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Abstract

We prove that for certain partially hyperbolic skew-products on the cylinder, non-uniform
hyperbolicity along the leaves implies existence of absolutely continuous invariant prob-
ability measures. The main technical tool is an extension for sequences of maps of a re-
sult of de Melo and van Strien relating hyperbolicity to recurrence properties of orbits.
As a consequence of our main result, we obtain extensions of Keller’s theorem guar-
anteeing the existence of absolutely continuous invariant measures for non-uniformly
hyperbolic one dimensional maps.
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samiglia, Damian Fernández, Cesar Gómez, Francisco Valenzuela, David Zambrano,
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Introduction

An invariant measure reflects the asymptotic behavior of almost every point with re-
spect to this measure. For any continuous dynamical system on a compact manifold it
is known that invariant finite measures do exist. In general, a dynamical system may
have a great abundance of invariant measures. For example, if the dynamical system
has periodic points, then the measure concentrated on the orbit of each periodic point
is an invariant measure; in this case, almost every point just means for every point of
the orbit. One natural interest is to choose inside the set of invariant measures those
which are more relevant for understanding the dynamics, that means to define a cri-
terion which says what are the measures that describe the dynamics in a significant
way. On Riemannian manifolds the more natural choice is the volume induced by the
Riemannian metric. One may ask for invariant measures that describe the asymptotics
of almost every, or at least, a positive volume measure set of trajectories. This is the
case for instance, if the invariant measure is absolutely continuous with respect to the
volume and ergodic (by the Birkhoff’s ergodic theorem).

Thus, in this work we focus on the problem of existence of absolutely continuous
invariant measures.

It is a classical fact (see Mañé, [M]) that uniformly expanding smooth maps on com-
pact manifolds admit a unique ergodic absolutely continuous invariant measure, and it
describes the asymptotics of almost every point. Moreover, see Bowen [B], uniformly
hyperbolic diffeomorphisms also have a finite number of such physical measures, de-
scribing also the asymptotics of almost every point. Actually, in this case, the physical
measures are absolutely continuous only along certain directions, namely, the expand-
ing ones.

The present work is motivated by the question of knowing, to what extent, weaker
forms of hyperbolicity are still sufficient for the existence of such measures. A precise
statement in this direction is:

Conjecture (Viana,[V2]). If a smooth map has only non-zero Lyapunov exponents at Lebesgue
almost every point, then it admits some physical measure.

Two main results provide some evidence in favor of this conjecture. The older one
is the remarkable theorem of Keller [Ke] stating that for unimodal maps of the interval
with negative Schwarzian derivative, existence of absolutely continuous invariant probability is
equivalent to positive Lyapunov exponents, i.e.

lim sup
n→∞

1
n

log |D f n(x)| > 0 (∗)

on a positive measure set of points x.

Then, more recently, Alves, Bonatti, Viana [ABV] proved that every non-uniformly
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expanding local diffeomorphism on any compact manifold admits a finite number of ergodic
absolutely continuous invariant measures describing the asymptotics of almost every point. This
notion of non-uniform expansion means that

lim inf
n→∞

1
n

n−1∑
j=0

log ||D f ( f j(x))−1
||
−1
≥ c > 0 (∗∗)

almost everywhere. This result has been improved by several authors. In particular,
Pinheiro [P] shows that one may replace lim inf by lim sup; conform (∗). Alves, Bonatti
and Viana [ABV] also give a version of this result for maps with singularities, that is,
which fail to be a local diffeomorphism on some subset S of the ambient manifold. In
their work they introduce and make an extensive use of the notion of hyperbolic times.
A hyperbolic time k for a point x is, basically, an iterate such that f k has the behavior of
a uniformly expanding map for a certain neighborhood of the point x. However, due
to the presence of singularities they need an additional hypotheses (of slow recurrence
to the singular set S) which is often difficult to verify. Given that Keller’s theorem has
no such hypotheses (in his case S = {critical points}), one may ask to what extent this
condition is really necessary.

Here we aim to extend both results mentioned previously to a setting of higher di-
mensional transformations with (non-empty) singular set.

Motivated by a family of maps introduced by Viana [V1] and studied by several
other authors (see for example [A, AV, BST, P]) we consider transformations of the form
ϕ : T1

× I0 → T1
× I0, (θ, x) 7→ (g(θ), f (θ, x)), where g is a uniformly expanding circle

map, each f (θ, ·) is a smooth interval map with negative Schwarzian derivative, and ϕ
is partially hyperbolic with vertical central direction:

|∂θg(θ)| > |∂x f (θ, x)| at all points .

We prove that if ϕ is non-uniformly expanding then it admits some absolutely continu-
ous invariant probability.

The Viana maps [V1] correspond to the case when g is affine, g(θ) = dθ (mod 1)
with d >> 1, and f has the form f (θ, x) = a0 + α sin(2πθ) − x2 (actually, [V1] deals also
with arbitrary small perturbations of such maps). It was shown in [V1] that Viana maps
are indeed non-uniformly expanding. Moreover, Alves [A] proved that they have a
unique physical measure, which is absolutely continuous and ergodic. Their methods
hold even for a whole open set of maps not necessarily of skew-product form. In fact,
the argument of Alves [A] rely on a proof of slow recurrence to the critical set which in
that case is the circle T1

× {0}.
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Our method is completely different. We view ϕ as a family of smooth maps of the
interval, namely, its restrictions to the vertical fibers {θ} × I0. Thus, our main technical
tool is an extension for such families of maps of a result proved by de Melo, van Strien
[MvS, Theorem V.3.2, page 371] for individual unimodal maps saying, in a few words,
that positive Lyapunov exponents manifest themselves at a macroscopic level: intervals
that are mapped diffeomorphically onto large domains under iterates of the map. This,
in turn, allows us to make use of the hyperbolic times technique similar to the intro-
duced by Alves, Bonatti, Viana [A, ABV].

This paper is organized as follows. In section 1 we give the precise statement of the
main results. In section 2 we introduce a few preliminary facts, mostly well-known,
which will be useful in the sequel. There are two subsections: the first one concerns
one dimensional dynamics; in the second one we recall the statement of Alves, Bonatti,
Viana [ABV] for maps with singularities, and also we recall the definitions of hyper-
bolic times and the condition of slow recurrence to a singular set. In section 3 we prove
our Theorem B, which is the extension of [MvS, Theorem V.3.2, page 371] mentioned
before. The section 4 contains the proof of some extensions of Keller’s theorem to dif-
ferent settings. In the proof of these results we need some recurrence properties for
interval maps, which are contained on Appendix A. In section 5 we prove another key
result (Proposition 5.3): for each interval which is mapped diffeomorphically onto a
large domain under an iterate of the skew-product, there exists an open set contain-
ing this interval which is sent diffeomorphically onto its image under the same iterate;
moreover, this map has bounded distortion and the measure of the image is bounded
away from zero. We call these iterates hyperbolic-like times.

In section 6 we combine Lemma 3.1, which is the main lemma for the proof of Theo-
rem B, with the Pliss Lemma to conclude that the set of points with infinitely many (and
even positive density of) hyperbolic-like times has positive Lebesgue measure. The con-
struction of the absolutely continuous invariant measure for the skew-product ϕ then
follows along well-known lines, as we explain in subsection 6.3.
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1 Statement of the results

1.1 Non-uniformly expandig skew-products

Let I0 be an interval and T1 the circle. We will consider C3 partially hyperbolic skew-
products defined on T1

× I0, which present an expanding behavior in the horizontal
direction and critical points in the vertical direction.
We call a C1 mapping ϕ : M → M partially hyperbolic endomorphism if there are
constants 0 < a < 1, C > 0 and a continuous decomposition of the tangent bundle
TM = Ec

⊕ Eu such that

(a) ||Dϕn
|Eu(z)|| > C−1a−n

(b) ||Dϕn
|Ec(z)|| < Can

||Dϕn
|Eu(z)||

for all z ∈ M and n ≥ 0. Observe that we do not ask in the definition that these
subbundles be invariant. The subbundle Ec is called central and the Eu is called unstable.
In our case, the mappings are precisely

ϕ : T1
× I0 → T1

× I0

(θ, x) → (g(θ), f (θ, x))

where g is an uniformly expanding smooth map on T1 and

fθ : I0 → I0

x → f (θ, x)

is a smooth map with critical points for every θ ∈ T1. The central subbundle is given by
the vertical direction and the unstable one by the horizontal. Notice that for the partial
hyperbolicity property in this skew product context we must have,∏n−1

i=0 |∂x f (ϕi(θ, x))|
|∂θgn(θ)|

≤ Can (1)

for all (θ, x) ∈ T1
× I0.

In the result of Alves, Bonatti and Viana (Theorem 2.7), the set S of singular points
of ϕ satisfies the non-degenerate singular set conditions. These conditions allow the
co-existence of critical points and points with |det Dϕ| = ∞. We will only admit critical
points.

We denote by C the set of critical points and by Cθ the set of critical points contained
in the θ-vertical leaf. By distvert we denote the distance induced by the Riemmanian
metric in the vertical leaf, i.e, if z = (θ, x) for some x, distvert(z,C ) = dist(z,Cθ). Let us
explain the conditions of the theorem.
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Let M = T1
× I0 and C ⊂M. We consider a C3 skew product map ϕ : M→M which

is a local C3 diffeomorphism in the whole manifold except in a critical set C such that,

(F1) p = sup #Cθ < ∞;

there exists B > 0 such that, for every z ∈M \ C , w ∈M with dist(z,w) < distvert(z,C )/2,

(F2)
∣∣∣log |∂x f (z)| − log |∂x f (w)|

∣∣∣ ≤ B
distvert(z,C )

dist(z,w).

and for all θ ∈ T1,

(F3) S f (θ, x) < 0, for x ∈ I0 where this quantity is defined.

When M = I0, if f satisfies the one dimensional definition of non-flatness and S f < 0,
then it automatically satisfies these conditions.

Remark 1.1.

1. Note that (F2) implies that for any z ∈M, dist(z,C ) ≥ distvert(z,C )
2 .

2. If Cθ = ∅ for some θ ∈ T1 then, as a consequence of (F2), Cθ = ∅ for every θ ∈ T1.
This case is covered by [ABV, Corollary D], but also follows from (a simple version
of) our arguments. For completeness we define dist(z, ∅) = 1.

In order to obtain the conclusions of the theorem of this section:

3. We may replace in the condition (F2), distvert by dist, if there was Ξ > 0 such that
dist(z,C ) ≥ Ξdistvert(z,C ) for all z ∈M.

4. In the condition (F2) we may put distvert(z,C )γ (with γ > 1) instead of distvert(z,C ),
if we had a better domination for ϕ, namely, if for all (θ, x) ∈ T1

× I0,∏n−1
i=0 |∂x f (ϕi(θ, x))|γ

|∂θgn(θ, x)|
≤ Can.

Let us state now our principal result

Theorem A. Assume that ϕ : T1
× I0 → T1

× I0 is a C3 partially hyperbolic skew product
satisfying (F1), (F2) and (F3). If ϕ is non-uniformly expanding, i.e, for Lebesgue almost every
z ∈ T1

× I0,

lim supn→∞
1
n

n−1∑
j=0

log ‖Dϕ(ϕ j(z))−1
‖ < 0 (2)

Then ϕ admits an absolutely continuous invariant measure.

For the proof of Theorem A, we will study the dynamics in the vertical foliation of
M and the result in this direction that we will use is Theorem B, which will be stated in
the next subsection. Actually, for the proof of Theorem A, we use Lemma 3.1, which is
also the main lemma in the proof of Theorem B.
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1.2 Sequences of smooth one dimensional maps

The general strategy that we will use to construct the absolutely continuous invariant
measure is to consider the push-forward of Lebesgue measure by the iterates of the
map. We define the Cesaro sums and take a weak limit.

In order to prove the absolute continuity it is fundamental to control the distortion.
In the setting defined by Theorem A, we will show that the distortion can be controlled,
if we bound the distortion along the vertical direction. When we focus on the dynamics
of the skew product restricted to the orbit of any vertical leaf, we can take as inspiration
the one dimensional dynamics methods.

Given f : I0 → I0 a smooth map and x ∈ I0, for every n ∈ N, let us consider Tn(x),
the maximal interval containing x where f n is a diffeomorphism; and rn(x), the length
of the smallest component of f n(Tn(x))\ f n(x). The Koebe Principle guarantee distortion
bounds in the orbit of a point x, if the respective rn(x) are not too small, whenever S f < 0
or we have bounds for the cross-ratio operator.

Of course, a lower bound on rn(x) is also a lower bound on f n(Tn(x)) so that, in this
case, the images of the monotonicity intervals are not too small.

In their proof of Keller’s theorem [MvS], de Melo and van Strien show that the hy-
potheses about the positiveness of the Lyapunov exponent implies a control of the rn(x):

lim sup
n→∞

1
n

log |D f n(x)| > 0

Lebesgue a.e. x
=⇒

lim sup
n→∞

1
n

n−1∑
i=0

ri(x) > 0

Lebesgue a.e. x

In order to prove Theorem A, we need an extension of this fact for C1 compact fam-
ilies of interval maps. For every n ∈N, the map f n will be replaced by the composition
of n smooth maps, possibly with critical points. The precise statement is given in Theo-
rem B below. In the setting of Theorem A, the result is applied to the restrictions of ϕ to
the orbits of the vertical leaves.

First we give some definitions and notations.

Let I0 be an interval. Let us consider a sequence { fk}k≥0 of C1 maps fk : I0 → I0. Every
map in the sequence has a set of critical points. Let us denote by Ck the set of critical
points of fk, for every k ≥ 0. Ck could be an empty set for any k ∈ N. We are interested
on the study of the dynamics given by the compositions of maps in the sequence. Thus,
we define for i ≥ 1 and x ∈ I0,

f i(x) = fi−1 ◦ . . . ◦ f1 ◦ f0(x)

and we denote f 0(x) = x for x ∈ I0.

Based on the definitions of Ti(x) and ri(x) on the case that there are just iterates of a
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function, we define for i ∈N, x ∈ I0,

Ti
(
{ fk}, x

)
:=Maximal interval contained in I0, containing x,

such that f j(Ti(x)) ∩ C j = ∅ for 0 ≤ j < i.

Li
(
{ fk}, x

)
,Ri

(
{ fk}, x

)
:= Connected components of Ti

(
{ fk}, x

)
\ {x}.

ri
(
{ fk}, x

)
:= min

{ ∣∣∣ f i (Li
(
{ fk}, x

))∣∣∣ , ∣∣∣ f i (Ri
(
{ fk}, x

))∣∣∣ } .
When it does not lead to confusion, we denote these functions by Ti(x), Li(x), Ri(x), ri(x).
In this subsection and in the proof of the results of this subsection, we will use this
simplified notation, since the sequence { fk} is fixed.

Our interest is to show that positive Lyapunov exponents (Lebesgue almost every
point) implies that the average of the ri is positive (Lebesgue almost every point).

We take a sequence { fk} satisfying the next condition: there exists λ > 0 such that

(P) lim inf
n→∞

1
n

log |D f n(x)| > 2λ

Lebesgue almost every x ∈ I0.
We ask some uniformity of the continuity and the boundedness of the sequence in

the C1 topology. Recall that a sequence { fk}k of C1 maps fk : I0 → I0 is said to be C1-
uniformly equicontinuous if, given ζ > 0, there exists ε > 0 such that

|x − y| < ε implies

 | fk(x) − fk(y)| < ζ

|D fk(x) −D fk(y)| < ζ
(3)

for all k ∈ N. Recall also that a sequence { fk}k of C1 maps fk : I0 → I0 is said to be
C1-uniformly bounded if there exists Γ > 0 such that for every x ∈ I0,

| fk(x)| , |D fk(x)| ≤ Γ (4)

for all k ∈N.
Our main result in this setting is the following.

Theorem B. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence
of smooth maps fk : I0 → I0 for which p = supk #Ck < ∞, and (P) holds for some λ > 0. Then,
there exists ς > 0 such that

lim inf
n→∞

1
n

n∑
i=1

ri(x) ≥ ς (5)

for Lebesgue almost every x ∈ I0.

Remark 1.2. We do not require that fk be multimodal, for any k ≥ 0; and we do not
make assumptions about the Schwarzian derivative of the maps in the sequence.

In a similar way we can prove the same statement but replacing lim inf by lim sup.
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Corollary I. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence of
smooth maps fk : I0 → I0 for which p = supk #Ck < ∞, and there exists λ > 0 such that

(P′) lim sup
n→∞

1
n

log |D f n(x)| > 2λ

for Lebesgue almost every x ∈ I0. Then, there exists ς > 0 such that

lim sup
n→∞

1
n

n∑
i=1

ri(x) ≥ ς

for Lebesgue almost every x ∈ I0.

In the case that the sequence { fk}k∈N is constant, i.e. fk = f , for all k ≥ 0, we also ob-
tain the following consequence dealing with absolutely continuous invariant measures
for unimodal maps. The statement has the same conclusions as the Keller’s theorem,
but we do not assume negative Schwarzian derivative. Instead, we just ask the non
existence of neutral periodic points.

Corollary II. Let f : I0 → I0 be a C3 multimodal map with non-flat critical point. Assume
that f does not have neutral periodic points. If there exists λ > 0 such that for Lebesgue almost
every point x ∈ I0,

(Q′) lim supn→+∞
1
n log |D f n(x)| > 2λ

Then there exists an absolutely continuous invariant measure.

From the method of proof of Theorem A we also obtain another extension of Keller’s
theorem. Here we do not assume the non-flatness of the critical points.

Corollary III. Let f : I0 → I0 be a C3 multimodal map with S f < 0. If there exists λ > 0 such
that for Lebesgue almost every point x ∈ I0,

(Q′) lim supn→+∞
1
n log |D f n(x)| > 2λ

Then there exists an absolutely continuous invariant measure.

2 Preliminaries

In the one dimensional dynamics there are many tools that allows the construction of
absolutely continuous invariant measures under varied hypotheses. In the first part
of this section we describe some of the most important. We also state the Keller’s
theorem, which guarantee the existence of absolutely continuous invariant measures
for unimodal maps with positive Lyapunov exponents assuming negative Schwarzian
derivative. In the second part, we state the theorem of [ABV] for maps with singularities
on manifolds of any dimension.
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2.1 One dimensional dynamics

Let f : I → I be a piecewise monotone endomorphism with a finite number of turning
points, i.e, points in the interior of I where f has a local extremum. Specifically, there
exist c1 < c2 < . . . < cs in the interior of I such that f is strictly monotone in each of the
s+ 1 intervals [a, c1), (c1, c2), . . . , (cs, b], where I = [a, b]. We say such a map is s-modal if f
has exactly s turning points and if f (∂I) ⊂ ∂I, when s is not specified we say the map is
multimodal. In particular, we say that f is unimodal if f has precisely one turning point.
We will always assume our maps are at least C1 and sometimes we will ask they to be
C2 or moreover C3, in these cases it will be specified.
When the multimodal map is C1 and ci ∈ I is one of its critical points, then D f (ci) = 0
and D f changes sign at this point. We say that this critical point ci is Cn non-flat of order
li > 1 if there exist φi a local Cn diffeomorphism with φi(ci) = 0, such that near ci, f can
be written as

f (x) = ±|φi(x)|li + f (ci).

The critical point is Cn non-flat if it is Cn non-flat of some order l > 1. In all that follows,
we will simply say that c is a non-flat critical point of a Cn multimodal map f if c is a Cn

non-flat critical point. For example if f is C∞ and some derivative at c is non-zero then
c is a non-flat critical point.
For unimodal maps with non-flat critical point of order l > 1, there exist L > 1 such that

|x − c|l−1

L
≤ |D f (x)| ≤ L|x − c|l−1

for x ∈ [−1, 1]. For multimodal maps with all critical points non-flat of the same order
l > 1, there exists L > 1 such that

|x − C |l−1

L
≤ |D f (x)| ≤ L|x − C |l−1

for x ∈ [−1, 1], where C denotes the set of critical points.
When the map f is C3 (or three times differentiable) we can define

S f (x) =
f ′′′(x)
f ′(x)

−
3
2

(
f ′′(x)
f ′(x)

)2

for x such that f ′(x) , 0. This quantity is called the Schwarzian derivative of f at the point
x. There are many results for one dimensional dynamics that are only known for those
maps which have negative Schwarzian derivative.

Remark 2.1. There is a condition (it does not need assume the function f be C3) which
is enough to show many results for unimodal maps that are proved using the negative
Schwarzian derivative condition; this condition is the convexity of the function |D f |−1/2
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on the connected components of I \ {c} (see for example [NS]).

By a simple calculation we can verify a rule for the Schwarzian derivative of the com-
position of functions,

S( f ◦ g)(x) = S f (g(x))(g′(x))2 + Sg(x)

when f , g : [−1, 1]→ [−1, 1] and the quantities above are well defined. In particular, this
implies that the negative Schwarzian derivative condition is inherited for the iterates of
a function with this condition, i.e, if S f < 0 then S( f n) < 0 for all n ∈N.
There is an operator, known as cross ratio operator, acting in subintervals of a fixed inter-
val which has connection with the Schwarzian derivative. Let J ⊂ T be open intervals
and L, R the connected components of T \ J, we define

b(T, J) =
|J||T|
|L||R|

and if f is monotone continuous, we define

B( f ,T, J) =
b( f (T), f (J))

b(T, J)
,

when f n : I→ I is monotone then

B( f n,T, J) =
n−1∏
i=0

B( f , f i(T), f i(J)).

In the case that f is C3 with non-flat critical points, there exists C > 0 such that if f n :
T→ f n(T) is monotone

B( f n,T, J) ≥ exp
(
−C

n−1∑
i=0

| f i(T)|2
)
.

We can characterize the functions with zero Schwarzian derivative in terms of this
operator: S f = 0 if and only if B( f ,T∗, J∗) = 1 for all J∗ ⊂ T∗ ⊂ T (where T is the domain
of f ). In fact, according to the sign of the Schwarzian derivative, the operator is less,
equal, or greater than 1. Specifically, it holds the next result which is the most important
property for maps with negative Schwarzian derivative.

Lemma 2.1. Let f be a C3 map with S f < 0 and M an interval such that f restricted to M is a
diffeomorphism. Then

B( f ,M, J) ≥ 1

for any J ⊂M.
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The fact that the operator B be greater than 1 is a great advantage to get control of
distortion for one dimensional maps, since in certain conditions, this property implies
bounded distortion. That is the content of the Koebe Principle.
If U ⊂ V are intervals, we say that V is an ε-scaled neighborhood of U if both components
of V \U have length ε|U|.

Proposition 2.1 (Koebe Principle). Let J ⊂ T be intervals and C0 ∈ (0, 1] a constant. Assume
h : T→ h(T) is a C1 diffeomorphism. Also assume that for any intervals J∗ ⊂ T∗ ⊂ T, we have

B(h,T∗, J∗) ≥ C0 > 0

If h(T) contains a τ-scaled neighborhood of h(J), then

1
K
≤
|Dh(x)|
|Dh(y)|

≤ K

for all x, y ∈ J, where K = (1 + τ)2/C6
0τ

2. In particular, K does neither depend on the intervals
J ⊂ T, nor on h.

Whenever h has negative Schwarzian derivative, to obtain bounded distortion in a
certain interval J, we just need to guarantee the existence of a bigger interval T (J ⊂ T)
such that, for some τ, h(T) contains a τ-scaled neighborhood of h(J), since by lemma 2.1
the condition about the operator B is satisfied with C0 = 1.

Having in mind the Koebe Principle, one necessary step to control the distortion,
when we do not assume negative Schwarzian derivative, is to bound the cross ratio
operator. In the case that all periodic points are repelling, the problem is solved by
the theorem that we now state. Recall that a periodic point p of period k is repelling
if |D f k(p)| > 1, attracting if |D f k(p)| < 1 and neutral if |D f k(p)| = 1. The proof of the
result follows from a theorem of Kozlovski [Ko, Theorem B] for the unimodal case,
and a theorem of van Strien & Vargas [SV, Theorem C] for the multimodal case. The
hypotheses of these theorems are less restrictive than ours.

Theorem 2.1. Let f : [−1, 1] → [−1, 1] be a C3 multimodal map with non-flat critical points.
Assume that the periodic points of f are repelling. Then, there exists C > 0 such that if I ⊂ M
are intervals, it holds

B( f n,M, I) ≥ exp(−C| f n(M)|2).

Remark 2.2. Whenever f has negative Schwarzian derivative and p is a neutral periodic
point, p must be an attractor (see for example [CE]). Hence, if S f < 0 and the Lyapunov
exponents are positive, the periodic points of f must be repelling.

The bounded distortion property is a fundamental condition in the proofs of exis-
tence of absolutely continuous invariant measures, no matter what is the setting. A
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measure µ defined on the Borel σ-algebra of I is called absolutely continuous if it is ab-
solutely continuous with respect to the Lebesgue measure on I, i.e, given any A ⊂ I
Borelian, if the Lebesgue measure of A is zero then µ(A) must be zero.

We are particularly interested on the existence of this kind of measures (absolutely
continuous invariant) in the setting that we have defined before. For unimodal maps
with non-flat critical point and with positive Lyapunov exponents, there is a well known
theorem of Keller about the existence of these measures, under the negative Schwarzian
derivative assumption (see [Ke]).

Theorem 2.2 (Keller). Let f : [−1, 1] → [−1, 1] be a C3 unimodal map with non-flat critical
point and S f < 0. If for Lebesgue almost every point x ∈ [−1, 1],

lim sup
n→+∞

1
n

log |D f n(x)| > 0, (6)

then there exists an absolutely continuous invariant measure.

As a consequence of one of our results, we will prove the same conclusion without
any assumption on the Schwarzian derivative. We already saw in Lemma 2.1 that this
assumption gives immediately the boundedness of the operator B. We will use a result
of Kozlovski to obtain boundedness of this operator for some applications induced (that
we will define after) by the map f , and using the Koebe lemma the bounded distortion
will follow.

One standard way to prove the existence of absolutely continuous invariant mea-
sures for f is to associate to it a Markov map and take advantage of the known fact of
the existence of this kind of measures for Markov maps.

Definition 2.1. We call a map F : I → I Markov if there exists a enumerable family of
disjoint open intervals {Ii}i∈N with Leb(I \ ∪Ii) = 0, such that

(M1). There exists K > 0 such that for every n ∈N and every J such that F j(J) is contained
in some Ii for j = 0, 1, . . . ,n, it holds

|DFn(x)|
|DFn(y)|

≤ K

for x, y ∈ J.

(M2). If F(Ik) ∩ I j , ∅ then I j ⊂ F(Ik).

(M3). There exists r > 0 such that |F(Ii)| ≥ r for all i.

And the result about existence of absolutely continuous invariant measures for Markov
maps is the following (see [MvS, Theorem V.2.2]):

12



Theorem 2.3. Let F : I → I be a Markov map and let ∪Ii be corresponding partition. Then
there exists an absolutely continuous F-invariant probability measure.

We say that F : ∪Ii ←↩ is induced by f : J → J, if ∪Ii is a partition (modulo a zero
Lebesgue measure set) of some interval I ⊂ J and F|Ii = f k(i)

|Ii
for all i ∈ N, where

k(i) ∈N.
Under certain conditions, the measure for the induced Markov map will define, in a
natural way, an absolutely continuous invariant measure for f .

Theorem 2.4. Let F : ∪Ii → I be a Markov map induced by f : J → J and let k(i) be such that
F|Ii = f k(i)

|Ii
. If ν is an absolutely continuous invariant probability of F and

∞∑
i=1

k(i)ν(Ii) < ∞,

then f has an absolutely continuous invariant probability defined by

µ =
∞∑

i=1

k(i)−1∑
j=0

f j
∗ νi ,

where νi denotes ν restricted to Ii, i.e, νi(A) = ν(A ∩ Ii).

One of the most important results proved first for maps with negative Schwarzian
derivative and extended later for maps with non-flat critical points is about the non
existence of wandering intervals. An interval J ⊂ I is called a wandering interval if:

1. the intervals J, f (J), . . . are pairwise disjoint;

2. the images f n(J) do not converge to a periodic attractor when n→∞.

Theorem 2.5 (de Melo, van Strien, Martens). If f : I→ I is a C2 map with non-flat critical
points then f has no wandering interval.

For the proof of this result see [SV, Corollary of the proof of Theorem A] or [MvS,
Theorem A, Chapter IV]. There are another facts about unimodal maps that can be
proved without any assumption in the Schwarzian derivative, assuming in general the
non-flatness of the critical point. We put some of them (those which are useful in the
construction of absolutely continuous invariant measures) together in one theorem. Re-
call that the Lebesgue measure is said to be ergodic for f : J → J, if for each X ⊂ J such
that f−1(X) = (X), X or {X have full Lebesgue measure.

Theorem 2.6. Let f : I → I be a C3 multimodal map with non-flat critical points and with
all the periodic points repelling (i.e, f does not have either attracting periodic points or neutral
periodic points). Then
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1. f does not have homtervals, i.e, open intervals J such that f n
/J is homeomorphism onto its

image, for all n ≥ 1.

2. The set of preimages of the critical set C is dense in I.

3. For Lebesgue almost every x ∈ I, ω(x) contains a critical point.

4. If f is unimodal, the critical point is approximated by periodic or preperiodic points.

5. There are finitely many forward invariant sets X1, . . . ,Xk such that ∪B(Xi) has full mea-
sure in I, and f|B(Xi) is ergodic with respect to the Lebesgue measure. Here, B(Xi) =
{y;ω(y) = Xi} is the basin of Xi. In the unimodal case, k = 1, which implies that f is
ergodic with respect to Lebesgue measure.

For items 1. to 4., one just need f to be C2. The proof of item 5. is contained in the
proof of Theorem E of [SV]. However, in the unimodal case, a simpler proof follows
combining Lemma 7.4 of [Ko] with canonical arguments, as the used for instance on the
proof of Theorem V.1.2 of [MvS].

2.2 Non uniformly expanding dynamics

We state the theorem of [ABV] about existence of absolutely continuous invariant mea-
sures for maps with singularities defined in manifolds of any dimension.

Let M be a compact manifold, S ⊂ M a compact subset and ϕ : M \ S → M a C2

map on M \ S. We say that S ⊂ M is a non-degenerate singular set for ϕ if the following
conditions hold. The first one essentially says that ϕ behaves like a power of the distance to
S: there are constants B > 1 and β > 0 such that for every x ∈M \ S

(S1)
1
B

dist(x,S)β ≤
‖Dϕ(x)v‖
‖v‖

≤ B dist(x,S)−β for all v ∈ TxM.

Moreover, we assume that the functions log |det Dϕ(x)| and log ‖Dϕ(x)−1
‖ are locally

Lipschitz at points x ∈M \ Swith Lipschitz constant depending on dist(x,S): for every
x, y ∈M \ S with dist(y, x) < dist(x,S)/2 we have

(S2)
∣∣∣log ‖Dϕ(x)−1

‖ − log ‖Dϕ(y)−1
‖

∣∣∣ ≤ B
dist(x,S)β

dist(x, y);

(S3)
∣∣∣log |det Dϕ(x)| − log |det Dϕ(y)|

∣∣∣ ≤ B
dist(x,S)β

dist(x, y).

In this setting, one property that must be controlled to get absolutely continuous invari-
ant measures, is the recurrence of the points of M to the singular set S. Given δ > 0 and
x ∈M \ S we define the δ-truncated distance from x to S by

distδ(x,S) =

1 if dist(x,S) ≥ δ

dist(x,S) otherwise
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Definition 2.2. A subset H ⊂M has slow recurrence to the singular set S if, given ε > 0
there exists δ > 0 such that

lim sup
n→∞

1
n

n−1∑
j=0

− log distδ(ϕ j(x),S) ≤ ε

for Lebesgue a.e. x ∈ H.

A probability measure µ on the Borel sets of M is said to be an SRB measure if there
exists a positive Lebesgue measure set of points z ∈M for which

lim
n→∞

1
n

n−1∑
j=0

h(ϕ j(z)) =
∫

h dµ

for any continuous function h : M → R. The set of points z ∈ M for which this holds is
called the basin of µ.

Theorem 2.7 ([ABV, Theorem C]). Let ϕ : M → M a C2 map and S a non-degenerate
singular set. Assume that ϕ is non-uniformly expanding, i.e, for Lebesgue almost every x ∈M

lim sup
n→∞

1
n

n−1∑
j=0

log ‖Dϕ(ϕ j(x))−1
‖
−1 < 0 (7)

and M has slow recurrence to the singular set. Then Lebesgue almost every point in M belongs
to the basin of some ergodic absolutely continuous invariant measure.

The proof of this theorem is based in a similar idea to the one used in one dimen-
sional dynamics when we construct induced maps from the original dynamics, i.e, to
found neighborhoods related to some iterate of ϕ in such a way that this iterate of the
map, restricted to the related neighborhood, has bounded distortion and the image of
this map has volume bounded away from zero. However, in this case one does not
construct a Markov map, the work consists in a detailed analysis of Cesaro averages of
ϕ j
∗ LebW j where W j are open sets chosen conveniently in the space. The choice of these

open sets is related to the notion of hyperbolic times.

Definition 2.3. Fix B > 1 and β > 0 as in the hypotheses (S1), (S2), (S3), and take b a
constant such that 0 < b < min{1/2, 1/(2β)}. Given σ < 1 and δ > 0, we say that n is a
(σ, δ)-hyperbolic time for a point x ∈M if,

n−1∏
j=n−k

‖Dϕ(ϕ j(x))−1
‖ < σk and distδ(ϕn−k(x),S) > σbk for all 1 ≤ k ≤ n

The following result (see [ABV, Lemma 5.2.]) gives the most important geometric
properties of hyperbolic times.
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Proposition 2.2. Given σ < 1 and δ > 0, there exists δ1 > 0 such that if n is a (σ, δ)-hyperbolic
time for a point x ∈M \ S, then there exists a neighborhood Vn(x) of x such that

1. ϕn maps Vn(x) diffeomorphically and with bounded distortion onto the ball of radius δ1

around ϕn(x)

2. for every 1 ≤ k ≤ n and y, z ∈ Vn(x)

dist(ϕn−k(y), ϕn−k(z)) ≤ σk/2 dist(ϕn(y), ϕn(z)).

3 Compositions of smooth one dimensional maps

3.1 Proof of Theorem B

We begin by introducing some sets useful for the proof of the theorem. Recalling the
definitions in subsection 1.2, for every n ∈N and δ > 0 we denote by,

An
(
{ fk}, δ

)
:=

{
x ∈ I0 ;

1
n

n∑
i=1

ri(x) < δ2, rn(x) > 0
}
, (8)

and given λ > 0, we define for n ∈N ,

Yn
(
{ fk}, λ

)
:=

{
x,

1
n

log |D f n(x))| > λ
}
. (9)

When it does not lead to confusion, we denote these sets by An(δ) and Yn(λ). In fact, we
will do it in all this section.

It is clear that (5) holds (with ς = δ2) for Lebesgue almost every x ∈ I0 if∩n≥N({An(δ)∩
Yn(λ)) converges to the Lebesgue measure of I0, when N → ∞. We claim that this in
effect, happens. Indeed, for every N ∈N, it holds(⋂

n≥N

Yn(λ)
)
∩{

(⋃
n≥N

An(δ) ∩ Yn(λ)
)
⊂

⋂
n≥N

{An(δ) ∩ Yn(λ).

Then | ∩n≥N {An(δ) ∩ Yn(λ)| ≥ | ∩n≥N Yn(λ)| − | ∪n≥N An(δ) ∩ Yn(λ)|. By (P), | ∩n≥N Yn(λ)|
converges to the Lebesgue measure of I0. Thus, to prove the claim we just need to prove
that | ∪n≥N An(δ)∩Yn(λ)| converges to zero. For this purpose we will state the following
result which is the main lemma for the proof of Theorem B.

Lemma 3.1. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence of
smooth maps fk : I0 → I0 for which p = supk #Ck < ∞. Then, given λ > 0, there exist δ > 0
such that

|An(δ) ∩ Yn(λ)| ≤ |I0| exp(−nλ/2) (10)
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for n big enough. Moreover, δ depends only on the modulus of continuity (3), the uniform bound
Γ in (4) and the uniform bound p for the number of critical points.

The proof of this lemma relies on bounding the number of connected components
of the set An(δ) whose intersection with Yn(λ) is non-empty. We do not know a way to
count directly the components of An(δ), for this reason we will define some sets related
to these components. The new sets seem easier to deal and to count than the compo-
nents of An(δ).

For δ > 0, ai ∈ {0, 1} for i = 1, 2, . . . ,n,

Cδ(a1, a2, . . . , an) :={x ∈ I0 ; ri(x) ≥ δ if ai = 1,

0 < ri(x) < δ if ai = 0}

Note that every connected component of Cδ(a1, . . . , as, as+1) is contained in a con-
nected component of Cδ(a1, . . . , as), and moreover, every connected component of Cδ(a1, . . . , as)
is a union of connected components (with its boundaries) of Cδ(a1, . . . , as, as+1). Also note
that for every I connected component of Cδ(a1, . . . , as), I ⊂ Ts(x) for all x ∈ I. Recall the
definition of Ti(x) in subsection 1.2.

Given x ∈ I0 and n ∈ N, if f i(x) < Ci for 0 ≤ i < n, we can associate to it a sequence
{ai(x)}ni=1, according to the last definition, in a natural way:

ai(x) =

0 if 0 < ri(x) < δ

1 if ri(x) ≥ δ

For this sequence the inequality (a1(x)+ . . .+an(x))δ ≤
∑n

i=1 ri(x) is satisfied. In partic-
ular, for every x ∈ An(δ), the associated sequence {ai(x)}ni=1 is such that a1(x)+ . . .+an(x) <
δn. Therefore, if we define

Cn(δ) :=
⋃

a1+...+an<δn

Cδ(a1, . . . , an),

we conclude that An(δ) ⊂ Cn(δ).

But in fact, we are interested on the connected components of An(δ) which inter-
sect the set Yn(λ). We will say that a connected component J of An(δ) is a connected
component of A′n(δ) if J ∩ Yn(λ) , ∅ and we will say that a connected component I of
Cδ(a1, a2, . . . , an) is a connected component of C′δ(a1, a2, . . . , an) if I ∩ Yn(λ) , ∅.

We can associate to every connected component of A′n(δ), a connected component
of C′δ(a1, a2, . . . , an), where a1 + a2 + . . . + an < δn: for J connected component of A′n(δ),
there exist a1, . . . , an (such that a1 + a2 + . . . + an < δn) and I connected component of
C′δ(a1, a2, . . . , an), for which J ∩ I , ∅. Indeed, we can consider ai = ai(x) (1 ≤ i ≤ n) for
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x ∈ J∩Yn(λ), and I the connected component of C′δ(a1, a2, . . . , an) which contains x. Thus,
we associate to J, the component I.

We would like to bound the number of connected components of A′n(δ) by the num-
ber of connected components of C′δ(a1, a2, . . . , an), varying a1, . . . , an such that a1 + a2 +

. . . + an < δn. That is not possible, since every connected component of C′δ(a1, a2, . . . , an)
(with a1 + a2 + . . . + an < δn) could intersect more than one connected component of
A′n(δ). By this reason we define the following set

A′′n (δ) :=
⋃

J′∈A′n(δ)

J′′,

where

J′′ := J′ ∪
⋃

a1+...+an<δn

{ connected components of Cδ(a1, . . . , an) which intersect J′∩Yn(λ)}

Obviously, a connected component of A′′n (δ) could contain more than one connected
component of A′n(δ). However, such as happens with the connected components of
A′n(δ), the restriction of f n to every connected component of A′′n (δ) is a diffeomorphism.
Using this fact, we will show in the proof of Lemma 3.1 that in order to obtain (10), it is
enough to estimate the number of connected components of A′′n (δ).

Since every component of A′′n (δ) intersect at least one component of C′δ(a1, . . . , an),
we conclude that

# A′′n (δ) ≤
∑

# C′δ(a1, . . . , an) (11)

where the sum is over all a1, . . . , an such that a1 + . . . + an < δn, and #X denotes the
number of connected components of X.

As we said, Lemma 3.1 will be a consequence of the following result, which gives
an estimate of the number of connected components of A′′n (δ) .

Lemma 3.2. There exists δ > 0 such that the number of connected components of A′′n (δ) is less
than exp(nλ/2).

For the proof of Lemma 3.2 we will use several results that we now state. First we
give some notations. Given ε > 0, for every k ≥ 0, we call VεCk a neighborhood of Ck

defined as the union of all B(x, ε) (ball centered in x of ratio ε) varying x ∈ Ck. In order to
simplify the notation we say f j(x) ∈ VεC if f j(x) ∈ VεC j for any j ∈ N. The next lemma
says that for points in Yn(λ), the frequence of visits to the neighborhood VεC can be
made arbitrarily small, if ε is chosen small enough.

Lemma 3.3. Given γ > 0, there exists ε > 0, such that for x ∈ Yn(λ),

1
n

n−1∑
j=0

χVεC
( f j(x)) < γ (12)
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Moreover, ε does not depend on n, it depends on λ, the modulus of continuity of { fk} and the
uniform bound of {D fk}.

Proof. Using the fact that the sequence { fk}k≥0 is C1-uniformly equicontinuous, we con-
clude that given ζ > 0, there exists ε = ε(ζ) such that

|x − Ck| < ε implies |D fk(x)| < ζ for all k ≥ 0 (13)

Thus, if f j(x) ∈ VεC then log |D f j( f j(x))| < log ζ. On the other hand, since { fk}k≥0 is
C1-uniformly bounded, |D fk(x)| ≤ Γ for all k ≥ 0 and x ∈ I0.

By the definition of Yn(λ),

λn <
n−1∑
j=0

log |D f j( f j(x))|.

Therefore, if we assume that (12) is false, we conclude that,

λn < γn log ζ + (1 − γ)n logΓ

However, the function log ζ→ −∞when ζ→ 0. Then for some ζ0 small enough,

λ ≥ γ log ζ0 + (1 − γ) logΓ,

since λ > 0. For the corresponding ε = ε(ζ0), (12) must be valid. Obviously, because of
the way that we found ε, it does not depend on n. �

Using the fact that ε does not depend on n, we easily can conclude the next result

Corollary 3.1. If for Lebesgue almost every x ∈ I0

lim inf
n→∞

1
n

log |D f n(x))| ≥ λ > 0

Then, given γ > 0, there exists ε > 0, such that

lim sup
n→∞

1
n

n−1∑
j=0

χVεC
( f j(x)) < γ

Lebesgue almost every x ∈M.

Let us denote for i, j ∈N, and x ∈ I0,

f j
i (x) = fi+ j−1 ◦ . . . fi+1 ◦ fi(x)

and f 0
0 (x) = x. Note that f j

0(x) = f j(x) for j ≥ 0 and x ∈ I0. Again by the C1-uniform
equicontinuity of the sequence { fk}, we have the following property.

19



Lemma 3.4. Given ε > 0 and l ∈N, there exists δ = δ(l) such that

|x − y| ≤ 2δ implies | f j
i (x) − f j

i (y)| < ε (14)

for 0 ≤ j ≤ l and for all i ≥ 0. Moreover, δ just depends (on l and) on the modulus of continuity
of { fk}.

Remark 3.1. When l → ∞ then δ(l) → 0. Observe that we also have: given ε > 0 and
δ > 0, there exists l = l(δ) ∈N such that (14) holds for 0 ≤ j ≤ l.

In order to count the components whose intersection with Yn(λ) is non-empty, let us
decompose this set in a convenient way. Given ε > 0, m ≤ n, {t1, . . . , tm} ⊂ {0, 1, . . . ,n−1},
we define

Yn,ε(t1, . . . , tm) = {z ∈ Yn(λ); f j(x) ∈ VεC ⇐⇒ j ∈ {t1, . . . , tm}}

By Lemma 3.3 we conclude that given γ > 0, there exists ε > 0 such that

Yn(λ) = ∪γn
m=0 ∪t1,...,tm Yn,ε(t1, . . . , tm) (15)

where the second union is over all subsets {t1, . . . , tm} of {0, 1, . . . ,n − 1}. This together
with (11) yields,

#A′′n (δ) ≤
∑

a1,...,an

∑
t1,...,tm

#{I ⊂ Cδ(a1, . . . , an); I ∩ Yn,ε(t1, . . . , tm) , ∅} (16)

where the first sum is over all a1, . . . , an such that a1 + . . . + an < δn and the second sum
is over all subsets {t1, . . . , tm} of {0, 1, . . . ,n − 1}with m < γn.

Proof of Lemma 3.2. To prove the lemma we just need to bound the double sum in (16).
For this we will show some claims related to the number of connected components of
the sets Cδ(a1, . . . , an). Recall that p is the maximum number of elements in any Ck (for
k ≥ 0). Given I ⊂ I0 and s ∈N, we say f s(I) ∩ C = ∅(, ∅) if f s(I) ∩ Cs = ∅(, ∅).

Claim 3.1. For any a1, a2, . . . , as with a j ∈ {0, 1} for all j,

#Cδ(a1, . . . , as, 0) + #Cδ(a1, . . . , as, 1) ≤ 3(p + 1)#Cδ(a1, . . . , as)

Claim 3.2. Let s,n ∈ N and J be a component of Cδ(a1, . . . , as, 0). If f s+i(J) ∩ C = ∅ for
1 ≤ i ≤ n, then

#{I ⊆ Cδ(a1, . . . , as, 0i+1), I ⊆ J} ≤ i + 1.

for 1 ≤ i ≤ n, where 0i+1 means that the last i + 1 terms are equal to 0.

The next claim bounds the number of components whose intersection with
Yn,ε(t1, . . . , tm) is non empty.
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Claim 3.3. Let l ∈N and ε > 0 be constants and let δ = δ(l) be the number given by Lemma 3.4.
For any a1, . . . , as with a j ∈ {0, 1}, {t1, . . . , tm} ⊂ {0, 1, . . . ,n−1}, if {s+1, . . . , s+i}∩{t1, . . . , tm} =

∅ and i ≤ l, then

#{I ⊆ Cδ(a1, . . . , as, 0i+1), I ∩ Yn,ε(t1, . . . , tm) , ∅}

≤ (i + 1)#{I ⊆ Cδ(a1, . . . , as, 0), I ∩ Yn,ε(t1, . . . , tm) , ∅}.

Assuming the claims, we will prove the lemma. We have basically four constants,
namely, δ, γ, ε, l. It is very important the order in what they are chosen. First, we choose
l ∈ N according to the equation (21), then we choose γ > 0 according to (22). Next, we
find ε > 0, using Lemma 3.3, in such a way that (15) holds. Finally, given ε and l, let
δ > 0 be the constant given by Lemma 3.4 and satisfying (23). In all that follows we
consider n big enough.

First, given m < n, a1, . . . , an with ai ∈ {0, 1} and {t1, . . . , tm} ⊂ {0, . . . ,n − 1}, we will
count the components of Cδ(a1, . . . , an) whose intersection with Yn,ε(t1, . . . , tm) is non-
empty. We can decompose the sequence a1 . . . an in maximal blocks of 0’s and 1’s; we
will write the symbol ξ in the j-th position if a j = 1 or, a j = 0 and j = tk for some
k ∈ {1, . . . ,m}. In this way we have,

a1a2 . . . an = ξ
i1 0 j1ξi2 0 j2 . . . ξih 0 jh (17)

with 0 ≤ ik, jk ≤ n for k = 1, . . . , h,
∑h

k=1(ik + jk) = n and
∑h

k=1 ik < m + δn.

Lets us assume that a1, . . . , an are as in (17). Let l, ε and δ be as in Lemma 3.4. Using
claims 3.1 and 3.3 we have,

#{I ⊂Cδ(a0, . . . , an), I ∩ Yn,ε(t1, . . . , tm) , ∅} ≤

≤ (3(p + 1)(l + 1)
jh
l +1(3(p + 1))ih ) . . . (3(p + 1)(l + 1)

j1
l +1(3(p + 1))i1 )

≤ (3(p + 1))
∑h

k=1 ik (3(p + 1))h(l + 1)
∑h

k=1 jk
l +h

≤ (3(p + 1))m+δn+h(l + 1)
n
l +h.

Let us remark some properties about the decomposition (17):

• If m < γn then, since a1 + a2 + . . . + an < δn, we have that
∑h

k=1 ik < γn + δn,

• If a1 + a2 + . . . + an < δn and m < γn, the number of blocks ζit 0 jt is bounded by the
sum of these quantities, i.e, h < (δ + γ)n + 1.

Therefore, if a1 + a2 + . . . + an < δn and m < γn we conclude from the inequality above
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that for n big enough,

#{I ⊂ Cδ(a1, . . . , an), I ∩ Yn,ε(t1, . . . , tm) , ∅}

≤ (3(p + 1))γn+δn(3(p + 1))2(δ+γ)n(l + 1)
n
l +2(δ+γ)n

≤ exp(n ψ0(l, γ, δ))

(18)

where ψ0(l, γ, δ) = 3(δ + γ) log(3(p + 1)) + 2(δ + γ + 1
l ) log(2l).

On the other hand, by the Stirling’s formula, the number of subsets of {0, 1, . . . ,n−1}
of size less than γn is bounded by exp(n(ψ1(γ))) and ψ1(γ)→ 0 when γ→ 0. Therefore,
from this fact and (18), we conclude∑

t1,...,tm

#{I ⊂ Cδ(a1, . . . , an); I ∩ Yn,ε(t1, . . . , tm) , ∅} ≤ exp(n ψ2(l, γ, δ)) (19)

where the sum is over all {t1, . . . , tm} subset of {0, 1, . . . ,n−1}with m < γn, andψ2(l, γ, δ) =
ψ0(l, γ, δ) + ψ1(γ).

Once again, using the Stirling’s formula we can conclude that the number of se-
quences a1, a2, . . . , an of 0’s and 1’s such that a1 + a2 + . . . + an < δn is less or equal than
exp(nψ3(δ)) with ψ3(δ) → 0 when δ → 0. Hence, by (16) and (19), we have that when-
ever γ, ε satisfy (15),

#A′′n (δ) ≤ exp(n ψ4(l, γ, δ))

where

ψ4(l, γ, δ) = 3(δ + γ) log(3(p + 1)) + 2(δ + γ +
1
l

) log(2l) + ψ1(γ) + ψ3(δ) (20)

Then we have to choose l such that

2
l

log(2l) <
λ
14

(21)

Next, let γ > 0 be such that

2γ log(2l) <
λ
14

3γ log(3(p + 1)) <
λ
14

ψ1(γ) <
λ
14


(22)

Next, we find ε > 0, using Lemma 3.3. Finally, given ε and l, let δ > 0 be the constant
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given by Lemma 3.4 and satisfying

2δ log(2l) <
λ
14

3δ log(3(p + 1)) <
λ
14

ψ3(δ) <
λ
14


(23)

With this choice, ψ4(l, γ, δ) ≤ λ
2 . Hence Lemma 3.2 is proved, assuming the three

claims.

It just remains to prove the claims.

Proof of Claim 3.1. Let I be a connected component of Cδ(a1, . . . , as).

I′

I′′

I0
f s+1(I0)

f s(I)
f s+1(I)

{gs(θ)} {gs+1(θ)}{θ}

I ⊂ Cδ(a1, . . . , as)

≥ δ

≥ δ

Figure 1: Forbidden situation in case that f s(I) ∩ S = ∅: I′, I′′ ⊂ Cδ(a1, . . . , as, 1) and
I0 ∈ Cδ(a1, . . . , as, 0)

Case 1. f s(I) ∩ C = ∅. In this case, I is divided at most in 3 connected components
of Cδ(a1, . . . , as, 0) ∪ Cδ(a1, . . . , as, 1). Indeed, since I ⊂ Ts+1(x) for every x ∈ I, if I′ ⊂ I is a
component of Cδ(a1, . . . , as, 0), it can not exist one component of Cδ(a1, . . . , as, 1) at each
side of I′. Hence, the following situations can happen:

i) There are two components of Cδ(a1, . . . , as, 0) in I, each of them has one extreme of
I, and in the middle there is a component of Cδ(a1, . . . , as, 1).

ii) There is exactly one component of Cδ(a1, . . . , as, 0) in I. In this case there is one or
none component of Cδ(a1, . . . , as, 1) in I.

iii) There are no components of Cδ(a1, . . . , as, 0) in I. In this case I is a component of
Cδ(a1, . . . , as, 1) in I.
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I′

I′

I′

I

Figure 2: Possible cases when f s(I) ∩ S = ∅: I′ ⊂ Cδ(a1, . . . , as, 1)

Case 2. f s(I) ∩ C , ∅. First I is divided at most in p + 1 components, each one with
at least one boundary which by f s goes to C . After that, following the same arguments
used in case 1, we conclude that each one of these components is divided at most in
3 components. Hence, I is divided in at most 3(p + 1) components of Cδ(a1, . . . , as, 0) ∪
Cδ(a1, . . . , as, 1). �

Proof of Claim 3.2. We will prove it by induction on i. For i = 1, it follows by the proof of
claim 3.1. Let us assume that the statement is true for j ≤ i − 1. Let I1, . . . , It be the com-
ponents of Cδ(a1, . . . , as, 0(i−1)+1) contained in I. By the induction hypothesis t ≤ i and the
assumption is that f i(I) ∩ C = ∅. We claim that there exist at most one k ∈ {1, . . . , t} such
that Ik is divided in two components of Cδ(a1, . . . , as, 0i+1) (the others Ik’s generate one
or none component of Cδ(a1, . . . , as, 0i+1)). Indeed, if Ik1 and Ik2 are divided in two com-
ponents of Cδ(a1, . . . , as, 0i+1), let I+k1

and I−k1
be the components of Cδ(a1, . . . , as, 0i+1) and

Jk1 the component of Cδ(a1, . . . , as, 0i, 1) contained on Ik1 . Analogously, let I+k2
, I−k2

, Jk2 be
the corresponding for Ik2 . Two of the I∗k j

( j ∈ {1, 2}, ∗ ∈ {+,−}) are between Jk1 and Jk2 , but
that is a contradiction because for x ∈ I∗k j

, rs+i+1(x) < δ, and for x ∈ Jk1 ∪ Jk2 , rs+i+1(x) ≥ δ.
Hence, there are at most i + 1 components of Cδ(a1, . . . , as, 0i+1) contained in J. �

Proof of Claim 3.3. Let I be a connected component of Cδ(a1, . . . , as, 0). Then we have
| f s+1(I)| ≤ 2δ, and by Lemma 3.4, | f s+i(I)| < ε for i ≤ l + 1. If f s+ j(I) ∩ C , ∅ for some
j ≤ i, then for all x ∈ I, f s+ j(x) ∈ VεC . Since {s + 1, . . . , s + i} ∩ {t1, . . . , tm} = ∅, then
I ∩ Yn,ε(t1, . . . , tm) = ∅.

Hence, if I∩Yn,ε(t1, . . . , tm) , ∅ and {s+1, . . . , s+ i}∩{t1, . . . , tl} = ∅, then f s+ j(I)∩C = ∅

for all 1 ≤ j ≤ i. Therefore, using the claim 3.2, we conclude this claim. �

This finishes the proof of Lemma 3.2. �

Now we will prove that Lemma 3.1 follows as a consequence of Lemma 3.2.
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Proof of Lemma 3.1. Note that if J′′ is a connected component of A′′n (δ) then f n restricted
to J′′ is a diffeomorphism onto its image. The set Yn(λ) is an open in I0 and then Yn(λ)∩ J
is an open set, for every J connected component of A′n(δ). Therefore, there exist at most
countably many components {Ik}k∈N of Yn(λ) ∩ A′n(δ) on J′′,

|Ik| < (exp(−nλ))| f n(Ik)|,

for all k ∈ N, since for every x ∈ Ik, |D f n(x)| > exp(λn). Adding these inequalities
(k ∈N),

| ∪k Ik| < (exp(−nλ))
∑

k

| f n(Ik)| ≤ (exp(−nλ))| f n(J′′)|.

Then, since | f n(J′′)| is bounded by |I0|,

|(An(δ) ∩ J′′) ∩ Yn(λ)| < |I0| exp(−nλ)

for every connected component J′′ of A′′n (δ). To finish the proof of this lemma is enough
to use the estimate of the number of components of A′′n (δ) given by Lemma 3.2.

On the other hand, observe that the choice of δ is given fundamentally by Lemmas
3.3 and 3.4. Namely, δ depends on: the constant λ in the definition of Yn(λ); the uni-
formity of ε (given ζ > 0) on the equation (13); the uniform boundedness of |D fk| on
the proof of Lemma 3.3; the uniformity of δ (given ε and l) on the equation (14); and
the uniform boundedness of the number of critical points for fk, where k ≥ 0. So, δ
depends only on the modulus of continuity (3), the uniform bound Γ in (4) and the uni-
form bound p for the cardinal of the set of critical points, as stated. This concludes the
proof of the lemma. �

Remark 3.2. Note that in the proof of Lemma 3.1 (that means, also in all the auxiliaries
lemmas used in its proof) no hypotheses about the Lebesgue measure of Yn(λ) was
used. All the lemmas are true no matter what is the measure of Yn(λ).

As we remarked at the beginning of this section, Lemma 3.1 clearly implies that⋃
N∈N

⋂
n≥N

{An(δ) ∩ Yn(λ)

has full Lebesgue measure. Hence, (5) holds for ς = δ2, where δ is the constant found
on Lemma 3.1. This concludes the proof of Theorem B. �
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4 Some consequences of Theorem B

4.1 Proof of Corollary I

By (P′), for any n ∈N, ∪k≥nYn(λ) has total Lebesgue measure in I0. Thus, for any n ∈N,

∣∣∣∣⋂
k≥n

Ak(δ) ∪ {Yk(λ)
∣∣∣∣ = ∣∣∣∣(⋂

k≥n

Ak(δ) ∪ {(Yk(λ))
)
∩

⋃
k≥n

Yk(λ)
∣∣∣∣ ≤ ∞∑

k=n

|Ak(δ) ∩ Yk(λ)|

and by Lemma 3.1, for any ε > 0, this last sum is less than ε if n ≥ N(ε). This implies
that | ∪n≥N(ε) ∩

∞

k=nAk(δ)∪{Yk(λ)| < ε, and thus | ∩n≥N(ε) ∪
∞

k=n{Ak(δ)∩Yk(δ)| ≥ |I0| − ε. This
means that {

x; lim sup
n→∞

1
n

n∑
i=1

ri(x) ≥ δ2
}

has Lebesgue measure |I0| −ε. Since that can be done for any ε > 0, the corollary follows
with ς = δ2. �

4.2 Proof of Corollaries II and III

The proof that we will give is similar to the proof by de Melo and van Strien [MvS,
Theorem V.3.2] for Keller’s theorem. The proofs of both corollaries are basically the
same, it changes in some points which will be highlighted during the proof. We will
construct a Markov map F induced by f and we will prove that the invariant measure
for F induces an invariant measure for f which also is absolutely continuous. To obtain
bounded distortion for the induced maps we will make use of the Koebe Principle. For
Corollary II, we will also need Theorem 2.1.

Proof of Corollaries II and III. By Corollary I, in the particular case in which the sequence
{ fn}n≥0 has just one function f , implies that

X =
{
x ∈ I0; lim sup

n→+∞

1
n

n∑
i=1

ri(x) ≥ ς
}

has full Lebesgue measure for some ς > 0.

Let us consider P a finite partition of I0, with norm less than ς/4 and such that the
extremes of the elements of the partition are a forward invariant set. In the hypotheses
of Corollary II, the existence of this partition follows from Theorem 2.6, item 4. and
Lemma A.2 of the appendix. In the case of Corollary III, see Theorem A.2 in the ap-
pendix.

Let ς′ be the minimum of the sizes of the elements of P. For every x ∈ I0, we
will denote by J(x) the element of the partition that contains x. And for every J ∈ P,
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let us denote by J− (respectively, J+) the rightmost interval of the partition next to J
(respectively, the leftmost interval of the partition next to J).

In the hypotheses of Corollary II, by Theorem 2.6, item 2, we can choose N ∈ N
such that the intervals of monotonicity of f n have size less than ς′/4, for n ≥ N. In the
hypotheses of Corollary III, the same is obtained by Lemma A.1 of the appendix.

For every x ∈ X, there are infinitely many k′s such that rk(x) > ς/2. Let k(x) ≥ N be
minimal such that

f k(x)(Tk(x)(x)) ⊃ J( f k(x)(x)) ∪ J( f k(x)(x))+ ∪ J( f k(x)(x))−, (24)

and consider I(x) ⊂ Tk(x)(x) such that

f k(x)(I(x)) = J( f k(x)(x)).

Obviously, for every y ∈ I(x), k(y) ≤ k(x); and it is not difficult to see, using the forward
invariance of the set of extremes of P, that in fact, k(y) = k(x) and I(y) = I(x). Hence, we
can define

F : ∪x∈XI(x)→ ∪J∈P J

by F|I(x) = f k(x)
|I(x). We claim that this map is Markov (recall Definition 2.1). Indeed, (M3)

is satisfied because |F(I(x))| = |J(F(x))| ≥ ς′. Since I(x) does not contain extremes of P
in its interior, I(x) is completely contained on some element of P. Thus, for any J ∈ P,
there exists AJ ⊂ X such that J = ∪x∈AJ I(x). This implies that (M2) holds.
By (24), f k(x)(Tk(x)(x)) contains a neighborhood τ-scaled of f k(x)(I(x)), where τ = 4ς′/ς.
On the other hand, by theorem 2.1, B( f k(x),T,M) ≥ K′ for any M ⊂ T ⊂ Tk(x). Hence, by
the Koebe Principle (Proposition 2.1)

1
K
≤
|DF(x)|
|DF(y)|

≤ K

for x, y ∈ I(x). To show this inequality for the iterates of F, given x ∈ X and s ∈ N; let
m(s, x) ∈ N be such that Fs(x) = f m(s,x)(x) and Is(x) domain of Fs containing x. By the
choice of N and since m(s, x) ≥ N, Tm(s,x)(x) is contained in at most two elements of P.
Using this and (24) we can prove inductively that for x ∈ X and s ≥ 1 ,

f m(s,x)(Tm(s,x)(x)) ⊃ J( f m(s,x)(x)) ∪ J( f m(s,x)(x))+ ∪ J( f m(s,x)(x))−,

and thus f m(s,x)(Tm(s,x)(x)) contains a neighborhood τ-scaled of f m(s,x)(Is(x)) (with τ =

4ς′/ς). Again by Theorem 2.1, we have B( f m(s,x), , ) ≥ K′ and this implies the bounded
distortion for the iterates of F, that is (M1) holds. Hence, F is a Markov map like we
claimed. By Theorem 2.3, there exists ν absolutely continuous invariant measure for F.
In this setting the measure ν has at most finitely many ergodic components, then we can
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assume the measure itself is ergodic. According to Theorem 2.4, this measure induces
an absolutely continuous invariant measure for f if,

∞∑
i=1

k(i)ν(Ii) < ∞,

We will see that the last inequality is valid. Assume by contradiction that
∑
∞

i=1 k(i)ν(Ii) =
∞. By the Birkhoff’s Ergodic Theorem,

ns(x)
s
=

k(x) + k(F(x)) + . . . + k(Fs(x))
s

→

∫
k(x)dν(x) =

∞∑
i=1

k(i)ν(Ii) = ∞

for ν almost every point x. For every x ∈ X and i ∈ N, if ni(x) ≤ n < ni+1(x) and
rn(x) > ς/2, then n − ni(x) < N, since in this case, f n(Tn(x)) covers one element of the
partition and its two neighbours. Thus we have for ns(x) ≤ n < ns+1(x),

#{1 ≤ i ≤ n , ri(x) > ς/2}
n

≤
N(s + 2)

ns(x)

and then for ns(x) ≤ n < ns+1(x),

1
n

n∑
i=1

ri(x) =
1
n

∑
i,ri(x)>ς/2

ri(x) +
1
n

∑
i,ri(x)≤ς/2

ri(x) <
N(s + 2)

ns(x)
|I0| + ς/2

which implies that lim supn→∞ 1/n
∑n

i=1 ri(x) < ς. Since it holds ν-a.e. x, it contradicts
that X had full Lebesgue measure. Hence there exists µ absolutely continuous invariant
measure for f . �

5 Hyperbolic-like times

This section does not depend either on the results of Theorem B or on Lemma 3.1. Our
interest is to study the behavior of points in M such that rk ≥ σ, in order to do it, we
need to adapt some notations from the subsection 1.2 to the setting defined by Theorem
A.

First of all, for the skew-product ϕ, note that since ϕi(θ, y) = (gi(θ), f i
θ(y)) (for θ ∈

T1, y ∈ I0, i ∈ N), the dynamics of ϕ restricted to the vertical leaf θ × I0 is described by
the dynamics of the compositions of fθ, fg(θ), . . . , fgk(θ), . . ..

For every θ ∈ T1, let us denote by Ti(θ, x) the function Ti
(
{ fn}, x

)
defined on subsec-

tion 1.2, considering the sequence { fn}n≥0 given by fn = fgn(θ) for all n ≥ 0. We proceed
analogously with Li(θ, x), Ri(θ, x), ri(θ, x).
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For every z = (θ, x) ∈ T1
× I0 and every i ∈N, we define

Ti(z) := {θ} × Ti(θ, x)

Li(z), Ri(z) := {θ} × Li(θ, x), {θ} × Ri(θ, x)

ri(z) := ri(θ, x).

We want to show that mixing the good behavior along the vertical direction (rk ≥

σ) with the behavior along the horizontal direction (see subsection 5.1), this last due
to the partial hyperbolicity, we obtain neighborhoods which can be used to construct
absolutely continuous invariant measures, i.e, neighborhoods as in Proposition 5.3. In
all the results we assume that we are in the conditions of Theorem A.

5.1 Horizontal behavior of dominated skew-products

One important property of our mappings due to the domination condition is the preser-
vation of the nearly horizontal curves. This means that the iterates of nearly horizontal
curves are still nearly horizontal. We state it in a precise way.

Definition 5.1. We call X̂ ⊂ T1
× I0 an α−curve if there exists J ⊂ T1 and X : J → I0 such

that X̂ = graph(X) and

1. X is C1

2. |X′(θ)| ≤ α for every θ ∈ J.

There exists an analogous definition of Viana (see [V1], section 2.1), but he asks that
the second derivative be also less than α and he calls the curves with these properties
admissible curves. In his setting he proves that the admissible curves are preserved under
iteration. In our setting, that is only true when the iterate is big enough. Specifically,
the image by ϕn of an α-curve defined in a small interval is still an α-curve, for some α
and for n big enough.

Proposition 5.1. There exist α > 0 and n0 ∈ N such that, if X̂ is a α-curve and ϕn(X̂) is the
graph of a C1 map, then ϕn(X̂) is a α-curve, provided that n ≥ n0.

Proof. Let X̂ = {(θ,X(θ));θ ∈ J} be a C1 curve with |X′(θ)| ≤ α for every θ ∈ J. Let us
define inductively for n ≥ 1,

Xn(gn(θ)) = f (gn−1(θ),Xn−1(gn−1(θ))) (25)

where X0 = X. Then it holds for n ≥ 1

ϕn(X̂) := X̂n = {(gn(θ),Xn(gn(θ)));θ ∈ J}
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By the definition above we can prove inductively that for n ≥ 1,

ϕn(θ,X(θ)) = (gn(θ),Xn(gn(θ))).

Using this relation and (25), we can show (also inductively) that the next equality is
satisfied for n ≥ 1,

X′n(gn(θ))∂θgn(θ) = ∂θ f (ϕn−1(θ,X(θ)))∂θgn−1(θ)+
n−1∑
k=1

k∏
i=1

∂x f (ϕn−i(θ,X(θ)))∂θ f (ϕn−(k+1)(θ,X(θ)))∂θgn−(k+1)(θ)

+

n∏
i=1

∂x f (ϕn−i(θ,X(θ)))X′(θ)

Then,

|X′n(gn(θ))| ≤
|∂θ f (ϕn−1(θ,X(θ)))∂θgn−1(θ)|
|∂θg(gn−1(θ))∂θgn−1(θ)|

+

n−1∑
k=1

|
∏k

i=1 ∂x f (ϕn−i(θ,X(θ)))∂θ f (ϕn−(k+1)(θ,X(θ)))∂θgn−(k+1)(θ)|
|∂θgk(gn−k(θ))∂θg(gn−(k+1)(θ))∂θgn−(k+1)(θ)|

+
|
∏n

i=1 ∂x f (ϕn−i(θ,X(θ)))|
|∂θgn(θ)|

|X′(θ)|

Now, by (1), considering L = sup(∂θ f/∂θg), we have that

|X′n(gn(θ))| ≤ L +
n−1∑
k=1

LC(a)k + Canα ≤ LCA + Canα (26)

where A =
∑
∞

k=0 ak. Hence for some α and n0 big enough, |X′n(gn(θ))| ≤ α for all n ≥
n0. �

Let α,L,C,A be as in the proposition above. If we start with X̂ = {(θ,X(θ));θ ∈ J} a
C1 curve with |X′(θ)| ≤ α for every θ ∈ J, then there exists α′ := LCA+Cα, such that, for
every n ∈N, ϕn(X̂) = {(θ,Xn(θ));θ ∈ Jn} is a curve with |X′n| ≤ α′.

Remark 5.1. Given α of the last proposition, there exists C1 = C1(L,C,A, α) such that if
X̂ is an α-curve, then ϕn(X̂) is an C1α-curve, for all n, provided that ϕn(X̂) is a graph.

Since all the iterates of α-curves are almost horizontal (its graphs have derivatives
bounded by C1α) then their lengths are given basically by the derivative of ϕ in the
horizontal direction, i.e, the derivative of g. We state this in the following result.
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Proposition 5.2. There exists K = K(α) > 0, such that if X̂ = {(θ,X(θ));θ ∈ J} and ϕk(X̂) =
{(θ,Xk(θ));θ ∈ Jk} are graphs with |X′|, |X′k| ≤ C1α, then for all z,w ∈ ϕk(X̂),

distX̂(ϕ−k(z), ϕ−k(w)) ≤ K|∂θ(gk(θk)|−1 distϕk(X̂)(z,w)

for some θk ∈ J, where distC is the distance induced by the metric over the curve C.

Proof. Let us consider the norm in the tangent space given by the canonic internal prod-
uct in a product manifold, i.e,

||(v1, v2)|| = (|v1|
2 + |v2|

2)
1
2

where v = (v1, v2) ∈ Tz(T1
× I0), v1 ∈ TθT1, v2 ∈ TxI0 and z = (θ, x).

We will denote the tangent vector to the curve X̂ at the point (θ,X(θ)) by (v1(θ), v2(θ)).
Let us consider θz, θw ∈ J such that ϕk(θz,X(θz)) = z and analogously for w. Then, since
|v2(θ)|/|v1(θ)| ≤ C1α,

distϕk(X̂)(z,w) =
∫ θw

θz

||Dϕk(θ,X(θ))(v1(θ), v2(θ))||dθ

≥

∫ θw

θz

|∂θgk(θ)||v1(θ)|dθ

≥
1

(1 + (C1α)2)
1
2

∫ θw

θz

|∂θgk(θ)|(|v1(θ)|2 + |v2(θ)|2)
1
2 dθ

≥
1

(1 + (C1α)2)
1
2

|∂θgk(θk)|distX̂(ϕ−k(z), ϕ−k(w))

where θk is such that |∂θgk(θk)| ≤ |∂θgk(θ)| for θ ∈ [θz, θw]. This means that we may take
K = (1 + (C1α)2)

1
2 . �

5.2 Properties of the hyperbolic-like times

In this section we will prove a similar behavior of points with rk ≥ σ (for some σ > 0) and
points with k being one of its (σ′, δ)-hyperbolic times (see definition 2.3). Specifically, if
z is a point of the manifold and k ∈N is such that rk(z) ≥ σ, there exists a neighborhood
Vk(z) of z such that ϕk : Vk(z)→ ϕk(Vk(z)) is a diffeomorphism with bounded distortion
(independent of k and z). Moreover, the Lebesgue measure of ϕk(Vk(z)) is uniformly
bounded away from zero. This fact can be concluded if z is a point with k like hyperbolic
time (see proposition 2.2). Because of this, if rk(z) ≥ σ, we say k is a σ-hyperbolic-like time
for z ∈M. One of the differences between these two conditions is that for the hyperbolic
times, we have contraction for all the inverse iterates in a certain neighborhood of ϕk(z)
and in the case of hyperbolic-like times we do not know if this property is verified.

We need to assume, to prove the bounded distortion of these neighborhoods asso-
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ciated with the hyperbolic-like times, that the functions fθ in the definition of ϕ have
negative Schwarzian derivative, for all θ ∈ T1.

Proposition 5.3. Let σ > 0 be a constant. Given z ∈ M such that rk(z) ≥ σ for some k ∈ N,
there exists a neighborhood Vk(z) of z such that ϕk : Vk(z) → ϕk(Vk(z)) is a diffeomorphism
with bounded distortion (it depends on σ, but it is independent of z and of k).

Proof. Let Tk(z) be the maximal interval such that ϕ j(Tk(z))∩C = ∅ for j < k and let Lk(z),
Rk(z) be the components of Tk(z) \ {z}. By hypotheses |ϕk(Lk(z))| ≥ σ and |ϕk(Lk(z))| ≥
σ. Let us consider Ik(z) ⊂ Tk(z) such that every component of ϕk(Tk(z)) \ ϕk(Ik(z)) has
Lebesgue measure equal to σ/2. In particular, we have that both components ofϕk(Ik(z)\
{z}) have measure greater or equal than σ/2. We will define some horizontal curves
crossing by the points on Ik(z), which under iteration for ϕ keep horizontal. For our
purposes the arc length of these curves must not be very big.

Let ρ > 0 be a constant whose value will be made precise on (28), and α, C1 the
constants of the proposition 5.1 and remark 5.1. We consider ρ′ the constant such that:
given J ⊂ T1 interval with length ρ′ and X : J → I0 a curve with |X′| ≤ C1α, the arc
length of graph(X) is less or equal than ρ.

Let z = (θ, x) ∈ T1
× I0 be for some θ ∈ T1, x ∈ I0. Let us call z− and z+ the coordinates

of the end points of Ik(z), i.e, Ik(z) = [z−, z+] (recall that Ik(z) is contained in a vertical
leaf). By the definition of ϕ, we know that the horizontal component of ϕk(z) is gk(θ).
Let us consider η1 > 0 and η2 > 0 such that gk : (θ−η1, θ+η2)→ (gk(θ)−ρ′, gk(θ)+ρ′) is
a diffeomorphism. Let us consider the horizontal curves passing by the points of Ik(z).
For every w = (θ, xw) ∈ Ik(z), we will denote by Cw the line joining the points (θ− η1, xw)
and (θ + η2, xw).

For w ∈ Ik(z), we denote by C j
w (for j ≤ k) the curve image by ϕ j of Cw, i.e, which

satisfies ϕ j(Cw) = C j
w. Observe that C0

w = Cw for any w ∈ Ik(z). Note that by the choice of
ρ′, the arc length of Ck

w is less or equal than 2ρ, for any w ∈ Ik(z).
In the same way we will denote by wk the image by ϕk of the point w = w0 and by T j

the set ϕ j(Tk(z)) (since z and k are fixed along the proof, there is no confusion in omitting
in the notation the dependence of T j on z and k). In particular, we have that [z j

+, z
j
−

] ⊂ T j

for j ≤ k.

Claim 5.1. There exists a neighborhood Vk(z) of z such that ϕk : Vk(z) → ϕk(Vk(z)) is a
diffeomorphism and the volume of ϕk(Vk(z)) is bounded away from zero.

Proof. We will use the bounded distortion of the map g. Namely, there exists D > 0 such
that, if we have J ⊂ T1 and n ∈N for which gn : J→ gn(J) is a diffeomorphism, then

|∂θgn(θ)|
|∂θgn(ω)|

≤ D (27)

for all θ,ω ∈ J.
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Recall the constants C, α, C1 and K, specified in (1), Proposition 5.1, Remark 5.1 and
Proposition 5.2, respectively. The constant ρ must satisfy the next condition

Kρ < (σ/8)(DC)−1

ρC1α < σ/8

 (28)

First we claim that C j
w ∩ C = ∅ for j < k and for any w ∈ Ik(z). For a curve C, we will

denote by |C| its arc length.
For j < k, using Proposition 5.2 we know that |Ck− j

w | ≤ K|∂θg j(θ j)|−12ρ for some
(θ j, x j) ∈ Ck− j

w (then K2ρ|∂θg j(θ j)|−1-close to wk− j).
On the other hand, for j ≤ k, let us denote by Ik− j

w the component of Tk− j
\ {wk− j

}

which has zk− j
+ in its boundary. By the mean value theorem, we have that |Ik− j

w | ≥

(
∏ j−1

i=0 |∂x f (ϕi(ω j, y j))|)−1(σ/2) for some (ω j, y j) ∈ Ik− j
w and |Tk− j

\Ik− j
w | ≥ (

∏ j−1
i=0 |∂x f (ϕi(ω′j, y

′

j))|)
−1(σ/2),

for some (ω′j, y
′

j) ∈ Tk− j
\ Ik− j

w . Two cases can happen:

(i) |Ik− j
w | ≤ |Tk− j

\ Ik− j
w |

(ii) |Ik− j
w | > |Tk− j

\ Ik− j
w |

Let us assume that we have the case (i) (the other case is totally analogous), then com-
bining (1) and (27), we have

|∂θg j(θ j)|−1 < DC a j

 j−1∏
i=0

∣∣∣∂x f (ϕi(ω j, y j))
∣∣∣
−1

,

and this, together with (28), gives

|Ck− j
w | ≤ K |∂θg j(θ j)|−1 2ρ < a j

 j−1∏
i=0

∣∣∣∂x f (ϕi(ω j, y j))
∣∣∣
−1

(σ/4)

≤ a j distvert(wk− j,C )
2

(29)

This last inequality, and the condition (F2) which is satisfied by the skew product, im-
plies that Ck− j

w ∩ C = ∅.

Now, let us define Bk = ∪w∈Ik(z)Cw and B = ∪w∈Ik(z)Ck
w. By our definitions, we have

that ϕk(Bk) = B. Observe that Bk contains complete vertical segments, which means that
if it contains two points in a same vertical leaf then it contains all the points in this leaf
between these two points; by the continuity of the functions f (θ, ·), this is also true for
the set B.

We claim that ϕk : Bk → B is a diffeomorphism, which maps Cw to Ck
w, for all w ∈

Ik(z). Indeed, since we already have proved that C j
w ∩ C = ∅ for w ∈ Ik(z) and j < k,
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then we have that ϕk : Bk → B is a local diffeomorphism. To conclude the proof of the
claim we will show that the map is injective. If there exist (θ1, x1) and (θ2, x2) in Bk such
that ϕk(θ1, x1) = ϕk(θ2, x2) ∈ B, first, since in the horizontal direction there is expansion
(∂θg > 1), it must to have θ1 = θ2. Next, by the differentiability of the functions f (θ, ·),
if x1 , x2, there must to be at least one point (θ1, y) between (θ1, x1) and (θ1, x2) and
j < k such that this point is mapped by ϕ j in a critical point. But this would imply that
C j

y ∩ C , ∅, a contradiction with what we already have proved. Hence x1 = x2, which
implies that the map ϕk : Bk → B is injective.

Since, for ∗ ∈ {+,−}, the curves Ck
z∗ are graphs,

Ck
z∗ = {(ω,Xk,z∗ (ω));ω ∈ (gk(θ) − ρ′, gk(θ) + ρ′)}

with |Xk,z∗ | ≤ C1α, for C1 and α the constants of the Remark 5.1. It follows by the condi-
tion (28) that the set B contains

∆(ϕk(z), σ) = ∪a∈(y−(3σ)/8,y+(3σ)/8)Sa

where Sa is the horizontal segment joining (gk(θ)−ρ′, a) and (gk(θ)+ρ′, a), z = (θ, x) and
ϕk(z) = (gk(θ), y) (see Figure 1).

��
��
��
����

��
��
��

ϕk

Cz−

Cz+

θ × I0

z ∆(ϕk(z), σ)

gk(θ) × I0

Ck
z+

Ck
z−

ϕk(z)

Figure 3: ∆(ϕk(z), σ)

Calling Vk(z) = Bk, the claim follows. �

It just remains to prove that the transformation of the last claim has bounded distor-
tion (independent of z, k). For any J ⊂ M contained in the ω-vertical leaf we denote by
J = {x ∈ I0; (ω, x) ∈ J}. With this notation, J = {w} × J.
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Claim 5.2. There exists K1 = K1(σ) > 0 such that for z1, z2 ∈ Ik(z) ⊂ Vk(z),

1
K1
≤
|det Dϕk(z1)|
|det Dϕk(z2)|

≤ K1

Proof. Let z1 and z2 be points in Ik(z). Let θ be the horizontal component of z, i.e.,
z = (θ, x) for some x ∈ I0. By definition, Ik(z) ⊂ Tk(z).

Recalling the notation f k
θ = fgk−1(θ) ◦ . . . ◦ fg(θ) ◦ fθ, where fθ(x) = f (θ, x) for θ ∈ T1,

x ∈ I0, it holds the relation ϕk(θ, y) = (gk(θ), f k
θ(y)) for any y ∈ I0. Since ϕ j(Tk(z)) ∩ C = ∅

for j < k, then f k
θ : Tk(z)→ f k

θ(Tk(z)) is a C3 diffeomorphism.
By the form we have chosen Ik(z) we know that every component of f k

θ(Tk(z))\
f k
θ(Ik(z)) has Lebesgue measure equal to σ/2, then there exists τ > 0 (depending only

on σ), such that f k
θ(Tk(z)) contains a τ-scaled neighborhood of f k

θ(Ik(z)). Thus, by Koebe
Principle (Proposition 2.1), there exists K1 > 0 such that

1
K1
≤
|D f k

θ(y1)|

|D f k
θ(y2)|

≤ K1

for y1, y2 ∈ Ik(z).
Now, if z1 = (θ, y1) and z2 = (θ, y2), for y1, y2 ∈ Ik(z),

|det Dϕk(z1)|
|det Dϕk(z2)|

=

∏k
i=1 |det Dϕ(ϕk−i(θ, y1))|∏k
i=1 |det Dϕ(ϕk−i(θ, y2))|

=

=

∏k
i=1 |∂θg(gk−i(θ))∂x fgk−i(θ)( f k−i

θ (y1))|∏k
i=1 |∂θg(gk−i(θ))∂x fgk−i(θ)( f k−i

θ (y2))|
=
|D f k

θ(y1)|

|D f k
θ(y2)|

Since K1 just depends on σ, the claim follows. �

Now let us assume that z1 ∈ Ik(z) and z2 ∈ Vk(z) belong to the same horizontal leaf
of z1, i.e, z1 and z2 belong to Cy, where z1 = (θ, y). By the definition of ϕ,

∣∣∣∣ log
|det Dϕk(z1)|
|det Dϕk(z2)|

∣∣∣∣ ≤ ∣∣∣∣ log
|∂θgk(z1)|
|∂θgk(z2)|

∣∣∣∣ + ∣∣∣∣ log
∏k

i=1 |∂x f (ϕk−i(z1)|∏k
i=1 |∂x f (ϕk−i(z2)|

∣∣∣∣
Using the condition (F2) satisfied by the skew product, together with (27),

∣∣∣∣ log
|det Dϕk(z1)|
|det Dϕk(z2)|

∣∣∣∣ ≤ log D + B
k∑

i=1

dist(ϕk−i(z1), ϕk−i(z2))
distvert(ϕk−i(z1),C )

and by (29), we have

∣∣∣∣ log
|det Dϕk(z1)|
|det Dϕk(z2)|

∣∣∣∣ ≤ log D + B
k∑

i=1

ai
≤ B′

∞∑
i=1

ai = K′2
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Hence, for z1 ∈ Ik(z) and z2 ∈ Vk(z) in the same horizontal leaf of z1,

1
K2
≤
|det Dϕk(z1)|
|det Dϕk(z2)|

≤ K2.

Finally, if z1 = (θ1, x), z2 = (θ2, y) ∈ Vk(z), let us consider z′1, z
′

2 ∈ Ik(z) such that z′i
belongs to the same horizontal leaf than zi (i = 1, 2). If zi ∈ Ik(z) we can consider z′i = zi

(i = 1, 2). Using the proved cases we have

1
K1K2

2

≤
|det Dϕk(z1)|
|det Dϕk(z2)|

=
|det Dϕk(z1)|
|det Dϕk(z′1)|

|det Dϕk(z′1)|

|det Dϕk(z′2)|

|det Dϕk(z′2)|

|det Dϕk(z2)|
≤ K1K2

2 (30)

Since K1 and K2 do neither depend on the point z, nor on the iterate k, the distortion is
bounded by a constant like we claimed and the proposition follows. �

5.3 Neighborhoods associated to hyperbolic-like times

For every σ > 0 and i ∈N, we will denote by Hi(σ) the set of points z ∈M with ri(z) ≥ σ.
In this section the goal is the proof of the following lemma, which will be very useful in
the construction of the absolutely continuous invariant measure for ϕ.

Lemma 5.1. Given σ > 0, there exists τ > 0 such that for every i ∈N there exists a finite set of
points x1, . . . , xN in Hi(σ), and neighborhoods of them V′i (x1), . . . ,V′i (xN), which are two-by-two
disjoint and their union Wi = V′i (z1) ∪ . . . ∪ V′i (zN) satisfies

Leb(Wi) ≥ τLeb(Hi(σ)).

Given σ > 0, the constants ρ, α,C1 and ρ′ appeared in the proof of Proposition 5.3; ρ
was defined by (28), α and C1 come from Proposition 5.1 and Remark 5.1. The constant
ρ′ was defined in the following way: given J ⊂ T1 interval with length ρ′ and X :
J → I0 a curve with |X′| ≤ C1α, the arc length of graph(X) is less or equal than ρ. For
z = (θ, x) ∈ M, ∆(z, σ) will denote the set limited by: the horizontal segment from the
point (θ − ρ′, x − σ/8) to the point (θ + ρ′, x − σ/8), the horizontal segment from the
point (θ− ρ′, x+ σ/8) to the point (θ− ρ′, x+ σ/8), and the vertical segments joining the
extremes of these two segments.

Given b > 0, ∆b(z, σ) will denote the set above but with bρ′ and bσ/8 in the place of
ρ′ and σ/8, respectively. Obviously for 0 < b < 1, ∆b(z, σ) ⊂ ∆(z, σ).

Remark 5.2. Recall that ∆(ϕk(z), σ) ⊂ ϕk(Vk(z)), where Vk(z) is the neighborhood of z
constructed in the last subsection for which ϕk : Vk(z)→ ϕk(Vk(z)) is a diffeomorphism
with bounded distortion.

First, we state one property which is satisfied by any Borelian measure.
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Claim 5.3. If µ is a finite Borelian measure on M and Ω ⊂ M is measurable with µ(Ω) > 0.
Then, given a > 0, there exists w1 ∈M such that

µ(Ω ∩ ∆(w1, a)) >
µ(Ω ∩ ∆(w, a))

2

for all w ∈M.

Proof of Lemma 5.1. Since M is compact, there exists l = l(σ) ∈N such that any set ∆(z, σ)
(for any z ∈M) can be covered by at most l sets ∆1/8(zi, σ), i.e, there exist {z1, . . . , zl} ⊂M
such that ∆(z, σ) ⊂ ∪l

i=1∆
1/8(zi, σ).

Let us suppose that Leb(Hi(σ)) > 0; otherwise, the lemma follows trivially. Let us
consider Ω = ϕi(Hi(σ)) and µ = ϕi

∗ Leb in the Claim 5.3. Then there exists w1 such that

ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆(w1, σ)) ≥

ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆(w, σ))

2

for all w ∈ M. Now, we can find a point y1 ∈ M such that ∆1/8(y1, σ) intersects ∆(w1, σ)
and

ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆1/8(y1, σ)) ≥

1
l
ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆(w1, σ))

Then ∆1/8(y1, σ) contains some point z1 ∈ ϕi(Hi(σ)). Using both inequalities above, we
have

ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆1/4(z1, σ)) ≥ ϕi

∗ Leb(ϕi(Hi(σ)) ∩ ∆1/8(y1, σ)) ≥

1
l
ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆(w1, σ)) ≥

1
2l
ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆(z1, σ)) (31)

Let us consider Ω1 = ϕi(Hi(σ)) \ ∆(z1, σ). If Ω1 has ϕi
∗ Leb-measure zero, we take just

the point z1 and we finish. Otherwise, we may apply the same construction as before to
Ω1, and thus we find a point z2. Obviously ∆1/4(z1, σ) and ∆1/4(z2, σ) are disjoint since
z2 < ∆(z1, σ). Repeating this construction we find a sequence {zn} such that {∆1/4(zn, σ)}
are two-by-two disjoint. By compactness of M, the sequence must be finite. Let {zn}1≤n≤N

be the sequence.

Using (31) and the fact that ϕi(Hi(σ)) ⊂ ∪N
n=1∆(zn, σ), we have

ϕi
∗ Leb(ϕi(Hi(σ))) ≤ 2l

N∑
n=1

ϕi
∗ Leb(ϕi(Hi(σ)) ∩ ∆1/4(zn, σ))

Let us take xn the point in Hi(σ) whose image is zn. Let V′i (xn) be the preimage associated
to ∆1/4(zn, σ), i.e, such that ϕi : V′i (xn) → ∆1/4(zn, σ) is a diffeomorphism with bounded
distortion, with the constant of (30). Finally, let Wi = V′i (x1) ∪ . . . ∪ V′i (xN). By the
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inequality above, we have

Leb(Wi) ≥
1
2l

Leb(Hi(σ))

Considering τ = 1/2l the lemma is proved. �

6 The measure

6.1 Points with infinitely many hyperbolic-like times

As a consequence of Lemma 3.1, we will show that, for some ε > 0, the points with
many ε-hyperbolic-like times are a positive Lebesgue measure set. In fact, for every
point in this set, the density of ε-hyperbolic-like times is uniformly positive.

The idea is to use information about the vertical lines {θ× I0}θ∈T and to get from this,
information about the whole manifold, using the absolute continuity of this foliation
(the given by the vertical lines).

Recall that we denote T1
× I0 by M and the Lebesgue measure of M by m. For λ and

n ∈Nwe define,

Zn(λ) =
{

z ∈M,
1
n

n−1∑
j=0

log ‖Dϕ(ϕ j(z))−1
‖
−1 > λ

}
, (32)

and for δ > 0,

An(δ) =
{

z ∈M;
1
n

n∑
i=1

ri(z) < δ2, rn(z) > 0
}
. (33)

As we will see, these sets have relation with the sets defined in (9) and (8). For every
θ ∈ T1, let us consider the sequence { fgn(θ)}n≥0 of smooth maps. Recall that we denote
by ri(θ, x) the function ri

(
{ fn}, x

)
defined on subsection 1.2, considering the sequence

fn = fgn(θ) for n ≥ 0. In the same way we denote by An(θ, δ) the set An
(
{ fn}, δ

)
defined

on (8), and by Yn(θ, λ) the set Yn
(
{ fn}, λ

)
defined on (9), with fn = fgn(θ) for n ≥ 0.

Thus, we can conclude that

Zn(λ) ⊂ ∪θ∈T(θ × Yn(θ, λ)) and An(δ) = ∪θ∈T(θ × An(θ, δ)) (34)

For every θ ∈ T1, { fgn(θ)} is a C1-uniformly equicontinuous and C1 uniformly bounded
sequence of smooth maps, since ϕ(θ, x) = (g(θ), f (θ, x)) is a C3 map. On the other hand,
by the assumptions about the critical set C of ϕ, it holds that p = sup #Cgn(θ) < ∞.
Thus, we are in the context of Lemma 3.1. Moreover, fixed λ > 0, the constant δ found
on Lemma 3.1 does not depend on θ, i.e., the constant δ is the same for any sequence
{ fgn(θ)}. This happens because the modulus of continuity (3), the uniform bound Γ in
(4) and the uniform bound p for the number of critical points, are the same for any
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sequence { fgn(θ)} (varying θ ∈ T1). The last is true since ϕ is C3 and (F1) holds.

Proposition 6.1. In the conditions of Theorem A, given 0 < ϑ < m(M), there exist ε > 0 and
N0 ∈N such that

m
({

z ;
n∑

i=1

ri(z) ≥ 2εn, for all n ≥ N0

})
≥ ϑ/2 (35)

Proof. By assumption of Theorem A, ϕ is non-uniformly expanding, then, given 0 < ϑ <
m(M), we can choose N and λ > 0 such that

m
(
∩n≥N Zn(λ)

)
≥ ϑ.

For λ, δ > 0 and every N ∈N,

∫
T1

∫
I0

χ
{∩∞n=N{An(δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ) ≥∫

T1

∫
I0

χ
{∩∞n=NZn(λ)}(θ, x)dmI0 (x)dmT1 (θ)

−

∫
T1

∫
I0

χ
{∪∞n=NAn(δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ)

On the other hand, by lemma 3.1, there exists δ > 0 such that for every θ ∈ T1,

mI0

 ∞⋃
n=N

An(θ, δ) ∩ Yn(θ, λ)

→ 0,

when N→∞; and this together with (34) yield,

∫
T1

∫
I0

χ
{∪∞n=NAn(δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ)

≤

∫
T1

∫
I0

χ
{∪∞n=NAn(θ,δ)∩Yn(θ,δ)}(x)dmI0 (x)dmT1 (θ) −→ 0

when N→∞. Hence, there exists N0 such that∫
T1

∫
I0

χ
{∩∞n=N0

{An(δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT(θ) ≥ ϑ/2.

Considering ε such that 2ε < δ2, the proposition follows. �

This means that there is a positive measure set of points with many hyperbolic-like
times.
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6.2 Positive density of the hyperbolic-like times

The following lemma will permit us to prove that, in fact, for every point in the set of
(35), the density of hyperbolic-like times is uniformly positive. For the proof, see lemma
3.1 on [ABV].

Lemma 6.1 (Pliss Lemma). Given A ≥ c2 > c1 > 0, let ζ0 = (c2 − c1)/(A − c1). Then, given
any real numbers a1, . . . , aN such that

N∑
j=1

a j ≥ c2N and a j ≤ A for every 1 ≤ j ≤ N,

there are q ≥ ζ0N and 1 < n1 < . . . < nq ≤ N so that

ni∑
j=n+1

a j ≥ c1(ni − n) for every 0 ≤ n < ni, and i = 1, . . . , q.

For every ε > 0 and n ∈N, we will denote by Hn(ε) the set of points z ∈M with rn(z) ≥ ε.
The result about the density is the following

Lemma 6.2. Given ε > 0, there exists ζ > 0 such that

# { 1 ≤ i ≤ n; z ∈ Hi(ε) }
n

≥ ζ

for any z such that
n∑

i=1

ri(z) ≥ 2εn (36)

Proof. Considering c2 = 2ε and c1 = ε, applying the Pliss lemma, there are q ≥ ζ0N and
0 < n1 < . . . < nq ≤ n so that

ni∑
j=n+1

r j(z) ≥ ε(ni − n) for every 0 ≤ n < ni, and i = 1, . . . , q.

Observe that ζ does not depend on z neither on n, which means that for any z which
satisfies (36), there exists 0 < n1 < . . . < nq ≤ n such that rni (z) ≥ ε with q/n ≥ ζ. �

6.3 Construction of the measure: Proof of Theorem A

We consider the sequence

µn =
1
n

n∑
i=1

ϕi
∗ LebM
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of averages of forward iterates of Lebesgue measure on M. The main idea is to decom-
pose µn (for every n) as a sum of two measures, νn and ηn, such that νn is uniformly
absolutely continuous and has total mass bounded away from zero. The measure νn

will be the part of µn carried on the sets ∆(·, ε) around points ϕi(z), where z is a point
which has i as ε-hyperbolic-like time.

Let us fix ε > 0 from Proposition 6.1. Let Wi be the set found on Lemma 5.1 for σ = ε.
We consider the measures

νn =
1
n

n∑
i=1

ϕi
∗ LebWi

and ηn = µn − νn. Now, we state and prove the main result of the section.

Proposition 6.2. The measures νn are uniformly absolutely continuous and have total mass
uniformly bounded away from zero for all large n.

Proof. By the proposition 5.3, the measures νn are absolutely continuous and the den-
sities are uniformly bounded from above. It just remains to prove the claim about the
total mass. By lemma 5.1, we conclude that

νn(M) ≥ τ
1
n

n∑
i=1

Leb(Hi(ε)).

So, it suffices to control the right side of the last expression. For this, let us consider πn

the measure in {1, 2, . . . ,n} defined by πn(B) = #(B)/n, for every subset B. Using Fubini’s
theorem, we have

1
n

n∑
i=1

Leb(Hi(ε)) =
∫ ∫

χ(z, i)d Leb(z)dπn(i) =
∫ ∫

χ(z, i)dπn(i)d Leb(z)

where χ(z, i) = 1 if z ∈ Hi(ε) and χ(z, i) = 0 otherwise. By Lemma 6.2, it holds∫
χ(z, i)dπn(i) ≥ ζ if z is such that

∑n
i=1 ri(z) ≥ 2εn. Hence

1
n

n∑
i=1

Leb(Hi(ε)) ≥ ζLeb
({

z;
n∑

i=1

ri(z) ≥ 2εn
})
≥

≥ ζ Leb
({

z;
n∑

i=1

ri(z) ≥ 2εn, for all n ≥ N0

})
if n ≥ N0, where N0 is the number found in proposition 6.1, i.e, the number such that
(35) holds. In this way, we conclude that the total mass of the measure νn is bounded
for τζ(ϑ/2) if n ≥ N0, and the proposition follows. �

End of proof of Theorem A. It just remains to prove that we can choose our measure in
such a way that it be invariant. Let us choose {nk}k such that µnk , νnk and ηnk converge
and let µ, ν, η be the respective limit.
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We can decompose η = ηac + ηs as the sum of an absolutely continuous measure ηac

and one singular measure ηs (with respect to Lebesgue measure). Then,

µ = (ν + ηac) + ηs

gives one decomposition of µ as sum of one absolutely continuous and one singular
measure. Since ϕ preserves the class of absolutely continuous measures and µ is invari-
ant,

µ = ϕ∗µ = ϕ∗(ν + ηac) + ϕ∗ηs

gives another decomposition of µ as sum of one absolutely continuous and one singular
measure. By the uniqueness of the decomposition we must have ϕ∗(ν + ηac) = ν + ηac.
Hence, ν + ηac is a non-zero absolutely continuous invariant measure for ϕ. Thus, the
proof of Theorem A is complete. �

A Non wandering intervals

There are proofs of the non existence of wandering intervals for one dimensional maps
on different generalities. Guckenheimer proved the result for unimodal maps with neg-
ative Schwarzian derivative and non degenerate critical points. De Melo and van Strien
proved for unimodal maps with non-flat critical points. Block and Lyubich proved
for smooth maps without inflection points and with non-flat critical points. De Melo,
Martens and van Strien proved for smooth maps with non-flat critical points.

To the best of our knowledge there are no proof of non existence of wandering in-
tervals for smooth maps (with turning and inflection points) with negative Schwarzian
derivative. We prove these result in the case that the map has positive Lyapunov expo-
nents.

Proposition A.1. Let f : I0 → I0 be a C3 map with S f < 0 and finite critical points. If there
exists λ > 0 such that for Lebesgue almost every point x ∈ I0,

(P′) lim sup
n→+∞

1
n

log |D f n(x)| > λ

Then f does not have wandering intervals.

Proof. Let us suppose, by contradiction, that f has a wandering interval J. Considering
an iterate of J instead of J we may assume that no iterate of J contains critical points.
Moreover, we may assume that J is a maximal wandering interval, i.e., that J is not
strictly contained in some bigger wandering interval.

Let us consider Tn the maximal interval containing J such that f j(Tn) ∩ C = ∅ for
1 ≤ j < n. Denoting by Ln and Rn the connected components of Tn \ J, we can conclude
that |Ln| and |Rn| goes to 0 when n→∞, otherwise, J would not be a maximal wandering
interval.
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By Corollary I we know that the set

X =
{
x ∈ I0; lim sup

n→+∞

1
n

n∑
i=1

ri(x) ≥ ς
}

has full Lebesgue measure for some ς > 0. Let x0 be some point in J ∩ X. For every
n ∈ N, Tn(x0) = Tn. Since x0 ∈ X, there exists a sequence {nk}k (depending on x0) such
that both components of f nk (Tnk ) \ { f

nk (x0)} have length bigger than δ.
On the other hand, since J is a wandering interval,

| f n(J)| → 0 when n→∞.

Hence, given ε > 0, there exists N = N(ε) ∈N such that for nk ≥ N,

f nk (Tnk ) contains an ε-scaled neighborhood of f nk (J)

Thus, by the Macroscopic Koebe Principle (see [MvS, Theorem IV.3.3]) this implies that
Tnk contains an B0(ε)-scaled neighborhood of J for nk ≥ N. But this contradicts the fact
that |Lnk | and |Rnk | goes to zero when k→∞. Therefore f has no wandering intervals. �

Lemma A.1. Let f : I0 → I0 be a smooth map without wandering intervals and all periodic
points are repelling. Then the set of preimages of the critical set C of f is dense in I0.

Proof. Let us suppose by contradiction, that there exists an interval I such that

f j(I) ∩ C = ∅ for j ∈N.

The intervals { f j(I)} j may be disjoint or not. In case that they are disjoint, since there are
no wandering intervals, J must converge to a periodic point. But this is a contradiction
with the hypotheses about the Lyapunov exponents of f . Then, { f j(I)} j are not disjoint.
Hence, there exist an interval I∗ and m ∈ N, such that f m maps I∗ into itself diffeo-
morphically. But in this case, every non-periodic point of I∗ is asymptotic to a periodic
attractor. Once again, this is a contradiction with the hypotheses about the Lyapunov
exponents. Therefore, the set ∪n∈N f−n(C ) is dense in I0. �

Recall that given x ∈ I0 we denote by Tn(x) the maximal interval containing x such
that f j(Tn(x)) ∩ C = ∅ for 1 ≤ j < n, where C is the set of critical points (zeroes of the
derivative) of f . From the last corollary follows the next result.

Corollary A.1. Let f : I0 → I0 be a smooth map without wandering intervals and all periodic
points are repelling. Given ε > 0, there exists N ∈ N such that Tn(x) has length less than ε for
n ≥ N and every x ∈ I0.

Let us denote by CΩ the set of critical points which are non wandering. We want to
prove that the preimages of this set are also dense in I0.
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Lemma A.2. Assume f : I0 → I0 is a smooth map with finite critical points, without wandering
intervals and all periodic points are repelling. Then the set of preimages of CΩ is dense in I0.

Proof. Let us assume by contradiction that the preimages of CΩ are not dense in I0. For
every c ∈ C \CΩ, lets us consider Vc such that f n(Vc)∩Vc = ∅ for all n ∈N. Let U ⊂ I0 be
an open interval such that (∪n∈N f−n(CΩ))∩U = ∅. Let (a0, b0) ⊂ U some interval such that
f k0
|(a0,b0) is a diffeomorphism, f k0 (a0) = c0 for some c0 ∈ C \ CΩ and f k0 ((a0, b0)) ⊂ Vc0 . This

can be done considering (a0, b0) := Tn(x0) for some x0 ∈ U such that x0 < ∪n∈N f−n(C ) and
n big enough (recall Corollary A.1). Let (a1, b1) be some subinterval of f k0 ((a0, b0)) \ {c0}

such that f k1
|(a1,b1) is a diffeomorphism, f k1 (a1) = c1 for some c1 ∈ C \CΩ and for some k1 ∈

N. We also assume that f k1 ((a1, b1)) ⊂ Vc1 . Thus, we define inductively one sequence
of intervals: given (an−1, bn−1) such that f kn−1 ((an−1, bn−1)) ⊂ Vcn−1 for some kn−1 ∈ N and
some cn−1 ∈ C \ CΩ, we define (an, bn) as being one subinterval of f kn−1 ((an−1, bn−1)) such
that f kn ((an, bn)) ⊂ Vcn for some cn ∈ C \ CΩ and some kn ∈ N. This can be done by the
results of corollaries A.1 and A.1.

But C is a finite set, then for some m,n ∈ N, cn = cn+m, and this is contradictory
with the choice of Vc. Therefore, there can not exist a set U as above, and the claim
follows. �

The next claim will be useful to prove the existence of partitions of I0 arbitrary small,
whose boundaries are a forward invariant set.

Lemma A.3. Assume f : I0 → I0 is a smooth map with finite critical points. If c is a non
wandering turning critical point then c ∈ Per( f ).

Proof. For each turning point c ∈ C , there exists a neighborhood Vc of c and a continuous
function τ : Vc → Vc such that f (τ(x)) = f (x) for every x ∈ Vc and τ(x) , x for x ∈ Vc \{c}.
Then, given ε > 0, let β > 0 be such that τ((c − β, c + β)) ⊂ (c − ε, c + ε).

We claim that there exist y ∈ (c − β, c + β) and m ∈ N such that f m(y) = c. Let us
assume by contradiction that it does not happen.

Let us consider the first return map RJ to J := (c − β, c + β). Observe that if x < ∂J is
a discontinuity point of RJ then RJ is continuous from one side, RJ(x) ∈ ∂J and the limit
from the other side belongs to RJ(∂J). On the other hand, if x is a turning point of RJ,
then f n(x) = ci for some ci ∈ C and some n ∈ N, and RJ(x) = f n+mi (x) = f mi (ci) for some
mi ∈N. Since C is a finite set, the values of RJ for the turning points is a finite set. Then
the distance of the image of RJ to c is given by

δ = min{dist(c, f mi (ci)),dist(c,RJ(∂J))}

where ci ∈ C and f mi (ci) is the first entry of ci to J, when it is defined. Note that if ∂J
is not in the domain of RJ, we do not consider the second term above. But this implies
that f n((c − δ, c + δ)) ∩ (c − δ, c + δ) = ∅ for all n ∈ N, and this contradicts that c is non
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wandering. Therefore, there exists y ∈ (c − β, c + β) and m ∈ N such that f m(y) = c. By
definition of the function τ, f m(τ(y)) = c. Hence, by the continuity of f m, there must
exist p ∈ (c − ε, c + ε) such that f m(p) = p. Since ε is arbitrary, the claim follows. �

Combining Lemmas A.2 and A.3 we have the following result

Proposition A.2. Assume f : I0 → I0 is a smooth map with finite critical points, without
wandering intervals and all periodic points are repelling. Given δ > 0 there exists a finite
partitionP of I0, with norm less than δ and such that the extremes of the elements of the partition
are a forward invariant set.

References

[A] J.F. Alves, SRB measures for non-hyperbolic systems with multidimensional ex-
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