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0.1 Resumo

Em trabalhos recentes (e.g. [BO], [Be],[FNO]) um modelo microscópico para a condução

de calor em sólidos tem sido considerado. Neste modelo, os átomos interagem como um

sistema de osciladores harmônicos perturbado por medio de um rúıdo que conserva

energia. Dito rúıdo troca energia cinética entre vizinhos mais próximos.

Mais precisamente, no caso de condições de contorno periódicas, os átomos são mar-

cados com x ∈ TN = {1, · · · , N}. O espaço de estados é definido por ΩN = (R× R)TN

onde, para uma configuração t́ıpica (px, rx)TN ∈ ΩN , rx representa a distância entre as

part́ıculas x e x+ 1, e px a velocidade da part́ıcula x. O gerador formal do sistema LN
escreve-se como a soma dos operadores,

AN =
∑
x∈TN

{(px+1 − px)∂rx + (rx − rx−1)∂px} , (0.1.1)

e

SN =
1

2

∑
x∈TN

Xx,x+1[Xx,x+1] , (0.1.2)

onde Xx,y = py∂px − px∂py . Aqui AN representa o operador de Liouville correspondente

a um sistema de osciladores harmônicos e SN representa o operador de rúıdo.

O presente trabalho concentra-se no operador de rúıdo SN , que atua somente em

velocidades. Assim, o espaço de configurações pode-se restringir à RTN . A energia total

da configuração (px)x∈TN é definida como

E =
1

2

∑
x∈TN

p2
x . (0.1.3)

É fácil verificar que SN(E) = 0, i.e a energia total é constante no tempo.

A dinâmica induzida por SN resulta ser um sistema gradiente, isto é, a corrente

microscópica instantânea de energia entre x e x + 1 pode-se exprimir como o gradiente

de um função local, de fato, Wx,x+1 = 1
2
(px+1 − px).

De um ponto de vista f́ısico, os sistemas não gradiente fornecem modelos mais real-

istas, e de um ponto de vista matemático, os sistemas gradiente formam um conjunto

de dimensão pequena no espaço de modelos estocásticos reverśıveis que apresentam leis

de conservação locais (veja [W] e referências ali citadas).

Neste momento, o único método para lidar com sistemas não gradiente é o desen-

volvido por S.R.S Varadhan (cf. [V]) onde, grosso modo, a idéia é obter uma decom-
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posição da corrente como a soma de um termo dissipativo mais um termo de flutuação.

Por analogia com [V] introduzimos não homogeneidades na difusão gerada por (0.2.2),

LN =
1

2

∑
x∈TN

Xx,x+1[a(px, px+1)Xx,x+1] , (0.1.4)

onde a(x, y) é uma função diferenciável satisfazendo 0 < c ≤ a(x, y) ≤ C < ∞, com

derivadas de primeira ordem cont́ınuas e limitadas. A introdução desta função, implica

na perda da estrutura gradiente de (0.1.2).

O comportamento coletivo do sistema pode ser descrito através da medida emṕırica

de energia, que é definida como

πNt (ω, du) =
1

N

∑
x∈TN

p2
x(t)δ xN (du) , (0.1.5)

onde δz representa a medida de Dirac concentrada em z.

Denote por Y N
t o campo de flutuações da medida emṕırica de energia, que atua sobre

as funções suaves H : T→ R como

Y N
t (H) =

1√
N

∑
x∈TN

H(x/N){p2
x(t)− y2} .

O resultado principal deste trabalho é a convergência em distribuição de Y N
t (H) para

um processo de Ornstein-Uhlenbeck generalizado. A tese divide-se em dois caṕıtulos.

Adaptando o método introduzido em [V] identificamos o coeficiente de difusão (Seção

1.3), o que nos permite derivar o prinćıpio de Boltzmann-Gibbs (Seção 1.4). Este é o

ponto chave para mostrar que o campo de flutuações da energia converge, no sentido das

distribuições finito dimensionais, para um processo de Ornstein-Uhlenbeck generalizado

(Seção 1.2). Além disso, usando novamente o prinćıpio de Boltzmann-Gibbs, prova-se a

rigidez do campo de flutuações em um certo espaço de Sobolev (Seção 1.5). Desses dois

últimos fatos decorre a convergência em distribuição.

O segundo caṕıtulo é dedicado à detalhes mais técnicos. Na Seção 2.3 definimos e

damos uma caracterização do espaço vetorialHy, que será central na prova do Teorema 5.

Esta caracterização baseia-se em condições de integrabilidade de um sistema de Poisson

e numa estimativa do buraco espectral para o gerador do processo. Estes dois assuntos

são tratados na seções 2.1 e 2.2, respectivamente. Finalmente, na Seção 2.4 enunciamos,

sem dar uma prova, um resultado de equivalência dos conjuntos.
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A robustez do método de Varadhan para lidar com sistemas não gradiente tem

sido amplamente corroborada em modelos nos quais as quantidades conservadas são

funcionais lineares das coordenadas do sistema, em outras palavras, os conjuntos in-

variantes são hiperplanos. A partir de (0.1.3) podemos ver que esta propriedade não é

satisfeita no modelo que nos interessa (aqui os conjuntos invariantes são hiperesferas).

Este fato introduz dificuldades adicionais de natureza geométrica, já que o método de

Varadhan envolve manipulações em campos de vetores definidos sobre os hiperplanos in-

variantes, ou mais geralmente, sobre as hipersuperf́ıcies invariantes . Estas dificuldades

vão aparecer nas secções 1.3, 2.1 e 2.3, onde explicações mais detalhadas serão dadas.





0.2. INTRODUCTION 5

0.2 Introduction

A central problem in classical statistical mechanics is to provide a bridge between the

macroscopic (thermodynamics) and microscopic (classical mechanics) description of the

different phenomena observed in physical systems.

The ideal approach would be to start from a microscopic model of many components

interacting with realistic forces and evolving with Newtonian dynamics, and then to de-

rive some collective phenomena like the hydrodynamical regime or fluctuation-dissipation

relations. For the moment, a rigorous mathematical derivation from deterministic mi-

croscopic models seems outside the range of the mathematical techniques.

During the last decades the study of stochastic lattice systems, where particles in-

teract randomly, has been largely exploited, basically because such systems may exhibit

phenomena analogous to that of real physical systems (e.g. hydrodynamical equations,

fluctuation-dissipation relations and metastable states) with precise mathematical prop-

erties as counterpart of such phenomena (law of large numbers, central limit theorem

and large deviation results).

A major breakthrough in the study of hydrodynamics for stochastic lattice systems

appears with the work of Guo, Papanicolau, and Varadhan [GPV] where, by mean of

intensive uses of ideas of large deviations, the authors derive the hydrodynamic behavior

of the Ginzburg-Landau model. They consider the discrete torus TN = {1, · · · , N} and

represent by pi the charge at site i. The evolution in time of the vector (p1, · · · , pN) is

given by a diffusion with infinitesimal generator

LN =
1

2

∑
x∈TN

D2
x,x+1 − (φ′(px)− φ′(px+1))Dx,x+1,

where Dx,x+1 = ∂px − ∂px+1 and φ is a continuously differentiable function such that∫∞
−∞ e

−φ(x)dx = 1,
∫∞
−∞ e

λx−φ(x)dx <∞ for all λ ∈ R and
∫∞
−∞ e

σ|φ′(x)|−φ(x)dx <∞ for all

σ > 0.

The generator LN defines a diffusion process with invariant measure ⊗x∈TN e
−φ(px)dpx,

which is not ergodic because for all α ∈ R the hyperplanes
∑

x∈TN px = Nα of average

charge α are invariant sets. Nevertheless, the restriction of the diffusion to each of such

hyperplanes is nondegenerate and ergodic.

The arguments used in [GPV] provide a robust method to derive the hydrodynamic

behavior for a large class of systems. In the beginning it seemed that this method

could only be applied to the so-called gradient systems, that is, systems in which the
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instantaneous current can be expressed as the discrete gradient of a local function.

While this simplifies the proofs considerably, it is not a natural condition. The study of

nongradient systems (systems without this microscopic gradient condition) is of great

interest because from a physical point of view they provide more realistic models, and

from the mathematical point of view gradient system form only a set of low dimension

in the space of stochastic reversible lattice models with local conservation laws (see [W]

and references therein).

In a later paper Varadhan [V] managed to apply the method for the following non-

gradient perturbation of the Ginzburg-Landau model

LN =
1

2

∑
i∈TN

{Di,i+1[a(xi, xi+1)Di,i+1]− (φ′(xi)− φ′(xi+1))a(xi, xi+1)Di,i+1},

where a(r, s) is a function satisfying 0 < c ≤ a(r, s) ≤ C with bounded continuous first

derivatives.

The arguments used in [V] permit to extend the entropy method to reversible non-

gradient systems, provided the generator of the system restricted to a cube of size l has

a spectral gap that shrinks as l−2.

At this time, the more general method to deal with nongradient systems is the one

developed in [V], where roughly speaking, the idea is to approximate the current by a

gradient plus a fluctuation term.

On the other hand, in recent works, a microscopic model for heat conduction in

solids had been considered (c.f. [BO], [Be],[FNO]). In this model nearest neighbor

atoms interact as coupled oscillators forced by an additive noise which exchange kinetic

energy between nearest neighbors.

More precisely, in the case of periodic boundary conditions, atoms are labeled by

x ∈ TN = {1, · · · , N}. The configuration space is defined by ΩN = (R × R)TN , where

for a typical element (px, rx)x∈TN ∈ ΩN , rx represents the distance between particles x

and x + 1, and px the velocity of particle x. The formal generator of the system reads

as LN = AN + SN , where

AN =
∑
x∈TN

{(px+1 − px)∂rx + (rx − rx−1)∂px} , (0.2.1)

and

SN =
1

2

∑
x∈TN

Xx,x+1[Xx,x+1] , (0.2.2)
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where Xx,x+1 = px+1∂px − px∂px+1 . Here AN is the Liouville operator of a chain of

interacting harmonic oscillators and SN is the noise operator.

Denote by {(p(t), r(t)), t ≥ 0} the Markov process generated by N2LN (the factor

N2 corresponds to an acceleration of time). Let C(R+,Ω
N) be the space of continuous

trajectories. Fixed a time T > 0, and for a given measure µN on ΩN , the probability

measure on C([0, T ],ΩN) induced by this Markov process starting in µN will be denoted

by PµN . As usually, expectation with respect to PµN will be denoted by EµN .

In this work we focus on the noise operator SN which acts only on velocities, so we

restrict the configuration space to RTN . The total energy of the configuration (px)x∈TN

is defined by

E =
1

2

∑
x∈TN

p2
x . (0.2.3)

It is easy to check that SN(E) = 0, i.e total energy is constant in time.

The generator SN defines a diffusion process with invariant measures given by νNy (dp) =

⊗x∈TN
1√
2πy
e−p

2
x/2y

2
dpx for all y > 0. The process is not ergodic with respect to these

measures, in fact, for all β > 0 the hyperspheres p2
1 + · · ·+ p2

N = Nβ of average kinetic

energy β are invariant sets. Nevertheless, the restriction of the diffusion to each of such

hyperspheres is nondegenerate and ergodic.

The dynamics induced by SN turns to be a gradient system, in fact, the microscopic

instantaneous current of energy between x and x + 1 can be expressed as Wx,x+1 =
1
2
(p2
x+1 − p2

x).

In analogy to [V] we introduce a coefficient into the generator (0.2.2) to break the

gradient structure, namely

LN =
1

2

∑
x∈TN

Xx,x+1[a(px, px+1)Xx,x+1] , (0.2.4)

where a(r, s) is a differentiable function satisfying 0 < c ≤ a(r, s) ≤ C < ∞ with

bounded continuous first derivatives.

The collective behavior of the system can be described thanks to empirical measures.

The energy empirical measure associated to the process is defined by

πNt (ω, du) =
1

N

∑
x∈TN

p2
x(t)δ xN (du) , (0.2.5)

where δz represents the Dirac measure concentrated on z.
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To investigate equilibrium fluctuations of the empirical measure πN we fix y > 0

and consider the system in the equilibrium νNy . Denote by Y N
t the empirical energy

fluctuation field acting on smooth functions H : T→ R as

Y N
t (H) =

1√
N

∑
x∈TN

H(x/N){p2
x(t)− y2} .

The main result of this work is the convergence of the energy fluctuation field Y N
t (H),

as N goes to infinity, to a generalized Ornstein-Uhlenbeck process characterized by its

covariances. This covariances are given in terms of the diffusion coefficient â(y) (see

(1.1.6)).

This diffusion coefficient is given in terms of a variational formula which is equivalent

to the Green-Kubo formula (c.f. [Sp] p.180). The main task of this work is to establish

rigorously this variational formula.

Intuitively, non conserved quantities fluctuate in a much faster scale than conserved

ones. Therefore, the only part of the fluctuations field of a non conserved quantity which

should persist, when considering the scale in which the conserved quantity fluctuates, is

their projection on the fluctuation field corresponding to the conserved quantity. This

is the content of the Boltzmann-Gibbs principle. Indeed, the diffusion coefficient is the

coefficient of that projection.

In order to study the equilibrium fluctuations of interacting particle systems, Brox

and Rost [BR] introduced the Boltzmann-Gibbs principle and proved their validity for

attractive zero range processes. Chang and Yau [CY] proposed an alternative method to

prove the Boltzmann-Gibbs principle for gradient systems. This approach was extended

to nongradient systems by Lu [L] and Sellami [Se]. Once the diffusion coefficient is

determined, we will essentially follow their approach.

Now we describe the main features of the model we consider.

The model is not gradient. This difficulty already appears in the work of

Bernardin [Be], where there are two conserved quantities (total deformation and to-

tal energy). The energy current is not the gradient of a local function. To overcome

this problem they obtain an exact fluctuation-dissipation relation, that is, they write the

current as a gradient plus a fluctuation term. On the other hand, in [FNO] Fritz et al

studied the equilibrium fluctuations for the model given in [Be] . The exact fluctuation-

dissipation relation mentioned above plays a central role in the proofs of the hydrody-

namic limit and the equilibrium fluctuations.
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Systems in which exists an exact fluctuation-dissipation relation are called almost

gradient systems. For this kind of systems one can find the minimizer in the variational

formula of the diffusion coefficient.

In our setting we do not have such an exact relation, so we use the nongradient

Varadhan’s method.

The only conserved quantity (total energy) is not a linear function of the

coordinates of the system. In other words, the invariant surfaces are not hyperplanes,

in fact, in our case invariant surfaces are hyperspheres.

Having a characterization of the space over which is taken the infimum in the vari-

ational problem defining the diffusion coefficient, is central in the nongradient Varad-

han’s method. Some results related to differential forms on spheres and integration over

spheres are needed in order to obtain such characterization.

We do not have good control when dealing with large velocities. This makes

it necessary to introduce a cutoff in the proof of the characterization mentioned above.

The introduction of this cutoff is justified by the strong law of large numbers.

This lack of control also difficult the estimation of exponential moments. In [Be]

the author manages to overcome this difficulty by adopting a microcanonical approach.

Estimation of exponential moments arises in our case when trying to do the usual proof

of tightness. Using the microcanonical approach mentioned before lead us to an identity

equivalent to the one conjectured by Bernardin ([Be], lemma 6.3), that we are unable

to prove. To avoid this difficulty we follow a strategy proposed by Chang et al. in

[CLO] which exploits the fact that Boltzmann-Gibbs principle can be interpreted as an

asymptotic gradient condition. In this way we avoid the exponential estimate.

Let us end this introduction by saying how this thesis is organized. By adapting the

method introduced in [V] we identify the diffusion term (Section 1.3), which allows us

to derive the Boltzmann-Gibbs principle (Section 1.4). This is the key point to show

that the energy fluctuation field converges in the sense of finite dimensional distributions

to a generalized Ornstein-Uhlenbeck process (Section 1.2). Moreover, using again the

Boltzmann-Gibbs principle we also prove tightness for the energy fluctuation field in a

specified Sobolev space (Section 1.5), which together with the finite dimensional con-

vergence implies the convergence in distribution to the generalized Ornstein-Uhlenbeck

process mentioned above.

The second chapter is devoted to more technical details. In Section 2.3 a character-

ization of the space involved in the variational problem defining the diffusion coefficient
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is given. This characterization relies on a sharp spectral gap estimate for the generator

of the process. Such estimate is obtained in Section 2.2 by comparing the Dirichlet form

of our model with the Dirichlet form of the Kac’s model, and then using the spectral

gap result given in [J] for that model. Some integrability conditions for Poisson systems

are also needed, and are studied in Section 2.1. For the sake of completeness we state

without proof an equivalence of ensembles result in Section 2.4.



Chapter 1

Equilibrium Fluctuations

1.1 Notations and Results

We will now give a precise description of the model. We consider a system of N particles

in one dimension evolving under an interacting random mechanism. It is assumed that

the spatial distribution of particles is uniform, so that the state of the system is given

by specifying the N velocities.

Let T = (0, 1] be the 1-dimensional torus, and for a positive integer N denote by TN

the lattice torus of length N : TN = {1, · · · , N}. The configuration space is denoted by

ΩN = RTN and a typical configuration is denoted by p = (px)x∈TN , where px represents

the velocity of the particle in x. The velocity configuration p changes with time and, as

a function of time undergoes a diffusion in RN .

The diffusion mentioned above have as infinitesimal generator the following operator

LN =
1

2

∑
x∈TN

Xx,x+1[a(px, px+1)Xx,x+1], (1.1.1)

where Xx,z = pz∂px − px∂pz and a : R2 → R is a differentiable function satisfying

0 < c ≤ a(x, y) ≤ C < ∞ with bounded continuous first derivatives. Of course, all the

sums are taken modulo N . Observe that the total energy defined as EN = 1
2

∑
x∈TN p

2
x

satisfies LN(EN) = 0, i.e total energy is a conserved quantity.

Let us consider for every y > 0 the Gaussian product measure νNy on ΩN with density

11
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relative to the Lebesgue measure given by

νNy (dp) =
∏
x∈TN

e
− p2x

2y2

√
2πy

dpx,

where p = (p1, p2, . . . , pN).

Denote by L2(νNy ) the Hilbert space of functions f on ΩN such that νNy (f 2) < ∞.

LN is formally symmetric on L2(νNy ) . In fact, is easy to see that for smooth functions

f and g in a core of the operator LN , we have for all y > 0∫
RN
Xx,z(f)gνNy (dp) = −

∫
RN
Xx,z(g)fνNy (dp),

and therefore,∫
RN
LN(f)gνNy (dp) =

1

2

∑
x∈TN

∫
RN
Xx,x+1[a(px, px+1)Xx,x+1(f)]gνNy (dp)

= −1

2

∑
x∈TN

∫
RN
Xx,x+1(f)[a(px, px+1)Xx,x+1(g)]νNy (dp)

=

∫
RN
fLN(g)νNy (dp).

In particular, the diffusion is reversible with respect to all the invariant measures νNy .

On the other hand, for every y > 0 the Dirichlet form of the diffusion with respect

to νNy is given by

DN,y(f) = 〈−LN(f), f〉y

=
1

2

∑
x∈TN

∫
RN
a(px, px+1)[Xx,x+1(f)]2νNy (dp) , (1.1.2)

where 〈·, ·〉y stands for the inner product in L2(νNy ).

Denote by {p(t), t ≥ 0} the Markov process generated by N2LN (the factor N2

correspond to an acceleration of time). Let C(R+,Ω
N) be the space of continuous

trajectories on the configuration space. Fixed a time T > 0 and for a given measure

µN on ΩN , the probability measure on C([0, T ],ΩN) induced by this Markov process

starting in µN will be denoted by PµN . As usual, expectation with respect to PµN will

be denoted by EµN .
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The diffusion generated by N2LN can also be described by the following system of

stochastic differential equations

dpx(t) =
N2

2
{Xx,x+1[a(px, px+1)]px+1 −Xx−1,x[a(px−1, px)]px−1 − px[a(px, px+1)

+ a(px−1, px)]}dt+N [px−1

√
a(px−1, px)dBx−1,x − px+1

√
a(px, px+1)dBx,x+1],

where {Bx,x+1}x∈TN are independent standard Brownian motion.

Then, by Itô’s formula we have that

dp2
x(t) = N2[Wx−1,x −Wx,x+1]dt+N [σ(px−1, px)dBx−1,x(s)− σ(px, px+1)dBx,x+1(s)],

(1.1.3)

where,

Wx,x+1 = a(px, px+1)(p2
x − p2

x+1)−Xx,x+1[a(px, px+1)]pxpx+1 , (1.1.4)

and,

σ(px, px+1) = 2pxpx+1

√
a(px, px+1) . (1.1.5)

We can think of Wx,x+1 as being the instantaneous microscopic current of energy between

x and x + 1. Observe that the current Wx,x+1 cannot be written as the gradient of a

local function, neither by an exact fluctuation-dissipation equation, i.e as the sum of a

gradient and a dissipative term of the form LN(τxh). That is, we are in the nongradient

case.

The collective behavior of the system is described thanks to empirical measures. With

this purpose let us introduce the energy empirical measure associated to the process

defined by

πNt (ω, du) =
1

N

∑
x∈TN

p2
x(t)δ xN (du) ,

where δu represents the Dirac measure concentrated on u.

To investigate equilibrium fluctuations of the empirical measure πN we fix once for

all y > 0 and consider the system in the equilibrium νNy . Denote by Y N
t the empirical

energy fluctuation field acting on smooth functions H : T→ R as

Y N
t (H) =

1√
N

∑
x∈TN

H(x/N){p2
x(t)− y2} .

On the other hand, let {Yt}t≥0 be the stationary generalized Ornstein-Uhlenbeck process
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with zero mean and covariances given by

E[Yt(H1)Ys(H2)] =
4y4√

4π(t− s)â(y)

∫
T
du

∫
R
dvH̄1(u) exp

{
− (u− v)2

4(t− s)â(y)

}
H̄2(v) ,

(1.1.6)

for every 0 ≤ s ≤ t. Here H̄1(u) ( resp H̄2(u)) is the periodic extension to the real line of

the smooth function H1 (resp H2), and â(y) is the diffusion coefficient determined later

in Section 1.3.

Consider for k > 3
2

the Sobolev space H−k, whose definition will be given at the

beginning of Section 1.5. Denote by QN the probability measure on C([0, T ],H−k)
induced by the energy fluctuation field Y N

t and the Markov process {pN(t), t ≥ 0} defined

at the beginning of this section, starting from the equilibrium probability measure νNy .

Let Q be the probability measure on the space C([0, T ],H−k) corresponding to the

generalized Ornstein-Uhlenbeck process Yt defined above.

We are now ready to state the main result of this work.

Theorem 1. The sequence of probability measures {QN}N≥1 converges weakly to the

probability measure Q .

The proof of Theorem 1 will be divided into two parts. On the one hand, in Section

1.5 we prove tightness of {QN}N≥1 , where also a complete description of the space H−k
is given. On the other hand, in Section 1.2 we prove the finite-dimensional distribution

convergence. These two results together imply the desired result. Let us conclude this

section with a brief description of the approach we follow.

Given a smooth function G : T× [0, T ]→ R, we have after (1.1.3) that

1√
N

∑
x∈TN

G
( x
N
, t
)
p2
x(t) =

1√
N

∑
x∈TN

G
( x
N
, 0
)
p2
x(0) +

∫ t

0

1√
N

∑
x∈TN

∂sG
( x
N
, 0
)
p2
x(s)ds

+

∫ t

0

N
3
2

∑
x∈TN

[
G
(x+ 1

N
, s
)
−G

( x
N
, s
)]
Wx,x+1(s)ds

+

∫ t

0

√
N
∑
x∈TN

[
G
(x+ 1

N
, s
)
−G

( x
N
, s
)]
σ(px, px+1)dBx,x+1(s) .
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Thus,

MG
N (t) = Y N

t (Gt)− Y N
t (G0)−

∫ t

0

Y N
t (∂sGs)ds

+

∫ t

0

√
N
∑
x∈TN

∇NG
( x
N
, s
)
Wx,x+1(s)ds ,

(1.1.7)

where the left hand side is the martingale

1√
N

∑
x∈TN

∫ t

0

∇NG
( x
N
, s
)
σ(px, px+1)dBx,x+1(s) ,

whose quadratic variation is given by

〈MG
N 〉(t) =

1

N

∑
x∈TN

∫ t

0

∣∣∇NG
( x
N
, s
)∣∣2a(px, px+1)p2

xp
2
x+1ds .

Here ∇N denotes the discrete gradient of a function defined in TN . Recall that if G is

a smooth function defined on T and ∇ is the continuous gradient, then

∇NG(
x

N
) = N

[
G
(x+ 1

N

)
−G

( x
N

)
] = (∇G)(

x

N
) + o(N−1).

In analogy, ∆N denotes the discrete Laplacian, which satisfies

∆NG(
x

N
) = N2

[
G
(x+ 1

N

)
− 2G

( x
N

)
+G

(x− 1

N

)
] = (∆G)(

x

N
) + o(N−1),

with ∆ being the continuous Laplacian.

To close the equation for the martingale MG
N (t) we have to replace the term involving

the microscopic currents in (1.1.7) with a term involving Y N
t . Roughly speaking, what

makes possible this replacement is the fact that non-conserved quantities fluctuates faster

than conserved ones. Since the total energy is the unique conserved quantity of the

system, it is reasonable that the only surviving part of the fluctuation field represented

by the last term in (1.1.7) is its projection over the conservative field Y N
t . This is the

content of the Boltzmann-Gibbs Principle (see [BR]).

Recall that in fact we are in a nongradient case. Therefore, in order to perform the

replacement mentioned in the previous paragraph, we follow the approach proposed by

Varadhan in [V], which is briefly described in the following lines.
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Denote by C0 the space of cylinder functions with zero mean with respect to all

canonical measures. On C0 and for each y > 0 a semi-inner product � · �y is defined.

The current W0,1 is seen to belong to the space generated by two orthogonal subspaces,

namely, the linear space generated by the function p2
1−p2

0 and the closure of the subspace

L(C0). Here L stands for the natural extension of LN to Z.

â(y)

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...................

................

...................................................................................................................................................................................................................................................................................................................................................................... ......................................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

...........................
................

p2
1 − p2

0

L(C0)

W0,1....................................................................................................................................................................................

More precisely, there exists â(y) ∈ R such that for all δ > 0 there exists f ∈ C0 such

that

� W0,1 + â(y)[p2
1 − p2

0]− L(f)�y≤ δ .

The key point is that such a decomposition allows to study separately the diffusive part

of the current and the part coming from a fluctuation term.

1.2 Convergence of the finite-dimensional distribu-

tions

To investigate equilibrium fluctuations of the empirical measure πN , we fix once and for

all y > 0 and we denote by Y N
t the empirical energy fluctuation field, a linear functional

which acts on smooth functions H : T→ R as

Y N
t (H) =

1√
N

∑
x∈TN

H(x/N){p2
x(t)− y2} .

We state the main result of the section.

Theorem 2. The finite dimensional distributions of the fluctuation field Y N
t converge,

as N goes to infinity, to the finite dimensional distributions of the generalized Ornstein-

Uhlenbeck process Y defined in (1.1.6).

In this setting convergence of finite dimensional distributions means that given a

positive integer k, for every {t1, · · · , tk} ⊂ [0, T ] and every collection of smooth functions
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{H1, · · · , Hk}, the vector
(
Y N
t1

(H1), · · · , Y N
tk

(Hk)
)

converges in distribution to the vector

(Yt1(H1), · · · , Ytk(Hk)).

Recall that from Itô’s formula we have

Y N
t (H) = Y N

0 (H)−
∫ t

0

√
N
∑
x∈TN

∇NH(x/N)Wx,x+1(s)ds

−
∫ t

0

1√
N

∑
x∈TN

∇NH(x/N)σ(px(s), px+1(s)) dBx,x+1(s) .

Let us focus on the integral in the first line of the above expression. A central idea in

the nongradient method proposed by Varadhan in [V], is to consider the current Wx,x+1

as an element of a Hilbert space generated by two orthogonal subspaces, one of which

is the space generated by the gradient (in our case p2
x − p2

x+1). Since non conserved

quantities fluctuates in a much faster scale than conserved ones, it is expected that just

the component corresponding to the projection over the energy fluctuation field survives

after averaging over space and time. Recall that total energy is the only conserved

quantity of the evolution.

The idea is to use the last observations, together with the fact that
∑

x∈TN ∆NH(x/N) =

0, in order to replace the integral term corresponding to the current Wx,x+1 by an ex-

pression involving the empirical energy fluctuation field, namely
∫ t

0
Y N
s (∆NH)ds.

Firstly, consider the empirical field Y N
t acting now on time dependent smooth func-

tions H : T× [0, T ]→ R as

Y N
t (H) =

1√
N

∑
x∈TN

Ht(x/N){p2
x(t)− y2} ,

where Ht(u) = H(u, t). We will denote by Y N
t both, the field acting on time dependent

and time independent functions. To distinguish, it suffices to check in what kind of

function is being evaluated the field.

Again from the Itô’s formula we obtain

Y N
t (Ht) = Y N

0 (H0) +

∫ t

0

Y N
s (∂sHs)ds −

∫ t

0

√
N
∑
x∈TN

∇NHs(x/N)Wx,x+1(s)ds

−
∫ t

0

1√
N

∑
x∈TN

∇NHs(x/N)σ(px(s), px+1(s)) dBx,x+1(s) . (1.2.1)
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Now we proceed to rewrite the last expression as

Y N
t (Ht) = Y N

0 (H0) +

∫ t

0

Y N
s (∂sHs + â(y)∆NHs)ds − I1

N,F (H ·t)− I2
N,F (H ·t)

−M1
N,F (H ·t)−M2

N,F (H ·t) , (1.2.2)

where F is a fixed smooth local function and

I1
N,F (H ·t) =

∫ t

0

√
N
∑
x∈TN

∇NHs(x/N)
[
Wx,x+1 − â(y)[p2

x+1 − p2
x]− LNτxF

]
ds ,

I2
N,F (H ·t) =

∫ t

0

√
N
∑
x∈TN

∇NHs(x/N)LNτxFds ,

M1
N,F (H ·t) =

∫ t

0

2√
N

∑
x∈TN

∇NHs(x/N)τx
√
a(p0, p1)

[
p0p1 +X0,1

( ∑
i∈TN

τ iF
)]
dBx,x+1 ,

M2
N,F (H ·t) =

∫ t

0

2√
N

∑
x∈TN

∇NHs(x/N)
√
a(px, px+1)Xx,x+1

( ∑
i∈TN

τ iF
)
dBx,x+1(s) .

Here τx represents translation by x, and the notation H ·t stressed the fact that func-

tionals depend on the function H through times in the interval [0, t]. Let us now explain

the reason to rewrite expression (1.2.1) in this way.

In Section 1.3 (see (1.3.13) and (1.3.14)) the following variational formula for the

diffusion coefficient â(y) is obtained:

â(y) = y−4 inf
F
a(y, F ),

where the infimum is taken over all local smooth functions, and

a(y, F ) = Eνy [a(p0, p1){p0p1 +X0,1(
∑
x∈Z

τxF )}2] .

Let {1
2
Fk}k≥1 be a minimizing sequence of local functions belonging to the Schwartz

space. That is,

lim
k→∞

a(y,
1

2
Fk) = y4â(y) . (1.2.3)

With this notation we have the following result.

Theorem 3 (Boltzmann-Gibbs Principle). For the sequence {Fk}k≥1 given above
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and every smooth function H : T× [0, T ]→ R, we have

lim
k→∞

lim
N→∞

EνNy

[
(I1
N,Fk

(H ·t)2
]

= 0 . (1.2.4)

On the other hand, a judicious choice of the function H will cancel the second term

in the right hand side of (1.2.2). Let us firstly note that we can replace ∆NHs by ∆Hs.

In fact, the smoothness of H implies the existence of a constant C > 0 such that

|Y N
s (∆Hs)− Y N

s (∆NHs)| ≤
C√
N

(
1

N

∑
x∈TN

p2
x(s)

)
,

uniformly in s.

Denote by {St}t≥0 the semigroup generated by the Laplacian operator â(y)∆. Given

t > 0 and a smooth function H : T → R, define Hs = St−sH for 0 ≤ s ≤ t. As is well

known, the following properties are satisfied :

∂sHs + â(y)∆Hs = 0 , (1.2.5)

〈 Hs , â(y)∆Hs 〉 = −1

2

d

ds
〈 Hs , Hs 〉 , (1.2.6)

where 〈·, ·〉 stands for the usual inner product in L2(T).

In this way we obtain for all smooth functions H : T→ R

Y N
t (H) = Y N

0 (StH) + O(
1

N
)−I1

N,F (H ·t)−I2
N,F (H ·t)−M1

N,F (H ·t)−M2
N,F (H ·t) , (1.2.7)

where O( 1
N

) denotes a function whose L2 norm is bounded by C/N for a constant C

depending just on H.

The following two lemmas concern the remaining terms.

Lemma 1. For every smooth function H : T × [0, T ] → R and local function F in the

Schwartz space,

lim
N→∞

EνNy

[
sup

0≤t≤T

(
I2
N,F (H ·t) +M2

N,F (H ·t)
)2
]

= 0 . (1.2.8)

Lemma 2. The process M1
N,Fk

converges in distribution as k increases to infinity after
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N , to a generalized Gaussian process characterized by

lim
k→∞

lim
N→∞

EνNy

[
M1

N,Fk
(H ·t1 )M1

N,Fk
(H ·t2 )

]
= 4y4

∫ t

0

∫
T
â(y)H ′1(x, s)H ′2(x, s) dxds ,

(1.2.9)

for every smooth function Hi : T× [0, T ]→ R for i = 1, 2.

The proofs of Lemma 1 and Lemma 2 are postponed to the end of this section. The

proof of Theorem 3 is considerably more difficult, and Section 1.4 is devoted to it .

Before entering in the proof of Theorem 2 we state some remarks. Firstly, the

convergence in distribution of Y N
0 (H) to a Gaussian random variable with mean zero

and variance 2y4〈H,H〉 as N tends to infinity, follows directly from the Lindeberg-Feller

theorem.

Property (1.2.6) together with Lemma 2 imply the convergence in distribution as k

increases to infinity after N of the martingale M1
N,Fk

(H ·t) to a Gaussian random variable

with mean zero and variance 2y4〈H,H〉 − 2y4〈StH,StH〉.
Finally, observe that the martingale M1

N,Fk
(H ·t) is independent of the initial filtration

F0.

Proof of Theorem 2. For simplicity and concreteness in the exposition we will restrict

ourselves to the two-dimensional case (Y N
t (H1), Y N

0 (H2)) . Similar arguments may be

given to show the general case.

In order to characterize the limit distribution of (Y N
t (H1), Y N

0 (H2)) it is enough to

characterize the limit distribution of all the linear combinations θ1Y
N
t (H1) + θ2Y

N
0 (H2).

From Lemma 1, Theorem 3 and expression 1.2.7 it follows

θ1Y
N
t (H1) + θ2Y

N
0 (H2) = θ1Y

N
0 (StH1) + θ1I

N(H1, Fk)− θ1M
1
N,Fk

(H ·t1 ) + θ2Y
N

0 (H2)

= Y N
0 (θ1StH1 + θ2H2) + θ1I

N(H1, Fk)− θ1M
1
N,Fk

(H ·t1 ) ,

where IN(H,Fk) denotes a function whose L2 norm tends to zero as k increases to

infinity after N .

Thus the random variable θ1Y
N
t (H1) + θ2Y

N
0 (H2) tends, as N goes to infinity, to a

Gaussian random variable with mean zero and variance 2y4{θ2
1〈H1, H1〉+2θ1θ2〈StH1, H2〉+

θ2
2〈H2, H2〉}. This in turn implies

EνNy
[Yt(H1)Y0(H2)] = 2y4〈StH1, H2〉,
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which coincide with (1.1.6) as can be easily verified by using the explicit form of StH in

terms of the heat kernel.

Now we proceed to give the proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1. Let us define

ζN,F (t) =
1

N3/2

∑
x∈TN

∇NHt(x/N)τxF (p(t)) .

From the Itô’s formula we obtain

ζN,F (t)− ζN,F (0) =
1

2
I2
N,F (H ·t) +

∫ t

0

1

N3/2

∑
x∈TN

∂t∇NHs(x/N)τxF (p)ds

+

∫ t

0

1√
N

∑
x∈TN

∇NHs(x/N)
∑
z∈TN

√
a(pz, pz+1)Xz,z+1(τxF ) dBz,z+1(s) .

Then (I2
N,F (H ·t) + M2

N,F (H ·t))2 is bounded above by 6 times the sum of the following

three terms

(ζN,F (t)− ζN,F (0))2,(∫ t

0

1

N3/2

∑
x∈TN

∂t∇NHs(x/N)τxF (p)ds

)2

,

(
1

2
M2

N,F (H ·t)−
∫ t

0

1√
N

∑
x∈TN

∇NHs(x/N)
∑
z∈TN

√
a(pz, pz+1)Xz,z+1(τxF ) dBz,z+1(s)

)2

.

Since F is bounded and H is smooth, the first two terms are of order 1
N

. Using

additionally the fact that F is local, we can prove that the expectation of the sup0≤t≤T

of the third term is also of order 1
N

. In fact, if M ∈ N is such that F (p) = F (p0, · · · , pM),

we are considering the difference between

∫ t

0

1√
N

∑
x∈TN

∇NHs(x/N)
√
a(px, px+1)

M∑
j=1

Xx,x+1(τx−jF ) dBx,x+1(s) ,

and∫ t

0

1√
N

∑
x∈TN

∇NHs(x/N)
M+1∑
j=0

√
a(px−1+j, px+j)Xx−1+j,x+j(τ

xF ) dBx−1+j,x+j(s) .
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After rearrangement of the sum, last line can be written as

∫ t

0

1√
N

∑
x∈TN

√
a(px, px+1)

M+1∑
j=0

∇NHs(x− j + 1/N)Xx,x+1(τx−j+1F ) dBx,x+1(s) .

The proof is then concluded by using Doob’s inequality.

Proof of Lemma 2. Using basic properties of the stochastic integral and the stationarity

of the process, we can see that the expectation appearing in the left side of (1.2.9) is

equal to

4

∫ t

0

1

N

∑
x∈TN

∇NH1,s(x/N)∇NH2,s(x/N)EνNy

τxa(p0, p1)

(
p0p1 +X0,1(

∑
i∈TN

τ iFk)

)2
 ds .

Translation invariance of the measure νNy lead us to

4 EνNy

a(p0, p1)

(
p0p1 +X0,1(

∑
i∈TN

τ iFk)

)2
∫ t

0

1

N

∑
x∈TN

∇NH1,s(x/N)∇NH2,s(x/N)ds ,

and as N goes to infinity we obtain

4 Eνy

a(p0, p1)

(
p0p1 +X0,1

(∑
i∈Z

τ iFk
))2

∫ t

0

∫
T
H ′1(u, s)H ′2(u, s) du ds .

Finally from (1.2.3), taking the limit as k tends to infinity we obtain the desired result.

1.3 Central Limit Theorem Variances and Diffusion

Coefficient

The aim of this section is to identify the diffusion coefficient â(y). Roughly speaking,

the direction of the gradient is the only survival term when averaging the current Wx,x+1

over time and space. The coefficient of the component in this direction is the diffusion
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coefficient. In other words, the constant â(y) will have the property

lim sup
N→∞

1

2N
lim sup
t→∞

1

t
Eνy

(∫ t

0

∑
−N≤x≤x+1≤N

Wx,x+1 − â(y)(p2
x+1 − p2

x) ds

)2
 = 0.

(1.3.1)

Here we are considering the process generated by the natural extension of LN to the

infinite product space Ω = RZ, and νy denotes the product measure on Ω defined by

dνy =
∏∞
−∞

exp(
−p2x
2y2

)
√

2πy
dp.

The form of the limit with respect to t appearing in (1.3.1) leads us to think in

the central limit theorem for additive functionals of Markov processes. Let us begin by

introducing some notations and stating some general results for continuous time Markov

processes.

Consider a continuous time Markov process {Ys}s≥0, reversible and ergodic with

respect to invariant measure π. Denote by 〈 , 〉π the inner product in L2(π) and let us

suppose that the infinitesimal generator of this process L : D(L) ⊂ L2(π)→ L2(π) is a

negative operator.

Let V ∈ L2(π) be a mean zero function on the state space of the process. The central

limit theorem proved by Kipnis and Varadhan in [KV] for

Xs =

∫ t

0

V (Ys)ds ,

states that if V is in the range of (−L)−
1
2 , then there exists a square integrable martingale

{Mt}t≥0 with stationary increments such that

lim
t→∞

1√
t

sup
0≤s≤t

|Xs −Ms| = 0 .

This result in turn implies that the limiting variance defined by

σ2(V, π) = lim
t→∞

1

t
E[X2

t ] , (1.3.2)

is equal to

2〈V , (−L)−1V 〉π . (1.3.3)

Observe that in the particular case when V = LU for some U ∈ D(L) we have that
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σ2(V, π) is equal to

2〈U , (−L)U 〉π , (1.3.4)

which corresponds to twice the Dirichlet form associated to the generator L and the

measure π, evaluated in U .

By standard arguments we can extend σ2(V, π) to a symmetric bilinear form σ2(V, Z, π)

for V and Z in the range of (−L)−
1
2 . This bilinear form represents limiting covariances,

and analogous expressions to (1.3.3) and (1.3.4) can be easily obtained.

Now we introduce the Sobolev spaces H1 and H−1. For that, we can consider a

stationary (not necessarily ergodic) measure π. We introduce H1 and H−1 in this

section because (1.3.3) and (1.3.4) correspond to norms in these spaces, although their

properties will be mainly used in Section 1.4.

Define for f ∈ D(L) ⊂ L2(π),

||f ||21 = 〈f, (−LN)f〉π . (1.3.5)

It is easy to see that || · ||1 is a norm in D(L) that satisfies the parallelogram rule, and

therefore, that can be extended to an inner product in D(L). We denote by H1 the

completion of D(L) under the norm || · ||1, and by 〈 , 〉1 the induced inner product. Now

define

||f ||2−1 = sup
g∈D(L)

{2 〈f, g〉π − 〈g, g〉1} , (1.3.6)

and denote by H−1 the completion with respect to || · ||−1 of the set of functions in L2(π)

satisfying ||f ||−1 <∞. Later we state some well known properties of these spaces.

Lemma 3. For f ∈ L2(π) ∩H1 and g ∈ L2(π) ∩H−1, we have

i) ||g||−1 = suph∈D(L)\{0}
〈h,g〉π
||h||1 ,

ii) | 〈f, g〉π | ≤ ||f ||1||g||−1 .

Property i) implies that H−1 is the topological dual of H1 with respect to L2(π),

and property ii) entails that the inner product 〈 , 〉π can be extended to a continuous

bilinear form on H−1×H1. The preceding results remain in force when L2(π) is replaced

by any Hilbert space.

Observe that we can express the central limit theorem variance σ2(V, π) in terms of

the norms defined above. Indeed, σ2(V, π) = 2||V ||−1 for V in the range of (−L)−
1
2 and

σ2(V, π) = 2||U ||1 if V = LU for some U ∈ D(L).
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Now we return to our context. Let LN be the generator defined by

LN(f) =
1

2

∑
−N≤x≤x+1≤N

Xx,x+1[a(px, px+1)Xx,x+1(f)] .

Here the sum is no longer periodic, as in the definition of LN .

Let µN,y be the uniform measure on the sphere{
(p−N , · · · , pN) ∈ R2N+1 :

N∑
i=−N

p2
i = (2N + 1)y2

}
,

and DN,y the Dirichlet form associated to this measure and LN , which is given by

DN,y(f) =
1

2

∑
−N≤x≤x+1≤N

∫
a(px, px+1)[Xx,x+1(f)]2µN,y(dp) .

Is not difficult to see that the measures µN,y are ergodic for the process with generator

LN . We are interested in the asymptotic behavior of the variance

σ2(BN + â(y)AN −HF
N , µN,y) , (1.3.7)

where,

AN(p−N , · · · , pN) = p2
N − p2

−N ,

BN(p−N , · · · , pN) =
∑

−N≤x≤x+1≤N

Wx,x+1 ,

HF
N(p−N , · · · , pN) =

∑
−N≤x−k≤x+k≤N

LN(τxF ) ,

with F (x−k, · · · , xk) a smooth function of 2k + 1 variables. Observe that these three

classes of functions are sums of translations of local functions, and have mean zero

with respect to every µN,y. We introduce ∆N,y to denote variances and covariances, for

instance, ∆N,y(BN , BN) = σ2(BN µN,y) and ∆N,y(AN , H
F
N) = σ2(AN , H

F
N , µN,y). The

inner product in L2(µN,y) is denoted by 〈 , 〉N,y.
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Observe that the functions BN and HF
N belong to the range of LN , in fact

BN(p−N , · · · , pN) = LN(
N∑

x=−N

xp2
x) , (1.3.8)

HF
N(p−N , · · · , pN) = LN(ψFN) , (1.3.9)

where,

ψFN =
∑

−N≤x−k≤x+k≤N

τxF .

This in particular implies that the central limit theorem variances and covariances in-

volving BN and HF
N exist. After (1.3.4) they are also easily computable, which is not

the case for AN .

In the remaining of this section we often use integration with respect to µN,y. Let

us state some classical results (Lemma 4 and Lemma 5) referring to integration over

spheres. The proofs of these and other interesting results can be founded in [Ba].

Lemma 4. Given p = (p1, · · · , pn),a = (a1, · · · , an), a =
∑n

k=1 ak and Sn−1(r) = {p ∈
Rn : |p| = r} , define

E(p,a) =
n∏
k=1

(x2
k)
ak and Sn(a, r) =

∫
Sn−1(r)

E(p,a) dσn−1

then,

Sn(a, r) =
2
∏n

k=1 Γ(ak + 1
2
)

Γ(a+ n
2
)

r2a+n−1 .

Where dσn−1 denotes (n− 1)-dimensional surface measure and Γ is gamma function.

Corollary 1. There exist a constant C depending on y and the lower bound of a(·, ·)
such that, for every u ∈ D(L)∣∣∣〈u,AN〉N,y∣∣∣ ≤ C(2N)

1
2DN,y(u)

1
2 .

Proof. Observe that

AN(p−N , · · · , pN) =
N−1∑
x=−N

Xx,x+1(pxpx+1) ,



1.3. CENTRAL LIMIT THEOREM VARIANCES AND DIFFUSION COEFFICIENT 27

then,

∣∣∣〈u,AN〉N,y∣∣∣ =

∣∣∣∣∣
N−1∑
x=−N

∫
u(p)Xx,x+1(pxpx+1)µN,y(dp)

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
x=−N

∫
Xx,x+1(u)pxpx+1µN,y(dp)

∣∣∣∣∣
≤
∫ N−1∑

x=−N

|
√
a(px, px+1)Xx,x+1(u)| |pxpx+1|√

a(px, px+1)
µN,y(dp)

≤
∫ ( N−1∑

x=−N

a(px, px+1)(Xx,x+1(u))2

) 1
2
(

N−1∑
x=−N

|pxpx+1|2

a(px, px+1)

) 1
2

µN,y(dp)

≤

(∫ N−1∑
x=−N

|pxpx+1|2

a(px, px+1)
µN,y(dp)

) 1
2
(∫ N−1∑

x=−N

a(px, px+1)(Xx,x+1(u))2µN,y(dp)

) 1
2

≤ C(2N)
1
2DN,y(u)

1
2 .

This implies that the central limit theorem variances and covariances involving AN

exist. In spite of that, the core of the problem will be to deal with the variance of AN

which is not easily computable.

Corollary 2. ∫ N−1∑
i=−N

p2
i p

2
i+1µN,y(dp) =

2N(2N + 1)2

(2N + 3)(2N + 1)
y4 .

Proof. By the rotation invariance of µN,y, the left hand side of last expression is equal

to

2N

∫
p2
i p

2
i+1µN,y(dp) ,

which in turns, applying Lemma 4 with a = {1, · · · , 1} and r = y
√

2N + 1, is equal to

2N

(
2

Γ(1
2
)2N−1Γ(3

2
)2

Γ(2 + 2N+1
2

)
r4+2N

)(
2

Γ(1
2
)2N+1

Γ(2N+1
2

)
r2N

)−1

.

The proof is concluded by using well known properties of the Gamma function.

Lemma 5. (Divergence Theorem) Let Bn(r) = {p ∈ Rn : |p| ≤ r} and Sn−1(r) = {p ∈
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Rn : |p| = r}. Then for every continuously differentiable function f : Rn → R we have,

r

∫
Bn(r)

∂f

∂pi
(p)dp =

∫
Sn−1(r)

f(s1, · · · , sn)si dσn−1.

Corollary 3. Taking r = y
√

2N + 1 in Lemma 5, we have for −N ≤ i, j ≤ N∫
Xi,j(W )pipjµN,y(dp) =

r

|S2N(r)|

∫
B2N+1(r)

(
pi
∂W

∂pi
− pj

∂W

∂pj

)
dp .

Proof. Recalling that Xi,j = pj
∂
∂pi
− pi ∂

∂pj
and µN,y is the uniform probability measure

over the sphere of radius y
√

2N + 1 centered at the origin, we have that the left hand

side in the preceding line is equal to

1

|S2N(r)|

(∫
S2N (r)

pj

(
pipj

∂W

∂pi

)
dσ2N −

∫
S2N (r)

pi

(
pipj

∂W

∂pj

)
dσ2N

)
.

From Lemma 5, the expression above is equal to

r

|S2N(r)|

(∫
B2N+1(r)

(
pi
∂W

∂pi
− pipj

∂W

∂pi∂pj

)
dp−

∫
B2N+1(r)

(
pj
∂W

∂pj
− pipj

∂W

∂pi∂pj

)
dp

)
,

concluding the proof.

Corollary 3 is extremely useful for us, because it provides a way to perform telescopic

sums over the sphere. In fact, it implies that given −N ≤ i < j ≤ N we have

∫
Xi,j(W )pipjµN,y(dp) =

∫ j−1∑
k=i

Xk,k+1(W )pkpk+1µN,y(dp) . (1.3.10)

We should stress the fact that equality of the integrands is false.

Now we return to the study of AN , BN and HF
N . The next proposition entails the

asymptotic behavior, as N goes to infinity, of the central limit theorem variances and

covariances involving BN or HF
N , besides an estimate in the case of AN .



1.3. CENTRAL LIMIT THEOREM VARIANCES AND DIFFUSION COEFFICIENT 29

Theorem 4. The following limits hold locally uniformly in y > 0.

i) lim
N→∞

1

2N
∆N,y(BN , BN) = Eνy [a(p0, p1)(2p0p1)2] ,

ii) lim
N→∞

1

2N
∆N,y(H

F
N , H

F
N) = Eνy [a(p0, p1)[Xx,x+1(F̃ )]2] ,

iii) lim
N→∞

1

2N
∆N,y(BN , H

F
N) = −Eνy [2p0p1a(p0, p1)Xx,x+1(F̃ )] ,

iv) lim
N→∞

1

2N
∆N,y(AN , BN) = −Eνy [(2p0p1)2] ,

v) lim
N→∞

1

2N
∆N,y(AN , H

F
N) = 0 ,

vi) lim sup
N→∞

1

2N
∆N,y(AN , AN) ≤ C ,

where F̃ is formally defined by

F̃ (p) =
∞∑

j=−∞

τ jF (p)

and C is a positive constant depending uniformly on y. Although F̃ does not really make

sense, the gradients Xi,i+1(F̃ ) are all well defined.

Proof. i) From (1.3.8) and (1.3.4) we have that

∆N,y(BN , BN) = 2DN,y

(
N∑

x=−N

xp2
x

)

= 4

∫ N−1∑
x=−N

a(px, px+1)(pxpx+1)2µN,y(dp) .

Since µN,y is rotation invariant we have

1

2N
∆N,y(BN , BN) = 4

∫
a(p0, p1)p2

0p
2
1µN,y(dp) ,

and the desired result comes from the equivalence of ensembles stated in Section 2.4.
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ii) From (1.3.9) and (1.3.4) we have that

∆N,y(H
F
N , H

F
N) = 2DN,y(ψ

F
N)

=

∫ N−1∑
x=−N

a(px, px+1)[Xx,x+1(ψFN)]2µN,y(dp) .

The sum in the last line can be broken into two sums, the first one considering the

indexes in {−N + 2k, · · · , N − 2k − 1} and the second one considering the indexes in

the complement with respect to {−N, · · · , N − 1}. From the conditions imposed over

F , when divided by N , the term corresponding to the second sum tends to zero as N

goes to infinity. Then,

lim
N→∞

1

2N
∆N,y(H

F
N , H

F
N) = lim

N→∞

∫
1

2N

N−1∑
x=−N

a(px, px+1)[Xx,x+1(ψFN)]2µN,y(dp)

= lim
N→∞

∫
1

2N

N−1∑
x=−N

τxg(p)µN,y(dp) ,

where g(p) = a(p0, p1)[Xx,x+1(F̃ )]2 and

F̃ (p) =
∞∑

j=−∞

τ jF (p).

One more time, the desired result comes from the rotation invariance of µN,y and the

equivalence of ensembles.

iii) From (1.3.9), (1.3.4) and the fact that Wx,x+1 = −Xx,x+1[pxpx+1a(px, px+1)], we

have

∆N,y(BN , H
F
N) = 2

N−1∑
x=−N

∫
Xx,x+1[pxpx+1a(px, px+1)]ψFNµN,y(dp)

= −2
N−1∑
x=−N

∫
pxpx+1a(px, px+1)Xx,x+1[ψFN ]µN,y(dp) ,

where the last equality is due to an integration by parts. Then, we divide the sum

appearing in the last line into two sums in the very same way as was done for ii),

obtaining
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lim
N→∞

1

2N
∆N,y(BN , H

F
N) = −2

∫ N−2k−1∑
x=−N+2k

τxh(p)µN,y(dp) ,

where h(p) = a(p0, p1)p0p1Xx,x+1(F̃ ).

Again, the result comes from rotation invariance of µN,y and the equivalence of

ensembles.

iv) From (1.3.8), (1.3.4) and the fact that AN = XN,−N(pNp−N), we have

∆N,y(AN , BN) = −2

∫
XN,−N(pNp−N)

(
N∑

x=−N

xp2
x

)
µN,y(dp)

= 2

∫
pNp−NXN,−N [Np2

N −Np2
−N ]µN,y(dp)

= 8N

∫
p2
Np

2
−NµN,y(dp)

=
8N(2N + 1)2y4

(2N + 3)(2N + 1)
.

The second and fourth equalities come from integration by parts and corollary 2, respec-

tively. Thus, we have

lim
N→∞

1

2N
∆N,y(AN , BN) = 4y4.

v) By the same arguments used in the preceding items and using the telescoping sum

obtained in (1.3.10) we have

∆N,y(AN , H
F
N) = −2

∫
XN,−N(pNp−N)ψFNµN,y(dp)

= 2

∫
pNp−NXN,−N(ψFN)µN,y(dp)

= 2

∫ N−1∑
i=−N

pipi+1Xi,i+1(ψFN)µN,y(dp) .

From rotation invariance of µN,y and the equivalence of ensembles we obtain

lim
N→∞

1

2N
∆N,y(AN , H

F
N) = Eνy [p0p1X0,1(F̃ )] = 0 .

The last equality comes from an integration by parts.

vi) By duality ∆N,y(AN , AN) = 2c2 where c is the smallest constant such that for
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every u ∈ D(L), ∣∣∣〈u,AN〉N,y∣∣∣ ≤ cDN,y(u)
1
2 . (1.3.11)

Recall that Corollary 1 ensures the existence of a constant C depending locally uniformly

on y, such that C(2N)
1
2 satisfies (1.3.11) for every u ∈ D(L). Therefore, c is smaller

than C(2N)
1
2 and

1

2N
∆N,y(AN , AN) ≤ 2C2 ,

which concludes the proof of Theorem 4.

We proceed now to calculate the only missing limit variance (the one corresponding

to AN) in an indirect way, as follows.

Using the basic inequality

|∆N,y(AN , BN −HF
N)|2 ≤ ∆N,y(AN , AN)∆N,y(BN −HF

N , BN −HF
N) ,

we obtain,

lim inf
N→∞

|∆N,y(AN ,BN−HF
N )|2

(2N)2

∆N,y(BN−HF
N ,BN−H

F
N )

2N

≤ lim inf
N→∞

∆N,y(AN , AN)

2N
,

which in view of Theorem 4 implies

(4y4)2

Eνy [a(p0, p1){2p0p1 +X0,1(F̃ )}2]
≤ lim inf

N→∞

∆N,y(AN , AN)

2N
. (1.3.12)

Let us define â(y) by the relation

â(y) = y−4 inf
F
a(y, F ) , (1.3.13)

where the infimum is taken over all local smooth functions in Schwartz space, and

a(y, F ) = Eνy [a(p0, p1)(p0p1 +X0,1(F̃ ))2] . (1.3.14)

Since the limit appearing in (1.3.12) does not depend of F , we have

lim inf
N→∞

∆N,y(AN , AN)

2N
≥ 4y4

â(y)
. (1.3.15)
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Moreover, this limit is locally uniform in y.

We are now ready to state the main result of this section.

Theorem 5. The function â(y) is continuous in y > 0 and

lim
N→∞

1

2N
∆N,y(AN , AN) =

4y4

â(y)
. (1.3.16)

Proof. Let us define

l(y) = lim sup
y′→y

lim sup
N→∞

1

2N
∆N,y′(AN , AN) . (1.3.17)

By definition, â(y) and l(y) are upper semicontinuous functions.

In order to prove (1.3.16) it is enough to verify the following inequality

l(y) ≤ 4y4

â(y)
. (1.3.18)

In fact, by the upper semicontinuity of â(y) and the lower bound in (1.3.15) we obtain

4y4

â(y)
≤ 4y4

lim supy′→y â(y′)

≤ lim sup
y′→y

4y′4

â(y′)

≤ lim sup
y′→y

lim sup
N→∞

∆N,y′(AN , AN)

2N
,

from which we have the equality

l(y) =
4y4

â(y)
. (1.3.19)

From the definition of l(y), it is clear that

lim sup
N→∞

1

2N
∆N,y(AN , AN) ≤ l(y) ,

which together with (1.3.15) proves (1.3.16). Moreover, equality (1.3.19) together with

the upper semicontinuity of l(y) gives the lower semicontinuity of â(y). Ending the proof

of Theorem 5.

Therefore it remains to check the validity of inequality (1.3.18), which is equivalent
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to prove that for every θ ∈ R,

l(y) > θ =⇒ θ ≤ 4y4

â(y)
. (1.3.20)

Suppose that l(y) > θ. Then, there exist a sequence yN → y such that

lim
N→∞

1

2N
∆N,yN (AN , AN) = A > θ .

By i) in Lemma 3 we have

{∆N,yN (AN , AN)}1/2 = sup
h∈D(LN )\{0}

〈h,AN〉N,yN
DN,y(h)

1
2

.

Then there exist a sequence of smooth functions {wN}N≥1 such that wN ∈ Dom(LN)

and

〈wN , AN〉N,yN >
√
NθDN,yN (wN)

1
2 .

We can suppose without loss of generality that

〈wN〉N,yN = 0 . (1.3.21)

Taking βN = 1
2N
DN,yN (wN) and vN = β

− 1
2

N wN , we obtain a sequence of functions

{vN}N≥1 such that

lim inf
N→∞

1

2N
〈vN , AN〉N,yN ≥

√
θ

2
,

and,

DN,yN (vN) = 2N .

We can renormalize again by taking γN = 1
y2N

1
2N
〈vN , AN〉N,yN and uN = γ−1

N vN , obtain-

ing a new sequence of functions {uN}N≥1 satisfying

1

2N

∫
XN,−N(uN)pNp−NµN,yN (dp) = y2

N , (1.3.22)

and

lim sup
N→∞

1

2N

∫ ∑
−N≤x≤x+1≤N

a(px, px+1)[Xx,x+1(uN)]2µN,yN (dp) ≤ 4y4

θ
. (1.3.23)
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The aim of Lemma 6, Lemma 8 and Lemma 10 stated and proved below, is to use

(1.3.22) and (1.3.23) in order to obtain a function ξ satisfying

i) Eνy [ξ] = 0 ,

ii) Eνy [p0p1ξ] = 0 ,

iii) Eνy [a(p0, p1){p0p1 + ξ}2] ≤ 4y4

θ
,

besides an additional condition concerning Xi,i+1τ
jξ −Xj,j+1τ

iξ.

Condition iii) obviously implies

θ ≤ 4y4

Eνy [a(p0, p1){p0p1 + ξ}2]
. (1.3.24)

Rather less obvious is the fact that i), ii) and the extra condition on Xi,i+1τ
jξ−Xj,j+1τ

iξ,

imply that ξ belongs to the closure in L2(νy) of the set over which the infimum in the

definition of â(y) is taken (see (1.3.13)). The proof of this fact is the content of Section

2.3.

In short, supposing l(y) > θ we will find a function ξ such that Eνy [a(p0, p1){p0p1 +

ξ}2] ≤ 4y4

θ
. Additionally we will see that such a function belongs to the closure of

{X0,1(F̃ ) : F is a local smooth function}. These two facts imply the left hand side of

(1.3.20), finishing the proof of Theorem 5.

Now we state and prove the lemmas concerning the construction of the function ξ

endowed with the required properties.

Lemma 6. Given θ > 0, k ∈ N and a convergent sequence of positive real numbers

{yN}N≥1 satisfying (1.3.22) and (1.3.23), there exists a sequence of functions {u(k)
N }N≥1

depending on the variables p−k, · · · , pk such that

1

2k

∫
Xk,−k(u

(k)
N )pkp−kµN,yN (dp) = y2

N , (1.3.25)

and,

lim sup
N→∞

1

2k

∫ ∑
−k≤x≤x+1≤k

a(px, px+1)[Xx,x+1(u
(k)
N )]2µN,yN (dp) ≤ 4y4

θ
, (1.3.26)

where y is the limit of {yN}N≥1.
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Proof. Define for −N ≤ x ≤ x+ 1 ≤ N

αNx,x+1 = y−2
N EµN,yN

[pxpx+1Xx,x+1(uN)]

and

βNx,x+1 = y−4
N EµN,yN

[a(px, px+1)[Xx,x+1(uN)]2] .

Where EµN,yN
denotes integration with respect to µN,yN and uN is a function satisfying

(1.3.22) and (1.3.23).

Thanks to (1.3.22) and the telescopic sum obtained in (1.3.10) we have

αN−N,−N+1 + · · ·+ αNN−1,N = 2N .

After (1.3.23) for every ε > 0 there exist N0 such that

βN−N,−N+1 + · · ·+ βNN−1,N ≤ 2N
(4

θ
+ εy−4

N

)
,

for all N ≥ N0.

By using Lemma 7 stated and proved below, we can conclude the existence of a block

ΛN,k of size 2k contained in {−N, · · · , N} such that

γN

 ∑
x,x+1∈ΛN,k

αNx,x+1

2

≥ 2k
∑

x,x+1∈ΛN,k

βNx,x+1 , (1.3.27)

with γN = 4
θ

+ εy−4
N .

Let us now introduce some notation. Denote by RN the rotation of axes defined as

RN : R2N+1 → R2N+1

(p−N , · · · , pN) → (p−N+1, · · · , pN , p−N) .

For an integer i > 0 we denote by Ri
N the composition of RN with itself i times, for

i < 0 the inverse of R−iN by Ri
N , and R0

N for the identity function. As usually, given a

function u : R2N+1 → R we define Ri
Nu = u ◦Ri

N .

Let us define

wN = Ri
NuN ,

where i is an integer satisfying ΛN,k = {i− k, · · · , i+ k} .
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Now we proceed to check that (1.3.25) and (1.3.26) are satisfied by the sequence of

functions {ukN}N≥1 defined as

ukN = 2k

 ∑
x,x+1∈ΛN,k

αNx,x+1

−1

EµN,yN
[wN | Λk] ,

where Λk = {p−k, · · · , pk}. Because of the invariance under axes rotation of the measure

µN,yN , together with the relation

Xx,x+1(wN) = R−iXx+i,x+i+1(uN) ,

which follows directly from the definition of wN , we have

EµN,yN
[pxpx+1Xx,x+1(ukN)] = 2k

 ∑
x,x+1∈ΛN,k

αNx,x+1

−1

EµN,yN
[px+ipx+i+1Xx+i,x+i+1(uN)] ,

for all x such that {px, px+1} ⊂ Λk. Then, summing over x we obtain that the left hand

side of (1.3.25) is equal to ∑
x,x+1∈ΛN,k

αNx,x+1

−1

EµN,yN

[ ∑
x,x+1∈ΛN,k

pxpx+1Xx,x+1(uN)
]
,

which in turns is equal to y2
N , proving (1.3.25).

Using Jensen’s inequality, and an analogous argument as the one used in the preced-

ing lines, we obtain that

EµN,yN

[
a(px, px+1)[Xx,x+1(ukN)]2

]
is bounded above by

4k2

 ∑
x,x+1∈ΛN,k

αNx,x+1

−2

EµN,yN

[
a(px+i, px+i+1)[Xx+i,x+i+1(uN)]2

]
,

for all x such that {px, px+1} ⊂ Λk. This implies (1.3.26) after adding over x, using

relation (1.3.27) and taking the superior limit as N goes to infinity.
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Now we state and proof the technical result used to derive 1.3.27.

Lemma 7. Let {ai}mi=1 and {bi}mi=1 two sequences of real and positive real numbers,

respectively, satisfying

m∑
i=1

ai = m and
m∑
i=1

bi ≤ mγ , (1.3.28)

for fixed constants m ∈ N, γ > 0 and k << m. Then, there exists a block Λ of size 2k

contained in the discrete torus {1, · · · ,m} such that

γ

(∑
i∈Λ

ai

)2

≥ 2k
∑
i∈Λ

bi . (1.3.29)

Proof. It is enough to check the case where 2k is a factor of m. In fact, in the opposite

case we can consider periodic sequences of size 2km instead of the originals ones {ai}mi=1

and {bi}mi=1.

Therefore we can suppose that m = 2kl for some integer l, and define for i ∈
{1, · · · , l}

αi =
∑
x∈Λi

ax and βi =
∑
x∈Λi

bx ,

where Λi = {2k(i− 1), · · · , 2ki}.
We want to conclude that (1.3.29) is valid for at least one of the Λi’s. Let us argue

by contradiction.

Suppose that
√

2kβi > αiγ
1
2 for every i = 1, · · · , l. Adding over i and using the first

part of hypothesis (1.3.28), we obtain

l∑
i=1

√
2kβi > mγ

1
2 .

By squaring both sides of the last inequality we have,

l∑
i=1

βi > mγ ,

which is in contradiction with the second part of hypothesis (1.3.28).

Now we proceed to take, for each positive integer k, a weak limit of the sequence
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{u(k)
N }N≥1 obtained in Lemma 6.

Lemma 8. For each positive integer k there exists a function ũk depending on the

variables p−k, · · · , pk such that

1

2k
Eνy [Xk,−k(ũk)pkp−k] = y2 , (1.3.30)

and
1

2k
Eνy

[ ∑
−k≤x≤x+1≤k

a(px, px+1)[Xx,x+1(ũk)]
2

]
≤ 4y4

θ
. (1.3.31)

Proof. Consider the linear functionals ΛN
i,i+1 defined for −k ≤ i ≤ i+ 1 ≤ k by

ΛN
i,i+1 : L2(R2k+1; νy) → R

w → EµN,yN
[Xi,i+1(u

(k)
N )w] .

Let Pk be an enumerable dense set of polynomials in L2(R2k+1; νy). From (1.3.31) and

the Cauchy-Schwartz inequality we obtain the existence of a constant C such that

|ΛN
i,i+1(w)| ≤ C

(∫
w2dµN,yN

) 1
2

,

for every w ∈ Pk.
By a diagonal argument we can draw a subsequence for which the limits of ΛN

i,i+1(w)

exist for all w ∈ Pk. Moreover, passing to the limit and extending to the whole space

L2(R2k+1; νy), we get linear functionals Λi,i+1 satisfying

|Λi,i+1(w)| ≤ C

(∫
w2dνy

) 1
2

. (1.3.32)

On the other hand, consider the linear functionals ΛN defined by

ΛN : L2(R2k+1; νy) → R
w → EµN,yN

[u
(k)
N w] .

Because of (1.3.31), (1.3.21) and Poincaré’s inequality we have

EµN,yN

[
(u

(k)
N )2

]
≤ 4y4C

θ
,
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for a constant C depending only on k. Then, by the very same arguments used above,

we get a linear functional Λ satisfying

|Λ(w)| ≤
√
C

(∫
w2dνy

) 1
2

. (1.3.33)

Finally, it follows from (1.3.32) and (1.3.33) the existence of a function ũk satisfying

Λi,i+1(w) = Eνy [Xi,i+1(ũk)w] ,

Λ(w) = Eνy [ũkw] ,

and therefore, satisfying (1.3.30) and (1.3.31).

Now using the sequence {ũk}k∈N we construct a sequence of functions {uk′}k′∈M
indexed on an infinite subset of N, each one depending on the variables p−k′ , · · · , pk′ .
This sequence will satisfy, besides (1.3.30) and (1.3.31), an additional condition regarding

the contribution of the terms near the boundary of {−k′, · · · , k′} to the total Dirichlet

form.

Lemma 9. There exist a sequence of functions {uk′}k′∈M indexed on an infinite subset

of N, each one depending on the variables p−k′ , · · · , pk′, satisfying (1.3.30), (1.3.31) and

Eνy [(Xx,x+1(uk′))
2] = O(k7/8) ,

for {x, x+ 1} ⊂ Ik′ ∪ Jk′. The blocks Ik′ = [−k′,−k′ + (k′)1/8] and Jk′ = [k′ − (k′)1/8, k′]

are illustrated in the following figure.

Ik′ Jk′

−k −k′ −k + k
1
4 k − k 1

4 k′ k

Proof. Given k > 0 divide each interval [−k,−k+ k1/4] and [k− k1/4, k] into k1/8 blocks

of size k1/8, and consider the sequence {ũk}k∈N obtained in Lemma 8.

Because of (1.3.31), for every k > 0 there exist k′ ∈ [k − k1/8, k] such that

Eνy

 ∑
{x,x+1}∈Ik′∪Jk′

(Xx,x+1(ũk))
2

 = O(k7/8) .
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Define for each k > 0 the function uk′ = 1
Cy,k,k′

Eνy

[
ũk | Fk

′

−k′
]

, where

Cy,k,k′ =
1

2k′y2

2ky2 − Eνy

 ∑
{x,x+1}∈Ik′∪Jk′

pxpx+1Xx,x+1(ũk)


and Fk

′

−k′ denotes the σ-field generated by p−k′ , · · · , pk′ .
Is easy to see that the sequence {uk′}k′ satisfies the desired conditions.

Finally, we obtain the weak limit used in the proof of Theorem 5.

Lemma 10. There exist a function ξ in L2(νy) satisfying

Eνy [ξ] = 0, (1.3.34)

Eνy [p0p1ξ] = 0, (1.3.35)

Eνy [a(p0, p1)[p0p1 + ξ]2] ≤ 4y4

θ
, (1.3.36)

and the integrability conditions

Xi,i+1(τ jξ) = Xj,j+1(τ iξ) if {i, i+ 1} ∩ {j, j + 1} = ∅, (1.3.37)

pi+1[Xi+1,i+2(τ iξ)−Xi,i+1(τ i+1ξ)] = pi+2τ
iξ − piτ i+1ξ for i ∈ Z. (1.3.38)

Proof. For all integer k > 0 define

ζk =
1

2k′

k′−1∑
i=−k′

Xi,i+1(uk′)(τ
−i).

It is clear from the definition of ζk that

Eνy [ζk] = 0,

and

p0p1ζk(ω) =
1

2k′

k′−1∑
i=−k′
{pipi+1Xi,i+1(uk′)}(τ−i).

Then, from (1.3.30) it follows

Eνy [p0p1ζk] = y4.
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On the other hand, from (1.3.31) we have

Eνy [a(p0, p1)ζ2
k ] = Eνy

a(p0, p1)

(
1

2k′

k′−1∑
i=−k′

[Xi,i+1(uk′)](τ
−iω)

)2


≤ Eνy

[
a(p0, p1)

1

2k′

k′−1∑
i=−k′

[Xi,i+1(uk′)]
2(τ−iω)

]

=
1

2k
Eνy

[
k′−1∑
i=−k′

a(pi, pi+1)[Xi,i+1(uk′)]
2

]

≤ 4y4

θ
.

Now consider the sequence {ξk}k≥1 defined by

ξk = ζk − p0p1.

Since the preceding sequence is uniformly bounded in L2(νy), there exists a weak limit

function ξ ∈ L2(νy). Obviously, the function ξ satisfies (1.3.34),(1.3.34) and (1.3.36).

In addition, an elementary calculation shows that 1.3.37 and 1.3.38 are satisfied by

ξk up to an error coming from a small number of terms near the edge of [−k′, k′]. Then,

in view of Lemma 9, the final part of the lemma is satisfied as well.

1.4 Boltzmann-Gibbs Principle

The aim of this section is to provide a proof for Theorem 3. In fact, we will prove a

stronger result that will be also useful in the proof of tightness. Namely,

lim
k→∞

lim
N→∞

EνNy

 sup
0≤t≤T

(∫ t

0

√
N
∑
x∈TN

∇NHs(x/N)[Vx(p(s))− LNτxFk(p(s))] ds

)2
 = 0 ,

where,

Vx(p) = Wx,x+1(p)− â(y)[p2
x+1 − p2

x] .

We begin localizing the problem. Fix an integer M that shall increase to infinity after

N . Being l and r the integers satisfying N = lM + r with 0 ≤ r < M , define for
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j = 1, · · · , l

Bj = {(j − 1)M + 1, · · · , jM} ,

B′j = {(j − 1)M + 1, · · · , jM − 1} ,

Bk
j = {(j − 1)M + 1, · · · , jM − sk} ,

where sk is the size of the block supporting Fk. Define the remaining block as Bl+1 =

{lM + 1, · · · , N}. The blocks B′j and Bk
j are illustrated in the following figures,

B′1 B′2 B′j Bl+1

0 M 2M lMN

Bk
1 Bk

2 Bk
j Bl+1

0 M 2M lMN

With this notation we can write

√
N
∑
x∈TN

∇NHs(x/N)[Vx(p(s))− LNτxFk(p(s))] = V1 + V2 + V3 , (1.4.1)

with,

V1 =
√
N

l∑
j=1

∑
x∈B′j

∇NHs(x/N)Vx −
√
N

l∑
j=1

∑
x∈Bkj

∇NHs(x/N)LNτxFk ,

V2 =
√
N
∑

x∈Bl+1

∇NHs(x/N)Vx −
√
N
∑

x∈Bl+1

∇NHs(x/N)LNτxFk ,

V3 =
√
N

l∑
j=1

∇NHs(jK/N)VjM −
√
N

l∑
j=1

∑
x∈Bj\Bkj

∇NHs(x/N)LNτxFk .

Observe that V1 is a sum of functions which depends on disjoint blocks, and contains

almost all the terms appearing in the left hand side of (1.4.1), therefore, V2 and V3 can
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be considered error terms. In order to prove Theorem 3 it suffices to show

lim
k→∞

lim
N→∞

EνNy

[
sup

0≤t≤T

(∫ t

0

Vi ds

)2
]

= 0 , (1.4.2)

for each Vi separately.

The following is a very useful estimate of the time variance in terms of the H−1 norm

defined in (1.3.6).

Proposition 1. Given T > 0 and a mean zero function V ∈ L2(π) ∩H−1,

Eπ

[
sup

0≤t≤T

(∫ t

0

V (ps) ds

)2
]
≤ 24T ||V ||2−1 .

See Lemma 2.4 in [KmLO] or Proposition 6.1 in [KL] for a proof .

Remark 1. A slightly modification in the proof given in [KmLO] permit to conclude

that, for every smooth function h : [0, T ]→ R,

Eπ

[
sup

0≤t≤T

(∫ t

0

h(s)V (ps) ds

)2
]
≤ Ch||V ||−1 ,

where,

Ch = 6{4||h||2∞T 2 + ||h′||2∞T 3} .

Moreover, in our case we have

EνNy

 sup
0≤t≤T

(∫ t

0

l∑
j=1

hj(s)VBj(ps) ds

)2
 ≤ l∑

j=1

Chj ||VBj ||−1 ,

for functions {VBj}lj=1 depending on disjoint blocks.

The proof of (1.4.2) will be divided in three lemmas.

Lemma 11.

lim
k→∞

lim
N→∞

EνNy

[
sup

0≤t≤T

(∫ t

0

V2 ds

)2
]

= 0 .

Proof. By Proposition 1, the expectation in the last expression is bounded above by the
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sum of the following three terms

3CH |Bl+1|
N

∑
x∈Bl+1

〈
Wx,x+1 , (−LN)−1Wx,x+1

〉
, (1.4.3)

3â(y)2CH |Bl+1|
N

∑
x∈Bl+1

〈
p2
x+1 − p2

x , (−LN)−1p2
x+1 − p2

x

〉
, (1.4.4)

3CH |Bl+1|
N

∑
x∈Bl+1

〈(−LN)τxFk, τ
xFk〉 . (1.4.5)

Here CH represents a constant depending on H and T , that can be multiplied by a

constant from line to line.

Using the variational formula for the H−1 norm (see (1.3.6)) we can see that the

expression in (1.4.3) is equal to

CH |Bl+1|
N

∑
x∈Bl+1

sup
g∈L2(νNy )

{2 〈Wx,x+1, g〉+ 〈g,Lx,x+1g〉} ,

where,

Lx,x+1 =
1

2
Xx,x+1[a(px, px+1)Xx,x+1] .

From the definition given in (1.1.4) we have Wx,x+1 = −Xx,x+1[a(px, px+1)pxpx+1]. Per-

forming integration by parts in the two inner products, we can write the quantity inside

the sum as

1

2
sup

g∈L2(νNy )

{4 〈a(px, px+1)pxpx+1, Xx,x+1g〉 − 〈Xx,x+1g, a(px, px+1)Xx,x+1g〉} ,

which by the elementary inequality 2ab ≤ A−1a2 + Ab2, is bounded above by

2
〈
a(px, px+1)p2

xp
2
x+1

〉
.

Then the expression in (1.4.3) is bounded above by

CH |Bl+1|2

N
.

The same is true for the term corresponding to (1.4.4), which coincides with (1.4.3) if

we take a(r, s) ≡ 1.



1.4. BOLTZMANN-GIBBS PRINCIPLE 46

Since Fk is a local function supported in a box of size sk and νNy is translation

invariant, we have for all x, y ∈ TN

〈τxFk, (−LN)τ yFk〉 ≤ sk ||X0,1(F̃k)||2L2(νNy ) ,

which implies that the expression in (1.4.5) is bounded by

CH |Bl+1|2

N
sk ||X0,1(F̃k)||2L2(νNy ) ,

ending the proof.

Lemma 12.

lim
k→∞

lim
N→∞

EνNy

[
sup

0≤t≤T

(∫ t

0

V3 ds

)2
]

= 0 .

Proof. The proof is similar to the preceding one.

Lemma 13.

lim
k→∞

lim
N→∞

EνNy

[
sup

0≤t≤T

(∫ t

0

V1 ds

)2
]

= 0 .

Proof. Recall that the expectation in the last expression is by definition

NEνNy

 sup
0≤t≤T

∫ t

0

l∑
j=1

∑
x∈B′j

∇NHs(x/N)Vx −
∑
x∈Bkj

∇NHs(x/N)LNτxFk ds


2 .

The smoothness of the function H allows to replace ∇NHs(x/N) into each sum in the

last expression by ∇NHs(x
∗
j/N), where x∗j ∈ Bj (for instance, take x∗j = (j − 1)K + 1 ),

obtaining

NEνNy

 sup
0≤t≤T

∫ t

0

l∑
j=1

∇NHs(x
∗
j/N)

∑
x∈B′j

Vx −
∑
x∈Bkj

LNτxFk ds


2 .

By proposition 1 and Remark 1, the quantity in the preceding line is bounded above by

CH
N

l∑
j=1

〈∑
x∈B′j

Vx −
∑
x∈Bkj

LNτxFk , (−LN)−1
∑
x∈B′j

Vx −
∑
x∈Bkj

LNτxFk

〉
νy

,
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Using the variational formula for the H−1 norm given in (1.3.6) and the convexity of the

Dirichlet form, we are able to replace (−LN)−1 by (−LB′j)
−1 in the expression above. In

addition, by translation invariance of the measure νNy we can bound this expression by

CH
l

N

〈∑
x∈B′1

Vx −
∑
x∈Bk1

LNτxFk , (−LB′1)
−1
∑
x∈B′1

Vx −
∑
x∈Bk1

LNτxFk

〉
νy

.

By the equivalence of ensembles stated in Section 2.4 and the fact that l
N
∼ 1

M
, the

limit superior, as N goes to infinity, of the last expression is bounded above by

CH lim sup
M→∞

1

M

〈∑
x∈B′1

Vx −
∑
x∈Bk1

LNτxFk , (−LB′1)
−1
∑
x∈B′1

Vx −
∑
x∈Bk1

LNτxFk

〉
νM,
√
My

.

The last line can be written as

CH lim sup
M→∞

1

M
∆M,y(BM + â(y)AM −HFk

M , BM + â(y)AM −HFk
M ), (1.4.6)

by using the notation introduced in Section 1.3. For that, it suffices to replace M by

2M+1 from the beginning of this section. Here BM correspond to the current in a block,

and is not to be confused with the notation used for the blocks themselves.

On the other hand, it is easy to check that the variance appearing in (1.4.6) is equal

to

(â(y))2∆M,y(AM , AM) + ∆M,y(BM , BM) + ∆M,y(H
Fk
M , HFk

M )

− 2â(y)∆M,y(AM , BM) + ∆M,y(AM , H
Fk
M )−∆M,y(BM , H

Fk
M ) .

Therefore, thanks to Theorem 4 and Theorem 5, if we divide by M and take the limit

as M goes to infinity at both sides of last expression, we can conclude that

lim
M→∞

1

M
∆M,y(BM + â(y)AM −HFk

M ) = 4a(y, 1/2Fk)− 4y4â(y) .

By the definition of the sequence {Fk}k≥1 (see (1.2.3)), the limit as k goes to infinity of

the last term is equal to zero.
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1.5 Tightness

Let us firstly introduce some notation in order to define a space in which fluctuations

take place and in which we will be able to prove tightness. Let −∆ be the positive

operator, essentially self-adjoint on L2([0, 1]) defined by

Dom(−∆) = C2
0([0, 1]),

−∆ = − d2

dx2
,

where C2
0([0, 1]) denotes the space of twice continuously differentiable functions on (0, 1)

which are continuous in [0, 1] and which vanish at the boundary. It is well known

that its normalized eigenfunctions are given by en(x) =
√

2 sin(πnx) with corresponding

eigenvalues λn = (πn)2 for every n ∈ N , moreover, {en}n∈N forms an orthonormal basis

of L2([0, 1]).

For any nonnegative real number k denote by Hk the Hilbert space obtained as the

completion of C2
0([0, 1]) endowed with the inner product

〈f, g〉k = 〈f, (−∆)kg〉 ,

where 〈, 〉 stands for the inner product in L2([0, 1]). We have from the spectral theorem

for self-adjoint operators that

Hk = {f ∈ L2([0, 1]) :
∞∑
n=1

n2k〈f, en〉 <∞} , (1.5.1)

and

〈f, g〉k =
∞∑
n=1

(πn)2k〈f, en〉〈g, en〉 . (1.5.2)

This is valid also for negative k. In fact, if we denote the topological dual of Hk by H−k
we have

H−k = {f ∈ D′([0, 1]) :
∞∑
n=1

n−2kf(en)2 <∞} . (1.5.3)

The H−k-inner product between the distributions f and g can be written as

〈f, g〉−k =
∞∑
n=1

(πn)−2kf(en)g(en) , (1.5.4)
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Denote by QN the probability measure on C([0, T ],H−k) induced by the energy

fluctuation field Y N
t and the Markov process {pN(t), t ≥ 0} defined in Section 1.1,

starting from the equilibrium probability measure νNy . For notational convenience, we

omit the dependence of k in QN .

We are now ready to state the main result of this section, which proof is divided in

lemmas.

Theorem 6. The sequence {QN}N≥1 is tight in C([0, T ],H−k) for k > 3
2

.

In order to establish the tightness of the sequence {QN}N≥1 of probability measures

on C([0, T ],H−k), it suffices to check the following two conditions (c.f. [KL] p.299),

lim
A→∞

lim sup
N→∞

Pνy

[
sup

0≤t≤T
||Y N

t ||−k > A

]
= 0 , (1.5.5)

lim
δ→0

lim sup
N→∞

Pνy
[
w(Y N , δ) > ε

]
= 0 , (1.5.6)

where the modulus of continuity w(Y, δ) is defined by

w(Y, δ) = sup
|t−s|<δ

0≤s<t≤T

||Yt − Ys||−k .

Let us recall that for every function H ∈ C2(T) we have

Y N
t (H) = Y N

0 (H)− ZN
t (H)−MN

t (H) , (1.5.7)

where,

ZN
t (H) =

∫ t

0

√
N
∑
x∈TN

∇NH(x/N)Wx,x+1(s)ds ,

MN
t (H) =

∫ t

0

1√
N

∑
x∈TN

∇NH(x/N)σ(px(s), px+1(s)) dBx,x+1(s) .

The quadratic variation of the martingale {MN
t (H)}t≥0 is given by

〈MN
t (H)〉(t) =

1

N

∑
x∈TN

∫ t

0

|∇NH(
x

N
, s)|2a(px, px+1)p2

xp
2
x+1ds .

We begin by giving the following estimate.
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Lemma 14. There exist a constant B = B(y, T ) such that for every function H ∈ C2(T)

and every N ≥ 1

Eνy

[
sup

0≤t≤T
(Y N

t (H))2

]
≤ B

{
1

N

∑
x∈TN

H(x/N)2 +
1

N

∑
x∈TN

(∇NH(x/N))2

}
.

Proof. From the definition of the fluctuation field it is clear that

Eνy

[
(Y N

0 (H))2
]

= 2y4 1

N

∑
x∈TN

H(x/N)2 , (1.5.8)

and by Doob’s inequality together with the fact that a(·, ·) ≤ C we have

Eνy

[
sup

0≤t≤T
(MN

t (H))2

]
≤ CTy4 1

N

∑
x∈TN

(∇NH(x/N))2 . (1.5.9)

From Proposition 1 of Section 1.4 and the variational formula given in (1.3.6) we obtain

Eνy

[
sup

0≤t≤T

(
ZN
t (H)

)2
]
≤ 24T

N
sup

g∈D(L)

{〈
2
∑
x∈TN

∇NH(x/N)Wx,x+1g
〉
νy

+ 〈g,Lg〉νy

}
.

After integration by parts, the first term in the expression into braces can be written as

−2
〈 ∑
x∈TN

∇NH(x/N)a(px, px+1)pxpx+1Xx,x+1(g)
〉
νy
,

which by Schwartz inequality is bounded above by

2
〈 ∑
x∈TN

(∇NH(x/N))2a(px, px+1)p2
xp

2
x+1

〉
νy

+
1

2

〈 ∑
x∈TN

a(px, px+1)(Xx,x+1(g))2
〉
νy
.

Thus,

Eνy

[
sup

0≤t≤T

(
ZN
t (H)

)2
]
≤ 48TCy4 1

N

∑
x∈TN

(∇NH(x/N))2 .

Corollary 4. Condition (1.5.5) is valid for k > 3
2
.
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Proof. From (1.5.4) and Lemma 14 we obtain

lim sup
N→∞

Eνy

[
sup

0≤t≤T
||Y N

t ||2−k

]
≤

∞∑
n=1

(πn)−2k lim sup
N→∞

Eνy

[
sup

0≤t≤T
Y N
t (en)2

]
≤ B

∞∑
n=1

(πn)−2k(1 + (πn)2) .

The proof is then concluded by using Chebychev’s inequality.

In view of (1.5.4) and Lemma 14 we reduce the problem of equicontinuity as follows.

lim sup
N→∞

Eνy

[
w(Y N , δ)

]
≤

∞∑
n=1

(πn)−2k lim sup
N→∞

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(Y N
t (en)− Y N

s (en))2


≤ 4

∞∑
n=1

(πn)−2k lim sup
N→∞

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(Y N
t (en))2


≤ B

∞∑
n=1

(πn)−2k(1 + (πn)2) .

Therefore, the series appearing in the first line of the above expression is uniformly

convergent in δ if k > 3
2
. Thus, in order to verify condition (1.5.6) it is enough to prove

lim
δ→0

lim sup
N→∞

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(Y N
t (en)− Y N

s (en))2

 = 0 ,

for every n ≥ 1.

We analyze separately the terms corresponding to MN
t and ZN

t (see 1.5.7). In next

lemma we state a global estimate for the martingale part.

Lemma 15. For every function H and every m ∈ N, there exists a constant C depending

only on m such that

EνNy
[ |MN

t (H)|2m ] ≤ Cy2mtm

{
1

N

∑
x∈TN

∣∣∇NH(
x

N
)
∣∣2}m

.

Proof. Denote the continuous martingale MN
t (H) by Mt, and let Cm be a constant
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depending only on m which can change from line to line.

Using the explicit expression for the martingale and applying Itô’s formula we have

d(Mt)
2m = 2m(Mt)

2m−1dMt +m(2m− 1)(Mt)
2m−2Qtdt,

where,

Qt =
1

N

∑
x∈TN

|∇NH(
x

N
)|2a(px, px+1)p2

xp
2
x+1 .

Explicit calculations lead us to

EνNy
[(Qt)

m] ≤ Cmy
2m

{
1

N

∑
x∈TN

∣∣∇NH(
x

N
)
∣∣2}m

,

thus, by stationarity and applying Hölder inequality for space and time we obtain

EνNy
[(Mt)

2m] ≤ Cmy
2t

1
m

1

N

∑
x∈TN

|∇NH(
x

N
)|2
(∫ t

0

EνNy
[(Ms)

2m]ds

) 2m−2
2m

. (1.5.10)

In terms of the function f(t) =
(∫ t

0
EνNy

[(Ms)
2m]ds

) 1
m

, inequality (1.5.10) reads

f ′(t) ≤ Cmy
2t

1
m

1

N

∑
x∈TN

∣∣∇NH(
x

N
)
∣∣2 ,

and integrating we obtain

f(t) ≤ Cmy
2t1+ 1

m
1

N

∑
x∈TN

∣∣∇NH(
x

N
)
∣∣2 .

The proof ends by using the last line to estimate the right hand side of (1.5.10).

In order to pass from this global estimate to a local estimate, we will use the Garcia’s

inequality.

Lemma 16. (Garcia-Rodemich-Rumsey) (cf [SV] p.47) Let p, φ : [0,∞] → R contin-

uous, strictly increasing functions such that p(0) = ψ(0) = 0 and limt→∞ ψ(t) = ∞.

Given φ ∈ C([0, T ]; Rd) such that∫ T

0

∫ T

0

ψ

(
|φ(t)− φ(s)|
p(|t− s|)

)
dsdt ≤ B <∞,



1.5. TIGHTNESS 53

then

|φ(t)− φ(s)| ≤ 8

∫ t−s

0

ψ−1

(
4B

u2

)
p(du),

for 0 ≤ s < t ≤ T .

Lemma 17. For every function H ∈ C2(T),

lim
δ→0

lim sup
N→∞

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(
MN

t (H)−MN
s (H)

)2

 = 0 .

Proof. Taking p(u) =
√
u and ψ(u) = u6 in Lemma 16 we get

|φ(t)− φ(s)| ≤ CB1/6|t− s|1/6 ,

where,

B =

∫ T

0

∫ T

0

|φ(t)− φ(s)|6

|t− s|3
dsdt . (1.5.11)

Taking φ(t) = MN
t (H) we obtain

EνNy

[
sup
|t−s|<δ

0≤s<t≤T

|M̂H
N (t)− M̂H

N (s)|2
]
≤ Cy2δ1/3T 2/3 1

N

∑
x∈TN

(∇H(x/N))2 ,

which implies the desired result.

Observe that the integral in (1.5.11) is finite, which permits to apply Lemma 16. In

fact, as a consequence of Lemma 15 and Kolmogorov-Centsov theorem, we have α-Hölder

continuity of paths for α ∈ [0, 1
2
).

The proof of Theorem 6 will be concluded by proving the following lemma.

Lemma 18. For every function H ∈ C2(T),

lim
δ→0

lim sup
N→∞

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(
ZN
t (H)− ZN

s (H)
)2

 = 0
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Proof. Recall that the expectation appearing above is by definition

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(∫ t

s

√
N
∑
x∈TN

∇NH(x/N)Wx,x+1(s)ds

)2
 . (1.5.12)

Now we take advantage of the decomposition obtained for the current in the preceding

sections, which allows to study separately the diffusive part of the current and the

part coming from a fluctuation term. For this we add and subtract â(y)[p2
x+1 − p2

x] +

LN(τxFk(p)) from Wx,x+1, obtaining that (1.5.12) is bounded above by 3 times the

sum of the following terms,

4Eνy

 sup
0≤t≤T

(∫ t

0

√
N
∑
x∈TN

∇NH(x/N)[Wx,x+1(s)− â(y)[p2
x+1 − p2

x]− LN(τxFk(p))]ds

)2
 ,

â(y)2Eνy

 sup
|t−s|<δ

0≤s<t≤T

(∫ t

s

√
N
∑
x∈TN

∇NH(x/N)[p2
x+1 − p2

x]ds

)2
 ,

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(∫ t

s

√
N
∑
x∈TN

∇NH(x/N)LN(τxFk(p))ds

)2
 .

The first term tends to zero as k tends to infinity after N. In fact, this is the content of

the Boltzmann-Gibbs Principle proved in Section 1.4.

Performing a sum by parts and using Schwartz inequality together with the station-

arity, we can see that the second term is bounded above by

â(y)2δTEνy

( 1√
N

∑
x∈TN

∆NH(x/N)p2
x

)2
 .

We can replace in the last line p2
x by [p2

x − y2] (because of periodicity), obtaining that

the expression is bounded above by

3y4â(y)2δT
1

N

∑
x∈TN

(∆NH(x/N))2 .

For the third term we add and subtract M2
N,Fk

(H ·t)−M2
N,Fk

(H ·s) to the integral, where
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M2
N,Fk

(H ·t) is the martingale defined after equation (1.2.2). In that way we obtain that

this term is bounded above by 2 times the sum of the following two terms,

Eνy

 sup
|t−s|<δ

0≤s<t≤T

(
M2

N,F (H ·t)−M2
N,F (H ·s)

)2

 ,

4Eνy

 sup
0≤t≤T

(
M2

N,Fk
(H ·t) +

∫ t

0

√
N
∑
x∈TN

∇NH(x/N)LN(τxFk(p))ds

)2
 .

Since the functions Fk are local and belong to the Schwartz space, we can handle the

first term in the same way as we did with MN
t (H) in Lemma 15 and Lemma 17 . The

second term tends to zero as N goes to infinity, as stated in Lemma 1.





Chapter 2

Technical Results

2.1 Some Geometrical Considerations

The aim of this section is to establish conditions over a given set of functions ξi,i+1 :

Rn+1 → R for 1 ≤ i ≤ n , which ensure the existence of a function g : Rn+1 → R
satisfying

Xi,i+1(g) = ξi,i+1 for 1 ≤ i ≤ n , (2.1.1)

where Xx,y = py∂px − px∂py .
Observe that the vector fields Xi,j act on spheres. In fact, we are interested in solving

(2.1.1) over spheres. The results obtained in this section will be used in the proof of

Theorem 8 in Section 2.3.

Let us remark that for 1 ≤ i < j ≤ n we have

[Xi,i+1, Xj,j+1] =

Xi,j+1 if i+ 1 = j,

0 if i+ 1 6= j,
(2.1.2)

where [, ] stands for the Lie bracket. Thus, the existence of such a function g : Rn+1 → R
satisfying (2.1.1) give us some necessary conditions over the family {ξi,i+1}, namely

Xi,i+1(ξj,j+1) = Xj,j+1(ξi,i+1) if i+ 1 6= j , (2.1.3)

pi+1Xj,j+1(ξi,i+1)− pi+1Xi,i+1(ξj,j+1) = pj+1ξi,i+1 + piξj,j+1 , (2.1.4)

for 1 ≤ i < j ≤ n.

We state the main result of this section.

57
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Theorem 7. Let ξi,i+1 : Rn+1 → R for 1 ≤ i ≤ n be a a set of functions satisfying

conditions (2.1.3) and (2.1.4). Then, for every r > 0 there exists a function gr : Sn(r)→
R such that

Xi,i+1(gr) = ξi,i+1 on Sn(r) .

The approach we adopt to prove this result consist in defining over each sphere Sn(r)

an ad hoc differential 1-form ωr. Conditions (2.1.3) and (2.1.4) will imply the closeness

of ωr, which in view of Proposition 3 below implies the existence of the desired gr.

Now we state two well known results in differential geometry.

Proposition 2. Let ω be a 1-form on a differentiable manifold M , and X, Y differential

vector fields on M , then

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]) ,

where [ , ] denote the Lie bracket.

Proposition 3. Every closed differential 1-form on a n-dimensional sphere with n ≥ 2

is exact.

Proof of Theorem 7. Let {Y1, · · · , Yn} be a subset of n vector fields belonging to the Lie

algebra generated by {Xi,i+1}1≤i≤n. Consider the subset of the sphere A such that, for

p ∈ A ⊂ Sn(r) the set of vectors βp = {Y1(p), · · · , Yn(p)} form a basis for the tangent

space TpS
n(r), with associated dual basis denoted by β∗p = {dY1, · · · , dYn}.

Define on A ⊂ Sn(r) the following differential 1-form

ω =
n∑
k=1

ξk dYk.

Here ξk is the corresponding component in terms of {ξi,i+1}1≤i≤n. For instance, if Yk =

X1,2 then ξk = ξ1,2, or if Yk = [X1,2, X2,3] then ξk = X1,2(ξ2,3)−X2,3(ξ1,2).

It follows from (2.1.2) that the Lie algebra generated by the vector fields {Xi,i+1}1≤i≤n

is of maximal dimension over each sphere. Thus, varying over all the subsets of size n

of the Lie algebra, the sets A form a covering of the whole sphere. Moreover, any two

differential forms defined in this way will coincide in their common domain of definition.

This induces a differential 1-form ωr well defined on the whole sphere Sn(r).

In order to prove closeness of the differential 1-form ωr , it suffices to prove closeness

of each of the differential forms given above, which is reduce to prove dω(Yi, Yj) = 0
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for i, j ∈ {1, · · · , n}. The proof of this fact follows from conditions (2.1.3), (2.1.4) and

Proposition 2.

2.2 Spectral Gap

We investigate in this section the spectral gap for the dynamics induced by the infinites-

imal generator given by

LN(f) =
1

2

N−1∑
x=1

Xx,x+1[a(px, px+1)Xx,x+1(f)] , (2.2.1)

with associate Dirichlet form defined as

DN(f) =
1

2

N−1∑
x=1

∫
RN
a(px, px+1)[Xx,x+1(f)]2ΦNdp, (2.2.2)

where ΦN(p) =
∏N

i=1
e−

p2x
2√

2π
.

The idea will be to relate our model with a similar one, known as the Kac’s model,

whose spectral gap is already known. Specifically, we find a relation between their

Dirichlet forms and use it to obtain the desired spectral gap estimate for our model.

The generator of the Kac’s model is defined for continuous functions as

LNf =
1

CN
2

∑
1≤i≤j≤N

1

2π

∫ 2π

0

[f(Rθ
i,jx)− f(x)]dθ , (2.2.3)

where Rθ
i,j represents a clockwise rotation of angle θ on the plane i, j. It is easy to see

that spheres are invariant under this dynamics.

To this generator is associated the following Dirichlet form

DN(f) =
1

CN
2

∑
1≤i<j≤N

1

2π

∫ 2π

0

∫
SN−1
r

[f(Rθ
i,jx)− f(x)]2dσr(x)dθ , (2.2.4)

where SN−1
r is the (N-1)-dimensional sphere of radius r centered at the origin and σr

stands for the uniform measure over this sphere. In order to study the spectral gap is

enough to treat with the unitary sphere, in which case we omit the subindex.

This dynamics was used by Kac as a model for the spatially homogeneous Boltzmann
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equation. A complete description of this model can be founded in [CCL].

Let us state the spectral gap estimate obtained in [J] for the Kac’s model.

Lemma 19 (Janvresse). There exist a constant C such that for all f ∈ L2(SN−1) we

have

Eσ[f ; f ] ≤ C N DN(f) ,

where Eσ[f ; g] denotes the covariance between f and g with respect to σ.

A later work of Carlen (et al) [CCL] gives the exact spectral gap in the preceding

setting and in other models within the so-called Kac’s systems.

Now we proceed to establish the relation between (2.2.2) and (2.2.4). Firstly define,

Bi,jf(x) =
1

2π

∫ 2π

0

[f(Rθ
i,jx)− f(x)]2dθ .

Using the identity ∂
∂θ

[f(Rθ
i,jx)− f(x)] = −Xi,j(f)(Rθ

i,jx) and the Poincaré inequality on

the interval [0, 2π] we obtain

Bi,jf(x) ≤
∫ 2π

0

[Xi,j(f)(Rθ
i,jx)]2dθ ,

which implies, ∫
SN−1

Bi,jf(x)dσ(x) ≤ 2π

∫
SN−1

|Xi,j(f)|2dσ(x) .

Observe that in (2.2.2) just near neighbors interactions are involved, while in (2.2.4)

long range interactions are also considered. This fact demands an additional argument

in order to relate the two Dirichlet forms.

It follows from the definition of Bi,jf that

Bi,j(f + g)(x) ≤ 2Bi,jf(x) + 2Bi,jg(x) , (2.2.5)

and ∫
SN−1

Bi,jf(x)dσ(x) ≤ 4

∫
SN−1

f 2(x)dσ(x) . (2.2.6)

Denote by Si,j the exchange of coordinates i, j, and observe that

Bi,i+k = Si+1,i+k Bi,i+1 Si+1,j+k .

Since the measure σ is invariant under exchange of coordinates, we have that
∫
SN−1 Bi,i+kf(x)dσ(x)
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is equal to ∫
SN−1

Bi,i+1Si+1,i+kf(x)dσ(x) .

Adding and subtracting Bi,i+1f(x) we can conclude after (2.2.5) and (2.2.6) that the

expression in the last line is bounded above by

2

∫
SN−1

Bi,i+1f(x)dσ(x) + 8

∫
SN−1

[Sj+1,i+kf(x)− f(x)]2dσ(x) .

A telescopic argument permits to bound the second term in the last line by

16k
k−2∑
j=1

∫
SN−1

[Si+j,i+j+1f(x)− f(x)]2dσ(x) ,

which in turns is bounded from above by

64k
k−2∑
j=1

∫
SN−1

Bi+j,i+j+1f(x)dσ(x) .

The last line is an immediate consequence of the inequality∫
SN−1

[Si,jf(x)− f(x)]2dσ(x) ≤ 4

∫
SN−1

Bi,jf(x)dσ(x) , (2.2.7)

which can be verified by adding and subtracting 1
2π

∫ 2π

0
[f(Rθ

i,jx)]dθ into the square ap-

pearing in the left hand side of (2.2.7), and then using the invariance under rotations of

the measure σ. Putting all together we finally obtain

∫
sN−1

Bi,i+kf(x)dσ(x) ≤ 64k
k−2∑
j=0

∫
sN−1

Bi+j,i+j+1f(x)dσ(x) . (2.2.8)

Now we state the main result of this section, which follows from the preceding inequality,

Lemma 19, and the next well known formula∫
RN
f(p)ΦNdp =

∫ ∞
0

(∫
SN−1(ρ)

f(x)dσ(x)

)
ωN(ρ)

(
√

2π)N
e−

ρ2

2 dρ ,

where ωN denotes the surface area of SN−1.

Lemma 20. There exists a positive constant C such that, for every f ∈ L2(RN) satis-
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fying for all r > 0, ∫
SN−1(r)

fdσ = 0 ,

we have ∫
RN
f 2ΦNdp ≤ CN2

N−1∑
x=1

∫
RN

[Xx,x+1(f)]2ΦNdp .

2.3 The Space Hy

The aim of this section is to define the space Hy and prove the characterization that

was used in the proof of Theorem 5. Let us begin by introducing some notation.

Let Ω = RZ and p = (· · · , p−1, p0, p1, · · · ) a typical element of this set. Define

for i ∈ Z the shift operator τ i : Ω → Ω by τ i(p)j = pj+i , and τ if(p) = f(τ ip) for

any function f : Ω → R. We will consider the product measure νy on Ω given by

dνy =
∏∞
−∞

exp(
−p2x
2y2

)
√

2πy
dp.

Let us define A = ∪k≥1Ak, where Ak is the space of smooth functions F depending

on 2k + 1 variables. Given F ∈ Ak we can consider the formal sum

F̃ (p) =
∞∑

j=−∞

τ jF (p) , (2.3.1)

and for i ∈ Z the well defined

∂F̃

∂pi
(p) =

∑
i−k≤j≤i+k

∂

∂pi
F (pj−k, · · · , pj+k) .

The formal invariance F̃ (τ(p)) = F̃ (p) lead us to the precise covariance

∂F̃

∂pi
(p) =

∂F̃

∂p0

(τ ip) . (2.3.2)

Recall that Xi,j = pj∂pi − pi∂pj . Given F ∈ A and i ∈ Z, Xi,i+1(F̃ ) is well defined and

satisfies

Xi,i+1(F̃ )(p) = τ iX0,1(F̃ )(p) .

Finally we define the following set

By = {X0,1(F̃ ) ∈ L2(νy) : F ∈ A}.
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In terms of the notation introduced above, the variational formula obtained in (1.3.13)

for the diffusion coefficient can be written as

â(y) = y−4 inf
ξ∈By

Eνy [a(p0, p1)(p0p1 + ξ)2] . (2.3.3)

As is well known, if we denote by Hy the closure of By in L2(νy), then

â(y) = y−4 inf
ξ∈Hy

Eνy [a(p0, p1)(p0p1 + ξ)2] ,

and the infimum will be attained at a unique ξ ∈ Hy.

At the end of the proof of Theorem 5 we used an intrinsic characterization of the

space Hy. In order to obtain such a characterization, we can first observe that defining

ξ = X0,1(F̃ ) for F ∈ A, the following properties are satisfied:

i) Eνy [ξ] = 0,

ii) Eνy [p0p1ξ] = 0,

iii) Xi,i+1(τ jξ) = Xj,j+1(τ iξ) if {i, i+ 1} ∩ {j, j + 1} = ∅,

iv) pi+1[Xi+1,i+2(τ iξ)−Xi,i+1(τ i+1ξ)] = pi+2τ
iξ − piτ i+1ξ for i ∈ Z.

Now we can claim the desired characterization.

Theorem 8. If ξ ∈ L2(νy) satisfies conditions i) to iv) (the last two in a weak sense)

then ξ ∈ Hy.

The proof of Theorem 8 relies on the results obtained in Section 2.1 and Section 2.2.

Additionally the introduction of a cut off function is required in order to control large

energies.

Proof. The goal is to find a sequence (FN)N≥1 inA, such that the sequence {X0,1(F̃N)}N≥1

converges to ξ in L2(νy). As is well known, the strong and the weak closure of a sub-

space of a Banach space coincide, therefore it will be enough to show that {X0,1(F̃N)}N≥1

converges weakly to ξ in L2(νy).

Firstly observe that for any smooth function F (p−k, · · · , pk) we can rewrite X0,1(F̃ ),

by using (2.3.2), as

k−1∑
i=−k

Xi,i+1(F )(τ−ip) +

(
pk+1

∂F

∂pk

)
(τ−kp)−

(
p−k−1

∂F

∂p−k

)
(τ k+1p) . (2.3.4)
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Roughly speaking, the idea is to use the criteria obtained in section 2.1 to integrate the

system (2.1.1) in order to find a function F such that ξ is approximated by the sum in

the first term of (2.3.4), and then to control the border terms.

We define

ξ
(2N)
i,i+1 = Eνy [ξi,i+1|F2N

−2N ]ϕ

(
1

4N + 1

2N∑
i=−2N

p2
i

)
, (2.3.5)

where ξi,i+1(p) = τiξ(p), FN−N is the sub σ-field of Ω generated by {p−N , · · · , pN} and ϕ

is a nonnegative smooth function with compact support such that ϕ(y2) = 1.

y²

1

We introduce this cutoff in order to do uniform bounds later.

Since νy is a product measure and the part corresponding to ϕ is radial, the set

of functions {ξ(2N)
i,i+1}−2N≤i≤i+1≤2N even satisfy conditions iii) and iv). Therefore, after

Theorem 7 the system

Xi,i+1(g(N)) = ξ
(N)
i,i+1 for − 2N ≤ i ≤ i+ 1 ≤ 2N (2.3.6)

can be integrated. Since Eνy [g
(N)|p2

−2N + · · · + p2
N ] is radial and the integration was

performed over spheres, g̃(2N) = g(2N)−Eνy [g
(2N)|p2

−2N + · · ·+p2
N ] is still a solution of the

system (2.3.6). Therefore, without lost of generality, we can suppose that Eνy [g
(N)|p2

−2N+

· · ·+ p2
2N = y2] = 0 for every y ∈ R+. This will be useful when applying the spectral gap

estimate.

In order to construct the desired sequence firstly define

g(N,k) =
1

2(N + k)y4
Eνy [p

2
−N−k−1p

2
N+k+1g

(2N)|FN+k
−N−k] ,
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and,

ĝN(p−7N/4, · · · , p7N/4) =
4

N

3N/4∑
k=N/2

g(N,k) .

Using (2.3.4) for g(N,k) and averaging over k we obtain that

X0,1

(
∞∑

j=−∞

τ j ĝN

)
= ξ + y−4

{
I1
N + I2

N + I3
N +R1

N −R2
N

}
,

where,

I1
N =

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

τ−iEνy

[
p2
N+k+1p

2
−N−k−1(ξ

(2N)
i,i+1 − ξ

(N+k)
i,i+1 )ϕ(r2

−2N,2N)|FN+k
−N−k

]
,

I2
N =

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

τ−i
{

(ξ
(N+k)
i,i+1 − ξi,i+1)Eνy

[
p2
N+k+1p

2
−N−k−1ϕ(r2

−2N,2N)|FN+k
−N−k

]}
,

I3
N =

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

ξ(p)τ−iEνy [p
2
N+k+1p

2
−N−k−1(ϕ(r2

−2N,2N)− 1)|FN+k
−N−k] ,

R1
N =

3̂N/4∑
k=N/2

τ−N−k{pN+k+1
∂

∂pN+k

g(N,k)} ,

R2
N =

3̂N/4∑
k=N/2

τN+k+1{p−N−k−1
∂

∂p−N−k
g(N,k)} .

Here
∑̂3N/4

k=N/2 = 4
N+4

∑3N/4
k=N/2, that is, the hat over the sum symbol means that this sum

is in fact an average. The notation r2
−2N,2N is just an abbreviation for 1

4N+1

∑2N
i=−2N p

2
i .

The proof of the theorem will be concluded in the following way. In Lemma 21 the

convergence in L2(νy) to zero of the middle terms I1
N , I

2
N , I

3
N is demonstrated. We stress

the fact that weak convergence to zero of each border term is false. However, weak

convergence to zero of the sequence {R1
N − R2

N}N≥1 is true, as ensured by Lemmas 22,

23 and 24.

Therefore {
X0,1

(
∞∑

j=−∞

τ j ĝN

)}
N≥1

,
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is weakly convergent to ξ.

Before entering in the proof of the lemmas, let us state two remarks.

Remark 2. We know that Eνy [ξ0,1|FN−N ]
L2

−→ ξ0,1, i.e given ε > 0 there exist N0 ∈ N such

that

Eνy [|ξ0,1 − ξ(N)
0,1 |2] ≤ ε if N ≥ N0 .

Moreover, by translation invariance we have

Eνy [|ξi,i+1 − ξ(N)
i,i+1|2] ≤ ε if [−N0 − i, N0 + i] ⊆ [−N,N ] .

Proof. Given A ∈ FN−i−N−i we have∫
A

ξ
(N)
i,i+1(τ−ip)νy(dp) =

∫
τ−i(A)

ξ
(N)
i,i+1(p)νy(dp) =

∫
τ−i(A)

ξi,i+1(p)νy(dp)

=

∫
A

ξi,i+1(τ−i(p))νy(dp) =

∫
A

ξ0,1(p)νy(dp) .

Since in addition we have ξ
(N)
i,i+1(τ−i) ∈ FN−i−N−i, then

ξ
(N)
i,i+1(τ−i) = Eνy [ξ0,1|FN−i−N−i] ,

and therefore,

Eνy [|ξi,i+1 − ξ(N)
i,i+1|2] = Eνy [|ξ0,1 − ξ(N)

i,i+1(τ−i)|2] ≤ Eνy [|ξ0,1 − ξ(N0)
0,1 |2].

Remark 3. A strong law of large numbers is satisfied for (p2
i )i∈Z. In fact we have

Eνy

( 1

N

N∑
i=1

p2
i − y2

)2
 ≤ 8y8

N
.

Lemma 21 (Middle terms). For i = 1, 2, 3 we have

lim
N→∞

Eνy [(I
i
N)2] = 0 .

Proof. The convergence to zero as N tends to infinity of I1
N and I2

N in L2(νy) follows

directly from Schwartz inequality, Remark 2 and the fact that ϕ is a bounded function.



2.3. THE SPACE HY 67

Using exchange symmetry of the measure, I3
N can be rewritten as

ξ(p)

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

Eνy [
N̂−k∑
j=1

p2
N+k+jp

2
−N−k−j(ϕ(r2

−2N,2N)− 1)|FN+k
−N−k](τ

−ip) ,

and then we decompose it as J1
N + y2J2

N , where

J1
N(p) = ξ(p)

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

Eνy [
N̂−k∑
j=1

{p2
N+k+jp

2
−N−k−j − y4}(ϕ(r2

−2N,2N)− 1)|FN+k
−N−k](τ

−ip),

and,

J2
N(p) = ξ(p)

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

Eνy [ϕ(r2
−2N,2N)− 1|FN+k

−N−k](τ
−ip).

Firstly observe that

|J1
N |2 ≤ |ξ(p)|2

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

Eνy


N̂−k∑

j=1

{p2
N+k+jp

2
−N−k−j − y4}

2
 .

Being the expectation in the last expression bounded by 8y8

N−k , we obtain

||J1
N ||2L2(νy) ≤

32y4

N
||ξ||2L2(νy) .

On the other hand, writing explicitly the conditional expectation appearing in J2
N we

see that

|J2
N(p)|2 ≤ |ξ(p)|2

3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

∫ ∣∣ϕ( 1

4N + 1

∑
|j|>N+k

q2
j+

1

4N + 1

∑
|j|≤N+k

p2
j+i

)
−1
∣∣2νy(dp) .

Rewrite the integral into last expression as∫ ∣∣ϕ( 1

4N + 1

∑
|j|>N+k

(q2
j − y2) +

1

4N + 1

∑
|j|≤N+k

(p2
j+i − y2) + y2

)
− 1
∣∣2νy(dp) .

Using the fact that ϕ is a Lipschitz positive function bounded from above by 1 and
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satisfying ϕ(y2) = 1, we get that |J2
N |2 is bounded by

|ξ(p)|2
3̂N/4∑
k=N/2

N̂+k∑
i=−N−k

1 ∧
∫
| 1

4N + 1

∑
|j|>N+k

(q2
j − y2) +

1

4N + 1

∑
|j|≤N+k

(p2
j+i − y2)|2νy(dp) ,

where a ∧ b denote the minimum of {a, b}.
Therefore, taking expectation and using the strong law of large numbers together

with the dominated convergence theorem, the convergence to zero as N tends to infinity

of I3
N in L2(νy) is proved.

Lemma 22 (Bounding border terms). The sequences {Ri
N}N≥1 are bounded in

L2(νy) for i = 1, 2.

Proof. Recall that

R1
N =

3̂N/4∑
k=N/2

1

2(N + k)
τ−N−k{pN+k+1Eνy [p

2
−N−k−1p

2
N+k+1

∂

∂pN+k

g(2N)|FN+k
−N−k]} .

Using the fact that XN+k,N+k+1 = pN+k+1
∂

∂pN+k
− pN+k

∂
∂pN+k+1

, we can rewrite last

line as the sum of the following two terms.

3̂N/4∑
k=N/2

1

2(N + k)
τ−N−k{pN+k+1Eνy [p

2
−N−k−1pN+k+1XN+k,N+k+1g

(2N)|FN+k
−N−k]}

and

3̂N/4∑
k=N/2

1

2(N + k)
τ−N−k{pN+kpN+k+1Eνy [p

2
−N−k−1pN+k+1

∂

∂pN+k+1

g(2N)|FN+k
−N−k]} .

By Schwartz inequality and (2.3.6) we can see that the L2(νy) norm of the first term

is bounded by y3

N
||ξ||L2(νy). After integration by parts, the second term can be written

as

3̂N/4∑
k=N/2

1

2(N + k)y2
τ−N−k{pN+kpN+k+1Eνy [p

2
−N−k−1(p2

N+k+1 − y2)g(2N)|FN+k
−N−k]} . (2.3.7)
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Denote by σj,N+k+1 the interchange of coordinates pj and pN+k+1. Using exchange

invariance of the measure, we can see that the conditional expectation appearing in last

expression is equal to

Eνy [p
2
−N−k−1(p2

j − y2)(g(2N) ◦ σj,N+k+1)|FN+k
−N−k] ,

for j = N + k + 1, · · · , 2N . This permits to introduce a telescopic sum which will serve

later to obtain an extra 1
N

in order to use a spectral gap estimate. Indeed, we decompose

(2.3.7) as the sum of the following two terms.

3̂N/4∑
k=N/2

1

2(N + k)y2
τ−N−kEνy [p

2
−N−k−1

2̂N∑
j=N+k+1

(p2
j − y2)g(2N)|FN+k

−N−k] , (2.3.8)

and

3̂N/4∑
k=N/2

1

2(N + k)y2
τ−N−kEνy [p

2
−N−k−1

2̂N∑
j=N+k+1

(p2
j − y2)(g(2N) ◦ σj,N+k+1 − g(2N))|FN+k

−N−k] .

(2.3.9)

By Schwartz inequality, the square of the conditional expectations appearing in last

expressions are respectively bounded by

CN−1y12Eνy [(g
(2N))2|FN+k

−N−k]

and

Cy8Eνy

[ 2̂N∑
j=N+k+1

(g(2N) ◦ σj,N+k+1 − g(2N))2|FN+k
−N−k

]
,

for a universal constant C.

Therefore, again by Schwartz inequality, we can see that the L2(νy) norms of (2.3.8)

and (2.3.9) are respectively bounded by

Cy10

N3
Eνy

[( 3̂N/4∑
k=N/2

p2
N+k

)
(g(2N))2

]
, (2.3.10)
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and,

Cy6

N2
Eνy

[( 3̂N/4∑
k=N/2

p2
N+k

) 2̂N∑
j=3N/2+1

(g(2N) ◦ σj,N+1 − g(2N))2
]
. (2.3.11)

Observe that
∑̂3N/4

k=N/2p
2
N+k can be uniformly estimated because of the cutoff introduced

in (2.3.5).

Using the spectral gap estimate obtained in Section 2.2 we can bound (2.3.10) by a

constant, and thanks to the basic inequality

Eνy

[
(g(2N) ◦ σj,j+1 − g(2N))2

]
≤ CEνy

[
(Xj,j+1g

(2N))2
]
,

we can see after telescoping, that (2.3.11) is also uniformly bounded.

Lemma 23 (Characterization of weak limits). Every weak limit function of the

sequence {R1
N −R2

N}N≥1 is of the form cp0p1 for some constant c.

Proof. Let us firstly consider the sequence {R1
N}N≥1. In Lemma 22 we obtain a decom-

position of R1
N as the sum of two terms, one of which converges to zero in L2(νy). The

other term, namely (2.3.7), is equal to p0p1h
1
N(p0, · · · , p−7N/2) where

h1
N =

3̂N/4∑
k=N/2

1

2(N + k)y2
τ−N−kEνy [p

2
−N−k−1(p2

N+k+1 − y2)g(2N)|FN+k
−N−k] . (2.3.12)

It was also proved that {p0p1h
1
N}N≥1 is bounded in L2(νy), therefore it contains a weakly

convergent subsequence, say {p0p1h
1
N ′}N ′ . By similar arguments as in the proof of

Lemma 22, we can conclude that {h1
N}N≥1 is bounded in L2(νy), therefore {h1

N ′}N ′
contains a weakly convergent subsequence, whose limit will be denoted by h1.

Applying the operator Xi+i+1 in the two sides of (2.3.12) and using Schwartz inequal-

ity, is easy to see that

||Xi,i+1h
1
N ||L2(νy) ≤

C

N
||ξ||L2(νy) for {i, i+ 1} ⊆ {0,−1,−2, · · · } ,

which implies that Xi,i+1h
1 = 0 for {i, i+ 1} ⊆ {0,−1,−2, · · · }. This, together with the

fact that the function h1 just depends on {p0, p−1, p−2, · · · }, permits to conclude that h1

is a constant function, let’s say c. Therefore {p0p1h
1
N ′}N ′ converges weakly to cp0p1.

This proves that for every weakly convergent subsequence of {R1
N}N≥1 there exists

a constant c such that the limit is cp0p1. Exactly the same can be said about {R2
N}N≥1.
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Finally suppose that {R1
N ′ −R2

N ′}N ′≥1 is a subsequence converging weakly to a func-

tion f . The boundness of {R1
N ′}N ′≥1 and {R2

N ′}N ′≥1 implies the existence of further

subsequences {R1
N ′′}N ′′≥1 and {R2

N ′′}N ′′≥1 converging weakly to c1p0p1 and c2p0p1, re-

spectively. Therefore, by unicity of the limit, we have f = (c1 − c2)p0p1.

Lemma 24 (Convergence to zero). The sequence {R1
N − R2

N}N≥1 converges weakly

to zero.

Proof. In view of the boundness of {R1
N ′}N ′≥1 and {R2

N ′}N ′≥1, it is enough to prove that

every weak limit of the sequence {R1
N −R2

N}N≥1 is equal to zero.

At the end of the proof of Lemma 23 we see that every weak limit of {R1
N −R2

N}N≥1

is of the form (c1 − c2)p0p1, where c1 and c2 are constants for which there exist further

subsequences {R1
N ′}N≥1 and {R2

N ′}N≥1 converging weakly to c1p0p1 and c2p0p1, respec-

tively.

On the other hand, recall that

X0,1

(
∞∑

j=−∞

τ j ĝN

)
= ξ + y−4I1

N + y−4I2
N + y−4I3

N + y−4R1
N − y−4R2

N .

Let us multiply the two sides of the last equality by the function p0p1 ∈ L2(νy), and

take expectation with respect to νy. Thanks to the orthogonality condition ii), namely

Eνy [p0p1ξ] = 0, we have

0 = y−4Eνy [p0p1(I1
N ′ + I2

N ′ + I3
N ′)] + y−4Eνy [p0p1(R1

N ′ −R2
N ′)].

Finally, taking the limit as N ′ tends to infinity we obtain that 0 = c1 − c2.

2.4 Equivalence of Ensembles

The classical result (usually attributed to Poincaré) of equivalence of ensembles in which

we are interested, states that the first K coordinates of a point uniformly distributed

over the N-dimensional sphere centered at the origin, are independent standard Gaussian

variables in the limit as N increase to infinity.

In [DF] they get a sharp bound for the total variation distance (essentially 2K/N)

between this marginal and the law of K independent standard Gaussian variables. This

permits to compare expectations of bounded functions with respect to these two mea-

sures.



2.4. EQUIVALENCE OF ENSEMBLES 72

In this work we need to consider equivalence of ensembles for unbounded functions.

The same is required in [BBO] where, by means of a modification on the arguments in

[DF], a proof of the following statement is given.

Lemma 25. Let νN,y
√
N be the uniform measure on the sphere

SN(y
√
N) = {(p1, · · · , pN) ∈ RN :

N∑
i=1

p2
i = Ny2} ,

and ν∞y the infinite product of Gaussian measures with mean zero and variance y2. Given

a function φ on RK, such that for some positive constants θ and C

|φ(p1, · · · , pK)| ≤ C

(
K∑
i=1

p2
i

)θ

,

there exist a constant C ′ = C ′(C, θ,K, y) such that

lim sup
N→∞

N
∣∣∣EνN,y√N [φ]− Eν∞y [φ]

∣∣∣ ≤ C ′ .
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