Instituto Nacional de Matemática Pura e Aplicada

Hydrodynamic behavior of boundary driven stochastic lattice gas models and interacting particle systems with conductances in random environments

Alexandre de Bustamante Simas

Agradecimentos

Várias pessoas contribuem para a conquista de um doutorado. Primeiramente agradeço à minha esposa Andréa Vanessa Rocha, que esteve comigo durante todo esse período do doutorado, e batalhou comigo durante todos os momentos difíceis. Em seguida agradeço aos meus pais Alfredo Mayall Simas e Maria Lúcia de Bustamante Simas, e à minha irmã Adriana de Bustamante Simas, que embora não estivessem no Rio de Janeiro, estiveram me apoiando de longe, sempre me incentivando a dar o melhor de mim. Agradeço então a todos os membros da minha família que sempre torceram para o meu sucesso.

Gostaria de agradecer ao professor Claudio Landim por me orientar durante esse período e sempre me apoiar. Por propor problemas interessantes e apoiar a busca pessoal por outros problemas.

Durante o doutorado passei um período sanduíche no Courant Institute of Mathematical Sciences, e gostaria de agradecer a essa instituição por me aceitar receber, ao professor S.R.S. Varadhan por me orientar durante a minha estadia lá, e ao CNPq por fornecer o apoio financeiro necessário para que essa visita fosse realizada.

Várias pessoas contribuíram para a minha formação como matemático, a começar pelos meus pais, que sempre me incentivaram, mas não posso deixar de citar pessoas marcantes em minha vida pré-doutorado: o professor Ednaldo Ernesto que me deu uma base sólida sobre a matemática do segundo grau e que sem ela, certamente eu não teria chegado aonde cheguei; o professor Andrei Toom que me ajudou na formação desde o meu primeiro da graduação, e segue colaborando comigo até hoje; o professor Antônio Carlos Monteiro que me ajudou de diversas formas, além de, claro, me ensinar álgebra; e finalmente o professor Klaus Vasconcellos que me ensinou o primeiro curso de probabilidade, que acabou sendo a minha área de pesquisa.

Além disso, gostaria de agradecer a vários amigos que me ajudaram durante o doutorado. De Recife, três amigos foram fundamentais, Rodrigo "Pensionato" Bernardo, Alessandro "Sem-Honra" Henrique, e Wagner "Montes" Barreto-Souza. Este último é um dos meus maiores colaboradores na estatística matemática, além de ser um grande amigo. Gostaria de agradecer a Carlos Bocker "Pato" Neto que sempre me apoiou desde a minha chegada no IMPA e continua apoiando até hoje. A Mitchael Alfonso, John Beiro e Sergio Ibarra que tornaram a estadia no Rio de Janeiro muito mais tranquila. A Fábio Júlio Valentim e Jonathan Farfan que tornaram a colaboração na elaboração de artigos muito mais do que apenas uma atividade profissional. Aos demais alunos e professores do IMPA o meu obrigado.

Gostaria ainda de agradecer aos membros da banca, pelas críticas e sugestões sobre a minha tese: Alberto Ohashi, Roberto Imbuzeiro, Sérgio Volchan e Valentin Sisko. Além disso, gostaria de agradecer em especial ao professor Roberto Imbuzeiro por todo o apoio durante a realização do meu doutorado.

Durante o doutorado tive a oportunidade de fazer um curso ministrado pela professora Maria Eulália Vares no CBPF, onde fui muito bem recebido, e este curso acrescentou muito à minha formação. Gostaria de agradecer à ela e ao CBPF pela receptividade.

Gostaria de agradecer aos professores e funcionários do IMPA pela eficiência e pela forma que sempre me receberam. Em especial a Andrea Nascimento que teve um papel fundamental nesta fase final do meu doutorado.

Por fim, ao CNPq pelo apoio financeiro durante toda a realização do meu doutorado.

Resumo

Esta tese está dividida em duas partes, contendo um total de quatro artigos. Na primeira parte obtemos o limite hidrodinâmico para um sistema de partículas com velocidades em contato com reservatórios infinitos de partículas, e em seguida, obtemos o princípio dos grandes desvintios dinâmicos para este processo. Na segunda parte estudamos sistemas de partículas com condutâncias em meios aleatórios, para tanto provamos a homogenização de certos operadores elípticos, e a partir daí provamos um limite hidrodinâmico para tais processos. Por fim, utilizamos a teoria de homogenização obtida para provar flutuações no equilíbrio para esses processos.

Antes de cada resultado fazemos uma introdução, levantando aspectos históricos do problema e dizemos a situação em que o artigo se encontra (se está publicado, aceito ou submetido).

Contents

I Boundary driven stochastic lattice gas models 13
1 Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities 14
1.1 Introduction 14
1.2 Notation and results 16
1.2.1 The boundary driven exclusion process 16
1.2.2 Mass and momentum 17
1.2.3 Hydrodynamic limit for the boundary driven exclusion process 18
1.3 Hydrodynamic limit for the boundary driven process 20
1.3.1 Entropy estimates 20
1.3.2 Replacement lemma for the boundary 23
1.3.3 Tightness 25
1.3.4 Equivalence of ensembles 26
1.3.5 Replacement lemma 27
1.3.6 Energy estimates 27
1.3.7 Proof of Theorem 1.2.1 29
1.4 Proof of the replacement lemma 31
1.4.1 Proof of one block estimate 32
1.4.2 Proof of the two block estimate 35
1.5 Uniqueness 38
2 Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities 42
2.1 Introduction 42
2.2 Notation and Results 43
2.2.1 The boundary driven exclusion process 44
2.2.2 Mass and momentum 45
2.2.3 Dynamical large deviations 45
2.3 Hydrodynamics 47
2.4 The rate function $I_{T}(\cdot \mid \gamma)$ 48
$2.5 \quad I_{T}(\cdot \mid \gamma)$-Density 54
2.6 Large deviations 57
2.6.1 Superexponential estimates 57
2.6.2 Energy estimates 59
2.6.3 Upper Bound 61
2.6.4 Lower Bound 63
II Particle systems with conductances in random environments 65
3 W-Sobolev spaces: Theory, Homogenization and Applications 66
3.1 Introduction 66
$3.2 \quad W$-Sobolev spaces 68
3.2.1 The auxiliary space 69
3.2.2 The W-Sobolev space 70
3.2.3 Approximation by smooth functions and the energetic space 71
3.2.4 A Rellich-Kondrachov theorem 73
3.2.5 The space $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ 74
$3.3 \quad W$-Generalized elliptic equations 75
$3.4 W$-Generalized parabolic equations 78
3.4.1 Uniqueness of weak solutions of the parabolic equation 80
$3.5 W$-Generalized Sobolev spaces: Discrete version 82
3.5.1 Connections between the discrete and continuous Sobolev spaces 84
3.6 Homogenization 85
3.6.1 $\quad H$-convergence 85
3.6.2 Random environment 87
3.6.3 Homogenization of random operators 87
3.7 Hydrodynamic limit of gradient processes with conductances in random environment 88
3.7.1 The exclusion processes with conductances in random environments 89
3.7.2 The hydrodynamic equation 90
3.7.3 Tightness 91
3.7.4 Uniqueness of limit points 93
4 Equilibrium fluctuations for exclusion processes with conductances in random envi- ronments 97
4.1 Introduction 97
4.2 Notation and results 98
4.3 The space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ 101
4.3.1 The operator \mathcal{L}_{W} 102
4.3.2 The nuclear space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ 103
4.4 Equilibrium Fluctuations 105
4.4.1 Martingale Problem 106
4.4.2 Generalized Ornstein-Uhlenbeck Processes 110
4.5 Tightness 110
4.6 Boltzmann-Gibbs Principle 112
4.7 Appendix: Stochastic differential equations on nuclear spaces 116
4.7.1 Countably Hilbert nuclear spaces 116
4.7.2 Stochastic differential equations 117

Introdução

Sistemas de Partículas interagentes têm sido assunto de intenso estudo nas últimas décadas devido ao fato que, ao mesmo tempo que contemplam muitas propriedades coletivas encontradas em sistemas físicos real, eles são, até certo ponto, tratáveis matematicamente. Seus estudos têm permitido, em muitos casos, um entendimentos detalhado de mecanismo microscópico através destes fenômenos coletivos. Estamos especialmente interessados no estudo do comportamento hidrodinâmico de sistemas de partículas que preservam quantidades termodinâmicas, tais como, o processo de exclusão simples e o processo Zerorange, ambos introduzido por Spitzer [19]. Problemas como limite hidrodinâmico, grandes desvintios e flutuações são tipicamente abordados. Referenciamos o livro [13] para mais detalhes. Equações diferenciais parciais, física matemática e probabilidade são algumas áreas da ciência vastamente exploradas nestes estudos.

O limite hidrodinâmico torna possível descrever as características termodinâmicas (por exemplo, temperatura, densidade, pressão, etc.) de sistemas infinitos assumindo que a dinâmica envolvida é estocástica e segue a abordagem da mecânica estatística introduzida por Boltzmann. Mais precisamente, ela permite a dedução do comportamento macroscópico do sistema a partir da interação microcópica entre as partículas. Neste plano de trabalho iremos considerar dinâmicas microscópicas consistindo de passeios aleatórios no reticulado submetidas a alguma interação local, estas dinâmicas são dadas pelos sistemas de partículas interagentes. Portanto, esta abordagem justifica rigorosamente um método bastante utilizado por físicos para obter equações diferenciais parciais que descrevem a evolução de características termodinâmicas de um fluido, e portanto a existência de soluções fracas de tais equações diferenciais parciais podem ser vistas como um dos objetivos do limite hidrodinâmico.

Nos últimos anos têm havido um progresso considerável no entendimento de estados estacionários fora do equilíbrio: sistemas difusivos em contato com diferentes reservatórios impondo um gradiente nas quantidades conservadas do sistema. Nestes sistemas, existe um fluxo de matéria através do sistema e a dinâmica resultante não é reversível. A principal diferença com relação a estados em equilíbrio (reversíveis) é a seguinte: no equilíbrio, a medida invariante, que determina as propriedades termodinâmicas é dada pela distribuição de Gibbs especificada pelo Hamiltoniano. Por outro lado, em estados fora do equilíbrio, a construção de estados estacionários requer a solução de um problema dinâmico. Uma das propriedades típicas e impressionantes desses sistemas é a presença de correlação de longo alcançe. Para os modelos de exclusão simples e simétricos isto já foi feito no artigo pioneiro de Spohn [20]. Nós referimos também para [1, 2] para duas resenhas recentes sobre este tópico.

O comportamento hidrodinâmico do processo de exclusão unidimensional com bordos estocásticos foi estudado por [3], [4] e [14]. Além disso, Landim, Olla e Volchan [15] consideraram o comportamento de uma partícula marcada num processo de exclusão simples simétrico sob a ação de uma constante externa, e fizeram conexões entre o comportamento de uma partícula marcada nessa situação com um processo com reservatórios infinitos.

Nós consideramos estados estacionários fora do equilíbrio, onde a ausência do equilíbrio é devida a campos externos ou potenciais químicos no bordo, donde existe um fluxo de quantidades físicas, tais como calor, carga elétrica, ou substâncias químicas através do sistema. O comportamento hidrodinâmico para este tipo de processo em qualquer dimensão foi resolvido por [3, 4]. No entanto, eles resolveram este problema apenas para o caso em que a única quantidade termodinâmica observável é a densidade empírica.

Considere agora a seguinte notação: Sejam $D_{N}^{d}=S_{N} \times \mathbb{T}_{N}^{d-1}$, com $S_{N}=\{1, \ldots, N-1\}$ e $D^{d}=$ $[0,1] \times \mathbb{T}^{d-1}$. Mais ainda, seja $\mathcal{V} \subset \mathbb{R}^{d}$ um conjunto finito de velocidades $v=\left(v_{1}, \ldots, v_{d}\right)$. Assuma que \mathcal{V} é invariante por reflexão e permutação de coordenadas:

$$
\left(v_{1}, \ldots, v_{i-1},-v_{i}, v_{i+1}, \ldots, v_{d}\right) \text { e }\left(v_{\sigma(1)}, \ldots, v_{\sigma(d)}\right)
$$

pertencem a \mathcal{V} para todo $1 \leq i \leq d$, e todas as permutações σ de $\{1, \ldots, d\}$, dado que $\left(v_{1}, \ldots, v_{d}\right)$ pertence a \mathcal{V}.

Nos trabalhos de [9] e [17], que contém resultados apresentados nesta tese, um processo de exclusão com velocidades e bordos estocásticos foi estudado, de tal forma que a equação hidrodinâmica obtida tem a forma

$$
\partial_{t}(\rho, \boldsymbol{p})+\sum_{v \in \mathcal{V}} \tilde{v}[v \cdot \nabla F(\rho, \boldsymbol{p})]=\frac{1}{2} \Delta(\rho, \boldsymbol{p}),
$$

onde $\tilde{v}=\left(1, v_{1}, \ldots, v_{d}\right)$, ρ é a densidade e $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ é o momento. F é uma quantidade termodinâmica determinada pelas propriedades ergódicas da dinâmica.

Este processo pode ser descrito informalmente como se segue. Para um ponto $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, seja $\tilde{x}=\left(x_{2}, \ldots, x_{d}\right)$. Fixe uma velocidade $v \in \mathcal{V}$, um inteiro $N \geq 1$, e densidades com domínio no bordo $0<\alpha_{v}(\cdot)<1$ e $0<\beta_{v}(\cdot)<1$; em um tempo dado, cada sítio do conjunto $\{1, \ldots, N-1\} \times\{0, \ldots, N-$ $1\}^{d-1}$ está ou vazio, ou ocupado por uma partícula numa velocidade v. No volume, cada partícula tenta pular para algum de seus vizinhos com mesma velocidade, com uma taxa fracamente assimétrica. Para respeitar a regra de exclusão, a partícula só pula de o sítio alvo na mesma velocidade v estiver vazio; caso contrário nada acontece. No bordo, sítios com primeiras coordenadas dadas por 1 ou $N-1$ têm partículas sendo criadas ou destruídas de tal forma que as densidades locais são $\alpha_{v}(\tilde{x})$ e $\beta_{v}(\tilde{x})$: com taxa $\alpha_{v}(\tilde{x} / N)$ uma partícula é criada em $\{1\} \times\{\tilde{x}\}$ se o sítio está vazio, e com taxa $1-\alpha_{v}(\tilde{x})$ a partícula em $\{1\} \times\{\tilde{x}\}$ é removida se o sítio está ocupado, com taxa $\beta_{v}(\tilde{x})$ uma partícula é criada em $\{N-1\} \times\{\tilde{x}\}$ se o sítio está vazio, e com taxa $1-\beta_{v}(\tilde{x})$ a partícula em $\{N-1\} \times\{\tilde{x}\}$ é removida se o sítio está ocupado. Superposta a essa dinâmica, existe um processo de colisão que troca velocidades de partículas no mesmo sítio de uma forma que o momento é conservado. Nosso principal interesse é examinar o modelo de gases estocásticos dado pelo gerador \mathcal{L}_{N} que é a superposição da dinâmica do bordo com a colisão e exclusão:

$$
\mathcal{L}_{N}=N^{2}\left\{\mathcal{L}_{N}^{b}+\mathcal{L}_{N}^{c}+\mathcal{L}_{N}^{e x}\right\}
$$

onde \mathcal{L}_{N}^{b} denota o gerador que modela a parte da dinâmica em que uma partícula no bordo pode entrar ou sair do sistema, \mathcal{L}_{N}^{c} denota o gerador que modela a parte de colisão da dinâmica e, por fim, $\mathcal{L}_{N}^{e x}$ modela a parte de exclusão da dinâmica. Note que o tempo foi acelerado difusivamente no gerador do processo.

Seja f uma função em X_{N}. O gerador da parte de exclusão da dinâmica, $\mathcal{L}_{N}^{e x}$, é dado por

$$
\left(\mathcal{L}_{N}^{e x} f\right)(\eta)=\sum_{v \in \mathcal{V}} \sum_{x, x+z \in D_{N}^{d}} \eta(x, v)[1-\eta(z, v)] P_{N}(z-x, v)\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right],
$$

onde

$$
\eta^{x, y, v}(z, w)=\left\{\begin{array}{lc}
\eta(y, v) & \text { se } w=v \text { e } z=x \\
\eta(x, v) & \text { se } w=v \text { e } z=y \\
\eta(z, w) & \text { caso contrário }
\end{array}\right.
$$

Vale a pena notar que o gerador pode ser decomposto na parte simétrica e assimétrica:

$$
\mathcal{L}_{N}^{e x}=\mathcal{L}_{N}^{e x, 1}+\mathcal{L}_{N}^{e x, 2}
$$

onde

$$
\left(\mathcal{L}_{N}^{e x, 1} f\right)(\eta)=\frac{1}{2} \sum_{v \in \mathcal{V}} \sum_{\substack{x, x+z \in D_{N}^{d} \\|z-x|=1}} \eta(x, v)[1-\eta(z, v)]\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right]
$$

e

$$
\left(\mathcal{L}_{N}^{e x, 2} f\right)(\eta)=\frac{1}{N} \sum_{v \in \mathcal{V}} \sum_{x, x+z \in D_{N}^{d}} \eta(x, v)[1-\eta(z, v)] p(z-x, v)\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right] .
$$

O gerador da parte de colisão da dinâmica, \mathcal{L}_{N}^{c}, é dado por

$$
\left(\mathcal{L}_{N}^{c} f\right)(\eta)=\sum_{y \in D_{N}^{d}} \sum_{q \in \mathcal{Q}} p(y, q, \eta)\left[f\left(\eta^{y, q}\right)-f(\eta)\right],
$$

onde \mathcal{Q} é o conjunto de todas as colisões que preservam momento:

$$
\mathcal{Q}=\left\{q=\left(v, w, v^{\prime}, w^{\prime}\right) \in \mathcal{V}^{4}: v+w=v^{\prime}+w^{\prime}\right\}
$$

a taxa $p(y, q, \eta)$ é dada por

$$
p(y, q, \eta)=\eta(y, v) \eta(y, w)\left[1-\eta\left(y, v^{\prime}\right)\right]\left[1-\eta\left(y, w^{\prime}\right)\right],
$$

e para $q=\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$, a configuração $\eta^{y, q}$ após a colisão é definida como

$$
\eta^{y, q}(z, u)=\left\{\begin{array}{cc}
\eta\left(y, v_{j+2}\right) & \text { se } z=y \text { e } u=v_{j} \text { para algum } 0 \leq j \leq 3, \\
\eta(z, u) & \text { caso contrário, }
\end{array}\right.
$$

onde o índice v_{j+2} deve ser entendido módulo 4 .
Partículas com v e w no mesmo sítio colidem com taxa 1 e produzem duas partículas com velocidades v^{\prime} e w^{\prime} naquele sítio.

Finalmente, o gerador da parte da dinâmica do bordo é dado por

$$
\begin{aligned}
\left(\mathcal{L}_{N}^{b} f\right)(\eta) & =\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \sum_{v \in \mathcal{V}}\left[\alpha_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right] \\
& +\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N_{N}-1}} \sum_{v \in \mathcal{V}}\left[\beta_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\beta_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right],
\end{aligned}
$$

onde $\tilde{x}=\left(x_{2}, \ldots, x_{d}\right)$,

$$
\sigma^{x, v} \eta(y, w)=\left\{\begin{array}{cc}
1-\eta(x, w), & \text { se } w=v \text { e } y=x, \\
\eta(y, w), & \text { caso contrário. }
\end{array}\right.
$$

e para todo $v \in \mathcal{V}, \alpha_{v}, \beta_{v} \in C^{2}\left(\mathbb{T}^{d-1}\right)$. Nós também assumimos que, para todo $v \in \mathcal{V}, \alpha_{v}$ e β_{v} têm imagem pertencendo a algum subconjunto compacto de (0,1). As funções α_{v} e β_{v}, que afetam as taxas de nascimento e morte no bordo representam as densidades dos reservatórios.

Em [17] foi provado que realmente o modelo satisfaz um comportamento hidrodinâmico, com uma equação diferencial parcial como a descrita acima.

No artigo [9], foi provado um princípio de grandes desvintios dinâmicos para um modelo com bordos estocásticos tendo mais de uma quantidade observada. Como acontece normalmente, a principal dificuldade aparece na prova da cota inferior, onde é preciso mostrar que qualquer trajetória $\lambda_{t}, 0 \leq t \leq T$, com função taxa finita, $I_{T}(\lambda)<\infty$, pode ser aproximada por uma sequência de trajetórias regulares $\left\{\lambda^{n}: n \geq 1\right\}$ tais que

$$
\lambda^{n} \longrightarrow \lambda \quad \text { e } \quad I_{T}\left(\lambda^{n}\right) \longrightarrow I_{T}(\lambda) .
$$

Para evitar essa dificuldade, foi seguido o método introduzido em [8]. É bem conhecido que se $I_{T}(\lambda)<\infty$, então existe um campo externo H associado a λ, no sentido de que λ resolve uma equação hidrodinâmica perturbada por um campo externo H. A estratégia de [8] é aproximar o campo externo H por uma sequência de funções suaves, H_{n}, e então mostrar que as soluções fracas das equações hidrodinâmicas perturbadas por H_{n} correspondentes, convergem para λ no sentido descrito acima.

Também estudamos os processos com condutâncias em meios aleatórios. Nós trabalhamos com o meio aleatório através da homogenização de operadores elípticos.

Os primeiros resultados rigorosos para operadores elípticos aleatórios na forma divergente com coeficientes estocasticamente homogêneos foram obtidos por Papanicolaou e Varadhan in [16].

A descrição matemática de meios microscopicamente heterogêneos, usualmente envolve funções rapidamente oscilantes. O objetivo da teoria da homogenização é fornecer uma rigorosa descrição macroscópica do meio estudado. Com uma vasta literatura, homogenização se firma como uma área bem desenvolvida.

Os problemas de homogenização para várias estruturas aleatórias são amplamente discutidos na literatura física e matemática.

No trabalho [18], cujos resultados são apresentados nesta tese, a noção de espaços de Sobolev no toro d-dimensional é generalizada. Mais precisamente, consideremos d funções estritamente crescentes contínuas à direita, com limites à esquerda $W_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1, \ldots, d$, e fazendo $W(x)=\sum_{i=1}^{d} W_{i}\left(x_{i}\right)$ para $x \in \mathbb{R}^{d}$, consideramos o espaço W-Sobolev consistindo das funções f que possuem gradiente generalizado no sentido fraco. Várias propriedades, que são análogas aos clássicos resultados de espaços de Sobolev, são obtidas. Uma classe de equações elípticas e parabólicas W-generalizada são introduzidas obtendo
resultados de existência e unicidade de soluções fracas. Resultados de homogenização de uma classe de operadores aleatórios são investigados. Finalmente, como aplicação de toda esta teoria desenvolvida, nós provamos um limite hidrodinâmico para processos gradientes com condutâncias (induzida por W) em ambientes aleatórios.

Informalmente, o processo de exclusão com condutâncias induzidas por W em ambientes aleatórios é um sistema de partículas interagentes no toro discreto d-dimensional $N^{-1} \mathbb{T}_{N}^{d}$, na qual no máximo uma partícula por sítio é permitida, e apenas pulos para vizinhos mais próximos são permitidos. Mais ainda, a taxa de pulo na direção e_{j} é proporcional ao recíproco dos incrementos de W com respeito a j-ésima coordenada vezes um termo $a(\omega)$ vindo de um campo aleatório ergódico e elíptico. Tal sistema pode ser entendido como um modelo de difusão em meios heterogêneos. Por exemplo, ele pode modelar difusões de partículas em um meio com membranas permeávei nos pontos de descontinuidades de W, que tende a refletir partículas, creando descontinuidades espaciais nos perfis de densidades. Note que essas membranas são hiperplanos $(d-1)$-dimensionais imersos em um ambiente d-dimensional. Mais ainda, se nós considerarmos que W_{j} tem mais de um ponto de descontinuidade para mais de um j, essas membranas serão variedades mais sofistifcadas, por exemplo, uniões de caixas ($d-1$)-dimensionais.

A evolução do processo de exclusão simples unidimensional com condutâncias tem atraído muita atenção recentemente $[5,6,7,11,12]$, com o limite hidrodinâmico provado em [12] tendo sido também obtido em [5], independetemente. Em todos esses artigos, um limite hidrodinâmico foi provado. O limite hidrodinâmico pode ser interpretado como uma lei dos grandes números para a densidade empírica do sistema.

Mais formalmente, denote por $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}=[0,1)^{d}$ o toro d-dimensional, e por $\mathbb{T}_{N}^{d}=(\mathbb{Z} / N \mathbb{Z})^{d}=$ $\{0, \ldots, N-1\}^{d}$ o toro discreto d-dimensional com N^{d} pontos.

Fixe uma função $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ tal que

$$
W\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{d} W_{k}\left(x_{k}\right)
$$

onde cada $W_{k}: \mathbb{R} \rightarrow \mathbb{R}$ é uma função estritamente crescente, contínua à direita e como limites à esquerda (càdlàg), periódica no sentido de que para todo $u \in \mathbb{R}$

$$
W_{k}(u+1)-W_{k}(u)=W_{k}(1)-W_{k}(0) .
$$

Defina a derivada generalizada $\partial_{W_{k}}$ de uma função $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ por

$$
\partial_{W_{k}} f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{k}+\epsilon, \ldots, x_{d}\right)-f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)}{W_{k}\left(x_{k}+\epsilon\right)-W_{k}\left(x_{k}\right)}
$$

quando o limite acima existir e for finito. Se para uma função $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ as derivadas generalizadas $\partial_{W_{k}}$ existem para todo $k=1, \ldots, d$, denote o gradiente generalizado de f por

$$
\nabla_{W} f=\left(\partial_{W_{1}} f, \ldots, \partial_{W_{d}} f\right)
$$

Mais detalhes sobre essa derivada generalizada podem ser encontrados no artigo [18].
Agora nós vamos introduzir os coeficientes homogêneos estatisticamente e rapidamente oscilantes que serão usados para definir as taxas aleatórias do processo de exclusão com condutâncias.

Seja $(\Omega, \mathcal{F}, \mu)$ um espaço de probabilidade e $\left\{T_{x}: \Omega \rightarrow \Omega ; x \in \mathbb{Z}^{d}\right\}$ um grupo ergódico de transformações \mathcal{F}-mensuráveis que preservam a medida μ :

- $T_{x}: \Omega \rightarrow \Omega$ é \mathcal{F}-mensurável para todo $x \in \mathbb{Z}^{d}$,
- $\mu\left(T_{x} \mathbf{A}\right)=\mu(\mathbf{A})$, para todo $\mathbf{A} \in \mathcal{F}$ e $x \in \mathbb{Z}^{d}$,
- $T_{0}=I, T_{x} \circ T_{y}=T_{x+y}$,
- Todo $f \in L^{1}(\Omega)$ tal que $f\left(T_{x} \omega\right)=f(\omega) \quad \mu$-q.t.p. para todo $x \in \mathbb{Z}^{d}$, é igual a uma constante μ-q.t.p..

A última condição implica que o grupo T_{x} é ergódico.
Vamos agora introduzir as funções a valores vetoriais \mathcal{F}-mensuráveis $\left\{a_{j}(\omega) ; j=1, \ldots, d\right\}$ que satisfazem uma condição de elipticidade: existe $\theta>0$ tal que

$$
\theta^{-1} \leq a_{j}(\omega) \leq \theta
$$

para todo $\omega \in \Omega$ e $j=1, \ldots, d$. Então, defina as matrizes diagonais A^{N} cujos elementos são dados por

$$
a_{j j}^{N}(x):=a_{j}^{N}=a_{j}\left(T_{N x} \omega\right), \quad x \in T_{N}^{d}, \quad j=1, \ldots, d .
$$

Fixe uma realização típica $\omega \in \Omega$ do ambiente aleatório. Para cada $x \in \mathbb{T}_{N}^{d}$ e $j=1, \ldots, d$, defina a taxa simétrica $\xi_{x, x+e_{j}}=\xi_{x+e_{j}, x}$ por

$$
\xi_{x, x+e_{j}}=\frac{a_{j}^{N}(x)}{N\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]}=\frac{a_{j}^{N}(x)}{N\left[W_{j}\left(\left(x_{j}+1\right) / N\right)-W_{j}\left(x_{j} / N\right)\right]},
$$

onde e_{1}, \ldots, e_{d} é a base canônica do \mathbb{R}^{d}.
Distribua partículas em \mathbb{T}_{N}^{d} de tal forma que cada sítio de \mathbb{T}_{N}^{d} está ocupado por no máximo uma partícula. Denote por η as configuações do espaço de estados $\{0,1\}^{\mathbb{T}_{N}^{d}}$ tal que $\eta(x)=0$ se o sítio x está vazio, e $\eta(x)=1$ se o sítio x tem partícula.

O processo de exclusão com condutâncias em um ambiente aleatório é um processo de Markov a tempo contínuo $\left\{\eta_{t}: t \geq 0\right\}$ com espaço de estados $\{0,1\}^{\mathbb{T}_{N}^{d}}=\left\{\eta: \mathbb{T}_{N}^{d} \rightarrow\{0,1\}\right\}$, cujo gerador L_{N} age em funções $f:\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$ como

$$
\left(L_{N} f\right)(\eta)=\sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} \xi_{x, x+e_{j}} c_{x, x+e_{j}}(\eta)\left\{f\left(\sigma^{x, x+e_{j}} \eta\right)-f(\eta)\right\}
$$

onde $\sigma^{x, x+e_{j}} \eta$ é a configuração obtida de η após trocar as variáveis $\eta(x)$ e $\eta\left(x+e_{j}\right)$:

$$
\left(\sigma^{x, x+e_{j}} \eta\right)(y)= \begin{cases}\eta\left(x+e_{j}\right) & \text { se } y=x \\ \eta(x) & \text { se } y=x+e_{j} \\ \eta(y) & \text { caso contrário }\end{cases}
$$

e

$$
c_{x, x+e_{j}}(\eta)=1+b\left\{\eta\left(x-e_{j}\right)+\eta\left(x+2 e_{j}\right)\right\},
$$

com $b>-1 / 2$, e onde todas as somas são módulo N.
Nós consideramos o processo de Markov $\left\{\eta_{t}: t \geq 0\right\}$ nas sobre as configurações $\{0,1\}^{\mathbb{T}_{N}^{d}}$ associadas ao gerador L_{N} na escala difusiva, i.e., L_{N} está acelerado por N^{2}.

Nós agora descrevemos a evolução estocástica do processo. Seja $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}_{N}^{d}$. Com taxa $\xi_{x, x+e_{j}} c_{x, x+e_{j}}(\eta)$ as variáveis ocupacionais $\eta(x), \eta\left(x+e_{j}\right)$ são trocadas. Note que o campo aleatório afeta a taxa por um fator multiplicativo. Se W é diferenciável em $x / N \in[0,1)^{d}$, a taxa pela qual as partículas são trocadas é de ordem 1 para cada direção, mas se algum W_{j} é descontínuo em x_{j} / N, isso não vale mais. De fato, assuma, para fixar idéias, que W_{j} é descontínuo em x_{j} / N, e suave nos segmentos $\left(x_{j} / N, x_{j} / N+\varepsilon e_{j}\right)$ e $\left(x_{j} / N-\varepsilon e_{j}, x_{j} / N\right)$. Assuma, também, que W_{k} é diferenciável na vizinhança de x_{k} / N para $k \neq j$. Neste caso, a taxa pela qual partículas pulam através dos elos da forma $\left\{y-e_{j}, y\right\}$, com $y_{j}=x_{j}$, é de ordem $1 / N$, onde numa vizinhança de tamanho N destes pontos, partículas pulam com taxa 1. Portanto, note que uma partícula no sítio $y-e_{j}$ pula para y com taxa $1 / N$ e pula com taxa 1 para cada uma das $2 d-1$ outras opções. Partículas, portanto, tendem a evitar os elos $\left\{y-e_{j}, y\right\}$. No entanto, como o tempo será re-escalonado difusivamente, e como num intervalo de tempo de tamanho N^{2} uma partícula passa um tempo de ordem N em cada sítio y, partículas serão capazes de cruzar os elos mais lentos $\left\{y-e_{j}, y\right\}$. Desta forma, as condutâncias são induzidas pela função W através da inversa do gradiente de W, donde por sua vez, o ambiente aleatório é dado pela matriz diagonal $A^{N}:=\left(a_{j j}^{N}(x)\right)_{d \times d}$.

O efeito do fator $c_{x, x+e_{j}}(\eta)$ é o seguinte: se o parâmetro b é positivo, a presença de partículas na vizinhança do elo $\left\{x, x+e_{j}\right\}$ aumenta a taxa de troca por um fator de ordem 1 , e se o parâmetro b é negativo, a presença de partículas nos sítios vizinhos diminui a taxa de troca, também, por um fator de ordem 1.

Por fim, em [10], cujos resultados são apresentados nesta tese, definimos o espaço de Fréchet nuclear $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$, e provamos as flutuações no equilíbrio para o modelo com condutâncias. Mais precisamente, denote por $Y_{.}^{N}$ o campo de flutuações de densidades, que é o funcional linear limitado agindo em funções $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ como

$$
Y_{t}^{N}(G)=\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} G(x)\left[\eta_{t}(x)-\rho\right]
$$

Foi provado que se $Y_{.}^{N}$ é o campo de flutuações de densidades definido acima, então, $Y_{.}^{N}$ converge fracamente pra única solução em $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ (o dual topológico do $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right), Y_{t} \in D\left([0, T], S_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right.$), da equação diferencial estocástica

$$
d Y_{t}=\phi^{\prime}(\rho) \nabla A \nabla_{W} Y_{t} d t+\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} d N_{t}
$$

onde $\chi(\rho)=\rho(1-\rho), \phi(\rho)=\rho+b \rho^{2}$, e $\phi^{\prime}(\rho)=1+2 b \rho ; A$ é uma matriz constante diagonal, como j-ésimo elemento dado por $a_{j}:=E\left(a_{j}^{N}\right)$, para todo $N \in \mathbb{N}$; e N_{t} é um martingal de média zero com valores em $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$, com variação quadrática

$$
\langle N(G)\rangle_{t}=t \sum_{j=1}^{d} \int_{\mathbb{T}^{d}}\left[\partial_{W_{j}} G(x)\right]^{2} d\left(x^{j} \otimes W_{j}\right)
$$

onde $d\left(x^{j} \otimes W_{j}\right)$ é a medida produto $d x_{1} \otimes \cdots \otimes d x_{j-1} \otimes d W_{j} \otimes d x_{j+1} \otimes \cdots \otimes d x_{d}$. Mais ainda, N_{t} é um processo Gaussiano com incrementos independentes. O processo Y_{t} é conhecido na literatura como o processo de Ornstein-Uhlenbeck generalizado com características $\phi^{\prime}(\rho) \nabla A \nabla_{W}$ e $\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} \nabla_{W}$.

Referências

[1] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C., Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc., 37, 611-643, 2006.
[2] Derrida, B., Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. P07023, 2007.
[3] Eyink, G., Lebowitz, J.L. and Spohn, H. Hydrodynamics of stationary nonequilibrium states for some lattice gas models, Comm. Math. Phys., 132, 253-283, 1990.
[4] Eyink, G., Lebowitz, J.L. and Spohn, H. Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state, Comm. Math. Phys., 140, 119-131, 1991.
[5] Faggionato, A. Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields, 13, 519-542. 2007.
[6] Faggionato, A. Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit. Electronic Journal of Probability, 13, 2217-2247. 2008.
[7] Faggionato, A., Jara, M., Landim, C. Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probability Theory and Related Fields, 144, 633-667. 2009.
[8] Farfan, J., Landim, C. and Mourragui, M. Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion. Preprint. Available at http://arxiv.org/abs/0903.5526.
[9] Farfan, J., Simas, A. B., Valentim, F. J. Dynamical Large Deviations for a Boundary Driven Stochastic Lattice Gas Model with Many Conserved Quantities, Journal of Statistical Physics, 139, 658-685, 2010.
[10] Farfan, J., Simas, A. B., Valentim, F. J. Equilibrium fluctuations for gradient exclusion processes with conductances in random environments, Stochastic Processes and Their Applications, 120, 15351562, 2010.
[11] Franco, T., Landim, C. Exclusion processes with conductances - Hydrodynamic limit of gradient exclusion processes with conductances. Archive for Rational Mechanics and Analysis, 195, 409-439. 2010.
[12] Jara, M., Landim, C. Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré, Probab. Stat. 44, 341-361. 2008.
[13] Kipnis, C., Landim, C. Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag, Berlin, 1999.
[14] Kipnis, C., Landim, C. and Olla, S. Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system. Ann. Inst. H. Poincaré, Probabilités, 31, 191-221, 1995.
[15] Landim, C., Olla, S. and Volchan, S.B. Driven tracer particle in one dimensional symmetric simple exclusion. Comm. Math. Phys., 192, 287-307, 1998.
[16] Papanicolaou, G., Varadhan, S. R. S. Boundary value problems with rapidly oscillating random coefficients Colloq. Math. Soc. J. Bolyai, 27, 835-873, 1981.
[17] Simas, A. B. Hydrodynamic Limit for a Boundary Driven Stochastic Lattice Gas Model with Many Conserved Quantities, Journal of Statistical Physics, 139, 219-251, 2010.
[18] Simas, A. B., Valentim, F. J. W-Sobolev spaces: Theory, Homogenization and Applications, submetido para publicação, (2010).
[19] Spitzer, F. Interaction of Markov Processes, Adv. in Math. 5, 246-290, 1970.
[20] Spohn, H. Long range correlations for stochastic lattice gases in a non-equilibrium steady state, J. Stat. Phys. A:Math. Gen., 16, 4275-4291, 1983.

Part I

Boundary driven stochastic lattice gas models

Chapter 1

Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities

Artigo publicado no periódico Journal of Statistical Physics, 139, p. 219-251, 2010.

Abstract

We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles on the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities.

1.1 Introduction

Interacting particle systems have been the subject of intense studies during the last 30 years due to the fact that, in one hand, they present many of the collective features that are found in real physical systems, and, in the other hand they are, up to some extent, mathematically tractable. Their study has led in many cases to a more detailed understanding of the microscopic mechanisms behind those collective phenomena. We refer to [14] for further references, and to [5] for recent results.

Since their introduction by Spitzer [21], the simple exclusion process and the zero-range process have been among the most studied interacting particles systems, and they have served as a test field for new mathematical and physical ideas.

In the last years there has been considerable progress in understanding stationary non equilibrium states: reversible systems in contact with different reservoirs at the boundary imposing a gradient on the conserved quantities of the system. In these systems there is a flow of matter through the system and the dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is the following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilibrium states the construction of the stationary state requires the solution of a dynamical problem. One of the most striking typical property of these systems is the presence of long-range correlations. For the symmetric simple exclusion this was already shown in a pioneering paper by Spohn [22]. We refer to $[4,7]$ for two recent reviews on this topic.

The hydrodynamic behavior of the one-dimensional boundary driven exclusion process was studied by [8], [9] and [15]. Also, Landim, Olla and Volchan [18] considered the behavior of a tagged particle in a one-dimensional nearest-neighbor symmetric exclusion process under the action of an external constant, and made connections between the behavior of a tagged particle in this situation and a process with infinite reservoirs.

We consider a stationary non-equilibrium state, whose non-equilibrium is due to external fields and/or different chemical potentials at the boundaries, in which there is a flow of physical quantities, such as heat, electric charge, or chemical substances, across the system. The hydrodynamic behavior for this kind of processes in any dimension has been solved by $[8,9]$. Nevertheless, they have solved this problem only for the case where the unique thermodynamic observable quantity is the empirical density.

Our goal is to extend their results to the situation when there are several thermodynamic variables: density and momentum. It is not always clear that a closed macroscopic dynamical description is possible. However, we show that the system can be described by a hydrodynamic equation: fix a macroscopic time interval $[0, T]$, and consider the dynamical behavior of the empirical density and momentum over such an interval. The law of large numbers for the empirical density and momentum is then called hydrodynamic limit and, in the context of the diffusive scaling limit here considered, is given by a system of parabolic evolution equations which is called hydrodynamic equation. Once the hydrodynamic limit for this model is rigorously established, a reasonable goal is to find an explicit connection between the thermodynamic potentials and the dynamical macroscopic properties like transport coefficients. The study of large deviations provides such a connection. The dynamical large deviation for boundary driven exclusion processes in any dimension with one conserved quantity has been recently proved in [11].

The dynamical large deviations for the model with many conserved quantities is studied at [12], and the hydrodynamic limit obtained in this article is important for such large deviations.

The model which we will study can be informally described as follows: fix a velocity v, an integer $N \geq 1$, and boundary densities $0<\alpha_{v}(\cdot)<1$ and $0<\beta_{v}(\cdot)<1$; at any given time, each site of the set $\{1, \ldots, N-1\} \times\{0, \ldots, N-1\}^{d-1}$ is either empty or occupied by one particle at velocity v. In the bulk, each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or $N-1$ have particles being created or removed in such a way that the local densities are $\alpha_{v}(\tilde{x})$ and $\beta_{v}(\tilde{x})$: at rate $\alpha_{v}(\tilde{x} / N)$ a particle is created at $\{1\} \times\{\tilde{x}\}$ if the site is empty, and at rate $1-\alpha_{v}(\tilde{x})$ the particle at $\{1\} \times\{\tilde{x}\}$ is removed if the site is occupied, and at rate $\beta_{v}(\tilde{x})$ a particle is created at $\{N-1\} \times\{\tilde{x}\}$ if the site is empty, and at rate $1-\beta_{v}(\tilde{x})$ the particle at $\{N-1\} \times\{\tilde{x}\}$ is removed if the site is occupied. Superposed to this dynamics, there is a collision process which exchange velocities of particles in the same site in a way that momentum is conserved.

Similar models have been studied by [1, 10, 20]. In fact, the model we consider here is based on the model of Esposito et al. [10] which was used to derive the Navier-Stokes equation. It is also noteworthy that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two conserved quantities have been studied in [3].

Under diffusive time scaling, assuming local equilibrium, it is not difficult to show that the evolution of the thermodynamic quantities is described by the parabolic system of equations

$$
\begin{equation*}
\partial_{t}(\rho, \boldsymbol{p})+\sum_{v \in \mathcal{V}} \tilde{v}[v \cdot \nabla F(\rho, \boldsymbol{p})]=\frac{1}{2} \Delta(\rho, \boldsymbol{p}), \tag{1.1.1}
\end{equation*}
$$

where $\tilde{v}=\left(1, v_{1}, \ldots, v_{d}\right), \rho$ stands for the density and $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ for the momentum. F is a thermodynamical quantity determined by the ergodic properties of the dynamics.

Therefore, the purpose of this article is to define an interacting particle system whose macroscopic density profile evolves according to the partial differential equation given by (1.1.1) with initial condition

$$
(\rho, \boldsymbol{p})(0, \cdot)=\left(\rho_{0}, \boldsymbol{p}_{0}\right)(\cdot) \text { and }(\rho, \boldsymbol{p})(t, x)=(\rho, \boldsymbol{p})_{b}(x), x \in \partial D
$$

with D being a suitable domain, and the equality on the boundary being on the trace sense.
This equation derives from the underlying stochastic dynamics through an appropriate scaling limit in which the microscopic time and space coordinates are rescaled diffusively. The hydrodynamic equation (1.1.1) thus represents the law of large numbers for the empirical density and momentum of the stochastic lattice gas. The convergence has to be understood in probability with respect to the law of the stochastic lattice gas. Finally, the initial condition for (1.1.1) depends on the initial distribution of particles. Of course many microscopic configurations give rise to the same initial condition $\left(\rho_{0}, \boldsymbol{p}_{0}\right)(\cdot)$.

The article is organized as follows: in Section 1.2 we establish the notation and state the main results of the article; in Section 1.3, we prove the hydrodynamic limit for the particle system we are interested in; the proof of a Replacement Lemma needed for the hydrodynamic limit is postponed to Section 1.4;
in Section 1.5 we prove the uniqueness of weak solutions of the hydrodynamic equations also needed for the hydrodynamic limits.

1.2 Notation and results

Let $\mathbb{T}_{N}^{d}=\{0, \ldots, N-1\}^{d}=(\mathbb{Z} / N \mathbb{Z})^{d}$, the d-dimensional discrete torus, and let $D_{N}^{d}=S_{N} \times \mathbb{T}_{N}^{d-1}$, with $S_{N}=\{1, \ldots, N-1\}$. Further, let also $\mathcal{V} \subset \mathbb{R}^{d}$ be a finite set of velocities $v=\left(v_{1}, \ldots, v_{d}\right)$. Assume that \mathcal{V} is invariant under reflexions and permutations of the coordinates:

$$
\left(v_{1}, \ldots, v_{i-1},-v_{i}, v_{i+1}, \ldots, v_{d}\right) \text { and }\left(v_{\sigma(1)}, \ldots, v_{\sigma(d)}\right)
$$

belong to \mathcal{V} for all $1 \leq i \leq d$, and all permutations σ of $\{1, \ldots, d\}$, provided $\left(v_{1}, \ldots, v_{d}\right)$ belongs to \mathcal{V}. Finally, denote the d-dimensional torus by $\mathbb{T}^{d}=[0,1)^{d}=(\mathbb{R} / \mathbb{Z})^{d}$.

On each site of D_{N}^{d}, at most one particle for each velocity is allowed. We denote: the number of particles with velocity v at $x, v \in \mathcal{V}, x \in D_{N}^{d}$, by $\eta(x, v) \in\{0,1\}$; the number of particles in each velocity v at a site x by $\eta_{x}=\{\eta(x, v) ; v \in \mathcal{V}\}$; and a configuration by $\eta=\left\{\eta_{x} ; x \in D_{N}^{d}\right\}$. The set of particle configurations is $X_{N}=\left(\{0,1\}^{\mathcal{V}}\right)^{D_{N}^{d}}$.

On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles of the same velocity, and (ii) binary collision between particles of different velocities. Let $p(x, v)$ be an irreducible probability transition function of finite range, and mean velocity v :

$$
\sum_{x} x p(x, v)=v
$$

The jump law and the waiting times are chosen so that the jump rate from site x to site $x+y$ for a particle with velocity v is

$$
P_{N}(y, v)=\frac{1}{2} \sum_{j=1}^{d}\left(\delta_{y, e_{j}}+\delta_{y,-e_{j}}\right)+\frac{1}{N} p(y, v)
$$

where $\delta_{x, y}$ stands for the Kronecker delta, which equals one if $x=y$ and 0 otherwise, and $\left\{e_{1}, \ldots, e_{d}\right\}$ is the canonical basis in \mathbb{R}^{d}.

1.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator \mathcal{L}_{N} which is the superposition of the boundary dynamics with the collision and exclusion:

$$
\begin{equation*}
\mathcal{L}_{N}=N^{2}\left\{\mathcal{L}_{N}^{b}+\mathcal{L}_{N}^{c}+\mathcal{L}_{N}^{e x}\right\} \tag{1.2.1}
\end{equation*}
$$

where \mathcal{L}_{N}^{b} stands for the generator which models the part of the dynamics at which a particle at the boundary can enter or leave the system, \mathcal{L}_{N}^{c} stands for the generator which models the collision part of the dynamics and lastly, $\mathcal{L}_{N}^{e x}$ models the exclusion part of the dynamics. Let f be a local function on X_{N}. The generator of the exclusion part of the dynamics, $\mathcal{L}_{N}^{e x}$, is given by

$$
\left(\mathcal{L}_{N}^{e x} f\right)(\eta)=\sum_{v \in \mathcal{V}} \sum_{x, x+z \in D_{N}^{d}} \eta(x, v)[1-\eta(z, v)] P_{N}(z-x, v)\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right]
$$

where

$$
\eta^{x, y, v}(z, w)=\left\{\begin{array}{cc}
\eta(y, v) & \text { if } w=v \text { and } z=x \\
\eta(x, v) & \text { if } w=v \text { and } z=y \\
\eta(z, w) & \text { otherwise }
\end{array}\right.
$$

We will often use the decomposition

$$
\mathcal{L}_{N}^{e x}=\mathcal{L}_{N}^{e x, 1}+\mathcal{L}_{N}^{e x, 2}
$$

where

$$
\left(\mathcal{L}_{N}^{e x, 1} f\right)(\eta)=\frac{1}{2} \sum_{v \in \mathcal{V}} \sum_{\substack{x, x+z \in D_{N}^{d} \\|z-x|=1}} \eta(x, v)[1-\eta(z, v)]\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right]
$$

and

$$
\left(\mathcal{L}_{N}^{e x, 2} f\right)(\eta)=\frac{1}{N} \sum_{v \in \mathcal{V}} \sum_{x, x+z \in D_{N}^{d}} \eta(x, v)[1-\eta(z, v)] p(z-x, v)\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right]
$$

The generator of the collision part of the dynamics, \mathcal{L}_{N}^{c}, is given by

$$
\left(\mathcal{L}_{N}^{c} f\right)(\eta)=\sum_{y \in D_{N}^{d}} \sum_{q \in \mathcal{Q}} p(y, q, \eta)\left[f\left(\eta^{y, q}\right)-f(\eta)\right]
$$

where \mathcal{Q} is the set of all collisions which preserve momentum:

$$
\mathcal{Q}=\left\{q=\left(v, w, v^{\prime}, w^{\prime}\right) \in \mathcal{V}^{4}: v+w=v^{\prime}+w^{\prime}\right\}
$$

the rate $p(y, q, \eta)$ is given by

$$
p(y, q, \eta)=\eta(y, v) \eta(y, w)\left[1-\eta\left(y, v^{\prime}\right)\right]\left[1-\eta\left(y, w^{\prime}\right)\right],
$$

and for $q=\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$, the configuration $\eta^{y, q}$ after the collision is defined as

$$
\eta^{y, q}(z, u)=\left\{\begin{array}{cc}
\eta\left(y, v_{j+2}\right) & \text { if } z=y \text { and } u=v_{j} \text { for some } 0 \leq j \leq 3, \\
\eta(z, u) & \text { otherwise },
\end{array}\right.
$$

where the index of v_{j+2} should be taken modulo 4 .
Particles of velocities v and w at the same site collide at rate one and produce two particles of velocities v^{\prime} and w^{\prime} at that site.

Finally, the generator of the boundary part of the dynamics is given by

$$
\begin{aligned}
\left(\mathcal{L}_{N}^{b} f\right)(\eta) & =\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \sum_{v \in \mathcal{V}}\left[\alpha_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right] \\
& +\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N-1}} \sum_{v \in \mathcal{V}}\left[\beta_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\beta_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right]
\end{aligned}
$$

where $\tilde{x}=\left(x_{2}, \ldots, x_{d}\right)$,

$$
\sigma^{x, v} \eta(y, w)=\left\{\begin{array}{cc}
1-\eta(x, w), & \text { if } w=v \text { and } y=x, \\
\eta(y, w), & \text { otherwise },
\end{array}\right.
$$

and for every $v \in \mathcal{V}, \alpha_{v}, \beta_{v} \in C^{2}\left(\mathbb{T}^{d-1}\right)$. We also assume that, for every $v \in \mathcal{V}, \alpha_{v}$ and β_{v} have images belonging to some compact subset of $(0,1)$. The functions α_{v} and β_{v}, which affect the birth and death rates at the two boundaries, represent the densities of the reservoirs.

Note that time has been speeded up diffusively in (1.2.1). Let $\{\eta(t), t \geq 0\}$ be the Markov process with generator \mathcal{L}_{N} and denote by $\left\{S_{t}^{N}, t \geq 0\right\}$ the semigroup associated to \mathcal{L}_{N}.

Let $D\left(\mathbb{R}_{+}, X_{N}\right)$ be the set of right continuous functions with left limits taking values on X_{N}. For a probability measure μ on X_{N}, denote by \mathbb{P}_{μ} the measure on the path space $D\left(\mathbb{R}_{+}, X_{N}\right)$ induced by $\{\eta(t): t \geq 0\}$ and the initial measure μ. Expectation with respect to \mathbb{P}_{μ} is denoted by \mathbb{E}_{μ}.

1.2.2 Mass and momentum

For each configuration $\xi \in\{0,1\}^{\mathcal{V}}$, denote by $I_{0}(\xi)$ the mass of ξ and by $I_{k}(\xi), k=1, \ldots, d$, the momentum of ξ :

$$
I_{0}(\xi)=\sum_{v \in \mathcal{V}} \xi(v), \quad I_{k}(\xi)=\sum_{v \in \mathcal{V}} v_{k} \xi(v)
$$

Set $\boldsymbol{I}(\xi):=\left(I_{0}(\xi), \ldots, I_{d}(\xi)\right)$. Assume that the set of velocities is chosen in such a way that the unique quantities conserved by the random walk dynamics described above are mass and momentum: $\sum_{x \in D_{N}^{d}} \boldsymbol{I}\left(\eta_{x}\right)$. Two examples of sets of velocities satisfying these conditions can be found at [10].

For each chemical potential $\boldsymbol{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{d}\right) \in \mathbb{R}^{d+1}$, denote by m_{λ} the measure on $\{0,1\}^{\mathcal{V}}$ given by

$$
\begin{equation*}
m_{\lambda}(\xi)=\frac{1}{Z(\boldsymbol{\lambda})} \exp \{\lambda \cdot \boldsymbol{I}(\xi)\} \tag{1.2.2}
\end{equation*}
$$

where $Z(\boldsymbol{\lambda})$ is a normalizing constant. Note that $m_{\boldsymbol{\lambda}}$ is a product measure on $\{0,1\}^{\mathcal{V}}$, i.e., that the variables $\{\xi(v): v \in \mathcal{V}\}$ are independent under $m_{\boldsymbol{\lambda}}$.

Denote by $\mu_{\boldsymbol{\lambda}}^{N}$ the product measure on X_{N}, with marginals given by

$$
\mu_{\boldsymbol{\lambda}}^{N}\{\eta: \eta(x, \cdot)=\xi\}=m_{\boldsymbol{\lambda}}(\xi)
$$

for each ξ in $\{0,1\}^{\mathcal{V}}$ and $x \in D_{N}^{d}$. Note that $\left\{\eta(x, v): x \in D_{N}^{d}, v \in \mathcal{V}\right\}$ are independent variables under $\mu_{\boldsymbol{\lambda}}^{N}$, and that the measure μ_{λ}^{N} is invariant for the exclusion process with periodic boundary condition.

The expectation under μ_{λ}^{N} of the mass and momentum are given by

$$
\begin{aligned}
\rho(\boldsymbol{\lambda}) & :=E_{\mu_{\boldsymbol{\lambda}}^{N}}\left[I_{0}\left(\eta_{x}\right)\right]=\sum_{v \in \mathcal{V}} \theta_{v}(\boldsymbol{\lambda}), \\
p_{k}(\boldsymbol{\lambda}) & :=E_{\mu_{\boldsymbol{\lambda}}^{N}}\left[I_{k}\left(\eta_{x}\right)\right]=\sum_{v \in \mathcal{V}} v_{k} \theta_{v}(\boldsymbol{\lambda}) .
\end{aligned}
$$

In this formula $\theta_{v}(\boldsymbol{\lambda})$ denotes the expected value of the density of particles with velocity v under $m_{\boldsymbol{\lambda}}$:

$$
\theta_{v}(\boldsymbol{\lambda}):=E_{m_{\boldsymbol{\lambda}}}[\xi(v)]=\frac{\exp \left\{\lambda_{0}+\sum_{k=1}^{d} \lambda_{k} v_{k}\right\}}{1+\exp \left\{\lambda_{0}+\sum_{k=1}^{d} \lambda_{k} v_{k}\right\}}
$$

Denote by $(\rho, \boldsymbol{p})(\boldsymbol{\lambda}):=\left(\rho(\boldsymbol{\lambda}), p_{1}(\boldsymbol{\lambda}), \ldots, p_{d}(\boldsymbol{\lambda})\right)$ the map that associates the chemical potential to the vector of density and momentum. It is possible to prove that (ρ, \boldsymbol{p}) is a diffeomorphism onto $\mathfrak{U} \subset \mathbb{R}^{d+1}$, the interior of the convex envelope of $\left\{\boldsymbol{I}(\xi), \xi \in\{0,1\}^{\mathcal{V}}\right\}$. Denote by $\Lambda=\left(\Lambda_{0}, \ldots, \Lambda_{d}\right): \mathfrak{U} \rightarrow \mathbb{R}^{d+1}$ the inverse of (ρ, \boldsymbol{p}). This correspondence allows one to parameterize the invariant states by the density and momentum: for each (ρ, \boldsymbol{p}) in \mathfrak{U} we have a product measure $\nu_{\rho, \boldsymbol{p}}^{N}=\mu_{\Lambda(\rho, \boldsymbol{p})}^{N}$ on X_{N}.

1.2.3 Hydrodynamic limit for the boundary driven exclusion process

Let $D^{d}=[0,1] \times \mathbb{T}^{d-1}$. Fix $\rho_{0}: D^{d} \rightarrow \mathbb{R}_{+}$and $\boldsymbol{p}_{0}: D^{d} \rightarrow \mathbb{R}^{d}$, where $\boldsymbol{p}_{0}=\left(p_{0,1}, \ldots, p_{0, d}\right)$. We say that a sequence of probability measures $\left(\mu_{N}\right)_{N}$ on X_{N} is associated to the density profile ρ_{0} and momentum profile \boldsymbol{p}_{0}, if, for every continuous function $G: D^{d} \rightarrow \mathbb{R}$ and for every $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mu^{N}\left[\eta:\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} G\left(\frac{x}{N}\right) I_{0}\left(\eta_{x}\right)-\int_{D^{d}} G(u) \rho_{0}(u) d u\right|>\delta\right]=0
$$

and for every $1 \leq k \leq d$

$$
\lim _{N \rightarrow \infty} \mu^{N}\left[\eta:\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} G\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}\right)-\int_{D^{d}} G(u) p_{0, k}(u) d u\right|>\delta\right]=0
$$

Fix $T>0$ and let $\left(B,\|\cdot\|_{B}\right)$ be a Banach space. We denote by $L^{2}([0, T], B)$ the Banach space of measurable functions $U:[0, T] \rightarrow B$ for which

$$
\|U\|_{L^{2}([0, T], B)}^{2}=\int_{0}^{T}\left\|U_{t}\right\|_{B}^{2} d t<\infty .
$$

Moreover, we denote by $H^{1}\left(D^{d}\right)$ the Sobolev space of measurable functions in $L^{2}\left(D^{d}\right)$ that have generalized derivatives in $L^{2}\left(D^{d}\right)$.

For $x=\left(x_{1}, \tilde{x}\right) \in\{0,1\} \times \mathbb{T}^{d-1}$, let

$$
d(x)= \begin{cases}a(\tilde{x})=\sum_{v \in \mathcal{V}}\left(\alpha_{v}(\tilde{x}), v_{1} \alpha_{v}(\tilde{x}), \ldots, v_{d} \alpha_{v}(\tilde{x})\right), & \text { if } x_{1}=0 \tag{1.2.3}\\ b(\tilde{x})=\sum_{v \in \mathcal{V}}\left(\beta_{v}(\tilde{x}), v_{1} \beta_{v}(\tilde{x}), \ldots, v_{d} \beta_{v}(\tilde{x})\right), & \text { if } x_{1}=1\end{cases}
$$

Fix a bounded density profile $\rho_{0}: D^{d} \rightarrow \mathbb{R}_{+}$, and a bounded momentum profile $\boldsymbol{p}_{0}: D^{d} \rightarrow \mathbb{R}^{d}$. A bounded function $(\rho, \boldsymbol{p}):[0, T] \times D^{d} \rightarrow \mathbb{R}_{+} \times \mathbb{R}^{d}$ is a weak solution of the system of parabolic partial differential equations

$$
\left\{\begin{array}{c}
\partial_{t}(\rho, \boldsymbol{p})+\sum_{v \in \mathcal{V}} \tilde{v}\left[v \cdot \nabla \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)\right]=\frac{1}{2} \Delta(\rho, \boldsymbol{p}), \tag{1.2.4}\\
(\rho, \boldsymbol{p})(0, \cdot)=\left(\rho_{0}, \boldsymbol{p}_{0}\right)(\cdot) \text { and }(\rho, \boldsymbol{p})(t, x)=d(x), x \in\{0,1\} \times \mathbb{T}^{d-1}
\end{array}\right.
$$

if for every vector valued function $H:[0, T] \times D^{d} \rightarrow \mathbb{R}^{d+1}$ of class $C^{1,2}\left([0, T] \times D^{d}\right)$ vanishing at the boundary, we have

$$
\begin{gathered}
\int_{D^{d}} H(T, u) \cdot(\rho, \boldsymbol{p})(T, u) d u-\int_{D^{d}} H(0, u) \cdot\left(\rho_{0}, \boldsymbol{p}_{0}\right)(u) d u \\
=\int_{0}^{T} d t \int_{D^{d}} d u\left\{(\rho, \boldsymbol{p})(t, u) \cdot \partial_{t} H(t, u)+\frac{1}{2}(\rho, \boldsymbol{p})(t, u) \cdot \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} H(t, u)\right\} \\
-\int_{0}^{T} d t \int_{\{1\} \times \mathbb{T}^{d-1}} d S b(\tilde{u}) \cdot \partial_{u_{1}} H(t, u)+\int_{0}^{T} d t \int_{\{0\} \times \mathbb{T}^{d-1}} d S a(\tilde{u}) \cdot \partial_{u_{1}} H(t, u) \\
-\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H(t, u),
\end{gathered}
$$

$d S$ being the Lebesgue measure on \mathbb{T}^{d-1}.
We say that that the solution (ρ, \boldsymbol{p}) has finite energy if its components belong to $L^{2}\left([0, T], H^{1}\left(D^{d}\right)\right)$:

$$
\int_{0}^{T} d s\left(\int_{D^{d}}\|\nabla \rho(s, u)\|^{2} d u\right)<\infty
$$

and

$$
\int_{0}^{T} d s\left(\int_{D^{d}}\left\|\nabla p_{k}(s, u)\right\|^{2} d u\right)<\infty
$$

for $k=1, \ldots, d$, where ∇f represents the generalized gradient of the function f.
In Section 1.5 we prove that there exists at most one weak solution of the problem (1.2.4).
Theorem 1.2.1. Let $\left(\mu^{N}\right)_{N}$ be a sequence of probability measures on X_{N} associated to the profile $\left(\rho_{0}, \boldsymbol{p}_{0}\right)$. Then, for every $t \geq 0$, for every continuous function $H: D^{d} \rightarrow \mathbb{R}$ vanishing at the boundary, and for every $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{0}\left(\eta_{x}(t)\right)-\int_{D^{d}} H(u) \rho(t, u) d u\right|>\delta\right]=0
$$

and for $1 \leq k \leq d$

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(t)\right)-\int_{D^{d}} H(u) \boldsymbol{p}_{k}(t, u) d u\right|>\delta\right]=0
$$

where (ρ, \boldsymbol{p}) has finite energy and is the unique weak solution of equation (1.2.4).
The strategy to prove Theorem 1.2.1 is to use a replacement lemma, together with some estimates on Dirichlet forms and entropies for this boundary driven process.

1.3 Hydrodynamic limit for the boundary driven process

Fix $T>0$, let \mathcal{M}_{+}be the space of finite positive measures on D^{d} endowed with the weak topology, and let \mathcal{M} be the space of bounded variation signed measures on D^{d} endowed with the weak topology. Let $\mathcal{M}_{+} \times \mathcal{M}^{d}$ be the cartesian product of these spaces endowed with the product topology, which is metrizable.

Recall that the conserved quantities are the mass and momentum presented in subsection 1.2.2. For $k=0, \ldots, d$, denote by $\pi_{t}^{k, N}$ the empirical measure associated to the k th conserved quantity:

$$
\begin{equation*}
\pi_{t}^{k, N}=\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} I_{k}\left(\eta_{x}(t)\right) \delta_{x / N} \tag{1.3.1}
\end{equation*}
$$

where δ_{u} stands for the Dirac measure supported on u. We denote by $<\pi_{t}^{k, N}, H>$ the integral of a test function H with respect to an empirical measure $\pi_{t}^{k, N}$.

Let $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ be the set of right continuous functions with left limits taking values on $\mathcal{M}_{+} \times \mathcal{M}^{d}$. We consider the sequence of probability measures on $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)\left(Q_{N}\right)_{N}$ that corresponds to the Markov process $\pi_{t}^{N}=\left(\pi_{t}^{0, N}, \ldots, \pi_{t}^{d, N}\right)$ starting from μ_{N}.

Let V be an open neighborhood of D^{d}, and consider, for each $v \in \mathcal{V}$, smooth functions $\kappa_{k}^{v}: V \rightarrow(0,1)$ in $C^{2}(V)$, for $k=0, \ldots, d$. We assume that each κ_{k}^{v} has its image contained in some compact subset of $(0,1)$, that the restriction of $\kappa=\sum_{v \in \mathcal{V}}\left(\kappa_{0}^{v}, v_{1} \kappa_{1}^{v}, \ldots, v_{d} \kappa_{d}^{v}\right)$ to $\{0\} \times \mathbb{T}^{d-1}$ equals the vector valued function $a(\cdot)$ defined in (1.2.3), and that the restriction of κ to $\{1\} \times \mathbb{T}^{d-1}$ equals the vector valued function $b(\cdot)$, also defined in (1.2.3), in the sense that $\kappa(x)=d\left(x_{1}, \tilde{x}\right)$ if $x \in\{0,1\} \times \mathbb{T}^{d-1}$.

Further, we may choose κ for which there exists a constant $\theta>0$ such that:

$$
\begin{array}{lr}
\kappa\left(u_{1}, \tilde{u}\right)=d(-1, \tilde{u}) \quad \text { if } 0 \leq u_{1} \leq \theta \\
\kappa\left(u_{1}, \tilde{u}\right)=d(1, \tilde{u}) \quad \text { if } \quad 1-\theta \leq u_{1} \leq 1
\end{array}
$$

for all $\tilde{u} \in \mathbb{T}^{d-1}$. In that case, for every N large enough, ν_{κ}^{N} is reversible for the process with generator \mathcal{L}_{N}^{b} and then $\left\langle-N^{2} \mathcal{L}_{N}^{b} f, f\right\rangle_{\nu_{\kappa}^{N}}$ is positive.

We then consider ν_{κ}^{N} the product measure on X_{N} with marginals given by

$$
\nu_{\kappa}^{N}\{\eta: \eta(x, \cdot)=\xi\}=m_{\Lambda(\kappa(x))}(\xi)
$$

where $m_{\lambda}(\cdot)$ was defined in (1.2.2). Note that with this choice, for N sufficiently large, we have that if $x \in\{1\} \times \mathbb{T}_{N}^{d-1}$, then $E_{\nu_{\kappa}^{N}}[\eta(x, v)]=\alpha_{v}(\tilde{x} / N)$ and if $x \in\{N-1\} \times \mathbb{T}_{N}^{d-1}$, then $E_{\nu_{\kappa}^{N}}[\eta(x, v)]=\beta_{v}(\tilde{x} / N)$.

1.3.1 Entropy estimates

Let us recall some definitions. Recall that S_{t}^{N} is the semigroup associated to the generator $\mathcal{L}_{N}=$ $N^{2}\left(\mathcal{L}_{N}^{e x}+\mathcal{L}_{N}^{c}+\mathcal{L}_{N}^{b}\right)$. Denote by $f_{t}=f_{t}^{N}$ the Radon-Nikodym derivative of $\mu^{N} S_{t}^{N}$ with respect to ν_{κ}^{N}. Define $D_{\nu_{\kappa}^{N}}$ by

$$
D_{\nu_{\kappa}^{N}}=D_{\nu_{k}^{N}}^{e x}+D_{\nu_{\kappa}^{N}}^{c}+D_{\nu_{k}^{N}}^{b}
$$

where

$$
\begin{gathered}
D_{\nu_{\kappa}^{N}}^{e x}=\sum_{v \in \mathcal{V}} \sum_{x \in D_{N}^{d}} \sum_{x+z \in D_{N}^{d}} P_{N}(z-x, v) \int\left[\sqrt{f\left(\eta^{x, z, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{n}(d \eta), \\
D_{\nu_{\kappa}^{N}}^{c}=\sum_{q \in \mathcal{Q}} \sum_{x \in D_{N}^{d}} \int p(x, q, \eta)\left[\sqrt{f\left(\eta^{x, q}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta)
\end{gathered}
$$

and

$$
\begin{aligned}
& D_{\nu_{\kappa}^{N}}^{b}=\sum_{v \in \mathcal{V}} \sum_{x \in\{1\} \times \mathbb{T}_{N}^{d-1}} \int\left[\alpha_{v}(\tilde{x} / N)(1-\eta(x, v))+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta(x, v)\right] \times \\
& \times\left[\sqrt{f\left(\sigma^{x, v} \eta\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta)+ \\
& +\sum_{v \in \mathcal{V}} \sum_{x \in\{N-1\} \times \mathbb{T}_{N}^{d-1}} \int\left[\beta_{v}(\tilde{x} / N)(1-\eta(x, v))+\left(1-\beta_{v}(\tilde{x} / N)\right) \eta(x, v)\right] \times \\
& \times\left[\sqrt{f\left(\sigma^{x, v} \eta\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta) .
\end{aligned}
$$

Proposition 1.3.1. There exists a finite constant $C=C(\alpha, \beta)$ such that

$$
\begin{equation*}
\partial_{t} H\left(\mu^{N} S_{t}^{N} \mid \nu_{\kappa}^{N}\right) \leq-N^{2} D_{\nu_{\kappa}^{N}}\left(f_{t}\right)+C N^{d} . \tag{1.3.2}
\end{equation*}
$$

Proof: Denote by \mathcal{L}_{ν}^{*} the adjoint operator of \mathcal{L}_{N} with respect to ν_{κ}^{N}. Then, f_{t} is the solution of the forward equation

$$
\left\{\begin{array}{l}
\partial_{t} f_{t}=N^{2} \mathcal{L}_{\nu}^{*} f_{t} \\
f_{0}=d \mu^{N} / d \nu_{\kappa}^{N}
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
\partial_{t} H\left(\mu^{N} S_{t}^{N} \mid \nu_{\kappa}^{N}\right) & =\int N^{2} \mathcal{L}_{\nu}^{*} f_{t} \log f_{t} d \nu_{\kappa}^{N}+\int N^{2} \mathcal{L}_{\nu}^{*} f_{t} d \nu_{\kappa}^{N}=\int f_{t} N^{2} \mathcal{L}_{N} \log f_{t} d \nu_{\kappa}^{N} \\
& =N^{2} \int f_{t}\left(\mathcal{L}_{N} \log f_{t}-\frac{\mathcal{L}_{N} f_{t}}{f_{t}}\right) d \nu_{\kappa}^{N}+N^{2} \int \mathcal{L}_{N} f_{t} d \nu_{\kappa}^{N}
\end{aligned}
$$

Note that the last term is the price paid for not using an invariant measure.
Since for every $a, b>0, a \log (b / a)-(b-a)$ is less than or equal to $-(\sqrt{b}-\sqrt{a})^{2}$, for every $x, y \in D_{N}^{d}$, we have

$$
f_{t} \mathcal{L}_{x, y, v}^{e x} \log f_{t}-\mathcal{L}_{x, y, v}^{e x} f_{t} \leq-P_{N}(y-x, v)\left[\sqrt{f_{t}\left(\eta^{x, y, v}\right)}-\sqrt{f_{t}(\eta)}\right]^{2}
$$

An analogous calculation for the other parts of the generator permits to conclude that

$$
N^{2} \int f_{t}\left(\mathcal{L}_{N} \log f_{t}-\frac{\mathcal{L}_{N} f_{t}}{f_{t}}\right) d \nu_{\kappa}^{N} \leq-N^{2} D_{\nu_{\kappa}^{N}}\left(f_{t}\right)
$$

To conclude the proposition we need a bound for $N^{2} \int \mathcal{L}_{N} f_{t} d \nu_{\kappa}^{N}$. Let us write it explicitly:

$$
N^{2} \int \mathcal{L}_{N} f_{t} d \nu_{\kappa}^{N}=N^{2} \int\left(\mathcal{L}_{N}^{e x, 1} f_{t}+\mathcal{L}_{N}^{e x, 2} f_{t}+\mathcal{L}_{N}^{c} f_{t}+\mathcal{L}_{N}^{b} f_{t}\right) d \nu_{\kappa}^{N}
$$

Now, we compute each term inside this integral separately.

$$
\begin{aligned}
N^{2} \int \mathcal{L}_{N}^{e x, 1} f_{t} d \nu_{\kappa}^{N} & =N^{2} \int \sum_{v \in \mathcal{V}} \sum_{x \in D_{N}^{d}} \sum_{j=1}^{d}\left[f\left(\eta-\mathfrak{d}_{x, v}+\mathfrak{d}_{x+e_{j}, v}\right)-f(\eta)\right] d \nu_{\kappa}^{N} \\
& +N^{2} \int \sum_{v \in \mathcal{V}} \sum_{x \in D_{N}^{d}} \sum_{j=1}^{d}\left[f\left(\eta-\mathfrak{d}_{x, v}+\mathfrak{d}_{x-e_{j}, v}\right)-f(\eta)\right] d \nu_{\kappa}^{N}
\end{aligned}
$$

where $\mathfrak{d}_{x, v}$ represents a configuration with one particle at position x and velocity v, and no particles elsewhere. Then, if we let

$$
\gamma_{x, v}=\theta_{v}(\Lambda(\kappa(x))) /\left(1-\theta_{v}(\Lambda(\kappa(x)))\right)
$$

the change of variables $\eta-\mathfrak{d}_{x, v}+\mathfrak{d}_{x+e_{j}, v}=\xi$, changes the measure as $d \nu_{\kappa}^{N}(\eta) / d \nu_{\kappa}^{N}(\xi)=\gamma_{x, v} / \gamma_{x+e_{j}, v}$. Hence, after changing the variables, we obtain

$$
\begin{aligned}
N^{2} \int \mathcal{L}_{N}^{e x, 1} f_{t} d \nu_{\kappa}^{N} & =N^{2} \sum_{v \in \mathcal{V}} \sum_{j=1}^{d} \int \sum_{x \in D_{N}^{d}}\left[\frac{\gamma_{x, v}}{\gamma_{x+e_{j}, v}}-1\right] f_{t}(\eta) d \nu_{\kappa}^{N} \\
& +N^{2} \sum_{v \in \mathcal{V}} \sum_{j=1}^{d} \int \sum_{x \in D_{N}^{d}}\left[\frac{\gamma_{x, v}}{\gamma_{x-e_{j}, v}}-1\right] f_{t}(\eta) d \nu_{\kappa}^{N} \\
& =\sum_{v \in \mathcal{V}} \sum_{j=1}^{d} \int \sum_{x \in D_{N}^{d}} \frac{\Delta_{N} \gamma(x, v)}{\gamma_{x, v}} f_{t}(\eta) d \nu_{\kappa}^{N} \\
& +N \sum_{v \in \mathcal{V}} \int \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \frac{\partial_{u_{1}}^{N} \gamma(x, v)}{\gamma_{x, v}} f_{t}(\eta) d \nu_{\kappa}^{N} \\
& -N \sum_{v \in \mathcal{V}} \int \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N_{-1}}} \frac{\partial_{u_{1}}^{N} \gamma(x, v)}{\gamma_{x, v}} f_{t}(\eta) d \nu_{\kappa}^{N}
\end{aligned}
$$

Since $\gamma_{x, v}$ is smooth and does not vanish, we can bound the above quantity by $C_{1} N^{d}$, where C_{1} is a constant depending only on α and β. By a similar approach, one may conclude that

$$
N^{2} \int \mathcal{L}_{N}^{e x, 2} f_{t} d \nu_{\kappa}^{N} \leq \sum_{v \in \mathcal{V}} \sum_{j=1}^{d} v_{j} \sum_{x \in D_{N}^{d}} \frac{\partial_{u_{i}}^{N} \gamma(x, v)}{\gamma_{x, v}},
$$

which is clearly bounded by $C_{2} N^{d}$, where C_{2} is a constant depending only on α and β.
We now move to the generator with respect to collision. The change of variables $\eta^{y, q}=\xi$ changes the measure as $d \nu_{\kappa}^{N}(\eta) / d \nu_{\kappa}^{N}(\xi)=\left(\gamma_{y, v} \gamma_{y, w}\right) /\left(\gamma_{y, v^{\prime}} \gamma_{y, w^{\prime}}\right)$, where $v+w=v^{\prime}+w^{\prime}$. Then, clearly, $\left(\gamma_{y, v} \gamma_{y, w}\right) /\left(\gamma_{y, v^{\prime}} \gamma_{y, w^{\prime}}\right)=1$, and therefore

$$
N^{2} \int \mathcal{L}_{N}^{c} f_{t} d \nu_{\kappa}^{N}=0
$$

Lastly, we note that the change of variables $\sigma^{x, v} \eta=\xi$ changes the measure $d \nu_{\kappa}^{N}(\eta) / d \nu_{\kappa}^{N}(\xi)=$ $\alpha_{v}(\tilde{x} / N) /\left(1-\alpha_{v}(\tilde{x} / N)\right)$ or $\left(1-\alpha_{v}(\tilde{x} / N)\right) / \alpha_{v}(\tilde{x} / N)$, depending on whether there is or there is not a particle at the site x with velocity v, and analogously for β. Therefore, a simple computation shows that

$$
N^{2} \int \mathcal{L}_{N}^{b} f_{t} d \nu_{\kappa}^{N}=0
$$

which concludes the Proposition.
Let $\left\langle f, g>_{\nu}\right.$ be the inner product in $L^{2}(\nu)$ of f and g :

$$
<f, g>_{\nu}=\int f g d \nu
$$

Proposition 1.3.2. There exist constants $C_{1}>0$ and $C_{2}=C_{2}(\alpha, \beta)>0$ such that for every density f with respect to ν_{κ}^{N}, then

$$
<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{\kappa}^{N}} \leq-C_{1} D_{\nu_{\kappa}^{N}}(f)+C_{2} N^{d-2}
$$

Proof: A simple computation permits to conclude that $D_{\nu_{\kappa}^{N}}^{c}$ and $D_{\nu_{\kappa}^{N}}^{b}$ are both non-negative. Finally, the computation for $D_{\nu_{\kappa}^{N}}^{e x}$ follows the same lines as those on the proof of Proposition 1.3.2, and on Lemmas 1.3.4 and 1.3.5, and is therefore omitted.

1.3.2 Replacement lemma for the boundary

Fix $k=0, \ldots, d$, a continuous function $G:[0, T] \times \mathbb{T}^{d-1} \rightarrow \mathbb{R}^{d+1}$, and consider the quantities

$$
\begin{aligned}
V_{k}^{1}(s, \eta, \alpha, G) & =\frac{1}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x} / N)\left(I_{k}\left(\eta_{(1, \tilde{x})}(s)\right)-\sum_{v \in \mathcal{V}} v_{k} \alpha_{v}(\tilde{x} / N)\right), \\
V_{k}^{1}(s, \eta, \beta, G) & =\frac{1}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x} / N)\left(I_{k}\left(\eta_{(N-1, \tilde{x})}(s)\right)-\sum_{v \in \mathcal{V}} v_{k} \beta_{v}(\tilde{x} / N)\right), \\
V_{k}^{2}(s, \eta, \alpha, G) & =\frac{1}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x})\left(I_{k}\left(\eta_{(1, \tilde{x})}(s)\right)-\frac{1}{N \epsilon} \sum_{x_{1}=1}^{N \epsilon-1} I_{k}\left(\eta_{(1, \tilde{x})}(s)\right)\right),
\end{aligned}
$$

and

$$
V_{k}^{2}(s, \eta, \beta, G)=\frac{1}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x})\left(I_{k}\left(\eta_{(N-1, \tilde{x})}(s)\right)-\frac{1}{N \epsilon} \sum_{x_{1}=N(1-\epsilon)-1}^{N-1} I_{k}\left(\eta_{(N-1, \tilde{x})}(s)\right)\right),
$$

where $s \in[0, T]$, and $G_{k}, 0 \leq k \leq d$ are the components of function G.
The main result of this subsection is the following Lemma:
Lemma 1.3.3. For each $0 \leq t \leq T, 0 \leq k \leq d$, and $G:[0, T] \times D^{d} \rightarrow \mathbb{R}$ continuous,

$$
\varlimsup_{N \rightarrow \infty} E_{\mu^{N}}\left[\left|\int_{0}^{t} d s V_{k}^{j}(s, \eta, \zeta, G)\right|\right]=0
$$

where $j=1,2$, and $\zeta=\alpha, \beta$.
Proof: It is clear that V_{k}^{j} is bounded for each $0 \leq k \leq d$, and $j=1,2$. By the entropy inequality,

$$
\begin{aligned}
& E_{\mu^{N}}\left[\left|\int_{0}^{t} d s V_{k}^{j}(s, \eta, \zeta, G)\right|\right] \leq \\
\leq & \frac{H\left(\mu^{N} \mid \nu_{\kappa}^{N}\right)}{A N^{d}}+\frac{1}{A N^{d}} \log E_{\nu_{\kappa}^{N}}\left[\exp \left\{\left|\int_{0}^{t} d s A N^{d} V_{k}^{j}(s, \eta, \zeta, G)\right|\right\}\right]
\end{aligned}
$$

for all $A>0$. We have that the first term on the right-hand side is bounded by $C A^{-1}$, for some constant C. To prove this result we must show that the limit of the second term is less than or equal to 0 as $N \rightarrow \infty$ for some suitable choice of $A>0$. Since $e^{|x|} \leq e^{x}+e^{-x}$ and $\varlimsup_{N \rightarrow \infty} N^{-d} \log \left\{a_{N}+b_{N}\right\} \leq$ $\max \left\{\varlimsup_{N \rightarrow \infty} N^{-d} \log \left(a_{N}\right), \varlimsup_{N \rightarrow \infty} N^{-d} \log \left(b_{N}\right)\right\}$, replacing V_{k}^{j} by $-V_{k}^{j}$, or more precisely, replacing G_{k} by $-G_{k}$, we are able to conclude that we only need to prove the previous statement without the absolute values in the exponent. Let $W_{k}(s)=A N^{d} V_{k}^{j}(s, \eta, \zeta, G)$. Then, by Feynman-Kac's formula (see, for instance, $[2,14]$), we have

$$
E_{\nu_{\kappa}^{N}}\left[\exp \left\{\int_{0}^{t} d s A N^{d} V_{k}^{j}(s, \eta, \zeta, G)\right\}\right]=<S_{0, t}^{W_{k}} 1,1>_{\nu_{k}^{N}}
$$

where $S_{s, t}^{W_{k}}$ is a semigroup associated to the operator $\mathcal{L}_{t}^{W}=\mathcal{L}+W_{k}(t)$, for more details see [14, A.1.7], see also [2]. Then, by Cauchy-Schwarz

$$
<S_{0, t}^{W_{k}} 1,1>_{\nu_{\kappa}^{N}} \leq<S_{0, t}^{W_{k}} 1, S_{0, t}^{W_{k}} 1>_{\nu_{k}^{N}}^{1 / 2} .
$$

On the other hand, since W_{k} is bounded, the adjoint in $L^{2}\left(\nu_{\kappa}^{N}\right)$ of $\mathcal{L}_{t}^{W}, L_{t}^{W, *}$, is equal to $\mathcal{L}_{N}^{*}+W_{k}(t)$. We have that

$$
\begin{aligned}
\partial_{s}<S_{s, t}^{W_{k}} 1, S_{s, t}^{W_{k}} 1>_{\nu_{k}^{N}} & =<\left(\mathcal{L}_{t}^{W_{k}}+\mathcal{L}_{t}^{W_{k}, *}\right) S_{s, t}^{W_{k}} 1, S_{s, t}^{W_{k}} 1> \\
& =2<\mathcal{L}_{t}^{W_{k}} S_{s, t}^{W_{k}} 1, S_{s, t}^{W_{k}} 1>\leq \lambda_{W_{k}}(s)<S_{s, t}^{W_{k}} 1, S_{s, t}^{W_{k}} 1>_{\nu_{k}^{N}}
\end{aligned}
$$

where $\lambda_{W_{k}}(s)=\sup _{\|f\|_{L^{2}\left(\nu_{k}^{N}\right)=1}}\left\{<W_{k}(s), f>_{\nu_{k}^{N}}+<\mathcal{L}_{N} f, f>_{\nu_{k}^{N}}\right\}$. Therefore, we obtained that

$$
\begin{aligned}
& \frac{1}{A N^{d}} \log E_{\nu_{\kappa}^{N}}\left[\exp \left\{\left|\int_{0}^{t} d s A N^{d} V_{k}^{j}(s, \eta, \zeta, G)\right|\right\}\right] \leq \\
& \quad \leq \int_{0}^{t} d s \sup _{f}\left\{\int V_{k}^{j}(s, \eta, \zeta, G) f(\eta(s)) d \nu_{\kappa}^{N}+\frac{<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{\kappa}^{N}}}{A N^{d-2}}\right\}
\end{aligned}
$$

In this formula the supremum is taken over all densities f with respect to ν_{κ}^{N}, and recall that $<f, g>_{\nu}$ stands for the inner product in $L^{2}(\nu)$ of f and g. An application of Proposition 1.3.2 permits to conclude that $<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{\kappa}^{N}}$ is bounded above by $C N^{d-2}$, where $C>0$ is some constant. Thus, if we choose, for instance, $A=N$, the proof follows from an application of the auxiliary Lemmas 1.3.4 and 1.3.5 given below.

Lemma 1.3.4. For every $0 \leq t \leq T, 0 \leq k \leq d$, and every continuous $G:[0, T] \times \mathbb{T}^{d-1} \rightarrow \mathbb{R}^{d+1}$,

$$
\varlimsup_{N \rightarrow \infty} E_{\mu^{N}}\left[\int_{0}^{t} d s V_{k}^{1}(s, \eta, \zeta, G)\right]=0
$$

where $\zeta=\alpha, \beta$.
Proof: We will only prove for α, since for β the proof is entirely analogous. Note that G is continuous and its domain is compact, hence, we may prove the above result without G. Set $\bar{f}_{t}=1 / t \int_{0}^{t} f_{s} d s$. With this notation we can write the expectation above, without G, as

$$
\begin{aligned}
& \frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \int \bar{f}_{t}(\eta)\left[I_{k}\left(\eta_{(1, \tilde{x})}-\sum_{v \in \mathcal{V}} v_{k} \alpha_{v}(\tilde{x} / N)\right] d \nu_{\kappa}^{N}\right. \\
= & \frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \sum_{v \in \mathcal{V}} v_{k} \int \bar{f}_{t}(\eta)\left[\eta((1, \tilde{x}), v)-\alpha_{v}(\tilde{x} / N)\right] d \nu_{\kappa}^{N} .
\end{aligned}
$$

Then, splitting the integral into the integral over the sets $[\eta((1, \tilde{x}), v)=0]$ and $[\eta((1, \tilde{x}), v)=1]$, and changing the variables as $1-\eta\left(x_{N}, v\right)=\xi$, we obtain

$$
\begin{aligned}
& \frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \int \bar{f}_{t}(\eta)\left[I_{k}\left(\eta_{(1, \tilde{x})}-\sum_{v \in \mathcal{V}} v_{k} \alpha_{v}(\tilde{x} / N)\right] d \nu_{\kappa}^{N}\right. \\
= & \frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \sum_{v \in \mathcal{V}} v_{k} \int P_{\alpha, \eta}\left[\bar{f}_{t}(\eta)-\bar{f}_{t}\left(\eta-\mathfrak{d}_{(1, \tilde{x}), v}\right)\right] d \nu_{\kappa}^{N},
\end{aligned}
$$

where

$$
P_{\alpha, \eta}=\alpha_{v}(\tilde{x} / N)(1-\eta((1, \tilde{x}), v))+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta((1, \tilde{x}), v)
$$

Writing $\{a-b\}=\left\{\bar{f}_{t}(\eta)-\bar{f}_{t}\left(\eta-\mathfrak{d}_{(1, \tilde{x}), v}\right)\right\}$ as $\{\sqrt{a}-\sqrt{b}\}\{\sqrt{a}+\sqrt{b}\}$ and applying Cauchy-Schwarz, the above expression is bounded by

$$
\frac{2 t \sum_{v \in \mathcal{V}} v_{k}}{A}+\frac{t}{N^{d-1}} A D_{\nu_{k}^{N}, b}\left(\bar{f}_{t}\right)
$$

where $D_{\nu_{k}^{N}, b}\left(\bar{f}_{t}\right)$ is the Dirichlet form of \bar{f}_{t} with respect to \mathcal{L}_{N}^{b}. Then, choosing $A=\sqrt{N}$, the proof of the Lemma follows from an application of Proposition 1.3.2 together with the fact that the Dirichlet form is convex.

The next Lemma concludes the boundary behavior of the particle system.
Lemma 1.3.5. For each $0 \leq t \leq T, 0 \leq k \leq d$, and continuous $G:[0, T] \times D^{d}$,

$$
\varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} E_{\mu}^{N}\left[\int_{0}^{t} d s V_{k}^{2}(s, \eta, \zeta, G)\right]=0
$$

where $\zeta=\alpha, \beta$.

Proof: First of all, note that since G is continuous and its domain $[0, T] \times D^{d}$ is compact, it is enough to prove the result without the multiplying factor G. Moreover, we will only prove the first limit above, since the proof of the second one is entirely analogous. Considering the notation used to prove Lemma 1.3.4, we may write the expectation above, without G, as

$$
\frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \int\left[I_{k}\left(\eta_{(1, \tilde{x})}\right)-\frac{1}{N \epsilon} \sum_{x_{1}=1}^{N \epsilon-1} I_{k}\left(\eta_{\left(x_{1}, \tilde{x}\right)}\right)\right] d \nu_{\kappa}^{N}
$$

We now obtain, by a change of variables and a telescopic sum, that the absolute value of the above expression is bounded above by

$$
\left|\frac{t}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \frac{1}{N \epsilon} \sum_{y=1}^{N \epsilon-1} \sum_{x_{1}=1}^{y-1} K_{1} \int\left[\bar{f}_{t}\left(\prod_{i=1}^{x_{1}} \tau_{z_{i}}(\eta)\right)-\bar{f}_{t}\left(\prod_{i=1}^{x_{1}-1} \tau_{z_{i}}(\eta)\right)\right] d \nu_{\kappa}^{N} .\right|
$$

where K_{1} is a constant which depends on α, β and $d, z_{1}=1, \ldots, z_{y-1}=y$ is the path from the origin to y across the first coordinate of the space, and $\tau_{z_{1}}(\eta) \cdots \tau_{z_{i}}(\eta)$ is the sequence of nearest neighbor exchanges that represents the path along z_{1}, \ldots, z_{i}. By Cauchy-Schwarz, this expression is bounded above by

$$
\begin{aligned}
& \frac{t A}{N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \frac{1}{N \epsilon} \sum_{y=1}^{N \epsilon-1} \sum_{x_{1}=1}^{y-1} K_{1} \int\left[\sqrt{\bar{f}_{t}\left(\prod_{i=1}^{x_{1}} \tau_{z_{i}}(\eta)\right)}-\sqrt{\bar{f}_{t}\left(\prod_{i=1}^{x_{1}-1} \tau_{z_{i}}(\eta)\right)}\right]^{2} d \nu_{\kappa}^{N}+ \\
& +\frac{t}{A N^{d-1}} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} \frac{1}{N \epsilon} \sum_{y=1}^{N \epsilon-1} \sum_{x_{1}=1}^{y-1} K_{1} \int\left[\bar{f}_{t}\left(\prod_{i=1}^{x_{1}} \tau_{z_{i}}(\eta)\right)-\bar{f}_{t}\left(\prod_{i=1}^{x_{1}-1} \tau_{z_{i}}(\eta)\right)\right] d \nu_{\kappa}^{N},
\end{aligned}
$$

for every $A>0$. Now, we can bound above the last expression by

$$
\frac{t A K_{1}}{N^{d-1}} D_{\nu_{k}^{N}}^{e x}\left(\bar{f}_{t}\right)+\frac{t K_{2} N \epsilon}{A}
$$

for every $A>0$, where K_{2} is a constant that depends on K_{1}. Then, choosing $A=\sqrt{\epsilon} N$ and applying Proposition 1.3.2, we conclude the proof of this Lemma.

1.3.3 Tightness

To prove tightness of the sequence $\left(Q_{N}\right)_{N}$, it is enough to prove that for every $k=0, \ldots, d$

$$
\lim _{\delta \rightarrow 0} \varlimsup_{N \rightarrow \infty} \mathbb{E}_{\mu^{N}}\left[\sup _{|t-s|<\delta}\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(t)\right)-\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(s)\right)\right|\right]=0
$$

for any smooth test function $H: D^{d} \rightarrow \mathbb{R}$ vanishing at the boundary.
Fix $0 \leq k \leq d$, then, by Dynkin's formula

$$
\begin{equation*}
M_{t}^{k}=<\pi_{t}^{k, N}, H>-<\pi_{0}^{k, N}>-\int_{0}^{t} \mathcal{L}_{N}<\pi_{s}^{k, N}, H>d s \tag{1.3.3}
\end{equation*}
$$

is a martingale. On the other hand,

$$
\mathbb{E}_{\mu^{N}}\left[M_{t}^{k}\right]^{2}=\mathbb{E}_{\mu^{N}}\left[\int_{0}^{t}\left\{\mathcal{L}_{N}<\pi_{s}^{k, N}, H>^{2}-2<\pi_{s}^{k, N}, H>\mathcal{L}_{N}<\pi_{s}^{k, N}, H>\right\} d s\right] .
$$

Writing the above expression as four sums, the first corresponds to the nearest neighbor symmetric exclusion process and the other corresponds to the asymmetric exclusion process, the third and fourth
corresponding to the collision and boundary parts of the dynamics, respectively. A long, albeit simple computation shows that all of these sums are of order $\mathcal{O}\left(N^{-d}\right)$, and therefore, the right-hand side of the above expression is of the same order. Thus, by Doob's inequality, $\mathbb{E}_{\mu^{N}}\left[\sup _{0 \leq s \leq t}\left(M_{t}^{k}\right)^{2}\right]=\mathcal{O}\left(N^{-d}\right)$.

Hence, by (1.3.3) and the above estimates, we have

$$
\begin{gathered}
\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(t)\right)=\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(s)\right)+ \\
+\frac{1}{N^{d}} \sum_{j=1}^{d} \sum_{x, z \in D_{N}^{d}} \sum_{v \in \mathcal{V}} \int_{s}^{t} p(z, v) v_{k} \eta_{r}(0, v)\left[1-\eta_{r}(z, v)\right] z_{j}\left(\partial_{u_{j}} H\right)\left(\frac{x}{N}\right) d r+ \\
+\frac{1}{2 N^{d}} \sum_{x \in D_{N}^{d}} \int_{s}^{t}(\Delta H)\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(r)\right) d r+\frac{1}{N^{d-1}} \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N_{-1}}} \int_{s}^{t} \partial_{u_{1}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(r)\right) d r \\
-\frac{1}{N^{d-1}} \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \int_{s}^{t} \partial_{u_{1}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(r)\right) d r+R_{N}+\mathcal{O}\left(N^{-d}\right)+\mathcal{O}\left(N^{-1}\right),
\end{gathered}
$$

where the terms were obtained from $\mathcal{L}_{N}<\pi_{s}^{k, N}, H>$ by means of summation by parts, and the replacement of discrete derivatives and discrete Laplacian by the continuous ones, and R_{N} is the error coming from such replacements. Since p is of finite range, the error R_{N} is uniformly of order $\mathcal{O}\left(N^{-1}\right)$. Finally, by using Lemma 1.3.3 and a calculation similar to the one found in equation (1.3.9), we have that $\mathcal{L}_{N}^{b}<\pi_{s}^{k, N}, H>=\mathcal{O}\left(N^{-1}\right)$. Tightness thus follows from the above estimates.

Our next goal is to prove the replacement lemma. To do so, we need the following result known as equivalence of ensembles, which will be used in the proofs of the one block estimate and of the two block estimate.

1.3.4 Equivalence of ensembles

Fix $L \geq 1$ and a configuration η, let $\boldsymbol{I}^{L}(x, \eta):=\boldsymbol{I}^{L}(x)=\left(I_{0}^{L}(x), \ldots, I_{d}^{L}(x)\right)$ be the average of the conserved quantities in a cube of the length L centered at x :

$$
\boldsymbol{I}^{L}(x)=\frac{1}{\left|\Lambda_{L}\right|} \sum_{z \in x+\Lambda_{L}} \boldsymbol{I}\left(\eta_{z}\right),
$$

where, $\Lambda_{L}=\{-L, \ldots, L\}^{d}$ and $\left|\Lambda_{L}\right|=(2 L+1)^{d}$ is the discrete volume of box Λ_{L}.
Let \mathfrak{V}_{L} be the set of all possible values of $\boldsymbol{I}^{L}(0, \eta)$ when η runs over $\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{L}}$, that is,

$$
\mathfrak{V}_{L}=\left\{\boldsymbol{I}^{L}(0, \eta) ; \eta \in\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{L}}\right\} .
$$

Note that \mathfrak{V}_{L} is a finite subset of the convex envelope of $\left\{\boldsymbol{I}(\xi): \xi \in\left\{0,1 \mathcal{V}^{\mathcal{V}}\right\}\right.$. The set of configurations $\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{L}}$ splits into invariant subsets: for \boldsymbol{i} in \mathfrak{V}_{L}, let

$$
\mathcal{H}_{L}(\boldsymbol{i}):=\left\{\eta \in\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{L}}: \boldsymbol{I}^{L}(0)=\boldsymbol{i}\right\} .
$$

For each \boldsymbol{i} in \mathfrak{V}_{L}, define the canonical measure $\nu_{L, \boldsymbol{i}}$ as the uniform probability measure on $\mathcal{H}_{L}(\boldsymbol{i})$. Note that for every $\boldsymbol{\lambda}$ in \mathbb{R}^{d+1}

$$
\nu_{\Lambda_{L}, i}(\cdot)=\mu_{\boldsymbol{\lambda}}^{\Lambda_{L}}\left(\cdot \mid \boldsymbol{I}^{L}=\boldsymbol{i}\right) .
$$

Let $<g ; f>_{\mu}$ stands for the covariance of g and f with respect to $\mu:<g ; f>_{\mu}=E_{\mu}[f g]-E_{\mu}[f] E_{\mu}[g]$.
Proposition 1.3.6. (Equivalence of ensembles): Fix a cube $\Lambda_{\ell} \subset \Lambda_{L}$. For each $\boldsymbol{i} \in \mathfrak{V}_{L}$, denote by ν^{ℓ} the projection of the canonical measure $\nu_{\Lambda_{L}, i}$ on Λ_{ℓ} and by μ^{ℓ} the projection of the grand canonical measure $\mu_{\boldsymbol{\Lambda}(i)}^{L}$ on Λ_{ℓ}. Then, there exists a finite constant $C(\ell, \mathcal{V})$, depending only on ℓ and \mathcal{V}, such that

$$
\left|E_{\mu^{\ell}}[f]-E_{\nu^{\ell}}[f]\right| \leq \frac{C(\ell, \mathcal{V})}{\left|\Lambda_{L}\right|}<f ; f>_{\mu^{\ell}}^{1 / 2}
$$

for every function $f:\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{\ell}} \mapsto \mathbb{R}$.
The proof of Proposition 1.3.6 can be found in Beltrán and Landim [1].

1.3.5 Replacement lemma

We now state the replacement lemma that will allow us to prove that the limit points Q are concentrated on weak solutions of (1.2.4).

Lemma 1.3.7. (Replacement lemma): For all $\delta>0,1 \leq j \leq d, 0 \leq k \leq d$:

$$
\varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\int_{0}^{T} \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} \tau_{x} V_{\epsilon N}^{j, k}(\eta(s)) d s \geq \delta\right]=0
$$

where

$$
\begin{equation*}
V_{\ell}^{j, k}(\eta)=\left|\frac{1}{(2 \ell+1)^{d}} \sum_{y \in \Lambda_{\ell}} \sum_{v \in \mathcal{V}} v_{k} \sum_{z \in \mathbb{Z}^{d}} p(z, v) z_{j} \tau_{y}(\eta(0, v)[1-\eta(z, v)])-\sum_{v \in \mathcal{V}} v_{j} v_{k} \chi\left(\theta_{v}\left(\Lambda\left(\boldsymbol{I}^{\ell}(0)\right)\right)\right)\right| . \tag{1.3.4}
\end{equation*}
$$

Note that $V_{\epsilon N}^{j, k}$ is well-defined for large N since $p(\cdot, v)$ is of finite range. We now observe that Propositions 1.3 .2 and 1.3 .2 permit us to prove the following replacement lemma for the boundary driven exclusion process by using the process without the boundary part of the generator (see [17] for further details). We postpone the rest of the proof to Section 1.4.

1.3.6 Energy estimates

We will now define some quantities to prove that each component of the solution vector belongs, in fact, to $H^{1}\left([0, T] \times D^{d}\right)$. The proof is similar to the one found in [15].

Let the energy $\mathcal{Q}: D([0, T], \mathcal{M}) \rightarrow[0, \infty]$ be given by

$$
\mathcal{Q}(\pi)=\sum_{i=1}^{d} \mathcal{Q}_{i}(\pi)
$$

with

$$
\mathcal{Q}_{i}(\pi)=\sup _{G \in C_{c}^{\infty}\left(\Omega_{T}\right)}\left\{2 \int_{0}^{T} d t<\pi_{t}, \partial_{u_{i}} G_{t}>-\int_{0}^{T} \int_{D^{d}} d u G(t, u)^{2}\right\}
$$

where $\Omega_{T}=(0, T) \times D^{d}$ and $C_{c}^{\infty}\left(\Omega_{T}\right)$ stands for the set of infinitely differentiable functions (with respect to both the time and space) with compact support in Ω_{T}. Let now, for any $G \in C_{c}^{\infty}\left(\Omega_{T}\right), 1 \leq i \leq d$ and $C \geq 0, \mathcal{Q}_{i, C}^{G}: D([0, T], \mathcal{M}) \rightarrow \mathbb{R}$ be the functional given by

$$
\mathcal{Q}_{i, C}^{G}(\pi)=\int_{0}^{T} d s<\pi_{s}, \partial_{u_{i}} G_{s}>-C \int_{0}^{T} d s \int_{D^{d}} d u G(s, u)^{2}
$$

Note that

$$
\begin{equation*}
\sup _{G \in C_{c}^{\infty}\left(\Omega_{T}\right)}\left\{Q_{i, C}^{G}\right\}=\frac{\mathcal{Q}_{i}(\pi)}{4 C} . \tag{1.3.5}
\end{equation*}
$$

Lemma 1.3.8. There exists a constant $C_{0}=C_{0}(\kappa)>0$, such that for every $i=1, \ldots, d$, every $k=$ $0, \ldots, d$, and every function G in $C_{c}^{\infty}\left(\Omega_{T}\right)$

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log E_{\nu_{\kappa}^{N}}\left[\exp \left\{N^{d} \mathcal{Q}_{i, C_{0}}^{G}\left(\pi^{N, k}\right)\right\}\right] \leq C_{0}
$$

Proof: Applying Feynman-Kac's formula and using the same arguments in the proof of Lemma 1.3.3, we have that

$$
\frac{1}{N^{d}} \log E_{\nu_{\kappa}^{N}}\left[\exp \left\{N \int_{0}^{T} d s \sum_{x \in D_{N}^{d}}\left(I_{k}\left(\eta_{x}(s)\right)-I_{k}\left(\eta_{x-e_{i}}(s)\right)\right) G(s, x / N)\right\}\right]
$$

is bounded above by

$$
\frac{1}{N^{d}} \int_{0}^{T} \lambda_{s}^{N} d s
$$

where λ_{s}^{N} is equal to

$$
\left.\sup _{f}\left\{\left\langle N \sum_{x \in D_{N}^{d}} I_{k}(\eta(x))-I_{k}\left(\eta\left(x-e_{i}\right)\right)\right) G(s, x / N), f\right\rangle_{\nu_{k}^{N}}+N^{2}<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{k}^{N}}\right\},
$$

where the supremum is taken over all densities f with respect to ν_{κ}^{N}. By Proposition 1.3.2, the expression inside brackets is bounded above by

$$
C N^{d}-\frac{N^{2}}{2} D_{\nu_{\kappa}^{N}}(f)+\sum_{x \in D_{N}^{d}}\left\{N G(s, x / N) \int\left[I_{k}\left(\eta_{x}\right)-I_{k}\left(\eta_{x-e_{i}}\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta)\right\} .
$$

We now rewrite the term inside the brackets as

$$
\sum_{v \in \mathcal{V}} v_{k} \sum_{x \in D_{N}^{d}} \int\left\{N G(s, x / N)\left[\eta(x, v)-\eta\left(x-e_{i}, v\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta)\right\}
$$

After a simple computation, we may rewrite the terms inside the brackets of the above expression as

$$
\begin{aligned}
& N G(s, x / N) \int\left[\eta(x, v)-\eta\left(x-e_{i}, v\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta) \\
= & N G(s, x / N) \int \eta(x, v) f(\eta) \nu_{\kappa}^{N}(d \eta) \\
- & N G(s, x / N) \int \eta(x, v) f\left(\eta^{x-e_{i}, x, v}\right) \frac{\gamma_{x-e_{i}, v}}{\gamma_{x, v}} \nu_{\kappa}^{N}(d \eta) \\
= & N G(s, x / N) \int \eta(x, v)\left[f(\eta)-f\left(\eta^{x-e_{i}, x, v}\right)\right] \nu_{\kappa}^{N}(d \eta) \\
+ & G \int \eta(x, v) f\left(\eta^{x-e_{i}, x, v}\right) N\left[1-\frac{\gamma_{x-e_{i}, v}}{\gamma_{x, v}}\right] \\
\leq & G(s, x / N)^{2} \int f\left(\eta^{x-e_{i}, x, v}\right) \nu_{\kappa}^{N}(d \eta) \\
+ & \frac{1}{4} \int \eta(x, v) f\left(\eta^{x-e_{i}, x, v}\right)\left[N\left(1-\frac{\gamma_{x-e_{i}}, v}{\gamma_{x, v}}\right)\right]^{2} \nu_{\kappa}^{N}(d \eta) \\
+ & N^{2} \int \frac{1}{2}\left[\sqrt{f\left(\eta^{x-e_{i}, x, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta) \\
+ & 2 G(s, x / N)^{2} \int \eta(x, v)\left(\sqrt{f(\eta)}+\sqrt{f\left(\eta^{x-e_{i}, x, v}\right)}\right)^{2} \nu_{\kappa}^{N}(d \eta),
\end{aligned}
$$

which is clearly bounded by $C_{1}+C_{1} G(s, x / N)^{2}$, by some positive constant $C_{1}=C_{1}(\kappa)$, since $\gamma_{\cdot, v}$ is smooth and the fact that f is a density with respect to ν_{κ}^{N}. Thus, letting $C_{0}=C+C_{1}$, the statement of the Lemma holds.

It is well-known that $\mathcal{Q}(\pi)$ is finite if and only if π has a generalized gradient, $\nabla \pi=\left(\partial_{u_{1}} \pi, \ldots, \partial_{u_{d}} \pi\right)$, and

$$
\hat{\mathcal{Q}}(\pi)=\int_{0}^{T} \int_{D^{d}} d u\left\|\nabla \pi_{t}(u)\right\|^{2}<\infty
$$

In which case, $\mathcal{Q}(\pi)=\hat{\mathcal{Q}}(\pi)$. Recall that the sequence $\left(Q_{N}\right)_{N}$ defined in the beginning of this section is tight. We have then the following proposition:
Proposition 1.3.9. Let Q^{*} be any limit point of the sequence of measures $\left(Q^{N}\right)_{N}$. Then,

$$
E_{Q^{*}}\left[\int_{0}^{T} d s\left(\int_{D^{d}}\|\nabla \rho(s, u)\|^{2} d u\right)\right]<\infty
$$

and

$$
E_{Q^{*}}\left[\int_{0}^{T} d s\left(\int_{D^{d}}\left\|\nabla p_{k}(s, u)\right\|^{2} d u\right)\right]<\infty
$$

Proof: We thus have to prove that the energy $\mathcal{Q}(\pi)$ is almost surely finite. Fix a constant $C_{0}>0$ satisfying the statement of Lemma 1.3.8. Let $\left\{G_{m}: 1 \leq m \leq r\right\}$ be a sequence of functions in $C_{0}^{\infty}\left(\Omega_{T}\right)$ (the space of infinitely differentiable functions vanishing at the boundary) and $1 \leq i \leq d$, and $0 \leq k \leq d$, be integers. By the entropy inequality, there is a constant $C>0$ such that

$$
E_{\mu^{N}}\left[\max _{1 \leq m \leq r}\left\{\mathcal{Q}_{i, C_{0}}^{G_{m}}\left(\pi^{N, k}\right)\right\}\right] \leq C+\frac{1}{N^{d}} \log E_{\nu_{k}^{N}}\left[\exp \left\{N^{d} \max _{1 \leq m \leq r}\left\{\mathcal{Q}_{i, C_{0}}^{G_{m}}\left(\pi^{N, k}\right)\right\}\right\}\right] .
$$

Therefore, Lemma 1.3.8 together with the elementary inequalities

$$
\varlimsup_{N \rightarrow \infty} N^{-d} \log \left(a_{N}+b_{N}\right) \leq \varlimsup_{N \rightarrow \infty} \max \left\{\varlimsup_{N \rightarrow \infty} N^{-d} \log \left(a_{N}\right), \varlimsup_{N \rightarrow \infty} N^{-d} \log \left(b_{N}\right)\right\}
$$

and $\exp \left\{\max \left\{x_{1}, \ldots, x_{n}\right\}\right\} \leq \exp \left(x_{1}\right)+\cdots+\exp \left(x_{n}\right)$ imply that

$$
\begin{aligned}
E_{Q^{*}}\left[\max _{1 \leq m \leq r}\left\{\mathcal{Q}_{i, C_{0}}^{G_{m}}\left(\pi^{N, k}\right)\right\}\right] & =\lim _{N \rightarrow \infty} E_{\mu^{N}}\left[\max _{1 \leq m \leq r}\left\{\mathcal{Q}_{i, C_{0}}^{G_{m}}\left(\pi^{N, k}\right)\right\}\right] \\
& \leq C+C_{0}
\end{aligned}
$$

Using this, the equation (1.3.5) and the monotone convergence theorem, we obtain the desired result.

1.3.7 Proof of Theorem 1.2.1

Note that all limit points Q^{*} of $\left(Q_{N}\right)_{N}$ are concentrated on absolutely continuous measures with respect to the Lebesgue measure since there is at most one particle per site, that is,

$$
Q^{*}\left\{\pi ; \pi^{k}(d u)=p_{k}(u) d u, \text { for all } 0 \leq k \leq d\right\}=1
$$

where π^{k} denotes the k th component of π and $p_{0}=\rho$.
For $k=0, \ldots, d$, denote, again, by $\pi_{t}^{k, N}$ the empirical measure associated to the k th thermodynamic quantity:

$$
\pi_{t}^{k, N}=\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} I_{k}\left(\eta_{x}(t)\right) \delta_{x / N}
$$

Further, denote by $\pi_{t}^{k, N, b_{1}}$ and $\pi_{t}^{k, N, b_{N-1}}$ the empirical measures associated to the k th thermodynamic quantity restricted to the boundaries:

$$
\pi_{t}^{k, N, b_{i}}=\frac{1}{N^{d-1}} \sum_{\substack{x \in D_{N}^{d} \\ x_{1}=i}} I_{k}\left(\eta_{x}(t)\right) \delta_{x / N}
$$

for $i=1, N-1$.
To compute $\mathcal{L}_{N}<\pi_{t}^{k, N}, H>$ for this process, we note that $\mathcal{L}_{N}^{c} I_{k}\left(\eta_{x}\right)$ vanishes for $k=0, \ldots, d$, because the collision operator preserves local mass and momentum.

Since, in our definition of weak solution we considered test functions H vanishing at the boundary, that is, $H(x)=0$, if $x \in\{0,1\} \times \mathbb{T}^{d-1}$, we assume that H vanishes at the boundary as well.

Now, we consider the martingale

$$
M_{t, k}^{N, H}=<\pi_{t}^{k, N}, H>-<\pi_{0}^{k, N}, H>-\int_{0}^{t} N^{2} \mathcal{L}_{N}<\pi_{s}^{k, N}, H>d s
$$

which can be decomposed into

$$
\begin{align*}
M_{t, k}^{N, H} & =<\pi_{t}^{k, N}, H>-<\pi_{0}^{k, N}, H>-\int_{0}^{t} N^{2} \mathcal{L}_{N}^{e x, 1}<\pi_{s}^{k, N}, H>d s \tag{1.3.6}\\
& -\int_{0}^{t} N^{2} \mathcal{L}_{N}^{e x, 2}<\pi_{s}^{k, N}, H>d s-\int_{0}^{t} N^{2} \mathcal{L}_{N}^{b}<\pi_{s}^{k, N}, H>d s \tag{1.3.7}
\end{align*}
$$

We first prove that

$$
\begin{equation*}
\int_{0}^{t} N^{2} \mathcal{L}_{N}^{b}<\pi_{s}^{k, N}, H>d s \tag{1.3.8}
\end{equation*}
$$

vanishes as $N \rightarrow \infty$. A simple calculation shows that

$$
N^{2} \mathcal{L}_{N}^{b} \eta(x, v)=N^{2}\left[\alpha_{v}(\tilde{x} / N)-\eta(x, v)\right], \text { if } x_{1}=1,
$$

and

$$
N^{2} \mathcal{L}_{N}^{b} \eta(x, v)=N^{2}\left[\beta_{v}(\tilde{x} / N)-\eta(x, v)\right], \text { if } x_{1}=N-1
$$

Since H vanishes on the boundary, $H\left(\left(x+e_{1}\right) / N\right)=0$ if $x_{1}=N-1$, and $H\left(\left(x-e_{1}\right) / N\right)=0$ if $x_{1}=0$. Then, we have the equalities $N H(x / N)=\partial_{x_{1}}^{N} H\left(\left(x-e_{1}\right) / N\right)$, if $x_{1}=1$, and $N H(x / N)=-\partial_{x_{1}}^{N} H(x / N)$, if $x_{1}=N-1$. Therefore, we obtain

$$
\begin{align*}
N^{2} \mathcal{L}_{N}^{b}<\pi^{k, N}, H> & =\frac{1}{N^{d-1}} \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \sum_{v \in \mathcal{V}} v_{k}\left[\alpha_{v}\left(\frac{\tilde{x}}{N}\right)-\eta(x, v)\right] \partial_{x_{1}}^{N} H\left(\frac{x-e_{1}}{N}\right) \\
& -\frac{1}{N^{d-1}} \sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N_{-1}}} \sum_{v \in \mathcal{V}} v_{k}\left[\beta\left(\frac{\tilde{x}}{N}\right)-\eta(x, v)\right] \partial_{x_{1}}^{N} H\left(\frac{x}{N}\right) . \tag{1.3.9}
\end{align*}
$$

We now use the last computation together with Lemma 1.3.3 to conclude that (1.3.8) vanishes as $N \rightarrow \infty$.
Further, after two summations by parts of the integrand on the right-hand term of (1.3.6), we have that

$$
\begin{aligned}
\int_{0}^{t} N^{2} \mathcal{L}_{N}^{e x, 1}<\pi_{s}^{k, N}, H>d s & =\frac{1}{2} \int_{0}^{t}<\pi_{s}^{k, N}, \Delta_{N} H>d s \\
& +<\pi_{t}^{k, N, b_{N-1}}, \partial_{u_{1}}^{N} H>-<\pi_{t}^{k, N, b_{1}}, \partial_{u_{1}}^{N} H>
\end{aligned}
$$

and after one summation by parts on the right-hand term of (1.3.7), and noting again that H vanishes at the boundaries, we have that

$$
\int_{0}^{t} N^{2} \mathcal{L}_{N}^{e x, 2}<\pi_{s}^{k, N}, H>d s=-\frac{1}{N^{d}} \int_{0}^{t} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}}\left(\partial_{u_{j}}^{N} H\right)\left(\frac{x}{N}\right) \tau_{x} W_{j, k}^{N, s} d s
$$

where τ_{x} stands for the translation by x on the state space X_{N} so that $\left(\tau_{x} \eta\right)(y, v)=\eta(x+y, v)$ for all $x, y \in \mathbb{Z}^{d}, v \in \mathcal{V}$, and $W_{j, k}^{N, s}$ is given by:

$$
W_{j, k}^{N, s}=\sum_{v \in \mathcal{V}} v_{k} \sum_{z \in \mathbb{Z}^{d}} p(z, v) z_{j} \eta_{s}(0, v)\left[1-\eta_{s}(z, v)\right],
$$

where $v_{0}=1$. Since $p(\cdot, v)$ is of finite range,

$$
E_{\mu_{\boldsymbol{\lambda}}^{N}}\left[W_{j, k}^{N, s}\right]=\sum_{v \in \mathcal{V}} v_{k} v_{j} \chi\left(\theta_{v}(\boldsymbol{\lambda})\right),
$$

where $\chi(a)=a(1-a)$. Now, note that $E_{\nu_{\kappa}^{N}}(\eta(x, v))=\alpha_{v}(x / N)$ if $x \in\{1\} \times \mathbb{T}_{N}^{d-1}$ and $E_{\nu_{\kappa}^{N}}(\eta(x, v))=$ $\beta_{v}(x / N)$ if $x \in\{N-1\} \times \mathbb{T}_{N}^{d-1}$.

We then apply Lemma 1.3.7 to write the martingale in terms of the empirical measure. Further, we apply the replacement lemma for the boundary (Lemma 1.3.3) to obtain that all limit points satisfy the integral identity in the definition of weak solution of the problem (1.2.4).

Using the previous computations and the tightness of the sequence of measures Q_{N} (for more details see [14, Chapter 5]) we conclude that all limit points are concentrated on weak solutions of

$$
\partial_{t}(\rho, \boldsymbol{p})+\sum_{v \in \mathcal{V}} \tilde{v}\left[v \cdot \nabla \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)\right]=\frac{1}{2} \Delta(\rho, \boldsymbol{p})
$$

with boundary conditions, given in the trace sense, by

$$
\begin{equation*}
(\rho, \boldsymbol{p})(t, x)=a(\tilde{x}), \text { for } x \in\{0\} \times \mathbb{T}^{d-1} \tag{1.3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(\rho, \boldsymbol{p})(t, x)=b(\tilde{x}), \text { for } x \in\{1\} \times \mathbb{T}^{d-1} \tag{1.3.11}
\end{equation*}
$$

where $a(\cdot)$ and $b(\cdot)$ were defined in equation (1.2.3), and $v_{0}=1$. The uniqueness of weak solutions of the above equation implies that there is at most one limit point. Moreover, by Proposition 1.3.9, each limit point of $\left(Q_{N}\right)_{N}$ is concentrated on a vector of measures with finite energy, that is: whose components have densities with respect to the Lebesgue measure that belong to the Sobolev space $H^{1}\left(D^{d}\right)$. This completes the proof of the theorem.

1.4 Proof of the replacement lemma

As mentioned in the subsection 1.3.5, we only have to prove this result for the process without the boundary dynamics. In this case, we have a product invariant measure given by $\nu_{\rho, \boldsymbol{p}}^{N}$.

Let $\mu^{N}(T)$ be the Cesaro mean of $\mu^{N} S_{t}^{N}$, namely:

$$
\mu^{N}(T)=\frac{1}{T} \int_{0}^{T} \mu^{N} S_{t}^{N} d t
$$

and let $\bar{f}_{T, k}^{N}$ be the Radon-Nikodym density of $\mu^{N}(T)$ with respect to $\nu_{\rho, \boldsymbol{p}}^{N}$. We have that the Dirichlet form of $\bar{f}_{T, k}^{N}, D_{N}\left(\bar{f}_{T, k}^{N}, \nu_{\rho, \boldsymbol{p}}^{N}\right)$, is bounded by $C N^{d-2} / 2 T$, where C is some constant. Therefore, to prove the replacement lemma, it is enough to show that

$$
\varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}\left(f, \nu_{\rho, p}\right)<C N^{d-2}} \int \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} \tau_{x} V_{\epsilon N}^{j, k}(\eta(s)) f(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)=0
$$

From now on we will simply write the Dirichlet form of a function f with respect to the measure $\nu_{\rho, \boldsymbol{p}}^{N}$ as $D_{N}(f)$.

To prove the replacement lemma, we will prove the one and two block estimates:
Lemma 1.4.1. (One block estimate): For every constant $C>0$, for $1 \leq j \leq d$ and for $0 \leq k \leq d$:

$$
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}(f) \leq C N^{d-2}} \int \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}}\left(\tau_{x} V_{\ell}^{j, k}\right)(\eta) f(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)=0
$$

where $V_{\ell}^{j, k}(\eta)$ was defined in Lemma 1.3.7.
Lemma 1.4.2. (Two block estimate): For every constant $C>0$, for $1 \leq j \leq d$ and for $0 \leq k \leq d$:

$$
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}(f) \leq C N^{d-2}} \sup _{y \in \Lambda_{\epsilon N}} \int \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}}\left|\boldsymbol{I}^{\ell}(x+y)-\boldsymbol{I}^{N \epsilon}(x)\right| f(\eta) \nu_{\rho, \boldsymbol{p}}^{N}=0
$$

where $\boldsymbol{I}^{\ell}(x)$ was defined in subsection 1.3.4.

1.4.1 Proof of one block estimate

We begin by noting that the exclusion rule and the fact that \mathcal{V} is finite prevents large densities or large momentum on $\boldsymbol{I}^{\ell}(0)$.

We have that the measure $\nu_{\rho, \boldsymbol{p}}^{N}$ is translation invariant. Therefore, we can write the sum on one block estimate as

$$
\int V_{\ell}^{j, k}(\eta)\left(\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} \tau_{x} f\right)(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)=\int V_{\ell}^{j, k}(\eta) \bar{f}(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)
$$

where \bar{f} stands for the space average of all translations of f :

$$
\bar{f}(\eta)=\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} \tau_{x} f(\eta)
$$

Denote by X_{ℓ} the configuration space $\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{\ell}}$, by ξ some configuration on X_{ℓ} and by $\nu_{\rho, \boldsymbol{p}}^{\ell}$ the product measure $\nu_{\rho, \boldsymbol{p}}^{N}$ restricted to X_{ℓ}. For a density $f: X_{N} \rightarrow \mathbb{R}_{+}, f_{\ell}$ stands for the conditional expectation of f with respect to the σ-algebra generated by $\left\{\eta(x, v): x \in \Lambda_{\ell}, v \in \mathcal{V}\right\}$, that is obtained by integrating all coordinates outside this hypercube:

$$
f_{\ell}\left(x_{i}\right)=\frac{1}{\nu_{\rho, \boldsymbol{p}}^{\ell}(\xi)} \int \mathbf{1}_{\left\{\eta: \eta(z, v)=\xi(z, v), z \in \Lambda_{\ell}, v \in \mathcal{V}\right\}} f(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)
$$

for $\xi \in X_{\ell}$.
Since $V_{\ell}^{j, k}(\eta)$ depends on the configuration η only through the occupation variables $\{\eta(x, v): x \in$ $\left.\Lambda_{\ell}, v \in \mathcal{V}\right\}$, in the last integral we can replace \bar{f} by \bar{f}_{ℓ}. In particular, to prove the lemma it is enough to show that

$$
\begin{equation*}
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}(f) \leq C N^{d-2}} \int V_{\ell}^{j, k}(\xi) \bar{f}_{\ell}(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)=0 \tag{1.4.1}
\end{equation*}
$$

We will now compute some estimates on the Dirichlet form. Let $<\cdot, \cdot>_{\nu}$ be the inner product in $L^{2}(\nu)$. For positive f, denote the Dirichlet form of f as:

$$
\begin{aligned}
D_{N}(f) & =-<\sqrt{f},\left(\mathcal{L}_{N}^{e x}+\mathcal{L}_{N}^{c}\right) f>_{\nu_{\rho, p}^{N}} \\
& =-<\sqrt{f}, \mathcal{L}_{N}^{e x, 1} f>_{\nu_{\rho, p}^{N}}-<\sqrt{f}, \mathcal{L}_{N}^{e x, 2} f>_{\nu_{\rho, p}^{N}}-<\sqrt{f}, \mathcal{L}_{N}^{c} f>_{\nu_{\rho, p}^{N}} \\
& :=D_{N, 1}(f)+D_{N, 2}(f)+D_{N, c}(f)
\end{aligned}
$$

We have that

$$
\begin{aligned}
D_{N, 1}(f) & =\sum_{\substack{x, z \in D_{N}^{d} \\
|x-z|=1}} I_{x, z}^{(1)}(f), \\
D_{N, 2}(f) & =\frac{1}{N} \sum_{x, z \in D_{N}^{d}} I_{x, z}^{(2)}(f)
\end{aligned}
$$

and

$$
D_{N, c}(f)=\sum_{x \in D_{N}^{d}} I_{x}^{(c)}(f),
$$

where

$$
\begin{gathered}
I_{x, z}^{(1)}(f)=\sum_{v \in \mathcal{V}} \frac{1}{2} \int\left[\sqrt{f\left(\eta^{x, x+z, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{N}(d \eta), \\
I_{x, z}^{(2)}(f)=\sum_{v \in \mathcal{V}} \int p(z, v)\left[\sqrt{f\left(\eta^{x, x+z, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)
\end{gathered}
$$

and

$$
I_{x, z}^{(c)}(f)=\sum_{q \in \mathcal{Q}} \int p(x, q, \eta)\left[\sqrt{f\left(\eta^{x, q}\right)}-f(\eta)\right]^{2} \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)
$$

Since the Dirichlet form is translation invariant and convex, we have that $D_{N}(\bar{f}) \leq D_{N}(f)$.
Now, let

$$
D^{\ell}(h)=\sum_{\substack{x, z \in \Lambda_{\ell} \\|x-z|=1}} I_{x, z}^{\ell,(1)}(h)+\sum_{x, z \in \Lambda_{\ell}} \frac{1}{N} I_{x, z}^{\ell,(2)}(h)+\sum_{x \in \Lambda_{\ell}} I_{x}^{\ell,(c)}(h),
$$

where each $I^{\ell,(i)}$ equals $I^{(i)}$ with $\nu_{\rho, \boldsymbol{p}}^{N}$ replacing $\nu_{\rho, \boldsymbol{p}}^{\ell}$. By using Schwarz inequality and the definition of f_{ℓ}, we obtain that

$$
I_{x, z}^{\ell,(1)}\left(\bar{f}_{\ell}\right) \leq I_{x, z}^{(1)}(\bar{f}), I_{x, z}^{\ell,(2)}\left(\bar{f}_{\ell}\right) \leq I_{x, z}^{(2)}(\bar{f}) \text { and } I_{x}^{\ell,(c)}\left(\bar{f}_{\ell}\right) \leq I_{x}^{(c)}(\bar{f})
$$

for every $x, z \in \Lambda_{\ell}$. Therefore,

$$
D^{\ell}\left(\bar{f}_{\ell}\right) \leq \sum_{\substack{x, z \in \Lambda_{\ell} \\|x-z|=1}} I_{x, z}^{(1)}\left(\bar{f}_{\ell}\right)+\sum_{x, z \in \Lambda_{\ell}} \frac{1}{N} I_{x, z}^{(2)}\left(\bar{f}_{\ell}\right)+\sum_{x \in \Lambda_{\ell}} I_{x}^{(c)}\left(\bar{f}_{\ell}\right)
$$

On the other hand, by translation invariance of $\bar{f}, I_{x, z}^{(1)}(\bar{f})=I_{x+y, z+y}^{(1)}(\bar{f}), I_{x, z}^{(2)}(\bar{f})=I_{x+y, z+y}^{(2)}(\bar{f})$ and $I_{x}^{(c)}(\bar{f})=I_{0}^{(c)}(\bar{f})$. Hence,

$$
\begin{aligned}
D^{\ell}\left(\bar{f}_{\ell}\right) & \leq(2 \ell+1)^{d} \sum_{i=1}^{d} I_{0, e_{i}}^{(1)}(\bar{f})+\frac{(2 \ell+1)^{d}}{N} \sum_{y \in \Lambda_{\ell}} I_{0, y}^{(2)}(\bar{f})+(2 \ell+1)^{d} I_{0}^{(c)}(\bar{f}) \\
& \leq \frac{(2 \ell+1)^{d}}{N^{d}}\left(D_{N, 1}(\bar{f})+D_{N, 2}(\bar{f})+D_{N, c}(\bar{f})\right)
\end{aligned}
$$

Since the Dirichlet form is positive, $D_{N}(f) \leq C N^{d-2}$ implies that $D_{N, 1}(f) \leq C N^{d-2}, D_{N, 2}(f) \leq$ $C N^{d-1}$ and $D_{N, c}(f) \leq C N^{d-2}$. Thus,

$$
D^{\ell}\left(\bar{f}_{\ell}\right) \leq 3 C(2 \ell+1)^{d} N^{-2}:=C_{0}(C, \ell) N^{-2}
$$

Therefore, the Dirichlet form of \bar{f}_{ℓ} vanishes as $N \uparrow \infty$. Hence, by (1.4.1), to prove the one block estimate we must show that

$$
\begin{equation*}
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{N \rightarrow \infty} \sup _{D^{\ell}(f) \leq C_{0}(C, \ell) N^{-2}} \int V_{\ell}^{j, k}(\xi) f(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)=0 \tag{1.4.2}
\end{equation*}
$$

with the supremum carried over all densities with respect to $\nu_{\rho, \boldsymbol{p}}^{N}$.
We will now take the limit as $N \uparrow \infty$. To do so, we note that $V_{\ell}^{j, k} \leq C_{1}$, where C_{1} is some constant, and therefore

$$
\int_{X_{\ell}} V_{\ell}^{j, k}(\xi) f(\xi) \nu_{\rho, \boldsymbol{p}}^{N}(d \xi) \leq C_{1}
$$

This subset of $\mathcal{M}_{+}\left(X_{\ell}\right)$ is compact for the weak topology, and since it is compact, for each N, there exists a density f_{N} with Dirichlet form bounded by $C_{0} N^{-2}$ that reaches the supremum. Let now N_{n} be a subsequence such that

$$
\lim _{n \rightarrow \infty} \int V_{\ell}^{j, k} f_{N_{n}}(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)=\varlimsup_{N \rightarrow \infty} \int V_{\ell}^{j, k}(\xi) f_{N}(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)
$$

To keep notation simple, assume, without loss of generality, that the sequences N_{n} and N coincide. By compactness, we can find a convergent subsequence $f_{N_{n}}$. Denote by f_{∞} the weak limit. Since the Dirichlet form is lower semicontinuous

$$
D^{\ell}\left(f_{\infty}\right)=0
$$

Moreover, by weak continuity,

$$
\lim _{n \rightarrow \infty} \int V_{\ell}^{j, k}(\xi) f_{N_{n}}(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)=\int V_{\ell}^{j, k}(\xi) f_{\infty}(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)
$$

In conclusion, expression (1.4.2) is bounded above by

$$
\varlimsup_{\ell \rightarrow \infty} \sup _{D^{\ell}(f)=0} \int V_{\ell}^{j, k}(\xi) f(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)
$$

We will now decompose along sets with a fixed number of conserved quantities.
Recall that \mathfrak{V}_{L} is the set of all possible values of $\boldsymbol{I}^{L}(0)$ when η runs over $\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{L}}$. Further, \mathfrak{V}_{L} is finite. Furthermore, consider for each \boldsymbol{i} in \mathfrak{V}_{L} the canonical measure $\nu_{L, i}$ defined in subsection 1.3.4; and moreover, recall that

$$
\nu_{\Lambda_{L}, \boldsymbol{i}}(\cdot)=\mu_{\boldsymbol{\lambda}}^{\Lambda_{L}}\left(\cdot \mid \boldsymbol{I}^{L}=\boldsymbol{i}\right) .
$$

A probability density with Dirichlet form equal to zero is constant on each set with a fixed number of conserved quantities. It is convenient therefore to decompose each density f along these sets. Thus

$$
\int V_{\ell}^{j, k}(\xi) f(\xi) \nu_{\rho, \boldsymbol{p}}^{N}(d \xi)=\sum_{j \in \mathfrak{V}_{\ell}} T_{\boldsymbol{j}}(f) \int V_{\ell}^{j, k} \nu_{\ell, \boldsymbol{j}}(d \xi)
$$

where,

$$
T_{j}(f)=\int \mathbf{1}_{\mathcal{H}_{\ell}(\boldsymbol{j})} f(\xi) \nu_{\rho, \boldsymbol{p}}^{\ell}(d \xi)
$$

Since $\sum_{\boldsymbol{j} \in \mathcal{H}_{\ell}(\boldsymbol{j})} T_{j}(f)=1$, to conclude the proof of the one block estimate, we must show that

$$
\varlimsup_{\ell \rightarrow \infty} \sup _{\boldsymbol{j} \in \mathfrak{N}_{\ell}} \int V_{\ell}^{j, k}(\xi) \nu_{\ell, \boldsymbol{j}}(d \xi)=0
$$

Since the measure $\nu_{\ell, \boldsymbol{j}}$ is concentrated on configurations with conserved quantity \boldsymbol{j}, the last integral equals

$$
\int\left|\frac{1}{(2 \ell+1)^{d}} \sum_{y \in \Lambda_{\ell}} \sum_{v \in \mathcal{V}} v_{k} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-\sum_{v \in \mathcal{V}} v_{j} v_{k} E_{\nu_{j}^{\ell}}\left[h\left(\xi, e_{1}, v\right)\right]\right| \nu_{\ell, \boldsymbol{j}}(d \xi),
$$

where $h(\xi, z, v)=\xi(0, v)(1-\xi(z, v))$.
Fix some positive integer n, that shall increase to infinity after ℓ. Decompose the set Λ_{ℓ} in cubes of length $2 k+1$. Consider the set $A=\left\{(2 n+1) x, x \in \mathbb{Z}^{d}\right\} \cap \Lambda_{\ell-n}$ and enumerate its elements: $A=$ $\left\{x_{1}, \ldots, x_{q}\right\}$ in such a way that $\left|x_{i}\right| \leq\left|x_{j}\right|$ for $i \leq j$. For $1 \leq i \leq q$, let $B_{i}=x_{i}+\Lambda_{n}$. Note that $B_{i} \cap B_{j}=\emptyset$ if $i \neq j$ and that $\cup_{1 \leq i \leq q} B_{i} \subset \Lambda_{\ell}$. Let $B_{0}=\Lambda_{\ell}-\cup_{1 \leq i \leq q} B_{i}$. By construction $\left|B_{0}\right| \leq K n \ell^{d-1}$ for some universal constant K. The previous integral is bounded above by

$$
\sum_{i=0}^{q} \frac{\left|B_{i}\right|}{\left|\Lambda_{\ell}\right|} \int\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{\left|B_{i}\right|} \sum_{y \in B_{i}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}^{\ell}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right| \nu_{\ell, \boldsymbol{j}}(d \xi) .
$$

Since $\left|B_{0}\right| \leq K n \ell^{d-1}, \sum_{v} v_{k} \xi(0, v)(1-\xi(z, v))$ has mean $\sum_{v} v_{k} \chi\left(\theta_{v}(\Lambda(\boldsymbol{j}))\right)$, and $\left|\sum_{z \in B_{i}} p(z, v) z_{j}\right|$ is bounded, the sum is equal to

$$
\frac{\left|\Lambda_{n}\right|}{\left|\Lambda_{\ell}\right|} \sum_{i=0}^{q} \int\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{\left|B_{n}\right|} \sum_{y \in B_{i}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}^{\ell}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right| \nu_{\ell, \boldsymbol{j}}(d \xi)
$$

plus a term of order $\mathcal{O}(n / \ell)$. Since the distribution of $\left\{\xi(z, v) ; z \in B_{i}, v \in \mathcal{V}\right\}$ does not depend on i, the previous sum is equal to

$$
\int\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}^{e}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right| \nu_{\ell, \boldsymbol{j}}(d \xi)
$$

plus a term of order $\mathcal{O}(n / \ell)$.
Now, let $\mu_{\boldsymbol{\lambda}}$ be the product measure on $\left(\{0,1\}^{\mathcal{V}}\right)^{\mathbb{Z}^{d}}$ with marginals given by

$$
\mu_{\boldsymbol{\lambda}}\{\eta: \eta(x, \cdot)=\xi\}=m_{\boldsymbol{\lambda}}(\xi),
$$

for each $\xi \in\{0,1\}^{\mathcal{V}}$ and $x \in \mathbb{Z}^{d}$. Therefore, $E_{\nu_{j}^{\ell}}\left[\xi(0, v)\left(1-\xi\left(e_{1}, v\right)\right)\right]=E_{\nu_{j}}\left[\xi(0, v)\left(1-\xi\left(e_{1}, v\right)\right)\right]$, where $\nu_{j}=\mu_{\Lambda(j)}$. Moreover, if in the equivalence of ensembles we choose $L=L(\ell)=\lfloor C(\ell, \mathcal{V})\rfloor$, where $C(\ell, \mathcal{V})$
is the constant given in the equivalence of ensembles, we can replace the canonical measure by the grand canonical measure paying a price of order $o_{\ell}(1)$. Therefore, we can write the previous integral as

$$
\int\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right| \nu_{j}^{\ell}(d \xi)
$$

plus a term of order $o_{\ell}(1)$. We now note that ν_{j} equals ν_{j}^{ℓ} on Λ_{ℓ}. Then, the integral can be written as

$$
\int\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right| \nu_{\boldsymbol{j}}(d \xi)
$$

plus a term of order $o_{\ell}(1)$. Let now,

$$
g_{\boldsymbol{j}}(\xi)=\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} E_{\nu_{j}}\left[h\left(\xi, e_{1}, v\right)\right]\right)\right|,
$$

but we know that $E_{\nu_{j}}\left[h\left(\xi, e_{1}, v\right)\right]=\chi\left(\theta_{v}(\Lambda(\boldsymbol{j}))\right)$, then,

$$
g_{\boldsymbol{j}}(\xi)=\left|\sum_{v \in \mathcal{V}} v_{k}\left(\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{z} p(z, v) z_{j} \tau_{y}(h(\xi, z, v))-v_{j} \chi\left(\theta_{v}(\Lambda(\boldsymbol{j}))\right)\right)\right| .
$$

Now, $\left(\{0,1\}^{\mathcal{V}}\right)^{\mathbb{Z}^{d}}$ is compact on the product topology, and also, all the marginals of $\nu_{\boldsymbol{j}}$ converge to the marginals of $\nu_{\rho, \boldsymbol{p}}$, when $\boldsymbol{j} \rightarrow(\rho, \boldsymbol{p})$ as $\ell \rightarrow \infty$. Then, $\nu_{\boldsymbol{j}}$ converges weakly to $\nu_{\rho, \boldsymbol{p}}$. Further, since $g_{\boldsymbol{j}}(\xi) \rightarrow g_{\rho, \boldsymbol{p}}(\xi)$ for every ξ, we have from Theorem 5.5 of Billingsley [6], that

$$
\int g_{\boldsymbol{j}}(\xi) \nu_{\boldsymbol{j}}(d \xi) \xrightarrow{\ell \rightarrow \infty} \int g_{\rho, \boldsymbol{p}}(\xi) \nu_{\rho, \boldsymbol{p}}(d \xi)
$$

this convergence being uniform on compact subsets of $\mathbb{R}_{+} \times \mathbb{R}^{d}$. Then, since the remainder term is $o_{\ell}(1)$, the limit as $\ell \rightarrow \infty$ and $\boldsymbol{j} \rightarrow(\rho, \boldsymbol{p})$ is

$$
\int\left|\frac{1}{(2 n+1)^{d}} \sum_{y \in \Lambda_{n}} \sum_{v \in \mathcal{V}} v_{k} \sum_{z} z_{j} p(z, v) \tau_{y}(h(\xi, z, v))-\sum_{v \in \mathcal{V}} v_{j} v_{k} \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)\right| \nu_{\rho, \boldsymbol{p}}(d \xi) .
$$

On the other hand, as $k \uparrow \infty$, by the law of large numbers, this integral converges to 0 .
Therefore, the one block estimate is proved.

1.4.2 Proof of the two block estimate

To prove the two block estimate, it is enough to show that

$$
\begin{align*}
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}(f) \leq C N^{d-2}} & \left.\sup _{y \in\left(\Lambda_{\epsilon N} \backslash \Lambda_{\ell}\right)} \int \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} \right\rvert\, \boldsymbol{I}^{\ell}(x) \\
& -\boldsymbol{I}^{\ell}(x+y) \mid f(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)=0 . \tag{1.4.3}
\end{align*}
$$

As for the one block estimate, we can rewrite this integral as

$$
\int\left|\boldsymbol{I}^{\ell}(0)-\boldsymbol{I}^{\ell}(y)\right| \bar{f}(\eta) \nu_{\rho, \boldsymbol{p}}^{N}(d \eta)
$$

where \bar{f} stands for the average of all space translations of $f . \boldsymbol{I}^{\ell}(0)$ and $\boldsymbol{I}^{\ell}(y)$ depend of the configuration η only through the occupation variables $\left\{\eta(x, v): x \in \Lambda_{y, \ell}, v \in \mathcal{V}\right\}$, where

$$
\Lambda_{y, \ell}=\{-\ell, \ldots, \ell\}^{d} \cup\left[y+\{-\ell, \ldots, \ell\}^{d}\right]
$$

We now introduce some notation. For positive integer ℓ, let $X^{2, \ell}$ denote the configuration space $\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{\ell}} \times\left(\{0,1\}^{\mathcal{V}}\right)^{\Lambda_{\ell}}, \xi=\left(\xi_{1}, \xi_{2}\right)$ the configurations of $X^{2, \ell}$ and the product measure $\nu_{\rho, p}^{N}$ restricted to $X^{2, \ell}$ (which does not depend on N) by $\nu_{\rho, \boldsymbol{p}}^{2, \ell}$. Denote by $f_{y, \ell}$ the conditional expectation of f with respect to the σ-algebra generated by $\left\{\eta(x, v): x \in \Lambda_{y, \ell}, v \in \mathcal{V}\right\}$.

Since $\boldsymbol{I}^{\ell}(0)$ and $\boldsymbol{I}^{\ell}(y)$ depend on $\eta(x, v)$, for $x \in \Lambda_{y, \ell}$ and $v \in \mathcal{V}$, we may replace \bar{f} by $\bar{f}_{y, \ell}$, and then, we can rewrite (1.4.3) as

$$
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{\epsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \sup _{D_{N}(f) \leq C N^{d-2}} \sup _{y \in\left(\Lambda_{\epsilon N} \backslash \Lambda_{\ell}\right)} \int \frac{1}{N^{d}} \sum_{x \in D_{N}^{d}}\left|\boldsymbol{E}_{1}^{\ell}(0)-\boldsymbol{E}_{2}^{\ell}(0)\right| \bar{f}_{y, \ell}(\xi) \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi)=0
$$

where

$$
\boldsymbol{E}_{i}^{\ell}(x)=\frac{1}{\left|\Lambda_{\ell}\right|} \sum_{z \in x+\Lambda_{\ell}} \boldsymbol{I}\left(\xi_{i z}\right)
$$

Now, we need to obtain information concerning the density $\bar{f}_{y, \ell}$ from the bound on the Dirichlet form of f. Then, let $D^{2, \ell}$ be the Dirichlet form defined on positive densities $h: X^{2, \ell} \rightarrow \mathbb{R}_{+}$by

$$
D^{2, \ell}(h)=I_{0,0}^{\ell}(h)+D_{1}^{\ell}(h)+D_{2}^{\ell}(h)
$$

where,

$$
\begin{aligned}
D_{1}^{\ell}(h) & =\sum_{v \in \mathcal{V}} \int\left[\sum_{\substack{x, z \in \Lambda_{\ell} \\
|x-z|=1}} \frac{1}{2}+\frac{1}{N} \sum_{x, z \in \Lambda_{\ell}} p(z, v)\right]\left[\sqrt{h\left(\xi_{1}^{x, x+z, v}, \xi_{2}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{x \in \Lambda_{\ell}} \sum_{v \in \mathcal{V}} \int p\left(x, q, \xi_{1}\right)\left[\sqrt{h\left(\xi_{1}^{x, q}, \xi_{2}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
D_{2}^{\ell}(h) & =\sum_{v \in \mathcal{V}} \int\left[\sum_{\substack{x, z \in \Lambda_{\ell} \\
|x-z|=1}} \frac{1}{2}+\frac{1}{N} \sum_{x, z \in \Lambda_{\ell}} p(z, v)\right]\left[\sqrt{h\left(\xi_{1}, \xi_{2}^{x, x+z, v}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{x \in \Lambda_{\ell}} \sum_{v \in \mathcal{V}} \int p\left(x, q, \xi_{1}\right)\left[\sqrt{h\left(\xi_{1}, \xi_{2}^{x, q}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi)
\end{aligned}
$$

and,

$$
\begin{aligned}
& I_{0,0}^{\ell}(h)=\sum_{v \in \mathcal{V}} \int\left[\sum_{|z|=1} \frac{1}{2}+\frac{1}{N} p(z, v)\right]\left[\sqrt{h\left(\xi_{1}^{0,-, v}, \xi_{2}^{0,+, v}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{v \in \mathcal{V}} \int p\left(0, q, \xi_{1}\right)\left[\sqrt{h\left(\xi_{1}^{0, q}, \xi_{2}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{v \in \mathcal{V}} \int\left[\sum_{|z|=1} \frac{1}{2}+\frac{1}{N} p(z, v)\right]\left[\sqrt{h\left(\xi_{1}^{0,+, v}, \xi_{2}^{0,-, v}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{v \in \mathcal{V}} \int p\left(0, q, \xi_{2}\right)\left[\sqrt{h\left(\xi_{1}, \xi_{2}^{0, q}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi),
\end{aligned}
$$

where

$$
\xi_{i}^{0, \pm, v}(x, w)=\left\{\begin{array}{cc}
\xi_{i}(0, v) \pm 1, & \text { if } x=0 \text { and } w=v \\
\xi_{i}(x, w), & \text { otherwise }
\end{array}\right.
$$

This Dirichlet form corresponds to an interacting particle system on $\left(\mathcal{V} \times \Lambda_{\ell}\right) \times\left(\mathcal{V} \times \Lambda_{\ell}\right)$, where particles evolve according to an exclusion process with collisions among velocities on each coordinate
and where particles from the origin of one of the coordinates at some velocity can jump to the origin of the other at this velocity and vice-versa.

Using the same idea as for the one-block estimate, we can prove that

$$
D_{1}^{\ell}\left(\bar{f}_{y, \ell}\right) \leq D_{N}(\bar{f}) \text { and } D_{2}^{\ell}\left(\bar{f}_{y, \ell}\right) \leq D_{N}(\bar{f}),
$$

and hence,

$$
D_{1}^{\ell}\left(\bar{f}_{y, \ell}\right)+D_{2}^{\ell}\left(\bar{f}_{y, \ell}\right) \leq 2 C_{0} N^{-2}
$$

for every density f with Dirichlet form $D_{N}(f)$ bounded by $C N^{d-2}$. It remains to be shown that we can also estimate the Dirichlet form $I_{0,0}^{\ell}\left(\bar{f}_{y, \ell}\right)$ by the Dirichlet form of f.

We begin by noting that

$$
I_{0,0}^{\ell}(h)=I_{0,0}^{\ell, 1}(h)+I_{0,0}^{\ell, 2}(h)
$$

where,

$$
\left.\left.\begin{array}{rl}
I_{0,0}^{\ell, 1}(h)=\sum_{v \in \mathcal{V}}\left[\sum_{|z|=1} \frac{1}{2}+\frac{1}{N} p(z, v)\right] & {[}
\end{array}\right]\left[\sqrt{h\left(\xi_{1}^{0,-, v}, \xi_{2}^{0,+, v}\right)}-\sqrt{h(\xi)}\right]^{2}, ~+~\left[\sqrt{h\left(\xi_{1}^{0,+, v}, \xi_{2}^{0,-, v}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi)\right], ~ \$
$$

and

$$
\begin{aligned}
I_{0,0}^{\ell, 2}(h) & =\sum_{v \in \mathcal{V}} \int p\left(0, q, \xi_{1}\right)\left[\sqrt{h\left(\xi_{1}^{0, q}, \xi_{2}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) \\
& +\sum_{v \in \mathcal{V}} \int p\left(0, q, \xi_{2}\right)\left[\sqrt{h\left(\xi_{1}, \xi_{2}^{0, q}\right)}-\sqrt{h(\xi)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi) .
\end{aligned}
$$

Then, a simple calculation shows that

$$
I_{0,0}^{\ell, 2}\left(\bar{f}_{y, \ell}\right) \leq 2 I_{0}^{(c)}(\bar{f}),
$$

and therefore $I_{0,0}^{\ell, 2}\left(\bar{f}_{y, \ell}\right)$ is also of order N^{-2}. We then have to obtain a bound for $I_{0,0}^{\ell, 1}\left(\bar{f}_{y, \ell}\right)$.
Following the same lines used to prove that $I_{x, z}^{\ell,(j)}\left(\bar{f}_{\ell}\right) \leq I_{x, z}^{(j)}(\bar{f})$ in the proof of the one block estimate, for $j=1,2, c$, we have that each density f, with respect to $\nu_{\rho, \boldsymbol{p}}^{N}, I_{0,0}^{\ell, 1}\left(\bar{f}_{y, \ell}\right)$, is bounded above by:

$$
\begin{equation*}
2 \sum_{v \in \mathcal{V}}\left[\sum_{|z|=1} \frac{1}{2}+\frac{1}{N} p(z, v)\right] \int\left[\sqrt{\bar{f}\left(\eta^{0, y, v}\right)}-\sqrt{\bar{f}(\eta)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{N}(d \eta) . \tag{1.4.4}
\end{equation*}
$$

Let $\left(x_{k}\right)_{0 \leq k \leq\| \| y \| \mid}$ be a path from the origin to y, that is, a sequence of sites such that the first one is the origin, the last one is y and the distance between two consecutive sites is equal to 1 :

$$
x_{0}=0, x_{\||y \||}=y \text { and }\left|x_{k+1}-x_{k}\right|=1 \text { for every } 0 \leq k \leq\|\mid y\| \|-1,
$$

$|||\cdot|||$ is the sum norm:

$$
\left\|\left|(y _ { 1 } , \ldots , y _ { d }) \left\|\|=\sum_{1 \leq i \leq d}\left|y_{i}\right| .\right.\right.\right.
$$

Let $\tau_{x_{1}} \cdots \tau_{x_{i}}(\eta)$ be the sequence of nearest neighbor exchanges that represents the path along x_{1}, \ldots, x_{i}. Then, by using the telescopic sum

$$
\sqrt{f\left(\eta^{0, y, v}\right)}-\sqrt{f(\eta)}=\sum_{k=0}^{\|y\|-1}\left(\sqrt{f\left(\prod_{i=1}^{k} \tau_{x_{i}}(\eta)\right)}-\sqrt{f\left(\prod_{i=1}^{k-1} \tau_{x_{i}}(\eta)\right)}\right)
$$

and the Cauchy-Schwarz inequality

$$
\left(\sum_{k=0}^{\|| | y\|-1} a_{k}\right)^{2} \leq\||y|\| \sum_{k=0}^{\|y \mid\|-1} a_{k}^{2}
$$

we obtain that (1.4.4) is bounded by

$$
\begin{gathered}
\left.2 \sum_{v \in \mathcal{V}}\left[\sum_{|z|=1} \frac{1}{2}+\frac{1}{N} p(z, v)\right] \right\rvert\,\|y\| \| \sum_{k=0}^{\||\|\mid\|-1}\left[\sqrt{\bar{f}\left(\prod_{i=1}^{k} \tau_{x_{i}}(\eta)\right)}-\sqrt{\bar{f}\left(\prod_{i=1}^{k-1} \tau_{x_{i}}(\eta)\right)}\right]^{2} \nu_{\rho, \boldsymbol{p}}^{N}(d \eta) \\
\leq 2 \cdot 2 \cdot 2^{d} \mid\|y\| \| \sum_{k=0}^{\|y\|-1} I_{x_{k}, x_{k+1}}^{(1)}(\bar{f})
\end{gathered}
$$

Since \bar{f} is translation invariant, for each $k, I_{x_{k}, x_{k+1}}^{(1)}(\bar{f})=I_{x_{k}+z, x_{k+1}+z}^{(1)}(\bar{f})$ for all $z \in \mathbb{Z}^{d}$. Hence, $I_{x_{k}, x_{k+1}}^{(1)}(\bar{f}) \leq N^{-d} D_{N}(f)$. In particular,

$$
I_{0,0}^{\ell, 1}\left(\bar{f}_{y, \ell}\right) \leq 2^{d+2}\|y y\| \|^{2} N^{-d} D_{N}(f)
$$

Recall that $y \in \Lambda_{\epsilon N}$, and hence $|y| \leq 2 N \epsilon,|\cdot|$ is the max norm. Then, $|||y| \| \leq d| y| \leq 2 d N \epsilon$. Since the Dirichlet form is assumed to be bounded by $C N^{d-2}$, we have proved that

$$
I_{0,0}^{\ell, 1}\left(\bar{f}_{y, \ell}\right) \leq 2^{d+4} d^{2} C \epsilon^{2}
$$

We have, therefore, proved that for every density f with Dirichlet form bounded by $C N^{d-2}$ and for every d-dimensional integer with max norm between 2ℓ and $2 N \epsilon$,

$$
D^{2, \ell}\left(\bar{f}_{y, \ell}\right) \leq C_{2}(C, d, \ell) \epsilon^{2}
$$

We can now restrict ourselves to densities f such that $D^{2, \ell}\left(\bar{f}_{y, \ell}\right) \leq C_{2} \epsilon^{2}$, that vanishes as $\epsilon \downarrow 0$. In particular, to conclude the proof, it is enough to show that

$$
\varlimsup_{\ell \rightarrow \infty} \varlimsup_{\epsilon \rightarrow 0} \sup _{D^{2, \ell}(f) \leq C_{2} \epsilon^{2}} \int\left|\boldsymbol{E}_{1}^{\ell}(0)-\boldsymbol{E}_{2}^{\ell}(0)\right| f(\xi) \nu_{\rho, \boldsymbol{p}}^{2, \ell}(d \xi)=0
$$

this time, however, the supremum is taken over all densities with respect to $\nu_{\rho, \boldsymbol{p}}^{2, \boldsymbol{\ell}}$. The rest of the proof follows the same lines as the ones in the one block estimate, beginning by decomposing the Dirichlet form along the sets having fixed conserved quantities and then applying the equivalence of ensembles. Therefore, the two block estimate is proved.

1.5 Uniqueness

To conclude the proof of the hydrodynamic limit, it remains to be proven the uniquenesses for the solutions of problems (1.2.4) and (1.2.4). The strategy we used to prove this result was employed by Oleinik and Kruzhkov [19] and is due to Yu.A. Dubinskii.

Let ν and ω be two weak solutions to the problem (1.2.4), corresponding to the same initial function ν_{0}. Fix some $j=1, \ldots, d+1$, and let $H_{j} \in C^{1,2}\left([0, T] \times D^{d}\right)$ be such that $H_{j}(T, x)=0$, for all x. Then the integral identity for $\nu-\omega$ holds:

$$
\begin{equation*}
\int_{0}^{T} d t \int_{D^{d}} d x\left(\nu_{j}-\omega_{j}\right)\left[\partial_{t} H_{j}+\frac{1}{2} \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} H_{j}\right]+\int_{0}^{T} d t \int_{D^{d}} d x \sum_{v \in \mathcal{V}} v_{j}\left(g_{v}(\nu)-g_{v}(\omega)\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H_{j}=01.5 \tag{1.5.1}
\end{equation*}
$$

where $g_{v}(\nu)=\chi\left(\theta_{v}(\Lambda(\nu))\right), \nu_{j}, \omega_{j}$ and H_{j} are the components of ν, ω and H, respectively. If $\nu_{j}=\omega_{j}$, we already have what we want, thus, suppose $\nu_{j} \neq \omega_{j}$. Introducing the notation

$$
\beta_{v}^{j}=\frac{g_{v}(\nu)-g_{v}(\omega)}{\nu_{j}-\omega_{j}}
$$

we have that we can write (1.5.1) as

$$
\begin{equation*}
\int_{0}^{T} d t \int_{D^{d}} d x\left(\nu_{j}-\omega_{j}\right)\left[\partial_{t} H_{j}+\frac{1}{2} \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} H_{j}+\sum_{v \in \mathcal{V}} v_{j} \beta_{v}^{j} \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H_{j}\right]=0 \tag{1.5.2}
\end{equation*}
$$

Now, let $\beta_{v}^{j, m}$ be a sequence of smooth functions which converge in $L^{2}\left([0, T] \times D^{d}\right)$ to β_{v}^{j}, as $m \rightarrow \infty$. We denote by $H_{j}^{m}(t, x)$ the classical solution of the equation

$$
\begin{gather*}
\partial_{t} H_{j}^{m}+\frac{1}{2} \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} H_{j}^{m}+\sum_{v \in \mathcal{V}} v_{j} \beta_{v}^{j, m} \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H_{j}^{m}=\Phi_{j} \tag{1.5.3}\\
H_{j}^{m}(T, x)=0, H_{j}^{m}(0, x)=0
\end{gather*}
$$

where Φ_{j} is a smooth function finite in $[0, T] \times D^{d}$. For more details on the solutions of partial differential equations of the parabolic type, the reader is referred to Friedman [13], and for details on solutions of systems of linear partial differential equations of the parabolic type in general, the reader is referred to Ladyženskaja et al. [16].

Now, if we replace H_{j} in (1.5.2) by H_{j}^{m} and use (1.5.3), we obtain:

$$
\begin{equation*}
\int_{0}^{T} d t \int_{D^{d}} d x\left(\nu_{j}-\omega_{j}\right) \Phi_{j}+\int_{0}^{T} d t \int_{D^{d}} d x\left(\nu_{j}-\omega_{j}\right)\left[\sum_{v \in \mathcal{V}} v_{j}\left(\beta_{v}^{j}-\beta_{v}^{j, m}\right) \sum_{1 \leq i \leq d} \partial_{u_{i}} H_{j}^{m}\right]=0 \tag{1.5.4}
\end{equation*}
$$

Finally, since we are in a compact domain and the coefficients $\beta_{v}^{j, m}$ are smooth, we have that there exists an $M>0$ such that $\left|H_{j}^{m}\right| \leq M$. Since these coeffiecients converge in $L^{2}\left([0, T] \times D^{d}\right)$, the constant M may be taken to be independent of m. Multiplying (1.5.3) by H_{j}^{m}, integrating over $[0, T] \times D^{d}$, and then integrating by parts, we have that

$$
\int_{0}^{T} d t \int_{D^{d}} d x \sum_{i=1}^{d} \frac{1}{2}\left(\frac{\partial H_{j}^{m}}{\partial u_{i}}\right)^{2}=\int_{0}^{T} d t \int_{D^{d}} d x\left(\sum_{v \in \mathcal{V}} v_{j} \beta_{v}^{j, m} H_{j}^{m} \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H_{j}^{m}-\Phi H_{j}^{m}\right)-\frac{1}{2} \int_{D^{d}} d x\left(H_{j}^{m}\right)^{2} .
$$

On applying the elementary inequality $|a b| \leq \epsilon a^{2}+b^{2} /(4 \epsilon)$ and using that $\left|H_{j}^{m}\right| \leq M$, we obtain that

$$
\int_{0}^{T} d t \int_{D^{d}} d x \sum_{i=1}^{d} \frac{1}{2}\left(\frac{\partial H_{j}^{m}}{\partial u_{i}}\right)^{2} \leq C
$$

where C is a constant that may depend on M and Φ, but not on m.
Therefore, by applying the Cauchy-Schwartz inequality and using that $\beta_{v}^{j, m}$ converges to β_{v}^{j} in the L^{2}-norm, we see that the second term on the left-hand side of equation (1.5.4) tends to zero as m tends to infinity. This implies that for every $\varepsilon>0$ there exists m such that the absolute value of the second term on the left-hand side of equation (1.5.4) is less than ε. We, then, have obtained that

$$
\forall \varepsilon>0:\left|\int_{0}^{T} d t \int_{\mathbb{T}^{d}} d x\left(\nu_{j}-\omega_{j}\right) \Phi_{j}\right| \leq \varepsilon,
$$

and hence, for each $j=1, \ldots, d+1, \nu_{j}=\omega_{j}$. Therefore $\nu \equiv \omega$.

Acknowledgements

I would like to thank my PhD advisor, Claudio Landim, for suggesting this problem, for valuable discussions and support. I also thank Jonathan Farfán for stimulating discussions on this topic, and Fábio Valentim for helping me improve the overall quality of the paper.

References

[1] Beltrán, J. and Landim, C. A lattice gas model for the incompressible Navier-Stokes equation, Ann. Inst. H. Poincaré, Probab. Statist., 44, 886-914.
[2] Benois, O., Kipnis, C. and Landim, C. Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Proc. and their Appl., 55, 65-89, 1995.
[3] Bernardin, C. Stationary nonequilibrium properties for a heat conduction model. Physical Review E, 78, 021134, 2008.
[4] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C., Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc., 37, 611-643, 2006.
[5] Bertini, L., De Sole, A., Gabrielli, G., Jona-Lasinio, G. and Landim, C. Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp., (7):P07014, 35pp (electronic), 2007.
[6] Billingsley, P. Convergence of Probability Measures, Wiley, New York, 1968.
[7] Derrida, B., Non equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. P07023, 2007.
[8] Eyink, G., Lebowitz, J.L. and Spohn, H. Hydrodynamics of stationary nonequilibrium states for some lattice gas models, Comm. Math. Phys., 132, 253-283, 1990.
[9] Eyink, G., Lebowitz, J.L. and Spohn, H. Lattice gas models in contact with stochastic reservoirs: local equilibrium and relaxation to the steady state, Comm. Math. Phys., 140, 119-131, 1991.
[10] Esposito, R., Marra, R., Yau, H. T. Navier-Stokes Equations for Stochastic Particle Systems on the Lattice. Comm. Math. Phys., 182, 395-456, 1996.
[11] Farfan, J., Landim, C. and Mourragui, M. Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion. Preprint. Available at http://arxiv.org/abs/0903.5526
[12] Farfan, J., Simas, A.B., Valentim, F.J. Dynamical large deviation for a boundary driven stochastic lattice gas model with many conserved quantities. In preparation.
[13] Friedman, A. Partial Differential Equations of Parabolic Type. Prentice Hall Inc., Englewood Cliffs, 1964.
[14] Kipnis, C. and Landim, C. Scaling limits of interacting particle systems, Grundlehren Math. Wiss. 320, Springer-Verlag, Berlin, 1999.
[15] Kipnis, C., Landim, C. and Olla, S. Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system. Ann. Inst. H. Poincaré, Probabilités, 31, 191-221, 1995.
[16] OA Ladyženskaja, O.A., Solonnikov, V.A. and Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. AMS, Rhode Island, 1968.
[17] Landim, C., Mourragui, M. and Sellami, S. Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Theory Probab. Appl., 45, 604-623, 2001.
[18] Landim, C., Olla, S. and Volchan, S.B. Driven tracer particle in one dimensional symmetric simple exclusion. Comm. Math. Phys., 192, 287-307, 1998.
[19] Oleinik, O.A. and Kruzhkov, S.N. Quasi-linear second order parabolic equations with many independent variables. Russian Math. Surveys, 16, 105-146, 1961.
[20] Quastel, J. and Yau, H. T. Lattice Gases, Large Deviations, and the Incompressible Navier-Stokes Equations. Annals of Mathematics, 148, 51-108, 1998.
[21] Spitzer, F. Interaction of Markov processes. Advances in Math., 5, 246-290, 1970.
[22] Spohn, H. Long range correlations for stochastic lattice gases in a non-equilibrium steady state, J. Stat. Phys. A:Math. Gen., 16, 4275-4291, 1983.

Chapter 2

Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

Artigo feito em colaboração com J. Farfan e F.J. Valentim. Foi publicado no periódico Journal of Statistical Physics, 139, p. 658-685, 2010.

Abstract

We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities.

2.1 Introduction

In the last years there has been considerable progress in understanding stationary non equilibrium states: reversible systems in contact with different reservoirs at the boundary imposing a gradient on the conserved quantities of the system. In these systems there is a flow of matter through the system and the dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is the following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilibrium states the construction of the stationary state requires the solution of a dynamical problem. One of the most striking typical property of these systems is the presence of long-range correlations. For the symmetric simple exclusion this was already shown in a pioneering paper by Spohn [13]. We refer to [5, 7] for two recent reviews on this topic.

We discuss this issue in the context of stochastic lattice gases in a box of linear size N with birth and death process at the boundary modeling the reservoirs. We consider the case when there are many thermodynamic variables: the local density denoted by ρ, and the local momentum denoted by p_{k}, $k=1, \ldots, d, d$ being the dimension of the box.

The model which we will study can be informally described as follows: fix a velocity v, an integer $N \geq 1$, and boundary densities $0<\alpha_{v}(\cdot)<1$ and $0<\beta_{v}(\cdot)<1$; at any given time, each site of the set $\{1, \ldots, N-1\} \times\{0, \ldots, N-1\}^{d-1}$ is either empty or occupied by one particle at velocity v. In the bulk, each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or $N-1$
have particles being created or removed in such a way that the local densities are $\alpha_{v}(\tilde{x})$ and $\beta_{v}(\tilde{x})$: at rate $\alpha_{v}(\tilde{x} / N)$ a particle is created at $\{1\} \times\{\tilde{x}\}$ if the site is empty, and at rate $1-\alpha_{v}(\tilde{x})$ the particle at $\{1\} \times\{\tilde{x}\}$ is removed if the site is occupied, and at rate $\beta_{v}(\tilde{x})$ a particle is created at $\{N-1\} \times\{\tilde{x}\}$ if the site is empty, and at rate $1-\beta_{v}(\tilde{x})$ the particle at $\{N-1\} \times\{\tilde{x}\}$ is removed if the site is occupied. Superposed to this dynamics, there is a collision process which exchange velocities of particles in the same site in a way that momentum is conserved.

Similar models have been studied by $[1,7,10]$. In fact, the model we consider here is based on the model of Esposito et al. [7] which was used to derive the Navier-Stokes equation. It is also noteworthy that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two conserved quantities have been studied in [4].

The hydrodynamic limit for the above model has been proved in [11]. The hydrodynamic equation derives from the underlying stochastic dynamics through an appropriate scaling limit in which the microscopic time and space coordinates are rescaled diffusively. The hydrodynamic equation thus represents the law of large numbers for the empirical density of the stochastic lattice gas. The convergence has to be understood in probability with respect to the law of the stochastic lattice gas. Once it is established a natural question is to consider large deviations.

This article thus provides a derivation of the dynamical large deviations for this model, and the proof follows the method introduced in [8]. The main difference is that their proof of $I_{T}(\cdot \mid \gamma)$-density relied on some energy estimates that we were not able to achieve due to the presence of velocities. Therefore, we had to overcome problem by taking a different approach at that part.

The article is organized as follows: in Section 2.2 we establish the notation and state the main results of the article; in Section 2.3, we review the hydrodynamics for this model, that was obtained in [11]; in Section 2.4, several properties of the rate function are derived; Section 2.5 proves the $I_{T}(\cdot \mid \gamma)$-density, which is a key result for proving the lower bound; finally, in Section 2.6 the proofs of the upper and lower bounds of the dynamical large deviations are given.

2.2 Notation and Results

Fix a positive integer $d \geq 1$. Denote by D^{d} the open set $(0,1) \times \mathbb{T}^{d-1}$, where \mathbb{T}^{k} is the k-dimensional torus $[0,1)^{k}$, and by Γ the boundary of $D^{d}: \Gamma=\left\{\left(u_{1}, \ldots, u_{d}\right) \in[0,1] \times \mathbb{T}^{d-1}: u_{1}= \pm 1\right\}$.

For an open subset Λ of $\mathbb{R} \times \mathbb{T}^{d-1}, \mathcal{C}^{m}(\Lambda), 1 \leq m \leq+\infty$, stands for the space of m-continuously differentiable real functions defined on Λ. Let $\mathcal{C}_{0}^{m}(\Lambda)$ (resp. $\mathcal{C}_{c}^{m}(\Lambda)$), $1 \leq m \leq+\infty$, be the subset of functions in $\mathcal{C}^{m}(\Lambda)$ which vanish at the boundary of Λ (resp. with compact support in Λ).

For an integer $N \geq 1$, denote by $\mathbb{T}_{N}^{d-1}=\{0, \ldots, N-1\}^{d-1}$, the discrete $(d-1)$-dimensional torus of length N. Let $D_{N}^{d}=\{1, \ldots, N-1\} \times \mathbb{T}_{N}^{d-1}$ be the cylinder in \mathbb{Z}^{d} of length $N-1$ and basis \mathbb{T}_{N}^{d-1} and let $\Gamma_{N}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z} \times \mathbb{T}_{N}^{d-1} \mid x_{1}=1\right.$ or $\left.x_{1}=(N-1)\right\}$ be the boundary of D_{N}^{d}.

Let $\mathcal{V} \subset \mathbb{R}^{d}$ be a finite set of velocities $v=\left(v_{1}, \ldots, v_{d}\right)$. Assume that \mathcal{V} is invariant under reflexions and permutations of the coordinates:

$$
\left(v_{1}, \ldots, v_{i-1},-v_{i}, v_{i+1}, \ldots, v_{d}\right) \text { and }\left(v_{\sigma(1)}, \ldots, v_{\sigma(d)}\right)
$$

belong to \mathcal{V} for all $1 \leq i \leq d$, and all permutations σ of $\{1, \ldots, d\}$, provided $\left(v_{1}, \ldots, v_{d}\right)$ belongs to \mathcal{V}.
On each site of D_{N}^{d}, at most one particle for each velocity is allowed. We denote: the number of particles with velocity v at $x, v \in \mathcal{V}, x \in D_{N}^{d}$, by $\eta(x, v) \in\{0,1\}$; the number of particles in each velocity v at a site x by $\eta_{x}=\{\eta(x, v) ; v \in \mathcal{V}\}$; and a configuration by $\eta=\left\{\eta_{x} ; x \in D_{N}^{d}\right\}$. The set of particle configurations is $X_{N}=\left(\{0,1\}^{\mathcal{V}}\right)^{D_{N}^{d}}$.

On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles of the same velocity, and (ii) binary collision between particles of different velocities. Let $p(x, v)$ be an irreducible probability transition function of finite range, and mean velocity v :

$$
\sum_{x} x p(x, v)=v
$$

The jump law and the waiting times are chosen so that the jump rate from site x to site $x+y$ for a
particle with velocity v is

$$
P_{N}(y, v)=\frac{1}{2} \sum_{j=1}^{d}\left(\delta_{y, e_{j}}+\delta_{y,-e_{j}}\right)+\frac{1}{N} p(y, v),
$$

where $\delta_{x, y}$ stands for the Kronecker delta, which equals one if $x=y$ and 0 otherwise, and $\left\{e_{1}, \ldots, e_{d}\right\}$ is the canonical basis in \mathbb{R}^{d}.

2.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator \mathcal{L}_{N} which is the superposition of the boundary dynamics with the collision and exclusion:

$$
\begin{equation*}
\mathcal{L}_{N}=N^{2}\left\{\mathcal{L}_{N}^{b}+\mathcal{L}_{N}^{c}+\mathcal{L}_{N}^{e x}\right\} \tag{2.2.1}
\end{equation*}
$$

where \mathcal{L}_{N}^{b} stands for the generator which models the part of the dynamics at which a particle at the boundary can enter or leave the system, \mathcal{L}_{N}^{c} stands for the generator which models the collision part of the dynamics and lastly, $\mathcal{L}_{N}^{e x}$ models the exclusion part of the dynamics. Let f be a local function on X_{N}. The generator of the exclusion part of the dynamics, $\mathcal{L}_{N}^{e x}$, is given by

$$
\left(\mathcal{L}_{N}^{e x} f\right)(\eta)=\sum_{v \in \mathcal{V}} \sum_{x, x+z \in D_{N}^{d}} \eta(x, v)[1-\eta(z, v)] P_{N}(z-x, v)\left[f\left(\eta^{x, z, v}\right)-f(\eta)\right]
$$

where

$$
\eta^{x, y, v}(z, w)=\left\{\begin{array}{cc}
\eta(y, v) & \text { if } w=v \text { and } z=x \\
\eta(x, v) & \text { if } w=v \text { and } z=y \\
\eta(z, w) & \text { otherwise }
\end{array}\right.
$$

The generator of the collision part of the dynamics, \mathcal{L}_{N}^{c}, is given by

$$
\left(\mathcal{L}_{N}^{c} f\right)(\eta)=\sum_{y \in D_{N}^{d}} \sum_{q \in \mathcal{Q}} p(y, q, \eta)\left[f\left(\eta^{y, q}\right)-f(\eta)\right]
$$

where \mathcal{Q} is the set of all collisions which preserve momentum:

$$
\mathcal{Q}=\left\{q=\left(v, w, v^{\prime}, w^{\prime}\right) \in \mathcal{V}^{4}: v+w=v^{\prime}+w^{\prime}\right\}
$$

the rate $p(y, q, \eta)$ is given by

$$
p(y, q, \eta)=\eta(y, v) \eta(y, w)\left[1-\eta\left(y, v^{\prime}\right)\right]\left[1-\eta\left(y, w^{\prime}\right)\right]
$$

and for $q=\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$, the configuration $\eta^{y, q}$ after the collision is defined as

$$
\eta^{y, q}(z, u)=\left\{\begin{array}{cc}
\eta\left(y, v_{j+2}\right) & \text { if } z=y \text { and } u=v_{j} \text { for some } 0 \leq j \leq 3 \\
\eta(z, u) & \text { otherwise },
\end{array}\right.
$$

where the index of v_{j+2} should be taken modulo 4 .
Particles of velocities v and w at the same site collide at rate one and produce two particles of velocities v^{\prime} and w^{\prime} at that site.

Finally, the generator of the boundary part of the dynamics is given by

$$
\begin{aligned}
\left(\mathcal{L}_{N}^{b} f\right)(\eta) & =\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=1}} \sum_{v \in \mathcal{V}}\left[\alpha_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right] \\
& +\sum_{\substack{x \in D_{N}^{d} \\
x_{1}=N-1}} \sum_{v \in \mathcal{V}}\left[\beta_{v}(\tilde{x} / N)[1-\eta(x, v)]+\left(1-\beta_{v}(\tilde{x} / N)\right) \eta(x, v)\right]\left[f\left(\sigma^{x, v} \eta\right)-f(\eta)\right]
\end{aligned}
$$

where $\tilde{x}=\left(x_{2}, \ldots, x_{d}\right)$,

$$
\sigma^{x, v} \eta(y, w)=\left\{\begin{array}{cc}
1-\eta(x, w), & \text { if } w=v \text { and } y=x \\
\eta(y, w), & \text { otherwise }
\end{array}\right.
$$

and for every $v \in \mathcal{V}, \alpha_{v}, \beta_{v} \in C^{2}\left(\mathbb{T}^{d-1}\right)$. Note that time has been speeded up diffusively in (2.2.1). We also assume that, for every $v \in \mathcal{V}, \alpha_{v}$ and β_{v} have images belonging to some compact subset of $(0,1)$. The functions α_{v} and β_{v}, which affect the birth and death rates at the two boundaries, represent the densities of the reservoirs.

Let $D\left(\mathbb{R}_{+}, X_{N}\right)$ be the set of right continuous functions with left limits taking values on X_{N}. For a probability measure μ on X_{N}, denote by \mathbb{P}_{μ} the measure on the path space $D\left(\mathbb{R}_{+}, X_{N}\right)$ induced by $\{\eta(t): t \geq 0\}$ and the initial measure μ. Expectation with respect to \mathbb{P}_{μ} is denoted by \mathbb{E}_{μ}.

2.2.2 Mass and momentum

For each configuration $\xi \in\{0,1\}^{\mathcal{V}}$, denote by $I_{0}(\xi)$ the mass of ξ and by $I_{k}(\xi), k=1, \ldots, d$, the momentum of ξ :

$$
I_{0}(\xi)=\sum_{v \in \mathcal{V}} \xi(v), \quad I_{k}(\xi)=\sum_{v \in \mathcal{V}} v_{k} \xi(v)
$$

Set $\boldsymbol{I}(\xi):=\left(I_{0}(\xi), \ldots, I_{d}(\xi)\right)$. Assume that the set of velocities is chosen in such a way that the unique quantities conserved by the random walk dynamics described above are mass and momentum: $\sum_{x \in D_{N}^{d}} \boldsymbol{I}\left(\eta_{x}\right)$. Two examples of sets of velocities satisfying these conditions can be found at [7].

For each chemical potential $\boldsymbol{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{d}\right) \in \mathbb{R}^{d+1}$, denote by m_{λ} the measure on $\{0,1\}^{\mathcal{V}}$ given by

$$
\begin{equation*}
m_{\lambda}(\xi)=\frac{1}{Z(\boldsymbol{\lambda})} \exp \{\lambda \cdot \boldsymbol{I}(\xi)\} \tag{2.2.2}
\end{equation*}
$$

where $Z(\boldsymbol{\lambda})$ is a normalizing constant. Note that $m_{\boldsymbol{\lambda}}$ is a product measure on $\{0,1\}^{\mathcal{V}}$, i.e., that the variables $\{\xi(v): v \in \mathcal{V}\}$ are independent under $m_{\boldsymbol{\lambda}}$.

Denote by μ_{λ}^{N} the product measure on X_{N}, with marginals given by

$$
\mu_{\boldsymbol{\lambda}}^{N}\{\eta: \eta(x, \cdot)=\xi\}=m_{\boldsymbol{\lambda}}(\xi)
$$

for each ξ in $\{0,1\}^{\mathcal{V}}$ and $x \in D_{N}^{d}$. Note that $\left\{\eta(x, v): x \in D_{N}^{d}, v \in \mathcal{V}\right\}$ are independent variables under μ_{λ}^{N}, and that the measure μ_{λ}^{N} is invariant for the exclusion process with periodic boundary condition.

The expectation under μ_{λ}^{N} of the mass and momentum are given by

$$
\begin{aligned}
\rho(\boldsymbol{\lambda}) & :=E_{\mu_{\boldsymbol{\lambda}}^{N}}\left[I_{0}\left(\eta_{x}\right)\right]=\sum_{v \in \mathcal{V}} \theta_{v}(\boldsymbol{\lambda}), \\
p_{k}(\boldsymbol{\lambda}) & :=E_{\mu_{\boldsymbol{\lambda}}^{N}}\left[I_{k}\left(\eta_{x}\right)\right]=\sum_{v \in \mathcal{V}} v_{k} \theta_{v}(\boldsymbol{\lambda}) .
\end{aligned}
$$

In this formula $\theta_{v}(\boldsymbol{\lambda})$ denotes the expected value of the density of particles with velocity v under $m_{\boldsymbol{\lambda}}$:

$$
\theta_{v}(\boldsymbol{\lambda}):=E_{m_{\boldsymbol{\lambda}}}[\xi(v)]=\frac{\exp \left\{\lambda_{0}+\sum_{k=1}^{d} \lambda_{k} v_{k}\right\}}{1+\exp \left\{\lambda_{0}+\sum_{k=1}^{d} \lambda_{k} v_{k}\right\}} .
$$

Denote by $(\rho, \boldsymbol{p})(\boldsymbol{\lambda}):=\left(\rho(\boldsymbol{\lambda}), p_{1}(\boldsymbol{\lambda}), \ldots, p_{d}(\boldsymbol{\lambda})\right)$ the map that associates the chemical potential to the vector of density and momentum. It is possible to prove that (ρ, \boldsymbol{p}) is a diffeomorphism onto $\mathfrak{U} \subset \mathbb{R}^{d+1}$, the interior of the convex envelope of $\left\{\boldsymbol{I}(\xi), \xi \in\{0,1\}^{\mathcal{V}}\right\}$. Denote by $\Lambda=\left(\Lambda_{0}, \ldots, \Lambda_{d}\right): \mathfrak{U} \rightarrow \mathbb{R}^{d+1}$ the inverse of (ρ, \boldsymbol{p}). This correspondence allows one to parameterize the invariant states by the density and momentum: for each (ρ, \boldsymbol{p}) in \mathfrak{U} we have a product measure $\nu_{\rho, \boldsymbol{p}}^{N}=\mu_{\Lambda(\rho, \boldsymbol{p})}^{N}$ on X_{N}.

2.2.3 Dynamical large deviations

Fix $T>0$, let \mathcal{M}_{+}be the space of finite positive measures on D^{d} endowed with the weak topology, and let \mathcal{M} be the space of bounded variation signed measures on D^{d} endowed with the weak topology. Let $\mathcal{M}_{+} \times \mathcal{M}^{d}$ be the cartesian product of these spaces endowed with the product topology, which is metrizable. Let also \mathcal{M}^{0} be the subset of $\mathcal{M}_{+} \times \mathcal{M}^{d}$ of all absolutely continuous measures with respect to the Lebesgue measure satisfying:

$$
\mathcal{M}^{0}=\left\{\begin{array}{l}
\pi \\
\quad \in \mathcal{M}_{+} \times \mathcal{M}^{d}: \pi(d u)=(\rho, \boldsymbol{p})(u) d u \text { and } \\
0
\end{array} \leq \rho(u) \leq|\mathcal{V}|,\left|p_{k}(u)\right| \leq \breve{v}|\mathcal{V}|, k=1, \ldots, d, \text { a.e. }\right\}, ~ \$
$$

where $\breve{v}=\max _{v \in \mathcal{V}} v_{1}$. Let $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ be the set of right continuous functions with left limits taking values on $\mathcal{M}_{+} \times \mathcal{M}^{d}$ endowed with the Skorohod topology. \mathcal{M}^{0} is a closed subset of $\mathcal{M}_{+} \times \mathcal{M}^{d}$ and $D\left([0, T], \mathcal{M}^{0}\right)$ is a closed subset of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$.

For a measure $\pi \in \mathcal{M}$, denote by $\langle\pi, G\rangle$ the integral of G with respect to π.
Let $\Omega_{T}=(0, T) \times D^{d}$ and $\overline{\Omega_{T}}=[0, T] \times \overline{D^{d}}$. For $1 \leq m, n \leq+\infty$, denote by $\mathcal{C}^{m, n}\left(\overline{\Omega_{T}}\right)$ the space of functions $G=G_{t}(u): \overline{\Omega_{T}} \rightarrow \mathbb{R}$ with m continuous derivatives in time and n continuous derivatives in space. We also denote by $\mathcal{C}_{0}^{m, n}\left(\overline{\Omega_{T}}\right)\left(\right.$ resp. $\left.\mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)\right)$ the set of functions in $\mathcal{C}^{m, n}\left(\overline{\Omega_{T}}\right)\left(\right.$ resp. $\left.\mathcal{C}^{\infty, \infty}\left(\overline{\Omega_{T}}\right)\right)$ which vanish at $[0, T] \times \Gamma$ (resp. with compact support in $\left.\Omega_{T}\right)$.

Let the energy $\mathcal{Q}: D\left([0, T], \mathcal{M}^{0}\right) \rightarrow[0, \infty]$ be given by

$$
\mathcal{Q}(\pi)=\sum_{k=0}^{d} \sum_{i=1}^{d} \sup _{G \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)}\left\{2 \int_{0}^{T} d t\left\langle p_{k, t}, \partial_{u_{i}} G_{t}\right\rangle-\int_{0}^{T} d t \int_{D^{d}} G(t, u)^{2} d u\right\}
$$

where $p_{k, t}(u)=p_{k}(t, u)$ and $p_{0, t}(u)=\rho(t, u)$.
For each $G \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$ and each measurable function $\gamma: \overline{D^{d}} \rightarrow[0,|\mathcal{V}|] \times[-\breve{v}|\mathcal{V}|, \breve{v}|\mathcal{V}|]^{d}$, $\gamma=\left(\rho_{0}, \boldsymbol{p}_{0}\right)$, let $\hat{J}_{G}=\hat{J}_{G, \gamma, T}: D\left([0, T], \mathcal{M}^{0}\right) \rightarrow \mathbb{R}$ be the functional given by

$$
\begin{aligned}
\hat{J}_{G}(\pi) & =\int_{D^{d}} G(T, u) \cdot(\rho, \boldsymbol{p})(T, u) d u-\int_{D^{d}} G(0, u) \cdot\left(\rho_{0}, \boldsymbol{p}_{0}\right)(u) d u \\
& -\int_{0}^{T} d t \int_{D^{d}} d u\left\{(\rho, \boldsymbol{p})(t, u) \cdot \partial_{t} G(t, u)+\frac{1}{2}(\rho, \boldsymbol{p})(t, u) \cdot \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} G(t, u)\right\} \\
& +\int_{0}^{T} d t \int_{\{1\} \times \mathbb{T}^{d-1}} d S b(\tilde{u}) \cdot \partial_{u_{1}} G(t, u)-\int_{0}^{T} d t \int_{\{0\} \times \mathbb{T}^{d-1}} d S a(\tilde{u}) \cdot \partial_{u_{1}} G(t, u) \\
& +\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u) \\
& -\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}}\left(\sum_{k=0}^{d} v_{k} \partial_{x_{i}} G_{t}^{k}(u)\right)^{2} \chi\left(\theta_{v}(\Lambda(\rho, p))\right),
\end{aligned}
$$

where $\chi(r)=r(1-r)$ is the static compressibility and $\pi_{t}(d u)=(\rho, \boldsymbol{p})(t, u) d u$. Define $J_{G}=J_{G, \gamma, T}$: $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right) \rightarrow \mathbb{R}$ by

$$
J_{G}(\pi)= \begin{cases}\hat{J}_{G}(\pi) & \text { if } \pi \in D\left([0, T], \mathcal{M}^{0}\right) \\ +\infty & \text { otherwise }\end{cases}
$$

We define the rate functional $I_{T}(\cdot \mid \gamma): D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right) \rightarrow[0,+\infty]$ as

$$
I_{T}(\pi \mid \gamma)= \begin{cases}\sup _{G \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}}\left\{J_{G}(\pi)\right\} & \text { if } \mathcal{Q}(\pi)<\infty \\ +\infty & \text { otherwise }\end{cases}
$$

We now present the main result of this article, whose proof is given in Section 2.6, which is the dynamical large deviations for this boundary driven exclusion process with many conserved quantities.
Theorem 2.2.1. Fix $T>0$ and a measurable function $\left(\rho_{0}, \boldsymbol{p}_{0}\right): D^{d} \rightarrow[0,|\mathcal{V}|] \times[-\breve{v}|\mathcal{V}|, \breve{v}|\mathcal{V}|]^{d}$. Consider a sequence η^{N} of configurations in X_{N} associated to $\gamma=\left(\rho_{0}, \boldsymbol{p}_{0}\right)$ in the sense that:

$$
\lim _{N \rightarrow \infty}\left\langle\pi_{0}^{N}\left(\eta^{N}\right), G\right\rangle=\int_{D^{d}} G(u) \rho_{0}(u) d u
$$

and

$$
\lim _{N \rightarrow \infty}\left\langle\pi_{k}^{N}\left(\eta^{N}\right), G\right\rangle=\int_{D^{d}} G(u) p_{k}(u) d u, \quad k=1, \ldots, d
$$

for every continuous function $G: \overline{D^{d}} \rightarrow \mathbb{R}$. Then, the measure $Q_{\eta^{N}}=\mathbb{P}_{\eta^{N}}\left(\pi^{N}\right)^{-1}$ on $D\left([0, T], \mathcal{M}_{+} \times\right.$ \mathcal{M}^{d}) satisfies a large deviation principle with speed N^{d} and rate function $I_{T}(\cdot \mid \gamma)$. Namely, for each closed set $\mathcal{C} \subset D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}(\mathcal{C}) \leq-\inf _{\pi \in \mathcal{C}} I_{T}(\pi \mid \gamma)
$$

and for each open set $\mathcal{O} \subset D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$,

$$
\varliminf_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}(\mathcal{O}) \geq-\inf _{\pi \in \mathcal{O}} I_{T}(\pi \mid \gamma)
$$

Moreover, the rate function $I_{T}(\cdot \mid \gamma)$ is lower semicontinuous and has compact level sets.

2.3 Hydrodynamics

Fix $T>0$ and let $\left(B,\|\cdot\|_{B}\right)$ be a Banach space. We denote by $L^{2}([0, T], B)$ the Banach space of measurable functions $U:[0, T] \rightarrow B$ for which

$$
\|U\|_{L^{2}([0, T], B)}^{2}=\int_{0}^{T}\left\|U_{t}\right\|_{B}^{2} d t<\infty
$$

Moreover, we denote by $H^{1}\left(D^{d}\right)$ the Sobolev space of measurable functions in $L^{2}\left(D^{d}\right)$ that have generalized derivatives in $L^{2}\left(D^{d}\right)$.

For $x=\left(x_{1}, \tilde{x}\right) \in\{0,1\} \times \mathbb{T}^{d-1}$, let

$$
d(x)= \begin{cases}a(\tilde{x})=\sum_{v \in \mathcal{V}}\left(\alpha_{v}(\tilde{x}), v_{1} \alpha_{v}(\tilde{x}), \ldots, v_{d} \alpha_{v}(\tilde{x})\right), & \text { if } x_{1}=0 \tag{2.3.1}\\ b(\tilde{x})=\sum_{v \in \mathcal{V}}\left(\beta_{v}(\tilde{x}), v_{1} \beta_{v}(\tilde{x}), \ldots, v_{d} \beta_{v}(\tilde{x})\right), & \text { if } x_{1}=1\end{cases}
$$

Fix a bounded density profile $\rho_{0}: D^{d} \rightarrow \mathbb{R}_{+}$, and a bounded momentum profile $\boldsymbol{p}_{0}: D^{d} \rightarrow \mathbb{R}^{d}$. A bounded function $(\rho, \boldsymbol{p}):[0, T] \times D^{d} \rightarrow \mathbb{R}_{+} \times \mathbb{R}^{d}$ is a weak solution of the system of parabolic partial differential equations

$$
\left\{\begin{array}{c}
\partial_{t}(\rho, \boldsymbol{p})+\sum_{v \in \mathcal{V}} \tilde{v}\left[v \cdot \nabla \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)\right]=\frac{1}{2} \Delta(\rho, \boldsymbol{p}), \tag{2.3.2}\\
(\rho, \boldsymbol{p})(0, \cdot)=\left(\rho_{0}, \boldsymbol{p}_{0}\right)(\cdot) \text { and }(\rho, \boldsymbol{p})(t, x)=d(x), x \in\{0,1\} \times \mathbb{T}^{d-1}
\end{array}\right.
$$

if for every vector valued function $H:[0, T] \times D^{d} \rightarrow \mathbb{R}^{d+1}$ of class $C^{1,2}\left([0, T] \times D^{d}\right)$ vanishing at the boundary, we have

$$
\begin{gathered}
\int_{D^{d}} H(T, u) \cdot(\rho, \boldsymbol{p})(T, u) d u-\int_{D^{d}} H(0, u) \cdot\left(\rho_{0}, \boldsymbol{p}_{0}\right)(u) d u \\
=\int_{0}^{T} d t \int_{D^{d}} d u\left\{(\rho, \boldsymbol{p})(t, u) \cdot \partial_{t} H(t, u)+\frac{1}{2}(\rho, \boldsymbol{p})(t, u) \cdot \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} H(t, u)\right\} \\
-\int_{0}^{T} d t \int_{\{1\} \times \mathbb{T}^{d-1}} d S b(\tilde{u}) \cdot \partial_{u_{1}} H(t, u)+\int_{0}^{T} d t \int_{\{0\} \times \mathbb{T}^{d-1}} d S a(\tilde{u}) \cdot \partial_{u_{1}} H(t, u) \\
-\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} H(t, u),
\end{gathered}
$$

$d S$ being the Lebesgue measure on \mathbb{T}^{d-1}.

We say that that the solution (ρ, \boldsymbol{p}) has finite energy if its components belong to $L^{2}\left([0, T], H^{1}\left(D^{d}\right)\right)$:

$$
\int_{0}^{T} d s\left(\int_{D^{d}}\|\nabla \rho(s, u)\|^{2} d u\right)<\infty
$$

and

$$
\int_{0}^{T} d s\left(\int_{D^{d}}\left\|\nabla p_{k}(s, u)\right\|^{2} d u\right)<\infty
$$

for $k=1, \ldots, d$, where ∇f represents the generalized gradient of the function f.
In [11] the following theorem was proved:
Theorem 2.3.1. Let $\left(\mu^{N}\right)_{N}$ be a sequence of probability measures on X_{N} associated to the profile $\left(\rho_{0}, \boldsymbol{p}_{0}\right)$. Then, for every $t \geq 0$, for every continuous function $H: D^{d} \rightarrow \mathbb{R}$ vanishing at the boundary, and for every $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{0}\left(\eta_{x}(t)\right)-\int_{D^{d}} H(u) \rho(t, u) d u\right|>\delta\right]=0
$$

and for $1 \leq k \leq d$

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\left|\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H\left(\frac{x}{N}\right) I_{k}\left(\eta_{x}(t)\right)-\int_{D^{d}} H(u) p_{k}(t, u) d u\right|>\delta\right]=0
$$

where (ρ, \boldsymbol{p}) has finite energy and is the unique weak solution of equation (2.3.2).

2.4 The rate function $I_{T}(\cdot \mid \gamma)$

We examine in this section the rate function $I_{T}(\cdot \mid \gamma)$. The main result, presented in Theorem 2.4.6 below, states that $I_{T}(\cdot \mid \gamma)$ has compact level sets. The proof relies on two ingredients. The first one, stated in Lemma 2.4.2, is an estimate of the energy and of the H_{-1} norm of the time derivative of a trajectory in terms of the rate function. The second one, stated in Lemma 2.4.5, establishes that sequences of trajectories, with rate function uniformly bounded, which converges weakly in L^{2} converge in fact strongly. We follow the strategy introduced in [8].

Recall that V is an open neighborhood of D^{d}, and consider, for each $v \in \mathcal{V}$, smooth functions $\kappa_{k}^{v}: V \rightarrow(0,1)$ in $C^{2}(V)$, for $k=0, \ldots, d$. We assume that each κ_{k}^{v} has its image contained in some compact subset of $(0,1)$, that the restriction of $\kappa=\sum_{v \in \mathcal{V}}\left(\kappa_{0}^{v}, v_{1} \kappa_{1}^{v}, \ldots, v_{d} \kappa_{d}^{v}\right)$ to $\{0\} \times \mathbb{T}^{d-1}$ equals the vector valued function $a(\cdot)$ defined in (2.3.1), and that the restriction of κ to $\{1\} \times \mathbb{T}^{d-1}$ equals the vector valued function $b(\cdot)$, also defined in (2.3.1), in the sense that $\kappa(x)=d\left(x_{1}, \tilde{x}\right)$ if $x \in\{0,1\} \times \mathbb{T}^{d-1}$.

Let $L^{2}\left(D^{d}\right)$ be the Hilbert space of functions $G: D^{d} \rightarrow \mathbb{R}$ such that $\int_{D^{d}}|G(u)|^{2} d u<\infty$ equipped with the inner product

$$
\langle G, F\rangle_{2}=\int_{\Omega} G(u) F(u) d u
$$

and the norm of $L^{2}\left(D^{d}\right)$ is denoted by $\|\cdot\|_{2}$.
Recall that $H^{1}\left(D^{d}\right)$ is the Sobolev space of functions G with generalized derivatives $\partial_{u_{1}} G, \ldots, \partial_{u_{d}} G$ in $L^{2}\left(D^{d}\right) . H^{1}\left(D^{d}\right)$ endowed with the scalar product $\langle\cdot, \cdot\rangle_{1,2}$, defined by

$$
\langle G, F\rangle_{1,2}=\langle G, F\rangle_{2}+\sum_{j=1}^{d}\left\langle\partial_{u_{j}} G, \partial_{u_{j}} F\right\rangle_{2},
$$

is a Hilbert space. The corresponding norm is denoted by $\|\cdot\|_{1,2}$.
Recall that we denote by $\mathcal{C}_{c}^{\infty}\left(D^{d}\right)$ the set of infinitely differentiable functions $G: D^{d} \rightarrow \mathbb{R}$, with compact support in D^{d}. Denote by $H_{0}^{1}\left(D^{d}\right)$ the closure of $C_{c}^{\infty}\left(D^{d}\right)$ in $H^{1}\left(D^{d}\right)$. Since D^{d} is bounded, by Poincaré's inequality, there exists a finite constant C such that for all $G \in H_{0}^{1}\left(D^{d}\right)$

$$
\|G\|_{2}^{2} \leq C \sum_{j=1}^{d}\left\langle\partial_{u_{j}} G, \partial_{u_{j}} G\right\rangle_{2}
$$

This implies that, in $H_{0}^{1}\left(D^{d}\right)$

$$
\|G\|_{1,2,0}=\left\{\sum_{j=1}^{d}\left\langle\partial_{u_{j}} G, \partial_{u_{j}} G\right\rangle_{2}\right\}^{1 / 2}
$$

is a norm equivalent to the norm $\|\cdot\|_{1,2}$. Moreover, $H_{0}^{1}\left(D^{d}\right)$ is a Hilbert space with inner product given by

$$
\langle G, J\rangle_{1,2,0}=\sum_{j=1}^{d}\left\langle\partial_{u_{j}} G, \partial_{u_{j}} J\right\rangle_{2}
$$

To assign boundary values along the boundary Γ of D^{d} to any function G in $H^{1}\left(D^{d}\right)$, recall, from the trace Theorem ([14], Theorem 21.A.(e)), that there exists a continuous linear operator $\operatorname{Tr}: H^{1}\left(D^{d}\right) \rightarrow$ $L^{2}(\Gamma)$, called trace, such that $\operatorname{Tr}(G)=\left.G\right|_{\Gamma}$ if $G \in H^{1}\left(D^{d}\right) \cap \mathcal{C}\left(\overline{D^{d}}\right)$. Moreover, the space $H_{0}^{1}\left(D^{d}\right)$ is the space of functions G in $H^{1}\left(D^{d}\right)$ with zero trace ([14], Appendix (48b)):

$$
H_{0}^{1}\left(D^{d}\right)=\left\{G \in H^{1}\left(D^{d}\right): \operatorname{Tr}(G)=0\right\}
$$

Finally, denote by $H^{-1}\left(D^{d}\right)$ the dual of $H_{0}^{1}\left(D^{d}\right) . H^{-1}\left(D^{d}\right)$ is a Banach space with norm $\|\cdot\|_{-1}$ given by

$$
\|v\|_{-1}^{2}=\sup _{G \in \mathcal{C}_{c}^{\infty}\left(D^{d}\right)}\left\{2\langle v, G\rangle_{-1,1}-\int_{D^{d}}\|\nabla G(u)\|^{2} d u\right\}
$$

where $\langle v, G\rangle_{-1,1}$ stands for the values of the linear form v at G.
For each $G \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)$ and each integer $1 \leq i \leq d$, let $\mathcal{Q}_{i, k}^{G}: D\left([0, T], \mathcal{M}^{0}\right) \rightarrow \mathbb{R}$ be the functional given by

$$
\mathcal{Q}_{i, k}^{G}(\pi)=2 \int_{0}^{T} d t\left\langle\pi_{t}^{k}, \partial_{u_{i}} G_{t}\right\rangle-\int_{0}^{T} d t \int_{D^{d}} d u G(t, u)^{2},
$$

where $\pi=\left(\pi^{0}, \pi^{1}, \ldots, \pi^{d}\right)$. Recall, from subsection 2.2 , that the energy $\mathcal{Q}(\pi)$ is given by

$$
\mathcal{Q}(\pi)=\sum_{k=0}^{d} \sum_{i=1}^{d} \mathcal{Q}_{i, k}(\pi), \quad \text { with } \quad \mathcal{Q}_{i, k}(\pi)=\sup _{G \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)} \mathcal{Q}_{i, k}^{G}(\pi)
$$

The functional $\mathcal{Q}_{i, k}^{G}$ is convex and continuous in the Skorohod topology. Therefore $\mathcal{Q}_{i, k}$ and \mathcal{Q} are convex and lower semicontinuous. Furthermore, it is well known that a measure $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ has finite energy, $\mathcal{Q}(\pi)<\infty$, if and only if its density ρ and its momentum \boldsymbol{p} belong to $L^{2}\left([0, T], H^{1}\left(D^{d}\right)\right)$. In such case

$$
\hat{\mathcal{Q}}(\pi):=\sum_{k=0}^{d} \int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla p_{k, t}(u)\right\|^{2}<\infty
$$

where $p_{0, t}(u)=\rho(t, u)$. We also have that $\mathcal{Q}(\pi)=\hat{\mathcal{Q}}(\pi)$.
Let $D_{\gamma}=D_{\gamma, b}$ be the subset of $C\left([0, T], \mathcal{M}^{0}\right)$ consisting of all paths $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ with initial profile $\gamma(\cdot)=\left(\rho_{0}, \boldsymbol{p}_{0}\right)(\cdot)$, finite energy $\mathcal{Q}(\pi)$ (in which case ρ_{t} and \boldsymbol{p}_{t} belong to $H^{1}\left(D^{d}\right)$ for almost all $0 \leq t \leq T$ and so $\operatorname{Tr}\left(\rho_{t}\right)$ is well defined for those $\left.t\right)$ and such that $\operatorname{Tr}\left(\rho_{t}\right)=d_{0}$ and $\operatorname{Tr}\left(p_{k, t}\right)=d_{k}$, $k=1, \ldots, d$, for almost all t in $[0, T]$, where $d(\cdot)=\left(d_{0}(\cdot), d_{1}(\cdot), \ldots, d_{d}(\cdot)\right)$.

Lemma 2.4.1. Let π be a trajectory in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ such that $I_{T}(\pi \mid \gamma)<\infty$. Then π belongs to D_{γ}.

Proof. Fix a path π in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ with finite rate function, $I_{T}(\pi \mid \gamma)<\infty$. By definition of I_{T}, π belongs to $D\left([0, T], \mathcal{M}^{0}\right)$. Denote its density and momentum by $(\rho, \boldsymbol{p}): \pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$.

The proof that $(\rho, \boldsymbol{p})(0, \cdot)=\gamma(\cdot)$ is similar to the one of Lemma 3.5 in [6], and the proof that $\operatorname{Tr}\left(\rho_{t}\right)=d_{0}, \operatorname{Tr}\left(p_{k, t}\right)=d_{k}, k=1, \ldots, d$, is similar to the one found in Lemma 4.1 in [8]. The fact that π has finite energy follows from Lemma 2.6.4.

We deal now with the continuity of π. We claim that there exists a positive constant C_{0} such that, for any $g \in \mathcal{C}_{c}^{\infty}\left(D^{d}\right)$, and any $0 \leq s<r<T$,

$$
\begin{equation*}
\left|\left\langle\pi_{r}, g\right\rangle-\left\langle\pi_{s}, g\right\rangle\right| \leq C_{0}(r-s)^{1 / 2}\left\{C_{1}+I_{T}(\pi \mid \gamma)+\|g\|_{1,2,0}^{2}+(r-s)^{1 / 2}\|\Delta g\|_{1}\right\} . \tag{2.4.1}
\end{equation*}
$$

Indeed, for each $\delta>0$, let $\psi^{\delta}:[0, T] \rightarrow \mathbb{R}$ be the function given by

$$
(r-s)^{1 / 2} \psi^{\delta}(t)= \begin{cases}0 & \text { if } 0 \leq t \leq s \text { or } r+\delta \leq t \leq T \\ \frac{t-s}{\delta} & \text { if } s \leq t \leq s+\delta \\ 1 & \text { if } s+\delta \leq t \leq r \\ 1-\frac{t-r}{\delta} & \text { if } r \leq t \leq r+\delta\end{cases}
$$

and let $G^{\delta}(t, u)=\psi^{\delta}(t) g(u)$. Of course, G^{δ} can be approximated by functions in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ and then

$$
\begin{aligned}
(r-s)^{1 / 2} \lim _{\delta \rightarrow 0} J_{G^{\delta}}(\pi) & =\left\langle\pi_{r}, g\right\rangle-\left\langle\pi_{s}, g\right\rangle-\int_{s}^{r} d t\left\langle\pi_{t}, \Delta g\right\rangle \\
& +\int_{r}^{s} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right) \sum_{i=1}^{d} v_{i} \partial_{u_{i}} g(u) \\
& -\frac{1}{(r-s)^{1 / 2}} \int_{s}^{r} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}}\left(\sum_{k=0}^{d} \partial_{x_{i}} v_{k} g^{k}(u)\right)^{2} \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)
\end{aligned}
$$

To conclude the proof, we observe that the left-hand side is bounded by $(r-s)^{1 / 2} I_{T}(\pi \mid \gamma)$, that χ is positive and bounded above on $[0,1]$ by $1 / 4$, and finally, we use the elementary inequality $2 a b \leq a^{2}+b^{2}$.

Denote by $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)^{*}$ the dual of $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)$. By Proposition 23.7 in $[14], L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)^{*}$ corresponds to $L^{2}\left([0, T], H^{-1}\left(D^{d}\right)\right)$ and for v in $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)^{*}, G$ in $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)$,

$$
\begin{equation*}
\langle\langle v, G\rangle\rangle_{-1,1}=\int_{0}^{T}\left\langle v_{t}, G_{t}\right\rangle_{-1,1} d t \tag{2.4.2}
\end{equation*}
$$

where the left hand side stands for the value of the linear functional v at G. Moreover, if we denote by $\|v\|_{-1}$ the norm of v,

$$
\|v\|_{-1}^{2}=\int_{0}^{T}\left\|v_{t}\right\|_{-1}^{2} d t
$$

Fix a path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in D_{γ} and suppose that for $k=0, \ldots, d$

$$
\begin{equation*}
\sup _{H \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)}\left\{2 \int_{0}^{T} d t\left\langle p_{k, t}, \partial_{t} H_{t}\right\rangle_{2}-\int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla H_{t}\right\|^{2}\right\}<\infty \tag{2.4.3}
\end{equation*}
$$

In this case, for each $k, \partial_{t} p_{k}: C_{c}^{\infty}\left(\Omega_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\partial_{t} p_{k}(H)=-\int_{0}^{T}\left\langle p_{k, t}, \partial_{t} H_{t}\right\rangle_{2} d t
$$

can be extended to a bounded linear operator $\partial_{t} p_{k}: L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right) \rightarrow \mathbb{R}$. It belongs therefore to $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)^{*}=L^{2}\left([0, T], H^{-1}\left(D^{d}\right)\right)$. In particular, there exists $v^{k}=\left\{v_{t}^{k}: 0 \leq t \leq T\right\}$ in $L^{2}\left([0, T], H^{-1}\left(D^{d}\right)\right)$, which we denote by $v_{t}^{k}=\partial_{t} p_{k, t}$, such that for any H in $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)$,

$$
\left\langle\left\langle\partial_{t} p_{k}, H\right\rangle\right\rangle_{-1,1}=\int_{0}^{T}\left\langle\partial_{t} p_{k, t}, H_{t}\right\rangle_{-1,1} d t
$$

Moreover,

$$
\begin{aligned}
\left\|\partial_{t} p_{k}\right\|_{-1}^{2} & =\int_{0}^{T}\left\|\partial_{t} p_{k, t}\right\|_{-1}^{2} d t \\
& =\sup _{H \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)}\left\{2 \int_{0}^{T} d t\left\langle p_{k, t}, \partial_{t} H_{t}\right\rangle_{2}-\int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla H_{t}\right\|^{2}\right\}
\end{aligned}
$$

Denote by $\left\langle\left\langle\partial_{t}(\rho, \boldsymbol{p}), G\right\rangle\right\rangle_{-1,1}$ the linear functional given by

$$
\left\langle\left\langle\partial_{t}(\rho, \boldsymbol{p}), G\right\rangle\right\rangle_{-1,1}=\sum_{k=0}^{d}\left\langle\left\langle\partial_{t} p_{k}, H\right\rangle\right\rangle_{-1,1},
$$

with

$$
\left\|\partial_{t}(\rho, \boldsymbol{p})\right\|_{-1}^{2}=\sum_{k=0}^{d}\left\|\partial_{t} p_{k}\right\|_{-1}^{2}
$$

Let W be the set of paths $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in D_{γ} such that (2.4.3) holds, i.e., such that $\partial_{t} p_{k}$ belongs to $L^{2}\left([0, T], H^{-1}\left(D^{d}\right)\right)$. For G in $L^{2}\left([0, T],\left[H_{0}^{1}\left(D^{d}\right)\right]^{d+1}\right)$, let $\mathbb{J}_{G}: W \rightarrow \mathbb{R}$ be the functional given by

$$
\begin{aligned}
\mathbb{J}_{G}(\pi) & =\left\langle\left\langle\partial_{t}(\rho, \boldsymbol{p}), G\right\rangle\right\rangle_{-1,1}+\frac{1}{2} \int_{0}^{T} d t \int_{D^{d}} d u \nabla(\rho, \boldsymbol{p})(t, u) \cdot \nabla G(t, u) \\
& +\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u) \\
& -\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}}\left(\sum_{k=0}^{d} v_{k} \partial_{x_{i}} G_{t}^{k}(u)\right)^{2} \chi\left(\theta_{v}(\Lambda(\rho, p))\right),
\end{aligned}
$$

Note that $\mathbb{J}_{G}(\pi)=J_{G}(\pi)$ for every G in $C_{c}^{\infty}\left(\Omega_{T}\right) \times\left[\mathcal{C}_{c}^{\infty}\left(D^{d}\right)\right]^{d}$. Moreover, since \mathbb{J}. (π) is continuous in $L^{2}\left([0, T],\left[H_{0}^{1}\left(D^{d}\right)\right]^{d+1}\right)$ and since $\mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)$ is dense in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ and in $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)$, for every π in W,

$$
\begin{equation*}
I_{T}(\pi \mid \gamma)=\sup _{G \in C_{c}^{\infty} \Omega_{T} \times\left[\mathcal{C}_{c}^{\infty}\left(D^{d}\right)\right]^{d}} \mathbb{J}_{G}(\pi)=\sup _{G \in L^{2}\left([0, T],\left[H_{0}^{1}\right]^{d+1}\right)} \mathbb{J}_{G}(\pi) . \tag{2.4.4}
\end{equation*}
$$

Lemma 2.4.2. There exists a constant $C_{0}>0$ such that if the density and momentum (ρ, \boldsymbol{p}) of some path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$ has generalized gradients, $\nabla \rho$ and $\nabla p_{k}, k=1, \ldots, d$. Then

$$
\begin{align*}
\left\|\partial_{t}(\rho, \boldsymbol{p})\right\|_{-1}^{2} & \leq C_{0}\left\{I_{T}(\pi \mid \gamma)+\mathcal{Q}(\pi)\right\}, \tag{2.4.5}\\
\sum_{k=0}^{d} \int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla p_{k}(t, u)\right\|^{2} & \leq C_{0}\left\{I_{T}(\pi \mid \gamma)+1\right\} \tag{2.4.6}
\end{align*}
$$

Proof. Fix a path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$. In view of the discussion presented before the lemma, we need to show that the left hand side of (2.4.3) is bounded by the right hand side of (2.4.5). Such an estimate follows from the definition of the rate function $I_{T}(\cdot \mid \gamma)$ and from the elementary inequality $2 a b \leq A a^{2}+A^{-1} b^{2}$.

To prove (2.4.6), observe that

$$
\begin{aligned}
I(\pi) & \geq J_{G}(\pi)=\partial_{t} \pi(G)+\frac{1}{2} \int_{0}^{T} d t \int_{D^{d}} d u \sum_{i=1}^{d}\left\langle\partial_{x_{i}}(\rho, p), \partial_{x_{i}} G\right\rangle_{2} \\
& +\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}}\left(\chi\left(\theta_{v}(\Lambda(\rho, p))\right)\right) \sum_{i=1}^{d} \tilde{v}\left(v_{i} \partial_{x_{i}} G\right) \\
& -\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \sum_{i=1}^{d}\left(\sum_{k=0}^{d} v_{k} \partial_{\rho_{i}} G^{k}\right)^{2} \chi\left(\theta_{v}(\Lambda(\rho, p))\right) \\
& \geq \partial_{t} \pi(G)+\frac{1}{2} \int_{0}^{T} d t \int_{D^{d}} d u \sum_{i=1}^{d}\left\langle\partial_{x_{i}}(\rho, p), \partial_{x_{i}} G\right\rangle_{2}-C \int_{0}^{T} d t \sum_{k=0}^{d}\left\|\nabla G^{k}\right\|_{2}^{2}
\end{aligned}
$$

where C is constant obtained from the elementary inequality $2 a b \leq a^{2}+b^{2}$, the fact that \mathcal{V} is finite, and that χ is bounded above by $1 / 4$ in $[0,1]$.

Now, consider $G=K(\pi-\kappa)$, and note that $\pi-\kappa$ belong to $L^{2}\left([0, T], H_{0}^{1}\left(D^{d}\right)\right)$, which implies that it may be approximated by C_{c}^{∞} functions. Therefore $\partial_{t} \pi(G)=\left\langle\pi_{T}, \pi_{T}-\kappa\right\rangle-\left\langle\pi_{0}, \pi_{0}-\kappa\right\rangle$, which is bounded by some constant C_{1}. We, then, obtain that

$$
\begin{aligned}
I(\pi) & \geq \int_{0}^{T} d t\left\{-C_{1}+\frac{K}{2} \sum_{k=0}^{d}\left\|\nabla p_{k}\right\|_{2}^{2}-\frac{K}{2} \sum_{i=1}^{d}\left\langle\partial_{x_{i}}(\rho, p), \partial_{x_{i}} \kappa\right\rangle_{2}-C K^{2} \sum_{k=0}^{d}\left\|\nabla\left(p_{k}-\kappa_{k}\right)\right\|_{2}^{2}\right\} \\
& \geq \int_{0}^{T} d t\left\{\left(K / 4-2 C K^{2}\right) \sum_{k=0}^{d}\left\|\nabla p_{k}\right\|_{2}^{2}\right\}-\frac{K}{4} \sum_{k=0}^{d}\left\|\nabla \kappa_{k}\right\|_{2}^{2}-2 C K^{2} \sum_{k=0}^{d}\left\|\nabla \kappa_{k}\right\|_{2}^{2}-C_{1}
\end{aligned}
$$

where in the last inequality we used the Cauchy-Schwartz inequality and the elementary inequalities $2 a b \leq a^{2}+b^{2}$. The proof thus follows from choosing a suitable K, the estimate given in (2.4.5), and the fact we have a fixed smooth function κ.

Corollary 2.4.3. The density (ρ, \boldsymbol{p}) of a path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$ is the weak solution of the equation (2.3.2) and initial profile γ if and only if the rate function $I_{T}(\pi \mid \gamma)$ vanishes. Moreover, if any of the above conditions hold, π has finite energy $(\mathcal{Q}(\pi)<\infty)$.

Proof. On the one hand, if the density (ρ, \boldsymbol{p}) of a path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$ is the weak solution of equation (2.3.2) with initial condition is γ, in the formula of $\hat{J}_{G}(\pi)$, the linear part in G vanishes which proves that the rate functional $I_{T}(\pi \mid \gamma)$ vanishes. On the other hand, if the rate functional vanishes, the path (ρ, \boldsymbol{p}) belongs to $L^{2}\left([0, T],\left[H^{1}\left(D^{d}\right)\right]^{d+1}\right)$ and the linear part in G of $J_{G}(\pi)$ has to vanish for all functions G. In particular, (ρ, \boldsymbol{p}) is a weak solution of (2.3.2). Moreover, if the rate function is finite, by the previous lemma, π has finite energy. Accordingly, if π is a weak solution, we have from Theorem 2.3.1 that it has finite energy.

For each $q>0$, let E_{q} be the level set of $I_{T}(\pi \mid \gamma)$ defined by

$$
E_{q}=\left\{\pi \in D([0, T], \mathcal{M}): I_{T}(\pi \mid \gamma) \leq q\right\}
$$

By Lemma 2.4.1, E_{q} is a subset of $C\left([0, T], \mathcal{M}^{0}\right)$. Thus, from the previous lemma, it is easy to deduce the next result.

Corollary 2.4.4. For every $q \geq 0$, there exists a finite constant $C(q)$ such that

$$
\sup _{\pi \in E_{q}}\left\{\left\|\partial_{t}(\rho, \boldsymbol{p})\right\|_{-1}^{2}+\sum_{k=0}^{d} \int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla p_{k}(t, u)\right\|^{2}\right\} \leq C(q)
$$

Next result together with the previous estimates provide the compactness needed in the proof of the lower semicontinuity of the rate function.

Lemma 2.4.5. Let $\left\{\rho^{n}: n \geq 1\right\}$ be a sequence of functions in $L^{2}\left(\Omega_{T}\right)$ such that uniformly on n,

$$
\int_{0}^{T} d t\left\|\rho_{t}^{n}\right\|_{1,2}^{2}+\int_{0}^{T} d t\left\|\partial_{t} \rho_{t}^{n}\right\|_{-1}^{2}<C
$$

for some positive constant C. Suppose that $\rho \in L^{2}\left(\Omega_{T}\right)$ and that $\rho^{n} \rightarrow \rho$ weakly in $L^{2}\left(\Omega_{T}\right)$. Then $\rho_{n} \rightarrow \rho$ strongly in $L^{2}\left(\Omega_{T}\right)$.

Proof. Since $H^{1}\left(D^{d}\right) \subset L^{2}\left(D^{d}\right) \subset H^{-1}\left(D^{d}\right)$ with compact embedding $H^{1}\left(D^{d}\right) \rightarrow L^{2}\left(D^{d}\right)$, from Corollary 8.4, [12], the sequence $\left\{\rho_{n}\right\}$ is relatively compact in $L^{2}\left([0, T], L^{2}\left(D^{d}\right)\right)$. Therefore the weak convergence implies the strong convergence in $L^{2}\left([0, T], L^{2}\left(D^{d}\right)\right)$.

Theorem 2.4.6. The functional $I_{T}(\cdot \mid \gamma)$ is lower semicontinuous and has compact level sets.
Proof. We have to show that, for all $q \geq 0, E_{q}$ is compact in $D([0, T], \mathcal{M})$. Since $E_{q} \subset C\left([0, T], \mathcal{M}^{0}\right)$ and $C\left([0, T], \mathcal{M}^{0}\right)$ is a closed subset of $D([0, T], \mathcal{M})$, we just need to show that E_{q} is compact in $C\left([0, T], \mathcal{M}^{0}\right)$.

We will show first that E_{q} is closed in $C\left([0, T], \mathcal{M}^{0}\right)$. Fix $q \in \mathbb{R}$ and let $\left\{\pi^{n}: n \geq 1\right\}$ be a sequence in E_{q} converging to some π in $C\left([0, T], \mathcal{M}^{0}\right)$. Then, for all $G \in \mathcal{C}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}\left(\overline{D^{d}}\right)\right]^{d}$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} d t\left\langle\pi_{t}^{n}, G_{t}\right\rangle=\int_{0}^{T} d t\left\langle\pi_{t}, G_{t}\right\rangle
$$

Notice that this means that $\pi^{n, k} \rightarrow \pi^{k}$ weakly in $L^{2}\left(\Omega_{T}\right)$, for each $k=0, \ldots, d$, which together with Corollary 2.4.4 and Lemma 2.4.5 imply that $\pi^{n, k} \rightarrow \pi^{k}$ strongly in $L^{2}\left(\Omega_{T}\right)$. From this fact and the definition of J_{G} it is easy to see that, for all G in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$,

$$
\lim _{n \rightarrow \infty} J_{G}\left(\pi_{n}\right)=J_{G}(\pi)
$$

This limit, Corollary 2.4.4 and the lower semicontinuity of \mathcal{Q} permit us to conclude that $\mathcal{Q}(\pi) \leq C(q)$ and that $I_{T}(\pi \mid \gamma) \leq q$.

We prove now that E_{q} is relatively compact. To this end, it is enough to prove that for every continuous function $G: \overline{D^{d}} \rightarrow \mathbb{R}$, and every $k=0, \ldots, d$,

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup _{\pi \in E_{q}} \sup _{\substack{0 \leq s, r \leq T \\|r-s|<\delta}}\left|\left\langle\pi_{r}^{k}, G\right\rangle-\left\langle\pi_{s}^{k}, G\right\rangle\right|=0 . \tag{2.4.7}
\end{equation*}
$$

Since $E_{q} \subset C\left([0, T], \mathcal{M}^{0}\right)$, we may assume by approximations of G in $L^{1}\left(D^{d}\right)$ that $G \in \mathcal{C}_{c}^{\infty}\left(D^{d}\right)$. In which case, (2.4.7) follows from (2.4.1).

We conclude this section with an explicit formula for the rate function $I_{T}(\cdot \mid \gamma)$. For each $\pi(t, d u)=$ $(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$, denote by $H_{0}^{1}(\pi)$ the Hilbert space induced by $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ endowed with the inner product $\langle\cdot, \cdot\rangle_{\pi}$ defined by

$$
\begin{equation*}
\langle H, G\rangle_{\pi}=\sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)[\tilde{v} \cdot \nabla H][\tilde{v} \cdot \nabla G] . \tag{2.4.8}
\end{equation*}
$$

Induced means that we first declare two functions F, G in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ to be equivalent if $\langle F-G, F-G\rangle_{\pi}=0$ and then we complete the quotient space with respect to the inner product $\langle\cdot, \cdot\rangle_{\pi}$. The norm of $H_{0}^{1}(\pi)$ is denoted by $\|\cdot\|_{\pi}$.

Fix a path π in $D\left([0, T], \mathcal{M}^{0}\right)$ and a function H in $H_{0}^{1}(\pi)$. A measurable function $\lambda:[0, T] \times D^{d} \rightarrow$ $\mathbb{R}_{+} \times \mathbb{R}^{d}$ is said to be a weak solution of the nonlinear boundary value parabolic equation

$$
\begin{cases}\partial_{t} \lambda & +\sum_{i=1}^{d} \sum_{v \in \mathcal{V}} \tilde{v} \partial_{x_{i}}\left[\chi\left(\theta_{v}(\Lambda(\lambda))\right)\left(v_{i}-\tilde{v} \cdot \partial_{x_{i}} H\right)\right]=\frac{1}{2} \Delta \lambda \tag{2.4.9}\\ \lambda(0, \cdot) & =\gamma(\cdot) \\ \lambda(t, x) & =d(x), x \in\{0,1\} \times \mathbb{T}^{d-1}\end{cases}
$$

if it satisfies the following two conditions.
(i) For $k=0, \ldots, d, \lambda_{k}$ belongs to $L^{2}\left([0, T], H^{1}\left(D^{d}\right)\right)$:

$$
\int_{0}^{T} d s\left(\int_{D^{d}}\left\|\nabla \lambda_{k}(s, u)\right\|^{2} d u\right)<\infty
$$

(ii) For every function $G(t, u)=G_{t}(u)$ in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$,

$$
\begin{gathered}
\int_{D^{d}} G(T, u) \cdot \lambda(T, u) d u-\int_{D^{d}} G(0, u) \cdot \gamma(u) d u \\
=\int_{0}^{T} d t \int_{D^{d}} d u\left\{\lambda(t, u) \cdot \partial_{t} G(t, u)+\frac{1}{2} \lambda(t, u) \cdot \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} G(t, u)\right\} \\
-\int_{0}^{T} d t \int_{\{1\} \times \mathbb{T}^{d-1}} d S b(\tilde{u}) \cdot \partial_{u_{1}} G(t, u)+\int_{0}^{T} d t \int_{\{0\} \times \mathbb{T}^{d-1}} d S a(\tilde{u}) \cdot \partial_{u_{1}} G(t, u)
\end{gathered}
$$

$$
\begin{aligned}
& -\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}(\Lambda(\lambda))\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u) \\
& \quad+\sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}(\Lambda(\lambda))\right)[\tilde{v} \cdot \nabla H][\tilde{v} \cdot \nabla G]
\end{aligned}
$$

Uniqueness of solutions of equation (2.4.9) follows from the same arguments of the uniqueness proved in [11].

Lemma 2.4.7. Assume that $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}^{0}\right)$ has finite rate function: $I_{T}(\pi \mid \gamma)<$ ∞. Then, there exists a function H in $H_{0}^{1}(\pi)$ such that (ρ, \boldsymbol{p}) is a weak solution to (2.4.9). Moreover,

$$
\begin{equation*}
I_{T}(\pi \mid \gamma)=\frac{1}{4}\|H\|_{\pi}^{2} \tag{2.4.10}
\end{equation*}
$$

The proof of this lemma is similar to the one of Lemma 10.5.3 in [9] and is therefore omitted.

$2.5 \quad I_{T}(\cdot \mid \gamma)$-Density

The main result of this section, stated in Theorem 2.5.5, asserts that any trajectory $\lambda_{t}, 0 \leq t \leq T$, with finite rate function, $I_{T}(\lambda \mid \gamma)<\infty$, can be approximated by a sequence of smooth trajectories $\left\{\lambda^{n}: n \geq 1\right\}$ such that

$$
\lambda^{n} \longrightarrow \lambda \quad \text { and } \quad I_{T}\left(\lambda^{n} \mid \gamma\right) \longrightarrow I_{T}(\lambda \mid \gamma)
$$

This is one of the main steps in the proof of the lower bound of the large deviations principle for the empirical measure. The proof is mainly based on the regularizing effects of the hydrodynamic equation. This strategy was introduced by [8].

A subset A of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ is said to be $I_{T}(\cdot \mid \gamma)$-dense if for every π in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ such that $I_{T}(\pi \mid \gamma)<\infty$, there exists a sequence $\left\{\pi^{n}: n \geq 1\right\}$ in A such that π^{n} converges to π and $I_{T}\left(\pi^{n} \mid \gamma\right)$ converges to $I_{T}(\pi \mid \gamma)$.

Let Π_{1} be the subset of $D\left([0, T], \mathcal{M}^{0}\right)$ consisting of paths $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ whose density (ρ, \boldsymbol{p}) is a weak solution of the hydrodynamic equation (2.3.2) in the time interval $[0, \delta]$ for some $\delta>0$.

Lemma 2.5.1. The set Π_{1} is $I_{T}(\cdot \mid \gamma)$-dense.
Proof. Fix $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ such that $I_{T}(\pi \mid \gamma)<\infty$. By Lemma 2.4.1, π belongs to $C\left([0, T], \mathcal{M}^{0}\right)$. For each $\delta>0$, let $\left(\rho^{\delta}, \boldsymbol{p}^{\delta}\right)$ be the path defined as

$$
\left(\rho^{\delta}, \boldsymbol{p}^{\delta}\right)(t, u)= \begin{cases}\tau(t, u) & \text { if } 0 \leq t \leq \delta \\ \tau(2 \delta-t, u) & \text { if } \delta \leq t \leq 2 \delta \\ (\rho, \boldsymbol{p})(t-2 \delta, u) & \text { if } 2 \delta \leq t \leq T\end{cases}
$$

where τ is the weak solution of the hydrodynamic equation (2.3.2) starting at γ. It is clear that $\pi^{\delta}(t, d u)=$ $\left(\rho^{\delta}, \boldsymbol{p}^{\delta}\right)(t, u) d u$ belongs to D_{γ}, because so do π and τ and that $\mathcal{Q}\left(\pi^{\delta}\right) \leq \mathcal{Q}(\pi)+2 \mathcal{Q}(\tau)<\infty$. Moreover, π^{δ} converges to π as $\delta \downarrow 0$ because π belongs to $\mathcal{C}\left([0, T], \mathcal{M}^{0}\right)$. By the lower semicontinuity of $I_{T}(\cdot \mid \gamma)$, $I_{T}(\pi \mid \gamma) \leq \underline{\lim }_{\delta \rightarrow 0} I_{T}\left(\pi^{\delta} \mid \gamma\right)$. Then, in order to prove the lemma, it is enough to prove that $I_{T}(\pi \mid \gamma) \geq$ $\varlimsup_{\delta \rightarrow 0} I_{T}\left(\pi^{\delta} \mid \gamma\right)$. To this end, decompose the rate function $I_{T}\left(\pi^{\delta} \mid \gamma\right)$ as the sum of the contributions on each time interval $[0, \delta],[\delta, 2 \delta]$ and $[2 \delta, T]$. The first contribution vanishes because π^{δ} solves the hydrodynamic equation in this interval. On the time interval $[\delta, 2 \delta], \partial_{t} \rho_{t}^{\delta}=-\partial_{t} \tau_{2 \delta-t}=-\frac{1}{2} \Delta \tau_{2 \delta-t}+$ $\sum_{v \in \mathcal{V}} \tilde{v}\left[v \cdot \nabla \chi\left(\theta_{v}\left(\Lambda\left(\tau_{2 \delta-t}\right)\right)\right)\right]=-\frac{1}{2} \Delta\left(\rho_{t}^{\delta}, \boldsymbol{p}_{t}^{\delta}\right)+\sum_{v \in \mathcal{V}} \tilde{v}\left[v \cdot \nabla \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{\delta}, \boldsymbol{p}_{t}^{\delta}\right)\right)\right)\right]$. In particular, the second contribution is equal to

$$
\sup _{G \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}\left(\overline{D^{d}}\right)\right]^{d}}\left\{\sum_{i=1}^{d} \int_{0}^{\delta} d s \int_{D^{d}} d u \partial_{x_{i}}(\rho, \boldsymbol{p}) \cdot \partial_{x_{i}} G-\sum_{v \in \mathcal{V}} \int_{0}^{\delta} d t \int_{D^{d}} d u \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)[\tilde{v} \cdot \nabla G]^{2}\right\}
$$

which, by Lemma 2.6 .5 is bounded from above, and therefore this last expression converges to zero as $\delta \downarrow 0$. Finally, the third contribution is bounded by $I_{T}(\pi \mid \gamma)$ because π^{δ} in this interval is just a time translation of the path π.

Let Π_{2} be the set of all paths π in Π_{1} with the property that for every $\delta>0$ there exists $\epsilon>0$ such that, for $k=0, \ldots, d, d\left(\pi_{t}^{k}(\cdot), \partial \mathfrak{U}\right) \geq \epsilon$ for all $t \in[\delta, T]$, where $\partial \mathfrak{U}$ stands for the boundary of \mathfrak{U}.

We begin by proving an auxiliary lemma.
Lemma 2.5.2. Let $\pi, \lambda \in \mathfrak{U}$, and let $\pi^{\epsilon}=(1-\epsilon) \pi+\epsilon \lambda, 0 \leq \epsilon \leq 1$. Then, for all $v \in \mathcal{V}$, we have

$$
\theta_{v}\left(\Lambda\left(\pi^{\epsilon}\right)\right)=(1-\epsilon) \theta_{v}(\Lambda(\pi))+\epsilon \theta_{v}(\Lambda(\lambda))
$$

Proof. Fix some $\lambda \in \mathfrak{U}$. Observe that

$$
\left(\sum_{v \in \mathcal{V}} \theta_{v}(\Lambda(\lambda)), \sum_{v \in \mathcal{V}} v_{1} \theta_{v}(\Lambda(\lambda)), \ldots, \sum_{v \in \mathcal{V}} v_{d} \theta_{v}(\Lambda(\lambda))\right)=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{d}\right)
$$

is a linear system with $d+1$ equations and $|\mathcal{V}|$ unknowns (given by $\theta_{v}(\Lambda(\lambda))$, for $\left.v \in \mathcal{V}\right)$. Therefore, any solution of this linear system can be expressed as a linear combination of $\lambda_{i}, i=0,1, \ldots, d$. The proof follows from this fact.

Remark 2.5.3. In the particular case when $d=1$ and the set of velocities is $\mathcal{V}=\{v,-v\} \subset \mathbb{R}$, a simple computation gives the unique solution

$$
\theta_{v}\left(\Lambda\left(\lambda_{0}, \lambda_{1}\right)\right)=\frac{\lambda_{0}}{2}+\frac{\lambda_{1}}{2 v} \quad \text { and } \quad \theta_{-v}\left(\Lambda\left(\lambda_{0}, \lambda_{1}\right)\right)=\frac{\lambda_{0}}{2}-\frac{\lambda_{1}}{2 v}
$$

Lemma 2.5.4. The set Π_{2} is $I_{T}(\cdot \mid \gamma)$-dense.
Proof. By Lemma 2.5.1, it is enough to show that each path $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in Π_{1} can be approximated by paths in Π_{2}. Fix π in Π_{1} and let τ be as in the proof of the previous lemma. For each $0<\varepsilon<1$, let $\left(\rho^{\varepsilon}, \boldsymbol{p}^{\varepsilon}\right)=(1-\varepsilon)(\rho, \boldsymbol{p})+\varepsilon \tau, \pi^{\varepsilon}(t, d u)=\left(\rho^{\varepsilon}, \boldsymbol{p}^{\varepsilon}\right)(t, u) d u$. Note that $\mathcal{Q}\left(\pi^{\varepsilon}\right)<\infty$ because \mathcal{Q} is convex and both $\mathcal{Q}(\pi)$ and $\mathcal{Q}(\tau)$ are finite. Hence, π^{ε} belongs to D_{γ} since both ρ and τ satisfy the boundary conditions. Moreover, It is clear that π^{ε} converges to π as $\varepsilon \downarrow 0$. By the lower semicontinuity of $I_{T}(\cdot \mid \gamma)$, in order to conclude the proof, it is enough to show that

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} I_{T}\left(\pi^{\varepsilon} \mid \gamma\right) \leq I_{T}(\pi \mid \gamma) \tag{2.5.1}
\end{equation*}
$$

By Lemma 2.4.7, there exists $H \in H_{0}^{1}(\pi)$ such that (ρ, \boldsymbol{p}) solves the equation (2.4.9). Let us denote $\chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)$ simply by $\chi_{v}(\pi)$, and define $P_{i, v}(\pi)=\chi_{v}(\pi)\left(\tilde{v} \cdot \partial_{x_{i}} H-v_{i}\right)$, and note that $P_{i, v}(\tau)=$ $-v_{i} \chi\left(\theta_{v}(\Lambda(\tau))\right)$. Let also

$$
P_{i, v}^{\epsilon}=(1-\epsilon) P_{i, v}(\pi)+\epsilon P_{i, v}(\tau)
$$

Observe that, by Lemma 2.4.7,

$$
I(\pi)=\frac{1}{4}\|H\|_{\pi}^{2}
$$

and that, using the definition of $\|\cdot\|_{\pi}$ in (2.4.8),

$$
\frac{1}{4}\|H\|_{\pi}^{2}=\frac{1}{4} \sum_{i, v} \int_{0}^{T} d t \int_{D^{d}} d u \chi_{v}(\pi)\left(\tilde{v} \cdot \partial_{x_{i}} H\right)^{2}=\frac{1}{4} \sum_{i, v} \int_{0}^{T} d t \int_{D^{d}} d u \frac{\left(P_{i, v}+v_{i} \chi_{v}(\pi)\right)^{2}}{\chi_{v}(\pi)}
$$

A simple computation shows that

$$
\begin{gathered}
\mathbb{J}_{G}\left(\pi^{\epsilon}\right)=\sum_{i, v} \int_{0}^{T} \int_{D^{d}}\left[P_{i, v}^{\epsilon}+\chi_{v}\left(\pi^{\epsilon}\right) v_{i}\right]\left(\tilde{v} \cdot \partial_{x_{i}} G\right)-\chi_{v}\left(\pi^{\epsilon}\right)\left(\tilde{v} \cdot \partial_{x_{i}} G\right)^{2} \\
=\frac{1}{4} \sum_{i, v} \int_{0}^{T} d t \int_{D^{d}} d u \frac{\left[P_{i, v}^{\epsilon}+\chi_{v}\left(\pi^{\epsilon}\right) v_{i}\right]^{2}}{\chi_{v}\left(\pi^{\epsilon}\right)}-\left(\frac{1}{2} \frac{P_{i, v}^{\epsilon}+\chi_{v}\left(\pi^{\epsilon}\right)}{\sqrt{\chi_{v}\left(\pi^{\epsilon}\right)}}-\sqrt{\chi_{v}(\pi)}\left(\tilde{v} \cdot \partial_{x_{i}} G\right)\right)^{2} .
\end{gathered}
$$

Let

$$
A_{\epsilon}=\frac{1}{4} \sum_{i, v} \int_{0}^{T} d t \int_{D^{d}} d u \frac{\left[P_{i, v}^{\epsilon}+\chi_{v}\left(\pi^{\epsilon}\right) v_{i}\right]^{2}}{\chi_{v}\left(\pi^{\epsilon}\right)}
$$

and

$$
B_{\epsilon}(G)=\int_{0}^{T} d t \int_{D^{d}} d u\left(\frac{1}{2} \frac{P_{i, v}^{\epsilon}+\chi_{v}\left(\pi^{\epsilon}\right)}{\sqrt{\chi_{v}\left(\pi^{\epsilon}\right)}}-\sqrt{\chi_{v}(\pi)}\left(\tilde{v} \cdot \partial_{x_{i}} G\right)\right)
$$

This implies that

$$
I\left(\pi^{\epsilon}\right)=\sup _{G} \mathbb{J}_{G}\left(\pi^{\epsilon}\right)=\sup _{G}\left\{A_{\epsilon}-B_{\epsilon}(G)^{2}\right\}=A_{\epsilon}-\inf _{G} B_{\epsilon}(G)^{2} \leq A_{\epsilon},
$$

where the supremum and infimum are taken over in G in $C_{c}^{\infty}\left(\Omega_{T}\right) \times\left[\mathcal{C}_{c}^{\infty}\left(D^{d}\right)\right]^{d}$.
It remains to be shown that A_{ϵ} is uniformly integrable in ϵ. However, this is a simple consequence of Lemma 2.5.2.

Let Π be the subset of Π_{2} consisting of all those paths π which are solutions of the equation (2.4.9) for some $H \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}\left(\overline{D^{d}}\right)\right]^{d}$.

Theorem 2.5.5. The set Π is $I_{T}(\cdot \mid \gamma)$-dense.
Proof. By the previous lemma, it is enough to show that each path π in Π_{2} can be approximated by paths in Π. Fix $\pi(t, d u)=(\rho, \boldsymbol{p})(t, u) d u$ in Π_{2}. By Lemma 2.4.7, there exists $H \in H_{0}^{1}(\pi)$ such that (ρ, \boldsymbol{p}) solves the equation (2.4.9). Since π belongs to $\Pi_{2} \subset \Pi_{1},(\rho, \boldsymbol{p})$ is the weak solution of (2.3.2) in some time interval $[0,2 \delta]$ for some $\delta>0$. In particular, $\nabla H^{k}=0$ a.e in $[0,2 \delta] \times D^{d}$. On the other hand, since π belongs to Π_{1}, there exists $\epsilon>0$ such that, for $k=0, \ldots, d, d\left(\pi_{t}^{k}(\cdot), \partial \mathfrak{U}\right) \geq \epsilon$ for $\delta \leq t \leq T$. Therefore,

$$
\begin{equation*}
\int_{0}^{T} d t \int_{D^{d}}\left\|\nabla H_{t}(u)\right\|^{2} d u<\infty \tag{2.5.2}
\end{equation*}
$$

Since H belongs to $H_{0}^{1}(\pi)$, there exists a sequence of functions $\left\{H^{n}: n \geq 1\right\}$ in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ converging to H in $H_{0}^{1}(\pi)$. We may assume of course that $\nabla H_{t}^{n} \equiv 0$ in the time interval $[0, \delta]$. In particular,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla H_{t}^{n}(u)-\nabla H_{t}(u)\right\|^{2}=0 \tag{2.5.3}
\end{equation*}
$$

For each integer $n>0$, let $\left(\rho^{n}, \boldsymbol{p}^{n}\right)$ be the weak solution of (2.4.9) with H^{n} in place of H and set $\pi^{n}(t, d u)=\left(\rho^{n}, \boldsymbol{p}^{n}\right)(t, u) d u$. By (2.4.10) and since χ is bounded above in $[0,1]$ by $1 / 4$, we have that

$$
I_{T}\left(\pi^{n} \mid \gamma\right)=\frac{1}{2} \sum_{v \in \mathcal{V}} \int_{0}^{T} d t\left\langle\chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{n}, \boldsymbol{p}_{t}^{n}\right)\right)\right),\left\|\nabla H_{t}^{n}\right\|^{2}\right\rangle \leq C_{0} \int_{0}^{T} d t \int_{D^{d}} d u\left\|\nabla H_{t}^{n}(u)\right\|^{2}
$$

In particular, by (2.5.2) and (2.5.3), $I_{T}\left(\pi^{n} \mid \gamma\right)$ is uniformly bounded on n. Thus, by Theorem 2.4.6, the sequence π^{n} is relatively compact in $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$.

Let $\left\{\pi^{n_{k}}: k \geq 1\right\}$ be a subsequence of π^{n} converging to some π^{0} in $D\left([0, T], \mathcal{M}^{0}\right)$. For every G in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$,

$$
\begin{gathered}
\int_{D^{d}} G(T, u) \cdot\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)(T, u) d u-\int_{D^{d}} G(0, u) \cdot \gamma(u) d u \\
=\int_{0}^{T} d t \int_{D^{d}} d u\left\{\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)(t, u) \cdot \partial_{t} G(t, u)+\frac{1}{2}\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)(t, u) \cdot \sum_{1 \leq i \leq d} \partial_{u_{i}}^{2} G(t, u)\right\} \\
-\int_{0}^{T} d t \int_{\{1\} \times \mathbb{T}^{d-1}} d S b(\tilde{u}) \cdot \partial_{u_{1}} G(t, u)+\int_{0}^{T} d t \int_{\{0\} \times \mathbb{T}^{d-1}} d S a(\tilde{u}) \cdot \partial_{u_{1}} G(t, u) \\
-\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)\right)\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u), \\
+\sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)\right)\right)\left[\tilde{v} \cdot \nabla H^{n_{k}}\right][\tilde{v} \cdot \nabla G] .
\end{gathered}
$$

Letting $k \rightarrow \infty$ in this equation, we obtain the same equation with π^{0} and H in place of $\pi^{n_{k}}$ and $H^{n_{k}}$, respectively, if

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)\right)\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u) \\
& =\int_{0}^{T} d t \int_{D^{d}} d u \sum_{v \in \mathcal{V}} \tilde{v} \cdot \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{0}, \boldsymbol{p}_{t}^{0}\right)\right)\right) \sum_{1 \leq i \leq d} v_{i} \partial_{u_{i}} G(t, u) \tag{2.5.4}\\
& \lim _{k \rightarrow \infty} \sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{n_{k}}, \boldsymbol{p}_{t}^{n_{k}}\right)\right)\right)\left[\tilde{v} \cdot \nabla H^{n_{k}}\right][\tilde{v} \cdot \nabla G] \\
& =\sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}\left(\Lambda\left(\rho_{t}^{0}, \boldsymbol{p}_{t}^{0}\right)\right)\right)[\tilde{v} \cdot \nabla H][\tilde{v} \cdot \nabla G] .
\end{align*}
$$

We prove the second claim, the first one being simpler. Note first that we can replace $H^{n_{k}}$ by H in the previous limit, because χ is bounded in $[0,1]$ by $1 / 4$, and (2.5.3) holds. Now, ($\rho^{n_{k}}, \boldsymbol{p}^{n_{k}}$) converges to ($\rho^{0}, \boldsymbol{p}^{0}$) weakly in $L^{2}\left(\Omega_{T}\right)$ because $\pi^{n_{k}}$ converges to π^{0} in $D\left([0, T], \mathcal{M}^{0}\right)$. Since $I_{T}\left(\pi^{n} \mid \gamma\right)$ is uniformly bounded, by Corollary 2.4.4 and Lemma 2.4.5, ($\rho^{n_{k}}, \boldsymbol{p}^{n_{k}}$) converges to ($\rho^{0}, \boldsymbol{p}^{0}$) strongly in $L^{2}\left(\Omega_{T}\right)$ which implies (2.5.4). In particular, since (2.5.2) holds, by uniqueness of weak solutions of equation (2.4.9), $\pi^{0}=\pi$ and we are done.

2.6 Large deviations

We prove in this section Theorem 2.2.1, which is the dynamical large deviations principle for the empirical measure of boundary driven stochastic lattice gas model with many conserved quantities. The proof uses some of the ideas introduced in [8].

2.6.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper bound is a super-exponential estimate which allows the replacement of local functions by functionals of the empirical density in the large deviations regime.

Let κ be as in the beginning of Section 2.4. Note that since ν_{κ}^{N} is not the invariant state, there are no reasons for $\left\langle-N^{2} \mathcal{L}_{N} f, f\right\rangle_{\nu_{\kappa}^{N}}$ to be positive. The next statement shows that this expression is almost positive.

For each function $f: X_{N} \rightarrow \mathbb{R}$, let $D_{\nu_{\kappa}^{N}}(f)$ be

$$
D_{\nu_{\kappa}^{N}}(f)=D_{\nu_{\kappa}^{N}}^{e x}(f)+D_{\nu_{\kappa}^{N}}^{c}(f)+D_{\nu_{\kappa}^{N}}^{b}(f),
$$

where

$$
\begin{gathered}
D_{\nu_{\kappa}^{N}}^{e x}(f)=\sum_{v \in \mathcal{V}} \sum_{x \in D_{N}^{d}} \sum_{x+z \in D_{N}^{d}} P_{N}(z-x, v) \int\left[\sqrt{f\left(\eta^{x, z, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{n}(d \eta), \\
D_{\nu_{\kappa}^{N}}^{c}(f)=\sum_{q \in \mathcal{Q}} \sum_{x \in D_{N}^{d}} \int p(x, q, \eta)\left[\sqrt{f\left(\eta^{x, q}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta),
\end{gathered}
$$

and

$$
\begin{aligned}
& D_{\nu_{\kappa}^{N}}^{b}(f)=\sum_{v \in \mathcal{V}} \sum_{x \in\{1\} \times \mathbb{T}_{N}^{d-1}} \int {\left[\alpha_{v}(\tilde{x} / N)(1-\eta(x, v))+\left(1-\alpha_{v}(\tilde{x} / N)\right) \eta(x, v)\right] \times } \\
& \times\left[\sqrt{f\left(\sigma^{x, v} \eta\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta)+ \\
&+\sum_{v \in \mathcal{V}_{x \in\{N-1\} \times \mathbb{T}_{N}^{d-1}} \sum_{x} \int}\left[\beta_{v}(\tilde{x} / N)(1-\eta(x, v))+\left(1-\beta_{v}(\tilde{x} / N)\right) \eta(x, v)\right] \times \\
& \times\left[\sqrt{f\left(\sigma^{x, v} \eta\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta) .
\end{aligned}
$$

Proposition 2.6.1. There exist constants $C_{1}>0$ and $C_{2}=C_{2}(\alpha, \beta)>0$ such that for every density f with respect to ν_{κ}^{N}, then

$$
<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{\kappa}^{N}} \leq-C_{1} D_{\nu_{\kappa}^{N}}(f)+C_{2} N^{d-2}
$$

The proof of this proposition is elementary and is thus omitted.
Further, we may choose κ for which there exists a constant $\theta>0$ such that:

$$
\begin{array}{lr}
\kappa\left(u_{1}, \tilde{u}\right)=d(-1, \tilde{u}) \quad \text { if } 0 \leq u_{1} \leq \theta \\
\kappa\left(u_{1}, \tilde{u}\right)=d(1, \tilde{u}) \quad \text { if } \quad 1-\theta \leq u_{1} \leq 1
\end{array}
$$

for all $\tilde{u} \in \mathbb{T}^{d-1}$. In that case, for every N large enough, ν_{κ}^{N} is reversible for the process with generator \mathcal{L}_{N}^{b} and then $\left\langle-N^{2} \mathcal{L}_{N}^{b} f, f\right\rangle_{\nu_{\kappa}^{N}}$ is positive.

Fix $L \geq 1$ and a configuration η, let $\boldsymbol{I}^{L}(x, \eta):=\boldsymbol{I}^{L}(x)=\left(I_{0}^{L}(x), \ldots, I_{d}^{L}(x)\right)$ be the average of the conserved quantities in a cube of the length L centered at x :

$$
\boldsymbol{I}^{L}(x)=\frac{1}{\left|\Lambda_{L}\right|} \sum_{z \in x+\Lambda_{L}} \boldsymbol{I}\left(\eta_{z}\right)
$$

where, $\Lambda_{L}=\{-L, \ldots, L\}^{d}$ and $\left|\Lambda_{L}\right|=(2 L+1)^{d}$ is the discrete volume of box Λ_{L}.
For each $G \in \mathcal{C}\left(\overline{\Omega_{T}}\right) \times C\left(\overline{D^{d}}\right)^{d}$, and each $\varepsilon>0$, let

$$
V_{N \varepsilon}^{G, 1}(s, \eta)=\frac{1}{N^{d}} \sum_{k=0}^{d} \sum_{i, j=1}^{d} \sum_{x \in D_{N}^{d}} \partial_{u_{i}} G^{k}(s, x / N)\left[\tau_{x} \tilde{V}_{N \varepsilon}^{j, k}\right]
$$

where

$$
\begin{aligned}
\tilde{V}_{N \varepsilon}^{j, k}(\eta) & =\frac{1}{(2 \ell+1)^{d}} \sum_{y \in \Lambda_{N \varepsilon}} \sum_{v \in \mathcal{V}} v_{k} \sum_{z \in \mathbb{Z}^{d}} p(z, v) z_{j} \tau_{y}(\eta(0, v)[1-\eta(z, v)]) \\
& -\sum_{v \in \mathcal{V}} v_{j} v_{k} \chi\left(\theta_{v}\left(\Lambda\left(\boldsymbol{I}^{\ell}(0)\right)\right)\right)
\end{aligned}
$$

and let

$$
\begin{array}{r}
V_{N \varepsilon}^{G, 2}(s, \eta)=\frac{1}{2 N^{d}} \sum_{v \in \mathcal{V}} \sum_{x \in D_{N}^{d}} \sum_{i=1}^{d} \sum_{j, k=0}^{d} v_{k} v_{j} \partial_{u_{i}}^{N} G_{t}^{j}(x / N) \partial_{u_{i}}^{N} G_{t}^{k}(x / N) \times \\
\times\left\{\eta(x, v)\left[1-\eta\left(x+e_{i}, v\right)\right]+\eta(x, v)\left[1-\eta\left(x-e_{i}, v\right)\right]-2 \chi\left(\theta_{v}\left(\Lambda\left(\boldsymbol{I}^{\ell}(0)\right)\right)\right)\right\}
\end{array}
$$

Let, again, $G:[0, T] \times \mathbb{T}^{d-1} \rightarrow \mathbb{R}^{d+1}$ be a continuous function, and consider the quantities

$$
\begin{gathered}
V_{N}^{-}(s, \eta, G)=\frac{1}{N^{d-1}} \sum_{k=0}^{d} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x} / N)\left(I_{k}\left(\eta_{(1, \tilde{x})}(s)\right)-\sum_{v \in \mathcal{V}} v_{k} \alpha_{v}(\tilde{x} / N)\right), \\
V_{N}^{+}(s, \eta, G)=\frac{1}{N^{d-1}} \sum_{k=0}^{d} \sum_{\tilde{x} \in \mathbb{T}_{N}^{d-1}} G_{k}(s, \tilde{x} / N)\left(I_{k}\left(\eta_{(N-1, \tilde{x})}(s)\right)-\sum_{v \in \mathcal{V}} v_{k} \beta_{v}(\tilde{x} / N)\right),
\end{gathered}
$$

Proposition 2.6.2. Fix $G \in \mathcal{C}\left(\overline{\Omega_{T}}\right) \times\left[\mathcal{C}\left(\overline{D^{d}}\right)\right]^{d}$, H in $\mathcal{C}([0, T] \times \Gamma) \times[\mathcal{C}(\Gamma)]^{d}$, a cylinder function Ψ and a sequence $\left\{\eta^{N}: N \geq 1\right\}$ of configurations with η^{N} in X_{N}. For every $\delta>0$,

$$
\begin{aligned}
& \varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{P}_{\eta^{N}}\left[\left|\int_{0}^{T} V_{N \varepsilon}^{G, j}\left(s, \eta_{s}\right) d s\right|>\delta\right]=-\infty \\
& \varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \mathbb{P}_{\eta^{N}}\left[\left|\int_{0}^{T} V_{N}^{ \pm}(s, \eta, G)\right|>\delta\right]=-\infty
\end{aligned}
$$

for $j=1,2$.

The proof of the above proposition follows from Proposition 2.6.1, the replacement lemmas proved in [11], and the computation presented in [3], p. 78, for nonreversible processes.

For each $\varepsilon>0$ and π in $\mathcal{M}_{+} \times \mathcal{M}^{d}$, for $k=0, \ldots, d$, denote by $\Xi_{\varepsilon}\left(\pi_{k}\right)=\pi_{k}^{\varepsilon}$ the absolutely continuous measure obtained by smoothing the measure π_{k} :

$$
\Xi_{\varepsilon}\left(\pi_{k}\right)(d x)=\pi_{k}^{\varepsilon}(d x)=\frac{1}{U_{\varepsilon}} \frac{\pi_{k}\left(\boldsymbol{\Lambda}_{\varepsilon}(x)\right)}{\left|\boldsymbol{\Lambda}_{\varepsilon}(x)\right|} d x
$$

where $\boldsymbol{\Lambda}_{\varepsilon}(x)=\left\{y \in D^{d}:|y-x| \leq \varepsilon\right\},|A|$ stands for the Lebesgue measure of the set A, and $\left\{U_{\varepsilon}: \varepsilon>0\right\}$ is a strictly decreasing sequence converging to $1: U_{\varepsilon}>1, U_{\varepsilon}>U_{\varepsilon^{\prime}}$ for $\varepsilon>\varepsilon^{\prime}$, $\lim _{\varepsilon \downarrow 0} U_{\varepsilon}=1$. Let

$$
\pi^{N, \varepsilon}=\left(\Xi_{\varepsilon}\left(\pi_{0}^{N}\right), \Xi_{\varepsilon}\left(\pi_{1}^{N}\right), \ldots, \Xi_{\varepsilon}\left(\pi_{d}^{N}\right)\right)
$$

A simple computation shows that $\pi^{N, \varepsilon}$ belongs to \mathcal{M}^{0} for N sufficiently large because $U_{\varepsilon}>1$, and that for each continuous function $H: D^{d} \rightarrow \mathbb{R}^{d+1}$,

$$
\left\langle\pi^{N, \varepsilon}, H\right\rangle=\frac{1}{N^{d}} \sum_{x \in D_{N}^{d}} H(x / N) \cdot I^{\varepsilon N}(x)+O(N, \varepsilon),
$$

where $O(N, \varepsilon)$ is absolutely bounded by $C_{0}\left\{N^{-1}+\varepsilon\right\}$ for some finite constant C_{0} depending only on H.
For each H in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[C_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$ consider the exponential martingale M_{t}^{H} defined by

$$
\begin{aligned}
& M_{t}^{H}=\exp \left\{N ^ { d } \left[\left\langle\pi_{t}^{N}, H_{t}\right\rangle-\left\langle\pi_{0}^{N}, H_{0}\right\rangle\right.\right. \\
&\left.\left.-\frac{1}{N^{d}} \int_{0}^{t} e^{-N^{d}\left\langle\pi_{s}^{N}, H_{s}\right\rangle}\left(\partial_{s}+N^{2} \mathcal{L}_{N}\right) e^{N^{d}\left\langle\pi_{s}^{N}, H_{s}\right\rangle} d s\right]\right\}
\end{aligned}
$$

Recall from subsection 2.2 the definition of the functional \hat{J}_{H}. An elementary computation shows that

$$
\begin{equation*}
M_{T}^{H}=\exp \left\{N^{d}\left[\hat{J}_{H}\left(\pi^{N, \varepsilon}\right)+\mathbb{V}_{N, \varepsilon}^{H}+c_{H}^{1}(\varepsilon)+c_{H}^{2}\left(N^{-1}\right)\right]\right\} . \tag{2.6.1}
\end{equation*}
$$

In this formula,

$$
\begin{aligned}
\mathbb{V}_{N, \varepsilon}^{H} & =-\int_{0}^{T} V_{N \varepsilon}^{G, 1}(s, \eta) d s-\sum_{i=1}^{d} \int_{0}^{T} V_{N \varepsilon}^{G, 2}(s, \eta) d s \\
& +V_{N}^{+}\left(s, \eta, \partial_{u_{1}} H\right)-V_{N}^{-}\left(s, \eta, \partial_{u_{1}} H\right)+\left\langle\pi_{0}^{N}, H_{0}\right\rangle-\left\langle\gamma, H_{0}\right\rangle
\end{aligned}
$$

and $c_{H}^{j}: \mathbb{R}_{+} \rightarrow \mathbb{R}, j=1,2$, are functions depending only on H such that $c_{H}^{j}(\delta)$ converges to 0 as $\delta \downarrow 0$. In particular, the martingale M_{T}^{H} is bounded by $\exp \left\{C(H, T) N^{d}\right\}$ for some finite constant $C(H, T)$ depending only on H and T. Therefore, Proposition 2.6.2 holds for $\mathbb{P}_{\eta^{N}}^{H}=\mathbb{P}_{\eta^{N}} M_{T}^{H}$ in place of $\mathbb{P}_{\eta^{N}}$.

2.6.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy estimate. We state first the following technical result.

Lemma 2.6.3. There exists a finite constant C_{0}, depending on T, such that for every G in $C_{c}^{\infty}\left(\Omega_{T}\right)$, every integer $1 \leq i \leq d, 0 \leq k \leq d$, and every sequence $\left\{\eta^{N}: N \geq 1\right\}$ of configurations with η^{N} in X_{N},

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{E}_{\eta^{N}}\left[\exp \left\{N^{d} \int_{0}^{T} d t\left\langle\pi_{t}^{N, k}, \partial_{u_{i}} G\right\rangle\right\}\right] \leq C_{0}\left\{1+\int_{0}^{T}\left\|G_{t}\right\|_{2}^{2} d t\right\}
$$

The proof of this proposition follows from Lemma 3.8 in [11], and the fact that $d \delta_{\eta^{N}} / d \nu_{\kappa}^{N} \leq C^{N^{d}}$, for some positive constant $C=C(\kappa)$.

For each G in $\mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)$ and each integer $1 \leq i \leq d$, let $\tilde{\mathcal{Q}}_{i, k}^{G}: D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right) \rightarrow \mathbb{R}$ be the function given by

$$
\tilde{\mathcal{Q}}_{i, k}^{G}(\pi)=\int_{0}^{T} d t\left\langle\pi_{t}^{k}, \partial_{u_{i}} G_{t}\right\rangle-C_{0} \int_{0}^{T} d t \int_{D^{d}} d u G(t, u)^{2} .
$$

Notice that

$$
\begin{equation*}
\sup _{G \in \mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)}\left\{\tilde{\mathcal{Q}}_{i, k}^{G}(\pi)\right\}=\frac{\mathcal{Q}_{i, k}(\pi)}{4 C_{0}} . \tag{2.6.2}
\end{equation*}
$$

Fix a sequence $\left\{G_{r}: r \geq 1\right\}$ of smooth functions dense in $L^{2}\left([0, T], H^{1}\left(D^{d}\right)\right)$. For any positive integers m, l, let

$$
B_{m, l}^{k}=\left\{\pi \in D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right): \max _{\substack{1 \leq \leq \leq \leq \\ 1 \leq i \leq d}} \tilde{\mathcal{Q}}_{i, k}^{G_{j}}(\pi) \leq l\right\}
$$

Since, for fixed G in $\mathcal{C}_{c}^{\infty}\left(\Omega_{T}\right)$ and $1 \leq i \leq d$ integer, the function $\tilde{\mathcal{Q}}_{i, k}^{G}$ is continuous, $B_{m, l}$ is a closed subset of $D([0, T], \mathcal{M})$.

Lemma 2.6.4. There exists a finite constant C_{0}, depending on T, such that for any positive integers r, l and any sequence $\left\{\eta^{N}: N \geq 1\right\}$ of configurations with η^{N} in X_{N},

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}\left[\left(B_{m, l}^{k}\right)^{c}\right] \leq-l+C_{0}
$$

where $k=0, \ldots, d$.
Proof. For integers $1 \leq k \leq r$ and $1 \leq i \leq d$, by Chebychev inequality and by Lemma 2.6.3,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{P}_{\eta^{N}}\left[\tilde{\mathcal{Q}}_{i, k}^{G_{m}}>l\right] \leq-l+C_{0}
$$

Hence, from

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \left(a_{N}+b_{N}\right) \leq \max \left\{\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log a_{N}, \varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log b_{N}\right\} \tag{2.6.3}
\end{equation*}
$$

we obtain the desired inequality.
Lemma 2.6.5. There exists a finite constant C_{0}, depending on T, such that for every G in $C_{c}^{\infty}\left(\Omega_{T}\right) \times$ $\left[C_{c}^{\infty}\left(D^{d}\right)\right]^{d}$, and every sequence $\left\{\eta^{N}: N \geq 1\right\}$ of configurations with η^{N} in X_{N},

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{E}_{\nu_{\kappa}^{N}}\left[\exp \left\{N^{d} \int_{0}^{T} \sum_{i=1}^{d} \sum_{k=0}^{d} d t\left\langle\pi_{t}^{N}, \partial_{u_{i}} G^{k}\right\rangle\right\}\right] \leq C_{0}\left\{1+\int_{0}^{T}\left\|G_{t}\right\|_{\pi}^{2} d t\right\}
$$

In particular, we have that if (ρ, \boldsymbol{p}) is the solution of (2.3.2), then

$$
\sup _{G \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)}\left\{\sum_{i=1}^{d} \int_{0}^{T} d s \int_{D^{d}} d u \partial_{x_{i}}(\rho, \boldsymbol{p}) \cdot \partial_{x_{i}} G-\sum_{v \in \mathcal{V}} \int_{0}^{T} d t \int_{D^{d}} d u \chi\left(\theta_{v}(\Lambda(\rho, \boldsymbol{p}))\right)[\tilde{v} \cdot \nabla G]^{2}\right\},
$$

is finite, and vanishes if $T \rightarrow 0$.
Proof. Applying Feynman-Kac's formula and using the same arguments of Lemma 3.3 in [11], we have that

$$
\frac{1}{N^{d}} \log E_{\nu_{k}^{N}}\left[\exp \left\{N \int_{0}^{T} d s \sum_{i=1}^{d} \sum_{k=0}^{d} \sum_{x \in D_{N}^{d}}\left(I_{k}\left(\eta_{x}(s)\right)-I_{k}\left(\eta_{x-e_{i}}(s)\right)\right) \partial_{u_{i}} G^{k}(s, x / N)\right\}\right]
$$

is bounded above by

$$
\frac{1}{N^{d}} \int_{0}^{T} \lambda_{s}^{N} d s
$$

where λ_{s}^{N} is equal to

$$
\sup _{f}\left\{\left\langle N \sum_{i, k} \sum_{x \in D_{N}^{d}}\left(I_{k}(\eta(x))-I_{k}\left(\eta\left(x-e_{i}\right)\right)\right) \partial_{u_{i}} G^{k}(s, x / N), f\right\rangle_{\nu_{\kappa}^{N}}+N^{2}<\mathcal{L}_{N} \sqrt{f}, \sqrt{f}>_{\nu_{k}^{N}}\right\},
$$

where the supremum is taken over all densities f with respect to ν_{κ}^{N}. By Proposition 2.6.1, the expression inside brackets is bounded above by

$$
C N^{d}-\frac{N^{2}}{2} D_{\nu_{\kappa}^{N}}(f)+\sum_{i, k} \sum_{x \in D_{N}^{d}}\left\{N \partial_{u_{i}} G^{k}(s, x / N) \int\left[I_{k}\left(\eta_{x}\right)-I_{k}\left(\eta_{x-e_{i}}\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta)\right\}
$$

We now rewrite the term inside the brackets as

$$
\sum_{v \in \mathcal{V}} \sum_{i=1}^{d} \sum_{x \in D_{N}^{d}}\left\{\int N\left(\tilde{v} \cdot \partial_{u_{i}} G(s, x / N)\right)\left[\eta(x, v)-\eta\left(x-e_{i}, v\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta)\right\}
$$

Writing $\eta(x, v)-\eta\left(x-e_{i}, v\right)=\eta(x, v)\left[1-\eta\left(x-e_{i}, v\right)\right]-\eta\left(x-e_{i}, v\right)[1-\eta(x, v)]$, and applying the same arguments in Lemma 3.8 of [11], we obtain that

$$
\begin{aligned}
& \quad N\left(\tilde{v} \cdot \partial_{u_{i}} G(s, x / N)\right) \int\left[\eta(x, v)-\eta\left(x-e_{i}, v\right)\right] f(\eta) \nu_{\kappa}^{N}(d \eta) \\
& \leq \quad\left(\tilde{v} \cdot \partial_{u_{i}} G(s, x / N)\right)^{2} \int \eta(x, v)\left[1-\eta\left(x-e_{i}, v\right)\right] f\left(\eta^{x-e_{i}, x, v}\right) d \nu_{\kappa}^{N} \\
& +\quad \frac{1}{4} \int f\left(\eta^{x-e_{i}, x, v}\right)\left[N\left(1-\frac{\gamma_{x-e_{i}}, v}{\gamma_{x, v}}\right)\right]^{2} \nu_{\kappa}^{N}(d \eta) \\
& +\quad N^{2} \int \frac{1}{2}\left[\sqrt{f\left(\eta^{x-e_{i}, x, v}\right)}-\sqrt{f(\eta)}\right]^{2} \nu_{\kappa}^{N}(d \eta) \\
& +\quad 2\left(\tilde{v} \cdot \partial_{u_{i}} G(s, x / N)\right)^{2} \int \eta(x, v)\left[1-\eta\left(x-e_{i}, v\right)\right]\left(\sqrt{f(\eta)}+\sqrt{f\left(\eta^{x-e_{i}, x, v}\right)}\right)^{2} \nu_{\kappa}^{N}(d \eta)
\end{aligned}
$$

we have that $\left(\sqrt{f(\eta)}+\sqrt{f\left(\eta^{x-e_{i}, x, v}\right)}\right)^{2} \leq 2\left(f(\eta)+f\left(\eta^{x-e_{i}, x, v}\right)\right)$. An application of the replacement lemma (Lemma 3.7 in [11]) concludes the proof.

2.6.3 Upper Bound

Fix a sequence $\left\{F_{j}: j \geq 1\right\}$ of smooth functions dense in $\mathcal{C}\left(\overline{D^{d}}\right)$ for the uniform topology, with positive coordinates. For $j \geq 1$ and $\delta>0$, let

$$
D_{j, \delta}=\left\{\pi \in D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right):\left|\left\langle\pi_{t}^{k}, F_{j}\right\rangle\right| \leq \breve{v}^{k}|\mathcal{V}| \int_{D^{d}} F_{j}(x) d x+C_{j} \delta, k=0, \ldots, d, 0 \leq t \leq T\right\}
$$

where $\breve{v}^{0}=1$ and $\breve{v}^{k}=\breve{v}, C_{j}=\left\|\nabla F_{j}\right\|_{\infty}$ and ∇F is the gradient of F. Clearly, the set $D_{j, \delta}, j \geq 1$, $\delta>0$, is a closed subset of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$. Moreover, if

$$
E_{m, \delta}=\bigcap_{j=1}^{m} D_{j, \delta}
$$

we have that $D\left([0, T], \mathcal{M}^{0}\right)=\cap_{n \geq 1} \cap_{m \geq 1} E_{m, 1 / n}$. Note, finally, that for all $m \geq 1, \delta>0$,

$$
\begin{equation*}
\pi^{N, \varepsilon} \text { belongs to } E_{m, \delta} \text { for } N \text { sufficiently large. } \tag{2.6.4}
\end{equation*}
$$

Fix a sequence of configurations $\left\{\eta^{N}: N \geq 1\right\}$ with η^{N} in X_{N} and such that $\pi^{N}\left(\eta^{N}\right)$ converges to $\gamma(u) d u$ in \mathcal{M}. Let A be a subset of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$,

$$
\frac{1}{N^{d}} \log \mathbb{P}_{\eta^{N}}\left[\pi^{N} \in A\right]=\frac{1}{N^{d}} \log \mathbb{E}_{\eta^{N}}\left[M_{T}^{H}\left(M_{T}^{H}\right)^{-1} \mathbf{1}\left\{\pi^{N} \in A\right\}\right]
$$

Maximizing over π^{N} in A, we get from (2.6.1) that the last term is bounded above by

$$
-\inf _{\pi \in A} \hat{J}_{H}\left(\pi^{\varepsilon}\right)+\frac{1}{N^{d}} \log \mathbb{E}_{\eta^{N}}\left[M_{T}^{H} e^{-N^{d} \mathbb{V}_{N, \varepsilon}^{H}}\right]-c_{H}^{1}(\varepsilon)-c_{H}^{2}\left(N^{-1}\right)
$$

Since $\pi^{N}\left(\eta^{N}\right)$ converges to $\gamma(u) d u$ in \mathcal{M} and since Proposition 2.6.2 holds for $\mathbb{P}_{\eta^{N}}^{H}=\mathbb{P}_{\eta^{N}} M_{T}^{H}$ in place of $\mathbb{P}_{\eta^{N}}$, the second term of the previous expression is bounded above by some $C_{H}(\varepsilon, N)$ such that

$$
\varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} C_{H}(\varepsilon, N)=0 .
$$

Hence, for every $\varepsilon>0$, and every H in $\mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[C_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$,

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{P}_{\eta^{N}}[A] \leq-\inf _{\pi \in A} \hat{J}_{H}\left(\pi^{\varepsilon}\right)+C_{H}^{\prime}(\varepsilon) \tag{2.6.5}
\end{equation*}
$$

where $\lim _{\varepsilon \rightarrow 0} C_{H}^{\prime}(\varepsilon)=0$. Let

$$
B_{r, l}=\left\{\pi \in D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right): \max _{\substack{1 \leq j \leq r \\ 1 \leq i \leq d}} \sum_{k=0}^{d} \tilde{\mathcal{Q}}_{i, k}^{G_{j}}(\pi) \leq l\right\}
$$

and, for each $H \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[C_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$, each $\varepsilon>0$ and any $r, l, m, n \in \mathbb{Z}_{+}$, let $J_{H, \varepsilon}^{r, l, m, n}: D\left([0, T], \mathcal{M}_{+} \times\right.$ $\left.\mathcal{M}^{d}\right) \rightarrow \mathbb{R} \cup\{\infty\}$ be the functional given by

$$
J_{H, \varepsilon}^{r, l, m, n}(\pi)= \begin{cases}\hat{J}_{H}\left(\pi^{\varepsilon}\right) & \text { if } \pi \in B_{r, l} \cap E_{m, 1 / n} \\ +\infty & \text { otherwise }\end{cases}
$$

This functional is lower semicontinuous because so is $\hat{J}_{H} \circ \Xi_{\varepsilon}$ and because $B_{r, l}, E_{m, 1 / n}$ are closed subsets of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$.

Let \mathcal{O} be an open subset of $D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$. By Lemma 2.6.4, (2.6.3), (2.6.4) and (2.6.5),

$$
\begin{aligned}
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}[\mathcal{O}] & \leq \max \left\{\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}\left[\mathcal{O} \cap B_{r, l} \cap E_{m, 1 / n}\right]\right. \\
& \leq \max \left\{-{ }_{N \rightarrow \infty} \frac{1}{\lim ^{d}} \log Q_{\eta^{N}}\left[\left(B_{r, l}\right)^{c}\right]\right\} \\
& =-\inf _{\pi \in \mathcal{O}} L_{H, \varepsilon}^{r, l, m, n}(\pi),
\end{aligned}
$$

where

$$
L_{H, \varepsilon}^{r, l, m, n}(\pi)=\min \left\{J_{H, \varepsilon}^{r, l, m, n}(\pi)-C_{H}^{\prime}(\varepsilon), l-C_{0}\right\} .
$$

In particular,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}[\mathcal{O}] \leq-\sup _{H, \varepsilon, r, l, m, n} \inf _{\pi \in \mathcal{O}} L_{H, \varepsilon}^{r, l, m, n}(\pi)
$$

Note that, for each $H \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right) \times\left[C_{0}^{2}\left(\overline{D^{d}}\right)\right]^{d}$, each $\varepsilon>0$ and $r, l, m, n \in \mathbb{Z}_{+}$, the functional $L_{H, \varepsilon}^{r, l, m}, n$ is lower semicontinuous. Then, by Lemma A2.3.3 in [9], for each compact subset \mathcal{K} of $D([0, T], \mathcal{M})$,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}[\mathcal{K}] \leq-\inf _{\pi \in \mathcal{K}} \sup _{H, \varepsilon, r, l, m, n} L_{H, \varepsilon}^{r, l, m, n}(\pi)
$$

By (2.6.2) and since $D\left([0, T], \mathcal{M}^{0}\right)=\cap_{n \geq 1} \cap_{m \geq 1} E_{m, 1 / n}$,

$$
\begin{aligned}
& \varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{l \rightarrow \infty} \varlimsup_{r \rightarrow \infty} \varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty} L_{H, \varepsilon}^{r, l, m, n}(\pi)= \\
& \begin{cases}\hat{J}_{H}(\pi) & \text { if } \mathcal{Q}(\pi)<\infty \text { and } \pi \in D\left([0, T], \mathcal{M}^{0}\right) \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

This result and the last inequality imply the upper bound for compact sets because \hat{J}_{H} and J_{H} coincide on $D\left([0, T], \mathcal{M}^{0}\right)$. To pass from compact sets to closed sets, we have to obtain exponential tightness for the sequence $\left\{Q_{\eta^{N}}\right\}$. This means that there exists a sequence of compact sets $\left\{\mathcal{K}_{n}: n \geq 1\right\}$ in $D([0, T], \mathcal{M})$ such that

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \log Q_{\eta^{N}}\left(\mathcal{K}_{n}{ }^{c}\right) \leq-n
$$

The proof presented in [2] for the non interacting zero range process is easily adapted to our context.

2.6.4 Lower Bound

The proof of the lower bound is similar to the one in the convex periodic case. We just sketch it and refer to [9], Section 10.5. Fix a path π in Π and let $H \in \mathcal{C}_{0}^{1,2}\left(\overline{\Omega_{T}}\right)$ be such that π is the weak solution of equation (2.4.9). Recall from the previous section the definition of the martingale M_{t}^{H} and denote by $\mathbb{P}_{\eta^{N}}^{H}$ the probability measure on $D\left([0, T], X_{N}\right)$ given by $\mathbb{P}_{\eta^{N}}^{H}[A]=\mathbb{E}_{\eta^{N}}\left[M_{T}^{H} \mathbf{1}\{A\}\right]$. Under $\mathbb{P}_{\eta^{N}}^{H}$ and for each $0 \leq t \leq T$, the empirical measure π_{t}^{N} converges in probability to π_{t}. Further,

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{d}} H\left(\mathbb{P}_{\eta^{N}}^{H} \mid \mathbb{P}_{\eta^{N}}\right)=I_{T}(\pi \mid \gamma)
$$

where $H(\mu \mid \nu)$ stands for the relative entropy of μ with respect to ν. From these two results we can obtain that for every open set $\mathcal{O} \subset D\left([0, T], \mathcal{M}_{+} \times \mathcal{M}^{d}\right)$ which contains π,

$$
\varliminf_{N \rightarrow \infty} \frac{1}{N^{d}} \log \mathbb{P}_{\eta^{N}}[\mathcal{O}] \geq-I_{T}(\pi \mid \gamma)
$$

The lower bound follows from this and the $I_{T}(\cdot \mid \gamma)$-density of Π established in Theorem 2.5.5.

References

[1] Beltrán, J. and Landim, C. A lattice gas model for the incompressible Navier-Stokes equation, Ann. Inst. H. Poincaré, Probab. Statist., 44, 886-914.
[2] Benois, O. : Large deviations for the occupation times of independent particle systems, Ann. Appl. Probab. 6, 269-296 (1996).
[3] Benois, O., Kipnis, C. and Landim, C. : Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes, Stochastic Process. Appl. 55, 65-89 (1995).
[4] Bernardin, C. Stationary nonequilibrium properties for a heat conduction model. Physical Review E, 78, 021134, 2008.
[5] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C., Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc., 37, 611-643, 2006.
[6] Bertini, L., De Sole, A., Gabrielli, G., Jona-Lasinio, G. and Landim, C. Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. Theory Exp., (7):P07014, 35pp (electronic), 2007.
[7] Esposito, R., Marra, R., Yau, H. T. Navier-Stokes Equations for Stochastic Particle Systems on the Lattice. Comm. Math. Phys., 182, 395-456, 1996.
[8] Farfan, J., Landim, C. and Mourragui, M. Hydrostatics and dynamical large deviations of boundary driven gradient symmetric exclusion. Preprint. Available at http://arxiv.org/abs/0903.5526.
[9] Kipnis, C. and Landim, C. Scaling limits of interacting particle systems, Grundlehren Math. Wiss. 320, Springer-Verlag, Berlin, 1999.
[10] Quastel, J. and Yau, H. T. Lattice Gases, Large Deviations, and the Incompressible Navier-Stokes Equations. Annals of Mathematics, 148, 51-108, 1998.
[11] Simas, A.B. Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities. Preprint. (2009)
[12] Simon, J. Compact Sets in the Space $L^{p}(0, T ; B)$. Annali di Matematica pura ed applicata, (IV), Vol. CXLVI, 65-96 (1987).
[13] Spohn, H. Long range correlations for stochastic lattice gases in a non-equilibrium steady state, J. Stat. Phys. A:Math. Gen., 16, 4275-4291, 1983.
[14] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A, Linear Monotone Operators and II/B Nonlinear Monotone Operators. Springer-Verlag, Berlin. (1980).

Part II

Particle systems with conductances in random environments

Chapter 3

W-Sobolev spaces: Theory, Homogenization and Applications

Artigo em colaboracao com F.J. Valentim. Está atualmente submetido para publicação.

Abstract

Fix strictly increasing right continuous functions with left limits $W_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1, \ldots, d$, and let $W(x)=\sum_{i=1}^{d} W_{i}\left(x_{i}\right)$ for $x \in \mathbb{R}^{d}$. We construct the W-Sobolev spaces, which consist of functions f having weak generalized gradients $\nabla_{W} f=\left(\partial_{W_{1}} f, \ldots, \partial_{W_{d}} f\right)$. Several properties, that are analogous to classical results on Sobolev spaces, are obtained. W-generalized elliptic and parabolic equations are also established, along with results on existence and uniqueness of weak solutions of such equations. Homogenization results of suitable random operators are investigated. Finally, as an application of all the theory developed, we prove a hydrodynamic limit for gradient processes with conductances (induced by W) in random environments.

3.1 Introduction

The space of functions that admit differentiation in a weak sense has been widely studied in the mathematical literature. The usage of such spaces provides a wide application to the theory of partial differential equations (PDE), and to many other areas of pure and applied mathematics. These spaces have become associated with the name of the late Russian mathematician S. L. Sobolev, although their origins predate his major contributions to their development in the late 1930s. In theory of PDEs, the idea of Sobolev space allows one to introduce the notion of weak solutions whose existence, uniqueness, regularities, and well-posedness are based on tools of functional analysis.

In classical theory of PDEs, two important classes of equations are: elliptic and parabolic PDEs. They are second-order PDEs, with some constraints (coerciveness) in the higher-order terms. The elliptic equations typically model the flow of some chemical quantity within some region, whereas the parabolic equations model the time evolution of such quantities. Consider the following particular classes of elliptic and parabolic equations:

$$
\sum_{i=1}^{d} \partial_{x_{i}} \partial_{x_{i}} u(x)=g(x), \quad \text { and } \quad\left\{\begin{array}{c}
\partial_{t} u(t, x)=\sum_{i=1}^{d} \partial_{x_{i}} \partial_{x_{i}} u(t, x), \tag{3.1.1}\\
u(0, x)=g(x)
\end{array}\right.
$$

for $t \in(0, T]$ and $x \in D$, where D is some suitable domain, and g is a function. Sobolev spaces are the natural environment to treat equations like (3.1.1) - an elegant exposition of this fact can be found in [2].

Consider the following generalization of the above equations:

$$
\sum_{i=1}^{d} \partial_{x_{i}} \partial_{W_{i}} u(x)=g(x), \quad \text { and } \quad\left\{\begin{array}{c}
\partial_{t} u(t, x)=\sum_{i=1}^{d} \partial_{x_{i}} \partial_{W_{i}} u(t, x), \tag{3.1.2}\\
u(0, x)=g(x),
\end{array}\right.
$$

where $\partial_{W_{i}}$ stands for the generalized derivative operator, where, for each i, W_{i} is a one-dimensional strictly increasing (not necessarily continuous) function. Note that if $W_{i}\left(x_{i}\right)=x_{i}$, we obtain the equations in (3.1.1). This notion of generalized derivative has been studied by several authors in the literature, see for instance, $[1,5,10,11,12]$. We also call attention to [1] since it provides a detailed study of such notion. The equations in (3.1.2) have the same physical interpretation as the equations in (3.1.1). However, the latter covers more general situations. For instance, [6] and [16] argue that these equations may be used to model a diffusion of particles within a region with membranes induced by the discontinuities of the functions W_{i}. Unfortunately, the standard Sobolev spaces are not suitable for being used as the space of weak solutions of equations in the form of (3.1.2).

One of our goals in this work is to define and obtain some properties of a space, which we call W Sobolev space. This space lets us formalize a notion of weak generalized derivative in such a way that, if a function is W-differentiable in the strong sense, it will also be differentiable in the weak sense, with their derivatives coinciding. Moreover, the W-Sobolev space will coincide with the standard Sobolev space if $W_{i}\left(x_{i}\right)=x_{i}$ for all i. With this in mind, we will be able to define weak solutions of equations in (3.1.2). We will prove that there exist weak solutions for such equations, and also, for some cases, the uniqueness of such weak solutions. Some analogous to classical results of Sobolev spaces are obtained, such as Poincaré's inequality and Rellich-Kondrachov's compactness theorem.

Besides the treatment of elliptic and parabolic equations in terms of these W-Sobolev spaces, we are also interested in studying Homogenization and Hydrodynamic Limits. The study of homogenization is motivated by several applications in mechanics, physics, chemistry and engineering. For example, when one studies the thermal or electric conductivity in heterogeneous materials, the macroscopic properties of crystals or the structure of polymers, are typically described in terms of linear or non-linear PDEs for medium with periodic or quasi-periodic structure, or, more generally, stochastic.

We will consider stochastic homogenization. In the stochastic context, several works on homogenization of operators with random coefficients have been published (see, for instance, [13, 14] and references therein). In homogenization theory, only the stationarity of such random field is used. The notion of stationary random field is formulated in such a manner that it covers many objects of non-probabilistic nature, e.g., operators with periodic or quasi-periodic coefficients.

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family of random difference schemes, whose coefficients can be obtained by the discretization of random highcontrast lattice structures. In this sense, we want to extend the theory of homogenization of random operators developed in [14], as well as to prove its main Theorem (Theorem 2.16) to the context in which we have weak generalized derivatives.

Lastly, as an application of all the theory developed for W-Sobolev spaces, elliptic operators, parabolic equations and homogenization, we prove a hydrodynamic limit for gradient processes with conductances in random environments. Hydrodynamic limit for gradient processes with conductances have been obtained in [6] for the one-dimensional setup and in [16] for the d-dimensional setup. However, with the tools developed in our present article, the proof of the hydrodynamic limit on a more general setup (in random environments) turns out to be simpler and much more natural. Furthermore, the proof of this hydrodynamic limit also provides an existence theorem for the generalized parabolic equations such as the one in (3.1.2).

The hydrodynamic limit allows one to obtain a description of the thermodynamic characteristics (e.g., temperature, density, pressure, etc.) of infinite systems assuming that the underlying dynamics is stochastic and follows the statistical mechanics approach introduced by Boltzmann. More precisely, it allows one to deduce the macroscopic behavior of the system from the microscopic interaction among particles. We will consider a microscopic dynamics consisting of random walks on the lattice submitted to some local interaction, the so-called interacting particle systems introduced by Spitzer [15], see also [9]. Therefore, this approach justifies rigorously a method often used by physicists to establish the partial differential equations that describe the evolution of the thermodynamic characteristics of a fluid, and thus, the existence of weak solutions of such PDEs can be viewed as one of the goals of the hydrodynamic limit.

The random environment we considered is governed by the coefficients of the discrete formulation of the model (the process on the lattice). It is possible to obtain other formulations of random environments, for instance, in [3] they proved a hydrodynamic limit for a gradient process with conductances in a random environment whose randomness consists of the random choice of the conductances. The hydrodynamic limit for a gradient process without conductances on the random environment we are considering was
proved in [7]. We would like to mention that in [4] a process evolving on a percolation cluster (a lattice with some bonds removed randomly) was considered and the resulting process turned out to be nongradient. However, the homogenization tools facilitated the proof of the hydrodynamic limit, which made the proof much simpler than the usual proof of hydrodynamic limit for non-gradient processes (see for instance [8, Chapter 7]).

We now describe the organization of the article. In Section 3.2 we define the W-Sobolev spaces and obtain some results, namely, approximation by smooth functions, Poincaré's inequality, RellichKondrachov theorem (compact embedding), and a characterization of the dual of the W-Sobolev spaces. In Section 3.3 we define the W-generalized elliptic equations, and what we call by weak solutions. We then obtain some energy estimates and use them together with Lax-Milgram's theorem to conclude results regarding existence, uniqueness and boundedness of such weak solutions. In Section 3.4 we define the W-generalized parabolic equations, their weak solutions, and prove uniquenesses of these weak solutions. Moreover, a notion of energy is also introduced in this Section. Section 3.5 consists in obtaining discrete analogous results to the ones of the previous sections. This Section serves as preamble for the subsequent sections. In Section 3.6 we define the random operators we are interested and obtain homogenization results for them. Finally, Section 3.7 concludes the article with an application that is interesting for both probability and theoretical physics, which is the hydrodynamic limit for a gradient process in random environments. This application uses results from all the previous sections and provides a proof for existence of weak solutions of W-generalized parabolic equations.

$3.2 \quad W$-Sobolev spaces

This Section is devoted to the definition and derivation of properties of the W-Sobolev spaces. We begin by introducing some notation, stating some known results, and giving a precise definition of these spaces in subsection 2.2. Subsection 2.3 contains the proof of an approximation result. Poincaré's inequality, Rellich-Kondrachov theorem and a characterization of the dual space of these Sobolev spaces are also obtained.

Denote by $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}=[0,1)^{d}$ the d-dimensional torus, and by $\mathbb{T}_{N}^{d}=(\mathbb{Z} / N \mathbb{Z})^{d}=\{0, \ldots, N-1\}^{d}$ the d-dimensional discrete torus with N^{d} points.

Fix a function $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
W\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{d} W_{k}\left(x_{k}\right), \tag{3.2.1}
\end{equation*}
$$

where each $W_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing right continuous function with left limits (càdlàg), periodic in the sense that for all $u \in \mathbb{R}$

$$
W_{k}(u+1)-W_{k}(u)=W_{k}(1)-W_{k}(0)
$$

Define the generalized derivative $\partial_{W_{k}}$ of a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\partial_{W_{k}} f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{k}+\epsilon, \ldots, x_{d}\right)-f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)}{W_{k}\left(x_{k}+\epsilon\right)-W_{k}\left(x_{k}\right)} \tag{3.2.2}
\end{equation*}
$$

when the above limit exists and is finite. If for a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ the generalized derivatives $\partial_{W_{k}}$ exist for all k, denote the generalized gradient of f by

$$
\nabla_{W} f=\left(\partial_{W_{1}} f, \ldots, \partial_{W_{d}} f\right)
$$

Consider the operator $\mathcal{L}_{W_{k}}: \mathcal{D}_{W_{k}} \subset L^{2}(\mathbb{T}) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mathcal{L}_{W_{k}} f=\partial_{x_{k}} \partial_{W_{k}} f, \tag{3.2.3}
\end{equation*}
$$

whose domain $\mathcal{D}_{W_{k}}$ is completely characterized in the following proposition:

Proposition 3.2.1. The domain $\mathcal{D}_{W_{k}}$ consists of all functions f in $L^{2}(\mathbb{T})$ such that

$$
f(x)=a+b W_{k}(x)+\int_{(0, x]} W_{k}(d y) \int_{0}^{y} \mathfrak{f}(z) d z
$$

for some function \mathfrak{f} in $L^{2}(\mathbb{T})$ that satisfies

$$
\int_{0}^{1} \mathfrak{f}(z) d z=0 \quad \text { and } \quad \int_{(0,1]} W_{k}(d y)\left\{b+\int_{0}^{y} \mathfrak{f}(z) d z\right\}=0
$$

The proof of Proposition 3.2.1 and further details can be found in [6]. Furthermore, they also proved that these operators have a countable complete orthonormal system of eigenvectors, which we denote by $\mathcal{A}_{W_{k}}$. Then, following [16],

$$
\mathcal{A}_{W}=\left\{f: \mathbb{T}^{d} \rightarrow \mathbb{R} ; f\left(x_{1}, \ldots, x_{d}\right)=\prod_{k=1}^{d} f_{k}\left(x_{k}\right), f_{k} \in \mathcal{A}_{W_{k}}\right\}
$$

where W is given by (3.2.1).
We may now build an operator analogous to $\mathcal{L}_{W_{k}}$ in \mathbb{T}^{d}. For a given set \mathcal{A}, we denote by $\operatorname{span}(\mathcal{A})$ the linear subspace generated by \mathcal{A}. Let $\mathbb{D}_{W}=\operatorname{span}\left(\mathcal{A}_{W}\right)$, and define the operator $\mathbb{L}_{W}: \mathbb{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ as follows: for $f=\prod_{k=1}^{d} f_{k} \in \mathcal{A}_{W}$,

$$
\begin{equation*}
\mathbb{L}_{W}(f)\left(x_{1}, \ldots x_{d}\right)=\sum_{k=1}^{d} \prod_{j=1, j \neq k}^{d} f_{j}\left(x_{j}\right) \mathcal{L}_{W_{k}} f_{k}\left(x_{k}\right) \tag{3.2.4}
\end{equation*}
$$

and extend to \mathbb{D}_{W} by linearity. It is easy to see that if $f \in \mathbb{D}_{W}$

$$
\begin{equation*}
\mathbb{L}_{W} f=\sum_{k=1}^{d} \mathcal{L}_{W_{k}} f \tag{3.2.5}
\end{equation*}
$$

where the application of $\mathcal{L}_{W_{k}}$ on a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ is the natural one, i.e., it considers f only as a function of the k th coordinate, and keeps all the remaining coordinates fixed.

Let, for each $k=1, \ldots, d, f_{k} \in \mathcal{A}_{W_{k}}$ be an eigenvector of $\mathcal{L}_{W_{k}}$ associated to the eigenvalue λ_{k}. Then $f=\prod_{k=1}^{d} f_{k}$ belongs to \mathbb{D}_{W} and is an eigenvector of \mathbb{L}_{W} with eigenvalue $\sum_{k=1}^{d} \lambda_{k}$. Moreover, [16] proved the following result:
Lemma 3.2.2. The following statements hold:
(a) The set \mathbb{D}_{W} is dense in $L^{2}\left(\mathbb{T}^{d}\right)$;
(b) The operator $\mathbb{L}_{W}: \mathbb{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ is symmetric and non-positive:

$$
\left\langle-\mathbb{L}_{W} f, f\right\rangle \geq 0
$$

where $\langle\cdot, \cdot\rangle$ is the standard inner product in $L^{2}\left(\mathbb{T}^{d}\right)$.

3.2.1 The auxiliary space

Let $L_{x^{k} \otimes W_{k}}^{2}\left(\mathbb{T}^{d}\right)$ be the Hilbert space of measurable functions $H: \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that

$$
\int_{\mathbb{T}^{d}} d\left(x^{k} \otimes W_{k}\right) H(x)^{2}<\infty
$$

where $d\left(x^{k} \otimes W_{k}\right)$ represents the product measure in \mathbb{T}^{d} obtained from Lesbegue's measure in \mathbb{T}^{d-1} and the measure induced by W_{k} in \mathbb{T} :

$$
d\left(x^{k} \otimes W_{k}\right)=d x_{1} \cdots d x_{k-1} d W_{k} d x_{k+1} \cdots d x_{d}
$$

Denote by $\langle H, G\rangle_{x^{k} \otimes W_{k}}$ the inner product of $L_{x^{k} \otimes W_{k}}^{2}\left(\mathbb{T}^{d}\right)$:

$$
\langle H, G\rangle_{x^{k} \otimes W_{k}}=\int_{\mathbb{T}^{d}} d\left(x^{k} \otimes W_{k}\right) H(x) G(x)
$$

and by $\|\cdot\|_{x^{k} \otimes W_{k}}$ the norm induced by this inner product.

Lemma 3.2.3. Let $f, g \in \mathbb{D}_{W}$, then for $i=1, \ldots, d$,

$$
\int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f(x)\right) g(x) d x=-\int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g\right) d\left(x^{i} \otimes W_{i}\right)
$$

In particular,

$$
\int_{\mathbb{T}^{d}} \mathbb{L}_{W} f(x) g(x) d x=-\sum_{i=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g\right) d\left(x^{i} \otimes W_{i}\right)
$$

Proof. Let $f, g \in \mathbb{D}_{W}$. By Fubini's theorem

$$
\int_{\mathbb{T}^{d}} \mathcal{L}_{W_{i}} f(x) g(x) d x=\int_{\mathbb{T}^{d-1}}\left[\int_{\mathbb{T}} \mathcal{L}_{W_{i}} f(x) g(x) d x_{i}\right] d x^{i}
$$

where $d x^{i}$ is the Lebesgue product measure in \mathbb{T}^{d-1} on the coordinates $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}$.
An application of [6, Lemma 3.1 (b)] and again Fubini's theorem concludes the proof of this Lemma.

Let $L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$ be the closed subspace of $L_{x^{j} \otimes W_{j}}^{2}\left(\mathbb{T}^{d}\right)$ consisting of the functions that have zero mean with respect to the measure $d\left(x^{j} \otimes W_{j}\right)$:

$$
\int_{\mathbb{T}^{d}} f d\left(x^{j} \otimes W_{j}\right)=0
$$

Finally, using the characterization of the functions in $\mathcal{D}_{W_{j}}$ given in Proposition 3.2.1, and the definition of \mathbb{D}_{W}, we have that the set $\left\{\partial_{W_{j}} h ; h \in \mathbb{D}_{W}\right\}$ is dense in $L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$.

3.2.2 The W-Sobolev space

We define the Sobolev space of W-generalized derivatives as the space of functions $g \in L^{2}\left(\mathbb{T}^{d}\right)$ such that for each $i=1, \ldots, d$ there exist fuctions $G_{i} \in L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ satisfying the following integral by parts identity.

$$
\begin{equation*}
\int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g d x=-\int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right) G_{i} d\left(x^{i} \otimes W_{i}\right) \tag{3.2.6}
\end{equation*}
$$

for every function $f \in \mathbb{D}_{W}$. We denote this space by $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$. A standard measure-theoretic argument allows one to prove that for each function $g \in \tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ and $i=1, \ldots, d$, we have a unique function G_{i} that satisfies (3.2.6). Note that $\mathbb{D}_{W} \subset \tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$. Moreover, if $g \in \mathbb{D}_{W}$ then $G_{i}=\partial_{W_{i}} g$. For this reason for each function $g \in \tilde{H}_{1, W}$ we denote G_{i} simply by $\partial_{W_{i}} g$, and we call it the i th generalized weak derivative of the function g with respect to W.
Lemma 3.2.4. The set $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle_{1, W}=\langle f, g\rangle+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g\right) d\left(x^{i} \otimes W_{i}\right) \tag{3.2.7}
\end{equation*}
$$

Proof. Let $\left(g_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$, and denote by $\|\cdot\|_{1, W}$ the norm induced by the inner product (3.2.7). By the definition of the norm $\|\cdot\|_{1, W}$, we obtain that $\left(g_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{2}\left(\mathbb{T}^{d}\right)$ and that $\left(\partial_{W_{i}} g_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ for each $i=1, \ldots, d$. Therefore, there exist functions $g \in L^{2}\left(\mathbb{T}^{d}\right)$ and $G_{i} \in L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ such that $g=\lim _{n \rightarrow \infty} g_{n}$, and $G_{i}=\lim _{n \rightarrow \infty} \partial_{W_{i}} g_{n}$. It remains to be proved that G_{i} is, in fact, the i th generalized weak derivative of g with respect to W. But this follows from a simple calculation: for each $f \in \mathbb{D}_{W}$ we have

$$
\begin{aligned}
\int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g d x & =\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g_{n} d x \\
& =-\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g\right) d\left(x^{i} \otimes W_{i}\right) \\
& =-\int_{T^{d}}\left(\partial_{W_{i}} f\right) G_{i} d\left(x^{i} \otimes W_{i}\right)
\end{aligned}
$$

where we used Hölder's inequality to pass the limit through the integral sign.

3.2.3 Approximation by smooth functions and the energetic space

We will now obtain approximation of functions in the Sobolev space $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ by functions in \mathbb{D}_{W}. Note that the functions in \mathbb{D}_{W} can be seen as smooth, in the sense that one may apply the operator \mathbb{L}_{W} to these functions in the strong sense.

Let us introduce $\langle\cdot, \cdot\rangle_{1, W}$ the inner product on \mathbb{D}_{W} defined by

$$
\begin{equation*}
\langle f, g\rangle_{1, W}=\langle f, g\rangle+\left\langle-\mathbb{L}_{W} f, g\right\rangle, \tag{3.2.8}
\end{equation*}
$$

and note that by Lemma 3.2.3,

$$
\langle f, g\rangle_{1, W}=\langle f, g\rangle+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g\right) d\left(x^{i} \otimes W_{i}\right)
$$

Let $H_{1, W}(\mathbb{T})$ be the set of all functions f in $L^{2}\left(\mathbb{T}^{d}\right)$ for which there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{D}_{W} such that f_{n} converges to f in $L^{2}\left(\mathbb{T}^{d}\right)$ and f_{n} is a Cauchy sequence for the inner product $\langle\cdot, \cdot\rangle_{1, W}$. Such sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is called admissible for f.

For f, g in $H_{1, W}\left(\mathbb{T}^{d}\right)$, define

$$
\begin{equation*}
\langle f, g\rangle_{1, W}=\lim _{n \rightarrow \infty}\left\langle f_{n}, g_{n}\right\rangle_{1, W}, \tag{3.2.9}
\end{equation*}
$$

where $\left(f_{n}\right)_{n \in \mathbb{N}},\left(g_{n}\right)_{n \in \mathbb{N}}$ are admissible sequences for f, and g, respectively. By [17, Proposition 5.3.3], this limit exists and does not depend on the admissible sequence chosen; the set \mathbb{D}_{W} is dense in $H_{1, W}$; and the embedding $H_{1, W} \subset L^{2}\left(\mathbb{T}^{d}\right)$ is continuous. Moreover, $H_{1, W}\left(\mathbb{T}^{d}\right)$ endowed with the inner product $\langle\cdot, \cdot\rangle_{1, W}$ just defined is a Hilbert space. Denote $\|\cdot\|_{1, W}$ the norm in $H_{1, W}$ induced by $\langle\cdot, \cdot\rangle_{1, W}$. The space $H_{1, W}\left(\mathbb{T}^{d}\right)$ is called energetic space. For more details on the theory of energetic spaces see [17, Chapter 5].

Note that $H_{1, W}$ is the space of functions that can be approximated by functions in \mathbb{D}_{W} with respect to the norm $\|\cdot\|_{1, W}$. The following Proposition shows that this space is, in fact, the Sobolev space $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$.
Proposition 3.2.5 (Approximation by smooth functions). We have the equality of the sets

$$
\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)=H_{1, W}\left(\mathbb{T}^{d}\right)
$$

In particular, we can approximate any function f in the Sobolev space $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ by functions in \mathbb{D}_{W}.
Proof. Fix $g \in H_{1, W}\left(\mathbb{T}^{d}\right)$. By definition, there exists a sequence g_{n} in \mathbb{D}_{W} such that g_{n} converges to g in $L^{2}\left(\mathbb{T}^{d}\right)$ and g_{n} is Cauchy for the inner product $\langle\cdot, \cdot\rangle_{1, W}$. So, for each $i=1, \ldots, d$ there exists functions $G_{i} \in L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ such that $\partial_{W_{i}} g_{n}$ converges to G_{i} in $L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$. Applying the Hölder's inequality, we deduce that for every $f \in \mathbb{D}_{W}$

$$
\int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g d x=\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g_{n} d x
$$

By Lemma 3.2.3, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g_{n} d x & =\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)\left(\partial_{W_{i}} g_{n}\right) d\left(x^{i} \otimes W_{i}\right) \\
& =-\int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right) G_{i} d\left(x^{i} \otimes W_{i}\right)
\end{aligned}
$$

Then, $g \in \tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ and therefore $H_{1, W}\left(\mathbb{T}^{d}\right) \subset \tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$.
We will now prove that $H_{1, W}\left(\mathbb{T}^{d}\right)$ is dense in $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$, and since both of them are complete, they are equal. Note that since \mathbb{D}_{W} is dense in $L^{2}\left(\mathbb{T}^{d}\right)$ and $\mathbb{D}_{W} \subset H_{1, W}\left(\mathbb{T}^{d}\right)$, we have that $H_{1, W}\left(\mathbb{T}^{d}\right)$ is also dense in $L^{2}\left(\mathbb{T}^{d}\right)$.

Therefore, given a function $g \in \tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$, we can approximate g by a sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $H_{1, W}\left(\mathbb{T}^{d}\right)$ with respect to the $L^{2}\left(\mathbb{T}^{d}\right)$ norm. Let $F_{i, n}$ be the i th generalized weak derivative of f_{n} with respect to W. We have, therefore, for each $h \in \mathbb{D}_{W}$

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} h\right)\left(F_{i, n}-G_{i}\right) d\left(x^{i} \otimes W_{i}\right)=-\lim _{n \rightarrow \infty} \int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} h\right)\left(f_{n}-g\right) d x=0
$$

Denote by $\mathcal{F}_{i, n}: L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ the sequence of bounded linear functionals induced by $F_{i, n}-G_{i}$:

$$
\mathcal{F}_{i, n}(h):=\int_{\mathbb{T}^{d}} h\left[F_{i, n}-G_{i}\right] d\left(x^{i} \otimes W_{i}\right)
$$

for $h \in L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$. We then note that, since the set $\left\{\partial_{W_{i}} h ; h \in \mathbb{D}_{W}\right\}$ is dense in $L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right), \mathcal{F}_{i, n}$ converges to 0 pointwisely. By Banach-Steinhaus' Theorem, $\mathcal{F}_{i, n}$ converges strongly to 0 , and, thus, $F_{i, n}$ converges to G_{i} in $L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$, for each $i=1, \ldots, d$. Therefore, f_{n} converges to g in $L^{2}\left(\mathbb{T}^{d}\right)$ and $\partial_{W_{i}} f_{n}$ converges to G_{i} in $L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ for each i, i.e., f_{n} converges to g with the norm $\|\cdot\|_{1, W}$, and the density of $H_{1, W}\left(\mathbb{T}^{d}\right)$ in $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$ follows.

The next Corollary shows an analogous of the classic result for Sobolev spaces with dimension $d=1$, which states that every function in the one-dimensional Sobolev space is absolutely continuous.
Corollary 3.2.6. A function f in $L^{2}(\mathbb{T})$ belongs to the Sobolev space $\tilde{H}_{1, W}(\mathbb{T})$ if and only if there exists F in $L_{W}^{2}(\mathbb{T})$ and a finite constant c such that

$$
\int_{(0,1]} F(y) d W(y)=0 \quad \text { and } \quad f(x)=c+\int_{(0, x]} F(y) d W(y)
$$

Lebesgue almost surely.
Proof. In [6] the energetic extension $H_{1, W}(\mathbb{T})$ has the characterization given in Corollary 3.2.6. By Proposition 3.2.5 we have that these spaces coincide, and hence the proof follows.

From Proposition 3.2.5, we may use the notation $H_{1, W}\left(\mathbb{T}^{d}\right)$ for the Sobolev space $\tilde{H}_{1, W}\left(\mathbb{T}^{d}\right)$. Another interesting feature we have on this space, which is very useful in the study of elliptic equations, is the Poincaré inequality:

Corollary 3.2.7 (Poincaré Inequality). For all $f \in H_{1, W}\left(\mathbb{T}^{d}\right)$ there exists a finite constant C such that

$$
\begin{aligned}
\left\|f-\int_{\mathbb{T}^{d}} f d x\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2} & \leq C \sum_{i=1}^{n} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)^{2} d\left(x^{i} \otimes W_{i}\right) \\
& :=C\left\|\nabla_{W} f\right\|_{L_{W}^{2}\left(\mathbb{T}^{d}\right)}^{2}
\end{aligned}
$$

Proof. We begin by introducing some notations. For $x, y \in \mathbb{T}^{d}, i=0, \ldots, d$ and $t \in \mathbb{T}$, denote

$$
z(x, y, i)=\left(x_{1}, \ldots, x_{d-i}, y_{d-i+1}, \ldots, y_{d}\right) \in \mathbb{T}^{d}
$$

and

$$
z(x, y, t, i)=\left(x_{1}, \ldots, x_{d-i}, t, y_{d-i+2}, \ldots, y_{d}\right) \in \mathbb{T}^{d}
$$

With this notation, we may write $f(x)-f(y)$ as the telescopic sum

$$
f(x)-f(y)=\sum_{i=1}^{d} f(z(x, y, i-1))-f(z(x, y, i))
$$

We are now in conditions to prove this Lemma. Let $f \in \mathbb{D}_{W}$, then

$$
\begin{aligned}
\| f & -\int_{\mathbb{T}^{d}} f d x \|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}=\int_{\mathbb{T}^{d}}\left[\int_{\mathbb{T}^{d}} f(x)-f(y) d y\right]^{2} d x \\
& =\int_{\mathbb{T}^{d}}\left[\int_{\mathbb{T}^{d}} \sum_{i=1}^{d} \int_{y_{i}}^{x_{i}} \partial_{W_{i}} f(z(x, y, t, i)) d W_{i}(t) d y\right]^{2} d x \\
& \leq \int_{\mathbb{T}^{d}}\left[\int_{\mathbb{T}^{d}} \sum_{i=1}^{d} \int_{\mathbb{T}}\left|\partial_{W_{i}} f(z(x, y, t, i))\right| d W_{i}(t) d y\right]^{2} d x \\
& \leq \int_{\mathbb{T}^{d}}\left[\sum_{i=1}^{d} \int_{\mathbb{T}^{d-i+1}}\left|\partial_{W_{i}} f(z(x, y, t, i))\right| d W_{d-i}(t) \otimes y_{d-i+1} \otimes \cdots \otimes y_{d}\right]^{2} d x \\
& \leq C \int_{\mathbb{T}^{d}} \sum_{i=1}^{d} \int_{\mathbb{T}^{d-i+1}}\left|\partial_{W_{i}} f(z(x, y, t, i))\right|^{2} d W_{d-i}(t) \otimes d y_{d-i+1} \otimes \cdots \otimes d y_{d} d x \\
& =C \sum_{i=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right)^{2} d\left(x^{i} \otimes W_{i}\right),
\end{aligned}
$$

where in the next-to-last inequality, we used Jensen's inequality and the elementary inequality $\left(\sum_{i} x_{i}\right)^{2} \leq$ $C \sum_{i} x_{i}^{2}$ for some positive constant C. To conclude the proof, one uses Proposition 3.2.5 to approximate functions in $H_{1, W}\left(\mathbb{T}^{d}\right)$ by functions in \mathbb{D}_{W}.

3.2.4 A Rellich-Kondrachov theorem

In this subsection we prove an analogous of the Rellich-Kondrachov theorem for the W-Sobolev spaces. We begin by stating this result in dimension 1 , whose proof can be found in [6, Lemma 3.3].

Lemma 3.2.8. Fix some $k \in\{1, \ldots, d\}$. The embedding $H_{1, W_{k}}(\mathbb{T}) \subset L^{2}(\mathbb{T})$ is compact.
Recall that they proved this result for the energetic extension, but in view of Proposition 3.2.5, this result holds for our Sobolev space $H_{1, W_{k}}(\mathbb{T})$.

Proposition 3.2.9 (Rellich-Kondrachov). The embedding $H_{1, W}\left(\mathbb{T}^{d}\right) \subset \mathbb{L}^{2}\left(\mathbb{T}^{d}\right)$ is compact.
Proof. We will outline the strategy of the proof. Using the definition of the set \mathbb{D}_{W} and the fact that it is dense in $H_{1, W}\left(\mathbb{T}^{d}\right)$, it is enough to show this fact for sequences in \mathbb{D}_{W}. From this point, the main tool is Lemma 3.2.8 and Cantor's diagonal method to obtain converging subsequences.

We begin by noting that by Proposition 3.2 .5 , it is enough to prove that the embed $\mathbb{D}_{W} \subset L^{2}\left(\mathbb{T}^{d}\right)$ is compact.

Let $C>0$ and consider a sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{D}_{W}, with $\left\|v_{n}\right\|_{1, W} \leq C$ for all $n \in \mathbb{N}$. We have, by definition of \mathbb{D}_{W} (see the definition at the beginning of Section 3.2), that each v_{n} can be expressed as a finite linear combination of elements in \mathcal{A}_{W}. Furthermore, each element in \mathcal{A}_{W} is a product of elements in $\mathcal{A}_{W_{k}}$ for $k=1, \ldots, d$. Therefore, we can write v_{n} as

$$
v_{n}=\sum_{j=1}^{N(n)} \alpha_{j}^{n} \prod_{k=1}^{d} g_{k, j}^{n}=\sum_{j=1}^{N(n)} \alpha_{j}^{n} g_{j}^{n}
$$

where $g_{k, j}^{n} \in \mathcal{A}_{W_{k}}, \alpha_{j}^{n} \in \mathbb{R}, g_{j}^{n}=\prod_{k=1}^{d} g_{j, k}^{n}$, and $N(n)$ is chosen such that $N(n) \geq n$ (we can complete with zeros if necessary). Recall that these functions $g_{k, j}^{n}$ have $\left\|g_{k, j}^{n}\right\|_{L^{2}(\mathbb{T})}=1$, and hence, $\left\|g_{j}^{n}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}=1$. Moreover, the set $\left\{g_{1}^{n}, \ldots, g_{N(n)}^{n}\right\}$ is orthogonal in $L^{2}\left(\mathbb{T}^{d}\right)$.

From orthogonality, we obtain that

$$
\sum_{j=1}^{N(n)}\left(\alpha_{j}^{n}\right)^{2} \leq C^{2}, \quad \text { uniformly in } n \in \mathbb{N} .
$$

Note that the uniform boundedness of v_{n} in $H_{1, W}\left(\mathbb{T}^{d}\right)$ implies the uniform boundedness of $\left\|g_{k, j}^{n}\right\|_{1, W_{k}}$, for all $k=1, \ldots, d, j=1, \ldots, N(n)$ and $n \in \mathbb{N}$. Our goal now is to apply Lemma 3.2.8 to our current setup.

Consider the sequence of functions $\alpha_{1}^{n} g_{1,1}^{n}$ in $H_{1, W_{1}}(\mathbb{T})$. By Lemma 3.2.8, this sequence has a converging subsequence, and we call the limit point $\alpha_{1} g_{1,1}$. Repeat this step $d-1$ times for the sequences $g_{k, 1}^{n}$ in $H_{1, W_{k}}(\mathbb{T})$, for $k=2, \ldots, d$, considering in each step a subsequence of the previous step, to obtain converging subsequences, and call their limit points $g_{k, 1}$. At the end of this procedure, we obtain a converging subsequence of $\prod_{k=1}^{d} \alpha_{1}^{n} g_{1, k}^{n}$, with limit point $\prod_{k=1}^{d} \alpha_{1} g_{1, k} \in L^{2}\left(\mathbb{T}^{d}\right)$, which we will denote by $\alpha_{1} g_{1}$.

In the j th step, in which we want to obtain the limit point $\alpha_{j} g_{j}$, we repeat the previous idea, with the sequences $\alpha_{j}^{n} g_{j, 1}^{n}$ and $g_{j, k}^{n}$, with $n \leq j$ and $k=2, \ldots, d$. We note that it is always necessary to consider a subsequence of all the previous steps.

This procedure provides limiting functions $\alpha_{j} g_{j}$, for all $j \in \mathbb{N}$. From now on, we use the notation v_{n} to mean the diagonal sequence obtained to ensure the convergence of the functions $\alpha_{j}^{n} g_{j}^{n}$ to $\alpha_{j} g_{j}$. We claim that the function

$$
v=\sum_{j=1}^{\infty} \alpha_{j} g_{j}
$$

is well-defined and belongs to $L^{2}\left(\mathbb{T}^{d}\right)$. To prove this claim, note that the set $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ is orthonormal by the continuity of the inner product. Suppose that there exists $N \in \mathbb{N}$ such that

$$
\sum_{j=1}^{N}\left(\alpha_{j}\right)^{2}>C^{2}
$$

We have that the sequence of functions

$$
v_{n}^{N}:=\sum_{j=1}^{N} \alpha_{j}^{n} g_{j}^{n}
$$

converges to

$$
v^{N}:=\sum_{j=1}^{N} \alpha_{j} g_{j}
$$

Since $\left\|v_{n}^{N}\right\| \leq C$ uniformly in $n \in \mathbb{N}$, this yields a contradiction. Therefore $v \in L^{2}\left(\mathbb{T}^{d}\right)$ with the bound $\|v\| \leq C$.

It remains to be proved that v_{n} has a subsequence that converges to v. Choose N so large that $\left\|v-v^{N}\right\|<\epsilon / 3,\left\|v_{n}^{N}-v^{N}\right\|<\epsilon / 3$ and $\left\|v_{n}^{N}-v_{n}\right\|<\epsilon / 3$, and use the triangle inequality to conclude the proof.

3.2.5 The space $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$

Let $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ be the dual space to $H_{1, W}\left(\mathbb{T}^{d}\right)$, that is, $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ is the set of bounded linear functionals on $H_{1, W}\left(\mathbb{T}^{d}\right)$. Our objective in this subsection is to characterize the elements of this space. This proof is based on the characterization of the dual of the standard Sobolev space in \mathbb{R}^{d} (see [2]).

We will write (\cdot, \cdot) to denote the pairing between $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ and $H_{1, W}\left(\mathbb{T}^{d}\right)$.
Lemma 3.2.10. $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ if and only if there exist functions $f_{0} \in L^{2}\left(\mathbb{T}^{d}\right)$, and $f_{k} \in L_{x^{k} \otimes W_{k}, 0}^{2}\left(\mathbb{T}^{d}\right)$, such that

$$
\begin{equation*}
f=f_{0}-\sum_{i=1}^{d} \partial_{x_{i}} f_{i} \tag{3.2.10}
\end{equation*}
$$

in the sense that for $v \in H_{1, W}\left(\mathbb{T}^{d}\right)$

$$
(f, v)=\int_{\mathbb{T}^{d}} f_{0} v d x+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}} f_{i}\left(\partial_{W_{i}} v\right) d\left(x^{i} \otimes W_{i}\right)
$$

Furthermore,

$$
\|f\|_{H_{W}^{-1}}=\inf \left\{\left(\int_{\mathbb{T}^{d}} \sum_{i=0}^{d}\left|f_{i}\right|^{2} d x\right)^{1 / 2} ; \quad f \text { satisfies }(3.2 .10)\right\}
$$

Proof. Let $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$. Applying the Riesz Representation Theorem, we deduce the existence of a unique function $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ satisfying $(f, v)=\langle u, v\rangle_{1, W}$, for all $v \in H_{1, W}\left(\mathbb{T}^{d}\right)$, that is

$$
\begin{equation*}
\int_{\mathbb{T}^{d}} u v d x+\sum_{j=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} u\right)\left(\partial_{W_{j}} v\right) d\left(x^{j} \otimes W_{j}\right)=(f, v), \quad \text { for all } v \in H_{1, W}\left(\mathbb{T}^{d}\right) \tag{3.2.11}
\end{equation*}
$$

This establishes the first claim of the Lemma for $f_{0}=u$ and $f_{i}=\partial_{W_{i}} u$, for $i=1, \ldots, d$.
Assume now that $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$,

$$
\begin{equation*}
(f, v)=\int_{\mathbb{T}^{d}} g_{0} v d x+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}} g_{i}\left(\partial_{W_{i}} v\right) d\left(x^{i} \otimes W_{i}\right) \tag{3.2.12}
\end{equation*}
$$

for $g_{0}, g_{1}, \ldots, g_{d} \in L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$. Setting $v=u$ in (3.2.11), using (3.2.12), and applying the CauchySchwartz inequality twice, we deduce

$$
\begin{equation*}
\|u\|_{1, W}^{2} \leq \int_{\mathbb{T}^{d}} g_{0}^{2} d x+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}} \partial_{W_{i}} g_{i}^{2} d\left(x^{i} \otimes W_{i}\right) \tag{3.2.13}
\end{equation*}
$$

From (3.2.11) it follows that

$$
|(f, v)| \leq\|u\|_{1, W}
$$

if $\|v\|_{1, W} \leq 1$. Consequently

$$
\|f\|_{H_{W}^{-1}} \leq\|u\|_{1, W} .
$$

Setting $v=u /\|u\|_{1, W}$ in (3.2.11), we deduce that, in fact,

$$
\|f\|_{H_{W}^{-1}}=\|u\|_{1, W}
$$

The result now follows from the above expression and equation (3.2.13).

3.3 W-Generalized elliptic equations

This subsection investigates the solvability of uniformly elliptic generalized partial differential equations defined below. Energy methods within Sobolev spaces are, essentially, the techniques exploited.

Let $A=\left(a_{i i}(x)\right)_{d \times d}, x \in \mathbb{T}^{d}$, be a diagonal matrix function such that there exists a constant $\theta>0$ satisfying

$$
\begin{equation*}
\theta^{-1} \leq a_{i i}(x) \leq \theta, \tag{3.3.1}
\end{equation*}
$$

for every $x \in \mathbb{T}^{d}$ and $i=1, \ldots, d$. To keep notation simple, we write $a_{i}(x)$ to mean $a_{i i}(x)$.
Our interest lies on the study of the problem

$$
\begin{equation*}
T_{\lambda} u=f \tag{3.3.2}
\end{equation*}
$$

where $u: \mathbb{T}^{d} \rightarrow \mathbb{R}$ is the unknown function and $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ is given. Here T_{λ} denotes the generalized elliptic operator

$$
\begin{equation*}
T_{\lambda} u:=\lambda u-\nabla A \nabla_{W} u:=\lambda u-\sum_{i=1}^{d} \partial_{x_{i}}\left(a_{i}(x) \partial_{W_{i}} u\right) \tag{3.3.3}
\end{equation*}
$$

The bilinear form $B[\cdot, \cdot]$ associated with the elliptic operator T_{λ} is given by

$$
\begin{equation*}
B[u, v]=\lambda\langle u, v\rangle+\sum_{i=1}^{d} \int a_{i}(x)\left(\partial_{W_{i}} u\right)\left(\partial_{W_{i}} v\right) d\left(W_{i} \otimes x_{i}\right), \tag{3.3.4}
\end{equation*}
$$

where $u, v \in H_{1, W}\left(\mathbb{T}^{d}\right)$.
Let $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$. A function $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ is said to be a weak solution of the equation $T_{\lambda} u=f$ if

$$
B[u, v]=(f, v) \text { for all } v \in H_{1, W}\left(\mathbb{T}^{d}\right) .
$$

Recall a classic result from linear functional analysis, which provides in certain circumstances the existence and uniqueness of weak solutions of our problem, and whose proof can be found, for instance, in [2]. Let \mathcal{H} be a Hilbert space endowed with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\|\cdot\| \mid$. Also, (\cdot, \cdot) denotes the pairing of \mathcal{H} with its dual space.

Theorem 3.3.1 (Lax-Milgram Theorem). Assume that $B: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is a bilinear mapping on Hilbert space \mathcal{H}, for which there exist constants $\alpha>0$ and $\beta>0$ such that for all $u, v \in \mathcal{H}$,

$$
|B[u, v]| \leq \alpha\left\|\left|u\| \| \cdot\|\mid v\| \| \text { and } B[u, u] \geq \beta\|\mid u\| \|^{2} .\right.\right.
$$

Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a bounded linear functional on \mathcal{H}. Then there exists a unique element $u \in \mathcal{H}$ such that

$$
B[u, v]=(f, v),
$$

for all $v \in \mathcal{H}$.
Return now to the specific bilinear form $B[\cdot, \cdot]$ defined in (3.3.4). Our goal now is to verify the hypothesis of Lax-Milgram Theorem for our setup. We consider the cases $\lambda=0$ and $\lambda>0$ separately. We begin by analyzing the case in which $\lambda=0$.

Let $H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$ be the set of functions in $H_{1, W}\left(\mathbb{T}^{d}\right)$ which are orthogonal to the constant functions:

$$
H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)=\left\{f \in H_{1, W}\left(\mathbb{T}^{d}\right) ; \int_{\mathbb{T}^{d}} f d x=0\right\}
$$

The space $H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$ is the natural environment to treat elliptic operators with Neumann condition.
Proposition 3.3.2 (Energy estimates for $\lambda=0)$. Let B be the bilinear form on $H_{1, W}\left(\mathbb{T}^{d}\right)$ defined in (3.3.4) with $\lambda=0$. There exist constants $\alpha>0$ and $\beta>0$ such that for all $u, v \in H_{1, W}\left(\mathbb{T}^{d}\right)$,

$$
|B[u, v]| \leq \alpha\|u\|_{1, W}\|v\|_{1, W}
$$

and for all $u \in H_{1, W}^{\perp}$

$$
B[u, u] \geq \beta\|u\|_{1, W}^{2}
$$

Proof. By (3.3.1), the computation of the upper bound α easily follows. For the lower bound β, we have for $u \in H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$,

$$
\|u\|_{1, W}^{2}=\int_{\mathbb{T}^{d}} u^{2} d x+\sum_{i=1}^{d} \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} u\right)^{2} d\left(x^{i} \otimes W_{i}\right) .
$$

Using Poincaré's inequality and (3.3.1), we obtain a constant $C>0$ such that the previous expression is bounded above by

$$
C \int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} u\right)^{2} d\left(x^{i} \otimes W_{i}\right) \leq C B[u, u] .
$$

The lemma follows from the previous estimates.
Corollary 3.3.3. Let $f \in L^{2}\left(\mathbb{T}^{d}\right)$. There exists a weak solution $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ for the equation

$$
\begin{equation*}
\nabla A \nabla_{W} u=f \tag{3.3.5}
\end{equation*}
$$

if and only if

$$
\int_{\mathbb{T}^{d}} f d x=0
$$

In this case, we have uniquenesses of the weak solutions if we disregard addition by constant functions. Also, let u be the unique weak solution of (3.3.5) in $H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$. Then

$$
\|u\|_{1, W} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}
$$

for some constant C independent of f.

Proof. Suppose that there exists a weak solution $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ of (3.3.5). Since the function $v \equiv 1 \in$ $H_{1, W}\left(\mathbb{T}^{d}\right)$, we have by definition of weak solution that

$$
\int_{\mathbb{T}^{d}} f d x=B[u, v]=0
$$

Now, let $f \in L^{2}\left(\mathbb{T}^{d}\right)$ with $\int_{\mathbb{T}^{d}} f d x=0$. Consider the bilinear form B, defined in (3.3.4) with $\lambda=0$, on the Hilbert space $H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$. By Proposition 3.3.2, B satisfies the hypothesis of the Lax-Milgram's Theorem. Further, f defines the bounded linear functional in $H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$ given by $(f, g)=\langle f, g\rangle$ for every $g \in H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$. Then, an application of Lax-Milgram's Theorem yields that there exists a unique $u \in H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right)$ such that

$$
B[u, v]=\langle f, v\rangle \text { for all } v \in H_{1, W}^{\perp}\left(\mathbb{T}^{d}\right) .
$$

Moreover, by Proposition 3.3.2, there is a $\beta>0$ such that

$$
\beta\|u\|_{1, W}^{2} \leq B[u, u]=\langle f, u\rangle \leq\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}\|u\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leq\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}\|u\|_{1, W} .
$$

The existence of weak solutions and the bound C in the statement of the Corollary follows from the previous expression.

We now analyze the case in which $\lambda>0$.
Proposition 3.3.4 (Energy estimates for $\lambda>0)$. Let $f \in L^{2}\left(\mathbb{T}^{d}\right)$. There exists a unique weak solution $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ for the equation

$$
\begin{equation*}
\lambda u-\nabla A \nabla_{W} u=f, \quad \lambda>0 \tag{3.3.6}
\end{equation*}
$$

This solution enjoys the following bounds

$$
\|u\|_{1, W} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}
$$

for some constant $C>0$ independent of f, and

$$
\|u\| \leq \lambda^{-1}\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}
$$

Proof. Let $\beta=\min \left\{\lambda, \theta^{-1}\right\}>0$ and $\alpha=\max \{\lambda, \theta\}<\infty$, where θ is given in (3.3.1). An elementary computation shows that

$$
B[u, v] \mid \leq \alpha\|u\|_{1, W} \quad\|v\|_{1, W} \quad \text { and } \quad B[u, u] \geq \beta\|u\|_{1, W}^{2}
$$

By Lax-Milgram's Theorem, there exists a unique solution $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ of (3.3.6). Note that

$$
\beta\|u\|_{1, W}^{2} \leq B[u, u]=\langle f, u\rangle \leq\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}\|u\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leq\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}\|u\|_{1, W},
$$

and therefore $\|u\|_{1, W} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}$ for some constant $C>0$ independent of f. The computation to obtain the other bound is analogous.

Remark 3.3.5. Let $\mathbb{L}_{W}^{A}: \mathbb{D}_{W} \rightarrow \mathbb{L}^{2}\left(\mathbb{T}^{d}\right)$ be given by $\mathbb{L}_{W}^{A}=\nabla A \nabla_{W}$. This operator has the properties stated in Theorem 2.1 in [16]. We now outline the main steps to prove it. Following [16], we may prove an analogous of Lemma 3.2.2 for the operator \mathbb{L}_{W}^{A}. Using the bounds on the diagonal matrix A and Proposition 3.2.9 (Rellich-Kondrachov), we conclude that the energetic extension of the space induced by this operator has compact embedding in $L^{2}\left(\mathbb{T}^{d}\right)$. The previous results together with [17, Theorems 5.5.a and 5.5.c] implies that \mathbb{L}_{W}^{A} has a self-adjoint extension \mathcal{L}_{W}^{A}, which is dissipative and non-positive, and its eigenvectors form a complete orthonormal set in $L^{2}\left(\mathbb{T}^{d}\right)$. Furthermore, the set of eigenvalues of this extension is countable and its elements can be ordered resulting in a non-increasing sequence that tends to $-\infty$.
Remark 3.3.6. Let \mathcal{L}_{W}^{A} be the self-adjoint extension given in Remark 3.3.5, and \mathcal{D}_{W}^{A} its domain. For $\lambda>0$ the operator $\lambda \mathbb{I}-\mathcal{L}_{W}^{A}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ is bijective. Therefore, the equation

$$
\lambda u-\nabla A \nabla_{W} u=f
$$

has strong solution in \mathbb{D}_{W} if and only if $f \in\left(\lambda \mathbb{I}-\mathcal{L}_{W}^{A}\right)\left(\mathbb{D}_{W}\right)$, where \mathbb{I} is the identity operator and $\left(\lambda \mathbb{I}-\mathcal{L}_{W}^{A}\right)\left(\mathbb{D}_{W}\right)$ stands for the range of \mathbb{D}_{W} under the operator $\lambda \mathbb{I}-\mathcal{L}_{W}^{A}$. Moreover, this strong solution coincides with the weak solution obtained in Proposition 3.3.4.

3.4 W-Generalized parabolic equations

In this Section, we study a class of W-generalized PDEs that involves time: the parabolic equations. The parabolic equations are often used to describe in physical applications the time-evolution of the density of some quantity, say a chemical concentration within a region. The motivation of this generalization is to enlarge the possibility of such applications, for instance, these equations may be used to model a diffusion of particles within a region with membranes (see $[6,17]$).

We begin by introducing the class of W-generalized parabolic equations we are interested. Then, we define what is meant by weak solution of such equations, using the W-Sobolev spaces, and prove uniquenesses of these weak solutions. In Section 3.7, we obtain existence of weak solutions of these equations.

Fix $T>0$ and let $\left(B,\|\cdot\|_{B}\right)$ be a Banach space. We denote by $L^{2}([0, T], B)$ the Banach space of measurable functions $U:[0, T] \rightarrow B$ for which

$$
\|U\|_{L^{2}([0, T], B)}^{2}:=\int_{0}^{T}\left\|U_{t}\right\|_{B}^{2} d t<\infty .
$$

Let $A=A(t, x)$ be a diagonal matrix satisfying the ellipticity condition (3.3.1) for all $t \in[0, T]$, $\Phi:[l, r] \rightarrow \mathbb{R}$ be a continuously differentiable function such that

$$
B^{-1}<\Phi^{\prime}(x)<B
$$

for all x, where $B>0, l, r \in \mathbb{R}$ are constants. We will consider the equation

$$
\left\{\begin{array}{cc}
\partial_{t} u=\nabla A \nabla_{W} \Phi(u) & \text { in }(0, T] \times \mathbb{T}^{d}, \tag{3.4.1}\\
u=\gamma & \text { in }\{0\} \times \mathbb{T}^{d} .
\end{array}\right.
$$

where $u:[0, T] \times T^{d} \rightarrow \mathbb{R}$ is the unknown function and $\gamma: \mathbb{T}^{d} \rightarrow \mathbb{R}$ is given.
We say that a function $\rho=\rho(t, x)$ is a weak solution of the problem (3.4.1) if:

- For every $H \in \mathbb{D}_{W}$ the following integral identity holds

$$
\int_{\mathbb{T}^{d}} \rho(t, x) H(x) d x-\int_{\mathbb{T}^{d}} \gamma(x) H(x) d x=\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi(\rho(s, x)) \nabla A \nabla_{W} H(x) d x d s
$$

- $\Phi(\rho(\cdot, \cdot))$ and $\rho(\cdot, \cdot)$ belong to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$:

$$
\int_{0}^{T}\|\Phi(\rho(s, x))\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}+\left\|\nabla_{W} \Phi(\rho(s, x))\right\|_{L_{W}^{2}\left(\mathbb{T}^{d}\right)}^{2} d s<\infty
$$

and

$$
\int_{0}^{T}\|\rho(s, x)\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2}+\left\|\nabla_{W} \rho(s, x)\right\|_{L_{W}^{2}\left(\mathbb{T}^{d}\right)}^{2} d s<\infty .
$$

Consider the energy in j th direction of a function $u(s, x)$ as

$$
\begin{aligned}
\mathcal{Q}_{j}(u)= & \sup _{H \in \mathbb{D}_{W}}\left\{2 \int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{x_{j}} \partial_{W_{j}} H\right)(s, x) u(s, x) d x d s\right. \\
& \left.\quad-\int_{0}^{T} d s \int_{\mathbb{T}^{d}}\left[\partial_{W_{j}} H(s, x)\right]^{2} d\left(x^{j} \otimes W_{j}\right)\right\}
\end{aligned}
$$

and the total energy of a function $u(s, x)$ as

$$
\mathcal{Q}(u)=\sum_{j=1}^{d} \mathcal{Q}_{j}(u)
$$

The notion of energy is important in probability theory and is often used in large deviations of Markov processes. We also use this notion to prove the hydrodynamic limit in Section 3.7. The following lemma shows the connection between the functions of finite energy and functions in the Sobolev space.

Lemma 3.4.1. A function $u \in L^{2}\left([0, T], L^{2}\left(\mathbb{T}^{d}\right)\right)$ has finite energy if and only if u belongs to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$. In the case the energy is finite, we have

$$
\mathcal{Q}(u)=\int_{0}^{T}\left\|\nabla_{W} u\right\|_{L_{W}^{2}\left(\mathbb{T}^{d}\right)}^{2} d t
$$

Proof. Consider functions $U \in L^{2}\left([0, T], L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)\right)$ as trajectories in $L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$, that is, consider a trajectory $\boldsymbol{U}:[0, T] \rightarrow L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$ and define $U(s, x)$ as $U(s, x):=[\boldsymbol{U}(s)](x)$.

Let $u \in L^{2}\left([0, T], L^{2}\left(\mathbb{T}^{d}\right)\right)$ and recall that the set $\left\{\partial_{W_{j}} H ; H \in \mathbb{D}_{W}\right\}$ is dense in $L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)$. Then the set $\left\{\partial_{W_{j}} H(s, x) ; H \in L^{2}\left([0, T], \mathbb{D}_{W}\right)\right\}$ is dense in $L^{2}\left([0, T], L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)\right)$. Suppose that u has finite energy, and let $H \in L^{2}\left([0, T], \mathbb{D}_{W}\right)$, then

$$
\mathcal{F}_{j}\left(\partial_{W_{j}} H\right)=\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{x_{j}} \partial_{W_{j}} H\right)(s, x) u(s, x) d x d s
$$

is a bounded linear functional in $L^{2}\left([0, T], L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)\right)$. Consequently, by Riesz's representation theorem, there exists a function $G_{j} \in L^{2}\left([0, T], L_{x^{j} \otimes W_{j}, 0}^{2}\left(\mathbb{T}^{d}\right)\right)$ such that

$$
\mathcal{F}_{j}\left(\partial_{W_{j}} H\right)=\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H\right)(x) G_{j}(s, x) d x d s
$$

for all $H \in L^{2}\left([0, T], \mathbb{D}_{W}\right)$.
From the uniqueness of the generalized weak derivative, we have that $G_{j}(s, x)=-\partial_{W_{j}} u(s, x)$.
Now, suppose u belongs to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$ and let $H \in L^{2}\left([0, T], \mathbb{D}_{W}\right)$. Then, we have

$$
\begin{aligned}
& 2 \int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{x_{j}} \partial_{W_{j}} H\right)(s, x) u(s, x) d x d s-\int_{0}^{T} d s \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H(s, x)\right)^{2} d\left(x^{j} \otimes W_{j}\right)= \\
- & 2 \int_{0}^{T} \int_{\mathbb{T}^{d}} \partial_{W_{j}} H(s, x) \partial_{W_{j}} u(s, x) d\left(x^{j} \otimes W_{j}\right)-\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H(s, x)\right)^{2} d\left(x^{j} \otimes W_{j}\right)
\end{aligned}
$$

We can rewrite the right-hand side of the above expression as

$$
\begin{equation*}
-2\left\langle\partial_{W_{j}} H, 2 \partial_{W_{j}} u+\partial_{W_{j}} H\right\rangle_{x^{j} \otimes W_{j}} \tag{3.4.2}
\end{equation*}
$$

A simple calculation shows that, for a Hilbert space \mathcal{H} with inner product $\langle\cdot, \cdot\rangle$, the following inequality holds:

$$
-<v, u+v>\leq \frac{1}{4}<u, u>
$$

for all $u, v \in \mathcal{H}$, and we have equality only when $v=-1 / 2 u$.
Therefore, by the previous estimates and (3.4.2)

$$
\begin{gathered}
2 \int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{x_{j}} \partial_{W_{j}} H\right)(s, x) u(s, x) d x d s-\int_{0}^{T} d s \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H(s, x)\right)^{2} d\left(x^{j} \otimes W_{j}\right) \leq \\
\int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} u(s, x)\right)^{2} d\left(x^{j} \otimes W_{j}\right)
\end{gathered}
$$

By the definition of energy, we have for each $j=1, \ldots, d$,

$$
\mathcal{Q}_{j}(u) \leq \int_{0}^{T} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} u(s, x)\right)^{2} d\left(x^{j} \otimes W_{j}\right)
$$

Hence, the total energy is finite. Using the fact that $L^{2}\left([0, T], \mathbb{D}_{W}\right)$ is dense in $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$, we have that

$$
\begin{aligned}
\mathcal{Q}(u) & =\sum_{j=1} \int_{0}^{T}\left\|\partial_{W_{j}} u\right\|_{x^{j} \otimes W_{j}}^{2} d t \\
& =\int_{0}^{T}\left\|\nabla_{W} u\right\|_{L_{W}^{2}\left(\mathbb{T}^{d}\right)}^{2} d t .
\end{aligned}
$$

3.4.1 Uniqueness of weak solutions of the parabolic equation

Recall that we denote by $\langle\cdot, \cdot\rangle$ the inner product of the Hilbert space $L^{2}\left(\mathbb{T}^{d}\right)$. Fix $H, G \in L^{2}\left(\mathbb{T}^{d}\right), \lambda>0$, and denote by H_{λ} and G_{λ} in $H_{1, W}\left(\mathbb{T}^{d}\right)$ the unique weak solutions of the elliptic equations

$$
\lambda H_{\lambda}-\nabla A \nabla_{W} H_{\lambda}=H,
$$

and

$$
\lambda G_{\lambda}-\nabla A \nabla_{W} G_{\lambda}=G
$$

respectively. Then, we have the following symmetry property

$$
\left\langle G_{\lambda}, H\right\rangle=\left\langle G, H_{\lambda}\right\rangle
$$

In fact, both terms in the previous equality are equal to

$$
\lambda \int_{\mathbb{T}^{d}} H_{\lambda} G_{\lambda}+\sum_{j=1}^{d} a_{j j} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H_{\lambda}\right)\left(\partial_{W_{j}} G_{\lambda}\right) d\left(x^{j} \otimes W_{j}\right) .
$$

Let $\rho: \mathbb{R}_{+} \times \mathbb{T} \rightarrow[l, r]$ be a weak solution of the parabolic equation (3.4.1). Since $\rho, \Phi(\rho) \in$ $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$, and the set \mathbb{D}_{W} is dense in $H_{1, W}\left(\mathbb{T}^{d}\right)$, we have for every H in $H_{1, W}\left(\mathbb{T}^{d}\right)$,

$$
\begin{equation*}
\left\langle\rho_{t}, H\right\rangle-\langle\gamma, H\rangle=-\sum_{j=1}^{d} a_{j j} \int_{0}^{t}\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} H\right\rangle_{x^{j} \otimes W_{j}} d s \tag{3.4.3}
\end{equation*}
$$

for all $t>0$.
Denote by $\rho_{s}^{\lambda} \in H_{1, W}\left(\mathbb{T}^{d}\right)$ the unique weak solution of the elliptic equation

$$
\begin{equation*}
\lambda \rho_{s}^{\lambda}-\nabla A \nabla_{W} \rho_{s}^{\lambda}=\rho(s, \cdot) \tag{3.4.4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\left\langle\rho_{t}, \rho_{t}^{\lambda}\right\rangle-\left\langle\rho_{0}, \rho_{0}^{\lambda}\right\rangle=-2 \sum_{j=1}^{d} a_{j j} \int_{0}^{t}\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \rho_{s}^{\lambda}\right\rangle_{x^{j} \otimes W_{j}} d s \tag{3.4.5}
\end{equation*}
$$

for all $t>0$.
To prove this claim, fix $t>0$ and consider a partition $0=t_{0}<t_{1}<\cdots<t_{n}=t$ of the interval $[0, t]$. Using the telescopic sum, we obtain

$$
\begin{aligned}
\left\langle\rho_{t}, \rho_{t}^{\lambda}\right\rangle-\left\langle\rho_{0}, \rho_{0}^{\lambda}\right\rangle & =\sum_{k=0}^{n-1}\left\langle\rho_{t_{k+1}}, \rho_{t_{k+1}}^{\lambda}\right\rangle-\left\langle\rho_{t_{k+1}}, \rho_{t_{k}}^{\lambda}\right\rangle \\
& +\sum_{k=0}^{n-1}\left\langle\rho_{t_{k+1}}, \rho_{t_{k}}^{\lambda}\right\rangle-\left\langle\rho_{t_{k}}, \rho_{t_{k}}^{\lambda}\right\rangle .
\end{aligned}
$$

We handle the first term, the second one being similar. From the symmetric property of the weak solutions, $\rho_{t_{k+1}}^{\lambda}$ belongs to $H_{1, W}\left(\mathbb{T}^{d}\right)$ and since ρ is a weak solution of (3.4.1),

$$
\left\langle\rho_{t_{k+1}}, \rho_{t_{k+1}}^{\lambda}\right\rangle-\left\langle\rho_{t_{k+1}}, \rho_{t_{k}}^{\lambda}\right\rangle=-\sum_{j=1}^{d} a_{j j} \int_{t_{k}}^{t_{k+1}}\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \rho_{t_{k+1}}^{\lambda}\right\rangle d s
$$

Add and subtract $\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \rho_{s}^{\lambda}\right\rangle$ inside the integral on the right hand side of the above expression. The time integral of this term is exactly the expression announced in (3.4.5) and the remainder is given by

$$
\sum_{j=1}^{d} a_{j j} \int_{t_{k}}^{t_{k+1}}\left\{\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \rho_{s}^{\lambda}\right\rangle-\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \rho_{t_{k+1}}^{\lambda}\right\rangle\right\} d s
$$

Since ρ_{s}^{λ} is the unique weak solution of the elliptic equation (3.4.4), and the weak solution has the symmetric property, we may rewrite the previous difference as

$$
\left\{\left\langle\Phi\left(\rho_{s}\right), \rho_{t_{k+1}}\right\rangle-\left\langle\Phi\left(\rho_{s}\right), \rho_{s}\right\rangle\right\}-\lambda\left\{\left\langle\Phi\left(\rho_{s}\right)^{\lambda}, \rho_{t_{k+1}}\right\rangle-\left\langle\Phi\left(\rho_{s}\right)^{\lambda}, \rho_{s}\right\rangle\right\}
$$

The time integral between t_{k} and t_{k+1} of the second term is equal to

$$
-\lambda \int_{t_{k}}^{t_{k+1}} d s \int_{s}^{t_{k+1}}\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right)^{\lambda}, \partial_{W_{j}} \Phi\left(\rho_{r}\right)\right\rangle d r
$$

because ρ is a weak solution of (3.4.1) and $\Phi\left(\rho_{s}\right)$ belongs to $H_{1, W}\left(\mathbb{T}^{d}\right)$. It follows from the boundedness of the weak solution given in Proposition 3.3.4 and from the boundedness of the $L_{x^{j} \otimes W_{j}}^{2}\left(\mathbb{T}^{d}\right)$ norm of $\partial_{W_{j}} \Phi(\rho)$ obtained in expression (3.4.3), that this expression is of order $\left(t_{k+1}-t_{k}\right)^{2}$.

To conclude the proof of claim (3.4.5) it remains to be shown that

$$
\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}\left\{\left\langle\Phi\left(\rho_{s}\right), \rho_{t_{k+1}}\right\rangle-\left\langle\Phi\left(\rho_{s}\right), \rho_{s}\right\rangle\right\} d s
$$

vanishes as the mesh of the partition tends to 0 . Using, again, the fact that ρ is a weak solution, we may rewrite the sum as

$$
-\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}} d s \int_{s}^{t_{k+1}}\left\langle\partial_{W_{j}} \Phi\left(\rho_{s}\right), \partial_{W_{j}} \Phi\left(\rho_{r}\right)\right\rangle d r
$$

We have that this expression vanishes as the mesh of the partition tends to 0 from the boundedness of the $L_{x^{j} \otimes W_{j}}^{2}\left(\mathbb{T}^{d}\right)$ norm of $\partial_{W_{j}} \Phi(\rho)$. This proves (3.4.5).

Recall the definition of the constant B given at the beginning of this Section.
Lemma 3.4.2. Fix $\lambda>0$, two density profiles γ^{1}, $\gamma^{2}: \mathbb{T} \rightarrow[l, r]$ and denote by ρ^{1}, ρ^{2} weak solutions of (3.4.1) with initial value γ^{1}, γ^{2}, respectively. Then,

$$
\left\langle\rho_{t}^{1}-\rho_{t}^{2}, \rho_{t}^{1, \lambda}-\rho_{t}^{2, \lambda}\right\rangle \leq\left\langle\gamma^{1}-\gamma^{2}, \gamma^{1, \lambda}-\gamma^{2, \lambda}\right\rangle e^{B \lambda t / 2}
$$

for all $t>0$. In particular, there exists at most one weak solution of (3.4.1).
Proof. We begin by showing that if there exists $\lambda>0$ such that

$$
\left\langle H, H^{\lambda}\right\rangle=0
$$

then $H=0$. In fact, we would have the following

$$
\int_{\mathbb{T}^{d}} \lambda\left(H^{\lambda}\right)^{2} d x+\sum_{j=1}^{d} a_{j j} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} H^{\lambda}\right)^{2} d\left(x^{j} \otimes W_{j}\right)=\int_{\mathbb{T}^{d}} H H^{\lambda} d x=0
$$

which implies that $\left\|H^{\lambda}\right\|_{H_{1, W}\left(\mathbb{T}^{d}\right)}=0$, and hence $H_{\lambda}=0$, which yields $H=0$.
Fix two density profiles $\gamma^{1}, \gamma^{2}: \mathbb{T}^{d} \rightarrow[l, r]$. Let ρ^{1}, ρ^{2} be two weak solutions with initial values γ^{1}, γ^{2}, respectively. By (3.4.5), for any $\lambda>0$,

$$
\begin{gather*}
\left\langle\rho_{t}^{1}-\rho_{t}^{2}, \rho_{t}^{1, \lambda}-\rho_{t}^{2, \lambda}\right\rangle-\left\langle\gamma^{1}-\gamma^{2}, \gamma^{1, \lambda}-\gamma^{2, \lambda}\right\rangle= \tag{3.4.6}\\
-2 \int_{0}^{t}\left\langle\Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right), \rho_{s}^{1}-\rho_{s}^{2}\right\rangle d s+2 \lambda \int_{0}^{t}\left\langle\Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right), \rho_{s}^{1, \lambda}-\rho_{s}^{2, \lambda}\right\rangle d s
\end{gather*}
$$

Define the inner product in $H_{1, W}\left(\mathbb{T}^{d}\right)$

$$
\langle u, v\rangle_{\lambda}=\left\langle u, v^{\lambda}\right\rangle .
$$

This is, in fact, an inner product, since $\langle u, v\rangle_{\lambda}=\langle v, u\rangle_{\lambda}$ by the symmetric property, and if $u \neq 0$, then $\langle u, u\rangle_{\lambda}>0$:

$$
\int_{\mathbb{T}^{d}} u u_{\lambda} d x=\lambda \int_{\mathbb{T}^{d}} u_{\lambda}^{2} d x+\sum_{j=1}^{d} a_{j j} \int_{\mathbb{T}^{d}}\left(\partial_{W_{j}} u^{\lambda}\right)^{2} d\left(x^{j} \otimes W_{j}\right) .
$$

The linearity of this inner product can be easily verified.
Then, we have

$$
2 \lambda \int_{0}^{t}\left\langle\Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right), \rho_{s}^{1, \lambda}-\rho_{s}^{2, \lambda}\right\rangle d s=2 \lambda \int_{0}^{t}\left\langle\Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right), \rho_{s}^{1}-\rho_{s}^{2}\right\rangle_{\lambda} d s
$$

By using the Cauchy-Schwartz inequality twice, the term on the right hand side of the above formula is bounded above by

$$
\frac{1}{A} \int_{0}^{t}\left\langle\Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right), \Phi\left(\rho_{s}^{1}\right)^{\lambda}-\Phi\left(\rho_{s}^{2}\right)^{\lambda}\right\rangle d s+A \lambda^{2} \int_{0}^{t}\left\langle\rho_{s}^{1}-\rho_{s}^{2}, \rho_{s}^{1, \lambda}-\rho_{s}^{2, \lambda}\right\rangle d s
$$

for every $A>0$. From Proposition 3.3.4, we have that $\left\|u^{\lambda}\right\| \leq \lambda^{-1}\|u\|$, and since Φ^{\prime} is bounded by B, the first term of the previous expression is less than or equal to

$$
\frac{B}{A \lambda} \int_{0}^{t}\left\langle\rho_{s}^{1}-\rho_{s}^{2}, \Phi\left(\rho_{s}^{1}\right)-\Phi\left(\rho_{s}^{2}\right)\right\rangle d s
$$

Choosing $A=B / 2 \lambda$, this expression cancels with the first term on the right hand side of (3.4.6). In particular, the left hand side of this formula is bounded by

$$
\frac{B \lambda}{2} \int_{0}^{t}\left\langle\rho_{s}^{1}-\rho_{s}^{2}, \rho_{s}^{1, \lambda}-\rho_{s}^{2, \lambda}\right\rangle d s
$$

To conclude, recall Gronwall's inequality.
Remark 3.4.3. Let $\mathcal{L}_{W}^{A}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ be the self-adjoint extension given in Remark 3.3.5. For $\lambda>0$, define the resolvent operator $G_{\lambda}^{A}=\left(\lambda \mathbb{I}-\mathcal{L}_{W}^{A}\right)^{-1}$. Following [6, 17], another possible definition of weak solution of equation (3.4.1) is given as follows: a bounded function $\rho:[0, T] \times \mathbb{T}^{d} \rightarrow[l, r]$ is said to be a weak solution of the parabolic differential equation (3.4.1) if

$$
\begin{equation*}
\left\langle\rho_{t}, G_{\lambda}^{A} h\right\rangle-\left\langle\gamma, G_{\lambda}^{A} h\right\rangle=\int_{0}^{t}\left\langle\Phi\left(\rho_{s}\right), \mathcal{L}_{W}^{A} G_{\lambda}^{A} h\right\rangle d s \tag{3.4.7}
\end{equation*}
$$

for every continuous function $h: \mathbb{T}^{d} \rightarrow \mathbb{R}, t \in[0, T]$, and all $\lambda>0$. We claim that this definition of weak solution coincides with our definition introduced at the beginning of Section 3.4. Indeed, for continuous $h: \mathbb{T}^{d} \rightarrow \mathbb{R}, G_{\lambda}^{A} h$ belongs to \mathcal{D}_{W}. Since \mathbb{D}_{W} is dense in \mathcal{D}_{W} with respect to the $H_{1, W}\left(\mathbb{T}^{d}\right)$-norm, it follows that our definition implies the current definition. Conversely, since the set of continuous functions is dense in $L^{2}\left(\mathbb{T}^{d}\right)$, the identity (3.4.7) is valid for all $h \in L^{2}\left(\mathbb{T}^{d}\right)$. Therefore, for each $H \in \mathcal{D}_{W}$ we have

$$
\left\langle\rho_{t}, H\right\rangle-\langle\gamma, H\rangle=\int_{0}^{t}\left\langle\Phi\left(\rho_{s}\right), \mathcal{L}_{W}^{A} H\right\rangle d s
$$

In particular, the above identity holds for every $H \in \mathbb{D}_{W}$, and therefore the integral identity in our definition of weak solutions holds.

It remains to be checked that the weak solution of the current definition belongs to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$. This follows from the fact that there exists at most one weak solution satisfying (3.4.7), that this unique solution has finite energy, and from Lemma 3.4.1. A proof of the fact that there exists at most one solution satisfying (3.4.7), and that this unique solution has finite energy, can be found in [6, 17].

Finally, the integral identity of our definition of weak solution has an advantage regarding the integral identity (3.4.7), due to the fact that we do not need the resolvent operator G_{λ}^{A} for any λ. Moreover, we have an explicit characterization of our test functions.

3.5 W-Generalized Sobolev spaces: Discrete version

We will now establish some of the results obtained in the above sections to the discrete version of the W-Sobolev space. Our motivation to obtain these results is that they will be useful when studying homogenization in Section 3.6. We begin by introducing some definitions and notations.

Fix W as in (3.2.1) and functions f, g defined on $N^{-1} \mathbb{T}_{N}^{d}$. Consider the following difference operators: $\partial_{x_{j}}^{N}$, which is the standard difference operator,

$$
\partial_{x_{j}}^{N} f\left(\frac{x}{N}\right)=N\left[f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]
$$

and $\partial_{W_{j}}^{N}$, which is the W_{j}-difference operator:

$$
\partial_{W_{j}}^{N} f\left(\frac{x}{N}\right)=\frac{f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)}{W\left(\frac{x+e_{j}}{N}\right)-W\left(\frac{x}{N}\right)},
$$

for $x \in \mathbb{T}_{N}^{d}$. We introduce the following scalar product

$$
\begin{aligned}
&\langle f, g\rangle_{N}:=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} f(x) g(x) \\
&\langle f, g\rangle_{W_{j}, N}:=\frac{1}{N^{d-1}} \sum_{x \in \mathbb{T}_{N}^{d}} f(x) g(x)\left(W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right), \\
&\langle f, g\rangle_{1, W, N}:=\langle f, g\rangle_{N}+\sum_{j=1}^{d}\left\langle\partial_{W_{j}}^{N} f, \partial_{W_{j}}^{N} g\right\rangle_{W_{j}, N}
\end{aligned}
$$

and its induced norms

$$
\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)}^{2}=\langle f, f\rangle_{N}, \quad\|f\|_{L_{W_{j}}^{2}\left(\mathbb{T}_{N}^{d}\right)}^{2}=\langle f, f\rangle_{W_{j}, N} \text { and }\|f\|_{H_{1, W}\left(\mathbb{T}_{N}^{d}\right)}^{2}=\langle f, f\rangle_{1, W, N} .
$$

These norms are natural discretizations of the norms introduced in the previous sections. Note that the properties of the Lebesgue's measure used in the proof of Corollary 3.2.7, also holds for the normalized counting measure. Therefore, we may use the same arguments of this Corollary to prove its discrete version.

Lemma 3.5.1 (Discrete Poincaré Inequality). There exists a finite constant C such that

$$
\left\|f-\frac{1}{N^{d}} \sum_{x \in \mathbb{T}^{d}} f\right\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)} \leq C\left\|\nabla_{W}^{N} f\right\|_{L_{W}^{2}\left(\mathbb{T}_{N}^{d}\right)},
$$

where

$$
\left\|\nabla_{W} f\right\|_{L_{W}^{2}\left(\mathbb{T}_{N}^{d}\right)}^{2}=\sum_{j=1}^{d}\left\|\partial_{W_{j}}^{N} f\right\|_{L_{W_{j}}^{2}\left(\mathbb{T}_{N}^{d}\right)}^{2}
$$

for all $f: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$.
Let A be a diagonal matrix satisfying (3.3.1). We are interested in studying the problem

$$
\begin{equation*}
T_{\lambda}^{N} u=f \tag{3.5.1}
\end{equation*}
$$

where $u: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ is the unknown function, $f: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ is given, and T_{λ}^{N} denotes the discrete generalized elliptic operator

$$
\begin{equation*}
T_{\lambda}^{N} u:=\lambda u-\nabla^{N} A \nabla_{W}^{N} u \tag{3.5.2}
\end{equation*}
$$

with

$$
\nabla^{N} A \nabla_{W}^{N} u:=\sum_{i=1}^{d} \partial_{x_{i}}^{N}\left(a_{i}(x / N) \partial_{W_{i}}^{N} u\right)
$$

The bilinear form $B^{N}[\cdot, \cdot]$ associated with the elliptic operator T_{λ}^{N} is given by

$$
\begin{gather*}
B^{N}[u, v]=\lambda\langle u, v\rangle_{N}+ \\
+\frac{1}{N^{d-1}} \sum_{i=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} a_{i}(x / N)\left(\partial_{W_{i}}^{N} u\right)\left(\partial_{W_{i}}^{N} v\right)\left[W_{i}\left(\left(x_{i}+1\right) / N\right)-W_{i}\left(x_{i} / N\right)\right] \tag{3.5.3}
\end{gather*}
$$

where $u, v: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$.
A function $u: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ is said to be a weak solution of the equation $T_{\lambda}^{N} u=f$ if

$$
B^{N}[u, v]=\langle f, v\rangle_{N} \text { for all } v: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}
$$

We say that a function $f: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ belongs to the discrete space of functions orthogonal to the constant functions $H_{N}^{\perp}\left(\mathbb{T}_{N}^{d}\right)$ if

$$
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} f(x / N)=0 .
$$

The following results are analogous to the weak solutions of generalized elliptic equations for this discrete version. We remark that the proofs of these lemmas are identical to the ones in the continuous case. Furthermore, the weak solution for the case $\lambda=0$ is unique in $H_{N}^{\perp}\left(\mathbb{T}_{N}^{d}\right)$.

Lemma 3.5.2. The equation

$$
\nabla^{N} A \nabla_{W}^{N} u=f
$$

has weak solution $u: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ if and only if

$$
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} f(x)=0
$$

In this case we have uniqueness of the solution disregarding addition by constants. Moreover, if $u \in$ $H_{N}^{\perp}\left(\mathbb{T}_{N}^{d}\right)$ we have the bound

$$
\|u\|_{H_{1, W}\left(\mathbb{T}_{N}^{d}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)}, \text { and }\|u\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)} \leq \lambda^{-1}\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)},
$$

where $C>0$ does not depend on f nor N.
Lemma 3.5.3. Let $\lambda>0$. There exists a unique weak solution $u: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ of the equation

$$
\begin{equation*}
\lambda u-\nabla^{N} A \nabla_{W}^{N} u=f . \tag{3.5.4}
\end{equation*}
$$

Moreover,

$$
\|u\|_{H_{1, W}\left(\mathbb{T}_{N}^{d}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)}, \text { and }\|u\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)} \leq \lambda^{-1}\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)}
$$

where $C>0$ does not depend neither on f nor N.
Remark 3.5.4. Note that in the set of functions in \mathbb{T}_{N}^{d} we have a "Dirac measure" concentrated in a point x as a function: the function that takes value N^{d} in x and zero elsewhere. Therefore, we may integrate these weak solutions with respect to this function to obtain that every weak solution is, in fact, a strong solution.

3.5.1 Connections between the discrete and continuous Sobolev spaces

Given a function $f \in H_{1, W}\left(\mathbb{T}^{d}\right)$, we can define its restriction f_{N} to the lattice $N^{-1} \mathbb{T}_{N}^{d}$ as

$$
f_{N}(x)=f(x) \text { if } x \in N^{-1} \mathbb{T}_{N}^{d}
$$

However, given a function $f: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ it is not straightforward how to define an extension belonging to $H_{1, W}\left(\mathbb{T}^{d}\right)$. To do so, we need the definition of W-interpolation, which we give below.

Let $f_{N}: N^{-1} \mathbb{T}_{N} \rightarrow \mathbb{R}$ and $W: \mathbb{R} \rightarrow \mathbb{R}$, a strictly increasing right continuous function with left limits (càdlàg), and periodic. The W-interpolation f_{N}^{*} of f_{N} is given by:

$$
\begin{aligned}
f_{N}^{*}(x+t) & :=\frac{W((x+1) / N)-W((x+t) / N)}{W((x+1) / N)-W(x / N)} f(x)+ \\
& +\frac{W((x+t) / N)-W(x / N)}{W((x+1) / N)-W(x / N)} f(x+1)
\end{aligned}
$$

for $0 \leq t<1$. Note that

$$
\frac{\partial f_{N}^{*}}{\partial W}(x+t)=\frac{f(x+1)-f(x)}{W((x+1) / N)-W(x / N)}=\partial_{W}^{N} f(x)
$$

Using the standard construction of d-dimensional linear interpolation, it is possible to define the W-interpolation of a function $f_{N}: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$, with $W(x)=\sum_{i=1}^{d} W_{i}\left(x_{i}\right)$ as defined in (3.2.1).

We now establish the connection between the discrete and continuous Sobolev spaces by showing how a sequence of functions defined in \mathbb{T}_{N}^{d} can converge to a function in $H_{1, W}\left(\mathbb{T}^{d}\right)$.

We say that a family $f_{N} \in L^{2}\left(\mathbb{T}_{N}^{d}\right)$ converges strongly (resp. weakly) to the function $f \in L^{2}\left(\mathbb{T}^{d}\right)$ as $N \rightarrow \infty$ if f_{N}^{*} converges strongly (resp. weakly) to the function f. From now on we will omit the symbol "* " in the W-interpolated function, and denoting them simply by f_{N}.

The convergence in $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ can be defined in terms of duality. Namely, we say that a functional f_{N} on \mathbb{T}_{N}^{d} converges to $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ strongly (resp. weakly) if for any sequence of functions $u_{N}: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ and $u \in H_{1, W}\left(\mathbb{T}^{d}\right)$ such that $u_{N} \rightarrow u$ weakly (resp. strongly) in $H_{1, W}\left(\mathbb{T}^{d}\right)$, we have

$$
\left(f_{N}, u_{N}\right)_{N} \longrightarrow(f, u), \quad \text { as } N \rightarrow \infty .
$$

Remark 3.5.5. Suppose in Lemma 3.5.3 that $f \in L^{2}\left(\mathbb{T}^{d}\right)$, and let u be a weak solution of the problem (3.5.4), then we have the following bound

$$
\|u\|_{H_{1, W}\left(\mathbb{T}_{N}^{d}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)},
$$

since $\|f\|_{L^{2}\left(\mathbb{T}_{N}^{d}\right)} \rightarrow\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}$ as $N \rightarrow \infty$.

3.6 Homogenization

In this "brief" Section we prove a homogenization result for the W-generalized differential operator. We follow the approach considered in [14]. The study of homogenization is motivated by several applications in mechanics, physics, chemistry and engineering. The focus of our approach is to study the asymptotic behavior of effective coefficients for a family of random difference schemes whose coefficients can be obtained by the discretization of random high-contrast lattice structures.

This Section is structured as follows: in subsection 6.1 we define the concept of H-convergence together with some properties; subsection 6.2 deals with a description of the random environment along with some definitions, whereas the main result is proved in subsection 6.3.

3.6.1 H-convergence

We say that the diagonal matrix $A^{N}=\left(a_{j j}^{N}\right) H$-converges to the diagonal matrix $A=\left(a_{j j}\right)$, denoted by $A^{N} \xrightarrow{H} A$, if, for every sequence $f^{N} \in H_{W}^{-1}\left(\mathbb{T}_{N}^{d}\right)$ such that $f^{N} \rightarrow f$ as $N \rightarrow \infty$ in $H_{W}^{-1}\left(\mathbb{T}^{d}\right)$, we have

- $u_{N} \rightarrow u_{0}$ weakly in $H_{1, W}\left(\mathbb{T}^{d}\right)$ as $N \rightarrow \infty$,
- $a_{j j}^{N} \partial_{W_{j}}^{N} u_{N} \rightarrow a_{j j} \partial_{W_{j}} u_{0}$ weakly in $L_{x^{j} \otimes W_{j}}^{2}\left(\mathbb{T}^{d}\right)$ for each $j=1, \ldots, d$,
where $u_{N}: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ is the solution of the problem

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f_{N},
$$

and $u_{0} \in H_{1, W}\left(\mathbb{T}^{d}\right)$ is the solution of the problem

$$
\lambda u_{0}-\nabla A \nabla_{W} u_{0}=f
$$

The notion of convergence used in both items above was defined in subsection 3.5.1.
We now obtain a property regarding H-convergence.

Proposition 3.6.1. Let $A^{N} \xrightarrow{H} A$, as $N \rightarrow \infty$, with u_{N} being the solution of

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f,
$$

where $f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ is fixed. Then, the following limit relations hold true:

$$
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N}^{2}(x) \rightarrow \int_{\mathbb{T}^{d}} u_{0}^{2}(x) d x
$$

and

$$
\begin{aligned}
\frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} a_{j j}^{N}(x)\left(\partial_{W_{j}}^{N} u_{N}(x)\right)^{2} & {\left[W_{j}\left(\left(x_{j}+1\right) / N\right)-W_{j}\left(x_{j} / N\right)\right] } \\
& \rightarrow \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j j}(x)\left(\partial_{W_{j}} u_{0}(x)\right)^{2} d\left(x^{j} \otimes W_{j}\right),
\end{aligned}
$$

as $N \rightarrow \infty$.
Proof. We begin by noting that

$$
\begin{equation*}
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} f\left(u_{N}-u_{0}\right) \rightarrow 0 \tag{3.6.1}
\end{equation*}
$$

as $N \rightarrow \infty$ since $u_{N}-u_{0}$ converges weakly to 0 in $H_{1, W}\left(\mathbb{T}^{d}\right)$. On the other hand, we have

$$
\begin{aligned}
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} f\left(u_{N}-u_{0}\right) & =\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left(\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}\right)\left(u_{N}-u_{0}\right) \\
& =\frac{\lambda}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N}^{2}-\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N} \nabla^{N} A^{N} \nabla_{W}^{N} u_{N} \\
& -\frac{\lambda}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N} u_{0}+\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{0} \nabla^{N} A^{N} \nabla_{W}^{N} u_{N} .
\end{aligned}
$$

Using the weak convergences of u_{N} and $a_{j j} \partial_{W_{j}}^{N} u_{N}$, and the convergence in (3.6.1), we obtain, after a summation by parts in the above expressions,

$$
\begin{align*}
\frac{\lambda}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N}^{2}+\frac{1}{N^{d-1}} \sum_{j=1}^{d} & \sum_{x \in \mathbb{T}_{N}^{d}} a_{j j}^{N}\left(\partial_{W_{j}}^{N} u_{N}\right)^{2}\left[W_{j}\left(\left(x_{j}+1\right) / N\right)-W_{j}\left(x_{j}\right)\right] \\
& \xrightarrow{N \rightarrow \infty} \lambda \int_{\mathbb{T}^{d}} u_{0}^{2} d x+\sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j j}\left(\partial_{W_{j}} u_{0}\right)^{2} d\left(x^{j} \otimes W_{j}\right) . \tag{3.6.2}
\end{align*}
$$

By Lemma 3.5.3, the sequence u_{N} is $\|\cdot\|_{1, W}$ bounded uniformly. Suppose, now, that u_{N} does not converge to u_{0} in $L^{2}\left(\mathbb{T}^{d}\right)$. That is, there exist $\epsilon>0$ and a subsequence ($u_{N_{k}}$) such that

$$
\left\|u_{N_{k}}-u_{0}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)}>\epsilon
$$

for all k. By Rellich-Kondrachov Theorem (Proposition 3.2.9), we have that there exists $v \in L^{2}\left(\mathbb{T}^{d}\right)$ and a further subsequence (also denoted by $u_{N_{k}}$) such that

$$
u_{N_{k}} \xrightarrow{k \rightarrow \infty} v, \quad \text { in } L^{2}\left(\mathbb{T}^{d}\right) .
$$

This implies that

$$
u_{N_{k}} \rightarrow v, \quad \text { weakly in } L^{2}\left(\mathbb{T}^{d}\right)
$$

but this is a contradiction, since

$$
u_{N_{k}} \rightarrow u_{0}, \quad \text { weakly in } L^{2}\left(\mathbb{T}^{d}\right)
$$

and $\left\|v-u_{0}\right\|_{L^{2}\left(\mathbb{T}^{d}\right)} \geq \epsilon$. Therefore, $u_{N} \rightarrow u_{0}$ in $L^{2}\left(\mathbb{T}^{d}\right)$. The proof thus follows from expression (3.6.2).
This Proposition shows that even though the H-convergence only requires weak convergence in its definition, it yields a convergence in the strong sense (convergence in the L^{2}-norm).

3.6.2 Random environment

In this subsection we introduce the statistically homogeneous rapidly oscillating coefficients that will be used to define the random W-generalized difference elliptic operators, where the W-generalized difference elliptic operator was given in Section 3.5.

Let $(\Omega, \mathcal{F}, \mu)$ be a standard probability space and $\left\{T_{x}: \Omega \rightarrow \Omega ; x \in \mathbb{Z}^{d}\right\}$ be a group of \mathcal{F}-measurable and ergodic transformations which preserve the measure μ :

- $T_{x}: \Omega \rightarrow \Omega$ is \mathcal{F}-measurable for all $x \in \mathbb{Z}^{d}$,
- $\mu\left(T_{x} \mathbf{A}\right)=\mu(\mathbf{A})$, for any $\mathbf{A} \in \mathcal{F}$ and $x \in \mathbb{Z}^{d}$,
- $T_{0}=I, T_{x} \circ T_{y}=T_{x+y}$,
- For any $f \in L^{1}(\Omega)$ such that $f\left(T_{x} \omega\right)=f(\omega) \mu$-a.s for each $x \in \mathbb{Z}^{d}$, is equal to a constant μ-a.s.

The last condition implies that the group T_{x} is ergodic.
Let us now introduce the vector-valued \mathcal{F}-measurable functions $\left\{a_{j}(\omega) ; j=1, \ldots, d\right\}$ such that there exists $\theta>0$ with

$$
\theta^{-1} \leq a_{j}(w) \leq \theta
$$

for all $\omega \in \Omega$ and $j=1, \ldots, d$. Then, define the diagonal matrices A^{N} whose elements are given by

$$
\begin{equation*}
a_{j j}^{N}(x):=a_{j}^{N}=a_{j}\left(T_{N x} \omega\right), \quad x \in T_{N}^{d}, \quad j=1, \ldots, d . \tag{3.6.3}
\end{equation*}
$$

3.6.3 Homogenization of random operators

Let $\lambda>0, f_{N}$ be a functional on the space of functions $h_{N}: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}, f \in H_{W}^{-1}\left(\mathbb{T}^{d}\right)$ (see also, subsection $3.2 .5), u_{N}$ be the unique weak solution of

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f_{N},
$$

and u_{0} be the unique weak solution of

$$
\begin{equation*}
\lambda u_{0}-\nabla A \nabla_{W} u_{0}=f \tag{3.6.4}
\end{equation*}
$$

For more details on existence and uniqueness of such solutions see Sections 3.3 and 3.5.
We say that the diagonal matrix A is a homogenization of the sequence of random matrices A^{N} if the following conditions hold:

- For each sequence $f_{N} \rightarrow f$ in $H_{W}^{-1}\left(\mathbb{T}^{d}\right), u_{N}$ converges weakly in $H_{1, W}$ to u_{0}, when $N \rightarrow \infty$;
- $a_{i}^{N} \partial_{W_{i}}^{N} u^{N} \rightarrow a_{i} \partial_{W_{i}} u$, weakly in $L_{x^{i} \otimes W_{i}}^{2}\left(\mathbb{T}^{d}\right)$ when $N \rightarrow \infty$.

Note that homogenization is a particular case of H-convergence.
We will now state and prove the main result of this Section.
Theorem 3.6.2. Let A^{N} be a sequence of ergodic random matrices, such as the one that defines our random environment. Then, almost surely, $A^{N}(\omega)$ admits a homogenization, where the homogenized matrix A does not depend on the realization ω.

Proof. Fix $f \in H^{-1}\left(\mathbb{T}^{d}\right)$, and consider the problem

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f .
$$

Using Lemma 3.5.3 and Remark 3.5.5, there exists a unique weak solution u_{N} of the problem above, such that its $H_{1, W}^{N}$ norm is uniformly bounded in N. That is, there exists a constant $C>0$ such that

$$
\left\|u_{N}\right\|_{H_{1, W}\left(\mathbb{T}_{N}^{d}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{d}\right)}
$$

Thus, the $L^{2}\left(\mathbb{T}_{N}^{d}\right)$-norm of $a_{i}^{N} \partial_{W_{i}}^{N} u_{N}$ is uniformly bounded.

From W-interpolation (see subsection 3.5.1) and the fact that $H_{1, W}\left(\mathbb{T}^{d}\right)$ is a Hilbert space (Lemma 3.2.4), there exists a convergent subsequence of u_{N} (which we will also denote by u_{N}) such that

$$
u_{N} \rightarrow u_{0}, \quad \text { weakly in } \quad H_{1, W}\left(\mathbb{T}^{d}\right)
$$

and

$$
\begin{equation*}
a_{i}^{N} \partial_{W_{i}}^{N} u_{N} \rightarrow v_{0} \quad \text { weakly in } \quad L^{2}\left(\mathbb{T}^{d}\right) \tag{3.6.5}
\end{equation*}
$$

as $N \rightarrow \infty ; v_{0}$ being some function in $L_{x^{i} \otimes W_{i}}^{2}\left(\mathbb{T}^{d}\right)$.
First, observe that the weak convergence in $H_{1, W}\left(\mathbb{T}^{d}\right)$ implies that

$$
\begin{equation*}
\partial_{W_{i}}^{N} u_{N} \xrightarrow{N \rightarrow \infty} \partial_{W_{i}} u \quad \text { weakly in } \quad L_{x^{i} \otimes W_{i}}^{2}\left(\mathbb{T}^{d}\right) . \tag{3.6.6}
\end{equation*}
$$

From Birkhoff's ergodic theorem, we obtain the almost sure convergence, as N tends to infinity, of the random coefficients:

$$
\begin{equation*}
a_{i}^{N} \longrightarrow a_{i}, \tag{3.6.7}
\end{equation*}
$$

where $a_{i}=E\left[a_{i}^{N_{0}}\right]$, for any $N_{0} \in \mathbb{N}$.
From convergences in (3.6.5), (3.6.6) and (3.6.7), we obtain that

$$
v_{0}=a_{i} \partial_{W_{i}} u_{0}
$$

where, from the weak convergences, u_{0} clearly solves problem (3.6.4).
To conclude the proof it remains to be shown that we can pass from the subsequence to the sequence. This follows from uniquenesses of weak solutions of the problem (3.6.4).
Remark 3.6.3. At first sight, one may think that we are dealing with a very special class of matrices A (diagonal matrices). Nevertheless, the random environment for random walks proposed in [14, Section 2.3], which is also exactly the same random environment employed in [7], results in diagonal matrices. This is essentially due to the fact that in symmetric nearest-neighbor interacting particle systems (for example, the zero-range dynamics considered in [7]), a particle at a site $x \in \mathbb{T}_{N}^{d}$ may jump to the sites $x \pm e_{j}, j=1, \ldots, d$. In such a case, the jump rate from x to $x+e_{j}$ determines the j th element of the diagonal matrix.

Remark 3.6.4. Note that if $u \in \mathbb{D}_{W}$ is a strong solution (or weak, in view of Remark 3.5.4) of

$$
\lambda u-\nabla A \nabla_{W} u=f
$$

and u_{N} is strong solution of the discrete problem

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f
$$

then, the homogenization theorem also holds, that is, u_{N} also converges weakly in $H_{1, W}$ to u.

3.7 Hydrodynamic limit of gradient processes with conductances in random environment

Lastly, as an application of all the theory developed in the previous sections, we prove a hydrodynamic limit for gradient processes with conductances in random environments. Hydrodynamic limits for gradient processes with conductances have been obtained in [6] for the one-dimensional setup and in [16] for the d-dimensional setup. However, the proof given here is much simpler and more natural, in view of the theory developed here, than the proofs given in $[6,17]$. Furthermore, the proof of this hydrodynamic limit also provides an existence theorem for the W-generalized parabolic equations in (3.4.1).

The hydrodynamic limit allows one to deduce the macroscopic behavior of the system from the microscopic interaction among particles. Moreover, this approach justifies rigorously a method often used by physicists to establish the partial differential equations that describe the evolution of the thermodynamic characteristics of a fluid.

This Section is structured as follows: in subsection 7.1 we present the model, derive some properties and fix the notations; subsection 7.2 deals with the hydrodynamic equation; finally, subsections 7.3 and 7.4 are devoted to the proof of the hydrodynamic limit.

3.7.1 The exclusion processes with conductances in random environments

Fix a typical realization $\omega \in \Omega$ of the random environment defined in Section 3.6. For each $x \in \mathbb{T}_{N}^{d}$ and $j=1, \ldots, d$, define the symmetric rate $\xi_{x, x+e_{j}}=\xi_{x+e_{j}, x}$ by

$$
\begin{equation*}
\xi_{x, x+e_{j}}=\frac{a_{j}^{N}(x)}{N\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]}=\frac{a_{j}^{N}(x)}{N\left[W_{j}\left(\left(x_{j}+1\right) / N\right)-W_{j}\left(x_{j} / N\right)\right]} \tag{3.7.1}
\end{equation*}
$$

where $a_{j}^{N}(x)$ is given by (3.6.3), and e_{1}, \ldots, e_{d} is the canonical basis of \mathbb{R}^{d}. Also, let $b>-1 / 2$ and

$$
c_{x, x+e_{j}}(\eta)=1+b\left\{\eta\left(x-e_{j}\right)+\eta\left(x+2 e_{j}\right)\right\}
$$

where all sums are modulo N.
Distribute particles on \mathbb{T}_{N}^{d} in such a way that each site of \mathbb{T}_{N}^{d} is occupied at most by one particle. Denote by η the configurations of the state space $\{0,1\}^{\mathbb{T}_{N}^{d}}$ so that $\eta(x)=0$ if site x is vacant, and $\eta(x)=1$ if site x is occupied.

The exclusion process with conductances in a random environment is a continuous-time Markov process $\left\{\eta_{t}: t \geq 0\right\}$ with state space $\{0,1\}^{\mathbb{T}_{N}^{d}}=\left\{\eta: \mathbb{T}_{N}^{d} \rightarrow\{0,1\}\right\}$, whose generator L_{N} acts on functions $f:\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\left(L_{N} f\right)(\eta)=\sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} \xi_{x, x+e_{j}} c_{x, x+e_{j}}(\eta)\left\{f\left(\sigma^{x, x+e_{j}} \eta\right)-f(\eta)\right\} \tag{3.7.2}
\end{equation*}
$$

where $\sigma^{x, x+e_{j}} \eta$ is the configuration obtained from η by exchanging the variables $\eta(x)$ and $\eta\left(x+e_{j}\right)$:

$$
\left(\sigma^{x, x+e_{j}} \eta\right)(y)= \begin{cases}\eta\left(x+e_{j}\right) & \text { if } y=x \tag{3.7.3}\\ \eta(x) & \text { if } y=x+e_{j} \\ \eta(y) & \text { otherwise }\end{cases}
$$

We consider the Markov process $\left\{\eta_{t}: t \geq 0\right\}$ on the configurations $\{0,1\}^{\mathbb{T}_{N}^{d}}$ associated to the generator L_{N} in the diffusive scale, i.e., L_{N} is speeded up by N^{2}.

We now describe the stochastic evolution of the process. After a time given by an exponential distribution, a random choice of a point $x \in \mathbb{T}_{N}^{d}$ is made. At rate $\xi_{x, x+e_{j}}$ the occupation variables $\eta(x)$, $\eta\left(x+e_{j}\right)$ are exchanged. Note that only nearest neighbor jumps are allowed. The conductances are given by the function W, whereas the random environment is given by the matrix $A^{N}:=\left(a_{j j}^{N}(x)\right)_{d \times d}$. The discontinuity points of W may, for instance, model a membrane which obstructs the passage of particles in a fluid. For more details see [16].

The effect of the factor $c_{x, x+e_{j}}(\eta)$ is the following: if the parameter b is positive, the presence of particles in the neighboring sites of the bond $\left\{x, x+e_{j}\right\}$ speeds up the exchange rate by a factor of order one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the exchange rate also by a factor of order one. More details are given in Remark 3.7.1 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the Bernoulli product measures $\left\{\nu_{\alpha}^{N}: 0 \leq \alpha \leq 1\right\}$ are invariant, in fact reversible, for the dynamics. The measure ν_{α}^{N} is obtained by placing a particle at each site, independently from the other sites, with probability α. Thus, ν_{α}^{N} is a product measure over $\{0,1\}^{\mathbb{T}_{N}^{d}}$ with marginals given by

$$
\nu_{\alpha}^{N}\{\eta: \eta(x)=1\}=\alpha
$$

for x in \mathbb{T}_{N}^{d}. For more details see [8, chapter 2].
Consider the random walk $\left\{X_{t}\right\}_{t \geq 0}$ of a particle in \mathbb{T}_{N}^{d} induced by the generator L_{N} given as follows. Let $\xi_{x, x+e_{j}}$ given by (3.7.1). If the particle is on a site $x \in \mathbb{T}_{N}^{d}$, it will jump to $x+e_{j}$ with rate $N^{2} \xi_{x, x+e_{j}}$. Furthermore, only nearest neighbor jumps are allowed. The generator \mathbb{L}_{N} of the random walk $\left\{X_{t}\right\}_{t \geq 0}$ acts on functions $f: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ as

$$
\mathbb{L}_{N} f\left(\frac{x}{N}\right)=\sum_{j=1}^{d} \mathbb{L}_{N}^{j} f\left(\frac{x}{N}\right)
$$

where,

$$
\mathbb{L}_{N}^{j} f\left(\frac{x}{N}\right)=N^{2}\left\{\xi_{x, x+e_{j}}\left[f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]+\xi_{x-e_{j}, x}\left[f\left(\frac{x-e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]\right\}
$$

It is not difficult to see that the following equality holds:

$$
\begin{equation*}
\mathbb{L}_{N} f(x / N)=\sum_{j=1}^{d} \partial_{x_{j}}^{N}\left(a_{j}^{N} \partial_{W_{j}}^{N} f\right)(x):=\nabla^{N} A^{N} \nabla_{W}^{N} f(x) \tag{3.7.4}
\end{equation*}
$$

Note that several properties of the above operator have been obtained in Section 3.5. The counting measure m_{N} on $N^{-1} \mathbb{T}_{N}^{d}$ is reversible for this process. This random walk plays an important role in the proof of the hydrodynamic limit of the process η_{t}, as we will see in subsection 7.3.

Let $D\left(\mathbb{R}_{+},\{0,1\}^{\mathbb{T}_{N}^{d}}\right)$ be the path space of càdlàg trajectories with values in $\{0,1\}^{\mathbb{T}_{N}^{d}}$. For a measure μ_{N} on $\{0,1\}^{\mathbb{T}_{N}^{d}}$, denote by $\mathbb{P}_{\mu_{N}}$ the probability measure on $D\left(\mathbb{R}_{+},\{0,1\}^{\mathbb{T}_{N}^{d}}\right)$ induced by the initial state μ_{N} and the Markov process $\left\{\eta_{t}: t \geq 0\right\}$. Expectation with respect to $\mathbb{P}_{\mu_{N}}$ is denoted by $\mathbb{E}_{\mu_{N}}$.
Remark 3.7.1. The specific form of the rates $c_{x, x+e_{i}}$ is not important, but two conditions must be fulfilled. The rates must be strictly positive, they may not depend on the occupation variables $\eta(x)$, $\eta\left(x+e_{i}\right)$, but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter 7 in [8] for the definition of gradient processes).

We may define rates $c_{x, x+e_{i}}$ to obtain any polynomial Φ of the form $\Phi(\alpha)=\alpha+\sum_{2 \leq j \leq m} a_{j} \alpha^{j}$, $m \geq 1$, with $1+\sum_{2 \leq j \leq m} j a_{j}>0$. Let, for instance, $m=3$. Then the rates

$$
\begin{aligned}
\hat{c}_{x, x+e_{i}}(\eta) & =c_{x, x+e_{i}}(\eta)+ \\
& b\left\{\eta\left(x-2 e_{i}\right) \eta\left(x-e_{i}\right)+\eta\left(x-e_{i}\right) \eta\left(x+2 e_{i}\right)+\eta\left(x+2 e_{i}\right) \eta\left(x+3 e_{i}\right)\right\}
\end{aligned}
$$

satisfy the above three conditions, where $c_{x, x+e_{i}}$ is the rate defined at the beginning of Section 2 and a, b are such that $1+2 a+3 b>0$. An elementary computation shows that $\Phi(\alpha)=1+a \alpha^{2}+b \alpha^{3}$.

3.7.2 The hydrodynamic equation

The hydrodynamic equation is, roughly, a PDE that describes the time evolution of the thermodynamical quantities of the model in a fluid.

Let $A=\left(a_{j j}\right)_{d \times d}$ be a diagonal matrix with $a_{j j}>0, j=1, \ldots, d$, and consider the operator

$$
\nabla A \nabla_{W}:=\sum_{j=1}^{d} a_{j j} \partial_{x_{j}} \partial_{W_{j}}
$$

defined on \mathbb{D}_{W}.
A sequence of probability measures $\left\{\mu_{N}: N \geq 1\right\}$ on $\{0,1\}^{\mathbb{T}_{N}^{d}}$ is said to be associated to a profile $\rho_{0}: \mathbb{T}^{d} \rightarrow[0,1]$ if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mu_{N}\left\{\left|\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} H(x / N) \eta(x)-\int H(u) \rho_{0}(u) d u\right|>\delta\right\}=0 \tag{3.7.5}
\end{equation*}
$$

for every $\delta>0$ and every function $H \in \mathbb{D}_{W}$.
Let $\gamma: \mathbb{T}^{d} \rightarrow[l, r]$ be a bounded density profile and consider the parabolic differential equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho=\nabla A \nabla_{W} \Phi(\rho) \tag{3.7.6}\\
\rho(0, \cdot)=\gamma(\cdot)
\end{array}\right.
$$

where the function $\Phi:[l, r] \rightarrow \mathbb{R}$ is given as in the beginning of Section 3.4, and $t \in[0, T]$, for $T>0$ fixed.

Recall, from Section 3.4, that a bounded function $\rho:[0, T] \times \mathbb{T}^{d} \rightarrow[l, r]$ is said to be a weak solution of the parabolic differential equation (3.7.6) if the following conditions hold. $\Phi(\rho(\cdot, \cdot))$ and $\rho(\cdot, \cdot)$ belong to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$, and we have the integral identity

$$
\int_{\mathbb{T}^{d}} \rho(t, u) H(u) d u-\int_{\mathbb{T}^{d}} \rho(0, u) H(u) d u=\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi(\rho(s, u)) \nabla A \nabla_{W} H(u) d u d s
$$

for every function $H \in \mathbb{D}_{W}$ and all $t \in[0, T]$.
Existence of such weak solutions follow from the tightness of the process proved in subsection 7.3, and from the energy estimate obtained in Lemma 3.7.5. Uniquenesses of weak solutions was proved in subsection 3.4.1.

Theorem 3.7.2. Fix a continuous initial profile $\rho_{0}: \mathbb{T}^{d} \rightarrow[0,1]$ and consider a sequence of probability measures μ_{N} on $\{0,1\}^{T_{N}^{d}}$ associated to ρ_{0}, in the sense of (3.7.5). Then, for any $t \geq 0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left\{\left|\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} H(x / N) \eta_{t}(x)-\int H(u) \rho(t, u) d u\right|>\delta\right\}=0
$$

for every $\delta>0$ and every function $H \in \mathbb{D}_{W}$. Here, ρ is the unique weak solution of the non-linear equation (3.7.6) with $l=0, r=1, \gamma=\rho_{0}$ and $\Phi(\alpha)=\alpha+a \alpha^{2}$.

Let \mathcal{M} be the space of positive measures on \mathbb{T}^{d} with total mass bounded by one endowed with the weak topology. Recall that $\pi_{t}^{N} \in \mathcal{M}$ stands for the empirical measure at time t. This is the measure on \mathbb{T}^{d} obtained by rescaling space by N and by assigning mass $1 / N^{d}$ to each particle:

$$
\begin{equation*}
\pi_{t}^{N}=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} \eta_{t}(x) \delta_{x / N} \tag{3.7.7}
\end{equation*}
$$

where δ_{u} is the Dirac measure concentrated on u.
For a function $H: \mathbb{T}^{d} \rightarrow \mathbb{R},\left\langle\pi_{t}^{N}, H\right\rangle$ stands for the integral of H with respect to π_{t}^{N} :

$$
\left\langle\pi_{t}^{N}, H\right\rangle=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} H(x / N) \eta_{t}(x) .
$$

This notation is not to be mistaken with the inner product in $L^{2}\left(\mathbb{T}^{d}\right)$ introduced earlier. Also, when π_{t} has a density $\rho, \pi(t, d u)=\rho(t, u) d u$.

Fix $T>0$ and let $D([0, T], \mathcal{M})$ be the space of \mathcal{M}-valued càdlàg trajectories $\pi:[0, T] \rightarrow \mathcal{M}$ endowed with the uniform topology. For each probability measure μ_{N} on $\{0,1\}^{T_{N}^{d}}$, denote by $\mathbb{Q}_{\mu_{N}}^{W, N}$ the measure on the path space $D([0, T], \mathcal{M})$ induced by the measure μ_{N} and the process π_{t}^{N} introduced in (3.7.7).

Fix a continuous profile $\rho_{0}: \mathbb{T}^{d} \rightarrow[0,1]$ and consider a sequence $\left\{\mu_{N}: N \geq 1\right\}$ of measures on $\{0,1\}^{\mathbb{T}_{N}^{d}}$ associated to ρ_{0} in the sense (3.7.5). Further, we denote by \mathbb{Q}_{W} the probability measure on $D([0, T], \mathcal{M})$ concentrated on the deterministic path $\pi(t, d u)=\rho(t, u) d u$, where ρ is the unique weak solution of (3.7.6) with $\gamma=\rho_{0}, l_{k}=0, r_{k}=1, k=1, \ldots, d$ and $\Phi(\alpha)=\alpha+b \alpha^{2}$.

In subsection 3.7.3 we show that the sequence $\left\{\mathbb{Q}_{\mu_{N}}^{W, N}: N \geq 1\right\}$ is tight, and in subsection 3.7.4 we characterize the limit points of this sequence.

3.7.3 Tightness

The goal of this subsection is to prove tightness of sequence $\left\{\mathbb{Q}_{\mu_{N}}^{W, N}: N \geq 1\right\}$. We will do it by showing that the set of equicontinuous paths of the empirical measures (3.7.7) has probability close to one.

Fix $\lambda>0$ and consider, initially, the auxiliary \mathcal{M}-valued Markov process $\left\{\Pi_{t}^{\lambda, N}: t \geq 0\right\}$ defined by

$$
\Pi_{t}^{\lambda, N}(H)=\left\langle\pi_{t}^{N}, H_{\lambda}^{N}\right\rangle=\frac{1}{N^{d}} \sum_{x \in \mathbb{Z}^{d}} H_{\lambda}^{N}(x / N) \eta_{t}(x)
$$

for H in \mathbb{D}_{W}, where H_{λ}^{N} is the unique weak solution in $H_{1, W}\left(\mathbb{T}_{N}^{d}\right)$ (see Section 3.5) of

$$
\lambda H_{\lambda}^{N}-\nabla^{N} A^{N} \nabla_{W}^{N} H_{\lambda}^{N}=\lambda H-\nabla A \nabla_{W} H
$$

with the right-hand side being understood as the restriction of the function to the lattice \mathbb{T}_{N}^{d} (see subsection 3.5.1).

We first prove tightness of the process $\left\{\Pi_{t}^{\lambda, N}: 0 \leq t \leq T\right\}$, then we show that $\left\{\Pi_{t}^{\lambda, N}: 0 \leq t \leq T\right\}$ and $\left\{\pi_{t}^{N}: 0 \leq t \leq T\right\}$ are not far apart.

It is well known [8] that to prove tightness of $\left\{\Pi_{t}^{\lambda, N}: 0 \leq t \leq T\right\}$ it is enough to show tightness of the real-valued processes $\left\{\Pi_{t}^{\lambda, N}(H): 0 \leq t \leq T\right\}$ for a set of smooth functions $H: \mathbb{T}^{d} \rightarrow \mathbb{R}$ dense in $C\left(\mathbb{T}^{d}\right)$ for the uniform topology.

Fix a smooth function $H: \mathbb{T}^{d} \rightarrow \mathbb{R}$. Keep in mind that $\Pi_{t}^{\lambda, N}(H)=\left\langle\pi_{t}^{N}, H_{\lambda}^{N}\right\rangle$, and denote by $M_{t}^{N, \lambda}$ the martingale defined by

$$
\begin{equation*}
M_{t}^{N, \lambda}=\Pi_{t}^{\lambda, N}(H)-\Pi_{0}^{\lambda, N}(H)-\int_{0}^{t} d s N^{2} L_{N}\left\langle\pi_{s}^{N}, H_{\lambda}^{N}\right\rangle \tag{3.7.8}
\end{equation*}
$$

Clearly, tightness of $\Pi_{t}^{\lambda, N}(H)$ follows from tightness of the martingale $M_{t}^{N, \lambda}$ and tightness of the additive functional $\int_{0}^{t} d s N^{2} L_{N}\left\langle\pi_{s}^{N}, H_{\lambda}^{N}\right\rangle$.

A long computation, albeit simple, shows that the quadratic variation $\left\langle M^{N, \lambda}\right\rangle_{t}$ of the martingale $M_{t}^{N, \lambda}$ is given by:

$$
\begin{aligned}
\frac{1}{N^{2 d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}}\left[\partial_{W, j}^{N} H_{\lambda}^{N}(x / N)\right]^{2} & {\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right] \times } \\
& \times \int_{0}^{t} c_{x, x+e_{j}}\left(\eta_{s}\right)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2} d s .
\end{aligned}
$$

In particular, by Lemma 3.5.3,

$$
\left\langle M^{N, \lambda}\right\rangle_{t} \leq \frac{C_{0} t}{N^{2 d-1}} \sum_{j=1}^{d}\left\|H_{\lambda}^{N}\right\|_{W_{j}, N}^{2} \leq \frac{C(H) t}{\lambda N^{d}}
$$

for some finite constant $C(H)$, which depends only on H. Thus, by Doob inequality, for every $\lambda>0$, $\delta>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left[\sup _{0 \leq t \leq T}\left|M_{t}^{N, \lambda}\right|>\delta\right]=0 \tag{3.7.9}
\end{equation*}
$$

In particular, the sequence of martingales $\left\{M_{t}^{N, \lambda}: N \geq 1\right\}$ is tight for the uniform topology.
It remains to be examined the additive functional of the decomposition (3.7.8). The generator of the exclusion process L_{N} can be decomposed in terms of the generator of the random walk \mathbb{L}_{N}. By a long but simple computation, we obtain that $N^{2} L_{N}\left\langle\pi^{N}, H_{\lambda}^{N}\right\rangle$ is equal to

$$
\begin{aligned}
\sum_{j=1}^{d}\{ & \frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left(\mathbb{L}_{N}^{j} H_{\lambda}^{N}\right)(x / N) \eta(x) \\
+ & \frac{b}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\left(\mathbb{L}_{N}^{j} H_{\lambda}^{N}\right)\left(\left(x+e_{j}\right) / N\right)+\left(\mathbb{L}_{N}^{j} H_{\lambda}^{N}\right)(x / N)\right]\left(\tau_{x} h_{1, j}\right)(\eta) \\
& \left.-\frac{b}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left(\mathbb{L}_{N}^{j} H_{\lambda}^{N}\right)(x / N)\left(\tau_{x} h_{2, j}\right)(\eta)\right\},
\end{aligned}
$$

where $\left\{\tau_{x}: x \in \mathbb{Z}^{d}\right\}$ is the group of translations, so that $\left(\tau_{x} \eta\right)(y)=\eta(x+y)$ for x, y in \mathbb{Z}^{d}, and the sum is understood modulo N. Also, $h_{1, j}, h_{2, j}$ are the cylinder functions

$$
h_{1, j}(\eta)=\eta(0) \eta\left(e_{j}\right), \quad h_{2, j}(\eta)=\eta\left(-e_{j}\right) \eta\left(e_{j}\right) .
$$

Since H_{λ}^{N} is the weak solution of the discrete equation, we have by Remark 3.5.4 that it is also a strong solution. Then, we may replace $\mathbb{L}_{N} H_{\lambda}^{N}$ by $U_{\lambda}^{N}=\lambda H_{\lambda}^{N}-H$ in the previous formula. In particular, for all $0 \leq s<t \leq T$,

$$
\left|\int_{s}^{t} d r N^{2} L_{N}\left\langle\pi_{r}^{N}, H_{\lambda}^{N}\right\rangle\right| \leq \frac{(1+3|b|)(t-s)}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left|U_{\lambda}^{N}(x / N)\right| .
$$

It follows from the estimate given in Lemma 3.5.3, and from Schwartz inequality, that the right hand side of the previous expression is bounded above by $C(H, b)(t-s)$ uniformly in N, where $C(H, b)$ is a finite constant depending only on b and H. This proves that the additive part of the decomposition (3.7.8) is tight for the uniform topology and, therefore, that the sequence of processes $\left\{\Pi_{t}^{\lambda, N}: N \geq 1\right\}$ is tight.

Lemma 3.7.3. The sequence of measures $\left\{\mathbb{Q}_{\mu^{N}}^{W, N}: N \geq 1\right\}$ is tight for the uniform topology.
Proof. Fix $\lambda>0$. It is enough to show that for every function $H \in \mathbb{D}_{W}$ and every $\epsilon>0$, we have

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu^{N}}\left[\sup _{0 \leq t \leq T}\left|\Pi_{t}^{\lambda, N}(H)-\left\langle\pi_{t}^{N}, H\right\rangle\right|>\epsilon\right]=0
$$

whence tightness of π_{t}^{N} follows from tightness of $\Pi_{t}^{\lambda, N}$. By Chebyshev's inequality, the last expression is bounded above by

$$
\mathbb{E}_{\mu_{N}}\left[\sup _{0 \leq t \leq T}\left|\Pi_{t}^{\lambda, N}(H)-\left\langle\pi_{t}^{N}, H\right\rangle\right|^{2}\right] \leq 2\left\|H_{\lambda}^{N}-H\right\|_{N}^{2}
$$

since there exists at most one particle per site. By Theorem 3.6.2 and Proposition 3.6.1, $\left\|H_{\lambda}^{N}-H\right\|_{N}^{2} \rightarrow 0$ as $N \rightarrow \infty$, and the proof follows.

3.7.4 Uniqueness of limit points

We prove in this subsection that all limit points \mathbb{Q}^{*} of the sequence $\mathbb{Q}_{\mu_{N}}^{W, N}$ are concentrated on absolutely continuous trajectories $\pi(t, d u)=\rho(t, u) d u$, whose density $\rho(t, u)$ is a weak solution of the hydrodynamic equation (3.7.6) with $l=0, r=1$ and $\Phi(\alpha)=\alpha+a \alpha^{2}$.

We now state a result necessary to prove the uniqueness of limit points. Let, for a local function $g:\{0,1\}^{\mathbb{Z}^{d}} \rightarrow \mathbb{R}, \tilde{g}:[0,1] \rightarrow \mathbb{R}$ be the expected value of g under the stationary states:

$$
\tilde{g}(\alpha)=E_{\nu_{\alpha}}[g(\eta)]
$$

For $\ell \geq 1$ and d-dimensional integer $x=\left(x_{1}, \ldots, x_{d}\right)$, denote by $\eta^{\ell}(x)$ the empirical density of particles in the box $\mathbb{B}_{+}^{\ell}(x)=\left\{\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{Z}^{d} ; 0 \leq y_{i}-x_{i}<\ell\right\}$:

$$
\eta^{\ell}(x)=\frac{1}{\ell^{d}} \sum_{y \in \mathbb{B}_{+}^{\ell}(x)} \eta(y)
$$

Proposition 3.7.4 (Replacement lemma). Fix a cylinder function g and a sequence of functions $\left\{F_{N}\right.$: $N \geq 1\}, F_{N}: N^{-1} \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ such that

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} F_{N}(x / N)^{2}<\infty
$$

Then, for any $t>0$ and any sequence of probability measures $\left\{\mu_{N}: N \geq 1\right\}$ on $\{0,1\}^{\mathbb{T}_{N}^{d}}$,

$$
\varlimsup_{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \mathbb{E}_{\mu_{N}}\left[\left|\int_{0}^{t} \frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} F_{N}(x / N)\left\{\tau_{x} g\left(\eta_{s}\right)-\tilde{g}\left(\eta_{s}^{\varepsilon N}(x)\right) d_{s}\right\}\right|\right]=0
$$

The proof can be found in [16, subsection 5.3].
Let \mathbb{Q}^{*} be a limit point of the sequence $\mathbb{Q}_{\mu_{N}}^{W, N}$ and assume, without loss of generality, that $\mathbb{Q}_{\mu_{N}}^{W, N}$ converges to \mathbb{Q}^{*}.

Since there is at most one particle per site, it is clear that \mathbb{Q}^{*} is concentrated on trajectories $\pi_{t}(d u)$ which are absolutely continuous with respect to the Lebesgue measure, $\pi_{t}(d u)=\rho(t, u) d u$, and whose density ρ is non-negative and bounded by 1 .

Fix a function $H \in \mathbb{D}_{W}$ and $\lambda>0$. Recall the definition of the martingale $M_{t}^{N, \lambda}$ introduced in the previous section. From (3.7.9) we have, for every $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left[\sup _{0 \leq t \leq T}\left|M_{t}^{N, \lambda}\right|>\delta\right]=0
$$

and from (3.7.8), for fixed $0<t \leq T$ and $\delta>0$, we have

$$
\lim _{N \rightarrow \infty} \mathbb{Q}_{\mu_{N}}^{W, N}\left[\left|\left\langle\pi_{t}^{N}, H_{\lambda}^{N}\right\rangle-\left\langle\pi_{0}^{N}, H_{\lambda}^{N}\right\rangle-\int_{0}^{t} d s N^{2} L_{N}\left\langle\pi_{s}^{N}, H_{\lambda}^{N}\right\rangle\right|>\delta\right]=0
$$

Note that the expression $N^{2} L_{N}\left\langle\pi_{s}^{N}, H_{\lambda}^{N}\right\rangle$ has been computed in the previous subsection in terms of generator \mathbb{L}_{N}. On the other hand, $\mathbb{L}_{N} H_{\lambda}^{N}=\lambda H_{\lambda}^{N}-\lambda H+\nabla A \nabla_{W} H$. Since there is at most one particle per site, we may apply Theorem 3.6.2 to replace $\left\langle\pi_{t}^{N}, H_{\lambda}^{N}\right\rangle$ and $\left\langle\pi_{0}^{N}, H_{\lambda}^{N}\right\rangle$ by $\left\langle\pi_{t}, H\right\rangle$ and $\left\langle\pi_{0}, H\right\rangle$, respectively, and replace $\mathbb{L}_{N} H_{\lambda}^{N}$ by $\nabla A \nabla_{W} H$ plus a term that vanishes as $N \rightarrow \infty$.

Since $E_{\nu_{\alpha}}\left[h_{i, j}\right]=\alpha^{2}, i=1,2$ and $j=1, \ldots, d$, we have by Proposition 3.7.4 that, for every $t>0$, $\lambda>0, \delta>0, i=1,2$,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left[\left\lvert\, \int_{0}^{t} d s \frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\right.\right. & \nabla A \nabla_{W} H(x / N) \times \\
& \left.\times\left\{\tau_{x} h_{i, j}\left(\eta_{s}\right)-\left[\eta_{s}^{\varepsilon N}(x)\right]^{2}\right\} \mid>\delta\right]=0
\end{aligned}
$$

Since $\eta_{s}^{\varepsilon N}(x)=\varepsilon^{-d} \pi_{s}^{N}\left(\prod_{j=1}^{d}\left[x_{j} / N, x_{j} / N+\varepsilon e_{j}\right]\right)$, we obtain, from the previous considerations, that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \varlimsup_{N \rightarrow \infty} \mathbb{Q}_{\mu_{N}}^{W, N}\left[\mid\left\langle\pi_{t}, H\right\rangle-\right. \\
& \left.\quad-\left\langle\pi_{0}, H\right\rangle-\int_{0}^{t} d s\left\langle\Phi\left(\varepsilon^{-d} \pi_{s}^{N}\left(\prod_{j=1}^{d}\left[\cdot, \cdot+\varepsilon e_{j}\right]\right)\right), \nabla A \nabla_{W} H\right\rangle \mid>\delta\right]=0 .
\end{aligned}
$$

Using the fact that $\mathbb{Q}_{\mu_{N}}^{W, N}$ converges in the uniform topology to \mathbb{Q}^{*}, we have that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \mathbb{Q} *\left[\mid\left\langle\pi_{t}, G_{\lambda} H\right\rangle-\left\langle\pi_{0}, G_{\lambda} H\right\rangle-\right. \\
&\left.-\int_{0}^{t} d s\left\langle\Phi\left(\varepsilon^{-d} \pi_{s}\left(\prod_{j=1}^{d}\left[\cdot, \cdot+\varepsilon e_{j}\right]\right)\right), U_{\lambda}\right\rangle \mid>\delta\right]=0
\end{aligned}
$$

Recall that \mathbb{Q}^{*} is concentrated on absolutely continuous paths $\pi_{t}(d u)=\rho(t, u) d u$ with positive density bounded by 1 . Therefore, $\varepsilon^{-d} \pi_{s}\left(\prod_{j=1}^{d}\left[\cdot, \cdot+\varepsilon e_{j}\right]\right)$ converges in $L^{1}\left(\mathbb{T}^{d}\right)$ to $\rho(s,$.$) as \varepsilon \downarrow 0$. Thus,

$$
\mathbb{Q}^{*}\left[\left|\left\langle\pi_{t}, H\right\rangle-\left\langle\pi_{0}, H\right\rangle-\int_{0}^{t} d s\left\langle\Phi\left(\rho_{s}\right), \nabla A \nabla_{W} H\right\rangle\right|>\delta\right]=0
$$

Letting $\delta \downarrow 0$, we see that, \mathbb{Q}^{*} a.s.,

$$
\int_{\mathbb{T}^{d}} \rho(t, u) H(u) d u-\int_{\mathbb{T}^{d}} \rho(0, u) H(u) d u=\int_{0}^{t} \int_{\mathbb{T}^{d}} \Phi(\rho(s, u)) \nabla A \nabla_{W} H(u) d u d s
$$

This identity can be extended to a countable set of times t. Taking this set to be dense we obtain, by continuity of the trajectories π_{t}, that it holds for all $0 \leq t \leq T$.

We now have a lemma regarding the energy of such limit points whose proof can be found in [16, Section 6].

Lemma 3.7.5. There exists a finite constant K_{1}, depending only on b, such that

$$
\begin{aligned}
E_{\mathbb{Q}_{W}^{*}}\left[\sup _{H \in \mathbb{D}_{W}}\right. & \left\{\int_{0}^{T} d s \int_{\mathbb{T}^{d}} d x\left(\partial_{x_{j}} \partial_{W_{j}} H\right)(s, x) \Phi(\rho(s, x))\right. \\
& \left.\left.\quad-K_{1} \int_{0}^{T} d s \int_{\mathbb{T}^{d}}\left[\partial_{W_{j}} H(s, x)\right]^{2} d\left(x^{j} \otimes W_{j}\right)\right\}\right] \leq K_{0}
\end{aligned}
$$

From Lemma 3.7.5, we may conclude that all limit points have, almost surely, finite energy, and therefore, by Lemma 3.4.1, $\Phi(\rho(\cdot, \cdot)) \in L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$. Analogously, it is possible to show that $\rho(\cdot, \cdot)$ has finite energy and hence it belongs to $L^{2}\left([0, T], H_{1, W}\left(\mathbb{T}^{d}\right)\right)$.

Proposition 3.7.6. As $N \uparrow \infty$, the sequence of probability measures $\mathbb{Q}_{\mu_{N}}^{W, N}$ converges in the uniform topology to $\mathbb{Q} W$.
Proof. In the previous subsection, we showed that the sequence of probability measures $\mathbb{Q}_{\mu_{N}}^{W, N}$ is tight for the uniform topology. Moreover, we just proved that all limit points of this sequence are concentrated on weak solutions of the parabolic equation (3.7.6). The proposition now follows from the uniqueness proved in subsection 3.4.1.

Proof of Theorem 3.7.2. Since $\mathbb{Q}_{\mu_{N}}^{W, N}$ converges in the uniform topology to \mathbb{Q}_{W}, a measure which is concentrated on a deterministic path, for each $0 \leq t \leq T$ and each continuous function $H: \mathbb{T}^{d} \rightarrow \mathbb{R}$, $\left\langle\pi_{t}^{N}, H\right\rangle$ converges in probability to $\int_{\mathbb{T}^{d}} d u \rho(t, u) H(u)$, where ρ is the unique weak solution of (3.7.6) with $l_{k}=0, r_{k}=1, \gamma=\rho_{0}$ and $\Phi(\alpha)=\alpha+a \alpha^{2}$.

References

[1] E. B. Dynkin, Markov processes. Volume II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 122. Springer-Verlag, Berlin, 1965.
[2] L. C. Evans, Partial Differential Equations. Volume 19. Graduate studies in mathematics . AMS, Rhode Island, 1997.
[3] A. Faggionato, M. Jara, C. Landim, Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. arXiv:0709.0306 . To appear in Probab. Th. Rel. Fields (2008).
[4] A. Faggionato, Random walks and exclusion processs among random conductances on random infinite clusters: Homogenization and hydrodynamic limit.arXiv:0704.3020v3 .
[5] W. Feller. On second order differential operators. Ann. Math., 55, 468-519. 1952.
[6] T. Franco, C. Landim, Exclusion processes with conductances - Hydrodynamic limit of gradient exclusion processes with conductances. arXiv:0806.3211.
[7] P. Gonçalves, M. Jara. Scaling Limits for Gradient Systems in Random Environment. J. Stat. Phys., 131, 691-716. 2008.
[8] C. Kipnis, C. Landim, Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag, Berlin, 1999.
[9] T.M. Liggett. Interacting Particle Systems. Springer-Verlag, New York. 1985.
[10] J.-U. Löbus, Generalized second order differential operators. Math. Nachr. 152, 229-245 (1991).
[11] P. Mandl, Analytical treatment of one-dimensional Markov processes, Grundlehren der mathematischen Wissenschaften, 151. Springer-Verlag, Berlin, 1968.
[12] H.P. McKean. Elementary solutions for certain parabolic partial differential equations. TAMS, 82, 519-548. 1956
[13] G. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Seria Coll. Math. Soc. Janos Bolyai vol. 27, North-Holland (1979).
[14] A. Piatnitski, E. Remy, Homogenization of Elliptic Difference Operators, SIAM J. Math. Anal. Vol.33, pp. 53-83, (2001).
[15] F. Spitzer. Interacting of Markov processes. Adv. Math, 5, 246-290. 1970.
[16] F.J. Valentim, Hydrodynamic limit of gradient exclusion processes with conductance on \mathbb{Z}^{d}..Preprint, Available at arXiv:0903.4993v1 (2009).
[17] E. Zeidler, Applied Functional Analysis. Applications to Mathematical Physics.. Applied Mathematical Sciences, 108. Springer-Verlag, New York, (1995).

Chapter 4

Equilibrium fluctuations for exclusion processes with conductances in random environments

Artigo em colaboração com J. Farfan e F.J. Valentim. Foi publicado no periódico Stochastic Processes and Their Applications, 120, p. 1535-1562, 2010.

Abstract

Fix a function $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $W\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{d} W_{k}\left(x_{k}\right)$, where $d \geq 1$, and each function $W_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing, right continuous with left limits. We prove the equilibrium fluctuations for a gradient exclusion process with conductances, induced by W, in random environments when the system starts from an equilibrium measure. The asymptotic behavior of the empirical distribution is governed by the unique solution of a stochastic differential equation taking values in a certain nuclear Fréchet space.

4.1 Introduction

In this article we study the equilibrium fluctuations for a gradient exclusion process with conductances in random environments, which can be viewed as a central limit theorem for the empirical distribution of particles when the system starts from an equilibrium measure.

Let $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function such that $W\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{d} W_{k}\left(x_{k}\right)$, where $d \geq 1$ and each function $W_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing, right continuous with left limits (càdlàg), and periodic in the sense that $W_{k}(u+1)-W_{k}(u)=W_{k}(1)-W_{k}(0)$, for all $u \in \mathbb{R}$. The inverse of the increments of the function W will play the role of conductances in our system.

The random environment we considered is governed by the coefficients of the discrete formulation of the model (the process on the lattice). We will assume the underlying random field is ergodic, stationary and satisfies an ellipticity condition.

Informally, the exclusion process with conductances induced by W in random environments is an interacting particle systems on the d-dimensional discrete torus $N^{-1} \mathbb{T}_{N}^{d}$, in which at most one particle per site is allowed, and only nearest-neighbor jumps are permitted. Moreover, the jump rate in the direction e_{j} is proportional to the reciprocal of the increments of W with respect to the j th coordinate times a term $a(\omega)$ coming from an elliptic and ergodic random field. Such a system can be understood as a model for diffusion in heterogeneous media. More precisely, it may model diffusions in which permeable membranes, at the points of discontinuities of W, tend to reflect particles, creating space discontinuities in the density profiles. Note that these membranes are $(d-1)$-dimensional hyperplanes embedded in
a d-dimensional environment. Moreover, if we consider W_{j} having more than one discontinuity point for more than one j, these membranes will be more sophisticated manifolds, for instance, unions of ($d-1$)-dimensional boxes.

The purpose of this article is to study the density fluctuation field of this system as $N \rightarrow \infty$, and also the influence of the randomness in this limit. For any realization of the random environment, the scaling limit depends on the randomness only through some constants which depend on the distribution of the random transition rates, but not on the particular realization of the random environment.

The evolution of one-dimensional exclusion processes with random conductances has attracted some attention recently $[9,3,4,5]$. The hydrodynamic limit proved in [9] was obtained independently in [2]. In all of these papers, a hydrodynamic limit was proved. The hydrodynamic limit may be interpreted as a law of large numbers for the empirical density of the system. Our goal is to go beyond the hydrodynamic limit and provide a new result for such processes, which is the equilibrium fluctuations and can be seen as a central limit theorem for the empirical density of the process.

To prove the equilibrium fluctuations, we would like to call attention to the main tools we needed: (i) the theory of nuclear spaces and (ii) homogenization of differential operators. The first one followed the classical approach of Kallianpur and Perez-Abreu [11] and Gel'fand and Vilenkin [6]. Nuclear spaces are very suitable to attain existence and uniqueness of solutions for a general class of stochastic differential equations. Furthermore, tightness of processes on such spaces was established by Mitoma [13]. A wide literature on these spaces can be found cited inside the fourth volume of the amazing collection by Gel'fand [6]. The second tool is motivated by several applications in mechanics, physics, chemistry and engineering. We will consider stochastic homogenization. In the stochastic context, several works on homogenization of operators with random coefficients have been published (see, for instance, [14, 15] and references therein). In homogenization theory, only the stationarity of such random field is used. The notion of stationary random field is formulated in such a manner that it covers many objects of nonprobabilistic nature, e.g., operators with periodic or quasi-periodic coefficients. We follow the approach given in [16], which was introduced by [15].

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family of random difference schemes, whose coefficients can be obtained by the discretization of random highcontrast lattice structures. Furthermore, the introduction of a corrected empirical measure was needed. The corrected empirical measure was used in the literature, for instance, by $[9,5,7,17,16]$. It can be understood as a version of Tartar's compensated compactness lemma in the context of particle systems. In this situation, the averaging due to the dynamics and the inhomogeneities introduced by the random media factorize after introducing the corrected empirical process, in such a way that we can average them separately. It is noteworthy that we managed to prove an equivalence between the asymptotic behavior with respect to both the corrected empirical measure and the uncorrected one. This equivalence was helpful in the sense that whenever the calculation with the corrected empirical measure turned cumbersome, we changed to a calculation with respect to the uncorrected one, and the other way around. This whole approach made the proof a more simpler than the usual one with respect solely to the corrected empirical measure developed in the articles mentioned above.

We now describe the organization of the article. In Section 4.2 we state the main results of the article; in Section 4.3 we define the nuclear space needed in our context; in Section 4.4 we recall some results obtained in [16] about homogenization, and then we prove the equilibrium fluctuations by showing that the density fluctuation field converges to a process that solves the martingale problem. We also show that the solution of the martingale problem corresponds to a generalized Ornstein-Uhlenbeck process. In Section 4.5 we prove tightness of the density fluctuation field, as well as tightness of other related quantities. In Section 4.6 we prove the Boltzmann-Gibbs principle, which is a key result for proving the equilibrium fluctuations. Finally, the Appendix contains some known results about nuclear spaces and stochastic differential equations evolving on topologic dual of such spaces.

4.2 Notation and results

Denote by $\mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d}=[0,1)^{d}$ the d-dimensional torus, and by $\mathbb{T}_{N}^{d}=(\mathbb{Z} / N \mathbb{Z})^{d}=\{0, \ldots, N-1\}^{d}$ the d-dimensional discrete torus with N^{d} points.

Fix a function $W: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
W\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{d} W_{k}\left(x_{k}\right), \tag{4.2.1}
\end{equation*}
$$

where each $W_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing right continuous function with left limits (càdlàg), periodic in the sense that for all $u \in \mathbb{R}$

$$
W_{k}(u+1)-W_{k}(u)=W_{k}(1)-W_{k}(0) .
$$

Define the generalized derivative $\partial_{W_{k}}$ of a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\partial_{W_{k}} f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{k}+\epsilon, \ldots, x_{d}\right)-f\left(x_{1}, \ldots, x_{k}, \ldots, x_{d}\right)}{W_{k}\left(x_{k}+\epsilon\right)-W_{k}\left(x_{k}\right)} \tag{4.2.2}
\end{equation*}
$$

when the above limit exists and is finite. If for a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ the generalized derivatives $\partial_{W_{k}}$ exist for all $k=1, \ldots, d$, denote the generalized gradient of f by

$$
\nabla_{W} f=\left(\partial_{W_{1}} f, \ldots, \partial_{W_{d}} f\right)
$$

Further details on these generalized derivatives can be found in subsection 4.3.1 and in the article [16].
We now introduce the statistically homogeneous rapidly oscillating coefficients that will be used to define the random rates of the exclusion process with conductances of which we want to study the equilibrium fluctuations.

Let $(\Omega, \mathcal{F}, \mu)$ be a standard probability space and $\left\{T_{x}: \Omega \rightarrow \Omega ; x \in \mathbb{Z}^{d}\right\}$ be an ergodic group of \mathcal{F}-measurable transformations which preserve the measure μ :

- $T_{x}: \Omega \rightarrow \Omega$ is \mathcal{F}-measurable for all $x \in \mathbb{Z}^{d}$,
- $\mu\left(T_{x} \mathbf{A}\right)=\mu(\mathbf{A})$, for any $\mathbf{A} \in \mathcal{F}$ and $x \in \mathbb{Z}^{d}$,
- $T_{0}=I, T_{x} \circ T_{y}=T_{x+y}$,
- Any $f \in L^{1}(\Omega)$ such that $f\left(T_{x} \omega\right)=f(\omega) \mu$-a.s for each $x \in \mathbb{Z}^{d}$, is equal to a constant μ-a.s.

The last condition implies that the group T_{x} is ergodic.
Let us now introduce the vector-valued \mathcal{F}-measurable functions $\left\{a_{j}(\omega) ; j=1, \ldots, d\right\}$ that satisfy an ellipticity condition: there exists $\theta>0$ such that

$$
\theta^{-1} \leq a_{j}(\omega) \leq \theta
$$

for all $\omega \in \Omega$ and $j=1, \ldots, d$. Then, define the diagonal matrices A^{N} whose elements are given by

$$
\begin{equation*}
a_{j j}^{N}(x):=a_{j}^{N}=a_{j}\left(T_{N x} \omega\right), \quad x \in T_{N}^{d}, \quad j=1, \ldots, d . \tag{4.2.3}
\end{equation*}
$$

Fix a typical realization $\omega \in \Omega$ of the random environment. For each $x \in \mathbb{T}_{N}^{d}$ and $j=1, \ldots, d$, define the symmetric rate $\xi_{x, x+e_{j}}=\xi_{x+e_{j}, x}$ by

$$
\begin{equation*}
\xi_{x, x+e_{j}}=\frac{a_{j}^{N}(x)}{N\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]}=\frac{a_{j}^{N}(x)}{N\left[W_{j}\left(\left(x_{j}+1\right) / N\right)-W_{j}\left(x_{j} / N\right)\right]}, \tag{4.2.4}
\end{equation*}
$$

where e_{1}, \ldots, e_{d} is the canonical basis of \mathbb{R}^{d}.
Distribute particles on \mathbb{T}_{N}^{d} in such a way that each site of \mathbb{T}_{N}^{d} is occupied at most by one particle. Denote by η the configurations of the state space $\{0,1\}^{\mathbb{T}_{N}^{d}}$ so that $\eta(x)=0$ if site x is vacant, and $\eta(x)=1$ if site x is occupied.

The exclusion process with conductances in a random environment is the continuous-time Markov process $\left\{\eta_{t}: t \geq 0\right\}$ with state space $\{0,1\}^{\mathbb{T}_{N}^{d}}=\left\{\eta: \mathbb{T}_{N}^{d} \rightarrow\{0,1\}\right\}$, whose generator L_{N} acts on functions $f:\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\left(L_{N} f\right)(\eta)=\sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} \xi_{x, x+e_{j}} c_{x, x+e_{j}}(\eta)\left\{f\left(\sigma^{x, x+e_{j}} \eta\right)-f(\eta)\right\} \tag{4.2.5}
\end{equation*}
$$

where $\sigma^{x, x+e_{j}} \eta$ is the configuration obtained from η by exchanging the variables $\eta(x)$ and $\eta\left(x+e_{j}\right)$:

$$
\left(\sigma^{x, x+e_{j}} \eta\right)(y)= \begin{cases}\eta\left(x+e_{j}\right) & \text { if } y=x \tag{4.2.6}\\ \eta(x) & \text { if } y=x+e_{j} \\ \eta(y) & \text { otherwise }\end{cases}
$$

and

$$
c_{x, x+e_{j}}(\eta)=1+b\left\{\eta\left(x-e_{j}\right)+\eta\left(x+2 e_{j}\right)\right\}
$$

with $b>-1 / 2$, and where all sums are modulo N.
We consider the Markov process $\left\{\eta_{t}: t \geq 0\right\}$ on the configurations $\{0,1\}^{\mathbb{T}_{N}^{d}}$ associated to the generator L_{N} in the diffusive scale, i.e., L_{N} is speeded up by N^{2}.

We now describe the stochastic evolution of the process. Let $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{T}_{N}^{d}$. At rate $\xi_{x, x+e_{j}} c_{x, x+e_{j}}(\eta)$ the occupation variables $\eta(x), \eta\left(x+e_{j}\right)$ are exchanged. Note that the random field affects the rate by a multiplicative factor. If W is differentiable at $x / N \in[0,1)^{d}$, the rate at which particles are exchanged is of order 1 for each direction, but if some W_{j} is discontinuous at x_{j} / N, it no longer holds. In fact, assume, to fix ideas, that W_{j} is discontinuous at x_{j} / N, and smooth on the segments $\left(x_{j} / N, x_{j} / N+\varepsilon e_{j}\right)$ and $\left(x_{j} / N-\varepsilon e_{j}, x_{j} / N\right)$. Assume, also, that W_{k} is differentiable in a neighborhood of x_{k} / N for $k \neq j$. In this case, the rate at which particles jump over the bonds $\left\{y-e_{j}, y\right\}$, with $y_{j}=x_{j}$, is of order $1 / N$, whereas in a neighborhood of size N of these bonds, particles jump at rate 1 . Thus, note that a particle at site $y-e_{j}$ jumps to y at rate $1 / N$ and jumps at rate 1 to each one of the $2 d-1$ other options. Particles, therefore, tend to avoid the bonds $\left\{y-e_{j}, y\right\}$. However, since time will be scaled diffusively, and since on a time interval of length N^{2} a particle spends a time of order N at each site y, particles will be able to cross the slower bond $\left\{y-e_{j}, y\right\}$. Therefore, the conductances are induced by the function W through the inverse of the gradient of W, whereas the random environment is given by the diagonal matrix $A^{N}:=\left(a_{j j}^{N}(x)\right)_{d \times d}$.

The effect of the factor $c_{x, x+e_{j}}(\eta)$ is the following: if the parameter b is positive, the presence of particles in the neighboring sites of the bond $\left\{x, x+e_{j}\right\}$ speeds up the exchange rate by a factor of order one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the exchange rate also by a factor of order one. More details are given in Remark 4.2 .2 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the Bernoulli product measures $\left\{\nu_{\rho}^{N}: 0 \leq \rho \leq 1\right\}$ are invariant, in fact reversible, for the dynamics. The measure ν_{ρ}^{N} is obtained by placing a particle at each site, independently from the other sites, with probability ρ. Thus, ν_{ρ}^{N} is a product measure over $\{0,1\}^{T_{N}^{d}}$ with marginals given by

$$
\nu_{\rho}^{N}\{\eta: \eta(x)=1\}=\rho
$$

for x in \mathbb{T}_{N}^{d}.
Consider the random walk $\left\{X_{t}\right\}_{t \geq 0}$ of a particle in \mathbb{T}_{N}^{d} induced by the generator \mathbb{L}_{N} given as follows. Let $\xi_{x, x+e_{j}}$ given by (4.2.4). If the particle is on a site $x \in \mathbb{T}_{N}^{d}$, it will jump to $x+e_{j}$ with rate $N^{2} \xi_{x, x+e_{j}}$. Furthermore, only nearest neighbor jumps are allowed. The generator \mathbb{L}_{N} of the random walk $\left\{X_{t}\right\}_{t \geq 0}$ acts on functions $f: \mathbb{T}_{N}^{d} \rightarrow \mathbb{R}$ as

$$
\mathbb{L}_{N} f\left(\frac{x}{N}\right)=\sum_{j=1}^{d} \mathbb{L}_{N}^{j} f\left(\frac{x}{N}\right)
$$

where,

$$
\mathbb{L}_{N}^{j} f\left(\frac{x}{N}\right)=N^{2}\left\{\xi_{x, x+e_{j}}\left[f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]+\xi_{x-e_{j}, x}\left[f\left(\frac{x-e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]\right\}
$$

It is not difficult to see that the following equality holds:

$$
\begin{equation*}
\mathbb{L}_{N} f(x / N)=\sum_{j=1}^{d} \partial_{x_{j}}^{N}\left(a_{j}^{N} \partial_{W_{j}}^{N} f\right)(x):=\nabla^{N} A^{N} \nabla_{W}^{N} f(x) \tag{4.2.7}
\end{equation*}
$$

where, $\partial_{x_{j}}^{N}$ is the standard difference operator:

$$
\partial_{x_{j}}^{N} f\left(\frac{x}{N}\right)=N\left[f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)\right]
$$

and $\partial_{W_{j}}^{N}$ is the W_{j}-difference operator:

$$
\partial_{W_{j}}^{N} f\left(\frac{x}{N}\right)=\frac{f\left(\frac{x+e_{j}}{N}\right)-f\left(\frac{x}{N}\right)}{W\left(\frac{x+e_{j}}{N}\right)-W\left(\frac{x}{N}\right)},
$$

for $x \in \mathbb{T}_{N}^{d}$. Several properties of the above operator have been obtained in [16].
The counting measure m_{N} on $N^{-1} \mathbb{T}_{N}^{d}$ is reversible for this process. This random walk plays an important role in the proof of the equilibrium fluctuations of the process η_{t}, as we will see in subsection 4.4.1.

Now we state a central limit theorem for the empirical measure, starting from an equilibrium measure ν_{ρ}. Fix $\rho>0$ and denote by $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ the generalized Schwartz space on \mathbb{T}^{d}, whose definition as well as some properties are given in Section 4.3.

Denote by $Y_{.^{N}}$ the density fluctuation field, which is the bounded linear functional acting on functions $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ as

$$
\begin{equation*}
Y_{t}^{N}(G)=\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} G(x)\left[\eta_{t}(x)-\rho\right] \tag{4.2.8}
\end{equation*}
$$

Let $D([0, T], X)$ be the path space of càdlàg trajectories with values in a metric space X. In this way we have defined a process in $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$, where $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ is the topologic dual of the space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$.
Theorem 4.2.1. Consider the fluctuation field $Y_{.^{N}}$ defined above. Then, Y^{N} converges weakly to the unique $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-solution, $Y_{t} \in D\left([0, T], S_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$, of the stochastic differential equation

$$
\begin{equation*}
d Y_{t}=\phi^{\prime}(\rho) \nabla A \nabla_{W} Y_{t} d t+\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} d N_{t} \tag{4.2.9}
\end{equation*}
$$

where $\chi(\rho)=\rho(1-\rho), \phi(\rho)=\rho+b \rho^{2}$, and ϕ^{\prime} is the derivative of $\phi, \phi^{\prime}(\rho)=1+2 b \rho$; A is a constant diagonal matrix with j th diagonal element given by $a_{j}:=E\left(a_{j}^{N}\right)$, for any $N \in \mathbb{N}$; and N_{t} is a $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ valued mean-zero martingale, with quadratic variation

$$
\langle N(G)\rangle_{t}=t \sum_{j=1}^{d} \int_{\mathbb{T}^{d}}\left[\partial_{W_{j}} G(x)\right]^{2} d\left(x^{j} \otimes W_{j}\right),
$$

where $d\left(x^{j} \otimes W_{j}\right)$ is the product measure $d x_{1} \otimes \cdots \otimes d x_{j-1} \otimes d W_{j} \otimes d x_{j+1} \otimes \cdots \otimes d x_{d}$. Furthermore, N_{t} is a Gaussian process with independent increments. More precisely, for each $G \in S_{W}\left(\mathbb{T}^{d}\right), N_{t}(G)$ is a time deformation of a standard Brownian motion. The process Y_{t} is known in the literature as the generalized Ornstein-Uhlenbeck process with characteristics $\phi^{\prime}(\rho) \nabla A \nabla_{W}$ and $\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} \nabla_{W}$.

The proof of this theorem is given in Section 4.4.
Remark 4.2.2. The specific form of the rates $c_{x, x+e_{i}}$ is not important, but two conditions must be fulfilled. The rates must be strictly positive, they may not depend on the occupation variables $\eta(x)$, $\eta\left(x+e_{i}\right)$, but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter 7 in [12] for the definition of gradient processes).

We may define rates $c_{x, x+e_{i}}$ to obtain any polynomial ϕ of the form $\phi(\alpha)=\alpha+\sum_{2 \leq j \leq m} a_{j} \alpha^{j}, m \geq 1$, with $1+\sum_{2 \leq j \leq m} j a_{j}>0$. Let, for instance, $m=3$. Then the rates

$$
\begin{aligned}
\hat{c}_{x, x+e_{i}}(\eta) & =c_{x, x+e_{i}}(\eta)+ \\
& b\left\{\eta\left(x-2 e_{i}\right) \eta\left(x-e_{i}\right)+\eta\left(x-e_{i}\right) \eta\left(x+2 e_{i}\right)+\eta\left(x+2 e_{i}\right) \eta\left(x+3 e_{i}\right)\right\},
\end{aligned}
$$

satisfy the above three conditions, where $c_{x, x+e_{i}}$ is the rate defined at the beginning of Section 2 and a, b are such that $1+2 a+3 b>0$. An elementary computation shows that $\phi(\alpha)=1+a \alpha^{2}+b \alpha^{3}$.

4.3 The space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$

In this Section we build the space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$, which is associated to the operator $\mathcal{L}_{W}=\nabla \nabla_{W}$. This space, as we shall see, is a natural environment to attain existence and uniqueness of solutions of the stochastic differential equation (4.2.9). Furthermore, several lemmas are obtained to fulfill the conditions to ensure existence and uniqueness of such solutions.

4.3.1 The operator \mathcal{L}_{W}

Consider the operator $\mathcal{L}_{W_{k}}: \mathcal{D}_{W_{k}} \subset L^{2}(\mathbb{T}) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mathcal{L}_{W_{k}} f=\partial_{x_{k}} \partial_{W_{k}} f \tag{4.3.1}
\end{equation*}
$$

whose domain $\mathcal{D}_{W_{k}}$ consists of all functions f in $L^{2}(\mathbb{T})$ such that

$$
f(x)=a+b W_{k}(x)+\int_{(0, x]} W_{k}(d y) \int_{0}^{y} \mathfrak{f}(z) d z
$$

for some function \mathfrak{f} in $L^{2}(\mathbb{T})$ that satisfies

$$
\int_{0}^{1} \mathfrak{f}(z) d z=0 \quad \text { and } \quad \int_{(0,1]} W_{k}(d y)\left\{b+\int_{0}^{y} \mathfrak{f}(z) d z\right\}=0 .
$$

In [5] the authors prove that these operators have a countable complete orthonormal system of eigenvectors, which we denote by $\mathcal{A}_{W_{k}}$. Then, following [17], we define

$$
\mathcal{A}_{W}=\left\{f: \mathbb{T}^{d} \rightarrow \mathbb{R}: f\left(x_{1}, \ldots, x_{d}\right)=\prod_{k=1}^{d} f_{k}\left(x_{k}\right), f_{k} \in \mathcal{A}_{W_{k}}\right\}
$$

where W is given by (4.2.1).
We may now build an operator analogous to $\mathcal{L}_{W_{k}}$ in \mathbb{T}^{d}. For a given set \mathcal{A}, we denote by $\operatorname{span}(\mathcal{A})$ the linear space generated by \mathcal{A}. Let $\mathbb{D}_{W}=\operatorname{span}\left(\mathcal{A}_{W}\right)$, and define the operator $\mathbb{L}_{W}: \mathbb{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ as follows: for $f=\prod_{k=1}^{d} f_{k} \in \mathcal{A}_{W}$,

$$
\begin{equation*}
\mathbb{L}_{W}(f)\left(x_{1}, \ldots x_{d}\right)=\sum_{k=1}^{d} \prod_{j=1, j \neq k}^{d} f_{j}\left(x_{j}\right) \mathcal{L}_{W_{k}} f_{k}\left(x_{k}\right) \tag{4.3.2}
\end{equation*}
$$

and extend to \mathbb{D}_{W} by linearity. It is easy to see that if $f \in \mathbb{D}_{W}$,

$$
\begin{equation*}
\mathbb{L}_{W} f=\sum_{k=1}^{d} \mathcal{L}_{W_{k}} f \tag{4.3.3}
\end{equation*}
$$

where the application of $\mathcal{L}_{W_{k}}$ on a function $f: \mathbb{T}^{d} \rightarrow \mathbb{R}$ is the natural one, i.e., it considers f only as a function of the k th coordinate, and keeps all the remaining coordinates fixed.

Let, for each $k=1, \ldots, d, f_{k} \in \mathcal{A}_{W_{k}}$ be an eigenvector of $\mathcal{L}_{W_{k}}$ associated to the eigenvalue λ_{k}. Then $f=\prod_{k=1}^{d} f_{k}$ belongs to \mathbb{D}_{W} and is an eigenvector of \mathbb{L}_{W} with eigenvalue $\sum_{k=1}^{d} \lambda_{k}$. Moreover, [17] proved the following result:
Lemma 4.3.1. The following statements hold:
(a) The set \mathbb{D}_{W} is dense in $L^{2}\left(\mathbb{T}^{d}\right)$;
(b) The operator $\mathbb{L}_{W}: \mathbb{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ is symmetric and non-positive:

$$
\left\langle-\mathbb{L}_{W} f, f\right\rangle \geq 0
$$

where $\langle\cdot, \cdot\rangle$ is the standard inner product in $L^{2}\left(\mathbb{T}^{d}\right)$.
Also, the set \mathcal{A}_{W} forms a complete, orthonormal, countable system of eigenvectors for the operator \mathbb{L}_{W}. Let $\mathcal{A}_{W}=\left\{\varphi_{j}\right\}_{j \geq 1},\left\{\alpha_{j}\right\}_{j \geq 1}$ be the corresponding eigenvalues of $-\mathbb{L}_{W}$, and consider $\mathcal{D}_{W}=\{v=$ $\left.\sum_{j=1}^{\infty} v_{j} \varphi_{j} \in L^{2}\left(\mathbb{T}^{d}\right) ; \sum_{j=1}^{\infty} v_{j}^{2} \alpha_{j}^{2}<+\infty\right\}$. We define the operator $\mathcal{L}_{W}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ by

$$
\begin{equation*}
-\mathcal{L}_{W} v=\sum_{j=1}^{+\infty} \alpha_{j} v_{j} \varphi_{j} \tag{4.3.4}
\end{equation*}
$$

The operator \mathcal{L}_{W} is clearly an extension of the operator \mathbb{L}_{W}, and we present some properties of this operator in Proposition 4.3.2, whose proof can be found in [17].

Proposition 4.3.2. The operator $\mathcal{L}_{W}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ enjoys the following properties:
(a) The domain \mathcal{D}_{W} is dense in $L^{2}\left(\mathbb{T}^{d}\right)$. In particular, the set of eigenvectors $\mathcal{A}_{W}=\left\{\varphi_{j}\right\}_{j \geq 1}$ forms a complete orthonormal system;
(b) The eigenvalues of the operator $-\mathcal{L}_{W}$ form a countable set $\left\{\alpha_{j}\right\}_{j \geq 1}$. All eigenvalues have finite multiplicity, and it is possible to obtain a re-enumeration $\left\{\alpha_{j}\right\}_{j \geq 1}$ such that

$$
0=\alpha_{1} \leq \alpha_{2} \leq \cdots \quad \text { and } \quad \lim _{n \rightarrow \infty} \alpha_{n}=\infty
$$

(c) The operator $\mathbb{I}-\mathcal{L}_{W}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ is bijective;
(d) $\mathcal{L}_{W}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ is self-adjoint and non-positive:

$$
\left\langle-\mathcal{L}_{W} f, f\right\rangle \geq 0
$$

(e) \mathcal{L}_{W} is dissipative.

4.3.2 The nuclear space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$

Our goal is to build a countably Hilbert nuclear space associated the self-adjoint operator \mathcal{L}_{W}. The reader is referred to Appendix.

Let $\left\{\varphi_{j}\right\}_{j \geq 1}$ be the complete orthonormal set of the eigenvectors (in $L^{2}\left(\mathbb{T}^{d}\right)$) of the operator $\mathcal{L}=$ $\mathbb{I}-\mathcal{L}_{W}$, and $\left\{\lambda_{j}\right\}_{j \geq 1}$ the associated eigenvalues. Note that $\lambda_{j}=1+\alpha_{j}$.

Consider the following increasing sequence $\|\cdot\|_{n}, n \in \mathbb{N}$, of Hilbertian norms:

$$
\langle f, g\rangle_{n}=\sum_{k=1}^{\infty}\left\langle\mathbb{P}_{k} f, \mathbb{P}_{k} g\right\rangle \lambda_{k}^{2 n} k^{2 n}
$$

where we denote by \mathbb{P}_{k} the orthogonal projection on the linear space generated by the eigenvector φ_{k}.
So,

$$
\|f\|_{n}^{2}=\sum_{k=1}^{\infty}\left\|\mathbb{P}_{k} f\right\|^{2} \lambda_{k}^{2 n} k^{2 n}
$$

where $\|\cdot\|$ is the $L^{2}\left(\mathbb{T}^{d}\right)$ norm.
Consider the Hilbert spaces \mathcal{S}_{n} which are obtained by completing the space \mathbb{D}_{W} with respect to the inner product $\langle\cdot, \cdot\rangle_{n}$.

The set

$$
\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)=\bigcap_{n=0}^{\infty} \mathcal{S}_{n}
$$

endowed with the metric (4.7.2) is our countably Hilbert space, and even more, it is a countably Hilbert nuclear space, see the Appendix for further details. In fact, fixed $n \in \mathbb{N}$ and $m>n+1 / 2$, we have that $\left\{\frac{1}{\left(j \lambda_{j}\right)^{m}} \varphi_{j}\right\}_{j \geq 1}$ is a complete orthonormal set in \mathcal{S}_{m}. Therefore,

$$
\sum_{j=1}^{\infty}\left\|\frac{1}{\left(j \lambda_{j}\right)^{m}} \varphi_{j}\right\|_{n}^{2} \leq \sum_{j=1}^{\infty} \frac{1}{j^{2(m-n)}}<\infty
$$

The above formula corresponds to formula (4.7.3) in Appendix.
Lemma 4.3.3. Let $\mathcal{L}_{W}: \mathcal{D}_{W} \rightarrow L^{2}\left(\mathbb{T}^{d}\right)$ be the operator obtained in Theorem 4.3.2. We have
(a) \mathcal{L}_{W} is the generator of a strongly continuous contraction semigroup $\left\{P_{t}: L^{2}\left(\mathbb{T}^{d}\right) \rightarrow L^{2}\left(\mathbb{T}^{d}\right)\right\}_{t \geq 0}$;
(b) \mathcal{L}_{W} is a closed operator;
(c) For each $f \in L^{2}\left(\mathbb{T}^{d}\right), t \mapsto P_{t} f$ is a continuous function from $[0, \infty)$ to $L^{2}\left(\mathbb{T}^{d}\right)$;
(d) $\mathcal{L}_{W} P_{t} f=P_{t} \mathcal{L}_{W} f$ for each $f \in \mathcal{L}_{W}$ and $t \geq 0$;
(e) $\left(\mathbb{I}-\mathcal{L}_{W}\right)^{n} P_{t} f=P_{t}\left(\mathbb{I}-\mathcal{L}_{W}\right)^{n} f$ for each $f \in \mathbb{D}_{W}, t \geq 0$ and $n \in \mathbb{N}$;

Proof. Item (a) follows from Theorem 4.3.2 and Hille-Yosida's theorem. Items (b), (c) and (d) follows from item (a), see, for instance, [1, chapter 1]. Item (e) follows from item (d) and from the fact that $\mathcal{L}_{W} f=\mathbb{L}_{W} f$ if $f \in \mathbb{D}_{W}$.

The next Lemma permits to conclude that the semigroup $\left\{P_{t}: t \geq 0\right\}$ acting on the domain $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ is a $C_{0,1}$-semigroup, whose definition is recalled in Appendix 4.7.2.
Lemma 4.3.4. Let $\left\{P_{t}: t \geq 0\right\}$ the semigroup whose infinitesimal generator is \mathcal{L}_{W}. Then for each $q \in \mathbb{N}$ we have:

$$
\left\|P_{t} f\right\|_{q} \leq\|f\|_{q},
$$

for all $f \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. In particular, $\left\{P_{t}: t \geq 0\right\}$ is a $C_{0,1}$-semigroup.
Proof. Let $f \in \mathbb{D}_{W}$, then

$$
f=\sum_{j=1}^{k} \beta_{j} \varphi_{j}
$$

for some $k \in \mathbb{N}$, and some constants $\beta_{1}, \ldots, \beta_{k}$. A simple calculation shows that

$$
P_{t} f=\sum_{j=1}^{k} \beta_{j} e^{t\left(1-\lambda_{j}\right)} \varphi_{j} .
$$

Therefore, for $f \in \mathbb{D}_{W}$:

$$
\begin{aligned}
\left\|P_{t} f\right\|_{n}^{2} & =\left\|\sum_{j=1}^{k} \beta_{j} e^{t\left(1-\lambda_{j}\right)} \varphi_{j}\right\|_{n} \\
& =\sum_{j=1}^{k}\left\|\beta_{j} e^{t\left(1-\lambda_{j}\right)} \varphi_{j}\right\|^{2} \lambda_{j}^{2 n} j^{2 n} \\
& \leq \sum_{j=1}^{k}\left\|\beta_{j} \varphi_{j}\right\|^{2} \lambda_{j}^{2 n} j^{2 n}=\|f\|_{n}^{2}
\end{aligned}
$$

We use the density of \mathbb{D}_{W} in $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ to conclude the proof of the lemma.
Lemma 4.3.5. The operator \mathcal{L}_{W} belongs to $\mathcal{L}\left(\mathcal{S}_{W}\left(\mathbb{T}^{d}\right), \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)\right)$, the space of linear continuous operators from $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ into $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$.
Proof. Let $f \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$, and $\left\{\varphi_{j}\right\}_{j \geq 1}$ be the complete orthonormal set of eigenvectors of \mathcal{L}_{W}, with $\left\{\left(1-\lambda_{j}\right)\right\}_{j \geq 1}$ being their respectively eigenvalues. We have that

$$
f=\sum_{j=1}^{\infty} \beta_{j} \varphi_{j}, \quad \text { with } \quad \sum_{j=1}^{\infty} \beta_{j}^{2}<\infty .
$$

We also have that

$$
\mathcal{L}_{W} f=\sum_{j=1}^{\infty}\left(1-\lambda_{j}\right) \beta_{j} \varphi_{j} .
$$

For every $n \in \mathbb{N}$:

$$
\begin{aligned}
\left\|\mathcal{L}_{W} f\right\|_{n}^{2} & =\sum_{k=1}^{\infty}\left\|\mathbb{P}_{k}\left(\mathcal{L}_{W} f\right)\right\|^{2} \lambda_{k}^{2 n} k^{2 n}=\sum_{k=1}^{\infty}\left\|\beta_{k}\left(1-\lambda_{k}\right) \varphi_{k}\right\|^{2} \lambda_{k}^{2 n} k^{2 n} \\
& =\sum_{k=1}^{\infty}\left\|\beta_{k} \varphi_{k}\right\|^{2}\left(1-\lambda_{k}\right)^{2} \lambda_{k}^{2 n} k^{2 n} \\
& \leq 2 \sum_{k=1}^{\infty}\left\|\mathbb{P}_{k} f\right\|^{2} \lambda_{k}^{2 n} k^{2 n}+2 \sum_{k=1}^{\infty}\left\|\mathbb{P}_{k} f\right\|^{2} \lambda_{k}^{2(n+1)} k^{2(n+1)} \\
& =2\left(\|f\|_{n}+\|f\|_{n+1}\right) .
\end{aligned}
$$

Therefore, by the definition of $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right), \mathcal{L}_{W} f$ belongs to $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. Furthermore, \mathcal{L}_{W} is continuous from $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ to $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$.

4.4 Equilibrium Fluctuations

We begin by stating some results on homogenization of differential operators obtained in [16], which will be very useful along this section.

Let $L_{x^{i} \otimes W_{i}}^{2}\left(\mathbb{T}^{d}\right)$ be the space of square integrable functions with respect to the product measure $d x_{1} \otimes \cdots \otimes d x_{i-1} \otimes d W_{i} \otimes d x_{i+1} \otimes \cdots \otimes d x_{d}$, and $H_{1, W}\left(\mathbb{T}^{d}\right)$ be the Sobolev space with W-generalized derivatives. More precisely, $H_{1, W}\left(\mathbb{T}^{d}\right)$ is the space of functions $g \in L^{2}\left(\mathbb{T}^{d}\right)$ such that for each $i=1, \ldots, d$ there exist functions $G_{i} \in L_{x^{i} \otimes W_{i}, 0}^{2}\left(\mathbb{T}^{d}\right)$ satisfying the following integral by parts identity.

$$
\begin{equation*}
\int_{\mathbb{T}^{d}}\left(\partial_{x_{i}} \partial_{W_{i}} f\right) g d x=-\int_{\mathbb{T}^{d}}\left(\partial_{W_{i}} f\right) G_{i} d\left(x^{i} \otimes W_{i}\right), \tag{4.4.1}
\end{equation*}
$$

for every function $f \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. We denote G_{i} simply by $\partial_{W_{i}} g$. See [16] for further details on this space.
Let $\lambda>0, f$ be a functional on $H_{1, W}\left(\mathbb{T}^{d}\right), u_{N}$ be the unique weak solution of

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f,
$$

and u_{0} be the unique weak solution of

$$
\begin{equation*}
\lambda u_{0}-\nabla A \nabla_{W} u_{0}=f . \tag{4.4.2}
\end{equation*}
$$

For more details on existence and uniqueness of such solutions see [16].
In this context, we say that the diagonal matrix A is a homogenization of the sequence of random matrices A^{N}, denoted by $A^{N} \xrightarrow{H} A$, if the following conditions hold:

- u_{N} converges weakly in $H_{1, W}\left(\mathbb{T}^{d}\right)$ to u_{0}, when $N \rightarrow \infty$;
- $a_{i}^{N} \partial_{W_{i}}^{N} u^{N} \rightarrow a_{i} \partial_{W_{i}} u$, weakly in $L_{x^{i} \otimes W_{i}}^{2}\left(\mathbb{T}^{d}\right)$ when $N \rightarrow \infty$.

Theorem 4.4.1. Let A^{N} be a sequence of ergodic random matrices, such as the one that defines our random environment. Then, almost surely, $A^{N}(\omega)$ admits a homogenization, where the homogenized matrix A does not depend on the realization ω.

The following proposition regards the convergence of energies:
Proposition 4.4.2. Let $A^{N} \xrightarrow{H} A$, as $N \rightarrow \infty$, with u_{N} being the solution of

$$
\lambda u_{N}-\nabla^{N} A^{N} \nabla_{W}^{N} u_{N}=f
$$

where f is a fixed functional on $H_{1, W}\left(\mathbb{T}^{d}\right)$. Then, the following limit relations hold true:

$$
\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} u_{N}^{2}(x) \rightarrow \int_{\mathbb{T}^{d}} u_{0}^{2}(x) d x
$$

and

$$
\begin{aligned}
\frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} a_{j j}^{N}(x)\left(\partial_{W_{j}}^{N} u_{N}(x)\right)^{2} & {\left[W_{j}\left(\left(x_{i}+1\right) / N\right)-W_{j}\left(x_{i} / N\right)\right] } \\
& \rightarrow \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j j}(x)\left(\partial_{W_{j}} u_{0}(x)\right)^{2} d\left(x^{j} \otimes W_{j}\right),
\end{aligned}
$$

as $N \rightarrow \infty$.

4.4.1 Martingale Problem

We say that $Y_{t} \in \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ solves the martingale problem with initial condition Y_{0} if for any $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$

$$
\begin{equation*}
M_{t}(G)=Y_{t}(G)-Y_{0}(G)-\phi^{\prime}(\rho) \int_{0}^{t} Y_{s}\left(\nabla A \nabla_{W} G\right) d s \tag{4.4.3}
\end{equation*}
$$

is a martingale with quadratic variation

$$
\begin{equation*}
\left\langle M_{t}(G)\right\rangle=2 t \chi(\rho) \phi^{\prime}(\rho) \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j j}\left(\partial_{W_{j}} G\right)^{2} d\left(x^{j} \otimes W_{j}\right) \tag{4.4.4}
\end{equation*}
$$

Observe that if Y_{t} is the generalized Ornstein-Uhlenbeck process with characteristics $\phi^{\prime}(\rho) \nabla A \nabla_{W}$ and $\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} \nabla_{W}$, then Y_{t} solves the martingale problem above.

Recall that Y^{N} is the bounded linear functional acting on functions $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$:

$$
\begin{equation*}
Y_{t}^{N}(G)=\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}^{d}} G(x)\left[\eta_{t}(x)-\rho\right] \tag{4.4.5}
\end{equation*}
$$

This process $Y_{.}^{N}$ is called density fluctuation field.
Denote by Q_{N} the distribution in $D\left([0, T], \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)\right)$ induced by the process Y_{t}^{N} and initial distribution ν_{ρ}. Our goal is to show that any limit point of Y^{N} solves the martingale problem. To this end, we need to introduce the corrected density fluctuation field:

$$
\begin{equation*}
Y_{t}^{N, \lambda}(G)=\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}^{d}} G_{N}^{\lambda}(x)\left[\eta_{t}(x)-\rho\right] \tag{4.4.6}
\end{equation*}
$$

where G_{N}^{λ} is the weak solution for the equation

$$
\begin{equation*}
\lambda G_{N}^{\lambda}-L_{N} G_{N}^{\lambda}=\lambda G-\nabla A \nabla_{W} G \tag{4.4.7}
\end{equation*}
$$

that, via homogenization, converges to G which is the trivial solution of the problem

$$
\lambda G-\nabla A \nabla_{W} G=\lambda G-\nabla A \nabla_{W} G
$$

The processes $Y_{.}^{N}$ and $Y_{.}^{N, \lambda}$ have the same asymptotic behavior, as we will see. But some calculations are simpler with one of them than with the other. In this way, we have defined two processes in $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$, where $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ is the topologic dual of the space $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$.

Given a process Y. in $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$, and for $t \geq 0$, let \mathcal{F}_{t} be the σ-algebra generated by $Y_{s}(H)$ for $s \leq t$ and $H \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. Furthermore, set $\mathcal{F}_{\infty}=\sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right)$. Denote by Q_{N}^{λ} the distribution on $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$ induced by the corrected density fluctuation field $Y_{.}^{N, \lambda}$ and initial distribution ν_{ρ}.

Theorem 4.2.1 is a consequence of the following result about the corrected fluctuation field.
Theorem 4.4.3. Let Q be the probability measure on $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$ corresponding to the generalized Ornstein-Uhlenbeck process of mean zero and characteristics $\phi^{\prime}(\rho) \nabla \cdot A \nabla_{W}, \sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} \nabla_{W}$. Then the sequence $\left\{Q_{N}^{\lambda}\right\}_{N \geq 1}$ converges weakly to the probability measure Q.

Note also that the above theorem implies that any limit point of Y^{N} solves the martingale problem (4.4.3)-(4.4.4).

Before proving the Theorem 4.4.3, we will state and prove a lemma. This lemma shows that tightness of $Y_{t}^{N, \lambda}$ follows from tightness of Y_{t}^{N}, and even more, that they have the same limit points. So we can derive our main theorem from Theorem 4.4.3.
Lemma 4.4.4. For all $t \in[0, T]$ and $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right), \lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[Y_{t}^{N}(G)-Y_{t}^{N, \lambda}(G)\right]^{2}=0$.
Proof. By convergence of energies, we have that $\lim _{N \rightarrow \infty} G_{N}^{\lambda}=G$ in $L_{N}^{2}\left(\mathbb{T}^{d}\right)$, i.e.

$$
\begin{equation*}
\left\|G_{N}^{\lambda}-G\right\|_{N}^{2}:=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[G_{N}^{\lambda}(x / N)-G(x / N)\right]^{2} \rightarrow 0, \quad \text { as } \quad N \rightarrow \infty \tag{4.4.8}
\end{equation*}
$$

Since ν_{ρ} is a product measure we obtain

$$
\begin{gathered}
E_{\nu_{\rho}}\left[Y_{t}^{N}(G)-Y_{t}^{N, \lambda}(G)\right]^{2}= \\
=E_{\nu_{\rho}}\left[\frac{1}{N^{d}} \sum_{x, y \in \mathbb{T}_{N}^{d}}\left[G_{N}^{\lambda}(x / N)-G(x / N)\right]\left[G_{N}^{\lambda}(y / N)-G(y / N)\right]\left(\eta_{t}(x)-\rho\right)\left(\eta_{t}(y)-\rho\right)\right]= \\
=E_{\nu_{\rho}}\left[\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[G_{N}^{\lambda}(x / N)-G(x / N)\right]^{2}\left(\eta_{t}(x)-\rho\right)^{2}\right] \leq \frac{C(\rho)}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[G_{N}^{\lambda}(x / N)-G(x / N)\right]^{2},
\end{gathered}
$$

where $C(\rho)$ is a constant that depend on ρ. By (4.4.8) the last expression vanishes as $N \rightarrow \infty$.

Proof of Theorem 4.4.3

Consider the martingale

$$
\begin{equation*}
M_{t}^{N}(G)=Y_{t}^{N}(G)-Y_{0}^{N}(G)-\int_{0}^{t} N^{2} L_{N} Y_{s}^{N}(G) d s \tag{4.4.9}
\end{equation*}
$$

associated to the original process and

$$
\begin{equation*}
M_{t}^{N, \lambda}(G)=Y_{t}^{N, \lambda}(G)-Y_{0}^{N, \lambda}(G)-\int_{0}^{t} N^{2} L_{N} Y_{s}^{N, \lambda}(G) d s \tag{4.4.10}
\end{equation*}
$$

associated to the corrected process.
A long, albeit simple, computation shows that the quadratic variation of the martingale $M_{t}^{N, \lambda}(G)$, $\left\langle M^{N, \lambda}(G)\right\rangle_{t}$, is given by:

$$
\begin{align*}
\frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}} a_{j j}^{N}\left[\partial_{W_{j}}^{N} G_{N}^{\lambda}(x / N)\right]^{2} & {\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right] \times } \tag{4.4.11}\\
& \times \int_{0}^{t} c_{x, x+e_{j}}\left(\eta_{s}\right)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2} d s
\end{align*}
$$

Is not difficult see that the quadratic variation of the martingale $M_{t}^{N}(G),\left\langle M^{N}(G)\right\rangle_{t}$, has the expression (4.4.11) with G replacing G_{N}^{λ}. Further,

$$
\begin{aligned}
E_{\nu_{\rho}}\left[c_{x, x+e_{j}}(\eta)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2}\right] & =E_{\nu_{\rho}}\left[1+b\left(\eta\left(x-e_{j}\right)+\eta(x)\right)\right] E_{\nu_{\rho}}\left[\left(\eta\left(x+e_{j}\right)-\eta(x)\right)^{2}\right] \\
& =2(1+2 b \rho) \rho(1-\rho) \\
& =2 \phi^{\prime}(\rho) \chi(\rho) .
\end{aligned}
$$

Lemma 4.4.5. Fix $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ and $t>0$, and let $\left\langle M^{N, \lambda}(G)\right\rangle_{t}$ and $\left\langle M^{N}(G)\right\rangle_{t}$ be the quadratic variation of the martingales $M_{t}^{N, \lambda}(G)$ and $M_{t}^{N}(G)$, respectively. Then,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\left\langle M^{N, \lambda}(G)\right\rangle_{t}-\left\langle M^{N}(G)\right\rangle_{t}\right]^{2}=0 \tag{4.4.12}
\end{equation*}
$$

Proof. Fix $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ and $t>0$. A straightforward calculation shows that

$$
\begin{gathered}
E_{\nu_{\rho}}\left[\left\langle M^{N, \lambda}(G)\right\rangle_{t}-\left\langle M^{N}(G)\right\rangle_{t}\right]^{2} \leq \\
\leq\left[k^{2} t^{2} \frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}} a_{j j}^{N}\left[\left(\partial_{W_{j}}^{N} G_{N}^{\lambda}(x / N)\right)^{2}-\left(\partial_{W_{j}}^{N} G(x / N)\right)^{2}\right]\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]\right]^{2},
\end{gathered}
$$

where the constant k comes from the integral term. By the convergence of energies (Proposition 4.4.2), the last term vanishes as $N \rightarrow \infty$.

Lemma 4.4.6. Let $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ and $d \geq 1$. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\frac{1}{N^{d-1}} \int_{0}^{t} d s\right. & \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}} a_{j j}^{N}\left(\partial_{W_{j}}^{N} G(x / N)\right)^{2}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right] \times \\
& \left.\times\left[c_{x, x+e_{j}}\left(\eta_{s}\right)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2}-2 \chi(\rho) \phi^{\prime}(\rho)\right]\right]^{2}=0 .
\end{aligned}
$$

Proof. The case $d=1$ follows from calculations similar to the ones found in Lemma 12 of [8].
Fix $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ and $d>1$. The term in the previous expression is less than or equal to

$$
\begin{equation*}
\frac{t^{2} \theta^{4} C(\rho)}{N^{d-1}}\left\|\nabla_{W}^{N} G\right\|_{W, N, 4}^{4} \tag{4.4.13}
\end{equation*}
$$

where

$$
\left\|\nabla_{W}^{N} G\right\|_{W, N, 4}^{4}:=\frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}}\left(\partial_{W_{j}}^{N} G(x / N)\right)^{4}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]
$$

Thus, since for $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right),\left\|\nabla_{W}^{N} G\right\|_{W, N, 4}^{4}$ is bounded, the term in (4.4.13) converges to zero as $N \rightarrow$ ∞.

So, by Lemma 4.4.5 and 4.4.6, $\left\langle M^{N, \lambda}(G)\right\rangle_{t}$ is given by

$$
\frac{2 t \chi(\rho) \phi^{\prime}(\rho)}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}} a_{j j}^{N}\left(\partial_{W_{j}}^{N} G_{N}^{\lambda}(x / N)\right)^{2}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right]
$$

plus a term that vanishes in $L_{\nu_{\rho}}^{2}\left(\mathbb{T}^{d}\right)$ as $N \rightarrow \infty$. By the convergence of energies, Proposition 4.4.2, it converges, as $N \rightarrow \infty$, to

$$
2 t \chi(\rho) \phi^{\prime}(\rho) \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j j}^{N}\left(\partial_{W_{j}} G(x)\right)^{2} d x^{j} \otimes W_{j}
$$

Our goal now consists in showing that it is possible to write the integral part of the martingale as the integral of a function of the density fluctuation field plus a term that goes to zero in $L_{\nu_{\rho}}^{2}\left(\mathbb{T}^{d}\right)$. By a long, but simple, computation, we obtain that

$$
\begin{aligned}
& N^{2} L_{N} Y_{s}^{N, \lambda}(G)=\sum_{j=1}^{d}\left\{\frac{1}{N^{d / 2}} \sum_{x \in T_{N}^{d}} \mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N) \eta_{s}(x)\right. \\
& \quad+\frac{b}{N^{d / 2}} \sum_{x \in T_{N}^{d}}\left[\mathbb{L}_{N}^{j} G_{N}^{\lambda}\left(\left(x+e_{j}\right) / N\right)+\mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N)\right]\left(\tau_{x} h_{1, j}\right)\left(\eta_{s}\right) \\
& \left.\quad-\frac{b}{N^{d / 2}} \sum_{x \in T_{N}^{d}} \mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N)\left(\tau_{x} h_{2, j}\right)\left(\eta_{s}\right)\right\},
\end{aligned}
$$

where $\left\{\tau_{x}: x \in \mathbb{Z}^{d}\right\}$ is the group of translations, so that $\left(\tau_{x} \eta\right)(y)=\eta(x+y)$ for x, y in \mathbb{Z}^{d}, and the sum is understood modulo N. Also, $h_{1, j}, h_{2, j}$ are the cylinder functions

$$
h_{1, j}(\eta)=\eta(0) \eta\left(e_{j}\right), \quad h_{2, j}(\eta)=\eta\left(-e_{j}\right) \eta\left(e_{j}\right) .
$$

Note that inside the expression $N^{2} L_{N} Y_{s}^{N, \lambda}$ we may replace $\mathbb{L}_{N}^{j} G_{N}^{\lambda}$ by $a_{j} \partial_{x_{j}} \partial_{W_{j}} G$. Indeed, the expression

$$
\begin{aligned}
& E_{\nu(\rho)}\left\{\int_{0}^{t} \sum_{j=1}^{d} \frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N)-a_{j} \partial_{x_{j}} \partial_{W_{j}} G(x / N)\right]\left(\eta_{s}(x)-\rho\right)+\right. \\
& +\frac{b}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\mathbb{L}_{N}^{j} G_{N}^{\lambda}\left(\left(x+e_{j}\right) / N\right)-a_{j} \partial_{x_{j}} \partial_{W_{j}} G\left(\left(x+e_{j}\right) / N\right)+\right. \\
& \left.\mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N)-a_{j} \partial_{x_{j}} \partial_{W_{j}} G(x / N)\right]\left(\left(\tau_{x} h_{1, j}\right)\left(\eta_{s}\right)-\rho^{2}\right)- \\
& \left.\quad-\frac{b}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\mathbb{L}_{N}^{j} G_{N}^{\lambda}(x / N)-a_{j} \partial_{x_{j}} \partial_{W_{j}} G(x / N)\right]\left(\left(\tau_{x} h_{2, j}\right)\left(\eta_{s}\right)-\rho^{2}\right)\right\}^{2}
\end{aligned}
$$

is less than or equal to

$$
C(\rho, b) \int_{0}^{t} \frac{1}{N^{d}} \sum_{x \in \mathbb{T}^{d}}\left[L_{N} G_{N}^{\lambda}(x / N)-\nabla A \nabla_{W} G(x / N)\right]^{2}
$$

Now, recall that G_{N}^{λ} is solution of the equation (4.4.7), and therefore, the previous expression is less than or equal to

$$
\frac{t C(\rho, b)}{\lambda^{2}}\left\|G_{N}^{\lambda}-G\right\|_{N}^{2}
$$

thus, by homogenization and energy estimates in Theorem 4.4.1 and Proposition 4.4.2, respectively, the last expression converges to zero as $N \rightarrow \infty$.

By the Boltzmann Gibbs principle, Theorem 4.6.1, we can replace $\left(\tau_{x} h_{i, j}\right)\left(\eta_{s}\right)-\rho^{2}$ by $2 \rho\left[\eta_{s}(x)-\rho\right]$ for $i=1,2$. Doing so, the martingale (4.4.10) can be written as

$$
\begin{equation*}
M_{t}^{N, \lambda}(G)=Y_{t}^{N, \lambda}(G)-Y_{0}^{N, \lambda}(G)-\int_{0}^{t} \frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}^{d}} \nabla A \nabla_{W} G(x / N) \phi^{\prime}(\rho)\left(\eta_{s}-\rho\right) d s \tag{4.4.14}
\end{equation*}
$$

plus a term that vanishes in $L_{\nu_{\rho}}^{2}\left(\mathbb{T}^{d}\right)$ as $N \rightarrow \infty$.
Notice that, by (4.4.5), the integrand in the previous expression is a function of the density fluctuation field Y_{t}^{N}. By Lemma 4.4.4, we can replace the term inside the integral of the above expression by a term which is a function of the corrected density fluctuation field $Y_{t}^{N, \lambda}$.
¿From the results of Section 4.5, the sequence $\left\{Q_{N}^{\lambda}\right\}_{N \geq 1}$ is tight and let Q^{λ} be a limit point of it. Let Y_{t} be the process in $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$ induced by the canonical projections under Q^{λ}. Taking the limit as $N \rightarrow \infty$, under an appropriate subsequence, in expression (4.4.14), we obtain that

$$
\begin{equation*}
M_{t}^{\lambda}(G)=Y_{t}(G)-Y_{0}(G)-\int_{0}^{t} Y_{s}\left(\phi^{\prime}(\rho) \nabla \cdot A \nabla_{W} G\right) d s \tag{4.4.15}
\end{equation*}
$$

where M_{t}^{λ} is some $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-valued process. In fact, M_{t}^{λ} is a martingale. To see this, note that for a measurable set U with respect to the canonical σ-algebra $\mathcal{F}_{t}, E_{Q_{N}^{\lambda}}\left[M_{t}^{N, \lambda}(G) \mathbf{1}_{U}\right]$ converges to $E_{Q^{\lambda}}\left[M_{t}^{\lambda}(G) \mathbf{1}_{U}\right]$. Since $M_{.}^{N, \lambda}(G)$ is a martingale, $E_{Q_{N}^{\lambda}}\left[M_{T}^{N, \lambda}(G) \mathbf{1}_{U}\right]=E_{Q_{N}^{\lambda}}\left[M_{t}^{N, \lambda}(G) \mathbf{1}_{U}\right]$. Taking a further subsequence if necessary, this last term converges to $E_{Q^{\lambda}}\left[M_{t}^{\lambda}(G) \mathbf{1}_{U}\right]$, which proves that $M_{.}^{\lambda}(G)$ is a martingale for any $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. Since all the projections of M_{t}^{λ} are martingales, we conclude that M_{t}^{λ} is a $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-valued martingale.

Now, we need obtain the quadratic variation $\left\langle M^{\lambda}(G)\right\rangle_{t}$ of the martingale $M_{t}^{\lambda}(G)$. A simple application of Tchebyshev's inequality proves that $\left\langle M^{N, \lambda}(G)\right\rangle_{t}$ converges in probability to

$$
2 t \chi(\rho) \phi^{\prime}(\rho) \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j}\left[\partial_{W_{j}} G\right]^{2} d\left(x^{j} \otimes W_{j}\right)
$$

Where $\chi(\rho)$ stand for the static compressibility given by $\chi(\rho)=\rho(1-\rho)$. Remember the definition of quadratic variation. We need to prove that

$$
N_{t}^{\lambda}(G):=M_{t}^{\lambda}(G)^{2}-2 t \chi(\rho) \phi^{\prime}(\rho) \sum_{j=1}^{d} \int_{\mathbb{T}^{d}} a_{j}\left[\partial_{W_{j}} G\right]^{2} d\left(x^{j} \otimes W_{j}\right)
$$

is a martingale. The same argument we used above applies now if we can show that $\sup _{N} E_{Q_{N}^{\lambda}}\left[M_{T}^{N, \lambda}(G)^{4}\right]<$ ∞ and $\sup _{N} E_{Q_{N}^{\lambda}}\left[\left\langle M^{N, \lambda}(G)\right\rangle_{T}^{2}\right]<\infty$. Both bounds follows easily from the explicit form of $\left\langle M^{N, \lambda}(G)\right\rangle_{t}$ and (4.4.14).

On the other hand, by a standard central limit theorem, Y_{0} is a Gaussian field with covariance

$$
E\left[Y_{0}(G) Y_{0}(H)\right]=\chi(\rho) \int_{\mathbb{T}^{d}} G(x) H(x) d x
$$

Therefore, by Theorem 4.4.7, Q^{λ} is equal to the probability distribution Q of a generalized OrnsteinUhlenbeck process in $D\left([0, T], \mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right.$) (and it does not depend on λ). By uniqueness of the generalized Ornstein-Uhlenbeck processes (also due to Theorem 4.4.7), the sequence $\left\{Q_{N}^{\lambda}\right\}_{N \geq 1}$ has at most one limit point, and from tightness, it does have a unique limit point. This concludes the proof of Theorem 4.4.3.

4.4.2 Generalized Ornstein-Uhlenbeck Processes

In this subsection we show that the generalized Ornstein-Uhlenbeck process obtained as the solution martingale problem which we are interested, is also a $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-solution of a stochastic differential equation, and then we apply the theory in Appendix to conclude that there is at most one solution of the martingale problem. Moreover, we also conclude that this process is a Gaussian process.

Theorem 4.4.7. Let Y_{0} be a Gaussian field on $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$. Then the unique $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-solution, Y_{t}, of the stochastic differential equation

$$
\begin{equation*}
d Y_{t}=\phi^{\prime}(\rho) \nabla A \nabla_{W} Y_{t} d t+\sqrt{2 \chi(\rho) \phi^{\prime}(\rho) A} d N_{t} \tag{4.4.16}
\end{equation*}
$$

solves the martingale problem (4.4.3)-(4.4.4) with initial condition Y_{0}, where N_{t} is a mean-zero $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$ valued martingale with quadratic variation given by

$$
\langle N(G)\rangle_{t}=t \sum_{j=1}^{d} \int_{\mathbb{T}^{d}}\left[\partial_{W_{j}} G\right]^{2} d\left(x^{j} \otimes W_{j}\right)
$$

Moreover, Y_{t} is a Gaussian process.
Proof. In view of definition of solutions in Appendix, Y_{t} is a $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-solution of (4.4.16). In fact, by hypothesis Y_{t} satisfies the integral identity (4.4.3), and is also an additive functional of a Markov process.

We now check the conditions in Proposition 4.7 .1 to ensure uniqueness of $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-solutions of (4.4.16). Since by hypothesis Y_{0} is a Gaussian field, condition 1 is satisfied, and since the martingale M_{t} has the quadratic variation given by (4.4.4), we use Remark 4.7.2 to conclude that condition 2 holds. Condition 3 follows from Lemmas 4.3.4 and 4.3.5. Therefore Y_{t} is unique.

Finally, by Blumenthal's 0-1 law for Markov processes, M_{t} and Y_{0} are independent, since for measurable sets A and $B, P\left(Y_{0} \in A, M_{t} \in B\right)=E\left(\mathbf{1}_{Y_{0} \in A} \mathbf{1}_{M_{t} \in B}\right)=E\left[E\left(\mathbf{1}_{Y_{0} \in A} \mathbf{1}_{M_{t} \in B} \mid \mathcal{F}_{0+}\right)\right]=E\left[\mathbf{1}_{Y_{0} \in A} E\left(\mathbf{1}_{M_{t} \in B} \mid \mathcal{F}_{0+}\right)\right]=$ $E\left[\mathbf{1}_{Y_{0} \in A} P\left(M_{t} \in B\right)\right]=P\left(Y_{0} \in A\right) P\left(M_{t} \in B\right)$. Applying Lévy's martingale characterization of Brownian motions, the quadratic variation of M_{t}, given by (4.4.4), yields that M_{t} is a time deformation of a Brownian motion. Therefore, M_{t} is a Gaussian process with independent increments. Since Y_{0} is a Gaussian field, we apply Proposition 4.7 .3 to conclude that Y_{t} is a Gaussian process in $D\left([0, T], S_{W}^{\prime}\left(\mathbb{T}^{d}\right)\right)$.

4.5 Tightness

In this section we prove tightness of the density fluctuation field $\left\{Y_{.^{N}}\right\}_{N}$ introduced in Section 4.2. We begin by stating Mitoma's criterion [13]:

Proposition 4.5.1. Let Φ_{∞} be a nuclear Fréchet space and Φ_{∞}^{\prime} its topological dual. Let $\left\{Q^{N}\right\}_{N}$ be a sequence of distributions in $D\left([0, T], \Phi_{\infty}^{\prime}\right)$, and for a given function $G \in \Phi_{\infty}$, let $Q^{N, G}$ be the distribution in $D([0, T], \mathbb{R})$ defined by $Q^{N, G}[y \in D([0, T], \mathbb{R}) ; y(\cdot) \in A]=Q^{N}\left[Y \in D\left([0, T], \Phi_{\infty}^{\prime}\right) ; Y(\cdot)(G) \in A\right]$. Therefore, the sequence $\left\{Q^{N}\right\}_{N}$ is tight if and only if $\left\{Q^{N, G}\right\}_{N}$ is tight for any $G \in \Phi_{\infty}$.
¿From Mitoma's criterion, $\left\{Y_{.}^{N}\right\}_{N}$ is tight if and only if $\left\{Y^{N}(G)\right\}_{N}$ is tight for any $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$, since $\mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ is a nuclear Fréchet space. By Dynkin's formula and after some manipulations, we see that

$$
\begin{align*}
& Y_{t}^{N}(G)=Y_{0}^{N}(G) \int_{0}^{t} \sum_{j=1}^{d}\left\{\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} \mathbb{L}_{N}^{j} G_{N}(x / N) \eta_{s}(x)\right. \\
&+\frac{b}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\mathbb{L}_{N}^{j} G_{N}\left(\left(x+e_{j}\right) / N\right)+\mathbb{L}_{N}^{j} G_{N}(x / N)\right]\left(\tau_{x} h_{1, j}\right)\left(\eta_{s}\right) \\
&\left.\quad-\frac{b}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} \mathbb{L}_{N}^{j} G_{N}(x / N)\left(\tau_{x} h_{2, j}\right)\left(\eta_{s}\right)\right\} d s+M_{t}^{N}(G) \tag{4.5.1}
\end{align*}
$$

where $M_{t}^{N}(G)$ is a martingale of quadratic variation

$$
\begin{aligned}
\left\langle M^{N}(G)\right\rangle_{t}=\frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}^{d}} a_{j j}^{N} & {\left[\partial_{W_{j}}^{N} G_{N}(x / N)\right]^{2}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x / N)\right] \times } \\
& \times \int_{0}^{t} c_{x, x+e_{j}}\left(\eta_{s}\right)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2} d s .
\end{aligned}
$$

In order to prove tightness for the sequence $\left\{Y_{.^{N}}(G)\right\}_{N}$, it is enough to prove tightness for $\left\{Y_{0}^{N}(G)\right\}_{N}$, $\left\{M_{\cdot}^{N}(G)\right\}_{N}$ and the integral term in (4.5.1). The easiest one is the initial condition: from the usual central limit theorem, $Y_{0}^{N}(G)$ converges to a normal random variable of mean zero and variance $\chi(\rho) \int G(x)^{2} d x$, where $\chi(\rho)=\rho(1-\rho)$. For the other two terms, we use Aldous' criterion:
Proposition 4.5.2 (Aldous' criterion). A sequence of distributions $\left\{P^{N}\right\}$ in the path space $D([0, T], \mathbb{R})$ is tight if:
i) For any $t \in[0, T]$ the sequence $\left\{P_{t}^{N}\right\}$ of distributions in \mathbb{R} defined by $P_{t}^{N}(A)=P^{N}[y \in D([0, T], \mathbb{R}): y(t) \in A]$ is tight,
ii) For any $\epsilon>0$,

$$
\lim _{\delta>0} \varlimsup_{n \rightarrow \infty} \sup _{\substack{\tau \in \Upsilon_{T} \\ \theta \leq \delta}} P^{N}[y \in D([0, T], \mathbb{R}):|y(\tau+\theta)-y(\tau)|>\epsilon]=0,
$$

where Υ_{T} is the set of stopping times bounded by T and $y(\tau+\theta)=y(T)$ if $\tau+\theta>T$.
Now we prove tightness of the martingale term. By the optional sampling theorem, we have

$$
\begin{align*}
Q_{N}[\mid & \left.M_{\tau+\theta}^{N}(G)-M_{\tau}^{N}(G) \mid>\epsilon\right] \leq \frac{1}{\epsilon^{2}} E_{Q_{N}}\left[\left\langle M_{\tau+\theta}^{N}(G)\right\rangle-\left\langle M_{\tau}^{N}(G)\right\rangle\right] \\
& =\frac{1}{\epsilon^{2}}\left[\left\langle M_{\tau+\theta}^{N}(G)\right\rangle-\left\langle M_{\tau}^{N}(G)\right\rangle\right] \\
& =\frac{1}{\epsilon^{2} N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} a_{j j}(x)\left[\partial_{W_{j}}^{N} G(x / N)\right]^{2}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x)\right] \\
& \times \int_{t}^{t+\delta} c_{x, x+e_{j}}\left(\eta_{s}\right)\left[\eta_{s}\left(x+e_{j}\right)-\eta_{s}(x)\right]^{2} d s \\
& \leq \frac{\delta}{\epsilon^{2}}(1+2|b|) \theta \frac{1}{N^{d-1}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}}\left[\partial_{W_{j}}^{N} G(x / N)\right]^{2}\left[W\left(\left(x+e_{j}\right) / N\right)-W(x)\right] \tag{4.5.2}\\
& \leq \frac{\delta}{\epsilon^{2}}(1+2|b|) \theta\left(\left\|\nabla_{W} G\right\|_{W}^{2}+\delta\right),
\end{align*}
$$

for N sufficiently large, since the rightmost term on (4.5.2) converges to $\left\|\nabla_{W} G\right\|_{W}^{2}$, as $N \rightarrow \infty$. Therefore, the martingale $M_{t}^{N}(G)$ satisfies the conditions of Aldous' criterion. The integral term can be handled in a similar way:

$$
\begin{aligned}
E_{Q_{N}}[& \left(\int _ { \tau } ^ { \tau + \delta } \frac { 1 } { N ^ { d / 2 } } \sum _ { j = 1 } ^ { d } \sum _ { x } \left\{\mathbb{L}_{N}^{j} G(x / N)\left(\eta_{t}-\rho\right)\right.\right. \\
& +b\left[\mathbb{L}_{N}^{j} G\left(\left(x+e_{j}\right) / N\right)+\mathbb{L}_{N}^{j} G(x / N)\right]\left(\tau_{x} h_{1}-\rho^{2}\right) \\
& \left.\left.-b \mathbb{L}_{N}^{j} G(x / N)\left(\tau_{x} h_{2}-\rho^{2}\right)\right)^{2} d t\right] \\
& \leq \delta C(b) \frac{1}{N^{d}} \sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}}\left(\mathbb{L}_{N}^{j} G(x / N)\right)^{2} \\
& \leq \delta C(G, b)
\end{aligned}
$$

where $C(b)$ is a constant that depends on b, and $C(G, b)$ is a constant that depends on $C(b)$ and on the function $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$. Therefore, we conclude, by Mitoma's criterion, that the sequence $\left\{Y_{.}^{N}\right\}_{N}$ is tight. Thus, the sequence of $\mathcal{S}_{W}^{\prime}\left(\mathbb{T}^{d}\right)$-valued martingales $\left\{M_{\cdot}^{N}\right\}_{N}$ is also tight.

4.6 Boltzmann-Gibbs Principle

We show in this section that the martingales $M_{t}^{N}(G)$ introduced in Section 4.4 can be expressed in terms of the fluctuation fields Y_{t}^{N}. This replacement of the cylinder function $\left(\tau_{x} h_{i, j}\right)\left(\eta_{s}\right)-\rho^{2}$ by $2 \rho\left[\eta_{s}(x)-\rho\right]$ for $i=1,2$, constitutes one of the main steps toward the proof of equilibrium fluctuations.

Recall that $(\Omega, \mathcal{F}, \mu)$ is a standard probability space where we consider the vector-valued \mathcal{F}-measurable functions $\left\{a_{j}(\omega) ; j=\ldots, d\right\}$ that form our random environment (see Sections 4.2 and 4.4 for more details).

Take a function $f: \Omega \times\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$. Fix a realization $\omega \in \Omega$, and let $x \in \mathbb{T}_{N}^{d}$, define

$$
f(x, \eta)=f(x, \eta, \omega)=: f\left(T_{N x} \omega, \tau_{x} \eta\right)
$$

where $\tau_{x} \eta$ is the shift of η to $x: \tau_{x} \eta(y)=\eta(x+y)$.
We say that f is local if there exists $R>0$ such that $f(\omega, \eta)$ depends only on the values of $\eta(y)$ for $|y| \leq R$. On this case, we can consider f as defined in all the spaces $\Omega \times\{0,1\}^{\mathbb{T}_{N}^{d}}$ for $N \geq R$.

We say that f is Lipschitz if there exists $c=c(\omega)>0$ such that for all $x,\left|f(\omega, \eta)-f\left(\omega, \eta^{\prime}\right)\right| \leq$ $c\left|\eta(x)-\eta^{\prime}(x)\right|$ for any $\eta, \eta^{\prime} \in\{0,1\}^{\mathbb{T}_{N}^{d}}$ such that $\eta(y)=\eta^{\prime}(y)$ for any $y \neq x$. If the constant c can be chosen independently of ω, we say that f is uniformly Lipschitz.

Theorem 4.6.1. (Boltzmann-Gibbs principle)
For every $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$, every $t>0$ and every local, uniformly Lipschitz function $f: \Omega \times\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$, it holds

$$
\begin{equation*}
\lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\int_{0}^{t} \frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} G(x) V_{f}\left(x, \eta_{s}\right) d s\right]^{2}=0 \tag{4.6.1}
\end{equation*}
$$

where

$$
V_{f}(x, \eta)=f(x, \eta)-E_{\nu_{\rho}}[f(x, \eta)]-\partial_{\rho} E\left[\int f(x, \eta) d \nu_{\rho}(\eta)\right](\eta(x)-\rho)
$$

Here, E denotes the expectation with respect to μ, the random environment.
Let $f: \Omega \times\{0,1\}^{T_{N}^{d}} \rightarrow \mathbb{R}$ be a local, uniformly Lipschitz function and take $f(x, \eta)=f\left(\theta_{N x} \omega, \tau_{x} \eta\right)$. Fix a function $G \in \mathcal{S}_{W}\left(\mathbb{T}^{d}\right)$ and an integer K that shall increase to ∞ after N. For each N, we subdivide \mathbb{T}_{N}^{d} into non-overlapping boxes of linear size K. Denote them by $\left\{B_{i}, 1 \leq i \leq M^{d}\right\}$, where $M=\left[\frac{N}{K}\right]$. More precisely,

$$
B_{i}=y_{i}+\{1, \ldots, K\}^{d}
$$

where $y_{i} \in \mathbb{T}_{N}^{d}$, and $B_{i} \cap B_{r}=\emptyset$ if $i \neq r$. We assume that the points y_{i} have the same relative position on the boxes.

Let B_{0} be the set of points that are not included in any B_{i}, then $\left|B_{0}\right| \leq d K N^{d-1}$. If we restrict the sum in the expression that appears inside the integral in (4.6.1) to the set B_{0}, then its $L_{\nu_{\rho}}^{2}\left(\mathbb{T}^{d}\right)$-norm clearly vanishes as $N \rightarrow+\infty$, since the variables $V_{f}(x, \eta)$ are independent and have mean zero.

Let $\Lambda_{s_{f}}$ be the smallest cube centered at the origin that contains the support of f and define s_{f} as the radius of $\Lambda_{s_{f}}$. Denote by B_{i}^{0} the interior of the box B_{i}, namely the sites x in B_{i} that are at a distance at least $s_{f}+2$ from the boundary:

$$
B_{i}^{0}=\left\{x \in B_{i}, d\left(x, \mathbb{T}_{N}^{d} \backslash B_{i}\right)>s_{f}+2\right\}
$$

Denote also by B^{c} the set of points that are not included in any B_{i}^{0}. By construction, it is easy to see that $\left|B^{c}\right| \leq d N^{d}\left(\frac{c(f)}{K}+\frac{K}{N}\right)$, where $c(f)$ is a constant that depends on f.

We have that for continuous $H: \mathbb{T}^{d} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\frac{1}{N^{d / 2}} \sum_{x \in \mathbb{T}_{N}^{d}} H(x) V_{f}\left(x, \eta_{t}\right) & =\frac{1}{N^{d / 2}} \sum_{x \in B^{c}} H(x) V_{f}\left(x, \eta_{t}\right)+ \\
& +\frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} \sum_{x \in B_{i}^{0}}\left[H(x)-H\left(y_{i}\right)\right] V_{f}\left(x, \eta_{t}\right)+\frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right) \sum_{x \in B_{i}^{0}} V_{f}\left(x, \eta_{t}\right) .
\end{aligned}
$$

Note that we may take H continuous, since the continuous functions are dense in $L^{2}\left(\mathbb{T}^{d}\right)$. The first step is to prove that

$$
\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\int_{o}^{t} \frac{1}{N^{d / 2}} \sum_{x \in B^{c}} H(x) V_{f}\left(x, \eta_{t}\right) d s\right]^{2}=0
$$

As ν_{ρ} is an invariant product measure and V_{f} has mean zero with respect to the measure ν_{ρ}, the last expectation is bounded above by

$$
\frac{t^{2}}{N^{d}} \sum_{\substack{x, y \in B^{c} \\|x-y| \leq 2 s_{f}}} H(x) H(y) E_{\nu_{\rho}}\left[V_{f}(x, \eta) V_{f}(y, \eta)\right]
$$

Since V_{f} belongs to $L_{\nu_{\rho}}^{2}\left(\mathbb{T}^{d}\right)$ and $\left|B^{c}\right| \leq d N^{d}\left(\frac{c(f)}{K}+\frac{K}{N}\right)$, the last expression vanishes by taking first $N \rightarrow+\infty$ and then $K \rightarrow+\infty$.
¿From the continuity of H, and applying similar arguments, one may show that

$$
\lim _{N \rightarrow \infty} \mathbb{E}_{\nu_{\rho}}\left[\int_{0}^{t} \frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} \sum_{x \in B_{i}^{0}}\left[H(x)-H\left(y_{i}\right)\right] V_{f}\left(x, \eta_{t}\right) d s\right]^{2}=0
$$

In order to conclude the proof it remains to be shown that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\int_{0}^{t} \frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right) \sum_{x \in B_{i}^{0}} V_{f}\left(x, \eta_{t}\right) d s\right]^{2}=0 \tag{4.6.2}
\end{equation*}
$$

To this end, recall proposition A 1.6.1 of [12]:

$$
\begin{equation*}
E_{\nu_{\rho}}\left[\int_{0}^{t} V\left(\eta_{s}\right) d s\right] \leq 20 \theta t\|V\|_{-1}^{2} \tag{4.6.3}
\end{equation*}
$$

where $\|\cdot\|_{-1}$ is given by

$$
\|V\|_{-1}^{2}=\sup _{F \in L^{2}\left(\nu_{\rho}\right)}\left\{2 \int V(\eta) F(\eta) d \nu_{\rho}-\left\langle F, L_{N} F\right\rangle_{\rho}\right\}
$$

and $\langle\cdot, \cdot\rangle_{\rho}$ denotes the inner product in $L^{2}\left(\nu_{\rho}\right)$.

Let \tilde{L}_{N} be the generator of the exclusion process without the random environment, and without the conductances (that is, taking $a(\omega) \equiv 1$, and $W_{j}\left(x_{j}\right)=x_{j}$, for $j=1, \ldots, d$, in (4.2.5)), and also without the diffusive scaling N^{2} :

$$
\tilde{L}_{N} g(\eta)=\sum_{j=1}^{d} \sum_{x \in \mathbb{T}_{N}^{d}} c_{x, x+e_{j}}(\eta)\left[g\left(\eta^{x, x+e_{j}}\right)-g(\eta)\right]
$$

for cylindric functions g on the configuration space $\{0,1\}^{\mathbb{T}_{N}^{d}}$.
For each $i=1, . ., M^{d}$ denote by ζ_{i} the configuration $\left\{\eta(x), x \in B_{i}\right\}$ and by $\tilde{L}_{B_{i}}$ the restriction of the generator \tilde{L}_{N} to the box B_{i}, namely:

$$
\tilde{L}_{B_{i}} h(\eta)=\sum_{\substack{x, y \in B_{i} \\|x-y|=1 / N}} c_{x, y}(\eta)\left[h\left(\eta^{x, y}\right)-h(\eta)\right]
$$

We would like to emphasize that we introduced the generator \tilde{L}_{N} because it is translation invariant.
Now we introduce some notation. Let $L^{2}\left(P \otimes \nu_{\rho}\right)$ the set of measurable functions g such that $E\left[\int g(\omega, \eta)^{2} d \nu_{\rho}\right]<\infty$. Fix a local function $h: \Omega \times\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$ in $L^{2}\left(P \otimes \nu_{\rho}\right)$, measurable with respect to $\sigma\left(\eta(x), x \in B_{1}\right)$, and let h_{i} be the translation of h by $y_{i}-y_{1}: h_{i}(x, \eta)=h\left(\theta_{\left(y_{i}-y_{1}\right) N} \omega, \tau_{y_{i}-y_{1}} \eta\right)$. Consider

$$
V_{H, h}^{N}(\eta)=\frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right) \tilde{L}_{B_{i}} h_{i}\left(\zeta_{i}\right)
$$

The strategy of the proof (4.6.2) is the following: we show that $V_{H, h}^{N}$ vanishes in some sense as $N \rightarrow \infty$, and then, that the difference between V_{f} and $V_{H, h}^{N}$ also vanishes, as $N \rightarrow \infty$. The result follows a simple triangle inequality. The first part is done by obtaining estimates on boxes, whereas the second part mainly considers the projections of V_{f} on some appropriate Hilbert spaces, plus ergodicity of the environment.

Let

$$
L_{W, B_{i}} h(\eta)=\sum_{j=1}^{d} \sum_{x \in B_{i}} c_{x, x+e_{j}}(\eta) \frac{N a_{j}(x)}{W\left(x+e_{j}\right)-W(x)}\left[h\left(\eta^{x, x+e_{j}}\right)-h(\eta)\right]
$$

Note that the following estimate holds

$$
\sum_{i=1}^{M^{d}}\left\langle h,-L_{W, B_{i}} h\right\rangle_{\rho} \leq\left\langle h,-L_{N} h\right\rangle_{\rho} .
$$

Furthermore,

$$
\left\langle f,-\tilde{L}_{B_{i}} h\right\rangle \leq \max _{1 \leq k \leq d} \frac{\left\{W_{k}(1)-W_{k}(0)\right\}}{N} \theta\left\langle h,-L_{W, B_{i}} h\right\rangle_{\rho} .
$$

Using the Cauchy-Schwartz inequality, we have, for each i,

$$
\left\langle\tilde{L}_{B_{i}} h_{i}, F\right\rangle_{\rho} \leq \frac{1}{2 \gamma_{i}}\left\langle-\tilde{L}_{B_{i}} h_{i}, h_{i}\right\rangle_{\rho}+\frac{\gamma_{i}}{2}\left\langle F,-\tilde{L}_{B_{i}} F\right\rangle_{\rho},
$$

where γ_{i} is a positive constant.
Therefore,

$$
\begin{equation*}
2 \int V_{H, h}^{N}(\eta) F(\eta) d \nu_{\rho} \leq \frac{2}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right)\left[\frac{1}{2 \gamma_{i}}\left\langle-\tilde{L}_{B_{i}} h_{i}, h_{i}\right\rangle_{\rho}+\frac{\gamma_{i}}{2}\left\langle F,-\tilde{L}_{B_{i}} F\right\rangle_{\rho}\right] . \tag{4.6.4}
\end{equation*}
$$

Choose

$$
\gamma_{i}=\frac{N^{1+d / 2}}{\theta \max _{1 \leq k \leq d}\left\{W_{k}(1)-W_{k}(0)\right\}\left|H\left(y_{i}\right)\right|},
$$

and observe that the generator L_{N} is already speeded up by the factor N^{2}. We, thus, obtain

$$
\frac{2}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right) \frac{\gamma_{i}}{2}\left\langle F,-\tilde{L}_{B_{i}} F\right\rangle_{\rho} \leq\left\langle F,-\tilde{L}_{N} F\right\rangle_{\rho}
$$

The above bound and (4.6.4) allow us to use inequality (4.6.2) on $V_{H, h}^{N}$, with the generator $L_{W, B_{i}}$. Therefore, we have that the expectation in (4.6.3) with $V_{H, h}^{N}$ is bounded above by

$$
\frac{20 \theta t}{N^{d / 2}} \sum_{i=1}^{M^{d}} \frac{\left|H\left(y_{i}\right)\right|}{\gamma_{i}}\left\langle-\tilde{L}_{B_{i}} h_{i}, h_{i}\right\rangle_{\rho}
$$

which in turn is less than or equal to

$$
\frac{20 t\|H\|_{\infty} M^{d} \theta^{2}}{N^{d+1} \max _{1 \leq k \leq d}\left\{W_{k}(1)-W_{k}(0)\right\}} \sum_{i=1}^{M^{d}} \frac{1}{M^{d}}\left\langle-\tilde{L}_{B_{i}} h_{i}, h_{i}\right\rangle_{\rho} .
$$

By Birkhoff's ergodic theorem, the sum in the previous expression converges to a finite value as $N \rightarrow \infty$. Therefore, this whole expression vanishes as $N \rightarrow \infty$. This concludes the first part of the strategy of the proof.

To conclude the proof of the theorem it is enough to show that

$$
\lim _{K \rightarrow \infty} \inf _{h \in L^{2}\left(\nu_{\rho} \otimes P\right)} \lim _{N \rightarrow \infty} E_{\nu_{\rho}}\left[\int_{0}^{t} \frac{1}{N^{d / 2}} \sum_{i=1}^{M^{d}} H\left(y_{i}\right)\left\{\sum_{x \in B_{i}^{0}} V_{f}\left(x, \eta_{s}\right)-\tilde{L}_{B_{i}} h_{i}\left(\zeta_{i}(s)\right)\right\}\right]^{2}=0
$$

To this end, observe that the expectation in the previous expression is bounded by

$$
\frac{t^{2}}{N^{d}} \sum_{i=1}^{M^{d}}\|H\|_{\infty}^{2} E_{\nu_{\rho}}\left(\sum_{x \in B_{i}^{0}} V_{f}(x, \eta)-\tilde{L}_{B_{i}} h_{i}\left(\zeta_{i}\right)\right)^{2}
$$

because the measure ν_{ρ} is invariant under the dynamics and the supports of $V_{f}(x, \eta)-\tilde{L}_{B_{i}} h_{i}\left(\zeta_{i}\right)$ and $V_{f}(y, \eta)-\tilde{L}_{B_{r}} h_{r}\left(\zeta_{r}\right)$ are disjoint for $x \in B_{i}^{0}$ and $y \in B_{r}^{0}$, with $i \neq r$.

By the ergodic theorem, as $N \rightarrow \infty$, this expression converges to

$$
\begin{equation*}
\frac{t^{2}}{K^{d}}\|H\|_{\infty}^{2} E\left[\int\left(\sum_{x \in B_{1}^{0}} V_{f}(x, \eta)-\tilde{L}_{B_{1}} h(\omega, \eta)\right)^{2} d \nu_{\rho}\right] \tag{4.6.5}
\end{equation*}
$$

So, it remains to be shown that

$$
\lim _{K \rightarrow \infty} \frac{t^{2}}{K^{d}}\|H\|_{\infty}^{2} \inf _{h \in L^{2}\left(\nu_{\rho} \otimes P\right)} E\left[\int\left(\sum_{x \in B_{1}^{0}} V_{f}(x, \eta)-\tilde{L}_{B_{1}} h(\omega, \eta)\right)^{2} d \nu_{\rho}\right]=0
$$

Denote by $R\left(\tilde{L}_{B_{1}}\right)$ the range of the generator $\tilde{L}_{B_{1}}$ in $L^{2}\left(\nu_{\rho} \otimes P\right)$ and by $R\left(\tilde{L}_{B_{1}}\right)^{\perp}$ the space orthogonal to $R\left(\tilde{L}_{B_{1}}\right)$. The infimum of (4.6.5) over all $h \in L^{2}\left(\nu_{\rho} \otimes P\right)$ is equal to the projection of $\sum_{x \in B_{1}^{0}} V_{f}(x, \eta)$ into $R\left(\tilde{L}_{B_{1}}\right)^{\perp}$.

The set $R\left(\tilde{L}_{B_{1}}\right)^{\perp}$ is the space of functions that depends on η only through the total number of particles on the box B_{1}. So, the previous expression is equal to

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \frac{t^{2}\|H\|_{\infty}^{2}}{K^{d}} E\left[\int\left(E_{\nu_{\rho}}\left[\sum_{x \in B_{1}^{0}} V_{f}(x, \eta) \mid \eta^{B_{1}}\right]\right)^{2} d \nu_{\rho}\right] \tag{4.6.6}
\end{equation*}
$$

where $\eta^{B_{1}}=K^{-d} \sum_{x \in B_{1}} \eta(x)$.
Let us call this last expression \mathcal{I}_{0}. Define $\psi(x, \rho)=E_{\nu_{\rho}}\left[f\left(\theta_{x} \omega\right)\right]$. Notice that $V_{f}(x, \eta)=f(x, \eta)-$ $\psi(x, \rho)-E\left[\partial_{\rho} \psi(x, \rho)\right](\eta(x)-\rho)$, since in the last term the partial derivative with respect to ρ commutes
with the expectation with respect to the random environment. In order to estimate the expression (4.6.6), we use the elementary inequality $(x+y)^{2} \leq 2 x^{2}+2 y^{2}$. Therefore, we obtain $\mathcal{I}_{0} \leq 4\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)$, where

$$
\begin{gathered}
\mathcal{I}_{1}=\frac{1}{K^{d}} E\left[\int\left(\sum_{x \in B_{1}^{0}} E_{\nu_{\rho}}\left[f(x, \eta) \mid \eta^{B_{1}}\right]-\psi\left(x, \eta^{B_{1}}\right)\right)^{2} d \nu_{\rho}\right] \\
\mathcal{I}_{2}=\frac{1}{K^{d}} E\left[\int\left(\sum_{x \in B_{1}^{0}} \psi\left(x, \eta^{B_{1}}\right)-\psi(x, \rho)-\partial_{\rho} \psi(x, \rho)\left[\eta^{B_{1}}-\rho\right]\right)^{2} d \nu_{\rho}\right], \\
\mathcal{I}_{3}=\frac{1}{K^{d}} E\left[E_{\nu_{\rho}}\left[\left(\sum_{x \in B_{1}^{0}}\left(\partial_{\rho} \psi(x, \rho)-E\left[\partial_{\rho} \psi(x, \rho)\right]\right)\left[\eta^{B_{1}}-\rho\right]\right)^{2}\right]\right] .
\end{gathered}
$$

Recall the equivalence of ensembles (see Lemma A.2.2.2 in [12]):
Lemma 4.6.2. Let $h:\{0,1\}^{\mathbb{T}_{N}^{d}} \rightarrow \mathbb{R}$ be a local uniformly Lipschitz function. Then, there exists a constant C that depends on h only through its support and its Lipschitz constant, such that

$$
\left|E_{\nu_{\rho}}\left[h(\eta) \mid \eta^{S}\right]-E_{\nu_{\eta^{S}}}[h(\eta)]\right| \leq \frac{C}{S^{d}},
$$

where $S \in \mathbb{N}$, and

$$
\eta^{S}(x)=\frac{1}{S^{d}} \sum_{y \in C^{S}} \eta(y)
$$

with $C^{S}=\{0, \ldots, S-1\}^{d}$.
Applying Lemma 4.6.2, we get

$$
\frac{1}{K^{d}} E\left[\int\left(\sum_{x \in B_{1}^{0}} E_{\nu_{\rho}}\left[f(x, \eta) \mid \eta^{B_{1}}\right]-\psi\left(x, \eta^{B_{1}}\right)\right)^{2} d \nu_{\rho}\right] \leq \frac{C}{K^{d}}
$$

which vanishes as $K \rightarrow \infty$.
Using a Taylor expansion for $\psi(x, \rho)$, we obtain that

$$
\frac{1}{K^{d}} E\left[\int\left(\sum_{x \in B_{1}^{0}} \psi\left(x, \eta^{B_{1}}\right)-\psi(x, \rho)-\partial_{\rho} \psi(x, \rho)\left[\eta^{B_{1}}-\rho\right]\right)^{2} d \nu_{\rho}\right] \leq \frac{C}{K^{d}}
$$

and also goes to 0 as $K \rightarrow \infty$.
Finally, we see that

$$
\mathcal{I}_{3}=E_{\nu_{\rho}}\left[(\eta(0)-\rho)^{2}\right] \cdot E\left[\left(\frac{1}{K^{d}} \sum_{x \in B_{1}^{0}}\left(\partial_{\rho} \psi(x, \rho)-E\left[\partial_{\rho} \psi(x, \rho)\right]\right)^{2}\right]\right.
$$

and it goes to 0 as $K \rightarrow \infty$ by the L^{2}-ergodic theorem. This concludes the proof of Theorem 4.6.1.

4.7 Appendix: Stochastic differential equations on nuclear spaces

4.7.1 Countably Hilbert nuclear spaces

In this subsection we introduce countably Hilbert nuclear spaces which will be the natural environment for the study of the stochastic evolution equations obtained from the martingale problem. We will begin by recalling some basic definitions on these spaces. To this end, we follow the ideas of Kallianpur and Perez-Abreu [10, 11] and Gel'fand and Vilenkin [6].

Let Φ be a (real) linear space, and let $\|\cdot\|_{r}, \quad r \in \mathbb{N}$ be an increasing sequence of Hilbertian norms. Define Φ_{r} as the completion of Φ with respect to $\|\cdot\|_{r}$. Since for $n \leq m$

$$
\begin{equation*}
\|f\|_{n} \leq\|f\|_{m} \quad \text { for all } f \in \Phi \tag{4.7.1}
\end{equation*}
$$

we have,

$$
\Phi_{m} \subset \Phi_{n} \text { for all } m \geq n
$$

Let

$$
\Phi_{\infty}=\bigcap_{r=1}^{\infty} \Phi_{r} .
$$

Then Φ_{∞} is a Fréchet space with respect to the metric

$$
\begin{equation*}
\rho(f, g)=\sum_{r=1}^{\infty} 2^{-r} \frac{\|f-g\|_{r}}{1+\|f-g\|_{r}} \tag{4.7.2}
\end{equation*}
$$

and $\left(\Phi_{\infty}, \rho\right)$ is called a countably Hilbert space.
A countably Hilbert space Φ_{∞} is called nuclear if for each $n \geq 0$, there exists $m>n$ such that the canonical injection $\pi_{m, n}: \Phi_{m} \rightarrow \Phi_{n}$ is Hilbert-Schmidt, i.e., if $\left\{f_{j}\right\}_{j \geq 1}$ is a complete orthonormal system in Φ_{m} we have

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{n}^{2}<\infty \tag{4.7.3}
\end{equation*}
$$

We now characterize the topologic dual Φ_{∞}^{\prime} of the countably Hilbert nuclear space Φ_{∞} in terms of the topologic dual of the auxiliary spaces Φ_{n}.

Let Φ_{n}^{\prime} be the dual (Hilbert) space of Φ_{n}, and for $\phi \in \Phi_{n}^{\prime}$ let

$$
\|\phi\|_{-n}=\sup _{\|f\|_{n} \leq 1}|\phi[f]|,
$$

where $\phi[f]$ means the value of ϕ at f. Equation (4.7.1) implies that

$$
\Phi_{n}^{\prime} \subset \Phi_{m}^{\prime} \text { for all } m \geq n
$$

Let Φ_{∞}^{\prime} be the topologic dual of Φ_{∞} with respect to the strong topology, which is given by the complete system of neighborhoods of zero given by sets of the form, $\left\{\phi \in \Phi_{\infty}^{\prime}:\|\phi\|_{B}<\epsilon\right\}$, where $\|\phi\|_{B}=\sup \{|\phi[f]|: f \in B\}$ and B is a bounded set in Φ_{∞}. So,

$$
\Phi_{\infty}^{\prime}=\bigcup_{r=1}^{\infty} \Phi_{r}^{\prime}
$$

4.7.2 Stochastic differential equations

The aim of this subsection is to recall some results about existence and uniqueness of stochastic evolution equations in nuclear spaces.

We denote by $\mathcal{L}\left(\Phi_{\infty}, \Phi_{\infty}\right)$ (resp. $\mathcal{L}\left(\Phi_{\infty}^{\prime}, \Phi_{\infty}^{\prime}\right)$) the class of continuous linear operators from Φ_{∞} to $\Phi_{\infty}\left(\operatorname{resp} . \Phi_{\infty}^{\prime}\right.$ to $\left.\Phi_{\infty}^{\prime}\right)$.

A family $\{S(t): t \geq 0\}$ of the linear operators on Φ_{∞} is said to be a $C_{0,1}$-semigroup if the following three conditions are satisfied:

- $S\left(t_{1}\right) S\left(t_{2}\right)=S\left(t_{1}+t_{2}\right)$ for all $t_{1}, t_{2} \geq 0, S(0)=I$.
- The map $t \rightarrow S(t) f$ is Φ_{∞}-continuous for each $f \in \Phi_{\infty}$.
- For each $q \geq 0$ there exist numbers $M_{q}>0, \sigma_{q}>0$ and $p \geq q$ such that

$$
\|S(t) f\|_{q} \leq M_{q} e^{\sigma_{q} t}\|f\|_{p} \quad \text { for all } \quad f \in \Phi_{\infty}, t>0
$$

Let A in $\mathcal{L}\left(\Phi_{\infty}, \Phi_{\infty}\right)$ be infinitesimal generator of the semigroup $\{S(t): t \geq 0\}$ in $\mathcal{L}\left(\Phi_{\infty}, \Phi_{\infty}\right)$. The relations

$$
\begin{aligned}
\phi[S(t) f] & :=\left(S^{\prime}(t) \phi\right)[f] \text { for all } t \geq 0, f \in \Phi_{\infty} \text { and } \phi \in \Phi_{\infty}^{\prime} ; \\
\phi[A f] & :=\left(A^{\prime} \phi\right)[f] \text { for all } f \in \Phi_{\infty} \text { and } \phi \in \Phi_{\infty}^{\prime} ;
\end{aligned}
$$

define the infinitesimal generator A^{\prime} in $\mathcal{L}\left(\Phi_{\infty}^{\prime}, \Phi_{\infty}^{\prime}\right)$ of the semigroup $\left\{S^{\prime}(t): t \geq 0\right\}$ in $\mathcal{L}\left(\Phi_{\infty}^{\prime}, \Phi_{\infty}^{\prime}\right)$.
Let (Σ, \mathcal{U}, P) be a complete probability space with a right continuous filtration $\left(\mathcal{U}_{t}\right)_{t \geq 0}, \mathcal{U}_{0}$ containing all the P-null sets of \mathcal{U}, and $M=\left(M_{t}\right)_{t \geq 0}$ be a Φ_{∞}^{\prime}-valued martingale with respect to \mathcal{U}_{t}, i.e., for each $f \in \Phi_{\infty}, M_{t}[f]$ is a real-valued martingale with respect to $\mathcal{U}_{t}, t \geq 0$. We are interested in results of existence and uniqueness of the following Φ_{∞}^{\prime}-valued stochastic evolution equation:

$$
\begin{align*}
d \xi_{t} & =A^{\prime} \xi_{t} d t+d M_{t}, \quad t>0 \tag{4.7.4}\\
\xi_{0} & =
\end{align*}
$$

where γ is a $\Phi_{\infty^{\prime}}^{\prime}$-valued random variable, and A is the infinitesimal generator of a $C_{0,1}$-semigroup on Φ_{∞}.

We say that $\xi=\left(\xi_{t}\right)_{t \geq 0}$ is a Φ_{∞}^{\prime}-solution of the stochastic evolution equation (4.7.4) if the following conditions are satisfied:

- ξ_{t} is Φ_{∞}^{\prime}-valued, progressively measurable, and \mathcal{U}_{t}-adapted;
- the following integral identity holds:

$$
\xi_{t}[f]=\gamma[f]+\int_{0}^{t} \xi_{s}[A f] d s+M_{t}[f]
$$

for all $f \in \Phi_{\infty}, t \geq 0$ a.s..
It is proved in [11, Corollary 2.2] the following result on existence and uniqueness of solutions of the stochastic differential equation (4.7.4):
Proposition 4.7.1. Assume the conditions below:
(H1) γ is a Φ_{∞}^{\prime}-valued \mathcal{U}_{0}-measurable random element such that, for some $r_{0}>0, E|\gamma|_{-r_{0}}^{2}<\infty$;
(H2) $M=\left(M_{t}\right)_{t \geq 0}$ is a Φ_{∞}^{\prime}-valued martingale such that $M_{0}=0$ and, for each $t \geq 0$ and $f \in$ $\Phi, E\left(M_{t}[f]\right)^{2}<\infty ;$
(H3) A is a continuous linear operator on Φ_{∞}, and is the infinitesimal generator of a $C_{0,1}$-semigroup $\{S(t): t \geq 0\}$ on Φ_{∞}.
Then the Φ_{∞}^{\prime}-valued homogeneous stochastic evolution equation (4.7.4) has a unique solution $\xi=\left(\xi_{t}\right)_{t \geq 0}$ given explicitly by the "evolution solution":

$$
\xi_{t}=S^{\prime}(t) \gamma+\int_{0}^{t} S^{\prime}(t-s) d M_{s}
$$

Remark 4.7.2. The statement $E\left(M_{t}[f]\right)^{2}<\infty$ in condition 2 of Proposition 4.7.1 is satisfied if $E\left(M_{t}[f]\right)^{2}=t Q(f, f)$, where $f \in \Phi_{\infty}$, and $Q(\cdot, \cdot)$ is a positive definite continuous bilinear form on $\Phi_{\infty} \times \Phi_{\infty}$.

We now state a proposition, whose proof can be found in Corollary 2.1 of [11], that gives a sufficient condition for the solution ξ_{t} of the equation (4.7.4) be a Gaussian process.

Proposition 4.7.3. Assume γ is a Φ_{∞}^{\prime}-valued Gaussian element independent of the Φ_{∞}^{\prime}-valued Gaussian martingale with independent increments M_{t}. Then, the solution $\xi=\left(\xi_{t}\right)$ of (4.7.4) is a Φ_{∞}^{\prime}-valued Gaussian process.

Acknowledgements

We would like to thank Milton Jara for valuable discussions on nuclear spaces. We also would like to thank an anonymous referee for his/her useful comments and remarks that helped to improve the overall quality of the paper.

References

[1] S. Ethier, T. Kurtz, Markov Processes: Characterization and convergence. Wiley Series in Prob. and Math. Stat. 1986.
[2] A. Faggionato, Bulk diffusion of $1 D$ exclusion process with bond disorder. Markov Process. Related Fields, 13, 519-542. 2007.
[3] A. Faggionato, Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit. Electronic Journal of Probability, 13, 2217-2247. 2008.
[4] A. Faggionato, M. Jara, C. Landim, Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probability Theory and Related Fields, 144, 633-667. 2009.
[5] T. Franco, C. Landim, Exclusion processes with conductances - Hydrodynamic limit of gradient exclusion processes with conductances. Archive for Rational Mechanics and Analysis, 195, 409-439. 2010.
[6] I. M. Gel’fand, N. Ya. Vilenkin, Generalized Functions - vol. 4. Academic Press. New York, 1964.
[7] P. Gonçalves, M. Jara. Scaling Limits for Gradient Systems in Random Environment. J. Stat. Phys., 131, 691-716. 2008.
[8] M. Jara. Current and density fluctuations for interacting particle systems with anomalous diffusive behavior. arXiv:0901.0229
[9] M. Jara, C. Landim, Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré, Probab. Stat. 44, 341-361. 2008.
[10] G. Kallianpur Stochastic differential equations in dual of nuclear space with some applications. Institute for Mathematics and its Applications. 244 .1986.
[11] G. Kallianpur, V. Perez-Abreu, Stochastic Evolution equations Driven by Nuclear-space-Valued Martingale. Applied Mathematics and Optimization. 17, 237-272. 1988.
[12] C. Kipnis, C. Landim, Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag, Berlin. 1999.
[13] I. Mitoma, Tightness of probabilities on $C\left([0,1], \mathcal{S}^{\prime}\right)$ and $D\left([0,1], \mathcal{S}^{\prime}\right)$. Annals Probab. 11, 989-999. 1983.
[14] G. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Seria Coll. Math. Soc. Janos Bolyai vol. 27, North-Holland. 1979.
[15] A. Piatnitski, E. Remy, Homogenization of Elliptic Difference Operators, SIAM J. Math. Anal. Vol.33, pp. 53-83. 2001.
[16] A. B. Simas, F. J. Valentim, W-Sobolev spaces: Theory, homogenization and applications. Preprint, Available at arXiv:0911.4177v1. 2009.
[17] F. J. Valentim, Hydrodynamic limit of gradient exclusion processes with conductance on \mathbb{Z}^{d}. Preprint, Available at arXiv:0903.4993v1. 2009.

