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Ao Instituto de Matemática Pura e Aplicada - IMPA.
Ao Marcelo Viana pela confiança, apoio e especialmente pela excelente orientação em

todos os momentos que estive no IMPA que muitas vezes foram além do ensino.
Ao Jiagang Yang pela ajuda e conversas principalmente no ińıcio deste trabalho. Também
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Resumo de Tese de Doutorado

Continuidade dos expoentes de Lyapunov para 2D-matrizes aleatórias

Carlos Bocker Neto
Orientador : Marcelo Viana
Data da defesa: 14 de dezembro de 2009
Palavras chaves : continuidade dos expoentes de Lyapunov, su-estados, medidas estacionárias.

Resumo: A variação dos expoentes de Lyapunov é o tema central da tese. Como re-
sultado principal nós mostramos que os expoentes de Lyapunov de cociclos 2-dimensionais
dependendo somente de uma coordenada sobre shifts de Bernoulli dependem continuamente
do cociclo e da probabilidade invariante.
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Abstract

The Lyapunov exponents of zero range GL(2,C)-cocycles over Bernoulli shifts depend con-
tinuously on the cocycle and on the invariant probability.

Resumo
Os expoentes de Lyapunov de cociclos GL(2,C) dependendo somente de uma coordenada
sobre shifts de Bernoulli dependem continuamente do cociclo e da probabilidade invariante.
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Chapter 1

Introduction

Let A1, . . . , Am be invertible 2×2 matrices and let p1, . . . , pm be (strictly) positive numbers
with p1 + · · ·+ pm = 1. Consider

Ln = Ln−1 · · ·L1L0, n ≥ 1,

where the Lj are independent random variables with identical probability distributions, given
by

probability({Lj = Ai}) = pk for all j ≥ 0 and i = 1, . . . ,m.

It is a classical fact, going back to Furstenberg, Kesten [15], that there exist numbers λ+
and λ− such that

lim
n→∞

1

n
log ∥Ln∥ = λ+ and lim

n→∞

1

n
log ∥(Ln)−1∥−1 = λ− (1.1)

almost surely. The results in this paper imply that these extremal Lyapunov exponents
always vary continuously with the choice of the matrices and the probability weights:

Theorem A. The extremal Lyapunov exponents λ+ and λ− depend continuously on (A1,
. . . , Am, p1, . . . , pm) at all points.

This conclusion holds in much more generality. Indeed, we may take the probability
distribution of the random variables Lj to be any probability measure ν on GL(2,C) with
compact support. Let λ+(ν) and λ−(ν), respectively, denote the values of the (almost certain)
limits in (1.1). Then we have:

Theorem B. For every ε > 0 there exists δ > 0 and a weak∗ neighborhood V of ν in the
space of probability measures on GL(2,C) such that |λ±(ν)−λ±(ν ′)| < ε for every probability
measure ν ′ ∈ V whose support is contained in the δ-neighborhood of the support of ν.

The situation in Theorem A corresponds to the special case when the measures have
finite supports:

ν = p1δA1 + · · ·+ pmδAm and ν ′ = p′1δA′
1
+ · · ·+ p′mδA′

m
.

Clearly, the support of ν ′ is Hausdorff close to the support of ν if A′
i, p

′
i are close to Ai, pi

for all i. In this regard, recall that we assume that all pi > 0: the conclusion of Theorem A
may fail if this condition is removed, as we will see in Remark 7.1.5.
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Chapter 2

Continuity of Lyapunov exponents

In this chapter we put the previous results in a broader context and give a convenient
translation of Theorem B to the theory of linear cocycles.

2.1 Linear cocycles

Let π : V → M be a finite-dimensional (real or complex) vector bundle and F : V → V be
a linear cocycle over some measurable transformation f : M → M . By this we mean that
π ◦ F = f ◦ π and the actions Fx : Vx → Vf(x) on the fibers are linear isomorphisms. Take
V to be endowed with some measurable Riemannian metric, that is, an Hermitian product
on each fiber depending measurably on the base point. Let µ be an f -invariant probability
measure on M such that

log ∥(Fx)
±1∥ ∈ L1(µ).

Then it follows from the sub-additive ergodic theorem (Kingman [24]) that the numbers

λ+(F, x) = lim
n→∞

1

n
log ∥F n

x ∥ and λ−(F, x) = lim
n→∞

1

n
log ∥(F n

x )
−1∥−1

are well-defined µ-almost everywhere.
The theorem of Oseledets [30] provides a more detailed statement. Namely, at µ-almost

every point x ∈M , there exist numbers

λ̂1(F, x) > · · · > λ̂k(x)(F, x)

and a filtration

Vx = Ê1
x > Ê2

x > · · · > Êk(x)
x > {0} = Êk(x)+1

x (2.1)

such that Fx(Ê
j
x) = Êj

f(x) and

lim
n→∞

1

n
log ∥F n

x (v)∥ = λ̂j(F, x) for all v ∈ Êj
x \ Êj+1

x .
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When f is invertible one can say more: there exists a splitting

Vx = E1
x ⊕ E2

x ⊕ · · · ⊕ Ek(x)
x (2.2)

such that Fx(E
j
x) = Ej

f(x) and

lim
n→±∞

1

n
log ∥F n

x (v)∥ = λ̂j(F, x) for all v ∈ Ej
x \ {0}.

The number k(x) ≥ 1 and the Lyapunov exponents λ̂j(F, ·) are measurable functions of the
point x, with

λ̂1(F, x) = λ+(F, x) and λ̂k(x)(F, x) = λ−(F, x),

and they are constant on the orbits of f . In particular, they are constant µ-almost everywhere
if µ is ergodic.

2.2 Continuity problem

Next, let λ1(F, x) ≥ · · · ≥ λd(F, x) be the list of all Lyapunov exponents, where each is
counted according to its multiplicity mj(x) = dim Êj

x−dim Êj+1
x (= dimEj

x in the invertible
case). Of course, d = dimension of V . The average Lyapunov exponents of F are defined by

λi(F, µ) =

∫
λi(F, ·) dµ, for i = 1, . . . , d.

The results in this paper are motivated by the following basic question:

Problem 2.2.1. What are the continuity points of

(F, µ) 7→ (λ1(F, µ), . . . , λd(F, µ)) ?

It is well known that the sum of the k largest Lyapunov exponents (any 1 ≤ k < d)

F 7→ λ1(F, µ) + · · ·+ λk(F, µ)

is always upper semi-continuous relative to the L∞-norm in the space of cocycles. Indeed,
this is an easy consequence of the identity

λ1(F, µ) + · · ·+ λk(F, µ) = inf
n≥1

1

n

∫
log ∥Λk(F n

x )∥ dµ(x) (2.3)

where Λk denotes the kth exterior power. Similarly, the sum of the k smallest Lyapunov
exponents is always lower semi-continuous. However, Lyapunov exponents are, usually, dis-
continuous functions of the data. A number of results, both positive and negative, will be
recalled in a while.
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2.3 Continuity theorem

Let X be a polish space, that is, a separable completely metrizable topological space. Let p
be a probability measure on X and A : X → GL(2,C) be a measurable function such that

log ∥A±1∥ are bounded. (2.4)

Let f :M →M be the shift map on M and let µ = pZ. Consider the linear cocycle

F :M × C2 →M × C2, F (x, v) = (f(x), Ax0(v)),

where x0 ∈ X denotes the zeroth coordinate of x ∈ M . In the spaces of cocycles and
probability measures on X we consider the distances defined by, respectively,

d(A,B) = sup
x∈X

∥Ax −Bx∥ d(p, q) = sup
|ϕ|≤1

|
∫
ϕ d(p− q)| (2.5)

where the second sup is over all measurable functions ϕ : X → R with sup |ϕ| ≤ 1. In the
space of pairs (A, p) we consider the topology determined by the bases of neighborhoods

V (A, p, ε,Z) = {(B, q) : d(A,B) < ε, q(Z) = 1, d(p, q) < ε} (2.6)

where ε > 0 and Z is any measurable subset of X with p(Z) = 1.

Theorem C. The extremal Lyapunov exponents λ±(A, p) = λ±(F, µ) depend continuously
on (A, p) at all points.

It is easy to deduce Theorem C from Theorem B: if d(A,B) and d(p, q) are small then
ν ′ = B∗q is weak

∗ close to ν = A∗p and the support of ν ′ is contained in a small neighborhood
of the support of ν; moreover, λ±(A, p) = λ±(ν) and λ±(B, q) = λ±(ν

′). In this way one even
gets a more general version of Theorem C, where X can be any measurable space. In fact,
our presentation goes the other way around: we prove Theorem C directly, in Chapters 3
and 4, and then we deduce Theorem B from it, in Chapter 6.1.

We also get that the Oseledets decomposition depends continuously on the cocycle in
measure. Given B : X → GL(2,C), let Es

B,x and Eu
B,x be the Oseledets subspaces of the

corresponding cocycle at a point x ∈M (when they exist).

Theorem D. Suppose λ−(A, p) < λ+(A, p). Then for any sequence Ak : X → GL(2,C)
such that d(Ak, A) → 0, and for any ε > 0,

µ
(
{x ∈M : ∠(Eu

A,x, E
u
Ak,x) < ϵ and ∠(Es

A,x, E
s
Ak,x) < ϵ}

)
→ 1.

A few words are in order on our choice of the topology (2.6). As we are going to see,
the proof of Theorem C splits into two cases, depending on whether the cocycle is almost
irreducible (Chapter 3.1) or diagonal (Chapter 3.2). In the irreducible case, continuity of
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the Lyapunov exponents was known before ([16], see also [3]) and only requires the weak∗

topology. In a nutshell, this is because in the irreducible case

λ+(A, p) =

∫
log

∥A(x)(v)∥
∥v∥

dµ(x) dη(v) (2.7)

for every stationary measure η. Then one only has to note that the set of stationary measures
varies semi-continuously with the data. The main point in Theorem C is to handle the
diagonal case, where (2.7) breaks down, and that is where we need the full strength of (2.6).

Restricted to the space of pairs (A, p) where A is continuous (and bounded), it suffices
to consider the neater bases of neighborhoods

V (A, p, ε) = {(B, q) : d(A,B) < ε, supp q ⊂ supp p, d(p, q) < ε}. (2.8)

However, this will not be used in the present paper.

2.4 Some previous results

The issue of dependence of Lyapunov exponents on the linear cocycle or the base dynamics
has been addressed by several authors. In a pioneer work, Ruelle [35] proved real-analytic
dependence of the largest exponent on the cocycle, for linear cocycles admitting an invariant
convex cone field. Short afterwards, Furstenberg, Kifer [16, 23] and Hennion [20] studied the
dependence of the largest exponent of i.i.d. random matrices on the probability distribution,
proving continuity with respect to the weak∗ topology in the essentially irreducible case.
Kifer [23] also observed that discontinuities may occur when the probability vector degen-
erates (cf. Remark 7.1.5 below). Moreover, Johnson [21] found examples of discontinuous
dependence of the exponent on the energy E, for Schrödinger cocycles over quasi-periodic
flows.

For i.i.d. random matrices satisfying strong irreducibility and the contraction property,
Le Page [31, 32] proved local Hölder continuous and even smooth dependence of the largest
exponent on the cocycle; the assumptions ensure that the largest exponent is simple (multi-
plicity 1), by work of Guivarc’h, Raugi [19] and Gol’dsheid, Margulis [17]. Le Page’s result
can not be improved: a construction of Halperin quoted by Simon, Taylor [36] shows that
for every α > 0 one can find random Schrödinger cocycles(

E − Vn −1
1 0

)
(the Vn are i.i.d. random variables) near which the exponents fail to be α-Hölder continuous.
For i.i.d. random matrices with finitely many values and, more generally, for locally constant
cocycles over Markov shifts, Peres [33] showed that simple exponents are locally real-analytic
functions of the transition data.

Recently, Bourgain, Jitomirskaya [12, 13] proved continuous dependence of the exponents
on the energy E, for quasi-periodic Schrödinger cocycles that is, with Vn = V (fn(θ)) where

6



f is a quasi-periodic translation on a torus. Furthermore, Avila, Viana [3] studied the
continuity of the Lyapunov exponents in the very broad context of smooth cocycles. The
continuity criterium in [3, Section 5] is the starting point for the proof of our Theorem C.

Organization

In Chapter 3 we reduce Theorem C to a key result on stationary measures of nearby cocycles.
This key statement is proved in Chapter 4. In Chapter 6.1 we deduce Theorems B and D.
Finally, in Chapter 7 we describe an example of discontinuity of Lyapunov exponents for
Hölder cocycles, and we close with a short list of open problems and conjectures.

Acknowledgements

We are grateful to Artur Avila, Jairo Bochi, and Jiagang Yang for very useful conversations.
Lemma 6.1.1 is due to Artur Avila.

2.5 Continuity versus cocycle regularity

Going back to linear cocycles, the answer to the Continuity Problem is bound to depend on
the class of cocycles under consideration, including its topology. Knill [25, 26] considered L∞

cocycles with values in SL(2,R) and proved that, as long as the base dynamics is aperiodic,
discontinuities always exist: the set of cocycles with non-zero exponents is never open. This
was refined to the C0 case by Bochi [5, 6], partly inspired also by Mañé [29]: an SL(2,R)-
cocycle is a continuity point in the C0 topology if and only if it is uniformly hyperbolic or
else the exponents vanish. Most striking, the theorem of Mañé-Bochi [6, 29] remains true
restricted to the subset of C0 derivative cocycles, that is, of the form F = Df for some C1

area preserving surface diffeomorphism f . These results have been extended to arbitrary
dimension by Bochi, Viana [7, 8]. Let us also note that GL(d,R)-cocycles whose exponents
are all equal form an Lp-residual subset, for any p ∈ [1,∞), by Arnold, Cong [2], Arbieto,
Bochi [1]. Consequently, they are precisely the continuity points for the Lyapunov exponents
relative to the Lp topology.

These results show that discontinuity of Lyapunov exponents is quite common among
cocycles with low regularity. Locally constant cocycles, as we deal with here, sit at the
opposite end of the regularity spectrum, and the results in the present paper show that in
this context continuity does hold at every point. For cocycles with intermediate regularities
the Continuity Problem is very much open. However, our construction in Chapter 7.1 shows
that for any r ∈ (0,∞) there exist locally constant cocycles over Bernoulli shifts that are
points of discontinuity for the Lyapunov exponents in the space of all r-Hölder cocycles.
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Chapter 3

Proof of Theorem C

We start with a simple observation. Let P(X ) be the space of probability measures on X and
let G(X ) and S(X ) denote the spaces of bounded measurable functions from X to GL(2,C)
and SL(2,C), respectively. Given any A ∈ G(X) let B ∈ S(X ) and c : X → C be such
that Ax = cxBx for every x ∈ X . Although cx = (detAx)

1/2 and Bx are determined up
to sign only, choices can be made consistently in a neighborhood, so that B and c depend
continuously on A. It is also easy to see that the Lyapunov exponents are related by

λ±(A, p) = λ±(B, p) +

∫
log |cx| dp(x)

Thus, since the last term depends continuously on (A, p) relative to the topology defined by
(2.6), continuity of the Lyapunov exponents on S(X )×P(X ) yields continuity on the whole
G(X)×P(X ). So, we may suppose from the start that A ∈ S(X ). Observe also that in this
case one has

λ+(A, p) + λ−(A, p) = 0.

From here on the proof has two main steps. First, we reduce the problem to the case
when the matrices are simultaneously diagonalizable:

Proposition 3.0.1. If (A, p) ∈ S(X ) × P(X ) is a point of discontinuity for λ+ then there
is P ∈ SL(2,C) and θ : X → C \ {0} such that

PAxP
−1 =

(
θx 0
0 θ−1

x

)
for all x ∈ Y, where Y ⊂ X is a full p-measure set. In particular, AxAy = AyAx for all
x, y ∈ Y.

Then we rule out the diagonal case as well:

Proposition 3.0.2. Let (A, p) ∈ S(X ) × P(X ) be such that A is as in the conclusion of
Proposition 3.0.1. Then (A, p) is a point of continuity for λ+.

The proofs of these two propositions are given in the next couple of chapters. In view of
the previous observations, they contain the proof of Theorem C.
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3.1 Reducing to the diagonal case

The proof of Proposition 3.0.1 is a simplified version of ideas of Avila, Viana [3], partly
inspired by Bonatti, Gomez-Mont, Viana [10]. For the sake of completeness, and also because
our setting is not strictly contained in [3], we present the complete arguments. The definitions
and preliminary results apply to functions A with values in GL(d,C), for any d ≥ 2.

The local stable set W s
loc(x) of x ∈ M is the set of all y = (yn)n∈Z such that xn = yn for

all n ≥ 0. The local unstable set W u
loc(x) is defined similarly, considering n < 0 instead. The

projective cocycle associated to A : X → GL(d,C) is defined by

FA :M × P(Cd) →M × P(Cd), (x, [v]) 7→ (f(x), [A(x)v])

where A(x) = Ax0 for every x ∈M .

3.1.1 Invariant u-states

Let M(p) denote the set of probability measures in M × P(Cd) that project down to µ.
A disintegration of m ∈ M(p) is a measurable function assigning to each point x ∈ M a
probability mx with mx

(
{x} × P(Cd)

)
= 1 and such that

m(E) =

∫
mx(E) dµ(x), for every measurable E ⊂M × P(Cd).

A disintegration always exists in this setting and it is essentially unique; see Rokhlin [34]
and [9, Appendix C.6].

A probability m ∈ M(p) is a u-state if some disintegration x 7→ mx is constant on every
local unstable set, restricted to a full µ-measure subset of M . Then the same is true for
every disintegration, by essential uniqueness; moreover, one can choose the disintegration so
that it is constant on local unstable sets on the whole M . If m is an invariant probability
then we say that m is an invariant u-state. The definition of invariant s-states is analogous,
considering local stable sets instead, and the same observations apply.

An su-state is a probability which is both a u-state and an s-state.

Lemma 3.1.1. A probability m ∈ M(p) is an invariant su-state if and only if m = µ × η
for some probability measure η on P(Cd) invariant under the action of Ax for p-almost every
x ∈ X .

Proof. The “if” part is not used in this paper, so we leave the proof to the reader. To prove
the ”only if” part notice that, by assumption, m admits disintegrations x 7→ mu

x, constant on
local unstable sets, and x 7→ ms

x, constant on local stable sets. By essential uniqueness, there
exists a full µ-measure set X ⊂M such that mu

x = ms
x for all x ∈ X. The assumption on µ

implies that µ = µu × µs where µu is a probability on the set positive one-sided sequences
(xn)n≥0 and µs is a probability on the set negative one-sided sequences (xn)n<0. Fix x̄ ∈M
such that W u

loc(x̄) intersects X on a full µu-measure set. Then let η = mu
x̄. The local stable

sets through the points of X ∩W u
loc(x) fill-in a full µ-measure subset of M . Thus, η = ms

x at

9



µ-almost every point and so the constant family x 7→ mx = η is a disintegration of m. This
means thatm = µ×η. Finally, the fact that µ andm are invariant gives A(x)∗mx = mf(x) at
µ-almost every point and that implies (Ax)∗η = η for p-almost every x ∈ X , as claimed.

Lemma 3.1.2. If λ±(A, p) = 0 then every FA-invariant measure m in M(p) is an su-state.

Proof. This is a direct consequence of Ledrappier [27, Theorem 1]. Indeed, let Bs be the
σ-algebra of measurable subsets of M which are unions of entire local stable sets. Clearly,
f and FA are Bs-measurable. Hence, Ledrappier’s theorem gives that the disintegration of
any FA-invariant probability m ∈ M(p) is Bs-measurable modulo zero µ-measure sets. This
is the same as saying that m is an s-state. Analogously, one proves that m is a u-state.

Let us consider the function ϕA :M × P(Cd) → R defined by

ϕA(x, [v]) = log
∥A(x)v∥

∥v∥
.

Lemma 3.1.3. For every A : X → GL(d,C) and every FA-invariant probability measure
m ∈ M(p),

λ−(A, p) ≤
∫
ϕA dm ≤ λ+(A, p).

Proof. For every (x, [v]) ∈M × P(Cd) and n ≥ 1,

n−1∑
j=0

ϕA(F
j
A(x, [v])) ≤ log ∥An(x)∥ .

Integrating with respect to any probability m ∈ M(p),

1

n

∫ n−1∑
j=0

ϕA ◦ F j
A dm ≤ 1

n

∫
log ∥An(x)∥ dµ(x).

The right hand side converges to λ+(A, p) and, assuming m is invariant, the left hand side
coincides with

∫
ϕA dm. This gives the upper bound in the statement. The lower bound is

analogous.

Now let A take values in SL(2,C). We want to show that the upper bound in Lemma 3.1.3
is attained at some u-state and the lower bound is attained at some s-state. When λ±(A, p) =
0 this is a trivial consequence of Lemma 3.1.2. So, it is no restriction to suppose that
λ+(A, p) > 0 > λ−(A, p).

Let Eu
x ⊕Es

x be the Oseledets splitting of FA, defined at µ-almost every x. Consider the
probabilities mu and ms defined on M × P(C2) by

m∗(B) = µ
(
{x : (x, E∗

x) ∈ B}
)
=

∫
δ(x,E∗

x)(B) dµ(x) (3.1)

10



for ∗ ∈ {s, u} and any measurable subset B. It is clear that mu and ms are invariant under
FA and project down to µ. Moreover, their disintegrations are given by

x 7→ δ(x,E∗
x) for ∗ ∈ {s, u}.

Since Eu
x depends only on {Axn : n < 0} and Es

x depends only on {Axn : n ≥ 0}, we get that
mu is a u-state and ms is an s-state.

Lemma 3.1.4. Every FA-invariant probability measure m ∈ M(p) is a convex combination
m = αmu + βms, for some α, β ≥ 0 with α+ β = 1.

Proof. Given κ > 0, defineXκ to be the set of all (x, [v]) ∈M×P(C2) such that the Oseledets
splitting Eu

x ⊕ Es
x is defined at x and [v] splits v = vu + vs with κ−1∥vs∥ ≤ ∥vu∥ ≤ κ∥vs∥.

Since the two Lyapunov exponents are distinct, any point of Xκ returns at most finitely
many times to Xκ. So, by Poincaré recurrence, m(Xκ) = 0 for every κ. This means that m
gives full weight to {(x, Eu

x), (x, E
s
x) : x ∈ M} and so it is a convex combination of mu and

ms.

Lemma 3.1.5. λ+(A, p) =
∫
ϕA dm

u and λ−(A, p) =
∫
ϕA dm

s.

Proof. Let vux be a unit vector in the Oseledets subspace Eu
x. Then

λ+(A,x) = lim
n→∞

1

n
log ∥An(x)vux∥ = lim

n→∞

1

n

n−1∑
j=0

log ∥A(f j(x))vufj(x)∥

= lim
n→∞

1

n

n−1∑
j=0

ϕA(f
j(x), Eu

fj(x)) = ϕ̃A(x, E
u
x)

for µ-almost every x, where ϕ̃A is the Birkhoff average of ϕA for FA. Hence,

λ+(A, p) =

∫
ϕ̃A(x, E

u
x) dµ(x) =

∫
ϕ̃A dm

u =

∫
ϕA dm

u.

Analogously, λ−(A, p) =
∫
ϕAdm

s. This completes the proof.

Remark 3.1.6. It follows from Lemma 3.1.4 that mu is the unique invariant measure m
such that λ+(A, p) =

∫
ϕA dm.

3.1.2 Stationary measures

Given (B, q) in S(X )×P(X ), a probability η on P(C2) is called (B, q)-stationary if

η =

∫
(Bx)∗η dq(x). (3.2)

The next lemma asserts that the stationary measures are the projections to P(C2) of the
u-states of the corresponding cocycle. We are going to denote Mu = X Z+ and M s = X Z− .
Notice that qZ = µs × µu where µ∗ is a measure on M∗, for ∗ ∈ {s, u}.

11



Lemma 3.1.7. If m is an invariant u-state for (B, q) then its projection η to P(C2) is a
(B, q)-stationary measure. Conversely, given any (B, q)-stationary η there exists an invari-
ant u-state that projects to η.

Proof. Let x 7→ mx be a disintegration of m constant along unstable leaves. For any mea-
surable set I ⊂ P(C2),

η(I) = m(M × I) =

∫
mx(M × I) dµ(x) =

∫
mf(x)(M × I) dµ(x)

because µ is f -invariant. Since m is FB-invariant, the expression on the right hand side may
be rewritten as∫

B(x)∗mx(M × I) dµ(x)

=

∫
Ms

( ∫
Mu

B(x)∗mx(M × I) dµu(xu)
)
dµs(xs).

Since the disintegration is constant on local unstable sets and B(xs,xu) depends only on xs

(we write B(xs) instead), this last expression coincides with∫
Σs

B(xs)∗
( ∫

Σu

mxu(M × I) dµu(xu)
)
dµs(xs)

=

∫
Σs

B(xs)∗η(I) dµ
s(xs) =

∫
B(x)∗η(I) dµ(x) =

∫
(Bx)∗η(I) dq(x).

Thus, η =
∫
(Bx)∗η dq(x) as claimed.

Conversely, given any (B, q)-stationary measure η, consider the sequence of functions

mn : x 7→ mn
x = Bn(f−n(x))∗η

with values in the space of probabilities on P(C2). It is clear from the definition that eachmn

is measurable with respect to the σ-algebra Fn of subsets of M generated by the cylinders

[−n : ∆−n, . . . ,∆−1] = {x ∈M : xi ∈ ∆i for i = −n, . . . ,−1},

where the ∆i are measurable subsets of X . Observe that the Fn form a non-decreasing
sequence. We claim that (mn,Fn) is a martingale, that is,∫

C

mn+1 dµ =

∫
C

mn dµ for every C ∈ Fn and every n ≥ 1. (3.3)

To prove this, it suffices to consider the case when C is a cylinder [−n : ∆−n, . . . ,∆−1].
Then, for any n ≥ 1,∫

C

An+1(f−n−1(x))∗η dµ(x) =

∫
C

An(f−n(x))∗A(f
−n−1(x))∗η dµ(x)

=

∫
C

An(f−n(x))∗
[ ∫

X
(Ay)∗η dp(y)

]
dµ(x)

=

∫
C

An(f−n(x))∗η dµ

12



because η is stationary. This proves the claim (3.3). Then, by the martingale convergence
theorem (see [14, Chapter 5]), there exists a function x 7→ mx such that mn

x converges
µ-almost everywhere to mx in the weak∗ topology. Let m be the probability measure on
M × P(C2) defined by

m(E) =

∫
mx

(
E ∩ ({x} × P(C2))

)
dµ(x)

for any measurable set E. By construction, the disintegration x 7→ mx is constant on every
{xs} ×Mu. This means that m is a u-state. Also by construction, mf(x) = A(x)∗mx for
µ-almost every x ∈M . This proves that the u-state m is invariant. Moreover, by (3.3) and
the assumption that η is stationary,

mn(M × I) = m1(M × I) =

∫
M

(Ax)∗η(I) dp(x) = η(I)

for every n ≥ 1 and any measurable set I ⊂ P(C2). This means that mn projects to η for
every n ≥ 1. Then so does the limit m. This completes the proof of the lemma.

We are also going to show that the projection of mu to the projective space P(C2)
completely determines the Lyapunov exponents:

Lemma 3.1.8. Let m be a u-state realizing λ+(A, p) and let η be its projection to P(C2).
Then

λ+(A, p) =

∫ ∫
P(C2)

log
∥Axv∥
∥v∥

dη([v]) dp(x).

Proof. Suppose first that λ+(A, p) = 0. By Lemmas 3.1.2 and 3.1.1, every FA-invariant
probabilitym which project down to µ realizes the largest exponent and is a product measure
m = µ× η. Thus, in this case, the lemma follows immediately from Fubini’s Theorem.

If λ+(A, p) > 0, then mu is the unique u-state which realizes λ+ and the lemma follows
from a straightforward calculation:

λ+(A, p) =

∫
M

log ∥A(x)Eu
x∥dµ =

∫
Ms

∫
Mu

log ∥A(xs)Eu
xu∥dµ(xu) dµs

=

∫
X

∫
Mu

log ∥AyE
u
xu∥dµ(xu) dp(y)

=

∫
X

∫
Mu

∫
P(C2)

log
∥Ayv∥
∥v∥

dδEu
xu
dµ(xu) dp(y)

=

∫
X

∫
P(C2)

log
∥Ayv∥
∥v∥

dη([v]) dp(y)

as claimed.
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Lemma 3.1.9. If (Ak, pk)k converges to (A, p) and ηk is a sequence of (Ak, pk)-stationary
measure converging to η then η is an (A, p)-stationary measure.

Proof. We have to show that

lim
k

∫
(Ak

x)∗η
k dpk =

∫
(Ax)∗η dp

in the weak∗ sense. Let ϕ : P(C2) → R be a continuous function. Then

|
∫ ∫

ϕ(Ak
xv) dη

k dpk −
∫ ∫

ϕ(Axv) dη dp| ≤ ak + bk + ck

where

ak = |
∫ ∫

ϕ(Ak
xv) dη

k dpk −
∫ ∫

ϕ(Axv) dη
k dpk|

bk = |
∫ ∫

ϕ(Axv) dη
k dpk −

∫ ∫
ϕ(Axv) dη dp

k|

ck = |
∫ ∫

ϕ(Axv) dη dp
k −

∫ ∫
ϕ(Axv) dη dp|

It is clear that (ak)k converges to zero, because ∥Ak
x−Ax∥ converges uniformly to zero and ϕ

is uniformly continuous. To prove that bk converges to zero we argue as follows. Given ε > 0,
fix δ > 0 such that |ϕ(v)− ϕ(w)| < ε/3 for all v, w ∈ P(C2) such that d(v, w) < δ. Since the
image of A is contained in a compact subset of SL(2,C), there are B1, . . . , Bn ∈ SL(2,C)
such that their δ-neighborhoods cover A(X ). The assumption that (ηk)k converges to η in
the weak∗ topology implies that there exists k0 ∈ N such that

|
∫
ϕ(Biv) dη

k −
∫
ϕ(Biv) dη| < ε/3

for all k > k0 and for all i = 1, . . . , n. Then we can use the triangle inequality to conclude
that

|
∫
ϕ(Axv) dη

k −
∫
ϕ(Axv) dη| ≤ ε

for al k > k0. Integrating with respect to pk we conclude that bk ≤ ε for all k > k0. This
proves that bk converges to 0. Finally, it is clear that ak converges to zero, because our
assumptions imply that (pk)k converges strongly to p. The proof of the lemma is complete.

3.1.3 Proof of Proposition 3.0.1

Notice that λ+ is non-negative and, cf. (2.3),

(A, p) 7→ λ+(A, p) = inf
n

1

n

∫
log ∥An(x)∥ dµ(x) (3.4)
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is upper-semicontinuous for the topology defined by (2.6). Thus, if (A, p) ∈ S(X ) × P(X )
is a discontinuity point for the largest Lyapunov exponent then λ+(A, p) > 0 and there is a
sequence (Ak, pk)k converging to (A, p) as k → ∞ such that

lim
k
λ+(A

k, pk) < λ+(A, p).

As we have seen, for each k there exists some (Ak, pk)-stationary measure ηk satisfying∫
X

∫
P(C2)

log ∥Ak
xv∥ dηk(v)dpk(x) = λ+(A

k, pk).

Up to restricting to a subsequence, we may assume that (ηk)k converges in the weak∗ topol-
ogy to some probability measure η on P(C2). Then η is an (A, p)-stationary measure, by
Lemma 3.1.9. Using Lemma 3.1.8 we see that∫

X

∫
P(C2)

log ∥Axv∥ dη(v)dp(x) = lim
k

∫
X

∫
P(C2)

log ∥Ak
xv∥ dηk(v)dpk(x)

< λ+(A, p) =

∫
X

∫
P(C2)

log ∥Axv∥ dηu(v)dp(x)

where ηu is the projection of mu. In particular, by Lemma 3.1.7, there exists an invariant
u-state m ̸= mu. It follows, using Lemma 3.1.4, that

m = αmu + βms with α+ β = 1 and β ̸= 0.

This implies that ms is a u-state, because it is a linear combination of m and mu. Hence
ms is an su-state. In view of Lemma 3.1.1 this means that the Oseledets subspace Es

x is
constant on a full µ-measure set. Let F s ∈ P(C2) denote this constant. Analogously, using
that (A, p) is a discontinuity point for the smallest Lyapunov exponent, we find F u ∈ P(C2)
such that Eu

x = F u for µ-almost every x. It is clear that F u and F s are both invariant under
Ax, for p-almost every x ∈ X , because µ = pZ. This means that there exists Y ⊂ X with
p(Y) = 1 such that the linear operators defined by the Ay, y ∈ Y have a common eigenbasis,
which is precisely the first claim in the proposition. The last claim (commutativity) is a
trivial consequence. This completes the proof of Proposition 3.0.1.

3.2 Handling the diagonal case

Here we prove Proposition 3.0.2. Let (A, p) ∈ S(X ) × P(X ) and Y be as in the conclusion
of Proposition 3.0.1 and consider any p ∈ P(X ). Since conjugacies preserve the Lyapunov
exponents, we may suppose P = id and

Ax =

(
θx 0
0 θ−1

x

)
for all x ∈ Y . (3.5)
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Notice that the Lyapunov exponents of (A, p) are

±
∫
Y
log |θx| dp(x). (3.6)

If they vanish then (A, p) is automatically a continuity point, and so there is nothing to
prove. Otherwise, it is no restriction to suppose∫

Y
log |θx| > 0. (3.7)

Let Vε be the ε-neighborhood of the horizontal direction in P(C2) and Y be as given in
Proposition 3.0.1. The key step in the proof of Theorem C is the following

Proposition 3.2.1. Given ε > 0 and δ > 0 there exists γ > 0 such that if (B, q) ∈
V (A, p, γ,Y) and there is no one-dimensional subspace invariant under all Bx for x in a full
q-measure then η(V c

ε ) < δ for any (B, q)-stationary measure η.

The proof of Proposition 3.2.1 will be given in Chapter 4. Right now, let us conclude the
proof of Proposition 3.0.2.

Let (B, q) ∈ S(X ) × P(X ) be close to (A, p) in the sense of (2.6). First, suppose there
exists some one-dimensional subspace r ⊂ C2 invariant under all the Bx, x in a q-full measure.
Then r must be close to either the vertical axis or the horizontal axis: that is because (3.7)
implies |θx| ̸= 1 for some q-positive measure subset. Then the Lyapunov exponent of (B, q)
along r is close to one of the exponents (3.6). Since the other exponent is symmetric, this
proves that the Lyapunov exponents of (B, q) are close to the Lyapunov exponents of (A, p).
Now assume B does not admit any invariant one-dimensional subspace. Let M > 0 such
that M−1∥v∥ < ∥Bxv∥ < M∥v∥ for p-almost every x ∈ X , all v ∈ C2 and d(A,B) < 1. Let
0 ≪ ε ≪ δ ≪ ρ ≪ 1. Let m be any u-state realizing the largest Lyapunov exponent of
(B, q), and η its projection on P (C2). By Proposition 3.2.1∫

P(C2)

log
∥Bxv∥
∥v∥

dη([v]) =

∫
V c
ε

log
∥Bxv∥
∥v∥

dη([v]) +

∫
Vε

log
∥Bxv∥
∥v∥

dη([v])

≥ −δ logM + η(Vε)(log |θx| − δ)

for q-almost every x ∈ X . Together with Lemma 3.1.8, this implies

λ+(B, q) > η(Vε)λ+(A, p)− δ(logM + η(Vε)) > λ+(A, p)− ρ.

Upper semi-continuity gives λ+(B, q) ≤ λ+(A, p) + ρ. Thus, we have shown that (A, p) is
indeed a continuity point for the Lyapunov exponents.

We have reduced the proof of Proposition 3.0.2 and Theorem C to proving Proposi-
tion 3.2.1.
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Chapter 4

Proof of the Key Proposition

Here we give a convenient reformulation of Proposition 3.2.1 and reduce its proof to two
technical estimates, Propositions 4.2.5 and 4.2.7, whose proof will be presented in the next
chapter.

4.1 Preliminary observations

As a first step we note that under the assumptions of the proposition all stationary measures
are non-atomic.

Lemma 4.1.1. There exists γ > 0 such that if (B, q) ∈ V (A, p,Y , γ) and there is no one-
dimensional subspace of R2 invariant under Bx for every x in a full q-measure, then every
(B, q)-stationary measure is non-atomic.

Proof. By assumption, A is diagonal and the Lyapunov exponents do not vanish. So, we
may take γ > 0 so that if (B, q) ∈ V (A, p,Y , γ) then Bx is hyperbolic and its eigenspaces are
close to the horizontal and vertical directions, for every x is some set Z ⊂ X with q(Z) > 0.
Then any finite set of one-dimensional subspaces invariant under any Bx, x ∈ Z has at most
two elements. Moreover, they must coincide with the eigenspaces of Bx and, consequently,
are fixed under Bx. Since we assume there is no one-dimensional subspace fixed by Bx for
µ-almost every x, it follows that there is no finite set of one-dimensional subspaces invariant
under Bx for µ-almost every x.

Now let us suppose η has some atom. Let z1, . . . , zN be the atoms with the largest mass,
say, η({zi}) = a for i = 1, . . . , N . Since η is a stationary measure,

η
(
{B−1

x (z1), . . . , B
−1
x (zN)}

)
= η
(
{z1, . . . , zN}

)
= Na

for q-almost every x ∈ X . Moreover, in view of the previous paragraph, we have {B−1
x (z1),

. . . , B−1
x (zN)} ̸= {z1, . . . , zN} for a positive q-measure subset of points x. This implies that

there exists z ̸= zi for i = 1, . . . , N such that η({z}) = a. That contradicts the choice of the
zi and so the lemma is proved.
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Let ϕ : P(C2) → C2 ∪{∞}, ϕ([z1, z2]) = z1/z2 be the standard identification between the
complex projective space and the Riemann sphere. Then the projective action of a linear
map

B =

(
a b
c d

)
corresponds to a Möbius transformation on the sphere

B̂ : C ∪ {∞} → C ∪ {∞} B̂(z) =
az + b

cz + d
,

in the sense that ϕ ◦ B = B̂ ◦ ϕ. It follows that a measure ξ in projective space is (B, q)-
stationary if and only if the measure η = ϕ∗ξ on the sphere satisfies η =

∫
(B̂x)∗η dq(x).

Then the measure η is also said to be (B, q)-stationary. Clearly, η is non-atomic if and only
if ξ is.

This means that the key Proposition 3.2.1 may be restated as

Proposition 4.1.2. Given ε > 0 and δ > 0 there exist γ > 0 such that if (B, q) ∈
V (A, p, γ,Y) and q({x ∈ X : B̂x(z) = z}) < 1 for all z ∈ C ∪ {∞} then

η(B(0, ε−1)) < δ

for any (B, q)-stationary probability measure η on C ∪ {∞}.

Let us give a brief outline of the proof. Complete arguments will appear in the next
chapter.

Clearly, there are infinitely many (A, p)-stationary measures, namely, all convex combi-
nations of the Dirac masses δ0 and δ∞ corresponding, respectively, to the vertical direction
and the horizontal direction. The point with the proof is that we need to show that sta-
tionary measures of nearby cocycles approach the one (A, q)-stationary measure, δ∞, that
realizes the Lyapunov exponent λ+(A, p). The crucial property that singles out δ∞ among
all (A, q)-stationary measures is the fact that it is an attractor for the dynamics

fA : η 7→
∫

(Ax)∗η dp(x) (4.1)

induced by A in the space of the probability measures of P(C2). In particular, δ∞ can be
recovered as the limit of forward iterates under fA of any Dirac mass other than δ0. Now,
let (B, q) be close to (A, p). In view of what we just said, one may expect fB to also have an
attractor, strongly concentrated near ∞. Moreover, assuming there is no one-dimensional
subspace invariant under q-almost every Bx, one may expect this attractor to draw the
forward iterates of every Dirac mass. In particular, every fixed point η of the operator fB
should be strongly concentrated near ∞. This is precisely the contents of the proposition.

The first step in the argument is to estimate the measure of a corona C = B(0, ϵ−1) \
B(0, r) for small ε > 0 and r > 0. Note that C has zero weight for any (A, p)-stationary
measure: indeed, the fA-iterates of any measure eventually leave C. This is no longer true
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for nearby cocycles, but we are able to conclude that any (B, q)-stationary measure gives
small weight to the corona: given any ε > 0, we have

η
(
B(0, ϵ−1) \B(0, r0)

)
< ε

for any (B, q) close to (A, p) and any (B, q)-stationary measure η, where r0 = r0(B) goes to
zero when (B, q) approaches (A, p).

The neighborhoods B(0, r) require a different argument is because of the “souvenir” of
the repeller δ0 of fA imprinted in the dynamics of fB. The hypothesis that B has no subspace
that is fixed by q-almost every Bx plays an important role at this stage. In the special case
when the probability p has finite support plays a key role. In the special case when the
measure p has finite support we use it to find r1 = r1(B) > 0 and h in the support such that
B−1

h (B(0, r1) is disjoint from B(0, r1(B)). This allows us to obtain

η(B(0, r1)) < const η(B(0, ϵ−1) \B(0, r1))

and then, using the previous stage, to conclude that η(B(0, r1)) is small. In the general case,
the argument is a bit more complicated because we need to consider the possible existence
of a subset of points x ∈ M , with µ-measure close to 1, and such that the corresponding
Bx have a common fixed point. The two alternatives that can arise here are handled by
Proposition 4.2.5 and Corollary 4.2.6.

In general, r1 < r0 and so the previous two inequalities do not quite solve our problem.
However, the quotient r0/r1 is bounded by some constant that depends on A only. This fact
allows us to show that

η(B(0, r0) \B(0, r1)) ≤ const η(B(0, ϵ−1) \B(0, r0))

and so the term on the left is small. This finishes our outline of the proof. In the sequel we
fill-in the details of the argument.

4.2 Proof of Proposition 4.1.2

For simplicity, we assume that Y given in the proof of Proposition 3.0.1 is equals to X ,
because as p(X \ Y) as q(X \ Y) is equals to zero for all q such that (B, q) ∈ V (A, p, ε,Y)
for all ε > 0.

Recall, from (3.5) and (3.7), that

Ax =

(
θx 0
0 θ−1

x

)
with

∫
log |θx|dp(x) > 0 (4.2)

Let B, q, and η be as in the statement of Proposition 4.1.2.

Lemma 4.2.1. There exist β, σ ∈ (0, 1), positive numbers (σx)x∈X , integers (sx)x∈X and
k ∈ N satisfying:
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(a) 0 < ∥A∥−1/4 ≤ σx ≤ β|θx| for all x ∈ X

(b) σx = σsx for all x ∈ X

(c)
∫
log σx dp(x) > 4/k.

Proof. Fix k ∈ N large enough so that
∫
log |θx| dp(x) > 7/k. Define log β = log σ = −1/k

For each x ∈ X , define

rx =
[
k log |θx|

]
, sx =

{
rx − 1 if rx ̸= 1
rx − 2 if rx = 1

log σx = −sx
k
.

Properties (a) and (b) follow immediately. Moreover,∫
log σxdp(x) ≥

∫
log |θx| − 3/k dp(x) > 4/k

as claimed in (c).

In what follows, let σ, β, σx and sx, as in Lemma 4.2.1. We partition X = X− ∪ X+,
where X− be the subset of x ∈ X with sx < 0 (i.e. σx > 1) and X+ is the subset of x ∈ X
with sx > 0 (i.e. σx < 1). For each x ∈ X , let

Dx =

(
σx 0
0 σ−1

x

)
and D̂x(z) = σ2

xz. (4.3)

Define another matrix and its associated Möbius transformation

Dsp =

(
στ 0
0 σ−τ

)
and D̂sp(z) = σ2τz. (4.4)

where τ is the smallest natural such that στ ≤ ∥A∥−1/4. For each K ⊂ X let K be the
cocycle defined by

Kx =

(
kx 0
0 k−1

x

)
where kx =

{
σx if x ∈ K
στ if x ∈ X \ K (4.5)

Lemma 4.2.2. There exists α > 0 such that∫
log kx dp(x) ≥ 2/k

for any measurable set K with p(K) ≥ 1− α.

Proof. Taking α = (−k log στ )−1, we have∫
log kx dp ≥

∫
log σx dp−

∫
X\K

log σx dp+

∫
X\K

log στ dp

≥ 4/k + 2 log στp(X \ K) ≥ 2/k.
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For z0 ∈ C and r > 0, we denote B(z0, r) = {z ∈ C : |z − z0| ≤ r}. Given C,B ∈ S(X )
and Y ⊂ X we say that r > 0 is (B,Y)-centered with respect to C if

B̂x

−1
(B(0, r)) ⊂ Ĉx

−1
(B(0, r)) for every x ∈ Y . (4.6)

When Y = X we say only B-centered with respect to C. Given C,B ∈ S(X ), q ∈ P(X ), and
a (B, q)-stationary measure η, we say that r > 0 is (B, q, η)-pseudo-centered with respect to
C if ∫

η
(
B̂x

−1
(B(0, r))

)
dq(x) ≤

∫
η
(
Ĉx

−1
(B(0, r))

)
dq(x) (4.7)

Remark 4.2.3. If r > 0 is B-centered (respectively, (B, q, η)-pseudo-centered) with respect
to D then it is also B-centered (respectively, (B, q, η)-pseudo-centered) with respect to the

cocycle K defined in (4.5), because D̂x
−1
(B(0, r)) ⊂ D̂sp

−1
(B(0, r)) for any x ∈ X .

Lemma 4.2.4. Given ρ > 0 there is γ > 0 such every r ∈ [ρ, ρ−1] is B-centered with respect
to D for every B ∈ S(X ) with d(A,B) < γ.

Proof. By assumption, ± log |θx|, x ∈ X is bounded. Write

B−1
x =

(
ax bx
cx dx

)
.

The condition d(A,B) < γ implies that |ax − θ−1
x |, |bx|, |cx|, |dx − θx| are all less than c1γ

for some constant c1 independent of x and γ. Given ρ > 0, assume first that γ ≤ ρ2. Then,
for any |z| ∈ [ρ, ρ−1],

|B̂−1
x (z)| ≤ |axz|+ |bx|

|dx| − |cxz|
≤

|ax|+ c1
√
γ

|dx| − c1
√
γ
|z| ≤ |θ−1

x |
|θx|

1 + c2
√
γ

1− c2
√
γ
|z|

where c2 is also independent of x and γ. Thus, there exists γ0 > 0 independent of x ∈ X
such that,

|B̂−1
x (z)| ≤ (β|θx|)−2|z| ≤ σ−2

x |z| = |D̂−1
x (z)|

for every x ∈ X and every |z| ∈ [ρ, ρ−1], as long as γ ≤ γ0. This gives that every r ∈ [ρ, ρ−1]
is B-centered with respect to D, as claimed.

The proof of Proposition 4.1.2 relies on a couple of technical propositions that we state
in the sequel and whose proofs we postpone to Chapter 5. The first one gives a bound on
the mass of the stationary measure away from the vertical (and the horizontal) direction:

Proposition 4.2.5. Given ε > 0 and δ > 0 there exists γ > 0 such that if d(A,B) < γ and
d(p, q) < γ then

η
(
B(0, ε−1) \B(0, r0)

)
< δ

for any (B, q)-stationary measure η and r0 < 1 such that every r ∈ [r0, ε
−1] is (B,K)-centered

with respect to D for some measurable set K satisfying p(X \ K) ≤ α, where α is like in the
Lemma 4.2.2.
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Corollary 4.2.6. Given ε > 0 and δ > 0 there exist γ > 0 such that if d(A,B) < γ and
d(p, q) < γ then either η

(
B(0, ε−1)

)
≤ δ or there exist 0 < r0 < 1 such that

η
(
B(0, ε−1) \B(0, r0)

)
≤ δ

and p({x ∈ X ; B̂x
−1
(B(0, r0))̸⊂D̂x

−1
(B(0, r0))}) ≥ α.

Proof. Let r1 be the infimum of 0 < r < 1 such that η
(
B(0, ϵ−1)\B(0, r)

)
< δ. If r1 = 0 then

η
(
B(0, ϵ−1)\{0}

)
≤ δ. Since η has no atoms, by Lemma 4.1.1, it follows that η(B(0, ϵ−1)) ≤

δ. Now, assume that r1 > 0. Then, η(B(0, ϵ−1)\B(0, r1)) ≥ δ and thus, by Proposition 4.2.5,

F1 = {x ∈ X ; B̂x
−1
(B(0, r1)) ̸⊂D̂x

−1
(B(0, r1))} has p-measure greater than α. Define for

k = 2, 3, . . .

Fk = {x ∈ X ; B̂x
−1
(B(0, rk))̸⊂D̂x

−1
(B(0, rk))},

where 1 > r2 > r3 > . . . is a decreasing sequence converging to r1. Note that Fk ⊂ Fk+1

for all k ≥ 2 and ∪∞
k=2Fk = F1. Thus p(Fk) converges to p(F1) and this implies that there is

N ∈ {2, 3, . . . } such that p(FN) ≥ α. The proof is complete, taking r0 = rN .

The next proposition, together with the series of lemmas that follow, lead to a bound on
the mass of the stationary measure close to the vertical direction:

Proposition 4.2.7. There is γ > 0 and N ∈ N such that if d(A,B) < γ, u ∈ [0, 1] and

x ∈ X are such that B̂x

−1
(B(0, u)) ̸⊂D̂x

−1
(B(0, u)) then

D ∩ B̂−1
x (D) = ∅, where D =

{
D̂−N

x (B(0, u)) if x ∈ X−

D̂N
x (B(0, u)) if x ∈ X+.

In particular, B(0, σNτu) ∩ B̂−1
x (B(0, σNτu)) = ∅.

Now, since λ+(A, p) > 0 there exist α0, ρ0 > 0 such that if we define X0 = {x ∈ X /|θx| >
1 + ρ0} then p(X0) ≥ α0.

Lemma 4.2.8. There exists c = c(A) and γ > 0 such that if ρ < c−1, x ∈ X0, d(A,B) < γ
and B̂x has a fixed point in B(0, ρ) then

B̂x
−1
(B(0, r)) ⊂ D̂x

−1
(B(0, r)) for all r ∈ [cρ, 1]. (4.8)

Proof. First, take γ > 0 such that B̂x

−1
is a λx-contraction with

∥A∥−1

2
= λ ≤ λx ≤ (1 + ρ0)

−2

and D̂x
−1
(z) = Λxz with λx ≤ βΛx. Now, take c ∈ N large enough such that λ−1 <

c(β−1 − 1− c−1). So, |B̂x

−1
(z)| ≤ [c−1 + λx(1 + c−1)]r ≤ Λxr.
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Define Γ(z, ρ) = {x ∈ X0 : B̂x has a fixed point in B(z, ρ)} for each z ∈ C and 1 > ρ > 0
and let β0 = α0/(1 + 4c2σ−4τN).

Lemma 4.2.9. If d(A,B) < γ and p({x ∈ X0 : B̂x(z) = z}) < β0 for all z ∈ B(0, 1) then
for each ς > 0 there exist z0 ∈ B(0, 1) and ρ > 0 such that

(a) p(Γ(z, ρ)) ≤ p(Γ(z0, ρ)) + ς for all z ∈ B(0, 1);

(b) β0

4
≤ p(Γ(z0, ρ)) ≤ β0

Proof. We begin observing that there is r > 0 such that p(Γ(z, r)) < β0 for all z ∈ B(0, 1).
For this, suppose for contradiction that for each n ∈ N there exists zn such that p(Γ(zn,

1
n
)) >

β0. By compactness we may suppose zn → z0. So, for any ξ > 0, p(Γ(z0, ξ)) > β0 and,
consequently, p({x ∈ X0 : B̂x(z0) = z0}) ≥ β0, this contradicts the hypothesis. Now, take
0 < ϱ = inf{r > 0 : p(Γ(z, r)) ≥ β0 for some z ∈ B(0, 1)}. By the choice of ϱ, p(Γ(z, ρ)) < β0
for all z ∈ B(0, 1) and ρ < ϱ. However, there is z1 and ρ < ϱ such that p(Γ(z1, ρ)) ≥ β0/4.
Note that if this is false then p(Γ(z, (1.1)ϱ)) < β0 for all z ∈ B(0, 1), because we may cover
Γ(z, (1.1)ϱ) with four sets Γ(z, (0.9)ρ) and this contradicts the choice of ρ. Fixe some ρ (for
instance, ρ = 0.9ϱ) with this property. Taking l = sup{p(Γ(z, ρ)) : z ∈ B(0, 1)}, we have
for each ς > 0 there is z0 ∈ B(0, 1) such that β0/4 ≤ l ≤ p(Γ(z0, ρ)) + ς. This proves the
lemma.

Remark 4.2.10. In the conditions of Lemma 4.2.9 if we take ς small enough then p(Γ(z0, ρ)) ≥
β0/4 and p(X0 \Γ(z0, cσ−2τNρ)) ≥ β0/2, because it is easy to see that there is 4c2σ−4τN sub-
sets of the form Γ(z, ρ) covering Γ(z0, cσ

−2τNρ).

Lemma 4.2.11. There exists 0 < λ0 < 1 such that if d(A,B) < γ, x ∈ Γ(0, ρ) and

1 > r ≥ cρ then B̂x
−1
(B(0, r)) ⊂ B(0, λ0r). In particular, there exists κ > 0 such that if

1 > r ≥ cσ−τρ then B̂x
−κ

(B(0, r)) ⊂ B(0, σ2τr)

Proof. Take γ > 0 sufficiently small such that B̂x
−1

is a λ-contraction for some λ ∈ (0, 1) in

the ball B(0, 1) for all x ∈ X0. Now, let z0 ∈ B(0, 1) the unique fix point of B̂x
−1

and take
λ0 = λ(1 + c−1) + c−1. So, we have

|B̂x
−1
(z)| ≤ ρ+ λ|z − z0| ≤ [c−1 + λ(1 + c−1)]r

for all z with |z| = r ≥ cρ. To complete the proof it is enough to take κ as the smallest
natural such that λκ0 ≤ σ2τ .

Assuming Propositions 4.2.5 and 4.2.7 for a while, we can give the

Proof of Proposition 4.1.2. Suppose first that z0 = 0 (z0 and ρ > 0 given by Lemma 4.2.9).
Define X1 = X0 \ Γ(0, cσ−2τNρ). Then, by Remark 4.2.10, p(X1) ≥ β0/2 and p(Γ(0, ρ)) ≥
β0/4. Let r0 > 0 be as in Corollary 4.2.6 and take u = max{r0, cσ−2τNρ}. Define Y = {x ∈
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X ; B̂x
−1
(B(0, u))̸⊂D̂x

−1
(B(0, u))}. Then, using Lemma 4.2.9 and Corollary 4.2.6, we get

p(Y ) ≥ β1 = min{α, β0/2} and

η(B(0, ε−1) \B(0, u)) < δ (4.9)

Note also that, since d(p, q) is close to zero, q(Y ) > β1/2 and q(Γ(0, ρ)) > β0/8.
Since η is stationary,∫

X
η(B(0, u)) dq(x) = η(B(0, u)) =

∫
X
η(B̂x

−1
(B(0, u))) dq(x).

This, together with Lemma 4.2.11, implies

q(Γ(0, ρ))η
(
B(0, u) \ (B(0, λ0u))

)
≤
∫
Γ(0,ρ)

η
(
B(0, u) \ B̂−1

x (B(0, u))
)
dq(x)

=

∫
X\Γ(0,ρ)

(
η(B̂−1

x (B(0, u)))− η(B(0, u))
)
dq(x)

≤
∫
X\Γ(0,ρ)

η
(
B̂−1

x (B(0, u) \B(0, u)
)
dq(x)

≤ η
(
B(0, ε−1) \B(0, u)

)
≤ δ.

Consequently, using (4.9) once more,

η
(
B(0, ε−1) \B(0, λ0u)

)
≤ δ(1 + 8β−1

0 )

Arguing by induction we get that

η
(
B(0, ε−1) \B(0, λj0u)

)
≤ δ(1 + 8β−1

0 )j for every j ≥ 0, with λj0 ≥ σ2τN .

In particular,
η
(
B(0, ε−1) \ (B(0, λκN0 u)

)
≤ δ(1 + 8β−1

0 )κN . (4.10)

Combining Lemma 4.2.11 and (4.10), we get that

η
(
B(0, ε−1) \B(0, σ2τNu)

)
≤ δ(1 + 8β−1

0 )κN . (4.11)

Similarly,∫
η(B(0, σ2τNu)) dq(x) = η(B(0, σ2τNu)) =

∫
η
(
B̂x

−1
(B(0, σ2τNu))

)
dq(x)

together with (4.9), (4.11) and Proposition 4.2.7, implies that

q(Y )η(B(0, σ2τNu)) ≤
∫
Y

η(B̂−1
x (B(0, σ2τNu))

)
dq(x)

+

∫
X\Y

η
(
B̂−1

x (B(0, σ2τNu)) \B(0, σ2τNu)
)
dq(x)

≤ η
(
B(0, ε−1) \B(0, σ2τNu)

)
≤ δ(1 + 8β−1

0 )κN .

(4.12)
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Adding (4.11) and (4.12), we get

η(B(0, u)) ≤ δ(1 + 4β−1
1 )(1 + 8β−1

0 )κN ≤ δc̃ (4.13)

where c̃ > 0 is some upper bound for δ(1 + 4β−1
1 )(1 + 8β−1

0 )κN . Adding (4.9) and (4.13), we
obtain

η(B(0, ε−1)) ≤ (1 + c̃)δ.

That completes the proof of the proposition in this case. When p({x ∈ X0; B̂x(0) = 0}) ≥ β0
the proof is analogous, in fact, it is simpler.

Now we treat the general case. Since Ax is diagonal for all x ∈ X0, with bigger eigenvalue
far from {z ∈ C : |z| = 1} corresponding to the horizontal direction. In particular, z0 given
by the Lemma 4.2.9 is near to z = 0. So, the direction corresponding to z0 is close to the
horizontal direction. Let (a0, b0) ≈ (1, 0) be a unitary vector in the direction of z0. Define

H =

(
a0 −b0
b0 a0

)
Then, the cocycle Cx = HBxH

−1 satisfies the hypothesis of the first case. Therefore, if η is
(B, q)-stationary then H∗η is (C, q)-stationary. Using the previous particular case and the
fact that H is close to the identity,

η(B(0, ε−1)) ≤ H∗η(B(0, 2ε−1)) ≤ δ(1 + c̃).

This finishes the proof of the proposition.
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Chapter 5

Main estimates

In this chapter we prove Propositions 4.2.5 and 4.2.7.

5.1 Mass away from the vertical

Here we prove Proposition 4.2.5. Let σ < 1 be as in Lemma 4.2.1. For each K ⊂ X consider
the cocycle K associated, as defined in (4.5). Clearly,

K̂x(B(0, rσ2j)) = B(0, rσ2j+2sx) for r > 0, x ∈ X , and j ∈ Z. (5.1)

Define
Ij(r) = B(0, rσ2j−2) \B(0, rσ2j) (5.2)

for j ∈ Z and

Lx(r) =

{
B(0, r) \ K̂x

−1
(B(0, r)) for x ∈ X−

K̂x
−1
(B(0, r)) \B(0, r) for x ∈ X+.

(5.3)

Note that the partition X = X−∪X+ depends on the cocycle K. Moreover, X \K ⊂ X+,
because kx = στ for all x ∈ X \ K.

Lemma 5.1.1. If r is (B, q, η)-pseudo-centered with respect to K then

1.
∫
X−
η(Lx(r)) dq(x) ≤

∫
X+
η(Lx(r)) dq(x)

2.
∫
X−

∑−sx
j=1 η(Ij(r)) dq(x) ≤

∫
X+

∑sx−1
j=0 η(Ij(r)) dq(x).

More generally, if rσ2t is (B, q, η)-pseudo-centered with respect to K for all t = 0, 1, . . . , n
then ∫

X−

t−sx∑
j=t+1

η(Ij(r)) dq(x) ≤
∫
X+

t+sx−1∑
j=t

η(Ij(r)) dq(x),

for all t = 0, 1, . . . , n.
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Proof. Let J = B(0, r). Using that r is (B, q, η)-centered and η is (B, q)-stationary∫ (
η(J)− η(K̂x

−1
(J))

)
dq(x) ≤

∫ (
η(J)− η(B̂x

−1
(J))

)
dq(x) = 0.

By definition (5.3), the left hand side coincides with∫
X−

η(Lx(r)) dq(x)−
∫
X+

η(Lx(r)) dq(x).

This proves the first claim. The second one is a direct consequence: just note that, by (5.1),

Lx(r) =

{
B(0, r) \B(0, rσ−2sx) =

⊔−sx
j=1 Ij(r) for x ∈ X−

B(0, rσ−2sx) \B(0, r) =
⊔0

j=−sx+1 Ij(r) for x ∈ X+.

The last claim follows, noticing Ij(rσ
2t) = Ij+t(r) for all j and r.

Remark 5.1.2. If in the previous lemma we replace (B, q, η)-pseudo-centered by B-centered
then the result follows for every η (B, q)-stationary measure.

Lemma 5.1.3. There exists γ > 0 such that if d(A,B) < γ, r ∈ [0, 1] and x ∈ X is such

that B̂x

−1
(B(0, r))∩B(0, r) ̸= ∅ then B̂x

−1
(B(0, r))∪B(0, r) ⊂ D̂sp

−1
(B(0, r)) for all x ∈ X .

Proof. Take γ > 0 such that if d(A,B) < γ then for all x ∈ X the diameter of B̂x

−1
(B(0, r))

is less than 3∥A∥2r, for all r ∈ [0, 1]. So, if B̂x

−1
(B(0, r))∩B(0, r) ̸= ∅ then B̂x

−1
(B(0, r))∪

B(0, r) ⊂ B(0, 4∥A∥2r) ⊂ D̂sp

−1
(B(0, r)).

We also need the following calculus result. In the application, for proving Proposi-
tion 4.2.5, we will take ni = |si| and aj = η(Ij(r)).

Lemma 5.1.4. Let (nx)x∈X be a bounded family positive integers and (aj)j∈Z be a sequence
of non-negative real numbers. Assume

(a) 0 < S ≤
∫
X−
nx dq(x)−

∫
X+
nx dq(x) and

(b)
∫
X−

∑t+nx

j=t+1 aj dq(x) ≤
∫
X+

∑t
j=t−nx+1 aj dq(x) for t = 0, . . . , n.

Denote n− = sup{nx : x ∈ X−} and n+ = sup{nx : x ∈ X+}. Then

n∑
j=1

aj ≤
(n− + n+

S

) 0∑
j=−n++1

aj.
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Proof. Begin by noting that

n∑
t=0

t+nx∑
j=t+1

aj =
nx∑
l=1

n+l∑
j=l

aj ≥ nx

(
n∑

j=1

aj −
nx∑
j=1

aj

)
(5.4)

and that
n∑

t=0

t∑
j=t−nx+1

aj =
0∑

l=−nx+1

n+l∑
j=l

aj ≤ nx

(
n∑

j=1

aj +
0∑

j=−nx+1

aj

)
(5.5)

So, adding the inequalities (b) over all t = 0, . . . , n and using (5.4)-(5.5),∫
X−

nx

[
n∑

j=1

aj −
nx∑
j=1

aj

]
dq(x) ≤

∫
X+

nx

[
n∑

j=1

aj +
0∑

j=−nx+1

aj

]
dq(x)

or, equivalently,

S
n∑

j=1

aj ≤
∫
X−

ni

nx∑
j=1

aj dq(x) +

∫
X+

nx

0∑
j=−nx+1

aj dq(x)

This implies, using the inequality (b) once more,

S

n∑
j=1

aj ≤ n−

∫
X−

nx∑
j=1

aj dq(x) + n+

∫
X+

0∑
j=−nx+1

aj dq(x)

≤ (n− + n+)

∫
X+

0∑
j=−nx+1

aj dq(x).

This last expression is bounded above by (n− + n+)
∑0

j=−n++1 aj. In this way we get the
conclusion of the lemma.

Define αs =
∑sn+

j=(s−1)n++1 aj for each s ≥ 0. In the same setting as Lemma 5.1.4, we
obtain

Corollary 5.1.5. Let n = s0n+ for some integer s0 ≥ 1. Then there exists s ∈ {1, . . . , s0}
such that

αs ≤
(n− + n+

s0S

)
α0.

Proof. The conclusion of Lemma 5.1.4 may be rewritten

s0∑
s=1

αj =
n∑

j=1

aj ≤
(n− + n+

S

) 0∑
j=−n++1

aj =
(n− + n+

S

)
α0 .

This implies that min1≤s≤s0 αj ≤ (n− + n+)α0/(s0S), as claimed.
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Proof of Proposition 4.2.5. This will follow from applying Lemma 5.1.4 and Corollary 5.1.5
to appropriate data.

Let K such that p(K) ≥ 1 − α and replace Dx by Dsp for all x ∈ X \ K. Consequently,
replace sx by τ and σx by στ for every x ∈ X \ K. Note that this way K \ X ⊂ X+.
Take nx = |sx| for x ∈ X . Define S(p) =

∫
X−
nx dp(x) −

∫
X+
nx dp(x). By construction

(Lemma 4.2.1) and Lemma 4.2.2,

−S(p) log σ =

∫
X
sx log σ dp(x)

=

∫
K
log σsx dp(x) + στp(X \ K) > 2/k > 0.

It follows that S(p) > 0 and, consequently, there exist γ > 0 and S > 0 such that S(q) > S
for every q with d(p, q) < γ. This corresponds to condition (a) in Lemma 5.1.4.

Given ε > 0 and δ > 0, let n = s0n+ = s0τ for some integer s0 satisfying

s0 ≥ (
n− + n+

S
)2δ−1

and fix also R > σ−2nε−1. By Lemma 4.2.4, there exists γ > 0 such that if d(A,B) < γ
for all then every r ∈ [(Rσ−2)−1, Rσ−2] is B-centered with respect to D. In particular, this
applies to yσ2j for every j = 0, 1, . . . , n and any y ∈ [R,Rσ−2], since these points are in
[ε−1, Rσ−2] ⊂ [(Rσ−2)−1, Rσ−2]. Fix y ∈ [R,Rσ−2] and define aj = η(Ij(y)) for j ∈ Z. Then
Lemma 5.1.1 gives ∫

X−

t+nx∑
j=t+1

aj dq(x) ≤
∫
X+

t∑
j=t−nx+1

aj dq(x)

for all t = 0, . . . , n. This corresponds to condition (b) in Lemma 5.1.4.
Therefore, we are in a position to apply Corollary 5.1.5: we conclude that there exists

s ∈ {1, . . . , n} such that

αs ≤
(n− + n+

s0S

)
α0 ≤

( S

n− + n+

)
δα0 ≤

( S

n− + n+

)
δ (5.6)

Notice that, by definition,

αs = η
(
B(0, yσ2(s−1)n+) \B(0, yσ2sn+)

)
Let r1 the infimum of r̃ ∈ [r0, 1]} such that all r ∈ [r̃, 1] is (B, q, η)-centered with respect
to K and take y = r1σ

−2ñ for some ñ ∈ N. We claim that η(B(0, ε−1)) \ B(0, r1) < δ. In
fact, yσ2t is (B, q, η)-pseudo-centered for every t = 0, 1, . . . , ñ. The other two conditions in
Lemma 5.1.4 are also satisfied in this context: (a) is just the same as before and (b) follows
from Lemma 4.2.4 in the same way as in above. So, from Lemma 5.1.4 we conclude that

ñ∑
j=1

aj ≤
(n− + n+

S

) 0∑
j=−n++1

aj. (5.7)
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The left hand side coincides with

η
(
B(0, y) \B(0, yσ2ñ)

)
≥ η
(
B(0, ε−1) \B(0, r0)

)
.

Moreover, the sum on the right hand side of (5.7) coincides with

η
(
B(0, yσ−2sn+) \B(0, y)

)
= αs.

Hence, (5.6) and (5.7) yield η
(
B(0, ε−1)\B(0, r1)

)
≤ δ and this proves the proposition when

r1 = r0. If r1 > r0 then there exists x ∈ X \ K such that η(B̂x
−1
B(0, r1)) ≥ D̂sp

−1
B(0, r1)).

So, Lemma 5.1.3 implies that

B(0, r1) ∩ B̂x

−1
(B(0, r1)) = ∅

and
η(B(0, r1)) ≤ η(D̂sp

−1
B(0, r1))) ≤ η(B̂x

−1
B(0, r1))

Therefore η(B(0, r1)) < δ. Consequently, η(B(0, ε−1)) < 2δ and this completes the proof of
proposition.

5.2 Estimates close to the vertical

We prove Proposition 4.2.7. We begin with a couple of auxiliary lemmas. A Möbius trans-
formation h is a γ0-deformation of f(z) = λz if h(z) = (az + b)/(cz + d) with

max
{∣∣|a| − |λ|

∣∣, ∣∣b∣∣, ∣∣c∣∣, ∣∣|d| − 1
∣∣} < γ0|λ|.

Lemma 5.2.1. Given β0, σ0 ∈ (0, 1) there exist γ0 > 0 and N0 ∈ N such that for any
f(z) = λz and g(z) = Λz with |λ| ≤ β0|Λ| and |Λ| ≤ σ0, and for any γ0-deformation f̃ of f
if r ∈ [0, 1] and f̃(B(0, r))̸⊂g(B(0, r)) then

f̃(gN0(B(0, r))) ∩ gN0(B(0, r)) = ∅

Proof. Fix N0 ∈ N such that

|Λ|N0−1 ≤ σN0−1
0 ≤ 1− β0

100
(5.8)

and γ0 > 0 given by

γ0 =
1− β0
100

<
1

100
(5.9)

Write f̃(z) = (az + b)/(cz + d). If f̃(0) = 0 then b = 0 and (5.9) gives

|f̃(z)| ≤ |az|
|d| − |c|

≤ 1 + γ0
1− 2γ0

|λz| ≤ β−1
0 |λz| ≤ |Λ||z|
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for every |z| ≤ 1. This means f̃(B(0, r)) ⊂ g(B(0, r)) for all r ≤ 1 and we have nothing to
do.

Next, suppose f̃(0) ̸= 0 or, equivalently, b ̸= 0. Take

r0 =
10|b|

|Λ|(1− β0)
.

Then |f̃(z)| ≤ |Λz| for every |z| ∈ [r0, 1]. Indeed,

|f̃(z)| ≤ |az|+ |b|
|d| − |c|

≤ |λ|(1 + γ0) + |Λ|(1− |β0|)/10
1− 2γ0

|z|

and, in view of (5.9), the right hand side is bounded by

β0(1 + γ0) + 10γ0
1− 2γ0

|Λz| ≤ β0 + 20γ0
1− 2γ0

|Λz| ≤ |Λz|.

This gives f̃(B(0, r)) ⊂ g(B(0, r)) for r ∈ [r0, 1]. Moreover, if s ∈ [0, r0], by (5.8),

|Λ|Ns ≤ |Λ|Nr0 ≤
|Λ|(1− β0)

100

10|b|
|Λ|(1− β0)

≤ |b|
10

≤ |b|
5|d|

and that means that

gN(B(0, s)) ⊂ B
(
0,

|b|
5|d|

)
. (5.10)

The relation (5.9) also leads to

|f̃ ′(z)| ≤ |ad|+ |bc|
(|d| − |cz|)2

≤ |λ|(1 + γ0)
2 + (γ0|λ|)2

(1− 2γ0)2

for all |z| ≤ 1. Hence, using (5.9) once more,

|f̃ ′(z)| ≤ 1 + 4γ0
1− 4γ0

|λ| ≤ β−1
0 |λ| ≤ |Λ| ≤ 1

That implies

f̃
(
B
(
0,

|b|
5|d|

))
⊂ B

( b
d
,
|b|
5|d|

)
(5.11)

From (5.10) and (5.11) we get that gN(B(0, s)) ∩ f̃(gN(B(0, s))) = ∅, which completes the
proof of the lemma.

Lemma 5.2.2. Given β0, σ0 ∈ (0, 1) there exist γ0 > 0 and N0 ∈ N such that for any
f(z) = λz and g(z) = Λz with |λ| ≤ β0|Λ| and |λ| ≤ σ0, and for any γ0-deformation g̃ of g,
if r ∈ [0, 1] and g̃−1(B(0, r)) ̸⊂f−1(B(0, r)) then

fN0(B(0, r)) ∩ g̃−1(fN0(B(0, r))) = ∅
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Proof. Begin by noting that the hypothesis g̃−1(B(0, r)) ̸⊂f−1(B(0, r)) is equivalent to f(f−1(B(0, r)))
̸⊂ g̃f−1(B(0, r)). So, there is no loss of generality in supposing that f(B(0, r))̸⊂g̃(B(0, r)).
Fix N0 ≥ 1 such that

|λ|N0−1 ≤ σN0−1
0 ≤ 1− β0

12
≤ 1− |λ|/|Λ|

12
. (5.12)

Fix γ > 0 such that
1 + 2γ0
1− 2γ0

≤ β−1
0 (5.13)

Write g̃(z) = (az + b)/(cz + d). If g̃(0) = 0 then b = 0 and so

|g̃(z)| ≥ |a||z|
|d|+ |c|

≥ 1 + γ0
1− 2γ0

|Λ||z| ≥ |λ||z|

for every |z| ≤ 1. This implies f(B(0, r)) ⊂ g̃(B(0, r)) for all r ≤ 1 and we have nothing to
do.

Next, suppose g̃(0) ̸= 0. We have

|g̃(z)| ≥ |az| − |b|
|d|+ |cz|

| ≥ |λ||z| whenever w− ≤ |z| ≤ w+

where w− and w+ are the solutions of |λc|w2 + (|λd| − |a|)w + |b| = 0. A direct calculation
shows that

w− ≤ 2|b|
|a| − |λd|

and w+ ≥ 1

if γ is small enough. This gives g̃(B(0, r)) ⊃ f(B(0, r)) for r ∈ [r0, 1] with

r0 =
2|b|

|a| − |λd|
.

Notice that (1− |λ|/|Λ|) ≤ 2(1− |λd|/|a|) if γ is small enough. Then (5.12) gives

|λ|Nr0 ≤
|Λ| − |λ|
12|Λ|

2|bλ|
|a| − |λ||d|

≤ |bλ|
3|a|

and that means that

fN(B(0, r0)) ⊂ B
(
0,

|bλ|
3|a|

)
⊂ B

(
0,

|b|
3|a|

)
(5.14)

On the other hand,

|(g̃−1)′(z)| ≤ |ad|+ |bc|
(|cz| − |a|)2

≤ λ−1

for all |z| ≤ 1, as long as γ is small enough, and that implies

g̃−1
(
B
(
0,

|bλ|
3|a|

))
⊂ B

(
− b

a
,
|b|
3|a|

)
(5.15)

From (5.14) e (5.15) we conclude that fN(B(0, r0)) ∩ g̃−1(fN(B(0, r0))) = ∅. With greater
reason fN(B(0, s)) ∩ g̃−1(fN(B(0, s))) = ∅ for every s ∈ [0, r0] and this completes the proof
of the lemma.
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Proof of Proposition 4.2.7. Note that if d(A,B) < γ then every B̂−1
x is a (Cγ)-deformation

of f = Â−1
x , where the constant C = supx∈X |θx| depends only on A. Indeed,

Bx =

(
ax bx
cx dx

)
yields B̂−1

x =
dxθ

−1
x z − bxθ

−1
x

−cxθ−1
x z + axθ−1

x

and then ∥Ax −Bx∥ < γ implies∣∣dxθ−1
x − θ−2

x

∣∣, ∣∣bxθ−1
x

∣∣, ∣∣cxθ−1
x

∣∣, ∣∣axθ−1
x − 1| ≤ γ|θx|−1 ≤ Cγ|θx|−2.

Take f = Âx
−1

and g = D̂x
−1

for each x ∈ X−. Notice f(z) = |θx|−2|z| and g(z) = σ−2
x |z|.

Since σx ≤ β|θx| and σx ≥ σ−1 (cf. Lemma 4.2.1), we are in the setting of Lemma 5.2.1, with
β0 = β2 and σ0 = σ2. From the lemma, and the observation in the previous paragraph, we
get that there exists γ− > 0 and N− ∈ N such that if d(A,B) < γ−, x ∈ Y− and r ∈ [0, 1] are

such that B̂x
−1
(B(0, r)) ̸⊂D̂x

−1
(B(0, r)) then B̂x

−1
(D̂x

−N−
(B(0, r))) ∩ D̂x

−N−
(B(0, r)) = ∅.

Now take f = D̂x and g = Âx for x ∈ X+. Then f(z) = σ2
x|z| and g(z) = |θx|2|z|

and so we are in the setting of Lemma 5.2.2, with β0 = β2 and σ0 = σ2. In this way we
get γ+ > 0 and N+ ∈ N such that if d(A,B) < γ+, x ∈ Y+ and r ∈ [0, 1] are such that

B̂x

−1
(B(0, r))̸⊂D̂x

−1
(B(0, r)) then

B̂x
−1
(D̂x

N+
(B(0, r))) ∩ D̂x

N+
(B(0, r)) = ∅.

Take γ = min{γ−, γ+} and N = max{N−, N+}. This completes the proof of the proposition.
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Chapter 6

Consequences of Theorem C

In this chapter we deduce Theorem B and Theorem D.

6.1 Proof of Theorem B

Now we deduce Theorem B from Theorem C. The main step is contained in the lemma that
follows. Let λ denote Lebesgue measure on the unit interval I. We use ∥η∥ to denote the
total variation of a signed measure η.

Lemma 6.1.1 (Avila). Let ν be a Borel probability measure with compact support in some
metric space X such that all bounded and closed subset of X is compact. For every ε > 0
there exists δ > 0 and a weak∗ neighborhood V of ν such that every probability measure µ ∈ V
whose support is contained in Bδ(supp ν) may be written as

ϕ∗q = µ

for some probability measure q in supp ν × I and some measurable map ϕ : supp ν × I → X
with ∥q − (ν × λ)∥ < ε and d(ϕ(x, t), x) < ε for all x ∈ supp ν.

Proof. Denote Z = supp ν. First, we claim that for any δ > 0 there exist a cover of Bδ(Z)
by disjoint sets Qi, i = 1, . . . , N with ν(Qi) > 0, ν(∂Qi) = 0, and diamQi < 12δ. This can
be seen as follows.

Firstly, take for each x ∈ Z, rx ∈ (δ, 2δ) such that ν(∂B(x, rx)) = 0. So, {B(x, rx) : x ∈
Z} is a cover of the compact set, Bδ(Z). Take {V1, V2, . . . , Vk} a finite subcover of Bδ(Z) and
consider the associated partition P of ∪k

i=1Vi, whose atoms are the sets P = V ∗
1 ∩ · · · ∩ V ∗

k ,
where V ∗

i is equals to Vi or V
c
i . Note that, by construction, diamVi < 4δ, ν(Vi) > 0 and

ν(∂Vi) = 0. From P , we are going to obtain a partition Q with the property in our claim.
To this end, define

B1 = V1 ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ V1 ̸= ∅}

Now, if V2 ⊂ B1 then we define B2 = ∅. Otherwise, ν(V2 \B1) > 0 and then we define

B2 = V2 ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ V2 ̸= ∅} \B1
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Now we repeat this procedure inductively: for each l ≥ 2, we define Bl = ∅ if Vl ⊂ ∪l−1
i=1Bi;

otherwise, ν(Vl \ ∪l−1
i=1Bi) > 0 and then we define

Bl = Vl ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ Vl ̸= ∅} \Dl−1

where Dl−1 = ∪l−1
i=1Bi. The claim follows by taking as Qi the non-empty sets Bi.

Proceeding with the proof of the lemma, take δ = ε/12 and assume the neighborhood V
is small enough that

N∑
i=1

|µ(Qi)− ν(Qi)| < ε for every µ ∈ V.

Let Zi = supp ν ∩Qi for each i = 1, . . . , N . Clearly, ν(Zi) = ν(Qi). Let q be the measure on
Z × I that coincides with

µ(Qi)

ν(Qi)
(ν × λ)

restricted to each Zi × I. For each i, let ai,j, j ∈ J(i) be the atoms of ν ′ contained in Qi,j

(note that J(i) may be empty). Moreover, let Ii,j, j ∈ Ji be disjoint subsets of I such that

λ(Ii,j) =
pi,j
µ(Qi)

for all j ∈ Ji,

where pi,j = ν ′(ai,j). Denote by Ii the complement of the union of all Ii,j, j ∈ Ji inside I.
Then

q
(
Zi × Ii

)
= µ(Qi)−

∑
j∈Ji

pi,j = µ
(
Qi \ ∪j∈Jiai,j

)
.

Since all non-atomic Lebesgue probability spaces are equivalent to the unit interval endowed
with Lebesgue measure (see [34]), the previous equality ensures that there exists an invertible
measurable map

ϕi : Zi × Ii → Qi \ ∪j∈Jiai,j

mapping the restriction of q to the restriction of µ. By setting ϕ ≡ ai,j on each Zi × Ii,j
we extend ϕi to a measurable map Zi × I → Qi that still sends the restriction of q to the
restriction of µ. Gluing all these extensions we obtain a measurable map ϕ : Z × I → X
such that ϕ∗q = µ. By construction, ϕ(x, t) ∈ Qi for every x ∈ Zi and t ∈ I. This implies
that d(ϕ(x, t), x) ≤ diamQi < ε for all (x, t) ∈ Z × I. Finally,

∥q − (ν × λ)∥ =
n∑

i=1

∥∥(µ(Qi)

ν(Qi)
− 1
)
(ν × λ) | (Zi × I)

∥∥
=

n∑
i=1

|µ(Qi)− ν(Qi)| < ε.

The proof of the lemma is complete
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Now Theorem B can be obtained as follows. Given ρ > 0, let ν be a probability measure in
GL(2,C) with compact support. Consider X = supp ν× I, p = ν×λ and A : X → GL(2,C)
given by A(x, t) = x. From Theorem C, there is ε > 0 such that |λ±(A, p) − λ±(B, q)| < ρ
for all (B, q) such that d(p, q) < ε and d(A,B) < ε. On the other hand, Lemma 6.1.1 implies
that there exist a weak∗ neighborhood V and δ such that if ν ′ ∈ V and supp ν ′ ⊂ Bδ(supp ν)
then there exist B : X → GL(2,C) and a probability measure q on X such that d(p, q) < ε,
d(A,B) < ε and ν ′ = B∗q. Noting that λ±(ν) = λ±(A, p) and λ±(ν

′) = λ±(B, q), we get
Theorem B.

6.2 Proof of Theorem D

We need the following proposition, whose proof we postpone for a while.

Proposition 6.2.1. Suppose that λ+(A, p) > 0 and let mu be its a canonical u-state. If
(Ak, p)k converges to (A, p) and mu

k is a canonical u-state for (Ak, p) for each k then (mu
k)k

converges to mu weakly∗.

To prove Theorem D, it is enough to show that

µ({x ∈M : ∠(Eu
A,x, E

u
Ak,x) < ϵ})

converges to 1 when k goes to ∞. Let (Ak, p)k converge to (A, p), and let (mk,u)k and
mu be the canonical u-states for (Ak, p) and (A, p), respectively, for k ≥ 1. By using
Proposition 6.2.1, we have that (mk,u)k converges to mu. Note that ψ : M ∋ x 7→ Eu

A,x is
a measurable map and its graphic has full mu-measure. Given ε > 0, by the theorem of
Lusin, see Theorem 1 in Loeb [28], we may take a compact set K ⊂ M such that the map
ψK : K ∋ x 7→ Eu

A,x is continuous and its graphic has mu-measure greater than 1− ε. Now,
given δ > 0, take a open neighborhood V of the graphic of ψK , such that the diameter of
V ∩ {x} × P(C2) is less than δ for all x ∈ K, that is, V ∩ K × P(C2) ⊂ Vδ := {(x, ξ) ∈
K × P(C2) : d(ψ(x), ξ) < δ}, where d stands for a distance on the projective P(C2). From
the weak∗ convergence, we have that

lim infmk,u(V ) ≥ mu(V ) ≥ 1− ε.

On the other hand, we have that mk,u(K × P(C2)) = µ(K) ≥ 1 − ε for all k. Thus,
mk,u(V ∩K × P(C2)) ≥ 1 − 2ε and consequently mk,u(Vδ) ≥ 1 − 3ε for all k ≥ k0 for some
k0. Nevertheless, mk,u(Vδ) = µ({x ∈ K : d(Eu

Ak,x
, Eu

A,x) < δ}) and, therefore, µ({x ∈ M :
d(Eu

Ak,x
, Eu

A,x) < δ}) ≥ 1 − 3ε, for all k ≥ k0. Since δ and ε are arbitrary, this proves
Theorem D.

To prove Proposition 6.2.1, we begin by showing that the space M(p) of the probability
measure that project down to µ = pZ is compact. More precisely,

Lemma 6.2.2. Let (µk)k converge to µ in the weak∗ topology of P(X Z). Let (mk)k be a
sequence of probabilities in P(X Z × P(C2)) projecting down to (µk)k. Then there exists a
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subsequence of (mk)k converging in the weak∗ topology to some probability m on X Z ×P(C2)
that projects down to µ.

In particular, the space of probabilities measures on P(X Z × P(C2)) that project down to
µ is compact for the weak∗ topology.

Proof. The key result we use is Prohorov’s theorem, see, for instance, Billingsley [4]. We
begin by noting that X Z and X Z × P(C2) are polish spaces. Therefore, the sequence of
probabilities (ξk)k on any of these two spaces have converging subsequences, in the weak∗

sense, if and only if for each ε > 0 there is a compact set Kε such that ξk(Kε) > 1 − ε.
So, it is enough to prove that for any ε > 0 there exists a compact set K̂ε ⊂ X Z × P(C2)
such that mk(K̂) > 1 − ε for each k ≥ 1. From Prohorov’s theorem, we have that for any
ε > 0, there is a compact set Kε ⊂ X Z such that µk(Kε) > 1 − ε, for any k ≥ 1. However,
K̂ε = Kε × P(C2) is compact and also, mk(K̂ε) = µk(Kε) > 1− ε for all k ≥ 1. The lemma
thus follows from an application of Prohorov’s theorem.

Proof of Proposition 6.2.1. Let (mk)k a sequence of probability measures such thatmk project
down to µ for all k. We claim that it is enough to show that if (mk)k converges to m, then
((FAk)∗m

k)k converges to (FA)∗m. In fact, the claim implies that all limit point m of the
sequence (mu

k)k is FA-invariant, because m
u
k is FAk for all k. Moreover, by Theorem C and

Lemma 3.1.5,

limλ+(A
k, p) = lim

∫
ϕAk dmu

k =

∫
ϕA dm

u = λ+(A, p)

So, using Remark 3.1.6, we conclude that m = mu. Furthermore, using Lemma 6.2.2, we
conclude that (mu

k)k converges to mu. To finish, let us prove the claim. To this end, given
ε > 0, by the theorem of Lusin, there is a compact setK ⊂M such that µ(K) > 1−ε and the
transformation A :M → SL(2,C) is continuous when restricted toK. So, if φ :M×P(C2) →
R is a bounded and uniformly continuous function (this is enough to characterize weakly∗

convergence, see, for instance, Billingsley [4]), the function φ ◦ FA : M × P(C2) → R is also
continuous when restricted to K×P(C2). Now, using the theorem of extension of Titze (see
Kelley [22]), take φ̃ :M × P(C2) → R a continuous extension of the restriction of φ ◦ FA to
K × P(C2) such that ∥φ̃∥ ≤ 2∥φ∥. We have

|
∫
φd(FAk)∗m

k −
∫
φd(FA)∗m| = |

∫
φ ◦ FAk dmk −

∫
φ ◦ FA dm|

≤ |
∫
φ ◦ FAk dmk −

∫
φ ◦ FA dm

k|+ |
∫
φ ◦ FA dm

k −
∫
φ ◦ FA dm|

The first term converges to zero, because φ ◦ FAk − φ ◦ FA converges to zero uniformly.
Moreover, using triangle inequality and the fact that mk and m project down to µ, we
see that the second one is bounded by the sum |

∫
φ̃ dmk −

∫
φ̃ dm| with 6∥φ∥ε. Since

ε > 0 is taken arbitrary and φ̃ is a bounded and continuous function, we conclude that∫
φd(FAk)∗m

k converges to
∫
φd(FA)∗m, for all φ bounded and continuous function, that

is, (FAk)∗m
k converges weakly∗ to (FA)∗m. This completes the proof of the proposition.
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Chapter 7

Further considerations

7.1 An example of discontinuity

In this chapter we describe a construction of points of discontinuity of the Lyapunov ex-
ponents as functions of the cocycle, relative to some Hölder topology. This builds on and
refines [5, 6, 8, 29], where it is shown that Lyapunov exponents are often discontinuous
relative to the C0 topology.

Let M = Σ2 be the shift with 2 symbols, endowed with the metric d(x,y) = 2−N(x,y),
where

N(x,y) = sup{n ≥ 0 : xn = yn whenever |n| < N}.
For any r ∈ (0,∞), the Cr norm in the space of r-Hölder continuous functions L : M →
L(Cd,Cd) is defined by

∥L∥r = sup
x∈M

∥L(x)∥+ sup
x̸=y

∥L(x)− L(y)∥
d(x,y)r

.

Consider on M the Bernoulli measure associated to any probability vector (p1, p2) with
positive entries and p1 ̸= p2. Given any σ > 1, consider the (locally constant) cocycle
A :M → SL(2,R) defined by

A(x) =

(
σ 0
0 σ−1

)
if x0 = 1

and

A(x) =

(
σ−1 0
0 σ

)
if x0 = 2.

Theorem 7.1.1. For any r > 0 such that 22r < σ there exist cocycles B : M → SL(2,R)
with vanishing Lyapunov exponents and such that ∥A−B∥r is arbitrarily close to zero.

Since the Lyapunov exponents λ±(A) = ±|p1− p2| log σ of the cocycle A :M → SL(2,R)
are non-zero, this gives that A is a point of discontinuity for the Lyapunov exponents relative
to the Cr topology.
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The proof of Theorem 7.1.1 is an adaptation of ideas of Knill [25] and Bochi [5, 6]. Here is
an outline. Notice that the unperturbed cocycle A preserves both the horizontal line bundle
Hx = {x} × R(1, 0) and the vertical line bundle Vx = {x} × R(0, 1). Then, the Oseledets
subspaces must coincide with Hx and Vx almost everywhere. We choose cylinders Zn ⊂ M
whose first n iterates f i(Zn), 0 ≤ i ≤ n−1 are pairwise disjoint. Then we construct cocycles
Bn by modifying A on some of these iterates so that

Bn
n(x)Hx = Vfn(x) and Bn

n(x)Vx = Hfn(x) for all x ∈ Zn.

We deduce that the Lyapunov exponents of Bn vanish. Moreover, by construction, each Bn

is constant on every atom of some finite partition of M into cylinders. In particular, Bn is
Hölder continuous for every r > 0. From the construction we also get that

∥Bn − A∥r ≤ const
(
22r/σ

)n/2
(7.1)

decays to zero as n → ∞. This is how we get the claims in the theorem. Now let us fill-in
the details of the proof.

Let n = 2k + 1 for some k ≥ 1 and Zn = [0; 2, . . . , 2, 1, . . . , 1, 1] where the symbol 2
appears k times and the symbol 1 appears k + 1 times. Notice that the f i(Zn), 0 ≤ i ≤ 2k
are pairwise disjoint. Let

εn = σ−k and δn = arctan εn. (7.2)

Define R :M → SL(2,R) by

R(x) = rotation of angle δn if x ∈ fk(Zn)

R(x) =

(
1 0
εn 1

)
if x ∈ Zn ∪ f 2k(Zn)

R(x) = id in all other cases.

and then take Bn = ARn.

Lemma 7.1.2. Bn
n(x)Hx = Vfn(x) and B

n
n(x)Vx = Hfn(x) for all x ∈ Zn.

Proof. Notice that for any x ∈ Zn,

Bk
n(x)Hx = R(εn, 1) and Bk

n(x)Vx = Vfk(x)

Bk+1
n (x)Hx = Vfk+1(x) and Bk+1

n (x)Vx = R(−εn, 1)
B2k

n (x)Hx = Vf2k(x) and B2k
n (x)Vx = R(−1, εn).

The claim follows by iterating one more time.

Lemma 7.1.3. There exists C > 0 such that ∥Bn − A∥r ≤ C (22r/σ)
k
for every n.
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Proof. Let Ln = A−Bn. Clearly, sup ∥L∥ ≤ sup ∥A∥ ∥ id−Rn∥ and this is bounded by σεn.
Now let us estimate the second term in the definition (7.1). If x and y are not in the same
cylinder [0; a] then d(x,y) = 1, and so

∥Ln(x)− Ln(y)∥
d(x,y)r

≤ 2 sup ∥Ln∥ ≤ 2σεn. (7.3)

From now on we suppose x and y belong to the same cylinder. Then, since A is constant on
cylinders,

∥Ln(x)− Ln(y)∥
d(x,y)r

=
∥A(x)(Rn(x)−Rn(y))∥

d(x,y)r
≤ σ

∥Rn(x)−Rn(y)∥
d(x,y)r

.

If neither x nor y belong to Zn ∪ fk(Zn) ∪ f 2k(Zn) then Rn(x) and Rn(y) are both equal
to id, and so the expression on the right vanishes. If x and y belong to the same f i(Zn)
then Rn(x) = Rn(y) and so, once more, the expression on the right vanishes. We are left
to consider the case when one of the points belongs to some f i(Zn) and the other one does
not. Then d(x,y) ≥ 2−2k and so, using once more that ∥ id−Rn∥ ≤ εn at every point,

∥Ln(x)− Ln(y)∥
d(x,y)r

≤ σ
∥Rn(x)−Rn(y)∥

d(x,y)r
≤ 2σεn2

2kr.

Noting that this bound is worst than (7.3), we conclude that

∥Ln∥r ≤ σεn + 2σεn2
2kr ≤ 3σ

(
22r/σ

)k
Now it suffices to take C = 3σ.

Now we want to prove that λ±(Bn) = 0 for every n. Let µn be the normalized restriction
of µ to Zn and fn : Zn → Zn be the first return map (defined on a full measure subset).
Indeed,

Zn =
⊔
b∈B

[0;w, b, w] (up to a zero measure subset)

where w = (1, . . . , 1, 2, . . . , 2, 2) and the union is over the set B of all finite words b =
(b1, . . . , bs) not having w as a sub-word. Moreover,

fn | [0;w, b, w] = fn+s | [0;w, b, w] for each b ∈ B.

Thus, (fn, µn) is a Bernoulli shift with an infinite alphabet B and probability vector given
by pb = µn([0;w, b, w]). Let B̂n : Zn → SL(2,R) be the cocycle induced by B over fn, that
is,

B̂n | [0;w, b, w] = Bn+s
n | [0;w, b, w] for each b ∈ B.

It is a well known basic fact (see [37, Proposition 2.9], for instance) that the Lyapunov
spectrum of the induced cocycle is obtained multiplying the Lyapunov spectrum of the
original cocycle by the average return time. In our setting this means

λ±(B̂n) =
1

µ(Zn)
λ±(Bn).
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Therefore, it suffices to prove that λ±(B̂n) = 0 for every n.
Indeed, suppose the Lyapunov exponents of B̂n are non-zero and let Eu

x ⊕ Es
x be the

Oseledets splitting (defined almost everywhere in Zn). Consider the probability measuresmu

and ms for the cocycle B̂n defined as in (3.1). The key observation is that, as a consequence
of Lemma 7.1.2, the cocycle B̂n permutes the vertical and horizontal subbundles:

B̂n(x)Hx = Vfn(x) and B̂n(x)Vx = Hfn(x) for all x ∈ Zn. (7.4)

Let m be the measure defined on M × P(R2) by

mn(X) =
1

2
(µn ({x ∈ Zn : Vx ∈ X}) + µn ({x ∈ Zn : Hx ∈ X}) .

In other words, mn projects down to µn and its disintegration is given by x 7→ (δHx + δVx)/2.
It is clear from (7.4) that mn is B̂n-invariant.

Lemma 7.1.4. The probability measure mn is ergodic.

Proof. Suppose there is an invariant set X ⊂ M × P(R2) with mn(X ) ∈ (0, 1). Let X0 be
the set of x ∈ Zn whose fiber X ∩ ({x} × P(R2)) contains neither Hx nor Vx. In view of
(7.4), X0 is an fn-invariant set and so its µn-measure is either 0 or 1. Since mn(X ) > 0, we
must have µn(X0) = 0. The same kind of argument shows that µn(X2) = 0, where X2 is the
set of x ∈ Zn whose fiber contains both Hx and Vx. Now let XH be the set of x ∈ Zn whose
fiber contains Hx but not Vx, and let XV be the set of x ∈ Zn whose fiber contains Vx but
not Hx. The previous observations show that XH ∪ XV has full µn-measure and it follows
from (7.4) that

fn(XH) = XV and fn(XV ) = XH .

Thus, µn(XH) = 1/2 = µn(XV ) and f
2
n(XH) = XH and f 2

n(XV ) = XV . This is a contradic-
tion because fn is Bernoulli and, in particular, the second iterate is ergodic.

By Lemma 3.1.4, the invariant measure mn is a linear combination of mu and ms. Then,
in view of Lemma 7.1.4, mn must coincide with either ms and mu. This is a contradiction,
because the conditional probabilities of mn are supported on exactly two points on each
fiber, whereas the conditional probabilities of either mu and ms are Dirac masses on a single
point. This contradiction proves that the Lyapunov exponents of B̂n do vanish for every n,
and that concludes the proof of Theorem 7.1.1.

The same kind of argument shows that, in general, one can expect continuity to hold
when some of the probabilities pi vanishes:

Remark 7.1.5. (Kifer [23]) Take d = 2, a probability vector p = (p1, p2) with non-negative
coefficients, and a cocycle A = (A1, A2) defined by

A1 =

(
σ 0
0 σ−1

)
and A2 =

(
0 −1
1 0

)
,

where σ > 1. By the same arguments as we used before, λ±(A, p) = 0 if p2 > 0. In this
regard, observe that the cocycle induced by A over the cylinder [0; 2] exchanges the vertical
and horizontal directions, just as in (7.4). Now, it is clear that λ±(A, (1, 0)) = ± log σ. Thus,
the Lyapunov exponents are discontinuous at (A, (1, 0)).
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7.2 Open problems

While our results give a very complete answer to the continuity problem for two-dimensional
matrices some interesting problems remain, that we pose here:

Problem 7.2.1. Does continuity extend to unbounded cocycles satisfying an integrability
condition, for instance, log ∥A±1∥ ∈ L1(µ) ? Notice that this condition involves both the
cocycle and the probability measure. So, in this context the topology should be defined in
the space of pairs (A, p).

Problem 7.2.2. Does continuity extend to locally constant cocycles over Bernoulli shifts,
that is, such that A(x) depends on a bounded number of coordinates of f ? Notice that we
have handled the case when A(x) depends only on the zeroth coordinate of x. What about
for locally cocycles over Markov systems.

Problem 7.2.3. Does continuity extend to extremal Lyapunov exponents of GL(d,C)-
cocycles for any dimension d ? Then, using exterior powers in a well-known way (see e.g.
[33]), one would get continuity for all Lyapunov exponents. An interesting special case to
look at are symplectic cocycles, that is, such that every A(x) preserves some given symplectic
form.

Problem 7.2.4. Can we say more about the regularity of the Lyapunov exponents as func-
tions of the cocycle: Hölder or even Lipschitz continuity ? differentiability ? Some partial
answers and related results can be found in [32, 33], for instance.
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