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Gostaria de agradecer nestas linhas às pessoas e instituições que me deram
apoio no desenvolvimento deste trabalho.
Primeiramente quero agradecer aos meus professores do IMCA no Perú, Re-
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se não fosse por eles.
Gostaria de agradecer ao pessoal de folheações do IMPA, professores Alcides
Lins Neto, Hossein Movasati, César Camacho, Paulo Sad e Jorge Vitório,
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Introdução

O objetivo deste trabalho é estudar equações diferenciais de segunda ordem.
Vamos direcionar a nossa atenção para questões globais como a (in)existência
de soluções algébricas.

É clássico na teoria das equações diferenciais a introdução de um novo
parâmetro que representa a primeira derivada; assim transformamos uma
equação diferencial de segunda ordem em um sistema de equações diferen-
ciais de primeira ordem. Se considerarmos a variedade M = P(TS) que
parametriza pontos e direções tangentes de uma superf́ıcie S, a chamada
variedade de contato, podemos pensar em equações diferenciais de segunda
ordem como os campos vetoriais (ou folheações de dimensão um) em M tan-
gentes à distribuição de contacto.

Iremos nos concentrar principalmente no caso de equações diferenciais de
segunda ordem em P2. O mais básico invariante destas é o chamado bigrau
, que é um par ordenado (a, b) de números inteiros canonicamente associado
a ela. Uma vez fixado este par (a, b) iremos estudar o espaço de equações
diferenciais de segunda ordem com bigrau (a, b). Usando a geometria da
distribuição de contacto obtemos algumas fórmulas de interseção que, em
particular, fornecem significado geométrico do bigrau.

Lembramos que para equações diferenciais de segunda ordem, dado um
ponto genérico p e uma direção tangente v ∈ TpS, existe uma única solução
passando por p e tangente à v. Portanto, podemos pensar em um pencil de
folheações como um caso particular de equação diferencial de segunda ordem.
Olhando para um sistema linear bidimensional de curvas em P2 como um
pencil de folheações, vamos aplicar as fórmulas de interseção obtidas para
limitar o número de fibras completamente decompońıveis.
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Teorema 1. Seja P = P(〈F, G, H〉) ⊆ PH0(P2,OP2(d)) um sistema linear
bidimensional formado por curvas de grau d tal que F , G e H não possuem
fator comum. Denote por Σ ⊆ PH0(P2,OP2(d)) a subvariedade de curvas de
grau d completamente decompońıveis. Então

1. Se P ∩ Σ = C, onde C é uma curva, então deg(C) ≤ 3.

2. Se P ∩Σ = {p1, . . . , pk} é um conjunto de pontos, e o número de retas
contidas em fibras de P é finito então k ≤ 31.

Podemos encontrar em [21] e [25] resultados semelhantes para o caso de
pencil de curvas.

Também estamos interessados no estudo de webs, isto é, equações difer-
enciais de primeira ordem e grau arbitrário. É um resultado bem conhecido
de Jouanolou que uma folheação genérica de grau pelo menos 2 não admite
solução algébrica (ver [13]). Pode-se perguntar se isso ainda é verdade para
webs e equações diferenciais de segunda ordem. Os resultados principais
desta tese fornecem respostas positivas para estas perguntas.

Teorema 2. Uma k-web de grau d genérica em P2 não possui curva algébrica
invariante se d ≥ 2.

Teorema 3. Um equação diferencial de segunda ordem de bigrau (a, b) genérica
não possui solução algébrica se a ≥ 3.

Ambos os resultados acima são optimais: toda web de grau menor do
que 2 admite uma reta invariante, e o mesmo vale para equações diferenciais
de segunda ordem com a < 3. Nós também obtemos resultados semelhantes
(porém não optimais) para webs e equações diferenciais de segunda ordem
em superf́ıcies projetivas arbitrárias.

Esta tese está dividida em três caṕıtulos. A seguir apresentamos um breve
resumo de cada um deles.

Caṕıtulo 1. Preliminares. No caṕıtulo 1 reunimos alguns fatos básicos
da geometria de M = P(TS) (a variedade de contato) onde S é uma superficie
complexa. Descrevemos os anéis de cohomologia H∗(M) e introduzimos uma
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distribuição de codimensão um em M , a distribuição de contacto D. Nos
concentramos no caso particular S = P2, no qual podemos ver M como
a variedade de incidência de pontos e retas em P2 e descrevemos H∗(M)
em termos de h e ȟ, geradores da cohomologia de P2 e P̌2 respectivamente.
Usando estes geradores explicitamos algumas classes em M , como a classe
de KM (o fibrado canônico de M) e os fibrados normal e determinante da
distribuição de contato.

Caṕıtulo 2. Equações diferenciais de segunda ordem. No caṕı-
tulo 2 introduzimos o objeto principal deste trabalho: a equação diferencial
de segunda ordem. Vemos estes objetos como folheações em M tangentes
à distribuição de contato. Também definimos o bigrau de uma equação
diferencial de segunda ordem F como sendo o par ordenado (a, b) tal que
T ∗F = OM(ah + bȟ). Exibimos alguns exemplos de equações diferenciais
de segunda ordem, as analisamos sob este ponto de vista e calculamos seus
fibrados cotangentes.

Mostramos que a folheação vertical e o pencil de webs são as únicas
equações diferenciais de segunda ordem com infinitas superf́ıcies invariantes.

Damos algumas fórmulas relativas à intersecção de TF com curvas e su-
perf́ıcies não invariantes e também uma fórmula para o divisor de tangência
entre duas equações diferenciais de segunda ordem. Usamos estas fórmulas
para entender o significado geométrico do bigrau e dar cotas para o número
de retas invariantes por webs planares.

Terminamos este caṕıtulo estudando equações diferenciais de segunda or-
dem definidas por redes de curvas planas, ou seja, um sistema linear de
dimensão dois de curvas em P2. Nós usamos as fórmulas de interseção para
limitar o número de fibras completamente decompońıveis da rede, provando
assim o Teorema 1.

Caṕıtulo 3. Inexistência de soluções algébricas. O caṕıtulo 3 é ded-
icado ao estudo de E(a, b) = PH0(M,D ⊗ OM(a, b)), o espaço de equações
diferenciais de segunda ordem com bigrau (a, b). Nós damos uma descrição
expĺıcita para os casos (−2 ≤ a ≤ 0, 1 ≤ b) e (1 ≤ a,−2 ≤ b ≤ 0), calculamos
a dimensão deste espaço para todo bigrau, e mostramos que ele é o join de
dois subespaços lineares que nós descrevemos.
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Após estes preliminares o Caṕıtulo 3 dedica-se as demonstrações dos Teo-
remas 2 e 3 enunciados acima. Lá eles são, respectivamente, Teoremas 3.15
e 3.9. O caṕıtulo termina com análogos em superf́ıcies projetivas arbitrárias
destes resultados.
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Introduction

The aim of this work is to study second order differential equations. We will
restrict our attention to global issues such as the (in)existence of algebraic
solutions.

It is classical in the theory of differential equations to introduce a new
parameter representing the first derivative. The second order differential
equation is converted into a system of first order differential equations. If
we consider the variety M = P(TS) which parameterizes points and tangent
directions of a surface S, the so-called contact variety, we can think on second
order differential equations as vector fields (or one dimensional foliations) on
M tangent to the contact distribution.

We will focus on the case of differential equations on P2. The most basic
invariant of these is the so-called bidegree, which is an ordered pair (a, b)
of integer numbers canonically associated to them. We will study the space
of second order differential equations with fixed bidegree (a, b). Using the
geometry of the contact distribution we obtain some intersection formulas
which, in particular, provide a geometrical meaning to the bidegree.

We recall that for second order differential equations, given a generic
point p and a tangent direction v ∈ TpS, there is a unique solution passing
through p and tangent to v. Therefore we can think in a pencil of foliations
as a particular case of second order differential equation. Looking at a 2-
dimensional linear system of curves in P2 as a pencil of foliations, we will
apply the intersection formulas mentioned above to bound the number of
completely decomposable elements.
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Theorem 1. Let P = P(〈F,G, H〉) ⊆ PH0(P2,OP2(d)) be a linear system
of dimension 2 formed by curves of degree d and such that F , G and H do
not have a common factor. Denote by Σ ⊆ PH0(P2,OP2(d)) the subvariety
of completely decomposable curves of degree d. Therefore

1. If P ∩ Σ = C, where C is a curve, then deg(C) ≤ 3.

2. If P ∩ Σ = {p1, . . . , pk}, a set of points, and the number of lines con-
tained in fibers of P is finite then k ≤ 31.

We can find in [21] and [25] similar results for pencils of plane curves.

We are also interested in the study of webs, that is, first order differential
equations of arbitrary degree. It is a well known result of Jouanolou that a
generic foliation of degree at least 2 does not admit any algebraic solution
(see [13]). One may ask whether this is still true for webs and for second order
differential equations. The main results of this thesis give positive answers
to these questions.

Theorem 2. If d ≥ 2 then a generic k-web of degree d in P2 does not admit
any invariant algebraic curve.

Theorem 3. A generic second order differential equation of bidegree (a, b)
with a ≥ 3 has no algebraic solutions.

Both results are sharp: every web of degree less than 2 admits an invari-
ant line, and the same is true for second order differential equations with
a < 3. We also obtain similar results (no longer sharp) for webs and second
order differential equations on arbitrary projective surfaces.

This thesis is divided in three chapters. The following is a brief summary
of each one.

Chapter 1. Preliminaries. In chapter 1 we have compiled some basic
facts of the geometry of M = P(TS) (the contact variety) where S is a
complex surface. We describe the cohomology rings H∗(M) and introduce a
codimension one distribution on M , the contact distribution D. We focus on
the particular case S = P2 in which we can see M as the incidence variety of
points and lines in P2 and describe H∗(M) in terms of h and ȟ, the generators
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of the cohomology of P2 and P̌2 respectively. We express the classes of KM

(the canonical bundle of M), and of the normal and determinant bundles of
the contact distribution in terms of these generators.

Chapter 2. Second order differential equations. In chapter 2 we
introduce the main object of this work: second order differential equations.
We see these objects as foliations on M tangent to the contact distribution.
We also define the bidegree of a second order differential equation F as the
pair (a, b) such that T ∗F = OM(ah + bȟ). Then we give some examples of
second order differential equations, analyze them from this point of view and
compute their cotangent bundles.

We show that the vertical foliation and the pencil of webs are the only
second order differential equations with infinitely many invariant surfaces.

We give some formulas concerning the intersection of TF with non in-
variant curves and surfaces and also give a formula for the tangency divisor
between two second order differential equations. We use these formulas to
understand the geometrical meaning of the bidegree and to give bounds for
the number of invariant lines of planar webs.

We finish this chapter studying second order differential equations defined
by nets of plane curves, that is, a linear system of dimension two of curves
on P2. We use the intersection formulas to bound the number of completely
decomposable fibers of the net, proving then Theorem 1.

Chapter 3. Inexistence of algebraic solutions. Chapter 3 is devoted to
study E(a, b) = PH0(M,D⊗OM(a, b)), the space of second order differential
equations with bidegree (a, b). We give an explicit description for the cases
(−2 ≤ a ≤ 0, 1 ≤ b) and (1 ≤ a,−2 ≤ b ≤ 0), compute the dimension of this
space for every bidegree, and show that it is the join of two linear subspaces
which we describe.

After these preliminaries, Chapter 3 is dedicated to the proofs of The-
orems 2 and 3 listed above. There they are, respectively, Theorems 3.15
and 3.9. The chapter ends with the analogue of these results in arbitrary
projective surfaces .
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Chapter 1

Preliminaries

In this first chapter we collect the basic facts about the projectivization of
the tangent bundle of projective surfaces and its contact distribution. All
the results presented here are well known and can be found in the literature,
see for instance in [10, 24].

1.1 The Projectivization of TS

Let S be a complex manifold and let E be a holomorphic vector bundle
of rank r over S. We denote by π : P(E) → S the associated projective
bundle. The convention adopted here is that over a point z the fiber π−1(z)
parametrizes the one-dimensional subspaces of Ez.

Definition 1.1. The tautological line bundle OP(E)(−1) → P(E) is the
subbundle of the pullback bundle π∗(E) → P(E) whose fiber at any point
(z, [v]) ∈ P(E) is the line in π∗(E)(z,[v]) = Ez represented by [v]:

OP(E)(−1) Â Ä //

&&LLLLLLLLLL
π∗(E) //

²²

E

²²
P(E) // S

The dual of the tautological bundle is denoted by OP(E)(1).

Remark 1.2. The bundle OP(E)(−1) is not determined by the abstract pro-
jective bundle P(E) → S alone, if L → S is any line bundle, we have that
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P(E) ∼= P(E ⊗ L) but (see [23], pg. 82)

OP(E⊗L)(−1) ∼= OP(E)(−1)⊗ π∗(L).

There are two basic exact sequences on P(E)

1. the Euler sequence (see [9], Appendix B, B.5.8)

0 → OP(E) → π∗(E)⊗OP(E)(1) → TP(E)|S → 0 (1.1)

where TP(E)|S is the relative tangent bundle of P(E) over S; and

2. the defining sequence of the relative tangent bundle

0 → TP(E)|S → TP(E) → π∗(TS) → 0 (1.2)

where the last map is given by the differential of π.

We are interested in the case where E = TS, where S is a projective surface.
Throughout M will stand for P(TS).

If {Ui} is an open covering of S with transition functions ψij then we can
realize P(TS) as the gluing of the local pieces Ui × P1 and Uj × P1 by the
isomorphisms

Φij : (Ui ∩ Uj)× P1 −→ (Ui ∩ Uj)× P1

(z; [t : u]) 7→ (ψij(z); [Dψij(z)(t, u)]).

Example 1.3. In the case of S = P2, we can cover M by six affine coordinates
(x, y; p), (x, y; p1), (u, v; q), (u, v; q1), (r, s; t) and (r, s; t1), which are related
in the following way

p1 = 1
p

q1 = 1
q

t1 = 1
t

u = 1
x

v = y
x

q = y − xp

r = x
y

s = 1
y

t = p
xp−y

Here we observe that, in each chart, for example (x, y; p); the pair (x, y) re-
presents the affine coordinates in P2, and the third component p represents
the tangent direction (which is in some affine chart of P1).
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1.2 The Cohomology Rings

In this section we describe the cohomology of M . We will use both the ad-
ditive and multiplicative notation for the operation between bundles.

For a complex vector bundle π : E → S the pullback map

π∗ : H∗(S) → H∗(P(E))

endows H∗(P(E)) with an structure of H∗(S)-algebra. More precisely, (see
[10, pg.606])

Proposition 1.4. For any compact oriented C∞ manifold S and any complex
vector bundle π : E → S of rank r the cohomology ring H∗(P(E)) is the
H∗(S)-algebra generated by the Chern class of the tautological bundle

ξ = c1(OP(E)(−1))

with the single relation

r∑
i=0

(−1)ici(E)ξr−i = 0 (1.3)

where ci(E) denotes the i-th Chern class of the vector bundle E.
(Note: Here and in the sequel, we omit pullbacks of classes when convenient
and when no confusion should result)

When E = TS, H∗(M) is a H∗(S)-algebra generated by ξ = c1(OM(−1))
with the relation:

ξ2 − c1(TS)ξ + c2(TS) = 0 (1.4)

Lemma 1.5. The canonical bundle of M is given by:

KM = 2π∗(KS) + 2ξ

where KS is the canonical bundle of S.

Proof. Taking determinants in sequences (1.1) and (1.2) we obtain

TP(E)|S = π∗(det(E)) +OP(E)(r)
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and
−KP(E) = TP(E)|S + π∗(−KS).

Therefore
KP(E) = −π∗(det(E)) +OP(E)(−r) + π∗(KS).

To conclude the proof of the lemma we only need to notice that det(E) =
−KS and r = 2.

Example 1.6. Let us give a description of the cohomology rings in the case
where S = P2. First notice that the sequence (1.1) for S = {point} and
E =3-dimensional vector space, gives us the classical Euler sequence

0 → OP2 → OP2(1)⊕3 → TP2 → 0. (1.5)

Therefore

c(TP2) = c(OP2(1))3

= (1 + c1(OP2(1)))3

where c(E) denotes the total Chern class of the fiber bundle E.

Denoting by h = c1(OP2(1)) the hyperplane class, we obtain

c1(TP2) = 3h , c2(TP2) = 3h2. (1.6)

As h is the class of a line in P2, it satisfies h3 = 0. From equation (1.3) we
conclude the following description of the cohomology rings of M

H∗(M) =
Z[ξ, h]

〈h3, ξ2 − 3hξ + 3h2〉
Remark 1.7. Since KP2 = −3h, we obtain from lemma 1.5 that:

KM = −6h + 2ξ.

There is another description of H∗(M) (for S = P2) in terms of h and ȟ
(which corresponds to a line in the dual plane P̌2) which we will present in
Section 1.3.2.
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1.3 The Contact Distribution

Let M = P(TS) be the projectivization of the tangent bundle of S, and
π : M → S the natural projection. The three dimensional variety M is usu-
ally called the contact variety.

For each point x = (z, [v]) ∈ M ,i.e. z ∈ S and v ∈ TzS, one has the plane
Dx := (dπ(x))−1(Cv). We obtain in this way a two dimensional distribution
D in M , the so called contact distribution. It fits into the exact sequence

0 // D // TM // ND // 0 (1.7)

where ND is the normal bundle of this distribution.

Let us describe the contact distribution in terms of a system of coordi-
nates.

Remember from Section 1.1 that we can obtain Mas the gluing of Ui×P1

and Uj × P1 by the isomorphisms Φij(z; [t : u]) = (ψij(z); [Dψij(z)(t, u)]).
Denoting by ((xi, yi); [ti : ui]) the coordinates on Ui × P1, and by Aij the
jacobian matrix of ψij, we have

dxi = aijdxj + bijdyj,

dyi = cijdxj + eijdyj,

where

(
aij bij

cij dij

)
= At

ij.

We also notice that (
ti
ui

)
= At

ij

(
tj
uj

)
.

Now, take the local 1-forms on Ui × C2

ηi := tidyi − uidxi.

Using the above observations we obtain
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ηi = (aijtj + bijuj)(cijdxj + eijdyj)− (cijtj + eijuj)(aijdxj + bijdyj)

= det(Aij)ηj.
(1.8)

Hence the collection {ηi} defines a morphism

r∗(det(T ∗S)) → T ∗(TS), (1.9)

where r : TS → S is the natural projection. Now consider the 1-forms

αi =
1

ti
ηi, βi =

1

ui

ηi

over the open sets of Ui × P1 defined by ti 6= 0 and ui 6= 0 respectively. As
they satisfy

αi =
ui

ti
βi, (1.10)

the pair {αi, βi} defines a morphism

q∗iOP1(−1) → T ∗(Ui × P1) (1.11)

where qi : Ui × P1 → P1 is the projection onto the second factor.

From equations (1.8) and (1.10) we infer that the collection of local 1-
forms α = {αi, βi}i defines a codimension one distribution on M . We also
observe that the 1-forms αi, βi have no singular points.

It is clear that the contact distribution D on M is the given by the
collection α = {αi, βi}i; i.e. locally D is defined by the kernel of the 1-forms

dyi − ui

ti
dxi,

ti
ui

dyi − dxi.

We usually call α the contact form.

Lemma 1.8. The normal bundle of the contact distribution ND is given by

ND = π∗(−KS))⊗OM(1).
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Proof. Follows from (1.9), (1.11) and the fact that

q∗iOP1(−1) = OUi×P1(−1).

Remark 1.9. From the local definition of D, we can compute ND in the
following alternative way. First notice that ND is the cokernel of the inclusion
of D in TM . Then consider the exact sequences (1.1) and (1.2) as in the
following diagram

0

²²

0

²²
D

²²

OM(−1)

²²
0 // TM |S // TM

²²

dπ // π∗(TS) //

²²

// 0

ND

²²

TM |S ⊗OM(−1)

²²
0 0

If we take local coordinates (x, y, p) in M – here, (x, y) represents the
point in S and p = [1 : p] a tangent direction–, we know that D is given in
this chart by dy − pdx. Thus D is generated by the local vector fields

∂

∂p
,

∂

∂x
+ p

∂

∂y
.

If v = a ∂
∂p

+ b ∂
∂x

+ pb ∂
∂y

is a vector tangent to D at the point z̃ = (x, y, p),
we have

dπz̃(v) = b
∂

∂x
+ pb

∂

∂y
∈ OM(−1)z̃ = 〈 ∂

∂x
+ p

∂

∂y
〉.

Thus the map D → OM(−1) is surjective over each point and its kernel is
clearly TM |S. Hence we can complete our previous diagram as below.
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0

²²

0

²²
0 // TM |S // D

²²

// OM(−1)

²²

// 0

0 // TM |S // TM

²²

dπ // π∗(TS) //

²²

// 0

ND

²²

TM |S ⊗OM(−1)

²²
0 0

Therefore

ND = det(TM)− det(D) = det(TM) +OM(1)− TM |S
= π∗(det(TS)) +OM(1) = π∗(−KS) +OM(1).

As an application of the above, one obtains.

Proposition 1.10. The determinant of the contact distribution is given by

det(D) = π∗(−KS) +OM(1)

Proof. From (1.7) and Lemma 1.5 we have

det(D) = −KM −ND
= −2π∗(KS) + 2OM(1) + π∗(KS)−OM(1)

= π∗(−KS) +OM(1).

The lemma is proved.

1.3.1 Lift of curves

There is a natural way to lift a curve C ⊆ S to M . Over a nonsingular point
z ∈ C, the fiber P(TzS) ⊆ M parametrizes all the tangent directions of S at
z, in particular we can take the point which represent the direction tangent

16



to C at z. Varying z in the smooth locus of C we form a curve in M , the
closure of this curve is called the first lift (or just the lift) of C, and will be

denoted C(1) or C̃.

It is not difficult to see that the contact distribution has the following
properties.

1. D is not integrable. This can be verified locally. If we take coordi-
nates (x, y; p) in M , then D is given by α = dy − pdx and

α ∧ dα = (dy − pdx) ∧ (−dp ∧ dx) = −dx ∧ dy ∧ dp.

By Frobenius theorem, we are done.

2. The lift of a curve C ⊆ S to M is tangent to D. If we take over
a smooth point z of C a parametrization of the form (t, γ(t)) (we are
assuming without loss of generality that the tangent direction of C at
z is not vertical), then C̃ is given in coordinates (x, y, p) = (x, y, [1 : p])

by (t, γ(t), γ′(t)). Therefore the tangent vector to C̃ is of the form

v(t) =
∂

∂x
+ γ′(t)

∂

∂y
+ γ′′(t)

∂

∂p

which allows to compute

α(v(t)) = (dy − pdx)(
∂

∂x
+ γ′(t)

∂

∂y
+ γ′′(t)

∂

∂p
) = 0

The computations in the other coordinates of M are similar.

Actually, we have the following lemma.

Lemma 1.11. Let C̃ ⊆ M be an irreducible curve which is not a fiber of
π : M → S. Then C̃ is tangent to D if and only if C̃ is the lift of an
irreducible curve C ⊆ S.

Proof. Since C̃ is not a vertical curve, we can assume that in the coordinates
(x, y; p) C̃ is given in a neighborhood of a regular point, by a parametrization
of the form: (t, y(t), p(t)). The condition of tangency with D gives us p(t) =

y′(t). This implies that C̃ coincides with the lift of the irreducible curve

C = π(C̃).
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1.3.2 The case of P2

We shall work in the case where S = P2. In this case the variety M can be
identified with the point-line incidence variety {(x, l) ∈ P2 × P̌2 : x ∈ l}. We
denote by π̌ the restriction to M of the projection onto P̌2.

M = P(TP2)
π

yyrrrrrrrrrrr
π̌

''PPPPPPPPPPPPPP ⊆ P2 × P̌2

P2 P̌2

Let h = c1(OP2(1)) and ȟ = c1(OP̌2(1)) be the hyperplane classes on P2

and P̌2 respectively. We still denote by h and ȟ the respective pullbacks to M
by π and π̌. Notice that in coordinates (x, y, p), ȟ is the class of the divisor
{p = 0}, which can be thought of as a pencil of lines in P2. Let us also denote
by OM(a, b) the class of the line bundle OM(ah + bȟ).

Lemma 1.12. The class (α) := OM((α)0 − (α)∞) of the contact form α is
given by

(α) = OM(−1,−1)

where (α0) and (α∞) represent the divisors of zeros and poles of α respec-
tively.

Proof. We just need to write α = dy − pdx and change to the other affine
coordinates by the coordinate changes given in example 1.3

dy − pdx, 1
p1

(p1dy − dx), 1
u
(dv − qdu),

1
uq1

(q1dv − du), 1
s(rt−s)

(ds− tdr), 1
s(r−t1s)

(t1ds− dr).

and the lemma follows.

From this lemma we infer that

ND = OM((α)∞ − (α)0) = OM(1, 1) (1.12)

and therefore

Proposition 1.13. The class of the tautological bundle is given by

ξ = 2h− ȟ.
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Proof. It is enough to observe that OM(1) = ND + π∗(KP2).

Now we obtain another description of H∗(M).

Corollary 1. The cohomology rings are given by

H∗(M) =
Z[h, ȟ]

〈h3, h2 − hȟ + ȟ2〉
Proof. Follows from Example 1.6 and Proposition 1.13.

One also has

Lemma 1.14. The following relations hold true

1. h2ȟ = hȟ2 = 1,

2. ȟ3 = 0.

Proof. For the first equation observe that h2 is the class of a fiber of π, then
h2ȟ = 1. Now multiply the relation h2−hȟ+ ȟ2 = 0 by h to obtain hȟ2 = 1.
The second equality follows from the fact that ȟ represents the class of a line
on P̌2.

With this at hand, we recover some formulas for the bundles that we work
with.

Corollary 2. The canonical bundle of M is given by

KM = OM(−2,−2).

Proof. It is clear from remark 1.7 and proposition 1.13.

Corollary 3. The determinant of the contact distribution is given by

det(D) = OM(1, 1).

Proof. It is a consequence of propositions 1.10 and 1.13.
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Chapter 2

Second Order Differential
Equations

In this chapter we present our first contributions. It starts with the definition
of second order differential equations on projective surfaces and an analysis
of a class of examples of such objects. Then we provide formulas for the
intersection of the cotangent bundle of the second order differential equation
with surfaces and smooth curves. These results are applied to study nets of
curves on P2 and in particular to obtain bounds for the number of completely
decomposable elements of a net.

2.1 Second Order Differential Equations vs

Foliations Tangent to D
Let us consider the following second order differential equation

y′′ =
A(x, y, y′)
B(x, y, y′)

=
a0(x, y) + a1(x, y)y′ + . . . + al(x, y)(y′)l

b0(x, y) + b1(x, y)y′ + . . . + bk(x, y)(y′)k
(2.1)

where the coefficients a0(x, y), . . . , al(x, y), b0(x, y), . . . , bk(x, y) are polyno-
mials.

Take coordinates (x, y, p) = (x, y, [1 : p]) on P(TC2) ⊆ M = P(TP2) and
consider the vector field

X = B(x, y, p)
∂

∂x
+ pB(x, y, p)

∂

∂y
+ A(x, y, p)

∂

∂p
(2.2)
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in this chart.

Lemma 2.1. The integral curves of X correspond, via π (the natural pro-
jection), to the solutions of (2.1).

Proof. Let γ̃ = (γ1, γ2, γ3) be an integral curve of X, so we can suppose that





γ′1 = B(γ1, γ2, γ3)
γ′2 = γ3.B(γ1, γ2, γ3)
γ′3 = A(γ1, γ2, γ3)

Set (x, y) = π(γ1, γ2, γ3) = (γ1, γ2), then by the relations above and the chain
rule

d2y

dx2
=

d

dx

(
γ′2
γ′1

)
=

1

γ′1

d

dt
(γ3) =

γ′3
γ′1

=
A(γ1, γ2, γ3)

B(γ1, γ2, γ3)
=

A(x, y, dy
dx

)

B(x, y, dy
dx

)
.

On the other hand, if γ = (γ1, γ2) is a solution of (2.1) then the lift of this

curve is parametrized by γ̃ = (γ1, γ2,
γ′2
γ′1

) = (γ1, γ2, γ3). Since γ is a solution

of (2.1) we have

A(γ1, γ2, γ3)

B(γ1, γ2, γ3)
=

d2y

dx2
=

1

γ′1

d

dt

(
γ′2
γ′1

)
,

therefore

γ′2 = γ′1γ3 and γ′3 = γ′1
A(γ1, γ2, γ3)

B(γ1, γ2, γ3)
.

This clearly implies that γ̃ is tangent to X.

Notice that X is tangent to the contact distribution. Moreover every vec-
tor field, polynomial in (x, y, p), tangent to α, has this form. So X defines a
1-dimensional foliation in an open set of P(TC2) ⊆ M tangent to the contact
distribution. Its leaves project to the graphs of the solutions of our initial
second order differential equation.

Since X is a polynomial vector field this foliation extends to a 1-dimensional
foliation F in M tangent to D. If we denote by T ∗F the cotangent bundle
of F , then the local expressions of X in local coordinates of M form a global
section XF ∈ H0(M,D ⊗ T ∗F). This motivates the following definitions.
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Definition 2.2. A second order differential equation in S is a one dimen-
sional foliation F in M = P(TS), tangent to D. In other words, a foliation
defined by an element XF ∈ H0(M,D⊗T ∗F) for a suitable line bundle T ∗F
on M (called the cotangent bundle of F). The solutions of this equation are
the projections by π of the leaves of Fsat, where Fsat is the saturated foliation
associated to F .

Definition 2.3. If we write T ∗F = OM(a, b) for some integers a, b; we define
the bidegree of the differential equation (or of the foliation FX associated to
X) to be the ordered pair (a, b).

Notice that we allow the foliation F to have a singular set of codimension
one. Now we present two simple examples for S = P2.

Example 2.4. Let us consider the differential equation satisfied by the lines

y′′ = 0.

The associated foliation in M will be denoted by L. This foliation is given
in coordinates (x, y, p) by the vector field

XL =
∂

∂x
+ p

∂

∂y
.

If we make the change of coordinates in M (see example 1.3) we obtain

• (x, y, p1) = (x, y, 1
p
),

XL,1(x, y, p1) =
1

p1

[
p1

∂

∂x
+

∂

∂y

]
.

• (u, v, q) = ( 1
x
, y

x
, y − xp),

XL,2(u, v, q) = −u2

[
∂

∂u
+ q

∂

∂v

]
.

• (u, v, q1) = (u, v, 1
q
),

XL,3(u, v, q1) =
−u2

q1

[
q1

∂

∂u
+

∂

∂v

]
.
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• (r, s, t) = (x
y
, 1

y
, p

xp−y
),

XL,4(r, s, t) =
−s2

rt− s

[
∂

∂r
+ t

∂

∂s

]
.

• (r, s, t1) = (r, s, 1
t
),

XL,5(r, s, t1) =
−s2

r − st1

[
t1

∂

∂r
+

∂

∂s

]
.

Since T ∗L = OM ((XL)∞ − (XL)0), we obtain

T ∗L = OM(−2, 1).

Note that this foliation is tangent to the fibers of π̌ : M → P̌2.

Example 2.5. Let V be the foliation tangent to the fibers of the projection
π : M → P2. This foliation is given in the chart (x, y, p) by the vector field

XV =
∂

∂p
,

so V is clearly tangent to D. We can make again the change of coordinates
in M to obtain

• (x, y, p1) = (x, y, 1
p
),

XV,1(x, y, p1) = −p2
1

∂

∂p1

.

• (u, v, q) = ( 1
x
, y

x
, y − xp),

XV,2(u, v, q) =
−1

u

∂

∂q
.

• (u, v, q1) = (u, v, 1
q
),

XV,3(u, v, q1) =
q2
1

u

∂

∂q1

.
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• (r, s, t) = (x
y
, 1

y
, p

xp−y
),

XV,4(r, s, t) =
−(rt− s)2

s

∂

∂t
.

• (r, s, t1) = (r, s, 1
t
),

XV,5(r, s, t1) =
(r − st1)

2

s

∂

∂t1
.

In this case we conclude

T ∗V = OM(1,−2).

Observe that tangent bundles of L and V fit into the following exact
sequence

0 // TL // D // TV // 0. (2.3)

2.2 Pencil of webs

In this section we give an example of second order differential equation on
P2, pencil of webs.

A global k-webW on a surface S is given by an open covering U = {Ui} of
S and k-symmetric 1-forms ωi ∈ SymkΩ1

S(Ui) such that for each non-empty
intersection Ui ∩ Uj of elements of U there exists a non-vanishing function
gij ∈ O∗

S(Ui ∩ Uj) such that ωi = gijωj.

The transition functions gij determine a line bundle N over S and the
k-symmetric 1-forms {ωi} patch together to form a section of SymkΩ1

S ⊗N ,
that is, ω = {ωi} can be interpreted as an element of H0(S, SymkΩ1

S ⊗ N ).
The line bundle N will be called the normal bundle of W .

Two global sections ω, ω′ ∈ H0(S, SymkΩ1
S ⊗N ) determine the same web

if and only if they differ by the multiplication by an element g ∈ H0(X,O∗
S).

If X is compact, or more generally if the only global sections of O∗
S are the

non-zero constants, then a global k-web is nothing more than an element of
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PH0(S, SymkΩ1
S ⊗N ), for a suitable line bundle N .

A k-web W ∈ PH0(S, SymkΩ1
S ⊗N ) is decomposable if there are global

webs W1, W2 on S sharing no common subwebs such that W = W1 £W2,
in other words if W is in the image of the natural map:

PH0(S, Symk1Ω1
S ⊗N1)× PH0(S, Symk2Ω1

S ⊗N2) → PH0(S, SymkΩ1
S ⊗N )

for some k1, k2, N1, N2 such that k1 +k2 = k and N1 +N2 = N . A k-web W
is completely decomposable if one can write W = F1 £ . . . £Fk for k global
foliations F1 . . .Fk on S.

We are interested in webs defined in the projective plane P2. Let W =
[ω] ∈ PH0(P2, SymkΩ1

P2 ⊗N ) be a k-web on P2. Analogously to the case of
foliations, we define the degree of W as the number of tangencies, counted
with multiplicities, of W with a line not everywhere tangent to W , and we
denote it by deg(W). More precisely, if we have i : P1 ↪→ P2 a line on P2

then the image of i is everywhere tangent to W if and only if i∗ω vanishes
identically. When this line is not invariant by W the points of tangency with
W correspond to the zeroes of [i∗ω] ∈ PH0(P1, SymkΩ1

P1 ⊗ i∗N ). Observing
that i∗NW = i∗OP2(deg(NW)) = OP1(deg(NW)) and SymkΩ1

P1 = OP1(−2k)
we conclude that

deg(NW) = d + 2k.

From now on we denote by W(k, d) = PH0(P2, SymkΩ1
P2(d + 2k)) the space

of k-webs of degree d in P2.

Let W be a k−web of degree d in P2. For a point z ∈ P2 we have k
points (not necessarily different) p1(z), . . . , pk(z) ∈ P(TpP2) corresponding to
the directions of W at this point. In this way we obtain a surface SW ⊆ M
which is the union of the lifts of the leaves of W .

It is clear that SW intersects a generic fiber of π : M → P2 at k points
(counting with multiplicities), so if we write [SW ] = ah + bȟ we have k =
[SW ].h2 = b.

On the other hand we know that the class of the lift of a line l ⊆ P2 is
[ľ] = ȟ2, and the points of SW ∩ ľ (for l generic) corresponds to points of P2
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where W and l are tangent, so one concludes d = [SW ].ȟ2 = a and therefore

[SW ] = dh + kȟ (2.4)

Remark 2.6. To obtain (2.4) we have assumed that d is the number of
tangencies between W and a generic line l in P2, but the formula remains
true. In fact, if we consider the k-web W given by f.ω ∈ H0(SymkΩ1

P2 ⊗
OP2(d + d1 + 2k)), where f ∈ H0(P2,O(d1)) and the k-web W ′ given by
ω ∈ H0(SymkΩ1

P2 ⊗OP2(d + 2k)) has d tangencies with a generic line in P2,
then

[SW ] = [SW ′ ] + π∗[{f = 0}] = (d + d1)h + kȟ.

Remark 2.7. If the k-web is given locally by the equation

F (x, y, y′) = a0(x, y) + . . . + ak(x, y)(y′)k = 0

where a0, . . . , ak are polynomials in (x, y), then the surface SW is given in
coordinates (x, y, p) by

SW = {F (x, y, p) = 0}.

The reader can see [24], lemma 3.2.3 and lemma 3.2.4 for a local argument
to obtain equation (2.4).

The restriction of D to SW defines a foliation (over the regular part of
SW) whose leaves are the lifts of the leaves of W . In fact, the lift of the leaves
of W defines a foliation in SW which is tangent to D.

Take now two k-webs of degree d W1 and W2 given by

ωi ∈ H0(P2, SymkΩ1
P2 ⊗OP2(d + 2k)), i = 1, 2;

and we shall suppose that these elements are C-linearly independent. Con-
sider the pencil of webs {Wt}t∈P1 generated byW1 andW2, i.e. W[a:b] is given
by aω1 + bω2. Then we have a pencil of surfaces {SWt} in M and clearly this
is the pencil generated by SW1 and SW2 . Since one has a foliation over each
SWt , we obtain a one dimensional foliation H tangent to D.

Since the classes [SW1 ], [SW2 ] are dh + kȟ, the pencil SWt is given by an
element η ∈ H0(M, Ω1

M⊗L1) where L1 = OM(2d, 2k) (η is locally the 1-form
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FdG−GdF , where F and G are the local equations of SW1 and SW2). Then
H is given by

α ∧ η ∈ H0(M, Ω2
M ⊗ L)

where α ∈ H0(M, Ω1
M ⊗ND) is the contact form and

L = L1 ⊗ND = OM(2d + 1, 2k + 1).

We define the second order differential equation associated to the pencil
of webs {Wt}t∈P1 as the foliation H constructed above.

Now, any nowhere vanishing local holomorphic section of KM defines
by contraction an isomorphism between local vector fields and local 2-forms
generating H, so that KM

∼= Hom(TH,L∗) ∼= T ∗H⊗L∗. We use corollary 2
to conclude that

T ∗H = OM(2d− 1, 2k − 1). (2.5)

Observe that H could have a singular set of codimension 1, which is given
by the zero locus of α ∧ η.

Example 2.8 (Pencil of Foliations). Let us consider the case where W1

and W2 are foliations F1 and F2 of the same degree d, i.e. Fi is given by
ωi ∈ H0(P2, Ω1

P2(d + 2)), which is given in an affine chart by

F1 = [a1dx + b1dy = η1 = 0],

F2 = [a2dx + b2dy = η2 = 0].

Then locally SF1 = {F = a1 + pb1 = 0}, SF2 = {G = a2 + pb2 = 0}, so that

FdG−GdF =

(
F

∂G

∂x
−G

∂F

∂x

)
dx +

(
F

∂G

∂y
−G

∂F

∂y

)
dy + (a1b2− a2b1)dp,

and then

α ∧ η = [G
∂F

∂x
− F

∂G

∂x
− p(F

∂G

∂y
−G

∂F

∂y
)]dx ∧ dy − p[a1b2 − a2b1]dx ∧ dp

+ [a1b2 − a2b1]dy ∧ dp.

If ω1∧ω2 = 0 then a1b2−a2b1 = 0 and in this case H is the“vertical” foliation
V of the example 2.5 (with a singular set of codimension 1).
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So, we will assume that ω1 ∧ ω2 6= 0, that is a1b2 − a2b1 6= 0. Observe
that a1b2 − a2b1 only depends of x, y, then if α ∧ η has a singular set given
by {H = 0}, H does not depend of p. The same argument holds if we use
the coordinates (x, y, p1) = (x, y, 1

p
). We conclude that if H has a singular

set S ⊆ M of codimension one, then S = π∗(C) for a curve C ⊆ P2 and
therefore [S] = kh, where k = deg(C).

Consider now the curve T ⊆ P2 given by

T = {ω1 ∧ ω2 = 0} = {ωs ∧ ωt = 0}, s 6= t ∈ P1. (2.6)

Remark 2.9.

1. The degree of T is 2d + 1 since

ω1 ∧ ω2 ∈ H0(P2, KP2 ⊗OP2(2d + 4)) = H0(P2,OP2(2d + 4− 3))

2. Sing(Ft) ⊆ T , ∀t ∈ P1.

3. Suppose that Fi has a singular set of codimension one Ci = {gi = 0}
and denote by F̃i the foliation given by ω̃i where ωi = giω̃i, i=1,2. Then
we define the tangency curve between F̃1 and F̃2 as tan(F̃1, F̃2) :=
{ω̃1 ∧ ω̃2 = 0}. Observe also that

T = C1 ∪ C2 ∪ tang(F̃1, F̃2).

Proposition 2.10. With the above notation, the curve C satisfies the fo-
llowing properties.

1. C ⊆ T .

2. Every irreducible component D of T which has multiplicity ki on Ci

divides C with multiplicity k1 + k2 if k1 = k2 and with multiplicity
k1 + k2 − 1 otherwise.

3. An irreducible component E of T with multiplicity n divides C only if
E is Fi-invariant, n = 1 and some Fi has a radial singularity over E.
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Proof. To prove the first assertion take a point z /∈ T , then we can choose
coordinates around z where F1 and F2 are given by η1 = dy+dx and η2 = dy.
In this case η = FdG−GdF = dp so that α∧ η = pdx∧ dp− dy ∧ dp has no
singularities. We conclude that the curve C must be contained in T .

Now we are going to prove the second part. Let D ⊆ T be an irreducible
component of T which appears with multiplicity ki on Ci, in particular it has
multiplicity m = k1 + k2 on T . Then around the generic point of D we can
choose a convenient coordinate system and we can write

D = {y = 0},
η1 = yk1(ã1dx + b̃1dy),

η2 = yk2(ã2dx + b̃2dy).

Therefore F = yk1F̃ , G = yk2G̃, where F̃ = ã1 + pb̃1 and G̃ = ã2 + pb̃2 and y
does not divide F̃ G̃. So, in these coordinates one has

η = FdG−GdF

= yk1F̃ (k2y
k2−1G̃dy + yk2dG̃)− yk2G̃(k1y

k1−1F̃ dy + yk1dF̃ )

= ym(F̃ dG̃− G̃dF̃ ) + (k2 − k1)y
m−1F̃ G̃dy

and

α ∧ η = [ym(G̃
∂F̃

∂x
− F̃

∂G̃

∂x
) + pym(G̃

∂F̃

∂y
− F̃

∂G̃

∂y
)− (k2 − k1)py

m−1F̃ G̃]dx ∧ dy

−pym[ã1b̃2 − ã2b̃1]dx ∧ dp + ym[ã1b̃2 − ã2b̃1]dy ∧ dp.

We can conclude the following.

1. If k1 = k2 then D appears with multiplicity m = k1 + k2 in C.

2. If k1 6= k2 then D appears with multiplicity exactly m− 1 in C.

In the case where k1 6= k2 we observe that

1

ym−1
(α ∧ η) ∧ dy = py(ã1b̃2 − ã2b̃1)dx ∧ dy ∧ dp
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in particular, π∗(D) is invariant by the foliation induced by 1
ym−1 (α ∧ η)

In order to prove the last assertion take E ⊆ T an irreducible component
which appears in tang(F1,F2) with multiplicity n. Observe that we have a
map λ : E 99K P1 such that for a generic point p ∈ E, η1(p) = λ(p)η2(p).

Then λ ≡ constant if and only if E ⊆ Sing(F[1:−λ]). In this case we
proceed as in the previous case.

We assume now that E * Sing(Ft), ∀t ∈ P1, and take a generic point
p ∈ E which is a regular point for E and F1. We can assume that p is an
isolated singularity of F2 (one replaces F2 by F[1:−λ(p)]).

If E is not F1-invariant (therefore is not F2-invariant), then we can choose
a coordinate system around p and write

E = {x = 0}, p = (0, 0),

η1 = dy,

η2 = xnadx + bdy

where x does not divide a.b and b(0, 0) = 0. So F = p and G = xna + pb and
then

α ∧ η = [−p(nxn−1a + xn ∂a

∂x
+ p

∂b

∂x
)− p2(xn ∂a

∂y
+ p

∂b

∂y
)]dx ∧ dy

+ pxnadx ∧ dp− xnady ∧ dp.

We conclude that

x divides α ∧ η ⇔ x divides nxn−1a + p
∂b

∂x
+ p2 ∂b

∂y

⇔ n ≥ 2 and x divides
∂b

∂x
+ p

∂b

∂y

but this is not possible, since b(0, 0) = 0 and x does not divides b. Then we
conclude that E is not a component of C.
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If E is F1-invariant (therefore is Ft-invariant for all t ∈ P1), then we can
choose a coordinate system around p and write

E = {y = 0}, p = (0, 0),

η1 = dy,

η2 = ynadx + bdy

where y does not divide a.b and b(0, 0) = 0. So F = p and G = yna + pb and
then

α ∧ η = [−p(yn ∂a

∂x
+ p

∂b

∂x
)− p2(nyn−1a + yn ∂a

∂y
+ p

∂b

∂y
)]dx ∧ dy

+ pynadx ∧ dp− ynady ∧ dp.

In this case we conclude that

y divides α ∧ η ⇔ y divides nyn−1a +
∂b

∂x
+ p

∂b

∂y

If n ≥ 2 this assertion implies that y divides ∂b
∂x

and ∂b
∂y

, but this is not pos-

sible since b(0, 0) = 0 and y does not divide b.

If n = 1 the assertion implies that y divides ∂b
∂x

+ a and ∂b
∂y

, in particular
p is a radial singularity.

2.3 Invariant subvarieties

The second order differential equations given by pencil of webs have an infi-
nite number of invariant surfaces which are dominant over P2, more explic-
itly, the foliation H given by the pencil of webs {Wt} is tangent to the pencil
of surfaces {SWt} in M . We shall say that an irreducible surface in M is
horizontal if the restriction of the projection π : M → S to this surface is
dominant, otherwise we say that the surface is vertical.

We have now the following general proposition. The proof is an easy
adaptation of an argument of Ghys (see [11]).
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Proposition 2.11. Let F be a foliation by curves on a 3-dimensional projec-
tive manifold M . If F has an infinite number of invariant algebraic surfaces
S1, S2, . . ., then F has a rational first integral, i.e., there exists a rational
map on M which is constant along the leaves of F .

Proof. Let us take U = {Ui} an open covering of M and on each Ui a vector

field Xi and a algebraic function f
(k)
i defining F and Sk on Ui respectively,

and satisfying on each non-empty intersection Ui ∩ Uj the relations

Xi = gijXj,

f
(k)
i = f

(k)
ij f

(k)
j

where gij, f
(k)
ij ∈ O∗

M(Ui∩Uj). Consider now DivF(M) ⊆ Div(M) the subset
of divisors such that every irreducible component is F -invariant, and define
the map

ϕ : DivF ⊗ C → H1(M, Ω1
M,c)

{f (k)
ij } 7→

{
df

(k)
ij

f
(k)
ij

}

where Ω1
M,c denotes the sheaf of closed 1-forms in M .

Observe that since one has the exact sequence

0 // C // O d // Ω1
M,c

// 0

we have

H1(M,C) // H1(M,O) // H1(M, Ω1
M,c) // H2(M,C)

and then dimH1(M, Ω1
M,c) < ∞. We conclude that dimKerϕ = ∞. Now,

for every element
∑

k λkf
(k)
ij of this kernel there are closed 1-forms βi on Ui

such that
∑

k

λk

df
(k)
ij

f
(k)
ij

= βj − βi

on Ui ∩ Uj. Since f
(k)
i = f

(k)
ij f

(k)
j this implies

∑

k

λk
df

(k)
i

f
(k)
i

+ βi =
∑

k

λk

df
(k)
j

f
(k)
j

+ βj.

32



So we have a global meromorphic closed 1-form η (with poles on the Sk’s
that appears in the sum) given on Ui by

η =
∑

k

λk
df

(k)
i

f
(k)
i

+ βi.

Now, using the relations on Ui ∩ Uj we have

Xi(f
(k)
i )

f
(k)
i

= gij

Xj(f
(k)
ij f

(k)
j )

f
(k)
ij f

(k)
j

= gij

Xj(f
(k)
j )

f
(k)
j

+ gij

Xj(f
(k)
ij )

f
(k)
ij

and then

η(Xi) =
∑

k

λk
Xi(f

(k)
i )

f
(k)
i

+ βi(Xi)

=
∑

k

λkgij

Xj(f
(k)
j )

f
(k)
j

+
∑

k

λkgij

Xj(f
(k)
ij )

f
(k)
ij

+ gijβi(Xj)

=
∑

k

λkgij

Xj(f
(k)
j )

f
(k)
j

+ gij[
∑

k

λk

df
(k)
ij

f
(k)
ij

+ βi](Xj)

=
∑

k

λkgij

Xj(f
(k)
j )

f
(k)
j

+ gijβj(Xj)

= gijη(Xj).

Thanks to the F -invariance of the Sk’s, the local functions η(Xi) are holo-
morphic and so one has an element {η(Xi)} ∈ H0(M, T ∗F).

We have just constructed a map ψ : ker ϕ → H0(M, T ∗F) and since
dim ker ϕ = ∞ we have closed meromorphic 1-forms η1, η2, η3 with different
set of poles and such that ηr(Xi) ≡ 0 ∀i and r = 1, 2, 3 (in fact we have an
infinite number of these forms).

If η1 ∧ η2 ≡ 0 there exists a rational non-constant function h such that
η1 = hη2 and then

0 = dη1 = dh ∧ η2,
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so dh defines the same foliation that η2 and therefore is a first integral of F .

If η1 ∧ η2 6= 0 then η1 ∧ η2 ∧ η3 ≡ 0 because this 3-form is zero on the
tangent space of F , in this case we have that η3 = fη1 + gη2, and we can
assume that f is not constant (f and g are rational functions). Therefore

0 = dη3 = df ∧ η1 + dg ∧ η2

⇒ 0 = df ∧ η1 ∧ η2

⇒ df = f1η1 + g1η2

which implies that df(Xi) ≡ 0 and concludes the proof.

As a consequence of this result we have

Corollary 4. Let F be a second order differential equation on P2. If F
admits infinitely many invariant horizontal surfaces, then F is the second
order differential equation given by a pencil of webs.

Proof. By the proposition we have that F is tangent to a pencil of surfaces in
M and by hypothesis we can take two horizontal surfaces S1, S2 with classes
[Si] = dh+kȟ as generators of this pencil. We conclude that F is the second
order differential equation associated to the pencil of webs generated by the
projection of the foliations on S1 and S2 given by F .

On the other hand we observe that the vertical foliation V of example 2.5
has infinitely many vertical invariant surfaces. As a consequence of proposi-
tion 2.11 we show that up to a singular set of codimension one, this is the only
second order differential equation with this property (clearly any multiple of
V also has infinitely many vertical invariant surfaces).

Corollary 5. Let F be a second order differential equation such that Fred

(the reduced foliation associated to F) is not the vertical foliation V. Then
the number of vertical invariant surfaces of F is finite.

Proof. If F has infinitely many vertical invariant surfaces then F is tangent
to a pencil of vertical surfaces. This pencil is given locally in M by a 1-form
which depends only of (x, y) and then F is given by a 2-form which is locally
of the form F (x, y, p)dx ∧ dy. This concludes the proof.
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2.4 Intersection formulas

In order to understand the geometric meaning of TF we give in this section
some formulas concerning its intersection with curves and surfaces.

2.4.1 Generically transverse surfaces

Let V ⊆ M be a compact surface, possibly singular, such that each irreducible-
component of V is not F -invariant. We define the tangency curve between
F and V as the divisor on V given locally by

tang(F , V ) = {X(F )|V = 0}

where {F = 0} is a local equation of V and X is a local holomorphic vector
field generating F .

Observe that this divisor can be defined for any complex compact subva-
riety V ⊆ M of codimension 1 and any foliation by curves F on a complex
manifold M (we do not need here the condition of tangency with D). Anal-
ogously to [2], proposition 2 on page 23, one has.

Proposition 2.12. The tangency divisor between F and V is given by

tang(F , V ) = T ∗F|V + NV .

Proof. We choose an open covering U = {Ui} of M , holomorphic vector fields
Xi on Ui defining F and holomorphic functions Fi on Ui defining V . On the
intersections Ui ∩ Uj we have

Xi = gijXj,

Fi = FijFj

where gij, Fij ∈ O∗
M(Ui ∩ Uj). Hence

Xi(Fi) = gijFijXj(Fj) + gijFjXi(Fij)

and then {Xi(Fi)|V } gives a section of (T ∗F ⊗OM(V ))|V .
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Example 2.13 (The inflection curve of a web). Let W be a k-web of
degree d on P2 and assumeW has (at most) a finite number of invariant lines.
Then every irreducible component of the surface SW ⊆ M is not invariant
by L (lines). Since we know that the class of SW is [SW ] = dh + kȟ, we have

[tang(L, SW)] = (−2h + ȟ).(dh + kȟ) + (dh + kȟ)2

= (d2 − d)h2 + (k2 + k)ȟ2 + (2dk + d− 2k)hȟ.

We define the inflection curve of W as the projection C of this divisor. Thus

deg(C) = k2 + (2d− 1)k + d.

Observe that in the case d = 1,

deg(C) = k2 + k + 1

which is the number of invariant lines of a generic k-web of degree 1.

On the other hand, in the particular case of foliations, k=1, we obtain the
well-known bound for the number of invariant lines of a foliation of degree d,

deg(C) = 3d.

Example 2.14. Let F be a foliation on P2 of degree d with isolated and
non-degenerate singularities. Consider SF ⊆ M the surface associated to the
foliation and V the vertical foliation. Then clearly SF is not V-invariant and
then we can apply the proposition

[tang(V , SF)] = (h− 2ȟ).(dh + ȟ) + (dh + ȟ)2

= (d2 + d + 1)h2.

Observe now that this divisor is formed by the fibers of π over the singular
points of F .

We recover the well-known fact that the number of singularities of F is

d2 + d + 1.
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2.4.2 An application

As in example 2.13, we can look for the inflection curve of a foliation in a
complex surface S, that is, the curve where the foliation has high-order tan-
gencies with a system of “lines”.

We can adopt the following definition. Let S be a complex surface such
that the universal covering S̃ of S is an open set of P2 and the group of deck
transformations acts on S̃ by automorphisms of P2, then the lines on S will
be the projection (by the universal covering map) of the lines on P2.

Let us take for example S = (C∗)2, in this case the universal covering is
given by the map C2 → (C∗)2, (z, w) 7→ (ez, ew) and then the lines on S are
the leaves of the foliations L[λ:µ] = [λydx + µxdy = 0].

The inflection curve can be used to bound the order of Completely De-
composable Quasi Linear (CDQL) exceptional webs on this surface, see for
instance [20, theorem 4], as follows. Let W be a linear completely decom-
posable k-web on S and F a nor-linear foliation. Then consider the rational
map PF : P2 99K P1 characterized by the property

P−1
F ([λ : µ]) = tang(F ,L[λ:µ]).

The first step would be to show that if the web W£F is exceptional then the
map PF has at least k completely decomposable (that is, product of lines)
fibers and thus we need to bound the number of such fibers. We will prove
here that the number of completely decomposable fibers is at most 5.

Let F be a foliation on P2 with isolated singularities and which is not
formed by solutions of the foliations λydx + µxdy, [λ : µ] ∈ P1.

Consider H the second order differential equation given by the pencil of
foliations λydx + µxdy, [λ : µ] ∈ P1, then we have T ∗H = OM(1, 1) (see
(2.5)). By our hypothesis the surface SF is not H invariant, hence

[tang(H, SF)] = (deg(F)2 + 4deg(F) + 1)h2 + (3deg(F) + 3)ȟ2.

and then denoting by C the projection of this divisor we obtain

deg(C) = 3deg(F) + 3.

37



With this at hand we get the following result.

Theorem 2.15. Let f : P2 99K P1 a pencil of curves of degree d which is not
formed by solutions of the pencil of foliations P = {λydx + µxdy, [λ : µ] ∈
P1}. Then the number of fibers invariant by P is at most 5.

Proof. Let k be the number of fibers invariant by P . If we denote by F
the associated foliation, by Q̃ =

∏
αmi

i the product of these fibers and by
Q =

∏
αi the reduced polynomial with the same zero set, then we have

deg(F) ≤ 2d− 2− deg(
Q̃

Q
).

On the other hand it is clear that the zero set of Q is contained in C, hence

Q̃ divides Q̃
Q
C and then

kd ≤ deg(
Q̃

Q
) + deg(C)

≤ deg(
Q̃

Q
) + 3(2d− 2− deg(

Q̃

Q
)) + 3

= 6d− 3− 2deg(
Q̃

Q
).

Therefore

k ≤ 6− 3

d
− 2

d
deg(

Q̃

Q
) < 6.

2.4.3 Non invariant curves

Let us consider now C̃ ⊆ M a smooth compact curve, tangent to D, such that
each component of C̃ is not F -invariant and suppose that the codimension
of the singular set of F is at least 2. Then we have the following diagram

0

²²
TF|C̃

²²

σ

""EEEEEEEE

0 // TC̃ // D|C̃ // NC̃
// 0
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where NC̃ is the normal bundle of C̃ in D.

Observe that the map σ vanishes exactly at the points where F is tangent
to C̃. We define the tangency index between F and C̃ at a point x ∈ C̃ as
the vanishing order of the section induced by σ, OC̃ → T ∗F|C̃ ⊗NC̃ (which
we still denote by σ) at x

tang(F , C̃, x) = ordx(σ).

Hence we can set
tang(F , C̃) =

∑

x∈C̃

tang(F , C̃, x).

In order to compute this number we have the following proposition.

Proposition 2.16. The tangency index between F and a smooth compact
curve C̃ tangent to D is

tang(F , C̃) = T ∗F .C̃ + det(D).C̃ − χ(C̃)

where χ(C̃) is the Euler characteristic of C̃.

Proof. We just need to take Chern classes in the previous sequence.

If one writes locally F induced by X = B ∂
∂x

+ pB ∂
∂y

+ A ∂
∂p

and C̃

parametrized by (γ1, γ2, γ3), where γ′1γ3 = γ′2, then the points of tangency
are exactly the points where B(γ1, γ2, γ3)γ

′
3−A(γ1, γ2, γ3)γ

′
1 vanishes and the

tangency index at these points is the order of vanishing of this function; in
particular tang(F , C̃, x) ≥ 0.

Now we can give a geometric interpretation of the bidegree of a second
order differential equation.

Corollary 6. Let F be a saturated second order differential equation of bide-
gree (a, b), which is neither L (lines) nor V (fibers) and denote by F and l̃ a
fiber of π and the lifting of a line in P2 respectively, then

a = tang(F , l̃) + 1,

b = tang(F , F ) + 1.

In particular a ≥ 1 and b ≥ 1.
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Proof. We have just to observe that χ(F ) = χ(l̃) = 2 and

[F ] = h2, [l̃] = ȟ2,

(because l̃ is a fiber of π̌) and apply the proposition.

Example 2.17. We obtain (again) the class of the cotangent bundle of the
second order differential equation L of the example 2.4.

Let us write T ∗L = OM(a, b) and apply proposition 2.16 for C̃ = F , a
fiber of π, to obtain

0 = tang(L, F ) = (ah + bȟ).h2 + (h + ȟ).h2 − χ(F ) = b− 1.

On the other hand, observing that the tangency curve between L and H =
π−1(l), where l is a line on P2, is exactly l̃, the lifting of l, we can apply
proposition (2.12) to obtain

ȟ2 = [tang(L, H)] = (ah + ȟ).h + h2 = (a + 2)h2 + ȟ2.

We have just proved that T ∗L = OM(−2, 1).

Example 2.18. In a similar way we obtain the class of the cotangent bundle
of the second order differential equation V of the example 2.5.

Let us write T ∗V = OM(a, b) and apply proposition 2.16 for C̃ = l̃, the
lifting of a line in P2, to obtain

0 = tang(V , l̃) = (ah + bȟ).ȟ2 + (h + ȟ).ȟ2 − χ(l̃) = a− 1.

On the other hand, observe that the tangency curve between V and S =
π̌−1(ľ), where ľ is a line on P̌2, is exactly the fiber of π over the point in P2

corresponding to ľ, then we can apply proposition (2.12) to obtain

h2 = [tang(V , S)] = (h + bȟ).ȟ + ȟ2 = h2 + (b + 2)ȟ2.

Hence T ∗L = OM(−2, 1).
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2.4.4 Tangencies between differential equations

Take now F1 and F2 two second order differential equations on S (not neces-
sarily P2). We define the tangency divisor between F1 and F2 as the divisor
on M given locally by

tang(F1,F2) = {X1 ∧X2 = 0}
where Xi is a local holomorphic vector field generating Fi. Note that for an
arbitrary pair of one dimensional foliations in M , the zero set of X1 ∧X2 is
not a divisor, but since second order differential equations are given by global
sections XFi

∈ H0(M,D ⊗ T ∗Fi) we have that

XF1 ∧XF2 ∈ H0(M,det(D)⊗ T ∗F1 ⊗ T ∗F2).

We have just proved the following proposition.

Proposition 2.19. The tangency divisor between two second order differen-
tial equations is given by

tang(F1,F2) = c1(det(D)⊗ T ∗F1 ⊗ T ∗F2).

As an example we can give another proof of corollary 5.

Example 2.20. Let F be a second order differential equation such that Fred

(the reduced foliation associated to F) is not the vertical foliation V and with
bidegree (a, b). Then XF ∧XV 6= 0, where XF is the vector field defining F .
Thus we can use the proposition to obtain

[tang(F ,V)] = (h + ȟ) + (ah + bȟ) + (h− 2ȟ)

= (a + 2)h + (b− 1)ȟ.

Clearly every vertical F -invariant surface is contained in this divisor. This
proves that the number of vertical invariant surfaces is finite.

2.5 Nets and Second Order Differential Equa-

tions

In [21] the authors study completely decomposable (i.e. product of hyper-
planes not necessarily different) fibers of pencils of hypersurfaces on Pn and
associated codimension one foliations. Their main result gives an upper
bound for the number k of these fibers that depends only on n. In the
particular case of pencil of curves on P2 they obtain the following theorem.
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Theorem 2.21 ([21]). If P is a pencil of curves of degree d on P2 with
irreducible generic fiber and k is the number of completely decomposable fibers
of P then k ≤ 5 if P is not a pencil of lines.

Proof. Let us assume that the pencil is not a pencil of lines and consider
F the foliation on P2 associated to the pencil P and denote by Q̃ =

∏
αmi

i

the product of the completely decomposable fibers and by Q =
∏

αi the
reduced polynomial with the same zero set. Observe that by our hypothesis
the foliation G is not a pencil of lines and then we can apply example 2.13,
thus if we denote by C the projection of the divisor tang(L, SF) we know
that

deg(C) = 3deg(F) ≤ 3(2d− 2− deg(
Q̃

Q
)).

On the other hand it is clear that the zero set of Q is contained in C, hence

Q̃ divides Q̃
Q
C and then

kd ≤ deg(
Q̃

Q
) + deg(C)

≤ deg(
Q̃

Q
) + 3(2d− 2− deg(

Q̃

Q
))

= 6d− 6− 2deg(
Q̃

Q
).

Therefore

k ≤ 6− 6

d
− 2

d
deg(

Q̃

Q
) < 6.

We remark that S. Yuzvinsky proves in [25] that actually k ≤ 4.

Consider now a net on P2, that is, a linear system of dimension 2

P = P(〈F,G, H〉) ⊆ PH0(P2,OP2(d))

formed by curves of degree d and such that F , G and H do not have a
common factor. Denote by Σ ⊆ PH0(P2,OP2(d)) the subvariety of completely
decomposable curves of degree d. Observe that in this case, P∩Σ could have
components of dimension 0, 1 or 2. We shall assume that P * Σ (this is not
always the case, for example F = x2, G = y2, H = xy).
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Theorem 2.22. In the previous situation we have

1. If P ∩ Σ = C, where C is a curve, then deg(C) ≤ 3.

2. If P ∩ Σ = {p1, . . . , pk} is a set of points, and the number of lines
contained in fibers of P is finite then k ≤ 31.

Proof. Let us take the foliations (of degree 2d-2)

F1 = [ω1 = FdG−GdF = 0],

F2 = [ω2 = FdH −HdF = 0].

The fibers of P are exactly the leaves of the pencil of foliations generated
by F1 and F2. To see this, it is enough to observe that for every b, c ∈ C we
have

d

(
bG + cH

F

)
=

1

F 2
(bω1 + cω2).

Thus one can think on a net as a particular case of second order differen-
tial equation. Set H the second order differential equation associated to the
linear system P .

Recall from example 2.8 that T ∗H = O(4d−5− l, 1) where l appears due
to the singular set.

By hypothesis we know that H is not the equation of the lines L, thus we
can apply proposition 2.19 to obtain

[tang(H,L)] := [S] = (4d− 6− l)h + 3ȟ.

Suppose first that P ∩ Σ = C ⊆ P(〈F,G, H〉) is a curve of degree k. We
will prove that k ≤ 3.

Consider the rational map φ = (F : G : H) : P2 99K P2. If it is degenerate
then D = Imφ is an irreducible curve. For each point p ∈ C we have the
completely decomposable curve

Cp = {a(p)F + b(p)G + c(p)H = 0} = φ−1(Lp)

where Lp is the line {a(p)x + b(p)y + c(p)z = 0} ⊆ P2. Thus

Cp = φ−1(Lp)

= φ−1(Lp ∩D)

= φ−1(q1(p)) ∪ . . . ∪ φ−1(qr(p)).
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Varying p over C we obtain a curve in D such that the inverse image of the
points of this curve are completely decomposable, but since D is irreducible,
this implies that every fiber of P is completely decomposable, a contradiction.

Hence the map φ is dominant and thus for a generic point p ∈ P2, the
line lp = {[a : b : c] ∈ P2, aF (p) + bG(p) + cH(p) = 0} intersects the curve
C in exactly k points which correspond to fibers of P that are completely
decomposable passing through p. Since p is generic, these curves have differ-
ent directions in p. In this way we obtain a k-web W by lines formed by the
completely decomposable fibers of our pencil. Thus it is clear that SW ⊆ S
and therefore k ≤ 3.

Assume now that P ∩Σ = {p1, . . . , pk}, that is, there are exactly k fibers
of P which are completely decomposable, and that the number of lines con-
tained in fibers of P is finite.

In this case we have that S is not L-invariant, otherwise S would be
H-invariant, contradicting our hypothesis. Thus we can apply proposition
2.12

[tang(L, S)] = (4d− 6− l)(4d− 8− l)h2 + (28d− 48− 7l)hȟ + 12ȟ2.

Let E be the projection by π of this divisor, then we obtain that

deg(E) = 28d− 36− 7l.

Denote by Q̃ =
∏

αmi
i the product of the completely decomposable fibers

and by Q =
∏

αi the reduced polynomial with the same zero set. It is clear

that the zero set of Q is contained in E, hence Q̃ divides Q̃
Q
E and then

kd ≤ deg(
Q̃

Q
) + deg(E)

= 28d− 36 + (deg(
Q̃

Q
)− 7l).

On the other hand we know that

deg(
Q̃

Q
) =

∑
(mi − 1).
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If mi ≥ 2, since the number of fibers containing lines is finite then αmi
i is a

factor of one fiber and in this case is easy to see that αmi−1
i divides ω1 ∧ ω2,

thus

deg(
Q̃

Q
) ≤ 4d− 3.

So we have

kd ≤ 32d− 39 ⇒ k ≤ 32− 39

d
< 32

and this concludes the proof of the theorem.

Remark 2.23. We are imposing in the part two of the proposition the con-
dition to have finitely many invariant lines to conclude that the surface of
tangency S is not L-invariant. We would like to have the result without
this hypothesis but it is not clear for us that the fact of have finitely many
completely decomposable fibers implies this condition.

Example 2.24. Consider a net in the space of conics in P2

P ⊆ PH0(P2,OP2(2)) ' P5.

Since we can see the conics as symmetric matrices and the decomposable
ones are those with zero determinant, one has that the algebraic subset Σ
of completely decomposable elements is a 4-dimensional variety of degree 3
which is the image of the natural map

P2 × P2 ↪→ P5.

Thus if P ∩ Σ = C is a curve, we have that deg(C) = 3.
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Chapter 3

Inexistence of algebraic
solutions

The study of the space of foliations on projective spaces was initiated by
Jouanolou in [13]. One of the most important results of Jouanolou’s monog-
raphy states that a very generic holomorphic foliation of the projective plane,
of degree at least 2, does not have any invariant algebraic curves. This result
was extended in various ways, see [6], [14], [16] and [22]. For example, in
[6] the authors prove that over a smooth complex projective variety of di-
mension greater than or equal to 2, a very generic holomorphic foliation of
dimension one with sufficiently ample cotangent bundle has no proper invari-
ant algebraic subvarieties of nonzero dimension. On the other hand, in [16]
the author gives a different proof of Jouanolou’s theorem following the ideas
of [6] and restricting to P2.

Since we can think in holomorphic foliations as first order differential
equations of degree one, we are tempted to believe that the same assertion
holds true for first order differential equations of any degree (webs) or for
higher order differential equations.

The main theorem of this thesis shows that the assertion is true for sec-
ond order differential equations on P2, that is, we prove that a generic second
order differential equation has no algebraic solutions when the bidegree (a, b)
satisfies a ≥ 3. Our result is sharp in the sense that the second order differ-
ential equations not satisfying the above mentioned conditions always have
invariant algebraic solutions. We also obtain a similar result for second order
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differential equations on arbitrary projective surfaces.

We also prove an analogue of Jouanolou’s for k-webs of degree d (first
order differential equations of degree k) on P2 when d ≥ 2; and for webs with
sufficiently ample normal bundle on arbitrary projective surfaces.

3.1 The space of second order differential equa-

tions

We denote by E(a, b) = PH0(M,D ⊗ OM(a, b)) the space of second order
differential equations with bidegree (a, b) in P2. Let us consider the following
maps

R1(a, b) : PH0(M,OM(a, b)) → E(a− 2, b + 1), R1(F ) = F.XL,

R2(a, b) : PH0(M,OM(a, b)) → E(a + 1, b− 2), R2(F ) = F.XV

where L and V are the foliations of examples 2.4, 2.5 respectively.

Remark 3.1. Observe that the class of a surface in M , [S] = ah+bȟ satisfies

a, b ≥ 0, because a = S.l̃, b = S.F .

Using this observation one can describe the space E(a, b) for some bide-
grees:

Proposition 3.2. The map R1(a, b) (respectively R2(a, b)) is an isomorphism
for 0 ≤ a ≤ 2, b ≥ 0 (respectively for 0 ≤ b ≤ 2, a ≥ 0). In other words

E(a− 2, b + 1) = ImR1(a, b) for 0 ≤ a ≤ 2, b ≥ 0;

E(a + 1, b− 2) = ImR2(a, b) for 0 ≤ b ≤ 2, a ≥ 0.

Proof. If one takes F ∈ E(a− 2, b + 1), for some 0 ≤ a ≤ 2, then by Remark
3.1 the bidegree of Fred is (c, d), with c ≤ 0. Then by corollary 6 we conclude
that Fred = L (lines). The proof of the other cases is similar.

The dimension of these spaces is given by the following proposition.
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Proposition 3.3. For any a, b ≥ 0, the equalities

h0(OM(a, b)) =
(a + 1)(b + 1)(a + b + 2)

2

and
hi(OM(a, b)) = 0, for i ≥ 1,

hold true.

Proof. Let us denote by X the product P2 × P̌2 and consider M = P(TP2)
as the incidence variety on X. Then clearly we have

0 // OX(−1,−1) // OX
// OM

// 0 (3.1)

(here the definition of OX(a, b) is the obvious one), and therefore

0 // OX(a− 1, b− 1) // OX(a, b) // OM(a, b) // 0.

To conclude is enough to observe that

h0(OX(a, b)) =
(a + 1)(a + 2)(b + 1)(b + 2)

4
, for a, b ≥ −1

and
hi(OX(a, b)) = 0, for i ≥ 1 and a, b ≥ −1.

which follows from

H i(X,OX(a, b)) = H i(X, π∗(OP2(a))⊗ π̌∗(OP̌2(b)))

=
⊕

j+k=i

(Hj(P2,OP2(a))⊗Hk(P̌2,OP̌2(b))).

For the other cases, one can also calculate the dimension of the space of
differential equations.

Proposition 3.4. For a, b ≥ 1 we have

dim E(a, b) =
1

2
(2a2b + 2ab2 + 3a2 + 3b2 + 12ab + 9a + 9b)− 1.

48



Proof. From sequence (2.3) one gets

0 // OM(a + 2, b− 1) // D ⊗OM(a, b) // OM(a− 1, b + 2) // 0

and then

0 → H0(M,OM(a+2, b−1)) → H0(M,D⊗OM(a, b)) → H0(M,OM(a−1, b+2)) → 0.

The proposition follows from proposition 3.3.

When a, b ≥ 1 one has the inclusions

ImR1(a + 2, b− 1) = A ⊆ E(a, b),

ImR2(a− 1, b + 2) = B ⊆ E(a, b).

After counting dimensions, we conclude that E(a, b) is covered by the lines
joining points of A and B, i.e. E(a, b) = Join(A,B).

Proposition 3.5. Every element of E(a, b) is a linear combination of an
element of A and an element of B.

Proof. It is enough to observe that A and B are disjoint linear subspaces of
E(a, b) and that

dim(A) + dim(B) = h0(OM(a + 2, b− 1))− 1 + h0(OM(a− 1, b + 2))− 1

=
(a + 3)(b)(a + b + 3)

2
+

(a)(b + 3)(a + b + 3)

2
− 2

= dimE(a, b)− 1.

Remark 3.6. Since we have an identification between P(H0(M,OM(d, k)))
and the space of k-webs of degree d in P2 (see [24]), then in the particular
case when a (respectively b) is equal to 1 one has that B (respectively A) can
be identified with the space of (b + 2)-webs of degree 0 (respectively curves
of degree a + 2).

Proposition 3.7. The following assertions hold true when a, b ≥ 1.

1. Every element of E(1, b) has a one parameter family of invariant curves
which are lifts of lines on P2.
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2. The generic element of E(2, b) has (b+2)2 +(b+2)+1 invariant curves
which are lifts of lines on P2.

3. Every element of E(a, 1) has a one parameter family of invariant curves
which are lifts of lines on P̌2 (that is, fibers of π).

4. The generic element of E(a, 2) has (a+2)2+(a+2)+1 invariant curves
which are lifts of lines on P̌2.

Proof. Let us consider, for an element F in E(a, b) which is not in A or B,
the following divisors in M

tang(F ,L) = (a− 1)h + (b + 2)ȟ

tang(F ,V) = (a + 2)h + (b− 1)ȟ.

Therefore if a = 1 we obtain

tang(F ,L) = (b + 2)ȟ

which corresponds to a (b + 2)-web W of degree 0 in P2. The lifting of each
leaf of W is a leaf of L (because is the lifting of a line) and since is in the
tangency divisor, it is also a leaf of F . So F has a one-parameter family of
lines which are solutions. Observe also that

A = ImR1(3, b− 1)

B = ImR2(0, b + 2)

so, the assertion is true for all the elements of E(1, b). This prove the first
part of the proposition.

Consider now the case a = 2. In this case

tang(F ,L) = h + (b + 2)ȟ

corresponds to a (b+2)-web W of degree 1 in P2. Since a generic (b+2)-web
of degree 1 has (b + 2)2 + (b + 2) + 1 invariant lines (see section 3.2), and
the lifting of these lines are L-invariant, we would like to say the same for
the generic element of E(2, b) (note again that the assertion is true for the
elements of A and B). We need the following lemma.
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Lemma 3.8. The following maps

T1 : H0(M,D ⊗OM(a, b)) → H0(M, OM(a− 1, b + 2)), T1(X) = X ∧XL
T2 : H0(M,D ⊗OM(a, b)) → H0(M, OM(a + 2, b− 1)), T2(X) = X ∧XV

are surjective.

Proof. We do the proof only for T1, the same argument works for T2. Observe
first that

ker(T1) = {FXL : F ∈ H0(M,OM(a + 2, b− 1))}.

Therefore, using propositions 3.3 and 3.4 we obtain

dim(ImT1) = dimH0(M, OM(a− 1, b + 2))

and this conclude the proof.

Using this lemma we deduce that the generic element of E(2, b) has
(b+2)2 +(b+2)+1 invariant curves which are lifts of lines on P2, so we have
the second assertion.

Since
tang(F ,V) = (a + 2)h + (b− 1)ȟ.

we can do the same analysis in the cases when b is equal to 1 or 2 and we
are done.

For the case a ≥ 3 we have our main result (Theorem 3 of the introduc-
tion).

Theorem 3.9. A generic second order differential equation of bidegree (a, b)
with a ≥ 3 has no invariant algebraic curves which are lifts of curves on P2.
Moreover, when a, b ≥ 3, the generic second order differential equation of
bidegree (a, b) does not admit any algebraic solution.

For the proof we need an analogous result for k-webs in P2 which we
explain in the next section.
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3.2 Webs without algebraic leaves on P2

We recall that a global k-web W on a surface S is given by an open covering
U = {Ui} of S and k-symmetric 1-forms ωi ∈ SymkΩ1

S(Ui) such that for each
non-empty intersection Ui ∩Uj of elements of U there exists a non-vanishing
function gij ∈ O∗

S(Ui ∩ Uj) such that ωi = gijωj.

In the case of P2 we know that W(k, d) = P(W (k, d)), where W (k, d) =
H0(P2, SymkΩ1

P2(d + 2k)), is the space of k-webs of degree d.

3.2.1 Invariant algebraic curves

Let W be a k-web of degree d in P2 defined by ω and let C ⊆ P2 be an irre-
ducible algebraic curve. As in the case of lines we say that C is W-invariant
if i∗ω ≡ 0 where i is the inclusion of the smooth part of C into P2.

Observe that we have an isomorphism between PH0(P2, SymkTP2⊗OP2(d−
k)) andW(k, d) giving by the contraction with the volume form of P2, locally
described as follows. For a local k-symmetric vector field

X =
∑

aij

(
∂

∂x

)i (
∂

∂y

)j

we associate the local k-symmetric form

ω =
∑

aij

(
i ∂

∂x
(dx ∧ dy)

)i (
i ∂

∂y
(dx ∧ dy)

)j

.

Therefore the web W is defined by an element XW ∈ PH0(P2, SymkTP2 ⊗
OP2(d− k)).

Let us assume that C is given by the irreducible homogenous polynomial
F of degree r. Then C is W-invariant if and only if there exist a homogenous
polynomial H of degree d + k(r − 1)− r such that

XW(F ) = FH (3.2)

where XW(F ) is the application of dF to XW .
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Remark 3.10. An important fact about equation (3.2) is that it still works
for reducible curves, i.e. if the decomposition of the curve is F = F n1

1 . . . . .F nk
k ,

then the equation (3.2) holds true if and only if each Fj defines a W-invariant
curve.

Consider now the following set:

C(r) = {W ∈W(k, d)/∃ curve of degree r W − invariant}.

We have the following proposition.

Proposition 3.11. The set C(r) is an algebraic closed subset of W(k, d).

Proof. Denote by Sr = H0(P2,OP2(r)) and consider

Z(r) ⊆ P(W (k, d)× Sd+k(r−1)−r)× P(Sr)

the subset defined by

Z(r) = {([(W , H)], [F ])/XW(F )− FH = 0}.

Observe that the rational map

Π : P(W (k, d)× Sd+k(r−1)−r)× P(Sr) 99K W(k, d)× P(Sr)

is regular over Z(r) and then takes it onto the closed set Σ(r) ⊆ W(k, d) ×
P(Sr) formed by the pairs (W , [F ]) such that the curve defined by F is
invariant by W . To conclude is enough to observe that C(r) is the image of
Σ(r) via the projection W(k, d)× P(Sr) →W(k, d).

3.2.2 Webs of degree 0 and 1

Given a projective curve C ⊆ P2 of degree k and a line l0 ∈ P̌2 transverse
to C there is a germ of k-web WC(l0) on (P̌2, l0) defined by the submersions
p1, . . . , pk : (P̌2, l0) → C which describe the intersections of l ∈ (P̌2, l0) with
C. These webs are called algebraic k-webs.

It is clear from the definition that the fiber of pi through a point l ∈ (P̌2, l0)
is contained in the set of lines that contain pi(l). Consequently the fibers of
this submersion are contained in lines.
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When C is a reducible curve with irreducible components C1, . . . , Cm then
WC(l0) = WC1(l0) £ . . . £WCm(l0).

If no irreducible component of C is a line then the leaves of WC(l0)
through l are the hyperplanes passing through it and tangent to Č at some
point p ∈ Č.

Consider now the incidence variety M ⊆ P2 × P̌2. One defines for every
curve C ⊆ P2 its dual web WC as the one defined by the surface π−1(C) seen
as a multisection of π̌ : M → P̌2 (for more details see [18], section 1.3). It
is easy to verify that the germification of this global web at a generic point
l0 ∈ P̌2 coincides with WC(l0) defined before. The following proposition can
be found in [18], proposition 1.4.2.

Proposition 3.12. If C ⊆ P2 is a projective curve of degree k, then WC is a
k-web of degree zero on P̌2. Reciprocally, if W is a k-web of degree zero on P̌2

then there exists a projective curve C ⊆ P2 of degree k such that W = WC.

Therefore one has the description of the webs of degree zero as one-
parameter families of lines in the plane.

Given now a k-web W of degree 1 on P2, one can consider its lift SW to M
with class [SW ] = h + kȟ. Observe first that the projection π̌|SW : SW → P̌2

is dominant and has degree one: a generic fiber of π̌ : M → P̌2 which is the
lift of a line in P2 intersects SW in the point corresponding to the unique
tangency between this line and W . Then one obtains a foliation FW on P̌2.

Since the tangencies between this foliation and a generic line in P̌2 cor-
responds to the intersection points between SW and the lift by π̌, which is
a fiber of π, this foliation has degree k. Observe that since W could be the
product of a web of degree zero with a web of degree 1, FW could have a
codimension 1 singular set.

Reciprocally, if we begin with a foliation F of degree k in P̌2, we obtain in
the same way a k-web of degree one WF in P2. Moreover, as the reader can
verify in [18], theorem 1.4.8, we have WFW = W , so this correspondence is
in fact an isomorphism between W(k, 1) and the space of foliations of degree
k in P̌2.
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Assume now that we have a foliation F in P̌2 with a non-degenerate
singularity at l ∈ P̌2. Then the fiber of π̌ over l is contained in SF . Since
this fiber corresponds to the lift of the line that l represents we conclude
that l is WF -invariant. Using the fact that a generic foliation of degree k has
k2 +k+1 non-degenerate singularities, one obtains the following proposition.

Proposition 3.13. A generic k-web of degree one has k2 + k + 1 invariant
lines.

Remark 3.14. Using proposition 3.11 we conclude that every k-web of de-
gree 1 has at least one invariant line. Observe that these webs could also have
an infinite number of invariant lines, for example in the case of the product
of webs of degree one with webs of degree zero.

3.2.3 Webs of degree greater than 2

For webs of higher degree, we have the following theorem (Theorem 2 of the
introduction).

Theorem 3.15. A generic k-web of degree d in P2 does not admit any in-
variant algebraic curve if d ≥ 2.

Here by generic we mean that the set of webs that does not have any
invariant curve is the complement of a countable union of algebraic closed
proper subsets.

First we recall some facts for a generic k-web W of degree d ≥ 2 on P2

(see [24]):

1. The surface SW ⊆ M associated to W is smooth and its class is given
by [SW ] = dh + kȟ.

2. Let FW be the foliation on SW given by the restriction of the contact
distribution, or by the lifting of the leaves ofW ; then the normal bundle
of FW is given by NFW = OS(hr + ȟr), where hr and ȟr are the
restriction of h and ȟ to SW .

3. If we write the web in coordinates (x, y) ∈ C2 as

ω = a0(x, y)dxk + a1(x, y)dxk−1dy + . . . + ak(x, y)dyk
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then SW is given by the zero set of

F (x, y, p, q) = a0(x, y)qk + a1(x, y)qk−1p + . . . + ak(x, y)pk

and the foliation FW is defined by the restriction of the vector field

X = (Fp
∂

∂x
− Fx

∂

∂p
) + (Fy

∂

∂q
− Fq

∂

∂y
)

to SW . Then the singular set of FW is given in these coordinates by
{F = Fq = Fp = qFx + pFy = 0} which is a finite set.

Let us suppose that W has an algebraic invariant curve C and let C̃ be its
lifting to M , which is contained in SW .

Lemma 3.16. We have that C̃ ∩ sing(FW) 6= ∅.
Proof. Let us suppose that C̃∩sing(FW) = ∅, then by Camacho-Sad formula

C̃2 = 0 and therefore

NFW .C̃ = C̃2 + Z(FW , C̃) = 0

(see [2]) which is not possible since hr.C̃ + ȟr.C̃ is a positive number.

Remember that we can identify the set of k-webs of degree d with the
projective space PH0(M,OM(d, k)). Consider now the algebraic set

S = {(SW , z) ∈W(k, d)×M : z ∈ sing(FW)} ⊆W(k, d)×M

and its projection to the second factor π2 : S → M . Remark (3) implies that
for each z ∈ M the fiber π−1

2 (z) is a linear subspace of W(k, d)× {z}.

Since for every z1, z2 ∈ M there is a biholomorphism F of the form
F (p, [v]) = (f(p), Df(p)v), for some f ∈ Aut(P2), sending z1 to z2, we con-
clude that all the fibers of π2 are smooth, irreducible and isomorphic, which
implies that S is irreducible.

Baum-Bott formula implies that
∑

BB(FW , p) = (NFW)2 = (hr+ȟr)
2 =

3(k+d), therefore the other projection π1 : S →W(k, d) is a generically finite
map. Thus dimS = dimW(k, d).
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Fix now a polynomial χ ∈ Q[t] of degree one different from the Hilbert
polynomial of a fiber of π and set H = Hilbχ(M) the Hilbert scheme of M
with respect to χ. If we denote by H(D) the subset of H consisting of the
subschemes of M tangent to D and with Hilbert polynomial χ, then we shall
prove in the next section that H(D) is a closed subset of H. Consider now
the closed set D ⊆W(k, d)×M defined as

D = {(SW , z) ∈W(k, d)×M : ∃Y ∈ H(D), z ∈ Y, Y ⊂ SW}.

Let us assume the theorem for (k − 1)-webs of degree d ≥ 2 and sup-
pose that π1(D) = W(k, d); that is, every k-web of degree d has an algebraic
invariant curve whose lifting has Hilbert polynomial χ. By lemma 3.16 π1

sends a dense subset of D ∩ S to a dense subset of W(k, d). Therefore
π1(D ∩ S) = W(k, d), but since S is irreducible and has the same dimension
that W(k, d) we conclude that D ∩ S = S.

To conclude the theorem we choose a generic (k − 1)-web of degree d
W1 with no algebraic invariant curves and a pencil of lines through a point
G such that there exist a singularity z of FW1 which is not in SG and take
W = W1 £ G. Then we note that SW = SW1 ∪ SG and through z, which
is a singularity of FW we do not have any invariant curve different from a
fiber, which is a contradiction. Since there are only countable many Hilbert
polynomials, we conclude the theorem.

Remark 3.17. We have a different proof for theorem 3.15 for k-webs of de-
gree d ≥ 2 when (k, d) 6= (2, 2) as follows.

Let us suppose that the assertion is true for W1 := W(k, d), with k ≥ 1
and d ≥ 3, and we will show the theorem for W2 := W(k + 1, d).

By proposition 3.11 is enough to show that for each positive integer r,
the set of (k + 1)-webs of degree d having an invariant curve of degree r is
a proper subset of W(k + 1, d). So, for each positive integer r define the
algebraic set

Σ(r) := {([η], C) : C isWη − invariant} ⊆ W2 × P(Sr)

and assume that the projection over the second factor π2 : Σ(r) → W2 is
surjective. Then there exist an irreducible component Σ ⊆ Σ(r) such that
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the restriction of π2 to Σ, which we still denote by π2, is also surjective.
Consider now the map

φ : W1 × P2 → W2, φ([ω], p) = [ω.ωp]

where ωp is the 1-form defining the radial foliation through p, and denote

W̃1 = φ(W1 × P2) ⊆ W2 which is an irreducible subvariety of W2. Take

η = α.C.ωp ∈ W̃1

where α defines a k-web of degree 1 having k2 + k + k lines as the unique
invariant curves, C is a curve of degree d−1, and p is a point which is neither
in the lines invariant by Wα nor in the curve C.

We set

P = {curvesWη − invariant of degree r passing through p} ⊆ P(Sr)

and

Q = {curvesWη − invariant of degree r not passing through p} ⊆ P(Sr).

Observe that P is a closed subset of a linear subspace of P(Sr) while Q is a
finite subset disjoint from P . Clearly we have

π−1
2 (η) ⊆ P ∪Q

and since η can be seen as the product of a k-web of degree 1 and a foliation
of degree d− 1, and π−1

2 (α.β) ⊆ Q for the generic β ∈W(1, d− 1) (because
d− 1 ≥ 2), one concludes that π−1

2 (η)∩Q 6= ∅ and π2 is generically finite (in
particular dim Σ = dim W2). Therefore we can set

Σ̃ := Σ ∩ (W(k + 1, d)× (P(Sr)− P ))

which is an open dense subset of Σ and has nonempty intersection with
π−1

2 (η). So we can choose an element (η, F ) ∈ Σ̃ and an analytic open
neighborhood

(η, F ) ∈ U ⊆ Σ̃.

Since π2 is generically finite and Σ is irreducible, dπ2 is an isomorphism at
the generic point of U , then π2(U) contains an open set. Observe also that π2
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is a proper map, so π2(U) is a germ of analytic set, therefore π2(U) contains
an open neighborhood of η.

On the other hand, by our hypothesis on W1 there are elements of the
form ω.ωp ∈ W̃1 close enough to η such that the algebraic curves invariant by
these elements are product of lines passing through p. Clearly these elements
can not be in π2(U), we arrive in a contradiction.

Since we know by Jouanolou’s theorem that the assertion holds true for
W(1, d), d ≥ 3 (see [13], théorème 1.1, p. 158), we conclude the assertion
for W(k, d) when k ≥ 1 and d ≥ 3. For the case when d = 2, one takes W
a 2-web of degree k, with k ≥ 3, without singular points and such that W
does not have algebraic invariant curves. Then its dual web W̌ , that is, the
projection on P̌2 of the foliation given by the contact form over the surface
SW ⊆ M associated to W , is a k-web of degree 2. It is easy to verify that
W̌ does not have algebraic invariant curves and the proof of the theorem is
complete when (k, d) 6= (2, 2).

3.2.4 Webs on complex surfaces

We can obtain a similar result for webs on complex surfaces. Let S be a
compact complex surface and we set W(k,N ) = PH0(S, SymkΩ1

S ⊗ N ) the
space of k-webs on S with normal bundle N .

Theorem 3.18. Let N be an ample line bundle. Then for r À 0 the k-
web on S induced by a very generic element of W(k,N⊗r) has no algebraic
invariant curves.

Proof. Following the notation of the previous section, one can define the
closed set D = {(SW , z) ∈ W(k,N ) × M : ∃Y ∈ H(D), z ∈ Y, Y ⊂ SW},
where M = P(TS). Then for r À 0 we can choose integers ri À 0 which
add up to r and ωi ∈ PH0(S, Ω1

S⊗N⊗ri) such that the foliation on S defined
by ωi has not algebraic invariant curves (see [6] theorem 1.1). Then is clear
that ω = ω1 . . . ωk is an element of W(k,N⊗r) which is not in the image of
D by the first projection.

Remark 3.19. Unlike the case of P2, where Theorem 3.15 is effective in the
sense that the webs not satisfying its hypothesis always have an invariant
curve, this result just works for webs with “big enough” normal bundle, but
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we do not know exactly how ample this bundle should be for the theorem be
true and also we do not know if the webs with not very ample normal bundle
always have algebraic curves.

3.3 Proof of Theorem 3.9

Let us consider a nonsingular distribution of codimension one D defined by
a 1-form α over a complex manifold M .

Lemma 3.20. Let Y ⊆ M be an irreducible subvariety (not necessarily reg-
ular) of codimension k and let I be its ideal sheaf. Then Y is tangent to D
if and only if for every (f1, . . . , fk) ∈ I⊕k, the equality

α ∧ df1 ∧ . . . ∧ dfk|Y ≡ 0

holds true.

Proof. Let us suppose that Y is tangent to D, that is, Y is tangent to D at
the smooth points, and take f1, . . . , fk ∈ I. Then, at a regular point y ∈ Y
we can take an open neighborhood V ⊆ M and local coordinates (x1, . . . , xn)
such that Y ∩ V = {x1 = . . . xk = 0}. Therefore we can write

fi|V =
k∑

j=1

aijxj, α = b1dx1 + . . . + bndxn

for some analytic functions aij, bi. So, by hypothesis we have

bk+1|V ∩Y = . . . = bn|V ∩Y = 0.

Since

α ∧ df1 ∧ . . . ∧ dfk|V = hα ∧ dx1 ∧ . . . ∧ dxk|V
= h(bk+1dxk+1 ∧ dx1 ∧ . . . ∧ dxk + . . . bndxn ∧ dx1 ∧ . . . ∧ dxk)

(here h is an invertible function) we obtain that

Y ∩ V ⊆ sing(α ∧ df1 ∧ · · · ∧ dfk)

and this shows the assertion. The other implication is left to the reader.
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Let us return to the case when M = P(TP2) is the contact variety and
D = D is the contact distribution. Fix now a polynomial χ ∈ Q[t] of degree
one and set H = Hilbχ(M) the Hilbert scheme of M with respect to χ. Define
also H(D), a subset of H, by

H(D) = {Y ∈ H : Y is tangent to D}.

Remark 3.21. It is easy to show that D has no invariant subvarieties of
dimension two, so the condition on the degree of χ is not really necessary.

Proposition 3.22. H(D) is a closed subset of H.

Proof. Let U be the universal family in M ×H

U
q1

~~~~
~~

~~
~~ q2

%%JJJJJJJJJJJ ⊆ M ×H

M H

Remember that for any Y ⊆ M closed subscheme one has the following
exact sequence (see [12], section 2.8)

I
I2

δ // Ω1
M |Y // Ω1

Y
// 0

where δ(f) = df |Y and I is the ideal sheaf of Y . This means, writing KY =
Im(δ) (the conormal sheaf of Y ), that one has

0 // KY
// Ω1

M |Y // Ω1
Y

// 0 .

Then we can consider K defined by

0 // K // (Ω1
M×H|H)|U // Ω1

U|H // 0 .

By doing the exterior product by the contact form α we have a map

∧2K θ // (q∗1Ω
1
M)⊗ L

for some line bundle L. We conclude by lemma 3.20 that

H(D) = {Y ∈ H : θY = 0}.
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Let M be a very ample sheaf over U . Give an integer r À 0 it follows by
Serre’s theorem that there exists a positive integer N and a surjective map
β : O⊕N

U → ∧2K ⊗M⊗r. Denoting by σ the composition

O⊕N
U

β //

σ

44

∧2K ⊗M⊗r θ // (q∗1Ω
1
M)⊗ L⊗M⊗r

we have, since β is surjective, that

H(D) = {Y ∈ H : σY = 0}.

Consider now the following lemma, which is exactly lemma (2.2) of [6].

Lemma 3.23. Let p : X → T be a projective morphism. Assume that F is
a p-flat coherent OX-module such that R1p∗F = 0. If G is a quasi-coherent
OT -modulo and σ : p∗G → F is a homomorphism of OX-modules, then the
set {t ∈ T : σt = 0} is closed in T .

In our case we have p = q2 : U → H, F = (q∗1Ω
1
M)⊗L⊗M⊗r, G = O⊕N

S

and σ : p∗G = O⊕N
U → F . We use theorem 3.8.8 of [12] to obtain R1p∗F = 0

and thus we can apply the lemma to conclude the proof.

As a consequence one concludes the following proposition.

Proposition 3.24. The set

Zχ = {X ∈ E(a, b) : FX has an invariant subscheme of Hilbert polynomial χ}

is closed in E(a, b).

Proof. Let us denote Σ = PH0(M, TM⊗OM(a, b)). By the proposition (2.1)
of [6] we have that the set

Z = {(X,Y ) ∈ Σ×H : Y is FX − invariant}

is a closed subset of Σ×H. Observe that we have an inclusion E(a, b) ⊆ Σ,
so

Z ∩ (E(a, b)×H(D)) ⊆ E(a, b)×H

is a closed subset. Now it is enough to note that Zχ is the natural projection
of this closed set.

62



We conclude now the proof of the theorem 3.9. Denoting by χ0 to the
Hilbert polynomial of a fiber (of π) F , and taking a (b + 2)-web W of degree
a − 1, with a ≥ 3 and b ≥ 1, we have that F.XV is an element of E(a, b),
where F is the section corresponding to the surface SW . By Theorem 3.15
we can choose W with no algebraic invariant curves and then F.XV /∈ Zχ for
every χ 6= χ0. Since there are only countable many Hilbert polynomials, we
conclude the first part of the theorem.

When a, b ≥ 3, we take a (b− 1)-web W of degree a + 2 and so F.XL has
bidegree (a, b) (here again F is the section corresponding to SW). We choose
W without singular points and with no algebraic invariant curves. Since the
curves which are lifting of curves on P2 have different Hilbert polynomial
from χ0, F.XL is not in Zχ0 . This finishes the proof.

3.4 Second order differential equations on com-

plex surfaces

Let S be any complex compact surface and M = P(TS) the contact vari-
ety. We recall that H∗(M) is generated as a H∗(S)-algebra by the Chern
class of OM(1). We denote by E(N , k) = PH0(M,D ⊗ π∗(N ) ⊗ OM(1)⊗k)
the space of second order differential equations on S with cotangent bundle
π∗(N )⊗OM(1)⊗k.

Remark 3.25. For anyW ∈W(k,N ) which is given locally by ω = a0(x, y)+

a1(x, y) dy
dx

+ . . . + ak(x, y) dy
dx

k
, the associated surface SW is given by the

zero set of F (x, y, p) = a0(x, y) + a1(x, y)p + . . . + ak(x, y)pk, where (x, y)
are local coordinates on S. Doing the change of coordinates we see that
[SW ] = π∗(N )⊗OM(1)⊗k.

Following the ideas of the main theorem we can get a same result for any
surface:

Theorem 3.26. Let N be an ample line bundle on S and r À 0. Then for
any k ≥ 1 the second order differential equation defined by a very generic
element of E(N⊗r, k − 2) has no algebraic solutions.

63



Proof. Using the notation of the previous section one can define the closed
set Zχ as

{X ∈ E(N⊗r, k−2) : FXhas an invariant subscheme of Hilbert polynomial χ}.

To conclude the theorem we must show that this is a proper subset of
E(N⊗r, k − 2). Take now W ∈W(k,N⊗r ⊗K∗

S) with no algebraic invariant
curves (here KS is the canonical bundle of S). Notice that as a consequence
of Euler sequence (1.1) we have T ∗V = π∗(KS) ⊗ OM(−1)⊗2. Thus is clear
that FW .V ∈ E(N⊗r, k − 2) and since FW .V is not an element of Zχ we are
done.
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Springer, 1979.

[14] A. Lins Neto, Algebraic solutions of polynomial differential equations and
foliations in dimension two. Lect. Notes Math. 1345 (1988), 192-232.

[15] I. Pan, Quelques remarques sur les d-web des surfaces complexes et un
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