c be the
minimum of the Gauss curvature on Ω ⊆M2

×R. Then the maximum height that
Σ can rise above Q is

4H
√

−4cH2 − c2
arcsin(

√
−c

2H
) if c < 0 and H >

√
−c
2
,

1
H

if c = 0,

4H
√

4cH2 + c2
arcsin(

√
c

2H
) if c > 0,

Moreover, if the equality holds, then Ω has constant Gauss curvature c and the
Abresch-Rosenberg differential vanishes identically on Σ.

Observe that our estimate has a different nature from that of Aledo,
Espinar and Gálvez [2]. Our estimate depends on area and volume and not

on the size of H. The hypothesis H >

√
−c
2

is not necessary in our result.
Our estimate is inspired by the paper [18].

Our second result is to give the following sufficient condition for a
compact constant mean curvature surface in H2

× R to be contained in a
halfspace

Let Σ be a compact constant mean curvature H surface
embedded intoH2

×R, H > 1
2 , whose boundary is a convex

planar curve contained in the plane Q =H2
×{0}. If hΣ <

hSH
2 ,

where hΣ and hSH are the height of the surfaces Σ and the H-
sphere (embedded rotationally invariant cmc sphere given
by [1]), respectively. Then Σ stays in a halfspace determined
by Q and is transverse to Q along the boundary. Moreover,
Σ inherits the symmetries of its boundary.

For the constant mean curvature H surface Σ ⊂ R3 whose boundary
Γ = ∂Σ is a convex curve in a plane P ⊂ R3, Earp, Brito, Meeks, Rosenberg

Instituto de Matemática Pura e Aplicada 3 April 13, 2010
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proved in [25] that if Σ ⊂ R3 is a embedded constant mean curvature
surface whose boundary is a convex curve contained in a plane P and if
Σ is transverse to P along its boundary, then Σ is containted in one of the
halfspaces of R3 determined by P. Lopes and Montiel in [18] give other
conditions: if Area(Σ)H2

≤ 2π, where Σ is a constant mean curvature H
surface in R3, then Σ stays in a halfspace determined by P.

One direct consequence of this last theorem is that:

Let Σ be a compact H-surface embedded inH2
×R, H > 1

2 ,

with convex planar boundary. If hΣ <
hSH

2
, where hΣ is the

height of Σ and hSH is the height of the rotational H-sphere,
then the surface Σ is a graph.

Thus using this result joined with the Theorem 1 we get: Let Σ be a
compact H-surface embedded in H2

× R, with convex planar boundary.

Then Σ is a graph if, and only if, hΣ <
hSH

2
, where hΣ is the height of Σ and

hSH is the height of the rotational H-sphere.
Another interesting problem we will consider is the convergence of a

sequence of constant mean curvature H surfaces inH2
×R with boundary

contained in the slice Q =H2
× {0}. In this case we prove that:

Let Σn ⊂ H2
× R+ be H-surfaces and Γn = ∂Σn ⊂ D(rn) ={

(x1, x2, 0) ∈H2
×R+/x2

1 + x2
2 ≤ rn

}
, with rn a sequence con-

verging to zero. Then there is a subsequence of Σn that either
converges to the origin O ∈ H2

× R+ or to the rotationally
invariant constant mean curvature sphere S2

H ⊂H
2
×R+ tan-

gent toH2
× {0} at O. In the first case the surfaces converge

as subsets and in the second the convergence is smooth on
compact subsets of

{
H2
×R

}
− {O}.

This kind of problem was proposed by Wente [30] when Γn is an arbitrary
Jordan curve inR3 converging to a point p and Σn is an immersed topological
disc bounded by Γn which minimizes area among disks bounding a fixed
algebraic volume. Later Ros and Rosenberg [23] solved this problem when
Γn is a sequence of embedded (perhaps nonconnected) curves converging
to a point p and Σn is a sequence of H-surfaces in R3 whose boundary is
contained in the plane P ⊂ R3. We use ideas in [23] to prove our result
above.

Instituto de Matemática Pura e Aplicada 4 April 13, 2010
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Finally, we work with Riemannian submersions π : M̄n+1
→ Mn whose

vertical fibers are given by flow lines of a unit Killing field. Observe that
among the ambients for which this Riemannian submersion applies, we
have the the Heisenberg spaces and the Sl(2,R).

In these Riemannian submersions we will prove that

Let Ω ⊂ M be a domain and p ∈ Ω. Let u : Ω −
{
p
}
→

R be a function whose Killing graph has prescribed mean
curvature H. Then u extends smoothly to a solution at p.

This kind of theorem was first proved for minimal graphs in R3 by L.
Bers [6]. R. Finn generalized this to prove the constant mean curvature
equation has removable singularities [13]. We refer the reader to the paper
of Nitsche [21] for some history.

The last result of this thesis is the following theorem

Let Ω ⊂ Mn be a domain, Mn the base of a Killing
submersion, such that Ω intersects the boundary of each
geodesic ball centered at a fixed point in a region whose
volume is bounded by a constant times the radius, and let
u, v be two C2(Ω) functions such that their Killing graphs
have the same mean curvature, H(u) = H(v) in Ω and
u|∂Ω and v|∂Ω are piecewise differentiable and coincide
in the points of continuity. Let M(r) = sup

Λr

|u − v| where

Λr = Ω ∩ {x ∈ M; dist(x, a) = r}. Then lim inf
r→∞

M(r)
log r

> 0

if u , v. If the volume of Λr is uniformly bounded then

lim inf
r→∞

M(r)
r

> 0.

Pascal Collin and Romain Krust studied graphs u, v over non compact
domains Ω ⊂ R2, that have the same mean curvature and with u = v on ∂Ω.
They proved that when u , v, then |u − v| must grow at least like log(r), r
radial distance in R2.

This theorem of Collin and Krust, and its technique of proof, have had
many applications and generalizations.

We showed that their techniques apply to sections u, v : Ω ⊂ M → M̄,
provided the volume of Ω intersected with the geodesic spheres of M,
grows at most linearly in the radius of the sphere. For example, when
M̄ = Heisenberg Space and M = the flat R2, this is always the case.

Instituto de Matemática Pura e Aplicada 5 April 13, 2010
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We conclude that for graphs of prescribed mean curvature in Heisenberg
space, over domains Ω ⊂ R2, there is at most one bounded solution of the
mean curvature equation over Ω, with given boundary values. In particular,
a bounded entire minimal graph is constant.

The organization of this thesis is as follows.
In Chapter 1, we first obtain a height estimate for a compact embedded

surface Σ with positive constant mean curvature H in a product spaceM2
×R

and we show that this estimate is optimal. After, we give a condition that
implies Σ, a compact H-surface embedded in H2

× R whose boundary is
a convex planar curve, stays in a half-space. We conclude using these two
results that if Σ is a compact H-surface embedded in H2

× R with convex
planar boundary and the height of the surface Σ is less than or equal to the
height of a hemisphere of a complete rotational sphere with constant mean
curvature H, then Σ is a graph. The equality holds if and only if Σ is the
rotational H-hemisphere.

In Chapter 2, we will prove that if Γn ⊂ Q = H2
× {0} is a sequence of

embedded curves converging to point q, and Σn ⊂ H2
×R+ are embedded

compact H-surfaces and Γn = ∂Σn, then there is a subsequence of Σn that
either converges to point q or to the rotationally invariant constant mean
curvature sphere S2

H ⊂ H
2
× R+ tangent to Q at q. In the first case the

surfaces converge as subsets and in the second the convergence is smooth
on compact subsets ofH2

×R −
{
q
}
.

Finally, in Chapter 3, we will prove that isolated singularities of sections
with precribed mean curvature of a Riemanninan submersion fibered by
geodesics of a vertical Killing field, are removable. Also we obtain infor-
mation on the growth of the difference of two sections u, v : Ω→ M̄, having
the same prescribed mean curvature and u = v on ∂Ω. This generalizes
Theorem 2 of [9].

Instituto de Matemática Pura e Aplicada 6 April 13, 2010



CHAPTER 1

Height estimates for cmc surfaces inM2
×R

1.1 Introduction

We first obtain a height estimate for a compact embedded surface Σ with
positive constant mean curvature H in a product space M2

× R. We
suppose that Σ has planar boundary Γ = ∂Σ, i. e., Γ ⊂ M2

× {0}, and M2

is a Hadamard surface (complete, simply connected, and has everywhere
non-positive sectional curvature) with curvature KM2 ≤ −κ ≤ 0. Height
estimates, when they exist, usually depend only on H. Our estimates
depend also on area and volume. We show that this estimate is optimal and
the equality holds if and only if Σ is a rotational spherical cap.

We then prove that if Σ is a compact H-surface embedded in H2
× R

whose boundary, Γ = ∂Σ, is a convex planar curve contained in Q =H2
×{0}

and the height of the surface Σ is less than or equal the height of the
hemisphere of the rotational sphere with constant mean curvature H, then
Σ stays in a half-space determined by Q and is transverse to Q along the
boundary and inherits the same symmetries of its boundary.

We conclude using these two results that if Σ is a compact H-surface
embedded in H2

× R with convex planar boundary and the height of the
surface Σ is less than or equal to the height of the hemisphere of the ro-
tational sphere with constant mean curvature H, then Σ is a graph. The
equality holds if and only if Σ is the rotational H-hemisphere.

7
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1.2 The height estimates

In this section we first obtain an priori estimate for the height of a compact
constant mean curvature surface embedded in M2

× R with planar
boundary, where M2 is a Hadamard surface with Gaussian curvature
KM2 ≤ −κ ≤ 0. The existence of height estimates reveals, in general, im-
portant properties on the geometric behaviour of these surfaces, as we can
see in [15], for example. Our estimate has a different nature from those of
Serrin [27] and Aledo, Espinar and Gálvez [2]. Our estimate is inspired by
the paper [18].

We then give a condition that implies if Σ ⊂H2
×R is a H-surfaces with

∂Σ ⊂ Q = H2
× {0} then Σ lies on one side of its boundary plane. Now we

give some notation.
LetM2

×R be a 3-dimensional ambient space whereM2 is a Hadamard
surface with Gaussian curvature KM2 ≤ −κ ≤ 0. Let us denote by gM2 the
metric of M2. Thus the canonical metric product of M2

× R is given by
gM2 + dt2.

Let γ be a horizontal complete geodesic inM2
× {0}, thenM2

−
{
γ
}

has
two connected components. We will distinguish them using the following
notation.

Definition 1.2.1. Let J be the standard counter-clockwise rotation operator
ofM2. We call exterior set of γ inM2, extM2

(
γ
)
, the connected component

of M2
−

{
γ
}

towards wich Jγ′ points. The other connected component of
M2
−

{
γ
}

is called the interior set of γ inM2 and denoted by intM2
(
γ
)
.

Definition 1.2.2. Given a complete oriented geodesic γ inM2
× {0}, we will

call γ × R a vertical plane of M2
× R and we will call a slice M2

× {τ} a
horizontal plane.

Note that a vertical plane is isometric to R2 and horizontal plane is
isometric toM2. Throughout this paper we will denote vertical planes by
P and horizontal planes by Q(τ) =M2

× {τ}, Q(0) = Q.
The notion of interior and exterior domain of a horizontal oriented

geodesic extend naturally to vertical planes.

Definition 1.2.3. For a complete oriented geodesic γ inM2
× {0} ≡M2 we

call, respectively interior and exterior of a vertical plane P = γ ×R the sets

intM2×R (P) = intM2
(
γ
)
×R, extM2×R (P) = extM2

(
γ
)
×R.

We will often use the foliations by vertical plane ofM2
×R. We use now

make this precise.

Instituto de Matemática Pura e Aplicada 8 April 13, 2010
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Definition 1.2.4. Let P be a vertical plane inM2
×R and γ(t) be an oriented

horizontal geodesic inM2
×{0}with t arc length along γ, γ(0) = p0 ∈ P, γ′(0)

orthogonal to P at p0 and γ(t) ∈ extM2×R (P) for t > 0. We define the oriented
foliation of vertical planes along γ, denoted by Pγ(t) to be vertical planes
orthogonal to γ(t) with P = Pγ(0).

Let Pγ(t) be the foliation of vertical planes along γ with Pγ(0) = P and
q ∈ P(t0). Let ξ denote the horizontal Killing field ofM2

× R generated by
translation along γ (ξ is tangent to eachM2

× {τ} and is translation along
γ × {τ}), ξ is orthogonal to the planes Pγ(t).

Remark: Throughout this paper a H-surface Σ means a compact con-
stant mean curvature (equal to H) surface inM2

×R with ∂Σ ⊂M2
× {0}.

1.3 The Main Result

Let M2 be a Hadamard surface with Gaussian curvature KM ≤ −κ ≤
0 and Σ be a compact H-surface embedded in M2

× R, with boundary
belonging to Q =M2

× {0}. Let Γ be the boundary of Σ, Γ = ∂Σ. We assume
Σ is transverse to Q along Γ.

We denote Σ+ = Σ ∩
(
M2
×R+

)
and Σ− = Σ ∩

(
M2
×R−

)
. So there is a

connected component of Σ+ or Σ− that contains Γ. We can assume, without
loss of generality, that Γ ⊂ ∂Σ+. We call Σ1 the connected component of Σ+

that contains Γ.
Let Σ̂1 be the symmetry of Σ1 through the plane Q. Then Σ̂1 ∪ Σ1 is

a compact embedded surface with no boundary, with corners along ∂Σ1,
and bounds a domain U in M2

× R. Let U1 the intersection of U with
the half-space above Q. Thus U1 is a bounded domain inM2

× R, whose
boundary, ∂U1, consists of the smooth connected surface Σ1, and the union
Ω of finitely smooth, compact and connected surfaces in Q. We define A+

to be the area of Σ1.

Theorem 1.3.1. LetM2 be a Hadamard surface with Gaussian curvature KM ≤
−κ ≤ 0. Let Σ be a compact H-surface embedded in M2

× R, with boundary
belonging to Q =M2

× {0} and transverse to Q. If h denotes the height of Σ with
respect to Q, we have that

h ≤
HA+

2π
−
κVol (U1)

4π
(1.1)

where A+ and U1 are as defined above. The equality holds if, and only if, K ≡ −κ
inside U1 and Σ is a rotational spherical cap.

Instituto de Matemática Pura e Aplicada 9 April 13, 2010
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Proof. From the surface Σ we obtain the surface Σ1, the bounded domain
U1 ⊂ M

2
× R and the union Ω of finitely smooth, compact and connected

surfaces in Q, as described above. Denote ~H the mean curvature vector
of Σ1 and we take the unit normal N of Σ1 to point inside U1. Let π1 :
M2
× R → M2 and π2 : M2

× R → R be the usual projections. If we
denote by h1 : Σ1 → R the height function of Σ1, that is, h1(p) = π2(p) and
ν =

〈
N, ∂∂t

〉
, we can write

∂
∂t

= T + νN (1.2)

where T is a tangent vector field on Σ1. Since ∂
∂t is the gradient inM2

× R
of the function t, it follows that T is the gradient of h1 on Σ1.

If H is zero then h, the height of Σ, is a harmonic function and by the
maximum principle we get that Σ ⊂M2

× {0}. So, we suppose that H > 0.
Let A(t) be the area of Σt =

{
p ∈ Σ1; h1(p) ≥ t

}
and Γ(t) =

{
p ∈ Σ1; h1(p) = t

}
.

By [26], theorem 5.8, we get

A′(t) = −

∫
Γ(t)

1
‖∇h1‖

dst, t ∈ O,

where O is the set of all regular values of h1.
If we denote by L(t) the length of the planar curve Γ(t), the Schwartz

inequality yields

L2(t) ≤
∫

Γ(t)
‖∇h1‖dst

∫
Γ(t)

1
‖∇h1‖

dst = −A′(t)
∫

Γ(t)
‖∇h1‖dst, t ∈ O. (1.3)

But we have from (1.2) that, along the curve Γ(t),

‖∇h1‖
2 = 1 − ν2 =

〈
ηt,

∂
∂t

〉2

.

where ηt is the inner conormal of Σt along ∂Σt. Since Σt is above the plane

Q(t) we know that
〈
ηt,

∂
∂t

〉
≥ 0. Hence

‖∇h1‖ =

〈
ηt,

∂
∂t

〉
.

Thus (1.3) can be rewritten as follows

L2(t) ≤ −A′(t)
∫

Γ(t)

〈
ηt,

∂
∂t

〉
dst. (1.4)
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Now we recall the Flux Formula. Let Σt and Ω(t) be two compact,
smooth, embedded not necessarily connected surfaces inM2

×R such that
their boundaries coincide. Assume that there exists a compact domain
U(t) in M2

× R such that the boundary of U(t) is ∂U(t) = Σt ∪ Ω(t) and it
is orientable. Notice that the boundary of U(t) is smooth except perhaps
along ∂Σt = ∂Ω(t).

Let NΣt , NΩ(t) be the unit normal fields to Σt and Ω(t), respectively, that
point inside U(t). Denote by ηt the unit conormal to Σt along ∂Σt, pointing
inside Σt. Finally assume that Σt is a compact surface with constant mean
curvature H =

〈
~H,NΣt

〉
> 0 . Let Y be a Killing vector field inM2

×R. Then
by the Flux Formula (Proposition 3 in [15]).∫

∂Σt

〈
Y, ηt

〉
= 2H

∫
Ω(t)

〈
Y,NQ(t)

〉
. (1.5)

Using (1.5), take Y =
∂
∂t

, we obtain∫
Γ(t)

〈
∂
∂t
, ηt

〉
= 2H‖Ω(t)‖

where ‖Ω(t)‖ is the area of the planar region Ω(t). Thus if we substitute in
(1.4), we have

L2(t) ≤ −2HA′(t)‖Ω(t)‖, for almost every t ≥ 0, t ∈ O (1.6)

Now we will show that

L2(t) ≥ 4π‖Ω(t)‖ + κ‖Ω(t)‖2. (1.7)

We denote by Ω(t) =

nt⋃
i=1

Ωi(t), where Ω1(t), . . . ,Ωnt(t) are bounded do-

mains which are determined in the plane Q(t) by the closed curve Γ(t),
and ‖Ωi(t)‖ (with i = 0 . . . ,nt) the area of the corresponding Ωi(t). Then

‖Ω(t)‖ =

nt∑
i=1

‖Ωi(t)‖. We know by [4] that the equation (1.7) is true if nt = 1.

Suppose that the result is true for nt = m. We will prove this is true to m + 1.

Let L̃(t) be the length of Ω̃(t) =

m⋃
i=1

Ωi(t). We know that

L̃2(t) ≥ 4π‖Ω̃(t)‖ + κ‖Ω̃(t)‖2, by hypothesis of induction. (1.8)
L2

m+1(t) ≥ 4π‖Ωm+1(t)‖ + κ‖Ωm+1(t)‖2 by [4] . (1.9)
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The equation (1.8) and (1.9) implies, respectively,

L̃(t) ≥
√
κ‖Ω̃(t)‖

Lm+1(t) ≥
√
κ‖Ωm+1(t)‖.

Thus

L̃(t)Lm+1(t) ≥ κ‖Ω̃(t)‖‖Ωm+1(t)‖ ⇒ 2L̃(t)Lm+1(t) ≥ 2κ‖Ω̃(t)‖‖Ωm+1(t)‖ (1.10)

Adding (1.8), (1.9) and (1.10) we get

(̃L(t) + Lm+1(t))2
≥ 4π(‖Ω̃(t)‖ + ‖Ωm+1(t)‖) + κ(‖Ω̃(t)‖ + ‖Ωm+1(t)‖)2,

and this prove (1.7).
Using (1.6) and (1.7) we have

4π‖Ω(t)‖ + κ‖Ω(t)‖2 ≤ −2HA′(t)‖Ω(t)‖
4π‖Ω(t)‖ + κ‖Ω(t)‖2 + 2HA′(t)‖Ω(t)‖ ≤ 0
(4π + 2HA′(t) + κ‖Ω(t)‖) ‖Ω(t)‖ ≤ 0
4π + 2HA′(t) + κ‖Ωi(t)‖ ≤ 0

Integrating this inequality from 0 to h = max
p∈Σ

h1(p) ≥ 0, one gets

4πh + 2H (A(h) − A(0)) + κVol(U1) ≤ 0,

then

A+ = A(0) ≥
2πh
H

+
κVol(U1)

2H
,

which is the inequality that we looked for.
If the equality holds, then all the inequalities above become equalities.

In particular, by [4], Γ(t) is the boundary of a geodesic disk inM2
× {t}, for

every t ≥ 0, and KM2(p) ≡ −κ for all p ∈ U.
Let D ⊂ M2

× {0} be the geodesic disk such that ∂D = ∂Σ and p ∈ D
the center of D. Let γ be a horizontal complete oriented geodesic passing
through the point p with γ(0) = p and Pγ(t) the oriented foliation of vertical
planes along the γ given by definition 1.2.4. Let Pγ(t1) be a vertical plane in
this horizontal foliation such that does not touch Σ. Then, doing Alexandrov
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reflection with the planes Pγ(t), starting at t = t1, and decrease t we obtain,
by the symmetries of ∂D, that Σ is symmetric with respect to Pγ(0). Since
γ is an arbitrary horizontal complete geodesic passing through the point p,
we have that Σ is a rotational spherical cap. �

Corollary 1.3.2. LetM2 be a Hadamard surface with Gaussian curvature KM ≤
−κ ≤ 0. If Σ is a compact H-surface embedded inM2

×R without boundary and
area A. Let U be the compact domain bounded by Σ, then Σ lies in a horizontal slab

with height less than
HA
2π
−
κVol (U)

4π
. One has equality if, and only if, Σ is a sphere

of revolution, in which case the thinnest slab has height exactly
HA
2π
−
κVol (U)

4π
.

Corollary 1.3.3. LetM2 be a Hadamard surface with Gaussian curvature KM ≤
−κ ≤ 0. If Σ is a compact H-surface embedded in M2

× R with boundary in a
plane Q and transverse to Q, then

κVol(U1) < 2πHA+.

where A+ and U1 are as defined in the previous theorem.

1.4 Horizontal H-cylinders inH2
×R

Now we use a translation invariant H-hypersurfaces given by P. Bérard
and R. Sa Earp in [5] and we give some conditions that implies that Σ lies
above Q =H2

× {0}when ∂Σ ⊂ Q. We recall some ideas here.
Let γ1 be a geodesic passing through 0 ∈ H2

× {0} in Q = H2
× {0} and

let P1 = γ1 × R =
{(
γ1(s), t

)
, (s, t) ∈ R2

}
the vertical plane , where s is the

signed hyperbolic distance to 0 on γ1.
Take a geodesic γ2 such that γ2(0) = γ1(0), γ′2(0)⊥γ′1(0). We consider the

hyperbolic translation with respect to the geodesic γ2. In the vertical plane
P1 we take the curve α(s) =

(
s, f (s)

)
, where f is a real function.

InH2
×

{
f (s)

}
we translate the point α(s) by the translations with respect

to γ2 ×
{
f (s)

}
and we get the equidistant curves

(
γ2

)
α(s) passing through

α(s), at distance s from γ2 ×
{
f (s)

}
. The curve α then generates a translation

surface C =
⋃

s

(
γ2

)
α(s) inH2

×R.

Principal Curvatures: The principal directions of curvature of C are
tangent to the curve α in P1 and the directions tangent to

(
γ2

)
α(s). The
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corresponding principal curvatures with respect to the unit normal pointing
downwards are given by

kP1 = − f ′′(s)
(
1 + ( f ′(s))2

)− 3
2

k(γ2)α(s)
= − f ′(s)

(
1 + ( f ′(s))2

)− 1
2 tanh(s).

The first equality comes from the fact that P1 is totally geodesic and flat.
The second equality follows from the fact that

(
γ2

)
α(s) is at distance s from

γ2 ×
{
f (s)

}
inH2

×
{
f (s)

}
.

Mean Curvature: The mean curvature of the translation surface C asso-
ciated with f is given by

2H(s) = − f ′′(s)
(
1 + ( f ′(s))2

)− 3
2
− f ′(s)

(
1 + ( f ′(s))2

)− 1
2 tanh(s)

2H(s) cosh(s) = − f ′′(s)
(
1 + ( f ′(s))2

)− 3
2 cosh(s) − f ′(s)

(
1 + ( f ′(s))2

)− 1
2 sinh(s)

2H(s) cosh(s) = −
d
ds

(
f ′(s)

(
1 + ( f ′(s))2

)− 1
2 cosh(s)

)
We assume that H = constant. Observe that in our case H > 0. The

generating curves of translation surfaces with mean curvature H are given
by the differential equation

− f ′(s)
(
1 + ( f ′(s))2

)− 1
2 cosh(s) = 2H sinh(s) + d1

where d1 is a constant.
We want that f ′(0) = 0, thus we take d1 = 0. Therefore

− f ′(s)
(
1 + ( f ′(s))2

)− 1
2 = 2H tanh(s)

− f ′(s) = 2H tanh(s)
(
1 + ( f ′(s))2

) 1
2

( f ′(s))2 = 4H2 tanh2(s)
(
1 + ( f ′(s))2

)
( f ′(s))2 = 4H2 tanh2(s) + ( f ′(s))24H2 tanh2(s)

( f ′(s))2 =
4H2 tanh2(s)

(1 − 4H2 tanh2(s))

We have two first-order linear ordinary differential equations given by

f ′+(s) = −
2H tanh(s)√

1 − 4H2 tanh2(s)
and f ′−(s) =

2H tanh(s)√
1 − 4H2 tanh2(s)
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with s ∈ (−sH, sH), where sH = arctanh
(

1
2H

)
.

Resolving the equations above we get, respectively

f+(s) = −
2H

√

4H2 − 1
arctan


√

4H2 − 1√
1 − 4H2 tanh2(s)

 + d2

and

f−(s) =
2H

√

4H2 − 1
arctan


√

4H2 − 1√
1 − 4H2 tanh2(s)

 + d3

where d2 and d3 are constant.
We want that lim

s→±sH
f+(s) = lim

s→±sH
f−(s) = 0, so we take d2 = −d3 =

Hπ
√

4H2 − 1
. Hence

f+(s) = −
2H

√

4H2 − 1

arctan


√

4H2 − 1√
1 − 4H2 tanh2(s)

 − π2
 (1.11)

and

f−(s) =
2H

√

4H2 − 1

arctan


√

4H2 − 1√
1 − 4H2 tanh2(s)

 − π2
 .

We have two curves: α+(s) = (s, f+(s)) and α−(s) = (s, f−(s)). The curve
α = α+∪α− generates a complete embedded translation invariant H-surface,
CH. We call this surface an H-cylinder.

We observe that the height of CH is given by

hCH = −
4H

√

4H2 − 1

(
arctan

(√
4H2 − 1

)
−
π
2

)
.

Since arctan
1
x

=
π
2
− arctan x, x > 0, we get

hCH =
4H

√

4H2 − 1
arctan

(
1

√

4H2 − 1

)
.
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But arctan x = arcsin
(

x
√

1 + x2

)
, then

hCH =
4H

√

4H2 − 1
arcsin

( 1
2H

)
. (1.12)

By Aledo, Espinar and Gálvez [2] we have that the height of the rota-
tional H-sphere, SH, is

8H
√

4H2 − 1
arcsin

( 1
2H

)
,

therefore,

hCH =
hSH

2
.

Now, we use these CH cylinders to prove the following.
Remark: In this subsection the height of a compact H-surface Σ embed-

ded intoH2
×R is the height difference between its upper point and lower

point.

Theorem 1.4.1. Let Σ be a compact H-surface embedded into H2
× R, H >

1
2

,

whose boundary is a convex planar curve contained in the plane Q = H2
× {0}.

Assume 2hΣ < hSH , where hΣ and hSH are the height of the surfaces Σ and the H-
sphere, respectively. Then Σ stays in a half-space determined by Q and is transverse
to Q along the boundary. Moreover, Σ inherits the symmetries of its boundary.

To prove this, we need the following lemma.

Lemma 1.4.2. Let Σ be a compact H-surface embedded inH2
× R, H >

1
2

, with
planar boundary. If 2hΣ < hSH , where hΣ and hSH are the height of the surfaces Σ
and H-sphere, respectively, then the surface Σ lies inside the right vertical cylinder
determined by the convex hull of its boundary.

Proof. Suppose that there is some point of Σ projecting on a point q1 ∈

Q outside the convex hull V of the boundary of Σ, and choose q2 ∈ V
minimizing the distance to q1. Denote by γ1 the geodesic of Q passing
through q1 and q2, γ1(0) = q2, γ1(a) = q1, a > 0. Let γ2 ⊂ H2

× {0} be a
complete geodesic with γ2(0) = γ1(0), γ′2(0)⊥γ′1(0).

Consider CH a horizontal constant mean curvature cylinder generated
by α ⊂ P1 = γ1 ×R, as described above, with curvature H.
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Figure 1.1:

We consider a half-cylinder Cγ1 generated by α(s), s ∈ [0, sH] or s ∈
[−sH, 0]. We move Cγ1 by horizontal translation along γ1 far enough so that
it does not touch the surface Σ and we place its concave side in front of Σ.

The surface Σ is inside a slab B parallel to Q with height less than
hSH

2
.

This slab is not necessarily symmetric with respect to Q but we may utilize
half-cylinders with axis in the central plane of B, then making a vertical
translation if necessary, we can suppose that B is symmetric with respect to
Q, see figure 1.2.

Figure 1.2:

Now we proceed to approach the half-cylinder Cγ1 to Σ by the horizontal
translation along γ1 and in this way we get a first (and so tangential) contact
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point between the two surfaces.
As γ2 lies inside Q and there is a point of Σ projecting on the point q1

outside the convex hull of the boundary, this contact point so obtained is
a nonboundary point of the surface Σ. It is also an interior point of the

half-cylinder Cγ1 , because Σ is inside the slab B ⊂H2
×

(
−

hSH

2
,

hSH

2

)
. On the

other hand, this half-cylinder has constant mean curvature H, with respect
to the normal field pointing to its concave part. As we already know that Σ
is in that concave part, by elementary comparison we have the same choice
of normal at the contact point gives mean curvature H for Σ. But this is a
contradiction to the maximum principle. As a consequence, all the points
of the surface Σ must project on the convex hull of its boundary. �

Proof of Theorem 1.4.1. By the previous lemma we know that, if Ω is a com-
pact convex domain in Q with ∂Ω = ∂Σ, then Σ ∩ ext (Ω) = ∅. Then one
can consider a hemisphere S under the plane Q whose boundary disc D is
contained in Q and is large enough that Ω ⊂ int (D) and S ∩ Σ = ∅. Thus
Σ ∪ (D − Ω) ∪ (S − D) is a compact embedded surface in H2

× R and so
determines an interior domain, we call U. Choose a unit normal N for Σ
in such a way that N point into U at each point. If there are points of the
surface Σ in both half-spaces determined by Q, then N takes the same value
at the points where the height function attains its maximum and minimum
respectively. Reversing N if necessary, we can conclude that the normal
of Σ (for which H > 0) takes the same value at the highest and the lowest
points of the surface.

Lower a sphere S2
H to the highest point or pushing it up to the lowest

one we obtain a contradiction using the interior maximum principle. Thus
the surface lies in one of the half-spaces determined by the plane Q and

rises in it less than
hSH

2
. Using again half-cylinders CH with axis in a plane

parallel to Q and height
hSH

2
, the boundary maximum principle shows us

that the surface is transversal along its boundary.
Let γ be a horizontal complete oriented geodesic passing through the

origin O ∈H2
×R and Pγ(t1) be a vertical plane such that Pγ(t1)∩Σ = ∅ . We

take the oriented foliation of vertical planes along γ given in definition 1.4,
with P = Pγ(0). Now, by applying Alexandrov reflection with these planes,
starting t = t1 and decreasing t, we obtain that Σ has all the symmetries of
its boundary.

�
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Corollary 1.4.3. Let Σ be a compact H-surface embedded inH2
×R, H >

1
2

, with

convex planar boundary. Then Σ is a graph if, and only if, hΣ <
hSH

2
, where hΣ

and hSH are the height of the surfaces Σ and the H-sphere, respectively.

Proof. If the Σ is a graph the proof follow by [2], Theorem 2.1. Suppose

now that hΣ <
hSH

2
. By Theorem 1.4.1 we have that Σ must be contained in

one of the half-spaces determined by the boundary plane and, moreover,
by Lemma 1.4.2 Σ is inside the right vertical cylinder determined by the
convex hull of its boundary. Using Alexandrov reflection with horizontal
planes we get that Σ is a graph.

�
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CHAPTER 2

CMC Surfaces in a Half-Space inH2
×R+

2.1 Introduction

In this chapter we will consider compact embedded surfaces of constant
mean curvature in H2

× R+ with boundary in H2
× {0}. The structure of

these surfaces seems far from being understood. We shall consider a simple
situation concerning this problem. For this we use ideas of A. Ros and H.
Rosenberg, see [23].

Antonio Ros and Harold Rosenberg showed in [23] that if Γn is a
sequence of embedded (perhaps nonconnected) curves inR3, Γn ⊂ {x3 = 0},
converging to a point q, and Σn ⊂ R3

+ is a sequence of embedded compact
1-surfaces (H = 1), with ∂Σn = Γn, then some subsequence of Σn converges
either to q or to the unit sphere tangent to {x3 = 0} at q (the convergence
being smooth on compact subsets of R3

−
{
p
}
). We will show that a similar

result is true forH2
×R+.

2.2 Notations

Here we will use the Poincaré disk model ofH2 which is represented as the
domain

D =
{
z = (x, y) ∈ R2; x2 + y2 < 1

}

20
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endowed with the metric g =
4 |dz|2(

1 − |z|2
)2 .

The complete geodesics in this model are given by arcs of circles or
straight lines which are orthogonal to the boundary at infinity

S1
∞ =

{
z ∈ R2; |z| = 1

}
.

We orientH2 so that its boundary at infinity is oriented counter-clockwise.
Let γ be a complete oriented geodesic inH2, then

∂∞γ =
{
γ−, γ+} ,

where γ− = lim
t→−∞

γ(t) and γ+ = lim
t→+∞

γ(t). Here t is arc length along γ. Then

we can identify a geodesic γ with its boundary at infinity, writing

γ =
{
γ−, γ+} .

We observe that given an oriented geodesic γ =
{
γ−, γ+} in H2 then

H2
−

{
γ
}

has two connected components. We will distinguish then using
the following notation.
Definition 2.2.1. Let J be the standard counter-clockwise rotation operator.
We call exterior set ofγ inH2, extH2

(
γ
)
, the connected component ofH2

−
{
γ
}

towards which Jγ′ points. The other connected component of H2
−

{
γ
}

is
called the interior set of γ inH2 and denoted by intH2

(
γ
)
.

On the other hand, we consider the product spaceH2
× R represented

as the domain
H2
×R =

{
(x, y, t) ∈ R3;

(
x, y

)
∈ D

}
endowed with the product metric.
Definition 2.2.2. Given a complete oriented geodesic γ inH2

× {0}, we will
call γ × R a vertical plane of H2

× R and we will call a slice H2
× {τ} a

horizontal plane.
Note that a vertical plane is isometric to R2 and horizontal plane is

isometric toH2. Throughout this chapter we will denote vertical planes by
P and horizontal planes by Q(τ) =H2

× {τ}, Q(0) = Q.
The notion of interior and exterior domain of a horizontal oriented

geodesic extend naturally to vertical planes.
Definition 2.2.3. For a complete oriented geodesic γ in H2

× {0} ≡ H2 we
call, respectively interior and exterior of a vertical plane P = γ ×R the sets

intH2×R (P) = intH2
(
γ
)
×R, extH2×R (P) = extH2

(
γ
)
×R.
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We will often use foliations by vertical planes ofH2
×R. We now make

this precise.

Definition 2.2.4. Let P be a vertical plane inH2
×R and γ(t) be an oriented

horizontal geodesic inH2
×{0}with t arc length along γ, γ(0) = p0 ∈ P, γ′(0)

orthogonal to P at p0 and γ(t) ∈ extH2×R (P) for t > 0. We define the oriented
foliation of vertical planes along γ, denoted by Pγ(t) to be the vertical planes
orthogonal to γ(t) with P = Pγ(0).

Let Pγ(t) be the foliation of vertical planes along γ with Pγ(0) = P and
q ∈ P(t0). Let ξ denote the horizontal Killing field ofH2

× R generated by
translation along γ (ξ is tangent to each H2

× {τ} and is translation along
γ × {τ}), ξ is orthogonal to the planes Pγ(t).

Definition 2.2.5. We call the surface Σ a horizontal graph over a domain
Ω ⊂ P if Σ is a graph over Ω with respect to the orbits of ξ.

Remark 2.2.6. H-horizontal graphs are strongly stable. See remark 2.1, [20].

2.3 The main result

In the first part we consider the case H >
1
2

. After we give the analogous

result to H ≤
1
2

.

Lemma 2.3.1. Let {Σn} be a sequence of H-horizontal graphs, H >
1
2

, in the
extH2×R (P) such that Σn is a graph over an open subset Ωn ⊂ K ⊂ P, K a compact.
Then there exists a subsequence of Σn which converges on compact subsets of
extH2×R (P) to a H-horizontal graph (perhaps empty) in extH2×R (P).

Remark 2.3.2. We are not assuming any restriction on the open sets Ωn. The
assumption that Σn is a horizontal graph in extH2×R (P) means that Σn is the
graph of a positive function un on Ωn, where un extends continuously to
the closure of Ωn with zero values. Note that the convergence above holds
only in the interior. In general we cannot control the limit surface in P.

Proof. It follow from Espinar, Gálvez and Rosenberg, Theorem 6.2 in [11],
that all the H-horizontal graphs Σn are contained in a fixed compact of
H2
×R.
Let Pγ(t) be the foliation as described above. We take ε > 0 and

Σεn = Σ ∩ extH2×R

(
Pγ(ε)

)
. From Rosenberg, Souam and Toubiana [24],

there exists a constant C1 = C1(H, ε) such that ‖AΣεn‖ ≤ C1, where AΣεn is
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the second fundamental form of Σεn. Meeks and Tinaglia showed (in [19],
Corollary 5.2): Suppose N3 is a complete, simply connected three-manifold
with absolute sectional curvature bounded by s0 and suppose Σ ⊂ N3 is a
properly immersed CMC surface which is almost-embedded, has constant
mean curvature H and satisfies ‖AΣ‖ ≤ C1 for some constant C1 ≥ 0, then
there is a constant C2 > 0 depending on C1, H, s0 such that the area of Σ in
ambient balls of radius one is at most C2. This result implies, in our case,
that there exist a constant C2 > 0 such that Area(Σεn) ≤ C2, C2 = C2(H, ε).

Standard compactness techniques yield a subsequence (which we also
call) Σεn that converges on compact subsets of extH2×R (P(ε)), see for instance
[31] Theorem 3. The limit is either empty or a H-surface properly immersed
Σε.

Suppose the limit is not empty. Let n = 〈N, ξ〉, where N is the unit
normal vector field of Σε, we have that, since ξ is a Killing field, ∆n +
(‖AΣε‖

2 + Ric(N))n = 0. As Σε is a limit of graphs we get n ≤ 0 and, so Gidas,
Ni and Nirenberg [14] implies that n < 0 in Σε, or n ≡ 0 on a connected
component of Σε. In the first case, we conclude that Σε is a graph over
Ω ⊂ Pγ(ε).

In the second case, we know in this connected component, Σε0, ∂Σε0 ⊂ P(ε)
and Σε0 is compact, since Σn are contained in a fixed compact. Then let q ∈ Σε0
be a furthest point from P(ε).

Let Pγ(t) be the foliation of vertical plane along γ and Pγ(t1) outside the
compact K̃. Now, take the foliation of the planes Pγ(t), starting at t = t1,
and decrease t. There exists t0 ∈ R such that Pγ(t0) is the first vertical plane
that touch Σε0 in a point q. We have in this point that N(q) = −ξ(q). This is
impossible because 〈N, ξ〉 = 0 in Σε0. This proves the lemma.

�

This proof also works for H- vertical graphs, that is

Corollary 2.3.3. Let {Σn} be a sequence of H-vertical graphs, H >
1
2

, inH2
×R+

such that Σn is a graph over an open subset Ωn ⊂ K ⊂ Q = H2
× {0}, K compact.

Then there exists a subsequence of Σn which converges on compact subsets of
H2
×R+ to a H-vertical graph (perhaps empty) inH2

×R+.

Now, we will prove the main result.

Theorem 2.3.4. Let Σn ⊂ H2
×R+ be an embedded H-surfaces with H >

1
2

and

Γn = ∂Σn ⊂ D(rn) =
{
(x1, x2, 0) ∈H2

×R+; x2
1 + x2

2 ≤ rn
}
, with rn a sequence

converging to zero. Then there is a subsequence of Σn that either converges to
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the origin O ∈ H2
×R+ or to the rotationally invariant constant mean curvature

sphere S2
H ⊂ H

2
× R+ tangent to H2

× {0} at O. In the first case the surfaces
converge as subsets and in the second the convergence is smooth on compact subsets
of

{
H2
×R

}
− {O}.

Proof. It follows from the Alexandrov reflection technique and the vertical
height estimates, see [2] theorem 2.1, and the Espinar, Gálvez and Rosen-
berg, theorem 6.2 in [11] that all the Σn are contained in a fixed compact K̃
inH2

×R+.
Let γ be a horizontal complete oriented geodesic passing through the

origin O ∈ H2
× R+ and Pγ(t1) be a vertical plane outside this compact K̃.

We take the oriented foliation of vertical planes along γ given in definition
2.2.4, with P = Pγ(0). Let Pγ(t1) be a vertical plane outside the compact K̃.

Ler r > 0 be a positive constant. For n large, ∂Σn ⊂ D(r) where D(r) ={
(x1, x2, 0) ∈H2

×R+; x2
1 + x2

2 ≤ r
}

so, doing Alexandrov reflection with the
planes Pγ(t), starting at t = t1, and decrease t, the symmetry of the part Σn

in extH2×R

(
Pγ(t)

)
does not touch Σn if Pγ(t) does not touch ∂D(r) and this

part of Σn in extH2×R

(
Pγ(t)

)
is a horizontal graph over a part of Pγ(t).

Now, Alexandrov reflexion with horizontal planes and [2] give that the
part of each Σn above P(a), where a = 4H

√

4H2−1
arcsin

(
1

2H

)
, is a vertical graph,

so by Lemma 2.3.1 and Corollary 2.3.3 we get that Σn converges on compact
subsets of

(
H2
×R+

)
− I, where I = 0 × [0, a].

If outside of all compact subsets of
(
H2
×R+

)
− I the convergence is

empty, then for n large, Σn is uniformly close to I. We take H̄ ≥ H and let SH̄
be the hemisphere of constant mean curvature H̄ with ∂SH̄ ⊂H

2
×{a}. When

we move ∂SH̄ from H2
× {a} to H2

× {0} down we obtain, by Comparison
Theorem, that Σn is always below SH̄ (recall that ∂Σn ⊂ D(r) with r > 0 small
enough). Therefore, letting H̄ go to infinity we conclude Σn converge to O.

Suppose that Σn converges to a surface Σ. This surface has constant mean
curvature H and is properly embedded in

(
H2
×R+

)
− I. Let γ a horizontal

complete oriented geodesic passing through the origin O ∈ H2
× R+ and

Pγ(t1) be a vertical plane outside this compact K̃. For each r > 0, we know,
doing Alexandrov reflection with the planes Pγ(t), starting at t = t1, and
decrease t, the symmetry of the part Σ in extH2×R

(
Pγ(t)

)
does not touch Σ if

Pγ(t) ∩D(r) = ∅. Therefore the symmetry of the part Σ by these planes lies
in the domain enclosed by Σ (since this hold for Σn, n large). So this works
up until r = 0 by continuity and Σ is a rotational surface about the vertical
line throught O and each component of Σ has multiplicity one, then Σ is
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S2
H ⊂H

2
×R+.

Finally we show the convergence is uniform on compact subsets of(
H2
×R

)
− {O}. Given ε > 0, there exists r > 0 so that for n large

Σn ∩

(
D(r) ×

(3
2

a,∞
))

= Σn ∩D(r) × (2a − ε, 2a + ε)

and this intersection is a graph above D(r). Coming down with horizontal
planes Q(t) =H2

×{t} from t = 2a to t = a we see that Σn∩(D(r) × (ε, 2a − ε)) =

∅. So we have uniform estimates for Σn on compact subsets of
(
H2
×R

)
−{O},

not just on compact subsets of
(
H2
×R

)
− I. �

Now we deal with H-surfaces with H ∈
(
0, 1

2

]
. We use here the H-

cylinder, see section 1.4.

Lemma 2.3.5. Let Σ be a compact H-surface embedded in H2
× R, H ∈

(
0, 1

2

]
,

with planar boundary. Then the surface Σ lies inside the right vertical cylinder
determined by the convex hull of its boundary.

Proof. Suppose that there is some point of Σ projecting on a point q1 ∈

Q outside the convex hull V of the boundary of Σ, and choose q2 ∈ V
minimizing the distance to q1. Denote by γ1 the geodesic of Q passing
through q1 and q2, γ1(0) = q2, γ1(a) = q1, a > 0. Let γ2 ⊂ H2

× {0} be a
complete geodesic with γ2(0) = γ1(0), γ′2(0)⊥γ′1(0).

Consider CH̄ a horizontal constant mean curvature cylinder with curvature
H̄, H̄ > 1

2 , see section 1.4. We take the half-cylinder Cγ1 and we move Cγ1

by horizontal translation along γ1 far enough so that it does not touch the
surface Σ and we place its concave side in front of Σ.

Since the height hCH̄
goes to infty when H̄ goes to 1

2 , we can choose H̄
such that hCH̄

> 2hΣ, where hΣ is the height of Σ. Observe that we not
suppose that Σ ⊂H2

×R+.
Now we proceed to approach the half-cylinder Cγ1 to Σ by the horizontal

translation along γ1 and in this way we get a first (and so tangential) contact
point between the two surfaces.

As γ2 lies inside Q and there is a point of Σ projecting on the point q1
outside the convex hull of the boundary, this contact point so obtained is a
nonboundary point of the surface Σ. It is also an interior point of the half-
cylinder Cγ1 , because hCH̄

> 2hΣ. On the other hand, this half-cylinder has
constant mean curvature H̄ > H, with respect to the normal field pointing
to its concave part. As we already know that Σ is in that concave part, by
elementary comparison we have the same choice of normal at the contact

Instituto de Matemática Pura e Aplicada 25 April 13, 2010



Claudemir Silvino Leandro Some Results for CMC Surface

point gives mean curvature H for Σ. But this is a contradiction to the
maximum principle. As a consequence, all the points of the surface Σ must
project on the convex hull of its boundary. �

Theorem 2.3.6. Let Σ be a compact H-surface embedded intoH2
×R, H ∈

(
0, 1

2

]
,

whose boundary is a convex planar curve contained in the plane Q = H2
× {0}.

Then Σ stays in a half-space determined by Q and is transverse to Q along the
boundary. Moreover, Σ is a graph and inherits the symmetries of its boundary.

Proof. By the previous lemma we know that, if Ω is a compact convex
domain in Q with ∂Ω = ∂Σ, then Σ ∩ ext (Ω) = ∅ and using Alexandrov
reflection with horizontal planes we get that Σ is a graph. Then one can
consider a hemisphere S under the plane Q whose boundary disc D is
contained in Q and is large enough that Ω ⊂ int (D) and S ∩ Σ = ∅. Thus
Σ ∪ (D − Ω) ∪ (S − D) is a compact embedded surface in H2

× R and so
determines an interior domain, we call U. Choose a unit normal N for Σ
in such a way that N point into U at each point. If there are points of the
surface Σ in both half-spaces determined by Q, then N takes the same value
at the points where the height function attains its maximum and minimum
respectively. Reversing N if necessary, we can conclude that the normal
of Σ (for which H > 0) takes the same value at the highest and the lowest
points of the surface.

By lower a slice Q(t) to the highest point or pushing it up to the lowest
one we obtain a contradiction using the interior maximum principle. Thus
the surface lies in one of the half-spaces determined by the plane Q. Using
half-cylinders CH̄, H̄ > 1

2 , with axis in a plane parallel to Q and the lowest
point in Q, the boundary maximum principle shows us that the surface is
transversal along its boundary.

Let γ be a horizontal complete oriented geodesic passing through the
origin O ∈H2

×R and Pγ(t1) be a vertical plane such that Pγ(t1)∩Σ = ∅ . We
take the oriented foliation of vertical planes along γ given in definition 2.2.4,
with P = Pγ(0). Now, by applying Alexandrov reflection with these planes,
starting t = t1 and decreasing t, we obtain that Σ has all the symmetries of
its boundary.

�

Using the Lemma 2.3.5 we can prove the following.

Theorem 2.3.7. Let Σn ⊂ H2
× R be an embedded H-surfaces with H ∈

(
0, 1

2

]
and Γn = ∂Σn ⊂ D(rn) =

{
(x1, x2, 0) ∈H2

×R; x2
1 + x2

2 ≤ rn
}
, with rn a sequence

converging to zero. Then Σn converges, as subset, to the origin O ∈H2
×R.
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Proof. Let r = r(H̄) be the diameter of SH̄, where SH̄ is the rotationally
invariant constant mean curvature H̄ sphere, H̄ > 1

2 . For n large ∂Σn ⊂ D(r),
where D(r) =

{
(x1, x2, 0) ∈H2

×R; x2
1 + x2

2 ≤ r
}
, and by the lemma 2.3.5 we

get that each Σn lies inside the right vertical cylinder determined by the
convex hull of its boundary and thus Σn ⊂ D(r) ×R.

Let S+ = SH̄∩H
2
×[0,∞) be the superior hemisphere. We will prove that

Σn is below S+ for all n. Suppose not, so for some n the highest point of Σn is
bigger than the height of S+. Lift up S+ to be above Σn, then move S+ down
towards Σn, we get the first tangent point of Σn. This is a interior point of
S+ since Σn ⊂ D(r) × R. But this is a contradiction by maximum principle.
Using the same idea we obtain that Σn is above S− = SH̄ ∩H

2
× [−∞, 0).

This prove the theorem since that r goes to 0 when H̄ goes to infinity.
�
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CHAPTER 3

Removable singularities for sections of Riemannian
submersions of prescribed mean curvature

3.1 Introduction

We will prove that isolated singularities of sections with precribed mean
curvature of a Riemanninan submersion fibered by geodesics of a vertical
Killing field, are removable. Also we obtain information on the growth of
the difference of two sections u, v : Ω → M̄, having the same prescribed
mean curvature and u = v on ∂Ω. This generalizes theorem 2 of [9].

3.2 Killing Graphs

Let π : M̄n+1
→ Mn be Riemannian submersion such that the orbits of the

vertical fibers are geodesics of a nonsingular unit Killing field denoted by
ξ ∈ X(M̄). Let Ω ⊂ M be a domain. We assume that the integral curves φs
of ξ in M̄0 = π−1(Ω) are complete non compact.

We first derive a formula for the mean curvature of a section of M̄.

Lemma 3.2.1. Let Σ be a hypersurface of M̄, transverse to the fibers of ξ. Let N
be a unit normal vector field to Σ. Then

divM(π∗N) = n
〈
~H,N

〉
M̄

= nH

28
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Proof. Let x̄ ∈ Σ, π(x̄) = x ∈ Ω, and let X1, . . . ,Xn be an orthonormal frame
of M in a neighborhood of x. Let X̄1, . . . , X̄n be their horizontal lifts to M̄.

Extend a neighborhood of x̄ in Σ to a foliation of a neighborhood of x̄ in
M̄, by the flow of ξ. Also extend N to this neighborhood as well (by ξ). It
is well know that

divM̄(N) = n
〈
N, ~H

〉
= nH,

where ~H is the mean curvature vector of the leaves of the local foliation.
Write N = Nh + 〈N, ξ〉 ξ. Then

divM̄(N) =

n∑
i=1

〈
∇̄X̄i

N, X̄i

〉
+

〈
∇̄ξN, ξ

〉
.

Since ξ 〈N, ξ〉 = 0,
〈
∇̄ξN, ξ

〉
= −

〈
N, ∇̄ξξ

〉
= 0.

We have N = Nh + 〈N, ξ〉 ξ, so〈
∇̄X̄i

N, X̄i

〉
=

〈
∇̄X̄i

Nh, X̄i

〉
+ 〈N, ξ〉

〈
∇̄X̄i

ξ, X̄i

〉
By O’Neills formula [22], ∇̄X̄i

X̄i is horizontal, so differentiating
〈
ξ, X̄i

〉
=

0, 〈
∇̄X̄i

ξ, X̄i

〉
= −

〈
ξ, ∇̄X̄i

X̄i

〉
= 0

Again, by O’Neills formula,〈
∇̄X̄i

Nh, X̄i

〉
M̄

=
〈
∇Xiπ(Nh),Xi

〉
M
,

and this proves the lemma.
�

Now consider two section u, v : Ω → M̄, transverse to ξ, such that the
surfaces Σu = u(Ω) and Σv = v(Ω) have the same prescribed mean curvature
at each x ∈ Ω. We assume the mean curvature function H is continuous on
Ω. Let Xu, Xv be the vector fields on Ω, the projection of the unit normals
Nu, and Nv to the sections. Let ϕ = u − v be the function on Ω, distance
along the ξ orbits from v(x) to u(x), x ∈ Ω.

It is not hard to see that〈
∇ϕ,Xu − Xv

〉
M =

〈
∇̃ϕ,Nu −Nv

〉
M̄
≥ 0,

and one has equality precisely when ϕ is constant. It is usefull to have an
explicit formular for the quantities involved, so we will prove the above
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statement using formulas in local coordinates derived in [10]. We will
prove:

〈
∇ϕ,Xu − Xv

〉
M =

(Wu + Wv

2

)
‖Nu −Nv‖

2 ,

where Wu =
1

〈Nu, ξ〉
, Wv =

1
〈Nv, ξ〉

.

Consider a smooth embedding i : Ω → M̄, which is a section of the
fibration, and assume Σ0 = i(Ω) is transverse to ξ.

Thus, the hypersurfaces Σs = φs(Σ0) foliate M̄0 by isometric hypersur-
faces.

Definition 3.2.2. The Killing graph Σ = Σu of a function u ∈ C2(Ω) is the
hypersurface

Σ =
{
φ

(
u(p), p

)
; p ∈ Σ0

}
where u is seen as a function on Σ0 by taking u(p) = u(x) when π(p) = x.

3.3 The Mean Curvature Equation

Let X1, ...,Xn be a frame on Ω and σi j =
〈
Xi,X j

〉
M

. Let Ȳ1, ..., Ȳn be the
corresponding local frame on Σ0, i.e., Ȳi(p) = i∗Xi(x), where x ∈ Ω and
p = i(x).

We extend Ȳi by the flow:

Ȳi(φ(s, p)) = (φ)∗(Ȳi(p)),

p ∈ Σ0.
Let X̄1, ..., X̄n in M̄ denote the horizontal lifts of X1, ...,Xn. If q = φ(s, p)

for p ∈ Σ0, then π(q) = π ◦ φ(s, p) = π(p). Therefore

X̄i(q) = φ∗(s, p)X̄i(p)

since φ∗(s, p)X̄i(p) is horizontal and

π∗(q)φ∗(s, p)X̄i(p) = (π ◦ φ)∗(s, p)X̄i(p) = π∗(p)X̄i(p).

Also 〈
X̄i, X̄ j

〉
M̄

=
〈
Xi,X j

〉
M

= σi j.

We denote by s, the function on M̄0 which is distance from q to Σ0, along
the integral curve of ξ from q to Σ0. We calculate X̄i(s).
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Let ∇̄s be the gradient of the function s. Using

π∗(q)Ȳi = π∗(p)i∗Xi(x) = Xi(x) = π∗(q)X̄i

and
1 = ξ(s) =

〈
∇̄s, ξ

〉
M̄

we have that two frames in M̄ are related by{
∇̄s = ξ + σi jX̄ j(s)X̄i,
Ȳi = δiξ + X̄i.

where σi j is the inverse of σi j. Then

δi =
〈
Ȳi(q), ξ(q)

〉
M̄ =

〈
(φs)∗(p)Ȳi(p), (φs)∗(p)ξ(p)

〉
M̄

=
〈
Ȳi(p), ξ(p)

〉
M̄

and
0 = Ȳ j(s) =

〈
∇̄s, Ȳ j

〉
M̄

= δ j + X̄ j(s).

Let Σ be a Killing graph. Consider Σ as given by the immersion

Iu : x ∈ Ω ⊂M 7→ φ(u(x), i(x)).

Its tangent bundle is spanned by the vector fields

(Iu)∗Xi = Xi(u)φs + (φ ◦ i)∗Xi (3.1)
= Xi(u)ξ + Ȳi

We may regard u as a function in M̄0 by means of the extension u(q) =
u(x) if π(q) = x. Thus ξ(u) = 0 and hence

X̄i(u) = Ȳi(u) − δiξ(u) = Ȳi(u) = Xi(u).

Therefore, we have using (1) that

(Iu)∗Xi = X̄i(u)ξ + Ȳi

= X̄i(u)ξ + (δiξ + X̄i)
= X̄i(u)ξ − X̄i(s)ξ + X̄i

= X̄i(u − s)ξ + X̄i

Thus it is easy see that the unit normal vector field to Σ pointing upwards
is

N =
1
W

(ξ − û jX̄ j)
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where û j = σi jX̄i(u − s) and W2 = 1 + σi jûiû j = 1 + ûiûi for ûi = σi jû j. We
extend N to M̄0 by the flow ξ.

Observe that if we define

Gu = û jX j = σi jX̄i(u − s)X j

then −
Gu
W

= Nh and Lemma 3.2.1 gives divM

(
π

(
−

Gu
W

))
= nH.

Also

Gu = σi jX̄i(u)X j − σ
i jX̄i(s)X j

= σi jXi(u)X j − σ
i jX̄i(s)X j

= ∇u − σi jX̄i(s)X j.

Notice that σi jX̄i(s)X j are defined om M since they are independent of s.
Hence for two sections u, v : G(u) − G(v) = ∇u − ∇v.

Notice that σi jX̄i(s)X j are defined on M since they are independent of s.
Hence if u and v are sections with the same mean curvature then Gu−Gv =
∇u − ∇v.

3.4 Some Results

We will now prove the removable singularities theorem. First, a lemma.

Lemma 3.4.1. Let u and v be functions in C2(Ω). Then〈
Gu − Gv,

Gu
Wu
−

Gv
Wv

〉
M

=
(Wu + Wv

2

)
‖Nu −Nv‖

2
M̄ ≥ 0 (3.2)

where W2
u = 1 + ‖Gu‖2M and W2

v = 1 + ‖Gu‖2M, with equality at a point if and only
if, ∇u = ∇v.

Proof. We know that Gu = ûiXi, Gv = v̂ jX j, W2
u = 1+ ûiûi, W2

v = 1+ v̂ jv̂ j,Nu =
1

Wu

(
ξ − ûiYi

)
, Nv =

1
Wv

(
ξ − v̂ jY j

)
and〈

X̄i, X̄ j

〉
M̄

=
〈
Xi,X j

〉
M
.

Thus

〈Nu −Nv,Nu −Nv〉M̄ = 〈Nu,Nu〉M̄ + 〈Nv,Nv〉M̄ − 2 〈Nu,Nv〉M̄

= 2 − 2 〈Nu,Nv〉M̄

= 2 −
2

WuWv

(
1 + ûiv̂i

)
.
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Then

ûiv̂i =
(
WuWv −

WuWv

2
‖Nu −Nv‖

2
M̄

)
− 1. (3.3)

Futher〈
Gu − Gv,

Gu
Wu
−

Gv
Wv

〉
M

=
ûiûi

Wu
−

ûiv̂i

Wv
−

ûiv̂i

Wu
−

v̂iv̂i

Wv

=
W2

u − 1
Wu

− ûiv̂i
( 1
Wu

+
1

Wv

)
+

W2
v − 1
Wv

=
Wu + Wv

2
‖Nu −Nv‖

2
M̄ ≥ 0

by (3.3). Thus equality yields Nu = Nv and this implies that ∇u = ∇v since
Gu − Gv = ∇u − ∇v

�

Theorem 3.4.2. Let u : Ω −
{
p
}
→ R, Ω ⊂M, be a function whose Killing graph

has prescribed mean curvature H. Then u extends smoothly to a solution at p.

Proof. Let R be small so that there exists a smooth function v defined on
BR(p), with:  divM

Gv
W

= nH, in BR(p),

v = u, in ∂BR(p),

This exists by [10].
Let C be a positive constant. Define

ϕ =

{
u − v, if |u − v| < C,

C, if |u − v| ≥ C,

Then, ϕ is Lipschitz and ∇ϕ = ∇u − ∇v = Gu − Gv in the set |u − v| < C and
∇ϕ = 0 in the complement of this set. We have for 0 < r < R

∫
∂A(r,R)

ϕ
〈 Gu

Wu
−

Gv
Wv

, ν
〉
≤ 2Cvol(Sr),

where Wu =
√

1 + ||Gu||2, Wv =
√

1 + ||Gv||2 and vol(Sr) is the volume of
Sr = ∂Br(p).
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Since the Killing graphs of u and v have the same mean curvature, we
have

divM ϕ
( Gu
Wu
−

Gv
Wv

)
=

〈
∇ϕ,

Gu
Wu
−

Gv
Wv

〉
+ ϕdivM

( Gu
Wu
−

Gv
Wv

)
=

〈
∇ϕ,

Gu
Wu
−

Gv
Wv

〉
=

〈
∇u − ∇v,

Gu
Wu
−

Gv
Wv

〉
=

〈
Gu − Gv,

Gu
Wu
−

Gv
Wv

,
〉
.

on |u − v| < C. By Stokes Theorem, we have

∫
A(r,R)

divM ϕ
( Gu
Wu
−

Gv
Wv

)
=

∫
∂A(r,R)

ϕ
〈 Gu

Wu
−

Gv
Wv

, ν
〉
≤ 2Cvol(Sr). (3.4)

Futhermore, by Lemma 4.1, we get

divM ϕ
( Gu
Wu
−

Gv
Wv

)
=

〈
Gu − Gv,

Gu
Wu
−

Gv
Wv

〉
M

=
Wu + Wv

2
||Nu −Nv||

2
M̄, (3.5)

when |u − v| < C and divM ϕ
( Gu
Wu
−

Gv
Wv

)
= 0 when |u − v| ≥ C. Thus we

have, by (3.4) and (3.5) that

0 ≤
∫

A(r,R)∩{|u−v|<C}
divM ϕ

( Gu
Wu
−

Gv
Wv

)
≤ 2Cvol(Sr)

As r decreases to zero we get that Nu = Nv on the set |u − v| < C. Hence
Gu = Gv in the set |u − v| < C.

Since C was arbitrary, we have that Gu = Gv in A(0,R) and u = v in
BR(p) −

{
p
}
. Thus u = v in BR(p).

�

3.5 Asymptotic Properties of Sections u, v : Ω → M̄
with the same prescribed mean curvature and equal
on ∂Ω.
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In [9], Pascal Collin and Romain Krust studied graphs u, v over non
compact domains Ω ⊂ R2, that have the same mean curvature and with
u = v on ∂Ω. They proved that when u , v, then |u − v| must grow at least
like log(r), r radial distance in R2.

This theorem of Collin and Krust, and its technique of proof, have had
many applications and generalizations.

We now show that their techniques apply to sections u, v : Ω ⊂M→ M̄,
provided the volume of Ω intersected with the geodesic spheres of M,
grows at most linearly in the radius of the sphere. For example, when
M̄ = Heisenberg Space and M = the flat R2, this is always the case.

Theorem 3.5.1. Let Ω ⊂ Mn be a domain such that Ω intersects the boundary of
each geodesic ball centered at a fixed point in a region whose volume is bounded
by a constant times the radius, and u, v two C2(Ω) functions such that their
Killing graphs have the same mean curvature, H(u) = H(v) in Ω and u|∂Ω and
v|∂Ω are piecewise differentiable and coincide in the points of continuity. Let

M(r) = sup
Λr

|u−v|where Λr = Ω∩{x ∈M; dist(x, a) = r}. Then lim inf
r→∞

M(r)
log r

> 0

if u , v. If the volume of Λr is uniformly bounded then lim inf
r→∞

M(r)
r

> 0.

Proof. First observe that if Ω̄ is compact then u = v in Ω. For, in this case,
one can move the graph Σu of u, by the flow φt of ξ, and φt(∂Σu) ∩ ∂Σu = ∅
for t , 0. Choose a largest |t| , 0 such that φ|t|(Σu) ∩ Σv , ∅. Then φ|t|(Σu)
and Σv touch at an interior point, hence they are equal by the maximum
principle. This is a contradiction.

Recall that the unit normal to the graph Σu of u is written:

Nu =
−Gu
Wu

+
1

Wu
ξ,

where −Gu is horizontal. Let Xu and Xv be the horizontal projections of
Gu
Wu

and
Gv
Wv

to M; also we will think of Gu and Gv as tangent to M.

We saw that
Gu − Gv = ∇u − ∇v

and〈
Gu − Gv,

Gu
Wu
−

Gv
Wv

〉
M̄

= 〈∇u − ∇v,Xu − Xv〉M =
(Wu + Wv)

2
‖Nu −Nv‖

2
M̄ .
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These equations are precisely what one needs to prove theorem 3.5.1
using the technique of Collin-Krust.

We begin the argument and we refer the reader to [9] for the completion
of the proof.

Assuming u , v, we can suppose

A = {x ∈ Ω/u(x) > v(x)}

is not bounded and connected.
Define Ar = {x ∈ A, dist(x, p) < r} and Λr = {x ∈ A, dist(x, p) = r}. We will

denote vol(Λr) the volume of the Λr. Let r0 such that µ =

∫
Ar0

|Xu −Xv|
2 > 0,

where Xu =
Gu
Wu

, Xv =
Gv
Wv

(µ exists since u , v and Ar0 , ∅).

By Stokes theorem we have

∫
∂Ar

(u − v) 〈Xu − Xv, ν〉 =

∫
Ar

div((u − v)(Xu − Xv))

=

∫
Ar

〈∇u − ∇v,Xu − Xv〉

=

∫
Ar

〈Gu − Gv,Xu − Xv〉 . (3.6)

By Lemma 4.1 we get

〈Gu − Gv,Xu − Xv〉M =
1
2

(Wu + Wv) ‖Nu −Nv‖
2
M̄ . (3.7)

Since 1
2 (Wu + Wv) ≥ 1. We have by (3.6) and (3.7) that

∫
Λr

(u − v) 〈Xu − Xv, ν〉 =

∫
∂Ar

(u − v) 〈Xu − Xv, ν〉 ≥

∫
Ar

|Xu − Xv|
2. (3.8)

By (3.8) we have

µ +

∫
Ar−Ar0

|Xu − Xv|
2
≤M(r)η(r), (3.9)

where
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η(r) =

∫
Λr

|Xu − Xv|.

By Schwartz’s lemma, we have

η(r)2
≤ vol(Λr)

∫
Λr

|Xu − Xv|
2. (3.10)

Now the reader can read [9], for the completion of the argument.
�

Remark. For graphs of prescribed mean curvature in Heisenberg space,
over domains Ω ⊂ R2, we conclude there is at most one bounded solution
of the mean curvature equation over Ω, with given boundary values. In
particular, a bounded entire minimal graph is constant.
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