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Várias pessoas contribuem para a conquista de um doutorado. Primeiramente agradeço à minha
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matemática, além de ser um grande amigo. Gostaria de agradecer a Carlos Bocker “Pato” Neto que
sempre me apoiou desde a minha chegada no IMPA e continua apoiando até hoje. A Mitchael Alfonso,
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Resumo

Esta tese está dividida em duas partes, contendo um total de quatro artigos. Na primeira parte obte-
mos o limite hidrodinâmico para um sistema de part́ıculas com velocidades em contato com reservatórios
infinitos de part́ıculas, e em seguida, obtemos o prinćıpio dos grandes desvintios dinâmicos para este
processo. Na segunda parte estudamos sistemas de part́ıculas com condutâncias em meios aleatórios,
para tanto provamos a homogenização de certos operadores eĺıpticos, e a partir dáı provamos um limite
hidrodinâmico para tais processos. Por fim, utilizamos a teoria de homogenização obtida para provar
flutuações no equiĺıbrio para esses processos.

Antes de cada resultado fazemos uma introdução, levantando aspectos históricos do problema e
dizemos a situação em que o artigo se encontra (se está publicado, aceito ou submetido).
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Introdução
Sistemas de Part́ıculas interagentes têm sido assunto de intenso estudo nas últimas décadas devido ao
fato que, ao mesmo tempo que contemplam muitas propriedades coletivas encontradas em sistemas f́ısicos
real, eles são, até certo ponto, tratáveis matematicamente. Seus estudos têm permitido, em muitos casos,
um entendimentos detalhado de mecanismo microscópico através destes fenômenos coletivos. Estamos
especialmente interessados no estudo do comportamento hidrodinâmico de sistemas de part́ıculas que
preservam quantidades termodinâmicas, tais como, o processo de exclusão simples e o processo Zero-
range, ambos introduzido por Spitzer [19]. Problemas como limite hidrodinâmico, grandes desvintios e
flutuações são tipicamente abordados. Referenciamos o livro [13] para mais detalhes. Equações difer-
enciais parciais, f́ısica matemática e probabilidade são algumas áreas da ciência vastamente exploradas
nestes estudos.

O limite hidrodinâmico torna posśıvel descrever as caracteŕısticas termodinâmicas (por exemplo,
temperatura, densidade, pressão, etc.) de sistemas infinitos assumindo que a dinâmica envolvida é
estocástica e segue a abordagem da mecânica estat́ıstica introduzida por Boltzmann. Mais precisamente,
ela permite a dedução do comportamento macroscópico do sistema a partir da interação microcópica
entre as part́ıculas. Neste plano de trabalho iremos considerar dinâmicas microscópicas consistindo
de passeios aleatórios no reticulado submetidas a alguma interação local, estas dinâmicas são dadas
pelos sistemas de part́ıculas interagentes. Portanto, esta abordagem justifica rigorosamente um método
bastante utilizado por f́ısicos para obter equações diferenciais parciais que descrevem a evolução de
caracteŕısticas termodinâmicas de um fluido, e portanto a existência de soluções fracas de tais equações
diferenciais parciais podem ser vistas como um dos objetivos do limite hidrodinâmico.

Nos últimos anos têm havido um progresso considerável no entendimento de estados estacionários
fora do equiĺıbrio: sistemas difusivos em contato com diferentes reservatórios impondo um gradiente nas
quantidades conservadas do sistema. Nestes sistemas, existe um fluxo de matéria através do sistema e
a dinâmica resultante não é reverśıvel. A principal diferença com relação a estados em equiĺıbrio (re-
verśıveis) é a seguinte: no equiĺıbrio, a medida invariante, que determina as propriedades termodinâmicas
é dada pela distribuição de Gibbs especificada pelo Hamiltoniano. Por outro lado, em estados fora do
equiĺıbrio, a construção de estados estacionários requer a solução de um problema dinâmico. Uma das
propriedades t́ıpicas e impressionantes desses sistemas é a presença de correlação de longo alcançe. Para
os modelos de exclusão simples e simétricos isto já foi feito no artigo pioneiro de Spohn [20]. Nós referimos
também para [1, 2] para duas resenhas recentes sobre este tópico.

O comportamento hidrodinâmico do processo de exclusão unidimensional com bordos estocásticos foi
estudado por [3], [4] e [14]. Além disso, Landim, Olla e Volchan [15] consideraram o comportamento de
uma part́ıcula marcada num processo de exclusão simples simétrico sob a ação de uma constante externa,
e fizeram conexões entre o comportamento de uma part́ıcula marcada nessa situação com um processo
com reservatórios infinitos.

Nós consideramos estados estacionários fora do equiĺıbrio, onde a ausência do equiĺıbrio é devida
a campos externos ou potenciais qúımicos no bordo, donde existe um fluxo de quantidades f́ısicas, tais
como calor, carga elétrica, ou substâncias qúımicas através do sistema. O comportamento hidrodinâmico
para este tipo de processo em qualquer dimensão foi resolvido por [3, 4]. No entanto, eles resolveram
este problema apenas para o caso em que a única quantidade termodinâmica observável é a densidade
emṕırica.

Considere agora a seguinte notação: Sejam Dd
N = SN × Td−1

N , com SN = {1, . . . , N − 1} e Dd =
[0, 1] × Td−1. Mais ainda, seja V ⊂ Rd um conjunto finito de velocidades v = (v1, . . . , vd). Assuma que
V é invariante por reflexão e permutação de coordenadas:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) e (vσ(1), . . . , vσ(d))

pertencem a V para todo 1 ≤ i ≤ d, e todas as permutações σ de {1, . . . , d}, dado que (v1, . . . , vd)
pertence a V.

Nos trabalhos de [9] e [17], que contém resultados apresentados nesta tese, um processo de exclusão
com velocidades e bordos estocásticos foi estudado, de tal forma que a equação hidrodinâmica obtida
tem a forma
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∂t(ρ,p) +
∑
v∈V

ṽ [v · ∇F (ρ,p)] =
1
2

∆(ρ,p),

onde ṽ = (1, v1, . . . , vd), ρ é a densidade e p = (p1, . . . , pd) é o momento. F é uma quantidade ter-
modinâmica determinada pelas propriedades ergódicas da dinâmica.

Este processo pode ser descrito informalmente como se segue. Para um ponto x = (x1, . . . , xd) ∈ Rd,
seja x̃ = (x2, . . . , xd). Fixe uma velocidade v ∈ V, um inteiro N ≥ 1, e densidades com domı́nio no bordo
0 < αv(·) < 1 e 0 < βv(·) < 1; em um tempo dado, cada śıtio do conjunto {1, . . . , N − 1} × {0, . . . , N −
1}d−1 está ou vazio, ou ocupado por uma part́ıcula numa velocidade v. No volume, cada part́ıcula tenta
pular para algum de seus vizinhos com mesma velocidade, com uma taxa fracamente assimétrica. Para
respeitar a regra de exclusão, a part́ıcula só pula de o śıtio alvo na mesma velocidade v estiver vazio;
caso contrário nada acontece. No bordo, śıtios com primeiras coordenadas dadas por 1 ou N − 1 têm
part́ıculas sendo criadas ou destrúıdas de tal forma que as densidades locais são αv(x̃) e βv(x̃): com taxa
αv(x̃/N) uma part́ıcula é criada em {1} × {x̃} se o śıtio está vazio, e com taxa 1− αv(x̃) a part́ıcula em
{1}×{x̃} é removida se o śıtio está ocupado, com taxa βv(x̃) uma part́ıcula é criada em {N−1}×{x̃} se
o śıtio está vazio, e com taxa 1−βv(x̃) a part́ıcula em {N − 1}×{x̃} é removida se o śıtio está ocupado.
Superposta a essa dinâmica, existe um processo de colisão que troca velocidades de part́ıculas no mesmo
śıtio de uma forma que o momento é conservado. Nosso principal interesse é examinar o modelo de gases
estocásticos dado pelo gerador LN que é a superposição da dinâmica do bordo com a colisão e exclusão:

LN = N2{LbN + LcN + LexN },

onde LbN denota o gerador que modela a parte da dinâmica em que uma part́ıcula no bordo pode entrar
ou sair do sistema, LcN denota o gerador que modela a parte de colisão da dinâmica e, por fim, LexN
modela a parte de exclusão da dinâmica. Note que o tempo foi acelerado difusivamente no gerador do
processo.

Seja f uma função em XN . O gerador da parte de exclusão da dinâmica, LexN , é dado por

(LexN f)(η) =
∑
v∈V

∑
x,x+z∈DdN

η(x, v)[1− η(z, v)]PN (z − x, v) [f(ηx,z,v)− f(η)] ,

onde

ηx,y,v(z, w) =

 η(y, v) se w = v e z = x,
η(x, v) se w = v e z = y,
η(z, w) caso contrário.

Vale a pena notar que o gerador pode ser decomposto na parte simétrica e assimétrica:

LexN = Lex,1N + Lex,2N ,

onde
(Lex,1N f)(η) =

1
2

∑
v∈V

∑
x,x+z∈DdN
|z−x|=1

η(x, v)[1− η(z, v)] [f(ηx,z,v)− f(η)] ,

e
(Lex,2N f)(η) =

1
N

∑
v∈V

∑
x,x+z∈DdN

η(x, v)[1− η(z, v)]p(z − x, v) [f(ηx,z,v)− f(η)] .

O gerador da parte de colisão da dinâmica, LcN , é dado por

(LcNf)(η) =
∑
y∈DdN

∑
q∈Q

p(y, q, η) [f(ηy,q)− f(η)] ,

onde Q é o conjunto de todas as colisões que preservam momento:

Q = {q = (v, w, v′, w′) ∈ V4 : v + w = v′ + w′},
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a taxa p(y, q, η) é dada por

p(y, q, η) = η(y, v)η(y, w)[1− η(y, v′)][1− η(y, w′)],

e para q = (v0, v1, v2, v3), a configuração ηy,q após a colisão é definida como

ηy,q(z, u) =
{
η(y, vj+2) se z = y e u = vj para algum 0 ≤ j ≤ 3,
η(z, u) caso contrário,

onde o ı́ndice vj+2 deve ser entendido módulo 4.
Part́ıculas com v e w no mesmo śıtio colidem com taxa 1 e produzem duas part́ıculas com velocidades

v′ e w′ naquele śıtio.
Finalmente, o gerador da parte da dinâmica do bordo é dado por

(LbNf)(η) =
∑
x∈DdN
x1=1

∑
v∈V

[αv(x̃/N)[1− η(x, v)] + (1− αv(x̃/N))η(x, v)][f(σx,vη)− f(η)]

+
∑
x∈DdN
x1=N−1

∑
v∈V

[βv(x̃/N)[1− η(x, v)] + (1− βv(x̃/N))η(x, v)][f(σx,vη)− f(η)],

onde x̃ = (x2, . . . , xd),

σx,vη(y, w) =
{

1− η(x,w), se w = v e y = x,
η(y, w), caso contrário. ,

e para todo v ∈ V, αv, βv ∈ C2(Td−1). Nós também assumimos que, para todo v ∈ V, αv e βv têm
imagem pertencendo a algum subconjunto compacto de (0, 1). As funções αv e βv, que afetam as taxas
de nascimento e morte no bordo representam as densidades dos reservatórios.

Em [17] foi provado que realmente o modelo satisfaz um comportamento hidrodinâmico, com uma
equação diferencial parcial como a descrita acima.

No artigo [9], foi provado um prinćıpio de grandes desvintios dinâmicos para um modelo com bordos
estocásticos tendo mais de uma quantidade observada. Como acontece normalmente, a principal dificul-
dade aparece na prova da cota inferior, onde é preciso mostrar que qualquer trajetória λt, 0 ≤ t ≤ T ,
com função taxa finita, IT (λ) < ∞, pode ser aproximada por uma sequência de trajetórias regulares
{λn : n ≥ 1} tais que

λn −→ λ e IT (λn) −→ IT (λ) .

Para evitar essa dificuldade, foi seguido o método introduzido em [8]. É bem conhecido que se
IT (λ) < ∞, então existe um campo externo H associado a λ, no sentido de que λ resolve uma equação
hidrodinâmica perturbada por um campo externo H. A estratégia de [8] é aproximar o campo externo
H por uma sequência de funções suaves, Hn, e então mostrar que as soluções fracas das equações
hidrodinâmicas perturbadas por Hn correspondentes, convergem para λ no sentido descrito acima.

Também estudamos os processos com condutâncias em meios aleatórios. Nós trabalhamos com o
meio aleatório através da homogenização de operadores eĺıpticos.

Os primeiros resultados rigorosos para operadores eĺıpticos aleatórios na forma divergente com coefi-
cientes estocasticamente homogêneos foram obtidos por Papanicolaou e Varadhan in [16].

A descrição matemática de meios microscopicamente heterogêneos, usualmente envolve funções rapi-
damente oscilantes. O objetivo da teoria da homogenização é fornecer uma rigorosa descrição macroscópica
do meio estudado. Com uma vasta literatura, homogenização se firma como uma área bem desenvolvida.

Os problemas de homogenização para várias estruturas aleatórias são amplamente discutidos na
literatura f́ısica e matemática.

No trabalho [18], cujos resultados são apresentados nesta tese, a noção de espaços de Sobolev no
toro d-dimensional é generalizada. Mais precisamente, consideremos d funções estritamente crescentes
cont́ınuas à direita, com limites à esquerda Wi : R→ R, i = 1, . . . , d, e fazendo W (x) =

∑d
i=1Wi(xi) para

x ∈ Rd, consideramos o espaço W -Sobolev consistindo das funções f que possuem gradiente generalizado
no sentido fraco. Várias propriedades, que são análogas aos clássicos resultados de espaços de Sobolev,
são obtidas. Uma classe de equações eĺıpticas e parabólicas W -generalizada são introduzidas obtendo
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resultados de existência e unicidade de soluções fracas. Resultados de homogenização de uma classe de
operadores aleatórios são investigados. Finalmente, como aplicação de toda esta teoria desenvolvida, nós
provamos um limite hidrodinâmico para processos gradientes com condutâncias (induzida por W ) em
ambientes aleatórios.

Informalmente, o processo de exclusão com condutâncias induzidas por W em ambientes aleatórios
é um sistema de part́ıculas interagentes no toro discreto d-dimensional N−1TdN , na qual no máximo
uma part́ıcula por śıtio é permitida, e apenas pulos para vizinhos mais próximos são permitidos. Mais
ainda, a taxa de pulo na direção ej é proporcional ao rećıproco dos incrementos de W com respeito a
j-ésima coordenada vezes um termo a(ω) vindo de um campo aleatório ergódico e eĺıptico. Tal sistema
pode ser entendido como um modelo de difusão em meios heterogêneos. Por exemplo, ele pode modelar
difusões de part́ıculas em um meio com membranas permeávei nos pontos de descontinuidades de W ,
que tende a refletir part́ıculas, creando descontinuidades espaciais nos perfis de densidades. Note que
essas membranas são hiperplanos (d − 1)-dimensionais imersos em um ambiente d-dimensional. Mais
ainda, se nós considerarmos que Wj tem mais de um ponto de descontinuidade para mais de um j, essas
membranas serão variedades mais sofistifcadas, por exemplo, uniões de caixas (d− 1)-dimensionais.

A evolução do processo de exclusão simples unidimensional com condutâncias tem atráıdo muita
atenção recentemente [5, 6, 7, 11, 12], com o limite hidrodinâmico provado em [12] tendo sido também
obtido em [5], independetemente. Em todos esses artigos, um limite hidrodinâmico foi provado. O limite
hidrodinâmico pode ser interpretado como uma lei dos grandes números para a densidade emṕırica do
sistema.

Mais formalmente, denote por Td = (R/Z)d = [0, 1)d o toro d-dimensional, e por TdN = (Z/NZ)d =
{0, . . . , N − 1}d o toro discreto d-dimensional com Nd pontos.

Fixe uma função W : Rd → R tal que

W (x1, . . . , xd) =
d∑
k=1

Wk(xk),

onde cada Wk : R→ R é uma função estritamente crescente, cont́ınua à direita e como limites à esquerda
(càdlàg), periódica no sentido de que para todo u ∈ R

Wk(u+ 1)−Wk(u) = Wk(1)−Wk(0).

Defina a derivada generalizada ∂Wk
de uma função f : Td → R por

∂Wk
f(x1,. . ., xk, . . . , xd) = lim

ε→0

f(x1,. . ., xk + ε, . . . , xd)− f(x1,. . ., xk,. . ., xd)
Wk(xk + ε)−Wk(xk)

,

quando o limite acima existir e for finito. Se para uma função f : Td → R as derivadas generalizadas
∂Wk

existem para todo k = 1, . . . , d, denote o gradiente generalizado de f por

∇W f = (∂W1f, . . . , ∂Wd
f) .

Mais detalhes sobre essa derivada generalizada podem ser encontrados no artigo [18].
Agora nós vamos introduzir os coeficientes homogêneos estatisticamente e rapidamente oscilantes que

serão usados para definir as taxas aleatórias do processo de exclusão com condutâncias.
Seja (Ω,F , µ) um espaço de probabilidade e {Tx : Ω → Ω;x ∈ Zd} um grupo ergódico de trans-

formações F-mensuráveis que preservam a medida µ:

• Tx : Ω→ Ω é F-mensurável para todo x ∈ Zd,

• µ(TxA) = µ(A), para todo A ∈ F e x ∈ Zd,

• T0 = I , Tx ◦ Ty = Tx+y,

• Todo f ∈ L1(Ω) tal que f(Txω) = f(ω) µ-q.t.p. para todo x ∈ Zd, é igual a uma constante
µ-q.t.p..
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A última condição implica que o grupo Tx é ergódico.
Vamos agora introduzir as funções a valores vetoriais F-mensuráveis {aj(ω); j = 1, . . . , d} que satis-

fazem uma condição de elipticidade: existe θ > 0 tal que

θ−1 ≤ aj(ω) ≤ θ,

para todo ω ∈ Ω e j = 1, . . . , d. Então, defina as matrizes diagonais AN cujos elementos são dados por

aNjj(x) := aNj = aj(TNxω) , x ∈ T dN , j = 1, . . . , d.

Fixe uma realização t́ıpica ω ∈ Ω do ambiente aleatório. Para cada x ∈ TdN e j = 1, . . . , d, defina a
taxa simétrica ξx,x+ej = ξx+ej ,x por

ξx,x+ej =
aNj (x)

N [W ((x+ ej)/N)−W (x/N)]
=

aNj (x)
N [Wj((xj + 1)/N)−Wj(xj/N)]

,

onde e1, . . . , ed é a base canônica do Rd.
Distribua part́ıculas em TdN de tal forma que cada śıtio de TdN está ocupado por no máximo uma

part́ıcula. Denote por η as configuações do espaço de estados {0, 1}TdN tal que η(x) = 0 se o śıtio x está
vazio, e η(x) = 1 se o śıtio x tem part́ıcula.

O processo de exclusão com condutâncias em um ambiente aleatório é um processo de Markov a
tempo cont́ınuo {ηt : t ≥ 0} com espaço de estados {0, 1}TdN = {η : TdN → {0, 1}}, cujo gerador LN age
em funções f : {0, 1}TdN → R como

(LNf)(η) =
d∑
j=1

∑
x∈TdN

ξx,x+ejcx,x+ej (η) {f(σx,x+ejη)− f(η)} ,

onde σx,x+ejη é a configuração obtida de η após trocar as variáveis η(x) e η(x+ ej):

(σx,x+ejη)(y) =


η(x+ ej) se y = x,

η(x) se y = x+ ej ,

η(y) caso contrário,

e
cx,x+ej (η) = 1 + b{η(x− ej) + η(x+ 2 ej)} ,

com b > −1/2 , e onde todas as somas são módulo N .
Nós consideramos o processo de Markov {ηt : t ≥ 0} nas sobre as configurações {0, 1}TdN associadas

ao gerador LN na escala difusiva, i.e., LN está acelerado por N2.
Nós agora descrevemos a evolução estocástica do processo. Seja x = (x1, . . . , xd) ∈ TdN . Com taxa

ξx,x+ejcx,x+ej (η) as variáveis ocupacionais η(x), η(x + ej) são trocadas. Note que o campo aleatório
afeta a taxa por um fator multiplicativo. Se W é diferenciável em x/N ∈ [0, 1)d, a taxa pela qual as
part́ıculas são trocadas é de ordem 1 para cada direção, mas se algum Wj é descont́ınuo em xj/N , isso
não vale mais. De fato, assuma, para fixar idéias, que Wj é descont́ınuo em xj/N , e suave nos segmentos
(xj/N, xj/N + εej) e (xj/N − εej , xj/N). Assuma, também, que Wk é diferenciável na vizinhança de
xk/N para k 6= j. Neste caso, a taxa pela qual part́ıculas pulam através dos elos da forma {y − ej , y},
com yj = xj , é de ordem 1/N , onde numa vizinhança de tamanho N destes pontos, part́ıculas pulam
com taxa 1. Portanto, note que uma part́ıcula no śıtio y− ej pula para y com taxa 1/N e pula com taxa
1 para cada uma das 2d− 1 outras opções. Part́ıculas, portanto, tendem a evitar os elos {y − ej , y}. No
entanto, como o tempo será re-escalonado difusivamente, e como num intervalo de tempo de tamanho N2

uma part́ıcula passa um tempo de ordem N em cada śıtio y, part́ıculas serão capazes de cruzar os elos
mais lentos {y− ej , y}. Desta forma, as condutâncias são induzidas pela função W através da inversa do
gradiente de W , donde por sua vez, o ambiente aleatório é dado pela matriz diagonal AN := (aNjj(x))d×d.

O efeito do fator cx,x+ej (η) é o seguinte: se o parâmetro b é positivo, a presença de part́ıculas na
vizinhança do elo {x, x + ej} aumenta a taxa de troca por um fator de ordem 1, e se o parâmetro b é
negativo, a presença de part́ıculas nos śıtios vizinhos diminui a taxa de troca, também, por um fator de
ordem 1.
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Por fim, em [10], cujos resultados são apresentados nesta tese, definimos o espaço de Fréchet nuclear
SW (Td), e provamos as flutuações no equiĺıbrio para o modelo com condutâncias. Mais precisamente,
denote por Y N· o campo de flutuações de densidades, que é o funcional linear limitado agindo em funções
G ∈ SW (Td) como

Y Nt (G) =
1

Nd/2

∑
x∈TdN

G(x)[ηt(x)− ρ].

Foi provado que se Y N· é o campo de flutuações de densidades definido acima, então, Y N· converge
fracamente pra única solução em S ′W (Td) (o dual topológico do SW (Td), Yt ∈ D([0, T ], S′W (Td)), da
equação diferencial estocástica

dYt = φ′(ρ)∇A∇WYtdt+
√

2χ(ρ)φ′(ρ)AdNt,

onde χ(ρ) = ρ(1−ρ), φ(ρ) = ρ+bρ2, e φ′(ρ) = 1+2bρ; A é uma matriz constante diagonal, como j-ésimo
elemento dado por aj := E(aNj ), para todo N ∈ N; e Nt é um martingal de média zero com valores em
S ′W (Td), com variação quadrática

〈N(G)〉t = t

d∑
j=1

∫
Td

[
∂WjG(x)

]2
d(xj ⊗Wj),

onde d(xj ⊗Wj) é a medida produto dx1 ⊗ · · · ⊗ dxj−1 ⊗ dWj ⊗ dxj+1 ⊗ · · · ⊗ dxd. Mais ainda, Nt é
um processo Gaussiano com incrementos independentes. O processo Yt é conhecido na literatura como
o processo de Ornstein-Uhlenbeck generalizado com caracteŕısticas φ′(ρ)∇A∇W e

√
2χ(ρ)φ′(ρ)A∇W .
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Chapter 1

Hydrodynamic limit for a boundary
driven stochastic lattice gas model
with many conserved quantities

Artigo publicado no periódico Journal of Statistical Physics, 139, p. 219-251, 2010.

abstract

We prove the hydrodynamic limit for a particle system in which particles may have different velocities.
We assume that we have two infinite reservoirs of particles on the boundary: this is the so-called boundary
driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process
with collision among particles having different velocities.

1.1 Introduction

Interacting particle systems have been the subject of intense studies during the last 30 years due to
the fact that, in one hand, they present many of the collective features that are found in real physical
systems, and, in the other hand they are, up to some extent, mathematically tractable. Their study
has led in many cases to a more detailed understanding of the microscopic mechanisms behind those
collective phenomena. We refer to [14] for further references, and to [5] for recent results.

Since their introduction by Spitzer [21], the simple exclusion process and the zero-range process have
been among the most studied interacting particles systems, and they have served as a test field for new
mathematical and physical ideas.

In the last years there has been considerable progress in understanding stationary non equilibrium
states: reversible systems in contact with different reservoirs at the boundary imposing a gradient on
the conserved quantities of the system. In these systems there is a flow of matter through the system
and the dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is
the following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is
given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilibrium
states the construction of the stationary state requires the solution of a dynamical problem. One of
the most striking typical property of these systems is the presence of long-range correlations. For the
symmetric simple exclusion this was already shown in a pioneering paper by Spohn [22]. We refer to
[4, 7] for two recent reviews on this topic.

The hydrodynamic behavior of the one-dimensional boundary driven exclusion process was studied
by [8], [9] and [15]. Also, Landim, Olla and Volchan [18] considered the behavior of a tagged particle in a
one-dimensional nearest-neighbor symmetric exclusion process under the action of an external constant,
and made connections between the behavior of a tagged particle in this situation and a process with
infinite reservoirs.
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We consider a stationary non-equilibrium state, whose non-equilibrium is due to external fields and/or
different chemical potentials at the boundaries, in which there is a flow of physical quantities, such as
heat, electric charge, or chemical substances, across the system. The hydrodynamic behavior for this
kind of processes in any dimension has been solved by [8, 9]. Nevertheless, they have solved this problem
only for the case where the unique thermodynamic observable quantity is the empirical density.

Our goal is to extend their results to the situation when there are several thermodynamic variables:
density and momentum. It is not always clear that a closed macroscopic dynamical description is possible.
However, we show that the system can be described by a hydrodynamic equation: fix a macroscopic time
interval [0, T ], and consider the dynamical behavior of the empirical density and momentum over such an
interval. The law of large numbers for the empirical density and momentum is then called hydrodynamic
limit and, in the context of the diffusive scaling limit here considered, is given by a system of parabolic
evolution equations which is called hydrodynamic equation. Once the hydrodynamic limit for this model
is rigorously established, a reasonable goal is to find an explicit connection between the thermodynamic
potentials and the dynamical macroscopic properties like transport coefficients. The study of large
deviations provides such a connection. The dynamical large deviation for boundary driven exclusion
processes in any dimension with one conserved quantity has been recently proved in [11].

The dynamical large deviations for the model with many conserved quantities is studied at [12], and
the hydrodynamic limit obtained in this article is important for such large deviations.

The model which we will study can be informally described as follows: fix a velocity v, an integer
N ≥ 1, and boundary densities 0 < αv(·) < 1 and 0 < βv(·) < 1; at any given time, each site of the set
{1, . . . , N − 1}×{0, . . . , N − 1}d−1 is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric
rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is
empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or N − 1
have particles being created or removed in such a way that the local densities are αv(x̃) and βv(x̃): at
rate αv(x̃/N) a particle is created at {1}× {x̃} if the site is empty, and at rate 1−αv(x̃) the particle at
{1} × {x̃} is removed if the site is occupied, and at rate βv(x̃) a particle is created at {N − 1} × {x̃} if
the site is empty, and at rate 1− βv(x̃) the particle at {N − 1} × {x̃} is removed if the site is occupied.
Superposed to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved.

Similar models have been studied by [1, 10, 20]. In fact, the model we consider here is based on the
model of Esposito et al. [10] which was used to derive the Navier-Stokes equation. It is also noteworthy
that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two
conserved quantities have been studied in [3].

Under diffusive time scaling, assuming local equilibrium, it is not difficult to show that the evolution
of the thermodynamic quantities is described by the parabolic system of equations

∂t(ρ,p) +
∑
v∈V

ṽ [v · ∇F (ρ,p)] =
1
2

∆(ρ,p), (1.1.1)

where ṽ = (1, v1, . . . , vd), ρ stands for the density and p = (p1, . . . , pd) for the momentum. F is a
thermodynamical quantity determined by the ergodic properties of the dynamics.

Therefore, the purpose of this article is to define an interacting particle system whose macroscopic
density profile evolves according to the partial differential equation given by (1.1.1) with initial condition

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = (ρ,p)b(x), x ∈ ∂D,

with D being a suitable domain, and the equality on the boundary being on the trace sense.
This equation derives from the underlying stochastic dynamics through an appropriate scaling limit

in which the microscopic time and space coordinates are rescaled diffusively. The hydrodynamic equation
(1.1.1) thus represents the law of large numbers for the empirical density and momentum of the stochastic
lattice gas. The convergence has to be understood in probability with respect to the law of the stochastic
lattice gas. Finally, the initial condition for (1.1.1) depends on the initial distribution of particles. Of
course many microscopic configurations give rise to the same initial condition (ρ0,p0)(·).

The article is organized as follows: in Section 1.2 we establish the notation and state the main results
of the article; in Section 1.3, we prove the hydrodynamic limit for the particle system we are interested
in; the proof of a Replacement Lemma needed for the hydrodynamic limit is postponed to Section 1.4;
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in Section 1.5 we prove the uniqueness of weak solutions of the hydrodynamic equations also needed for
the hydrodynamic limits.

1.2 Notation and results

Let TdN = {0, . . . , N − 1}d = (Z/NZ)d, the d-dimensional discrete torus, and let Dd
N = SN × Td−1

N , with
SN = {1, . . . , N − 1}. Further, let also V ⊂ Rd be a finite set of velocities v = (v1, . . . , vd). Assume that
V is invariant under reflexions and permutations of the coordinates:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d, and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd) belongs to V.
Finally, denote the d-dimensional torus by Td = [0, 1)d = (R/Z)d.

On each site of Dd
N , at most one particle for each velocity is allowed. We denote: the number of

particles with velocity v at x, v ∈ V, x ∈ Dd
N , by η(x, v) ∈ {0, 1}; the number of particles in each velocity

v at a site x by ηx = {η(x, v); v ∈ V}; and a configuration by η = {ηx;x ∈ Dd
N}. The set of particle

configurations is XN =
(
{0, 1}V

)DdN .
On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system

evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles
of the same velocity, and (ii) binary collision between particles of different velocities. Let p(x, v) be an
irreducible probability transition function of finite range, and mean velocity v:∑

x

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to site x + y for a
particle with velocity v is

PN (y, v) =
1
2

d∑
j=1

(δy,ej + δy,−ej ) +
1
N
p(y, v),

where δx,y stands for the Kronecker delta, which equals one if x = y and 0 otherwise, and {e1, . . . , ed} is
the canonical basis in Rd.

1.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator LN which is the
superposition of the boundary dynamics with the collision and exclusion:

LN = N2{LbN + LcN + LexN }, (1.2.1)

where LbN stands for the generator which models the part of the dynamics at which a particle at the
boundary can enter or leave the system, LcN stands for the generator which models the collision part of
the dynamics and lastly, LexN models the exclusion part of the dynamics. Let f be a local function on
XN . The generator of the exclusion part of the dynamics, LexN , is given by

(LexN f)(η) =
∑
v∈V

∑
x,x+z∈DdN

η(x, v)[1− η(z, v)]PN (z − x, v) [f(ηx,z,v)− f(η)] ,

where

ηx,y,v(z, w) =

 η(y, v) if w = v and z = x,
η(x, v) if w = v and z = y,
η(z, w) otherwise.

We will often use the decomposition

LexN = Lex,1N + Lex,2N ,
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where
(Lex,1N f)(η) =

1
2

∑
v∈V

∑
x,x+z∈DdN
|z−x|=1

η(x, v)[1− η(z, v)] [f(ηx,z,v)− f(η)] ,

and
(Lex,2N f)(η) =

1
N

∑
v∈V

∑
x,x+z∈DdN

η(x, v)[1− η(z, v)]p(z − x, v) [f(ηx,z,v)− f(η)] .

The generator of the collision part of the dynamics, LcN , is given by

(LcNf)(η) =
∑
y∈DdN

∑
q∈Q

p(y, q, η) [f(ηy,q)− f(η)] ,

where Q is the set of all collisions which preserve momentum:

Q = {q = (v, w, v′, w′) ∈ V4 : v + w = v′ + w′},

the rate p(y, q, η) is given by

p(y, q, η) = η(y, v)η(y, w)[1− η(y, v′)][1− η(y, w′)],

and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =
{
η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,
η(z, u) otherwise,

where the index of vj+2 should be taken modulo 4.
Particles of velocities v and w at the same site collide at rate one and produce two particles of

velocities v′ and w′ at that site.
Finally, the generator of the boundary part of the dynamics is given by

(LbNf)(η) =
∑
x∈DdN
x1=1

∑
v∈V

[αv(x̃/N)[1− η(x, v)] + (1− αv(x̃/N))η(x, v)][f(σx,vη)− f(η)]

+
∑
x∈DdN
x1=N−1

∑
v∈V

[βv(x̃/N)[1− η(x, v)] + (1− βv(x̃/N))η(x, v)][f(σx,vη)− f(η)],

where x̃ = (x2, . . . , xd),

σx,vη(y, w) =
{

1− η(x,w), if w = v and y = x,
η(y, w), otherwise. ,

and for every v ∈ V, αv, βv ∈ C2(Td−1). We also assume that, for every v ∈ V, αv and βv have images
belonging to some compact subset of (0, 1). The functions αv and βv, which affect the birth and death
rates at the two boundaries, represent the densities of the reservoirs.

Note that time has been speeded up diffusively in (1.2.1). Let {η(t), t ≥ 0} be the Markov process
with generator LN and denote by {SNt , t ≥ 0} the semigroup associated to LN .

Let D(R+, XN ) be the set of right continuous functions with left limits taking values on XN . For
a probability measure µ on XN , denote by Pµ the measure on the path space D(R+, XN ) induced by
{η(t) : t ≥ 0} and the initial measure µ. Expectation with respect to Pµ is denoted by Eµ.

1.2.2 Mass and momentum

For each configuration ξ ∈ {0, 1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ), k = 1, . . . , d, the
momentum of ξ:

I0(ξ) =
∑
v∈V

ξ(v), Ik(ξ) =
∑
v∈V

vkξ(v).
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Set I(ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way that the
unique quantities conserved by the random walk dynamics described above are mass and momentum:∑
x∈DdN

I(ηx). Two examples of sets of velocities satisfying these conditions can be found at [10].
For each chemical potential λ = (λ0, . . . , λd) ∈ Rd+1, denote by mλ the measure on {0, 1}V given by

mλ(ξ) =
1

Z(λ)
exp {λ · I(ξ)} , (1.2.2)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0, 1}V , i.e., that the
variables {ξ(v) : v ∈ V} are independent under mλ.

Denote by µNλ the product measure on XN , with marginals given by

µNλ {η : η(x, ·) = ξ} = mλ(ξ),

for each ξ in {0, 1}V and x ∈ Dd
N . Note that {η(x, v) : x ∈ Dd

N , v ∈ V} are independent variables under
µNλ , and that the measure µNλ is invariant for the exclusion process with periodic boundary condition.

The expectation under µNλ of the mass and momentum are given by

ρ(λ) := EµNλ [I0(ηx)] =
∑
v∈V

θv(λ),

pk(λ) := EµNλ [Ik(ηx)] =
∑
v∈V

vkθv(λ).

In this formula θv(λ) denotes the expected value of the density of particles with velocity v under mλ:

θv(λ) := Emλ [ξ(v)] =
exp

{
λ0 +

∑d
k=1 λkvk

}
1 + exp

{
λ0 +

∑d
k=1 λkvk

} .
Denote by (ρ,p)(λ) := (ρ(λ), p1(λ), . . . , pd(λ)) the map that associates the chemical potential to the

vector of density and momentum. It is possible to prove that (ρ,p) is a diffeomorphism onto U ⊂ Rd+1,
the interior of the convex envelope of

{
I(ξ), ξ ∈ {0, 1}V

}
. Denote by Λ = (Λ0, . . . ,Λd) : U → Rd+1 the

inverse of (ρ,p). This correspondence allows one to parameterize the invariant states by the density and
momentum: for each (ρ,p) in U we have a product measure νNρ,p = µNΛ(ρ,p) on XN .

1.2.3 Hydrodynamic limit for the boundary driven exclusion process

Let Dd = [0, 1]× Td−1. Fix ρ0 : Dd → R+ and p0 : Dd → Rd, where p0 = (p0,1, . . . , p0,d). We say that
a sequence of probability measures (µN )N on XN is associated to the density profile ρ0 and momentum
profile p0, if, for every continuous function G : Dd → R and for every δ > 0,

lim
N→∞

µN

η :

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

G
( x
N

)
I0(ηx)−

∫
Dd

G(u)ρ0(u)du

∣∣∣∣∣∣ > δ

 = 0,

and for every 1 ≤ k ≤ d

lim
N→∞

µN

η :

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

G
( x
N

)
Ik(ηx)−

∫
Dd

G(u)p0,k(u)du

∣∣∣∣∣∣ > δ

 = 0.

Fix T > 0 and let (B, ‖ · ‖B) be a Banach space. We denote by L2([0, T ], B) the Banach space of
measurable functions U : [0, T ]→ B for which

‖U‖2L2([0,T ],B) =
∫ T

0

‖Ut‖2Bdt <∞.

Moreover, we denote by H1(Dd) the Sobolev space of measurable functions in L2(Dd) that have gener-
alized derivatives in L2(Dd).
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For x = (x1, x̃) ∈ {0, 1} × Td−1, let

d(x) =

 a(x̃) =
∑
v∈V(αv(x̃), v1αv(x̃), . . . , vdαv(x̃)), if x1 = 0,

b(x̃) =
∑
v∈V(βv(x̃), v1βv(x̃), . . . , vdβv(x̃)), if x1 = 1.

(1.2.3)

Fix a bounded density profile ρ0 : Dd → R+, and a bounded momentum profile p0 : Dd → Rd. A
bounded function (ρ,p) : [0, T ] × Dd → R+ × Rd is a weak solution of the system of parabolic partial
differential equations ∂t(ρ,p) +

∑
v∈V ṽ [v · ∇χ(θv(Λ(ρ,p)))] = 1

2∆(ρ,p),

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = d(x), x ∈ {0, 1} × Td−1,
(1.2.4)

if for every vector valued function H : [0, T ] × Dd → Rd+1 of class C1,2
(
[0, T ]×Dd

)
vanishing at the

boundary, we have ∫
Dd

H(T, u) · (ρ,p)(T, u)du−
∫
Dd

H(0, u) · (ρ0,p0)(u)du

=
∫ T

0

dt

∫
Dd

du

(ρ,p)(t, u) · ∂tH(t, u) +
1
2

(ρ,p)(t, u) ·
∑

1≤i≤d

∂2
uiH(t, u)


−
∫ T

0

dt

∫
{1}×Td−1

dS b(ũ) · ∂u1H(t, u) +
∫ T

0

dt

∫
{0}×Td−1

dS a(ũ) · ∂u1H(t, u)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ,p)))
∑

1≤i≤d

vi∂uiH(t, u),

dS being the Lebesgue measure on Td−1.
We say that that the solution (ρ,p) has finite energy if its components belong to L2([0, T ], H1(Dd)):∫ T

0

ds

(∫
Dd
‖∇ρ(s, u)‖2du

)
<∞,

and ∫ T

0

ds

(∫
Dd
‖∇pk(s, u)‖2du

)
<∞,

for k = 1, . . . , d, where ∇f represents the generalized gradient of the function f .
In Section 1.5 we prove that there exists at most one weak solution of the problem (1.2.4).

Theorem 1.2.1. Let (µN )N be a sequence of probability measures on XN associated to the profile
(ρ0,p0). Then, for every t ≥ 0, for every continuous function H : Dd → R vanishing at the boundary,
and for every δ > 0,

lim
N→∞

PµN

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

H
( x
N

)
I0(ηx(t))−

∫
Dd

H(u)ρ(t, u)du

∣∣∣∣∣∣ > δ

 = 0,

and for 1 ≤ k ≤ d

lim
N→∞

PµN

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(t))−

∫
Dd

H(u)pk(t, u)du

∣∣∣∣∣∣ > δ

 = 0,

where (ρ,p) has finite energy and is the unique weak solution of equation (1.2.4).

The strategy to prove Theorem 1.2.1 is to use a replacement lemma, together with some estimates
on Dirichlet forms and entropies for this boundary driven process.
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1.3 Hydrodynamic limit for the boundary driven process

Fix T > 0, let M+ be the space of finite positive measures on Dd endowed with the weak topology,
and let M be the space of bounded variation signed measures on Dd endowed with the weak topology.
Let M+ ×Md be the cartesian product of these spaces endowed with the product topology, which is
metrizable.

Recall that the conserved quantities are the mass and momentum presented in subsection 1.2.2. For
k = 0, . . . , d, denote by πk,Nt the empirical measure associated to the kth conserved quantity:

πk,Nt =
1
Nd

∑
x∈DdN

Ik(ηx(t))δx/N , (1.3.1)

where δu stands for the Dirac measure supported on u. We denote by < πk,Nt , H > the integral of a test
function H with respect to an empirical measure πk,Nt .

Let D([0, T ],M+ ×Md) be the set of right continuous functions with left limits taking values on
M+ × Md. We consider the sequence of probability measures on D([0, T ],M+ × Md) (QN )N that
corresponds to the Markov process πNt = (π0,N

t , . . . , πd,Nt ) starting from µN .
Let V be an open neighborhood of Dd, and consider, for each v ∈ V, smooth functions κvk : V → (0, 1)

in C2(V ), for k = 0, . . . , d. We assume that each κvk has its image contained in some compact subset
of (0, 1), that the restriction of κ =

∑
v∈V(κv0, v1κ

v
1, . . . , vdκ

v
d) to {0} × Td−1 equals the vector valued

function a(·) defined in (1.2.3), and that the restriction of κ to {1} × Td−1 equals the vector valued
function b(·), also defined in (1.2.3), in the sense that κ(x) = d(x1, x̃) if x ∈ {0, 1} × Td−1.

Further, we may choose κ for which there exists a constant θ > 0 such that:

κ(u1, ũ) = d(−1, ũ) if 0 ≤ u1 ≤ θ ,
κ(u1, ũ) = d(1, ũ) if 1− θ ≤ u1 ≤ 1 ,

for all ũ ∈ Td−1. In that case, for every N large enough, νNκ is reversible for the process with generator
LbN and then 〈−N2LbNf, f〉νNκ is positive.

We then consider νNκ the product measure on XN with marginals given by

νNκ {η : η(x, ·) = ξ} = mΛ(κ(x))(ξ),

where mλ(·) was defined in (1.2.2). Note that with this choice, for N sufficiently large, we have that if
x ∈ {1} ×Td−1

N , then EνNκ [η(x, v)] = αv(x̃/N) and if x ∈ {N − 1} ×Td−1
N , then EνNκ [η(x, v)] = βv(x̃/N).

1.3.1 Entropy estimates

Let us recall some definitions. Recall that SNt is the semigroup associated to the generator LN =
N2(LexN + LcN + LbN ). Denote by ft = fNt the Radon-Nikodym derivative of µNSNt with respect to νNκ .
Define DνNκ

by
DνNκ

= Dex
νNκ

+Dc
νNκ

+Db
νNκ
,

where
Dex
νNκ

=
∑
v∈V

∑
x∈DdN

∑
x+z∈DdN

PN (z − x, v)
∫ [√

f(ηx,z,v)−
√
f(η)

]2
νnκ (dη),

Dc
νNκ

=
∑
q∈Q

∑
x∈DdN

∫
p(x, q, η)

[√
f(ηx,q)−

√
f(η)

]2
νNκ (dη),
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and

Db
νNκ

=
∑
v∈V

∑
x∈{1}×Td−1

N

∫
[αv(x̃/N)(1− η(x, v)) + (1− αv(x̃/N))η(x, v)]×

×
[√

f(σx,vη)−
√
f(η)

]2
νNκ (dη) +

+
∑
v∈V

∑
x∈{N−1}×Td−1

N

∫
[βv(x̃/N)(1− η(x, v)) + (1− βv(x̃/N))η(x, v)]×

×
[√

f(σx,vη)−
√
f(η)

]2
νNκ (dη).

Proposition 1.3.1. There exists a finite constant C = C(α, β) such that

∂tH(µNSNt |νNκ ) ≤ −N2DνNκ
(ft) + CNd. (1.3.2)

Proof : Denote by L∗ν the adjoint operator of LN with respect to νNκ . Then, ft is the solution of the
forward equation {

∂tft = N2L∗νft,
f0 = dµN/dνNκ .

Thus,

∂tH(µNSNt |νNκ ) =
∫
N2L∗νft log ftdνNκ +

∫
N2L∗νftdνNκ =

∫
ftN

2LN log ftdνNκ

= N2

∫
ft(LN log ft −

LNft
ft

)dνNκ +N2

∫
LNftdνNκ .

Note that the last term is the price paid for not using an invariant measure.
Since for every a, b > 0, a log(b/a)− (b−a) is less than or equal to −(

√
b−
√
a)2, for every x, y ∈ Dd

N ,
we have

ftLexx,y,v log ft − Lexx,y,vft ≤ −PN (y − x, v)
[√

ft(ηx,y,v)−
√
ft(η)

]2
.

An analogous calculation for the other parts of the generator permits to conclude that

N2

∫
ft(LN log ft −

LNft
ft

)dνNκ ≤ −N2DνNκ
(ft).

To conclude the proposition we need a bound for N2
∫
LNftdνNκ . Let us write it explicitly:

N2

∫
LNftdνNκ = N2

∫
(Lex,1N ft + Lex,2N ft + LcNft + LbNft)dνNκ .

Now, we compute each term inside this integral separately.

N2

∫
Lex,1N ftdν

N
κ = N2

∫ ∑
v∈V

∑
x∈DdN

d∑
j=1

[f(η − dx,v + dx+ej ,v)− f(η)]dνNκ

+ N2

∫ ∑
v∈V

∑
x∈DdN

d∑
j=1

[f(η − dx,v + dx−ej ,v)− f(η)]dνNκ ,

where dx,v represents a configuration with one particle at position x and velocity v, and no particles
elsewhere. Then, if we let

γx,v = θv(Λ(κ(x)))/(1− θv(Λ(κ(x)))),
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the change of variables η − dx,v + dx+ej ,v = ξ, changes the measure as dνNκ (η)/dνNκ (ξ) = γx,v/γx+ej ,v.
Hence, after changing the variables, we obtain

N2

∫
Lex,1N ftdν

N
κ = N2

∑
v∈V

d∑
j=1

∫ ∑
x∈DdN

[
γx,v

γx+ej ,v
− 1
]
ft(η)dνNκ

+ N2
∑
v∈V

d∑
j=1

∫ ∑
x∈DdN

[
γx,v

γx−ej ,v
− 1
]
ft(η)dνNκ

=
∑
v∈V

d∑
j=1

∫ ∑
x∈DdN

∆Nγ(x, v)
γx,v

ft(η)dνNκ

+ N
∑
v∈V

∫ ∑
x∈DdN
x1=1

∂Nu1
γ(x, v)
γx,v

ft(η)dνNκ

− N
∑
v∈V

∫ ∑
x∈DdN
x1=N−1

∂Nu1
γ(x, v)
γx,v

ft(η)dνNκ .

Since γx,v is smooth and does not vanish, we can bound the above quantity by C1N
d, where C1 is a

constant depending only on α and β. By a similar approach, one may conclude that

N2

∫
Lex,2N ftdν

N
κ ≤

∑
v∈V

d∑
j=1

vj
∑
x∈DdN

∂Nuiγ(x, v)
γx,v

,

which is clearly bounded by C2N
d, where C2 is a constant depending only on α and β.

We now move to the generator with respect to collision. The change of variables ηy,q = ξ changes
the measure as dνNκ (η)/dνNκ (ξ) = (γy,vγy,w)/(γy,v′γy,w′), where v + w = v′ + w′. Then, clearly,
(γy,vγy,w)/(γy,v′γy,w′) = 1, and therefore

N2

∫
LcNftdνNκ = 0.

Lastly, we note that the change of variables σx,vη = ξ changes the measure dνNκ (η)/dνNκ (ξ) =
αv(x̃/N)/(1 − αv(x̃/N)) or (1 − αv(x̃/N))/αv(x̃/N), depending on whether there is or there is not a
particle at the site x with velocity v, and analogously for β. Therefore, a simple computation shows that

N2

∫
LbNftdνNκ = 0.

which concludes the Proposition. �
Let < f, g >ν be the inner product in L2(ν) of f and g:

< f, g >ν=
∫
fgdν.

Proposition 1.3.2. There exist constants C1 > 0 and C2 = C2(α, β) > 0 such that for every density f
with respect to νNκ , then

< LN
√
f,
√
f >νNκ ≤ −C1DνNκ

(f) + C2N
d−2.

Proof: A simple computation permits to conclude that Dc
νNκ

and Db
νNκ

are both non-negative. Finally,
the computation for Dex

νNκ
follows the same lines as those on the proof of Proposition 1.3.2, and on Lemmas

1.3.4 and 1.3.5, and is therefore omitted. �

22



1.3.2 Replacement lemma for the boundary

Fix k = 0, . . . , d, a continuous function G : [0, T ]× Td−1 → Rd+1, and consider the quantities

V 1
k (s, η, α,G) =

1
Nd−1

∑
x̃∈Td−1

N

Gk(s, x̃/N)
(
Ik(η(1,x̃)(s))−

∑
v∈V

vkαv(x̃/N)
)
,

V 1
k (s, η, β,G) =

1
Nd−1

∑
x̃∈Td−1

N

Gk(s, x̃/N)
(
Ik(η(N−1,x̃)(s))−

∑
v∈V

vkβv(x̃/N)
)
,

V 2
k (s, η, α,G) =

1
Nd−1

∑
x̃∈Td−1

N

Gk(s, x̃)
(
Ik(η(1,x̃)(s))−

1
Nε

Nε−1∑
x1=1

Ik(η(1,x̃)(s))
)
,

and

V 2
k (s, η, β,G) =

1
Nd−1

∑
x̃∈Td−1

N

Gk(s, x̃)
(
Ik(η(N−1,x̃)(s))−

1
Nε

N−1∑
x1=N(1−ε)−1

Ik(η(N−1,x̃)(s))
)
,

where s ∈ [0, T ], and Gk, 0 ≤ k ≤ d are the components of function G.

The main result of this subsection is the following Lemma:

Lemma 1.3.3. For each 0 ≤ t ≤ T , 0 ≤ k ≤ d, and G : [0, T ]×Dd → R continuous,

lim
N→∞

EµN

[∣∣∣∣∫ t

0

dsV jk (s, η, ζ,G)
∣∣∣∣] = 0,

where j = 1, 2, and ζ = α, β.

Proof: It is clear that V jk is bounded for each 0 ≤ k ≤ d, and j = 1, 2. By the entropy inequality,

EµN
[∣∣∣ ∫ t

0

dsV jk (s, η, ζ,G)
∣∣∣] ≤

≤ H(µN |νNκ )
ANd

+
1

ANd
logEνNκ

[
exp

{∣∣∣∣∫ t

0

dsANdV jk (s, η, ζ,G)
∣∣∣∣}] ,

for all A > 0. We have that the first term on the right-hand side is bounded by CA−1, for some constant
C. To prove this result we must show that the limit of the second term is less than or equal to 0 as
N → ∞ for some suitable choice of A > 0. Since e|x| ≤ ex + e−x and limN→∞N−d log{aN + bN} ≤
max{limN→∞N−d log(aN ), limN→∞N−d log(bN )}, replacing V jk by −V jk , or more precisely, replacing
Gk by −Gk, we are able to conclude that we only need to prove the previous statement without the
absolute values in the exponent. Let Wk(s) = ANdV jk (s, η, ζ,G). Then, by Feynman-Kac’s formula (see,
for instance, [2, 14]), we have

EνNκ

[
exp

{∫ t

0

dsANdV jk (s, η, ζ,G)
}]

=< SWk
0,t 1, 1 >νNκ ,

where SWk
s,t is a semigroup associated to the operator LWt = L+Wk(t), for more details see [14, A.1.7],

see also [2]. Then, by Cauchy-Schwarz

< SWk
0,t 1, 1 >νNκ ≤< SWk

0,t 1, SWk
0,t 1 >1/2

νNκ
.

On the other hand, since Wk is bounded, the adjoint in L2(νNκ ) of LWt , LW,∗t , is equal to L∗N + Wk(t).
We have that

∂s < SWk
s,t 1, SWk

s,t 1 >νNκ = < (LWk
t + LWk,∗

t )SWk
s,t 1, SWk

s,t 1 >

= 2 < LWk
t SWk

s,t 1, SWk
s,t 1 >≤ λWk

(s) < SWk
s,t 1, SWk

s,t 1 >νNκ ,
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where λWk
(s) = sup‖f‖L2(νNκ )=1

{
< Wk(s), f >νNκ + < LNf, f >νNκ

}
. Therefore, we obtained that

1
ANd

logEνNκ
[

exp
{∣∣∣ ∫ t

0

dsANdV jk (s, η, ζ,G)
∣∣∣}] ≤

≤
∫ t

0

ds sup
f

{∫
V jk (s, η, ζ,G)f(η(s))dνNκ +

< LN
√
f,
√
f >νNκ

ANd−2

}
.

In this formula the supremum is taken over all densities f with respect to νNκ , and recall that < f, g >ν
stands for the inner product in L2(ν) of f and g. An application of Proposition 1.3.2 permits to conclude
that < LN

√
f,
√
f >νNκ is bounded above by CNd−2, where C > 0 is some constant. Thus, if we choose,

for instance, A = N , the proof follows from an application of the auxiliary Lemmas 1.3.4 and 1.3.5 given
below. �

Lemma 1.3.4. For every 0 ≤ t ≤ T, 0 ≤ k ≤ d, and every continuous G : [0, T ]× Td−1 → Rd+1,

lim
N→∞

EµN

[∫ t

0

dsV 1
k (s, η, ζ,G)

]
= 0,

where ζ = α, β.

Proof: We will only prove for α, since for β the proof is entirely analogous. Note that G is continuous
and its domain is compact, hence, we may prove the above result without G. Set f t = 1/t

∫ t
0
fsds. With

this notation we can write the expectation above, without G, as

t

Nd−1

∑
x̃∈Td−1

N

∫
f t(η)

[
Ik(η(1,x̃) −

∑
v∈V

vkαv(x̃/N)

]
dνNκ

=
t

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f t(η) [η((1, x̃), v)− αv(x̃/N)] dνNκ .

Then, splitting the integral into the integral over the sets [η((1, x̃), v) = 0] and [η((1, x̃), v) = 1], and
changing the variables as 1− η(xN , v) = ξ, we obtain

t

Nd−1

∑
x̃∈Td−1

N

∫
f t(η)

[
Ik(η(1,x̃) −

∑
v∈V

vkαv(x̃/N)

]
dνNκ

=
t

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
Pα,η

[
f t(η)− f t(η − d(1,x̃),v)

]
dνNκ ,

where
Pα,η = αv(x̃/N)(1− η((1, x̃), v)) + (1− αv(x̃/N))η((1, x̃), v).

Writing {a− b} = {f t(η)− f t(η− d(1,x̃),v)} as {
√
a−
√
b}{
√
a+
√
b} and applying Cauchy-Schwarz, the

above expression is bounded by

2t
∑
v∈V vk

A
+

t

Nd−1
ADνNκ ,b

(f t),

where DνNκ ,b
(f t) is the Dirichlet form of f t with respect to LbN . Then, choosing A =

√
N , the proof

of the Lemma follows from an application of Proposition 1.3.2 together with the fact that the Dirichlet
form is convex. �

The next Lemma concludes the boundary behavior of the particle system.

Lemma 1.3.5. For each 0 ≤ t ≤ T , 0 ≤ k ≤ d, and continuous G : [0, T ]×Dd,

lim
ε→0

lim
N→∞

ENµ

[∫ t

0

dsV 2
k (s, η, ζ,G)

]
= 0,

where ζ = α, β.
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Proof: First of all, note that since G is continuous and its domain [0, T ]×Dd is compact, it is enough
to prove the result without the multiplying factor G. Moreover, we will only prove the first limit above,
since the proof of the second one is entirely analogous. Considering the notation used to prove Lemma
1.3.4, we may write the expectation above, without G, as

t

Nd−1

∑
x̃∈Td−1

N

∫ [
Ik(η(1,x̃))−

1
Nε

Nε−1∑
x1=1

Ik(η(x1,x̃))

]
dνNκ .

We now obtain, by a change of variables and a telescopic sum, that the absolute value of the above
expression is bounded above by∣∣∣∣∣∣ t

Nd−1

∑
x̃∈Td−1

N

1
Nε

Nε−1∑
y=1

y−1∑
x1=1

K1

∫ [
f t(

x1∏
i=1

τzi(η))− f t(
x1−1∏
i=1

τzi(η))

]
dνNκ .

∣∣∣∣∣∣ ,
where K1 is a constant which depends on α, β and d, z1 = 1, . . . , zy−1 = y is the path from the origin to y
across the first coordinate of the space, and τz1(η) · · · τzi(η) is the sequence of nearest neighbor exchanges
that represents the path along z1, . . . , zi. By Cauchy-Schwarz, this expression is bounded above by

tA

Nd−1

∑
x̃∈Td−1

N

1
Nε

Nε−1∑
y=1

y−1∑
x1=1

K1

∫ √√√√f t(
x1∏
i=1

τzi(η))−

√√√√f t(
x1−1∏
i=1

τzi(η))

2

dνNκ +

+
t

ANd−1

∑
x̃∈Td−1

N

1
Nε

Nε−1∑
y=1

y−1∑
x1=1

K1

∫ [
f t(

x1∏
i=1

τzi(η))− f t(
x1−1∏
i=1

τzi(η))

]
dνNκ ,

for every A > 0. Now, we can bound above the last expression by

tAK1

Nd−1
Dex
νNκ

(f t) +
tK2Nε

A
,

for every A > 0, where K2 is a constant that depends on K1. Then, choosing A =
√
εN and applying

Proposition 1.3.2, we conclude the proof of this Lemma. �

1.3.3 Tightness

To prove tightness of the sequence (QN )N , it is enough to prove that for every k = 0, . . . , d

lim
δ→0

lim
N→∞

EµN

 sup
|t−s|<δ

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(t))− 1

Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(s))

∣∣∣∣∣∣
 = 0,

for any smooth test function H : Dd → R vanishing at the boundary.
Fix 0 ≤ k ≤ d, then, by Dynkin’s formula

Mk
t =< πk,Nt , H > − < πk,N0 > −

∫ t

0

LN < πk,Ns , H > ds (1.3.3)

is a martingale. On the other hand,

EµN [Mk
t ]2 = EµN

[∫ t

0

{
LN < πk,Ns , H >2 −2 < πk,Ns , H > LN < πk,Ns , H >

}
ds

]
.

Writing the above expression as four sums, the first corresponds to the nearest neighbor symmetric
exclusion process and the other corresponds to the asymmetric exclusion process, the third and fourth
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corresponding to the collision and boundary parts of the dynamics, respectively. A long, albeit simple
computation shows that all of these sums are of order O(N−d), and therefore, the right-hand side of the
above expression is of the same order. Thus, by Doob’s inequality, EµN [sup0≤s≤t(Mk

t )2] = O(N−d).
Hence, by (1.3.3) and the above estimates, we have

1
Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(t)) =

1
Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(s)) +

+
1
Nd

d∑
j=1

∑
x,z∈DdN

∑
v∈V

∫ t

s

p(z, v)vkηr(0, v)[1− ηr(z, v)]zj(∂ujH)
( x
N

)
dr +

+
1

2Nd

∑
x∈DdN

∫ t

s

(∆H)
( x
N

)
Ik(ηx(r))dr +

1
Nd−1

∑
x∈DdN
x1=N−1

∫ t

s

∂u1H
( x
N

)
Ik(ηx(r))dr

− 1
Nd−1

∑
x∈DdN
x1=1

∫ t

s

∂u1H
( x
N

)
Ik(ηx(r))dr +RN +O(N−d) +O(N−1),

where the terms were obtained from LN < πk,Ns , H > by means of summation by parts, and the
replacement of discrete derivatives and discrete Laplacian by the continuous ones, and RN is the error
coming from such replacements. Since p is of finite range, the error RN is uniformly of order O(N−1).
Finally, by using Lemma 1.3.3 and a calculation similar to the one found in equation (1.3.9), we have
that LbN < πk,Ns , H >= O(N−1). Tightness thus follows from the above estimates.

Our next goal is to prove the replacement lemma. To do so, we need the following result known as
equivalence of ensembles, which will be used in the proofs of the one block estimate and of the two block
estimate.

1.3.4 Equivalence of ensembles

Fix L ≥ 1 and a configuration η, let IL(x, η) := IL(x) = (IL0 (x), . . . , ILd (x)) be the average of the
conserved quantities in a cube of the length L centered at x:

IL(x) =
1
|ΛL|

∑
z∈x+ΛL

I(ηz),

where, ΛL = {−L, . . . , L}d and |ΛL| = (2L+ 1)d is the discrete volume of box ΛL.
Let VL be the set of all possible values of IL(0, η) when η runs over

(
{0, 1}V

)ΛL , that is,

VL =
{
IL(0, η); η ∈

(
{0, 1}V

)ΛL}
.

Note that VL is a finite subset of the convex envelope of
{
I(ξ) : ξ ∈ {0, 1}V

}
. The set of configurations(

{0, 1}V
)ΛL splits into invariant subsets: for i in VL, let

HL(i) :=
{
η ∈

(
{0, 1}V

)ΛL : IL(0) = i
}
.

For each i in VL, define the canonical measure νL,i as the uniform probability measure on HL(i). Note
that for every λ in Rd+1

νΛL,i(·) = µΛL
λ

(
·
∣∣∣IL = i

)
.

Let < g; f >µ stands for the covariance of g and f with respect to µ: < g; f >µ= Eµ[fg]− Eµ[f ]Eµ[g].

Proposition 1.3.6. (Equivalence of ensembles): Fix a cube Λ` ⊂ ΛL. For each i ∈ VL, denote by
ν` the projection of the canonical measure νΛL,i on Λ` and by µ` the projection of the grand canonical
measure µLΛ(i) on Λ`. Then, there exists a finite constant C(`,V), depending only on ` and V, such that

∣∣Eµ` [f ]− Eν` [f ]
∣∣ ≤ C(`,V)

|ΛL|
< f ; f >1/2

µ`
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for every function f :
(
{0, 1}V

)Λ` 7→ R.

The proof of Proposition 1.3.6 can be found in Beltrán and Landim [1].

1.3.5 Replacement lemma

We now state the replacement lemma that will allow us to prove that the limit points Q are concentrated
on weak solutions of (1.2.4).

Lemma 1.3.7. (Replacement lemma): For all δ > 0, 1 ≤ j ≤ d, 0 ≤ k ≤ d:

lim
ε→0

lim
N→∞

PµN

∫ T

0

1
Nd

∑
x∈DdN

τxV
j,k
εN (η(s))ds ≥ δ

 = 0,

where

V j,k` (η) =

∣∣∣∣∣∣ 1
(2`+ 1)d

∑
y∈Λ`

∑
v∈V

vk
∑
z∈Zd

p(z, v)zj τy(η(0, v)[1− η(z, v)])−
∑
v∈V

vjvkχ(θv(Λ(I`(0))))

∣∣∣∣∣ .
(1.3.4)

Note that V j,kεN is well-defined for large N since p(·, v) is of finite range. We now observe that
Propositions 1.3.2 and 1.3.2 permit us to prove the following replacement lemma for the boundary
driven exclusion process by using the process without the boundary part of the generator (see [17] for
further details). We postpone the rest of the proof to Section 1.4.

1.3.6 Energy estimates

We will now define some quantities to prove that each component of the solution vector belongs, in fact,
to H1([0, T ]×Dd). The proof is similar to the one found in [15].

Let the energy Q : D([0, T ],M)→ [0,∞] be given by

Q(π) =
d∑
i=1

Qi(π),

with

Qi(π) = sup
G∈C∞c (ΩT )

{
2
∫ T

0

dt < πt, ∂uiGt > −
∫ T

0

∫
Dd

duG(t, u)2

}
,

where ΩT = (0, T )×Dd and C∞c (ΩT ) stands for the set of infinitely differentiable functions (with respect
to both the time and space) with compact support in ΩT . Let now, for any G ∈ C∞c (ΩT ), 1 ≤ i ≤ d and
C ≥ 0, QGi,C : D([0, T ],M)→ R be the functional given by

QGi,C(π) =
∫ T

0

ds < πs, ∂uiGs > −C
∫ T

0

ds

∫
Dd

duG(s, u)2.

Note that

sup
G∈C∞c (ΩT )

{QGi,C} =
Qi(π)

4C
. (1.3.5)

Lemma 1.3.8. There exists a constant C0 = C0(κ) > 0, such that for every i = 1, . . . , d, every k =
0, . . . , d, and every function G in C∞c (ΩT )

lim
N→∞

1
Nd

logEνNκ
[
exp

{
NdQGi,C0

(πN,k)
}]
≤ C0.
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Proof: Applying Feynman-Kac’s formula and using the same arguments in the proof of Lemma 1.3.3,
we have that

1
Nd

logEνNκ

exp

N
∫ T

0

ds
∑
x∈DdN

(Ik(ηx(s))− Ik(ηx−ei(s)))G(s, x/N)




is bounded above by
1
Nd

∫ T

0

λNs ds,

where λNs is equal to

sup
f

{〈
N
∑
x∈DdN

(Ik(η(x))− Ik(η(x− ei)))G(s, x/N), f
〉
νNκ

+N2 < LN
√
f,
√
f >νNκ

}
,

where the supremum is taken over all densities f with respect to νNκ . By Proposition 1.3.2, the expression
inside brackets is bounded above by

CNd − N2

2
DνNκ

(f) +
∑
x∈DdN

{
NG(s, x/N)

∫
[Ik(ηx)− Ik(ηx−ei)]f(η)νNκ (dη)

}
.

We now rewrite the term inside the brackets as∑
v∈V

vk
∑
x∈DdN

∫ {
NG(s, x/N)[η(x, v)− η(x− ei, v)]f(η)νNκ (dη)

}
.

After a simple computation, we may rewrite the terms inside the brackets of the above expression as

NG(s, x/N)
∫

[η(x, v)− η(x− ei, v)]f(η)νNκ (dη)

= NG(s, x/N)
∫
η(x, v)f(η)νNκ (dη)

− NG(s, x/N)
∫
η(x, v)f(ηx−ei,x,v)

γx−ei,v
γx,v

νNκ (dη)

= NG(s, x/N)
∫
η(x, v)[f(η)− f(ηx−ei,x,v)]νNκ (dη)

+ G

∫
η(x, v)f(ηx−ei,x,v)N

[
1− γx−ei,v

γx,v

]
≤ G(s, x/N)2

∫
f(ηx−ei,x,v)νNκ (dη)

+
1
4

∫
η(x, v)f(ηx−ei,x,v)

[
N

(
1− γx−ei , v

γx,v

)]2

νNκ (dη)

+ N2

∫
1
2

[
√
f(ηx−ei,x,v)−

√
f(η)]2νNκ (dη)

+ 2G(s, x/N)2

∫
η(x, v)(

√
f(η) +

√
f(ηx−ei,x,v))2νNκ (dη),

which is clearly bounded by C1 + C1G(s, x/N)2, by some positive constant C1 = C1(κ), since γ·,v is
smooth and the fact that f is a density with respect to νNκ . Thus, letting C0 = C + C1, the statement
of the Lemma holds. �

It is well-known that Q(π) is finite if and only if π has a generalized gradient, ∇π = (∂u1π, . . . , ∂udπ),
and

Q̂(π) =
∫ T

0

∫
Dd

du‖∇πt(u)‖2 <∞.
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In which case, Q(π) = Q̂(π). Recall that the sequence (QN )N defined in the beginning of this section is
tight. We have then the following proposition:

Proposition 1.3.9. Let Q∗ be any limit point of the sequence of measures (QN )N . Then,

EQ∗

[∫ T

0

ds

(∫
Dd
‖∇ρ(s, u)‖2du

)]
<∞,

and

EQ∗

[∫ T

0

ds

(∫
Dd
‖∇pk(s, u)‖2du

)]
<∞.

Proof: We thus have to prove that the energy Q(π) is almost surely finite. Fix a constant C0 > 0
satisfying the statement of Lemma 1.3.8. Let {Gm : 1 ≤ m ≤ r} be a sequence of functions in C∞0 (ΩT )
(the space of infinitely differentiable functions vanishing at the boundary) and 1 ≤ i ≤ d, and 0 ≤ k ≤ d,
be integers. By the entropy inequality, there is a constant C > 0 such that

EµN

[
max

1≤m≤r

{
QGmi,C0

(πN,k)
}]
≤ C +

1
Nd

logEνNκ

[
exp

{
Nd max

1≤m≤r

{
QGmi,C0

(πN,k)
}}]

.

Therefore, Lemma 1.3.8 together with the elementary inequalities

lim
N→∞

N−d log(aN + bN ) ≤ lim
N→∞

max{ lim
N→∞

N−d log(aN ), lim
N→∞

N−d log(bN )}

and exp{max{x1, . . . , xn}} ≤ exp(x1) + · · ·+ exp(xn) imply that

EQ∗

[
max

1≤m≤r

{
QGmi,C0

(πN,k)
}]

= lim
N→∞

EµN

[
max

1≤m≤r

{
QGmi,C0

(πN,k)
}]

≤ C + C0.

Using this, the equation (1.3.5) and the monotone convergence theorem, we obtain the desired result. �

1.3.7 Proof of Theorem 1.2.1

Note that all limit points Q∗ of (QN )N are concentrated on absolutely continuous measures with respect
to the Lebesgue measure since there is at most one particle per site, that is,

Q∗{π;πk(du) = pk(u)du, for all 0 ≤ k ≤ d} = 1,

where πk denotes the kth component of π and p0 = ρ.
For k = 0, . . . , d, denote, again, by πk,Nt the empirical measure associated to the kth thermodynamic

quantity:

πk,Nt =
1
Nd

∑
x∈DdN

Ik(ηx(t))δx/N .

Further, denote by πk,N,b1t and π
k,N,bN−1
t the empirical measures associated to the kth thermodynamic

quantity restricted to the boundaries:

πk,N,bit =
1

Nd−1

∑
x∈DdN
x1=i

Ik(ηx(t))δx/N ,

for i = 1, N − 1.
To compute LN < πk,Nt , H > for this process, we note that LcNIk(ηx) vanishes for k = 0, . . . , d,

because the collision operator preserves local mass and momentum.
Since, in our definition of weak solution we considered test functions H vanishing at the boundary,

that is, H(x) = 0, if x ∈ {0, 1} × Td−1, we assume that H vanishes at the boundary as well.
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Now, we consider the martingale

MN,H
t,k =< πk,Nt , H > − < πk,N0 , H > −

∫ t

0

N2LN < πk,Ns , H > ds,

which can be decomposed into

MN,H
t,k = < πk,Nt , H > − < πk,N0 , H > −

∫ t

0

N2Lex,1N < πk,Ns , H > ds (1.3.6)

−
∫ t

0

N2Lex,2N < πk,Ns , H > ds−
∫ t

0

N2LbN < πk,Ns , H > ds. (1.3.7)

We first prove that ∫ t

0

N2LbN < πk,Ns , H > ds (1.3.8)

vanishes as N →∞. A simple calculation shows that

N2LbNη(x, v) = N2 [αv(x̃/N)− η(x, v)] , if x1 = 1,

and
N2LbNη(x, v) = N2 [βv(x̃/N)− η(x, v)] , if x1 = N − 1.

Since H vanishes on the boundary, H((x+ e1)/N) = 0 if x1 = N − 1, and H((x− e1)/N) = 0 if x1 = 0.
Then, we have the equalities NH(x/N) = ∂Nx1

H((x− e1)/N), if x1 = 1, and NH(x/N) = −∂Nx1
H(x/N),

if x1 = N − 1. Therefore, we obtain

N2LbN < πk,N , H > = 1
Nd−1

∑
x∈DdN
x1=1

∑
v∈V vk[αv

(
x̃
N

)
− η(x, v)]∂Nx1

H
(
x−e1
N

)
− 1

Nd−1

∑
x∈DdN
x1=N−1

∑
v∈V vk[β

(
x̃
N

)
− η(x, v)]∂Nx1

H
(
x
N

)
.

(1.3.9)

We now use the last computation together with Lemma 1.3.3 to conclude that (1.3.8) vanishes as N →∞.
Further, after two summations by parts of the integrand on the right-hand term of (1.3.6), we have

that ∫ t

0

N2Lex,1N < πk,Ns , H > ds =
1
2

∫ t

0

< πk,Ns ,∆NH > ds

+ < π
k,N,bN−1
t , ∂Nu1

H > − < πk,N,b1t , ∂Nu1
H >,

and after one summation by parts on the right-hand term of (1.3.7), and noting again that H vanishes
at the boundaries, we have that∫ t

0

N2Lex,2N < πk,Ns , H > ds = − 1
Nd

∫ t

0

d∑
j=1

∑
x∈TdN

(∂NujH)
( x
N

)
τxW

N,s
j,k ds,

where τx stands for the translation by x on the state space XN so that (τxη)(y, v) = η(x + y, v) for all
x, y ∈ Zd, v ∈ V, and WN,s

j,k is given by:

WN,s
j,k =

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjηs(0, v)[1− ηs(z, v)],

where v0 = 1. Since p(·, v) is of finite range,

EµNλ

[
WN,s
j,k

]
=
∑
v∈V

vkvjχ(θv(λ)),

where χ(a) = a(1 − a). Now, note that EνNκ (η(x, v)) = αv(x/N) if x ∈ {1} × Td−1
N and EνNκ (η(x, v)) =

βv(x/N) if x ∈ {N − 1} × Td−1
N .
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We then apply Lemma 1.3.7 to write the martingale in terms of the empirical measure. Further, we
apply the replacement lemma for the boundary (Lemma 1.3.3) to obtain that all limit points satisfy the
integral identity in the definition of weak solution of the problem (1.2.4).

Using the previous computations and the tightness of the sequence of measures QN (for more details
see [14, Chapter 5]) we conclude that all limit points are concentrated on weak solutions of

∂t(ρ,p) +
∑
v∈V

ṽ [v · ∇χ(θv(Λ(ρ,p)))] =
1
2

∆(ρ,p),

with boundary conditions, given in the trace sense, by

(ρ,p)(t, x) = a(x̃), for x ∈ {0} × Td−1, (1.3.10)

and
(ρ,p)(t, x) = b(x̃), for x ∈ {1} × Td−1, (1.3.11)

where a(·) and b(·) were defined in equation (1.2.3), and v0 = 1. The uniqueness of weak solutions of the
above equation implies that there is at most one limit point. Moreover, by Proposition 1.3.9, each limit
point of (QN )N is concentrated on a vector of measures with finite energy, that is: whose components
have densities with respect to the Lebesgue measure that belong to the Sobolev space H1(Dd). This
completes the proof of the theorem. �

1.4 Proof of the replacement lemma

As mentioned in the subsection 1.3.5, we only have to prove this result for the process without the
boundary dynamics. In this case, we have a product invariant measure given by νNρ,p.

Let µN (T ) be the Cesaro mean of µNSNt , namely:

µN (T ) =
1
T

∫ T

0

µNSNt dt,

and let f
N

T,k be the Radon-Nikodym density of µN (T ) with respect to νNρ,p. We have that the Dirichlet

form of f
N

T,k, DN (f
N

T,k, ν
N
ρ,p), is bounded by CNd−2/2T , where C is some constant. Therefore, to prove

the replacement lemma, it is enough to show that

lim
ε→0

lim
N→∞

sup
DN (f,νρ,p)<CNd−2

∫
1
Nd

∑
x∈DdN

τxV
j,k
εN (η(s))f(η)νNρ,p(dη) = 0.

From now on we will simply write the Dirichlet form of a function f with respect to the measure νNρ,p
as DN (f).

To prove the replacement lemma, we will prove the one and two block estimates:

Lemma 1.4.1. (One block estimate): For every constant C > 0, for 1 ≤ j ≤ d and for 0 ≤ k ≤ d:

lim
`→∞

lim
N→∞

sup
DN (f)≤CNd−2

∫
1
Nd

∑
x∈DdN

(τxV
j,k
` )(η)f(η)νNρ,p(dη) = 0,

where V j,k` (η) was defined in Lemma 1.3.7.

Lemma 1.4.2. (Two block estimate): For every constant C > 0, for 1 ≤ j ≤ d and for 0 ≤ k ≤ d:

lim
`→∞

lim
ε→0

lim
N→∞

sup
DN (f)≤CNd−2

sup
y∈ΛεN

∫
1
Nd

∑
x∈DdN

∣∣∣I`(x+ y)− INε(x)
∣∣∣f(η)νNρ,p = 0,

where I`(x) was defined in subsection 1.3.4.
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1.4.1 Proof of one block estimate

We begin by noting that the exclusion rule and the fact that V is finite prevents large densities or large
momentum on I`(0).

We have that the measure νNρ,p is translation invariant. Therefore, we can write the sum on one block
estimate as ∫

V j,k` (η)

 1
Nd

∑
x∈DdN

τxf

 (η)νNρ,p(dη) =
∫
V j,k` (η)f(η)νNρ,p(dη),

where f stands for the space average of all translations of f :

f(η) =
1
Nd

∑
x∈DdN

τxf(η).

Denote by X` the configuration space
(
{0, 1}V

)Λ` , by ξ some configuration on X` and by ν`ρ,p the
product measure νNρ,p restricted to X`. For a density f : XN → R+, f` stands for the conditional
expectation of f with respect to the σ-algebra generated by {η(x, v) : x ∈ Λ`, v ∈ V}, that is obtained
by integrating all coordinates outside this hypercube:

f`(xi) =
1

ν`ρ,p(ξ)

∫
1{η:η(z,v)=ξ(z,v),z∈Λ`,v∈V}f(η)νNρ,p(dη),

for ξ ∈ X`.
Since V j,k` (η) depends on the configuration η only through the occupation variables {η(x, v) : x ∈

Λ`, v ∈ V}, in the last integral we can replace f by f `. In particular, to prove the lemma it is enough to
show that

lim
`→∞

lim
N→∞

sup
DN (f)≤CNd−2

∫
V j,k` (ξ)f `(ξ)ν

`
ρ,p(dξ) = 0. (1.4.1)

We will now compute some estimates on the Dirichlet form. Let < ·, · >ν be the inner product in
L2(ν). For positive f , denote the Dirichlet form of f as:

DN (f) = − <
√
f, (LexN + LcN )f >νNρ,p

= − <
√
f,Lex,1N f >νNρ,p − <

√
f,Lex,2N f >νNρ,p − <

√
f,LcNf >νNρ,p

:= DN,1(f) +DN,2(f) +DN,c(f).

We have that
DN,1(f) =

∑
x,z∈DdN
|x−z|=1

I(1)
x,z(f),

DN,2(f) =
1
N

∑
x,z∈DdN

I(2)
x,z(f)

and
DN,c(f) =

∑
x∈DdN

I(c)
x (f),

where
I(1)
x,z(f) =

∑
v∈V

1
2

∫
[
√
f(ηx,x+z,v)−

√
f(η)]2νNρ,p(dη),

I(2)
x,z(f) =

∑
v∈V

∫
p(z, v)[

√
f(ηx,x+z,v)−

√
f(η)]2νNρ,p(dη)

and
I(c)
x,z(f) =

∑
q∈Q

∫
p(x, q, η)[

√
f(ηx,q)− f(η)]2νNρ,p(dη).
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Since the Dirichlet form is translation invariant and convex, we have that DN (f) ≤ DN (f).
Now, let

D`(h) =
∑

x,z∈Λ`
|x−z|=1

I`,(1)
x,z (h) +

∑
x,z∈Λ`

1
N
I`,(2)
x,z (h) +

∑
x∈Λ`

I`,(c)x (h),

where each I`,(i) equals I(i) with νNρ,p replacing ν`ρ,p. By using Schwarz inequality and the definition of
f`, we obtain that

I`,(1)
x,z (f `) ≤ I(1)

x,z(f), I`,(2)
x,z (f `) ≤ I(2)

x,z(f) and I`,(c)x (f `) ≤ I(c)
x (f)

for every x, z ∈ Λ`. Therefore,

D`(f `) ≤
∑

x,z∈Λ`
|x−z|=1

I(1)
x,z(f `) +

∑
x,z∈Λ`

1
N
I(2)
x,z(f `) +

∑
x∈Λ`

I(c)
x (f `).

On the other hand, by translation invariance of f , I(1)
x,z(f) = I

(1)
x+y,z+y(f), I(2)

x,z(f) = I
(2)
x+y,z+y(f) and

I
(c)
x (f) = I

(c)
0 (f). Hence,

D`(f `) ≤ (2`+ 1)d
d∑
i=1

I
(1)
0,ei

(f) +
(2`+ 1)d

N

∑
y∈Λ`

I
(2)
0,y(f) + (2`+ 1)dI(c)

0 (f)

≤ (2`+ 1)d

Nd
(DN,1(f) +DN,2(f) +DN,c(f)).

Since the Dirichlet form is positive, DN (f) ≤ CNd−2 implies that DN,1(f) ≤ CNd−2, DN,2(f) ≤
CNd−1 and DN,c(f) ≤ CNd−2. Thus,

D`(f `) ≤ 3C(2`+ 1)dN−2 := C0(C, `)N−2.

Therefore, the Dirichlet form of f ` vanishes as N ↑ ∞. Hence, by (1.4.1), to prove the one block estimate
we must show that

lim
`→∞

lim
N→∞

sup
D`(f)≤C0(C,`)N−2

∫
V j,k` (ξ)f(ξ)ν`ρ,p(dξ) = 0 (1.4.2)

with the supremum carried over all densities with respect to νNρ,p.
We will now take the limit as N ↑ ∞. To do so, we note that V j,k` ≤ C1, where C1 is some constant,

and therefore ∫
X`

V j,k` (ξ)f(ξ)νNρ,p(dξ) ≤ C1.

This subset of M+(X`) is compact for the weak topology, and since it is compact, for each N , there
exists a density fN with Dirichlet form bounded by C0N

−2 that reaches the supremum. Let now Nn be
a subsequence such that

lim
n→∞

∫
V j,k` fNn(ξ)ν`ρ,p(dξ) = lim

N→∞

∫
V j,k` (ξ)fN (ξ)ν`ρ,p(dξ).

To keep notation simple, assume, without loss of generality, that the sequences Nn and N coincide.
By compactness, we can find a convergent subsequence fNn . Denote by f∞ the weak limit. Since the
Dirichlet form is lower semicontinuous

D`(f∞) = 0.

Moreover, by weak continuity,

lim
n→∞

∫
V j,k` (ξ)fNn(ξ)ν`ρ,p(dξ) =

∫
V j,k` (ξ)f∞(ξ)ν`ρ,p(dξ).

In conclusion, expression (1.4.2) is bounded above by

lim
`→∞

sup
D`(f)=0

∫
V j,k` (ξ)f(ξ)ν`ρ,p(dξ).
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We will now decompose along sets with a fixed number of conserved quantities.
Recall that VL is the set of all possible values of IL(0) when η runs over ({0, 1}V)ΛL . Further, VL

is finite. Furthermore, consider for each i in VL the canonical measure νL,i defined in subsection 1.3.4;
and moreover, recall that

νΛL,i(·) = µΛL
λ

(
·
∣∣∣IL = i

)
.

A probability density with Dirichlet form equal to zero is constant on each set with a fixed number
of conserved quantities. It is convenient therefore to decompose each density f along these sets. Thus∫

V j,k` (ξ)f(ξ)νNρ,p(dξ) =
∑
j∈V`

Tj(f)
∫
V j,k` ν`,j(dξ),

where,

Tj(f) =
∫

1H`(j)f(ξ)ν`ρ,p(dξ).

Since
∑
j∈H`(j) Tj(f) = 1, to conclude the proof of the one block estimate, we must show that

lim
`→∞

sup
j∈V`

∫
V j,k` (ξ)ν`,j(dξ) = 0.

Since the measure ν`,j is concentrated on configurations with conserved quantity j, the last integral
equals ∫ ∣∣∣∣∣∣ 1

(2`+ 1)d
∑
y∈Λ`

∑
v∈V

vk
∑
z

p(z, v)zjτy(h(ξ, z, v))−
∑
v∈V

vjvkEν`j [h(ξ, e1, v)]

∣∣∣∣∣∣ ν`,j(dξ),
where h(ξ, z, v) = ξ(0, v)(1− ξ(z, v)).

Fix some positive integer n, that shall increase to infinity after `. Decompose the set Λ` in cubes
of length 2k + 1. Consider the set A =

{
(2n+ 1)x, x ∈ Zd

}
∩ Λ`−n and enumerate its elements: A =

{x1, . . . , xq} in such a way that |xi| ≤ |xj | for i ≤ j. For 1 ≤ i ≤ q, let Bi = xi + Λn. Note that
Bi ∩Bj = ∅ if i 6= j and that ∪1≤i≤qBi ⊂ Λ`. Let B0 = Λ`−∪1≤i≤qBi. By construction |B0| ≤ Kn`d−1

for some universal constant K. The previous integral is bounded above by

q∑
i=0

|Bi|
|Λ`|

∫ ∣∣∣∣∣∣
∑
v∈V

vk

 1
|Bi|

∑
y∈Bi

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEν`j [h(ξ, e1, v)]

∣∣∣∣∣∣ ν`,j(dξ).
Since |B0| ≤ Kn`d−1,

∑
v vkξ(0, v)(1 − ξ(z, v)) has mean

∑
v vkχ(θv(Λ(j))), and

∣∣∑
z∈Bi p(z, v)zj

∣∣ is
bounded, the sum is equal to

|Λn|
|Λ`|

q∑
i=0

∫ ∣∣∣∣∣∣
∑
v∈V

vk

 1
|Bn|

∑
y∈Bi

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEν`j [h(ξ, e1, v)]

∣∣∣∣∣∣ ν`,j(dξ)
plus a term of order O(n/`). Since the distribution of {ξ(z, v); z ∈ Bi, v ∈ V} does not depend on i, the
previous sum is equal to

∫ ∣∣∣∣∣∣
∑
v∈V

vk

 1
(2n+ 1)d

∑
y∈Λn

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEν`j [h(ξ, e1, v)]

∣∣∣∣∣∣ ν`,j(dξ)
plus a term of order O(n/`).

Now, let µλ be the product measure on
(
{0, 1}V

)Zd with marginals given by

µλ{η : η(x, ·) = ξ} = mλ(ξ),

for each ξ ∈ {0, 1}V and x ∈ Zd. Therefore, Eν`j [ξ(0, v)(1 − ξ(e1, v))] = Eνj [ξ(0, v)(1 − ξ(e1, v))], where
νj = µΛ(j). Moreover, if in the equivalence of ensembles we choose L = L(`) = bC(`,V)c, where C(`,V)
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is the constant given in the equivalence of ensembles, we can replace the canonical measure by the grand
canonical measure paying a price of order o`(1). Therefore, we can write the previous integral as

∫ ∣∣∣∣∣∣
∑
v∈V

vk

 1
(2n+ 1)d

∑
y∈Λn

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEνj [h(ξ, e1, v)]

∣∣∣∣∣∣ ν`j(dξ)
plus a term of order o`(1). We now note that νj equals ν`j on Λ`. Then, the integral can be written as

∫ ∣∣∣∣∣∣
∑
v∈V

vk

 1
(2n+ 1)d

∑
y∈Λn

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEνj [h(ξ, e1, v)]

∣∣∣∣∣∣ νj(dξ)
plus a term of order o`(1). Let now,

gj(ξ) =

∣∣∣∣∣∣
∑
v∈V

vk

 1
(2n+ 1)d

∑
y∈Λn

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjEνj [h(ξ, e1, v)]

∣∣∣∣∣∣ ,
but we know that Eνj [h(ξ, e1, v)] = χ(θv(Λ(j))), then,

gj(ξ) =

∣∣∣∣∣∣
∑
v∈V

vk

 1
(2n+ 1)d

∑
y∈Λn

∑
z

p(z, v)zjτy(h(ξ, z, v))− vjχ(θv(Λ(j)))

∣∣∣∣∣∣ .
Now,

(
{0, 1}V

)Zd is compact on the product topology, and also, all the marginals of νj converge to
the marginals of νρ,p, when j → (ρ,p) as ` → ∞. Then, νj converges weakly to νρ,p. Further, since
gj(ξ)→ gρ,p(ξ) for every ξ, we have from Theorem 5.5 of Billingsley [6], that∫

gj(ξ)νj(dξ)
`→∞−→

∫
gρ,p(ξ)νρ,p(dξ),

this convergence being uniform on compact subsets of R+×Rd. Then, since the remainder term is o`(1),
the limit as `→∞ and j → (ρ,p) is

∫ ∣∣∣∣∣∣ 1
(2n+ 1)d

∑
y∈Λn

∑
v∈V

vk
∑
z

zjp(z, v)τy(h(ξ, z, v))−
∑
v∈V

vjvkχ(θv(Λ(ρ,p)))

∣∣∣∣∣∣ νρ,p(dξ).

On the other hand, as k ↑ ∞, by the law of large numbers, this integral converges to 0.
Therefore, the one block estimate is proved. �

1.4.2 Proof of the two block estimate

To prove the two block estimate, it is enough to show that

lim
`→∞

lim
ε→0

lim
N→∞

sup
DN (f)≤CNd−2

sup
y∈(ΛεN\Λ`)

∫
1
Nd

∑
x∈DdN

∣∣∣I`(x)

− I`(x+ y)
∣∣∣f(η)νNρ,p(dη) = 0. (1.4.3)

As for the one block estimate, we can rewrite this integral as∫ ∣∣∣I`(0)− I`(y)
∣∣∣ f(η)νNρ,p(dη),

where f stands for the average of all space translations of f . I`(0) and I`(y) depend of the configuration
η only through the occupation variables {η(x, v) : x ∈ Λy,`, v ∈ V}, where

Λy,` = {−`, . . . , `}d ∪ [y + {−`, . . . , `}d].
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We now introduce some notation. For positive integer `, let X2,` denote the configuration space(
{0, 1}V

)Λ` × ({0, 1}V)Λ` , ξ = (ξ1, ξ2) the configurations of X2,` and the product measure νNρ,p re-
stricted to X2,` (which does not depend on N) by ν2,`

ρ,p. Denote by fy,` the conditional expectation of f
with respect to the σ-algebra generated by {η(x, v) : x ∈ Λy,`, v ∈ V}.

Since I`(0) and I`(y) depend on η(x, v), for x ∈ Λy,` and v ∈ V, we may replace f by fy,`, and then,
we can rewrite (1.4.3) as

lim
`→∞

lim
ε→0

lim
N→∞

sup
DN (f)≤CNd−2

sup
y∈(ΛεN\Λ`)

∫
1
Nd

∑
x∈DdN

∣∣∣E`
1(0)−E`

2(0)
∣∣∣fy,`(ξ)ν2,`

ρ,p(dξ) = 0,

where
E`
i(x) =

1
|Λ`|

∑
z∈x+Λ`

I(ξiz).

Now, we need to obtain information concerning the density fy,` from the bound on the Dirichlet form
of f . Then, let D2,` be the Dirichlet form defined on positive densities h : X2,` → R+ by

D2,`(h) = I`0,0(h) +D`
1(h) +D`

2(h),

where,

D`
1(h)=

∑
v∈V

∫  ∑
x,z∈Λ`
|x−z|=1

1
2

+
1
N

∑
x,z∈Λ`

p(z, v)

[√h(ξx,x+z,v
1 , ξ2)−

√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
x∈Λ`

∑
v∈V

∫
p(x, q, ξ1)

[√
h(ξx,q1 , ξ2)−

√
h(ξ)

]2

ν2,`
ρ,p(dξ),

D`
2(h)=

∑
v∈V

∫  ∑
x,z∈Λ`
|x−z|=1

1
2

+
1
N

∑
x,z∈Λ`

p(z, v)

[√h(ξ1, ξ
x,x+z,v
2 )−

√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
x∈Λ`

∑
v∈V

∫
p(x, q, ξ1)

[√
h(ξ1, ξ

x,q
2 )−

√
h(ξ)

]2

ν2,`
ρ,p(dξ),

and,

I`0,0(h) =
∑
v∈V

∫ ∑
|z|=1

1
2

+
1
N
p(z, v)

[√h(ξ0,−,v
1 , ξ0,+,v

2 )−
√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
v∈V

∫
p(0, q, ξ1)

[√
h(ξ0,q

1 , ξ2)−
√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
v∈V

∫ ∑
|z|=1

1
2

+
1
N
p(z, v)

[√h(ξ0,+,v
1 , ξ0,−,v

2 )−
√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
v∈V

∫
p(0, q, ξ2)

[√
h(ξ1, ξ

0,q
2 )−

√
h(ξ)

]2

ν2,`
ρ,p(dξ),

where

ξ0,±,v
i (x,w) =

{
ξi(0, v)± 1, if x = 0 and w = v,
ξi(x,w), otherwise.

This Dirichlet form corresponds to an interacting particle system on (V × Λ`) × (V × Λ`), where
particles evolve according to an exclusion process with collisions among velocities on each coordinate

36



and where particles from the origin of one of the coordinates at some velocity can jump to the origin of
the other at this velocity and vice-versa.

Using the same idea as for the one-block estimate, we can prove that

D`
1(fy,`) ≤ DN (f) and D`

2(fy,`) ≤ DN (f),

and hence,
D`

1(fy,`) +D`
2(fy,`) ≤ 2C0N

−2,

for every density f with Dirichlet form DN (f) bounded by CNd−2. It remains to be shown that we can
also estimate the Dirichlet form I`0,0(fy,`) by the Dirichlet form of f .

We begin by noting that
I`0,0(h) = I`,10,0(h) + I`,20,0(h),

where,

I`,10,0(h) =
∑
v∈V

∑
|z|=1

1
2

+
1
N
p(z, v)

[∫ [√h(ξ0,−,v
1 , ξ0,+,v

2 )−
√
h(ξ)

]2

+
[√

h(ξ0,+,v
1 , ξ0,−,v

2 )−
√
h(ξ)

]2

ν2,`
ρ,p(dξ)

]
,

and

I`,20,0(h) =
∑
v∈V

∫
p(0, q, ξ1)

[√
h(ξ0,q

1 , ξ2)−
√
h(ξ)

]2

ν2,`
ρ,p(dξ)

+
∑
v∈V

∫
p(0, q, ξ2)

[√
h(ξ1, ξ

0,q
2 )−

√
h(ξ)

]2

ν2,`
ρ,p(dξ).

Then, a simple calculation shows that

I`,20,0(fy,`) ≤ 2I(c)
0 (f),

and therefore I`,20,0(fy,`) is also of order N−2. We then have to obtain a bound for I`,10,0(fy,`).

Following the same lines used to prove that I`,(j)x,z (f `) ≤ I
(j)
x,z(f) in the proof of the one block estimate,

for j = 1, 2, c, we have that each density f , with respect to νNρ,p, I`,10,0(fy,`), is bounded above by:

2
∑
v∈V

∑
|z|=1

1
2

+
1
N
p(z, v)

∫ [√f(η0,y,v)−
√
f(η)

]2

νNρ,p(dη). (1.4.4)

Let (xk)0≤k≤‖|y‖| be a path from the origin to y, that is, a sequence of sites such that the first one is
the origin, the last one is y and the distance between two consecutive sites is equal to 1:

x0 = 0, x‖|y‖| = y and |xk+1 − xk| = 1 for every 0 ≤ k ≤ |||y||| − 1,

||| · ||| is the sum norm:
|||(y1, . . . , yd)||| =

∑
1≤i≤d

|yi|.

Let τx1 · · · τxi(η) be the sequence of nearest neighbor exchanges that represents the path along x1, . . . , xi.
Then, by using the telescopic sum

√
f(η0,y,v)−

√
f(η) =

|||y|||−1∑
k=0


√√√√f(

k∏
i=1

τxi(η))−

√√√√f(
k−1∏
i=1

τxi(η))


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and the Cauchy-Schwarz inequality|||y|||−1∑
k=0

ak

2

≤ |||y|||
|||y|||−1∑
k=0

a2
k,

we obtain that (1.4.4) is bounded by

2
∑
v∈V

∑
|z|=1

1
2

+
1
N
p(z, v)

|||y||||||y|||−1∑
k=0


√√√√f(

k∏
i=1

τxi(η))−

√√√√f(
k−1∏
i=1

τxi(η))

2

νNρ,p(dη)

≤ 2 · 2 · 2d|||y|||
|||y|||−1∑
k=0

I(1)
xk,xk+1

(f).

Since f is translation invariant, for each k, I(1)
xk,xk+1(f) = I

(1)
xk+z,xk+1+z(f) for all z ∈ Zd. Hence,

I
(1)
xk,xk+1(f) ≤ N−dDN (f). In particular,

I`,10,0(fy,`) ≤ 2d+2|||y|||2N−dDN (f).

Recall that y ∈ ΛεN , and hence |y| ≤ 2Nε, | · | is the max norm. Then, |||y||| ≤ d|y| ≤ 2dNε. Since the
Dirichlet form is assumed to be bounded by CNd−2, we have proved that

I`,10,0(fy,`) ≤ 2d+4d2Cε2.

We have, therefore, proved that for every density f with Dirichlet form bounded by CNd−2 and for every
d-dimensional integer with max norm between 2` and 2Nε,

D2,`(fy,`) ≤ C2(C, d, `)ε2.

We can now restrict ourselves to densities f such that D2,`(fy,`) ≤ C2ε
2, that vanishes as ε ↓ 0. In

particular, to conclude the proof, it is enough to show that

lim
`→∞

lim
ε→0

sup
D2,`(f)≤C2ε2

∫
|E`

1(0)−E`
2(0)|f(ξ)ν2,`

ρ,p(dξ) = 0,

this time, however, the supremum is taken over all densities with respect to ν2,`
ρ,p. The rest of the proof

follows the same lines as the ones in the one block estimate, beginning by decomposing the Dirichlet
form along the sets having fixed conserved quantities and then applying the equivalence of ensembles.
Therefore, the two block estimate is proved. �

1.5 Uniqueness

To conclude the proof of the hydrodynamic limit, it remains to be proven the uniquenesses for the
solutions of problems (1.2.4) and (1.2.4). The strategy we used to prove this result was employed by
Oleinik and Kruzhkov [19] and is due to Yu.A. Dubinskii.

Let ν and ω be two weak solutions to the problem (1.2.4), corresponding to the same initial function
ν0. Fix some j = 1, . . . , d+ 1, and let Hj ∈ C1,2

(
[0, T ]×Dd

)
be such that Hj(T, x) = 0, for all x. Then

the integral identity for ν − ω holds:∫ T

0

dt

∫
Dd

dx(νj − ωj)

∂tHj +
1
2

∑
1≤i≤d

∂2
uiHj

+
∫ T

0

dt

∫
Dd

dx
∑
v∈V

vj(gv(ν)− gv(ω))
∑

1≤i≤d

vi∂uiHj = 0,(1.5.1)

where gv(ν) = χ(θv(Λ(ν))), νj , ωj and Hj are the components of ν, ω and H, respectively. If νj = ωj ,
we already have what we want, thus, suppose νj 6= ωj . Introducing the notation

βjv =
gv(ν)− gv(ω)

νj − ωj
,
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we have that we can write (1.5.1) as

∫ T

0

dt

∫
Dd

dx(νj − ωj)

∂tHj +
1
2

∑
1≤i≤d

∂2
uiHj +

∑
v∈V

vjβ
j
v

∑
1≤i≤d

vi∂uiHj

 = 0. (1.5.2)

Now, let βj,mv be a sequence of smooth functions which converge in L2([0, T ] ×Dd) to βjv, as m → ∞.
We denote by Hm

j (t, x) the classical solution of the equation

∂tH
m
j +

1
2

∑
1≤i≤d

∂2
uiH

m
j +

∑
v∈V

vjβ
j,m
v

∑
1≤i≤d

vi∂uiH
m
j = Φj , (1.5.3)

Hm
j (T, x) = 0, Hm

j (0, x) = 0,

where Φj is a smooth function finite in [0, T ]×Dd. For more details on the solutions of partial differential
equations of the parabolic type, the reader is referred to Friedman [13], and for details on solutions of
systems of linear partial differential equations of the parabolic type in general, the reader is referred to
Ladyženskaja et al. [16].

Now, if we replace Hj in (1.5.2) by Hm
j and use (1.5.3), we obtain:

∫ T

0

dt

∫
Dd

dx(νj − ωj)Φj +
∫ T

0

dt

∫
Dd

dx(νj − ωj)

∑
v∈V

vj(βjv − βj,mv )
∑

1≤i≤d

∂uiH
m
j

 = 0. (1.5.4)

Finally, since we are in a compact domain and the coefficients βj,mv are smooth, we have that there
exists an M > 0 such that |Hm

j | ≤M . Since these coeffiecients converge in L2([0, T ]×Dd), the constant
M may be taken to be independent of m. Multiplying (1.5.3) by Hm

j , integrating over [0, T ]×Dd, and
then integrating by parts, we have that

∫ T

0

dt

∫
Dd

dx

d∑
i=1

1
2

(
∂Hm

j

∂ui

)2

=
∫ T

0

dt

∫
Dd

dx

∑
v∈V

vjβ
j,m
v Hm

j

∑
1≤i≤d

vi∂uiH
m
j − ΦHm

j

−1
2

∫
Dd

dx(Hm
j )2.

On applying the elementary inequality |ab| ≤ εa2 + b2/(4ε) and using that |Hm
j | ≤M , we obtain that

∫ T

0

dt

∫
Dd

dx

d∑
i=1

1
2

(
∂Hm

j

∂ui

)2

≤ C,

where C is a constant that may depend on M and Φ, but not on m.
Therefore, by applying the Cauchy-Schwartz inequality and using that βj,mv converges to βjv in the

L2-norm, we see that the second term on the left-hand side of equation (1.5.4) tends to zero as m tends
to infinity. This implies that for every ε > 0 there exists m such that the absolute value of the second
term on the left-hand side of equation (1.5.4) is less than ε. We, then, have obtained that

∀ε > 0 :

∣∣∣∣∣
∫ T

0

dt

∫
Td
dx(νj − ωj)Φj

∣∣∣∣∣ ≤ ε,
and hence, for each j = 1, . . . , d+ 1, νj = ωj . Therefore ν ≡ ω. �
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Chapter 2

Dynamical large deviations for a
boundary driven stochastic lattice
gas model with many conserved
quantities
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Statistical Physics, 139, p. 658-685, 2010.

Abstract

We prove the dynamical large deviations for a particle system in which particles may have different
velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the
so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple
exclusion process with collision among particles having different velocities.

2.1 Introduction

In the last years there has been considerable progress in understanding stationary non equilibrium states:
reversible systems in contact with different reservoirs at the boundary imposing a gradient on the con-
served quantities of the system. In these systems there is a flow of matter through the system and the
dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is the
following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is
given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilib-
rium states the construction of the stationary state requires the solution of a dynamical problem. One
of the most striking typical property of these systems is the presence of long-range correlations. For the
symmetric simple exclusion this was already shown in a pioneering paper by Spohn [13]. We refer to
[5, 7] for two recent reviews on this topic.

We discuss this issue in the context of stochastic lattice gases in a box of linear size N with birth
and death process at the boundary modeling the reservoirs. We consider the case when there are many
thermodynamic variables: the local density denoted by ρ, and the local momentum denoted by pk,
k = 1, . . . , d, d being the dimension of the box.

The model which we will study can be informally described as follows: fix a velocity v, an integer
N ≥ 1, and boundary densities 0 < αv(·) < 1 and 0 < βv(·) < 1; at any given time, each site of the set
{1, . . . , N − 1}×{0, . . . , N − 1}d−1 is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric
rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is
empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or N − 1
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have particles being created or removed in such a way that the local densities are αv(x̃) and βv(x̃): at
rate αv(x̃/N) a particle is created at {1}× {x̃} if the site is empty, and at rate 1−αv(x̃) the particle at
{1} × {x̃} is removed if the site is occupied, and at rate βv(x̃) a particle is created at {N − 1} × {x̃} if
the site is empty, and at rate 1− βv(x̃) the particle at {N − 1} × {x̃} is removed if the site is occupied.
Superposed to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved.

Similar models have been studied by [1, 7, 10]. In fact, the model we consider here is based on the
model of Esposito et al. [7] which was used to derive the Navier-Stokes equation. It is also noteworthy
that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two
conserved quantities have been studied in [4].

The hydrodynamic limit for the above model has been proved in [11]. The hydrodynamic equation
derives from the underlying stochastic dynamics through an appropriate scaling limit in which the micro-
scopic time and space coordinates are rescaled diffusively. The hydrodynamic equation thus represents
the law of large numbers for the empirical density of the stochastic lattice gas. The convergence has to
be understood in probability with respect to the law of the stochastic lattice gas. Once it is established
a natural question is to consider large deviations.

This article thus provides a derivation of the dynamical large deviations for this model, and the proof
follows the method introduced in [8]. The main difference is that their proof of IT (·|γ)-density relied on
some energy estimates that we were not able to achieve due to the presence of velocities. Therefore, we
had to overcome problem by taking a different approach at that part.

The article is organized as follows: in Section 2.2 we establish the notation and state the main results
of the article; in Section 2.3, we review the hydrodynamics for this model, that was obtained in [11]; in
Section 2.4, several properties of the rate function are derived; Section 2.5 proves the IT (·|γ)-density,
which is a key result for proving the lower bound; finally, in Section 2.6 the proofs of the upper and lower
bounds of the dynamical large deviations are given.

2.2 Notation and Results

Fix a positive integer d ≥ 1. Denote by Dd the open set (0, 1) × Td−1, where Tk is the k-dimensional
torus [0, 1)k, and by Γ the boundary of Dd: Γ = {(u1, . . . , ud) ∈ [0, 1]× Td−1 : u1 = ±1}.

For an open subset Λ of R × Td−1, Cm(Λ), 1 ≤ m ≤ +∞, stands for the space of m-continuously
differentiable real functions defined on Λ. Let Cm0 (Λ) (resp. Cmc (Λ)), 1 ≤ m ≤ +∞, be the subset of
functions in Cm(Λ) which vanish at the boundary of Λ (resp. with compact support in Λ).

For an integer N ≥ 1, denote by Td−1
N = {0, . . . , N − 1}d−1, the discrete (d− 1)-dimensional torus of

length N . Let Dd
N = {1, . . . , N − 1} × Td−1

N be the cylinder in Zd of length N − 1 and basis Td−1
N and

let ΓN = {(x1, . . . , xd) ∈ Z× Td−1
N |x1 = 1 or x1 = (N − 1)} be the boundary of Dd

N .
Let V ⊂ Rd be a finite set of velocities v = (v1, . . . , vd). Assume that V is invariant under reflexions

and permutations of the coordinates:

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d, and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd) belongs to V.
On each site of Dd

N , at most one particle for each velocity is allowed. We denote: the number of
particles with velocity v at x, v ∈ V, x ∈ Dd

N , by η(x, v) ∈ {0, 1}; the number of particles in each velocity
v at a site x by ηx = {η(x, v); v ∈ V}; and a configuration by η = {ηx;x ∈ Dd

N}. The set of particle

configurations is XN =
(
{0, 1}V

)DdN .
On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system

evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles
of the same velocity, and (ii) binary collision between particles of different velocities. Let p(x, v) be an
irreducible probability transition function of finite range, and mean velocity v:∑

x

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to site x + y for a
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particle with velocity v is

PN (y, v) =
1
2

d∑
j=1

(δy,ej + δy,−ej ) +
1
N
p(y, v),

where δx,y stands for the Kronecker delta, which equals one if x = y and 0 otherwise, and {e1, . . . , ed} is
the canonical basis in Rd.

2.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator LN which is the
superposition of the boundary dynamics with the collision and exclusion:

LN = N2{LbN + LcN + LexN }, (2.2.1)

where LbN stands for the generator which models the part of the dynamics at which a particle at the
boundary can enter or leave the system, LcN stands for the generator which models the collision part of
the dynamics and lastly, LexN models the exclusion part of the dynamics. Let f be a local function on
XN . The generator of the exclusion part of the dynamics, LexN , is given by

(LexN f)(η) =
∑
v∈V

∑
x,x+z∈DdN

η(x, v)[1− η(z, v)]PN (z − x, v) [f(ηx,z,v)− f(η)] ,

where

ηx,y,v(z, w) =

 η(y, v) if w = v and z = x,
η(x, v) if w = v and z = y,
η(z, w) otherwise.

The generator of the collision part of the dynamics, LcN , is given by

(LcNf)(η) =
∑
y∈DdN

∑
q∈Q

p(y, q, η) [f(ηy,q)− f(η)] ,

where Q is the set of all collisions which preserve momentum:

Q = {q = (v, w, v′, w′) ∈ V4 : v + w = v′ + w′},

the rate p(y, q, η) is given by

p(y, q, η) = η(y, v)η(y, w)[1− η(y, v′)][1− η(y, w′)],

and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =
{
η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,
η(z, u) otherwise,

where the index of vj+2 should be taken modulo 4.
Particles of velocities v and w at the same site collide at rate one and produce two particles of

velocities v′ and w′ at that site.
Finally, the generator of the boundary part of the dynamics is given by

(LbNf)(η) =
∑
x∈DdN
x1=1

∑
v∈V

[αv(x̃/N)[1− η(x, v)] + (1− αv(x̃/N))η(x, v)][f(σx,vη)− f(η)]

+
∑
x∈DdN
x1=N−1

∑
v∈V

[βv(x̃/N)[1− η(x, v)] + (1− βv(x̃/N))η(x, v)][f(σx,vη)− f(η)],

where x̃ = (x2, . . . , xd),

σx,vη(y, w) =
{

1− η(x,w), if w = v and y = x,
η(y, w), otherwise. ,
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and for every v ∈ V, αv, βv ∈ C2(Td−1). Note that time has been speeded up diffusively in (2.2.1). We
also assume that, for every v ∈ V, αv and βv have images belonging to some compact subset of (0, 1).
The functions αv and βv, which affect the birth and death rates at the two boundaries, represent the
densities of the reservoirs.

Let D(R+, XN ) be the set of right continuous functions with left limits taking values on XN . For
a probability measure µ on XN , denote by Pµ the measure on the path space D(R+, XN ) induced by
{η(t) : t ≥ 0} and the initial measure µ. Expectation with respect to Pµ is denoted by Eµ.

2.2.2 Mass and momentum

For each configuration ξ ∈ {0, 1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ), k = 1, . . . , d, the
momentum of ξ:

I0(ξ) =
∑
v∈V

ξ(v), Ik(ξ) =
∑
v∈V

vkξ(v).

Set I(ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way that the
unique quantities conserved by the random walk dynamics described above are mass and momentum:∑
x∈DdN

I(ηx). Two examples of sets of velocities satisfying these conditions can be found at [7].
For each chemical potential λ = (λ0, . . . , λd) ∈ Rd+1, denote by mλ the measure on {0, 1}V given by

mλ(ξ) =
1

Z(λ)
exp {λ · I(ξ)} , (2.2.2)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0, 1}V , i.e., that the
variables {ξ(v) : v ∈ V} are independent under mλ.

Denote by µNλ the product measure on XN , with marginals given by

µNλ {η : η(x, ·) = ξ} = mλ(ξ),

for each ξ in {0, 1}V and x ∈ Dd
N . Note that {η(x, v) : x ∈ Dd

N , v ∈ V} are independent variables under
µNλ , and that the measure µNλ is invariant for the exclusion process with periodic boundary condition.

The expectation under µNλ of the mass and momentum are given by

ρ(λ) := EµNλ [I0(ηx)] =
∑
v∈V

θv(λ),

pk(λ) := EµNλ [Ik(ηx)] =
∑
v∈V

vkθv(λ).

In this formula θv(λ) denotes the expected value of the density of particles with velocity v under mλ:

θv(λ) := Emλ [ξ(v)] =
exp

{
λ0 +

∑d
k=1 λkvk

}
1 + exp

{
λ0 +

∑d
k=1 λkvk

} .
Denote by (ρ,p)(λ) := (ρ(λ), p1(λ), . . . , pd(λ)) the map that associates the chemical potential to the

vector of density and momentum. It is possible to prove that (ρ,p) is a diffeomorphism onto U ⊂ Rd+1,
the interior of the convex envelope of

{
I(ξ), ξ ∈ {0, 1}V

}
. Denote by Λ = (Λ0, . . . ,Λd) : U → Rd+1 the

inverse of (ρ,p). This correspondence allows one to parameterize the invariant states by the density and
momentum: for each (ρ,p) in U we have a product measure νNρ,p = µNΛ(ρ,p) on XN .

2.2.3 Dynamical large deviations

Fix T > 0, let M+ be the space of finite positive measures on Dd endowed with the weak topology,
and let M be the space of bounded variation signed measures on Dd endowed with the weak topology.
Let M+ ×Md be the cartesian product of these spaces endowed with the product topology, which is
metrizable. Let also M0 be the subset of M+ ×Md of all absolutely continuous measures with respect
to the Lebesgue measure satisfying:
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M0 =
{

π ∈M+ ×Md : π(du) = (ρ,p)(u)du and

0 ≤ ρ(u) ≤ |V| , |pk(u)| ≤ v̆|V|, k = 1, . . . , d, a.e.
}
,

where v̆ = maxv∈V v1. Let D([0, T ],M+ ×Md) be the set of right continuous functions with left limits
taking values on M+ ×Md endowed with the Skorohod topology. M0 is a closed subset of M+ ×Md

and D([0, T ],M0) is a closed subset of D([0, T ],M+ ×Md).
For a measure π ∈M, denote by 〈π,G〉 the integral of G with respect to π.
Let ΩT = (0, T )×Dd and ΩT = [0, T ]×Dd. For 1 ≤ m,n ≤ +∞, denote by Cm,n(ΩT ) the space of

functions G = Gt(u) : ΩT → R with m continuous derivatives in time and n continuous derivatives in
space. We also denote by Cm,n0 (ΩT ) (resp. C∞c (ΩT )) the set of functions in Cm,n(ΩT ) (resp. C∞,∞(ΩT ))
which vanish at [0, T ]× Γ (resp. with compact support in ΩT ).

Let the energy Q : D([0, T ],M0)→ [0,∞] be given by

Q(π) =
d∑
k=0

d∑
i=1

sup
G∈C∞c (ΩT )

{
2
∫ T

0

dt 〈pk,t, ∂uiGt〉 −
∫ T

0

dt

∫
Dd

G(t, u)2 du
}
.

where pk,t(u) = pk(t, u) and p0,t(u) = ρ(t, u).
For each G ∈ C1,2

0 (ΩT ) × [C2
0(Dd)]d and each measurable function γ : Dd → [0, |V|] × [−v̆|V|, v̆|V|]d,

γ = (ρ0,p0), let ĴG = ĴG,γ,T : D([0, T ],M0)→ R be the functional given by

ĴG(π) =
∫
Dd

G(T, u) · (ρ,p)(T, u)du−
∫
Dd

G(0, u) · (ρ0,p0)(u)du

−
∫ T

0

dt

∫
Dd

du

(ρ,p)(t, u) · ∂tG(t, u) +
1
2

(ρ,p)(t, u) ·
∑

1≤i≤d

∂2
uiG(t, u)


+

∫ T

0

dt

∫
{1}×Td−1

dS b(ũ) · ∂u1G(t, u)−
∫ T

0

dt

∫
{0}×Td−1

dS a(ũ) · ∂u1G(t, u)

+
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ,p)))
∑

1≤i≤d

vi∂uiG(t, u)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

(
d∑
k=0

vk∂xiG
k
t (u)

)2

χ(θv(Λ(ρ, p))),

where χ(r) = r(1 − r) is the static compressibility and πt(du) = (ρ,p)(t, u)du. Define JG = JG,γ,T :
D([0, T ],M+ ×Md)→ R by

JG(π) =

{
ĴG(π) if π ∈ D([0, T ],M0),
+∞ otherwise .

We define the rate functional IT (·|γ) : D([0, T ],M+ ×Md)→ [0,+∞] as

IT (π|γ) =

 sup
G∈C1,20 (ΩT )×[C20(Dd)]d

{
JG(π)

}
if Q(π) <∞ ,

+∞ otherwise .

We now present the main result of this article, whose proof is given in Section 2.6, which is the
dynamical large deviations for this boundary driven exclusion process with many conserved quantities.

Theorem 2.2.1. Fix T > 0 and a measurable function (ρ0,p0) : Dd → [0, |V|]× [−v̆|V|, v̆|V|]d. Consider
a sequence ηN of configurations in XN associated to γ = (ρ0,p0) in the sense that:

lim
N→∞

〈πN0 (ηN ), G〉 =
∫
Dd

G(u)ρ0(u) du,
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and
lim
N→∞

〈πNk (ηN ), G〉 =
∫
Dd

G(u)pk(u) du, k = 1, . . . , d,

for every continuous function G : Dd → R. Then, the measure QηN = PηN (πN )−1 on D([0, T ],M+ ×
Md) satisfies a large deviation principle with speed Nd and rate function IT (·|γ). Namely, for each
closed set C ⊂ D([0, T ],M+ ×Md),

lim
N→∞

1
Nd

logQηN (C) ≤ − inf
π∈C

IT (π|γ)

and for each open set O ⊂ D([0, T ],M+ ×Md),

lim
N→∞

1
Nd

logQηN (O) ≥ − inf
π∈O

IT (π|γ) .

Moreover, the rate function IT (·|γ) is lower semicontinuous and has compact level sets.

2.3 Hydrodynamics

Fix T > 0 and let (B, ‖ · ‖B) be a Banach space. We denote by L2([0, T ], B) the Banach space of
measurable functions U : [0, T ]→ B for which

‖U‖2L2([0,T ],B) =
∫ T

0

‖Ut‖2Bdt <∞.

Moreover, we denote by H1(Dd) the Sobolev space of measurable functions in L2(Dd) that have gener-
alized derivatives in L2(Dd).

For x = (x1, x̃) ∈ {0, 1} × Td−1, let

d(x) =

 a(x̃) =
∑
v∈V(αv(x̃), v1αv(x̃), . . . , vdαv(x̃)), if x1 = 0,

b(x̃) =
∑
v∈V(βv(x̃), v1βv(x̃), . . . , vdβv(x̃)), if x1 = 1.

(2.3.1)

Fix a bounded density profile ρ0 : Dd → R+, and a bounded momentum profile p0 : Dd → Rd. A
bounded function (ρ,p) : [0, T ] × Dd → R+ × Rd is a weak solution of the system of parabolic partial
differential equations ∂t(ρ,p) +

∑
v∈V ṽ [v · ∇χ(θv(Λ(ρ,p)))] = 1

2∆(ρ,p),

(ρ,p)(0, ·) = (ρ0,p0)(·) and (ρ,p)(t, x) = d(x), x ∈ {0, 1} × Td−1,
(2.3.2)

if for every vector valued function H : [0, T ] × Dd → Rd+1 of class C1,2
(
[0, T ]×Dd

)
vanishing at the

boundary, we have ∫
Dd

H(T, u) · (ρ,p)(T, u)du−
∫
Dd

H(0, u) · (ρ0,p0)(u)du

=
∫ T

0

dt

∫
Dd

du

(ρ,p)(t, u) · ∂tH(t, u) +
1
2

(ρ,p)(t, u) ·
∑

1≤i≤d

∂2
uiH(t, u)


−
∫ T

0

dt

∫
{1}×Td−1

dS b(ũ) · ∂u1H(t, u) +
∫ T

0

dt

∫
{0}×Td−1

dS a(ũ) · ∂u1H(t, u)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ,p)))
∑

1≤i≤d

vi∂uiH(t, u),

dS being the Lebesgue measure on Td−1.
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We say that that the solution (ρ,p) has finite energy if its components belong to L2([0, T ], H1(Dd)):∫ T

0

ds

(∫
Dd
‖∇ρ(s, u)‖2du

)
<∞,

and ∫ T

0

ds

(∫
Dd
‖∇pk(s, u)‖2du

)
<∞,

for k = 1, . . . , d, where ∇f represents the generalized gradient of the function f .
In [11] the following theorem was proved:

Theorem 2.3.1. Let (µN )N be a sequence of probability measures on XN associated to the profile
(ρ0,p0). Then, for every t ≥ 0, for every continuous function H : Dd → R vanishing at the boundary,
and for every δ > 0,

lim
N→∞

PµN

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

H
( x
N

)
I0(ηx(t))−

∫
Dd

H(u)ρ(t, u)du

∣∣∣∣∣∣ > δ

 = 0,

and for 1 ≤ k ≤ d

lim
N→∞

PµN

∣∣∣∣∣∣ 1
Nd

∑
x∈DdN

H
( x
N

)
Ik(ηx(t))−

∫
Dd

H(u)pk(t, u)du

∣∣∣∣∣∣ > δ

 = 0,

where (ρ,p) has finite energy and is the unique weak solution of equation (2.3.2).

2.4 The rate function IT (·|γ)

We examine in this section the rate function IT (·|γ). The main result, presented in Theorem 2.4.6
below, states that IT (·|γ) has compact level sets. The proof relies on two ingredients. The first one,
stated in Lemma 2.4.2, is an estimate of the energy and of the H−1 norm of the time derivative of
a trajectory in terms of the rate function. The second one, stated in Lemma 2.4.5, establishes that
sequences of trajectories, with rate function uniformly bounded, which converges weakly in L2 converge
in fact strongly. We follow the strategy introduced in [8].

Recall that V is an open neighborhood of Dd, and consider, for each v ∈ V, smooth functions
κvk : V → (0, 1) in C2(V ), for k = 0, . . . , d. We assume that each κvk has its image contained in some
compact subset of (0, 1), that the restriction of κ =

∑
v∈V(κv0, v1κ

v
1, . . . , vdκ

v
d) to {0} × Td−1 equals the

vector valued function a(·) defined in (2.3.1), and that the restriction of κ to {1}×Td−1 equals the vector
valued function b(·), also defined in (2.3.1), in the sense that κ(x) = d(x1, x̃) if x ∈ {0, 1} × Td−1.

Let L2(Dd) be the Hilbert space of functions G : Dd → R such that
∫
Dd
|G(u)|2du < ∞ equipped

with the inner product

〈G,F 〉2 =
∫

Ω

G(u)F (u) du ,

and the norm of L2(Dd) is denoted by ‖ · ‖2.
Recall that H1(Dd) is the Sobolev space of functions G with generalized derivatives ∂u1G, . . . , ∂udG

in L2(Dd). H1(Dd) endowed with the scalar product 〈·, ·〉1,2, defined by

〈G,F 〉1,2 = 〈G,F 〉2 +
d∑
j=1

〈∂ujG , ∂ujF 〉2 ,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2.
Recall that we denote by C∞c (Dd) the set of infinitely differentiable functions G : Dd → R, with

compact support in Dd. Denote by H1
0 (Dd) the closure of C∞c (Dd) in H1(Dd). Since Dd is bounded,

by Poincaré’s inequality, there exists a finite constant C such that for all G ∈ H1
0 (Dd)

‖G‖22 ≤ C

d∑
j=1

〈∂ujG , ∂ujG〉2 .
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This implies that, in H1
0 (Dd)

‖G‖1,2,0 =
{ d∑
j=1

〈∂ujG , ∂ujG〉2
}1/2

is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H1
0 (Dd) is a Hilbert space with inner product given

by

〈G , J〉1,2,0 =
d∑
j=1

〈∂ujG , ∂ujJ〉2 .

To assign boundary values along the boundary Γ of Dd to any function G in H1(Dd), recall, from the
trace Theorem ([14], Theorem 21.A.(e)), that there exists a continuous linear operator Tr : H1(Dd) →
L2(Γ), called trace, such that Tr(G) = G

∣∣
Γ

if G ∈ H1(Dd) ∩ C(Dd). Moreover, the space H1
0 (Dd) is the

space of functions G in H1(Dd) with zero trace ([14], Appendix (48b)):

H1
0 (Dd) =

{
G ∈ H1(Dd) : Tr(G) = 0

}
.

Finally, denote by H−1(Dd) the dual of H1
0 (Dd). H−1(Dd) is a Banach space with norm ‖ ·‖−1 given

by

‖v‖2−1 = sup
G∈C∞c (Dd)

{
2〈v,G〉−1,1 −

∫
Dd
‖∇G(u)‖2du

}
,

where 〈v,G〉−1,1 stands for the values of the linear form v at G.
For each G ∈ C∞c (ΩT ) and each integer 1 ≤ i ≤ d, let QGi,k : D([0, T ],M0) → R be the functional

given by

QGi,k(π) = 2
∫ T

0

dt 〈πkt , ∂uiGt〉 −
∫ T

0

dt

∫
Dd

du G(t, u)2 ,

where π = (π0, π1, . . . , πd). Recall, from subsection 2.2, that the energy Q(π) is given by

Q(π) =
d∑
k=0

d∑
i=1

Qi,k(π), with Qi,k(π) = sup
G∈C∞c (ΩT )

QGi,k(π) .

The functional QGi,k is convex and continuous in the Skorohod topology. Therefore Qi,k and Q are
convex and lower semicontinuous. Furthermore, it is well known that a measure π(t, du) = (ρ,p)(t, u)du
in D([0, T ],M+ ×Md) has finite energy, Q(π) < ∞, if and only if its density ρ and its momentum p
belong to L2([0, T ], H1(Dd)). In such case

Q̂(π) :=
d∑
k=0

∫ T

0

dt

∫
Dd

du ‖∇pk,t(u)‖2 < ∞,

where p0,t(u) = ρ(t, u). We also have that Q(π) = Q̂(π).
Let Dγ = Dγ,b be the subset of C([0, T ],M0) consisting of all paths π(t, du) = (ρ,p)(t, u)du with

initial profile γ(·) = (ρ0,p0)(·), finite energy Q(π) (in which case ρt and pt belong to H1(Dd) for almost
all 0 ≤ t ≤ T and so Tr(ρt) is well defined for those t) and such that Tr(ρt) = d0 and Tr(pk,t) = dk,
k = 1, . . . , d, for almost all t in [0, T ], where d(·) = (d0(·), d1(·), . . . , dd(·)).

Lemma 2.4.1. Let π be a trajectory in D([0, T ],M+×Md) such that IT (π|γ) <∞. Then π belongs to
Dγ .

Proof. Fix a path π in D([0, T ],M+ ×Md) with finite rate function, IT (π|γ) <∞. By definition of IT ,
π belongs to D([0, T ],M0). Denote its density and momentum by (ρ,p): π(t, du) = (ρ,p)(t, u)du.

The proof that (ρ,p)(0, ·) = γ(·) is similar to the one of Lemma 3.5 in [6], and the proof that
Tr(ρt) = d0, Tr(pk,t) = dk, k = 1, . . . , d, is similar to the one found in Lemma 4.1 in [8]. The fact that
π has finite energy follows from Lemma 2.6.4.
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We deal now with the continuity of π. We claim that there exists a positive constant C0 such that,
for any g ∈ C∞c (Dd), and any 0 ≤ s < r < T ,

|〈πr, g〉 − 〈πs, g〉| ≤ C0(r − s)1/2
{
C1 + IT (π|γ) + ‖g‖21,2,0 + (r − s)1/2‖∆g‖1

}
. (2.4.1)

Indeed, for each δ > 0, let ψδ : [0, T ]→ R be the function given by

(r − s)1/2ψδ(t) =


0 if 0 ≤ t ≤ s or r + δ ≤ t ≤ T ,
t−s
δ if s ≤ t ≤ s+ δ ,

1 if s+ δ ≤ t ≤ r ,
1− t−r

δ if r ≤ t ≤ r + δ ,

and let Gδ(t, u) = ψδ(t)g(u). Of course, Gδ can be approximated by functions in C1,2
0 (ΩT ) and then

(r − s)1/2 lim
δ→0

JGδ(π) = 〈πr, g〉 − 〈πs, g〉 −
∫ r

s

dt 〈πt,∆g〉

+
∫ s

r

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ,p)))
d∑
i=1

vi∂uig(u)

− 1
(r − s)1/2

∫ r

s

dt

∫
Dd

du
∑
v∈V

(
d∑
k=0

∂xivkg
k(u)

)2

χ(θv(Λ(ρ,p)))

To conclude the proof, we observe that the left-hand side is bounded by (r−s)1/2IT (π|γ), that χ is positive
and bounded above on [0, 1] by 1/4, and finally, we use the elementary inequality 2ab ≤ a2 + b2.

Denote by L2([0, T ], H1
0 (Dd))∗ the dual of L2([0, T ], H1

0 (Dd)). By Proposition 23.7 in [14], L2([0, T ], H1
0 (Dd))∗

corresponds to L2([0, T ], H−1(Dd)) and for v in L2([0, T ], H1
0 (Dd))∗, G in L2([0, T ], H1

0 (Dd)),

〈〈v,G〉〉−1,1 =
∫ T

0

〈vt, Gt〉−1,1 dt , (2.4.2)

where the left hand side stands for the value of the linear functional v at G. Moreover, if we denote by
|||v|||−1 the norm of v,

|||v|||2−1 =
∫ T

0

‖vt‖2−1 dt .

Fix a path π(t, du) = (ρ,p)(t, u)du in Dγ and suppose that for k = 0, . . . , d

sup
H∈C∞c (ΩT )

{
2
∫ T

0

dt 〈pk,t, ∂tHt〉2 −
∫ T

0

dt

∫
Dd

du ‖∇Ht‖2
}
< ∞ . (2.4.3)

In this case, for each k, ∂tpk : C∞c (ΩT )→ R defined by

∂tpk(H) = −
∫ T

0

〈pk,t, ∂tHt〉2 dt

can be extended to a bounded linear operator ∂tpk : L2([0, T ], H1
0 (Dd)) → R. It belongs therefore

to L2([0, T ], H1
0 (Dd))∗ = L2([0, T ], H−1(Dd)). In particular, there exists vk = {vkt : 0 ≤ t ≤ T} in

L2([0, T ], H−1(Dd)), which we denote by vkt = ∂tpk,t, such that for any H in L2([0, T ], H1
0 (Dd)),

〈〈∂tpk, H〉〉−1,1 =
∫ T

0

〈∂tpk,t, Ht〉−1,1 dt .

Moreover,

|||∂tpk|||2−1 =
∫ T

0

‖∂tpk,t‖2−1 dt

= sup
H∈C∞c (ΩT )

{
2
∫ T

0

dt 〈pk,t, ∂tHt〉2 −
∫ T

0

dt

∫
Dd

du ‖∇Ht‖2
}
.
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Denote by 〈〈∂t(ρ,p), G〉〉−1,1 the linear functional given by

〈〈∂t(ρ,p), G〉〉−1,1 =
d∑
k=0

〈〈∂tpk, H〉〉−1,1,

with

|||∂t(ρ,p)|||2−1 =
d∑
k=0

|||∂tpk|||2−1.

Let W be the set of paths π(t, du) = (ρ,p)(t, u)du in Dγ such that (2.4.3) holds, i.e., such that ∂tpk
belongs to L2

(
[0, T ], H−1(Dd)

)
. For G in L2

(
[0, T ], [H1

0 (Dd)]d+1
)
, let JG : W → R be the functional

given by

JG(π) = 〈〈∂t(ρ,p), G〉〉−1,1 +
1
2

∫ T

0

dt

∫
Dd

du∇(ρ,p)(t, u) · ∇G(t, u)

+
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ,p)))
∑

1≤i≤d

vi∂uiG(t, u)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

(
d∑
k=0

vk∂xiG
k
t (u)

)2

χ(θv(Λ(ρ, p))),

Note that JG(π) = JG(π) for every G in C∞c (ΩT ) × [C∞c (Dd)]d. Moreover, since J·(π) is continuous in
L2
(
[0, T ], [H1

0 (Dd)]d+1
)

and since C∞c (ΩT ) is dense in C1,2
0 (ΩT ) and in L2([0, T ], H1

0 (Dd)), for every π
in W ,

IT (π|γ) = sup
G∈C∞c ΩT×[C∞c (Dd)]d

JG(π) = sup
G∈L2([0,T ],[H1

0 ]d+1)
JG(π) . (2.4.4)

Lemma 2.4.2. There exists a constant C0 > 0 such that if the density and momentum (ρ,p) of some
path π(t, du) = (ρ,p)(t, u)du in D([0, T ],M0) has generalized gradients, ∇ρ and ∇pk, k = 1, . . . , d. Then

|||∂t(ρ,p)|||2−1 ≤ C0 {IT (π|γ) +Q(π)} , (2.4.5)
d∑
k=0

∫ T

0

dt

∫
Dd

du ‖∇pk(t, u)‖2 ≤ C0 {IT (π|γ) + 1} . (2.4.6)

Proof. Fix a path π(t, du) = (ρ,p)(t, u)du in D([0, T ],M0). In view of the discussion presented before
the lemma, we need to show that the left hand side of (2.4.3) is bounded by the right hand side of
(2.4.5). Such an estimate follows from the definition of the rate function IT (·|γ) and from the elementary
inequality 2ab ≤ Aa2 +A−1b2.

To prove (2.4.6), observe that

I(π) ≥ JG(π) = ∂tπ(G) +
1
2

∫ T

0

dt

∫
Dd

du
d∑
i=1

〈∂xi(ρ, p), ∂xiG〉2

+
∫ T

0

dt

∫
Dd

du
∑
v∈V

(χ(θv(Λ(ρ, p))))
d∑
i=1

ṽ(vi∂xiG)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

d∑
i=1

(
d∑
k=0

vk∂ρiG
k

)2

χ(θv(Λ(ρ, p)))

≥ ∂tπ(G) +
1
2

∫ T

0

dt

∫
Dd

du

d∑
i=1

〈∂xi(ρ, p), ∂xiG〉2 − C
∫ T

0

dt

d∑
k=0

‖∇Gk‖22,

where C is constant obtained from the elementary inequality 2ab ≤ a2 + b2, the fact that V is finite, and
that χ is bounded above by 1/4 in [0, 1].
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Now, consider G = K(π − κ), and note that π − κ belong to L2([0, T ], H1
0 (Dd)), which implies that

it may be approximated by C∞c functions. Therefore ∂tπ(G) = 〈πT , πT − κ〉 − 〈π0, π0 − κ〉, which is
bounded by some constant C1. We, then, obtain that

I(π) ≥
∫ T

0

dt
{
− C1 +

K

2

d∑
k=0

‖∇pk‖22 −
K

2

d∑
i=1

〈∂xi(ρ, p), ∂xiκ〉2 − CK2
d∑
k=0

‖∇(pk − κk)‖22
}

≥
∫ T

0

dt
{(
K/4− 2CK2

) d∑
k=0

‖∇pk‖22
}
− K

4

d∑
k=0

‖∇κk‖22 − 2CK2
d∑
k=0

‖∇κk‖22 − C1

where in the last inequality we used the Cauchy-Schwartz inequality and the elementary inequalities
2ab ≤ a2 + b2. The proof thus follows from choosing a suitable K, the estimate given in (2.4.5), and the
fact we have a fixed smooth function κ.

Corollary 2.4.3. The density (ρ,p) of a path π(t, du) = (ρ,p)(t, u)du in D([0, T ],M0) is the weak
solution of the equation (2.3.2) and initial profile γ if and only if the rate function IT (π|γ) vanishes.
Moreover, if any of the above conditions hold, π has finite energy (Q(π) <∞).

Proof. On the one hand, if the density (ρ,p) of a path π(t, du) = (ρ,p)(t, u)du in D([0, T ],M0) is the
weak solution of equation (2.3.2) with initial condition is γ, in the formula of ĴG(π), the linear part
in G vanishes which proves that the rate functional IT (π|γ) vanishes. On the other hand, if the rate
functional vanishes, the path (ρ,p) belongs to L2([0, T ], [H1(Dd)]d+1) and the linear part in G of JG(π)
has to vanish for all functions G. In particular, (ρ,p) is a weak solution of (2.3.2). Moreover, if the rate
function is finite, by the previous lemma, π has finite energy. Accordingly, if π is a weak solution, we
have from Theorem 2.3.1 that it has finite energy.

For each q > 0, let Eq be the level set of IT (π|γ) defined by

Eq = {π ∈ D([0, T ],M) : IT (π|γ) ≤ q} .

By Lemma 2.4.1, Eq is a subset of C([0, T ],M0). Thus, from the previous lemma, it is easy to deduce
the next result.

Corollary 2.4.4. For every q ≥ 0, there exists a finite constant C(q) such that

sup
π∈Eq

{
|||∂t(ρ,p)|||2−1 +

d∑
k=0

∫ T

0

dt

∫
Dd

du ‖∇pk(t, u)‖2
}
≤ C(q) .

Next result together with the previous estimates provide the compactness needed in the proof of the
lower semicontinuity of the rate function.

Lemma 2.4.5. Let {ρn : n ≥ 1} be a sequence of functions in L2(ΩT ) such that uniformly on n,∫ T

0

dt ‖ρnt ‖
2
1,2 +

∫ T

0

dt ‖∂tρnt ‖
2
−1 < C

for some positive constant C. Suppose that ρ ∈ L2(ΩT ) and that ρn → ρ weakly in L2(ΩT ). Then ρn → ρ
strongly in L2(ΩT ).

Proof. Since H1(Dd) ⊂ L2(Dd) ⊂ H−1(Dd) with compact embedding H1(Dd) → L2(Dd), from Corol-
lary 8.4, [12], the sequence {ρn} is relatively compact in L2

(
[0, T ], L2(Dd)

)
. Therefore the weak conver-

gence implies the strong convergence in L2
(
[0, T ], L2(Dd)

)
.

Theorem 2.4.6. The functional IT (·|γ) is lower semicontinuous and has compact level sets.

Proof. We have to show that, for all q ≥ 0, Eq is compact in D([0, T ],M). Since Eq ⊂ C([0, T ],M0) and
C([0, T ],M0) is a closed subset of D([0, T ],M), we just need to show that Eq is compact in C([0, T ],M0).
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We will show first that Eq is closed in C([0, T ],M0). Fix q ∈ R and let {πn : n ≥ 1} be a sequence
in Eq converging to some π in C([0, T ],M0). Then, for all G ∈ C(ΩT )× [C(Dd)]d,

lim
n→∞

∫ T

0

dt 〈πnt , Gt〉 =
∫ T

0

dt 〈πt, Gt〉 .

Notice that this means that πn,k → πk weakly in L2(ΩT ), for each k = 0, . . . , d, which together with
Corollary 2.4.4 and Lemma 2.4.5 imply that πn,k → πk strongly in L2(ΩT ). From this fact and the
definition of JG it is easy to see that, for all G in C1,2

0 (ΩT )× [C2
0(Dd)]d,

lim
n→∞

JG(πn) = JG(π) .

This limit, Corollary 2.4.4 and the lower semicontinuity of Q permit us to conclude that Q(π) ≤ C(q)
and that IT (π|γ) ≤ q.

We prove now that Eq is relatively compact. To this end, it is enough to prove that for every
continuous function G : Dd → R, and every k = 0, . . . , d,

lim
δ→0

sup
π∈Eq

sup
0≤s,r≤T
|r−s|<δ

|〈πkr , G〉 − 〈πks , G〉| = 0 . (2.4.7)

Since Eq ⊂ C([0, T ],M0), we may assume by approximations of G in L1(Dd) that G ∈ C∞c (Dd). In
which case, (2.4.7) follows from (2.4.1).

We conclude this section with an explicit formula for the rate function IT (·|γ). For each π(t, du) =
(ρ,p)(t, u)du in D([0, T ],M0), denote by H1

0 (π) the Hilbert space induced by C1,2
0 (ΩT ) endowed with

the inner product 〈·, ·〉π defined by

〈H,G〉π =
∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(ρ,p)))[ṽ · ∇H][ṽ · ∇G] . (2.4.8)

Induced means that we first declare two functions F,G in C1,2
0 (ΩT ) to be equivalent if 〈F−G,F−G〉π = 0

and then we complete the quotient space with respect to the inner product 〈·, ·〉π. The norm of H1
0 (π)

is denoted by ‖ · ‖π.
Fix a path π in D([0, T ],M0) and a function H in H1

0 (π). A measurable function λ : [0, T ]×Dd →
R+ × Rd is said to be a weak solution of the nonlinear boundary value parabolic equation

∂tλ +
∑d
i=1

∑
v∈V ṽ∂xi [χ(θv(Λ(λ)))(vi − ṽ · ∂xiH)] = 1

2∆λ,
λ(0, ·) = γ(·)
λ(t, x) = d(x), x ∈ {0, 1} × Td−1,

(2.4.9)

if it satisfies the following two conditions.

(i) For k = 0, . . . , d, λk belongs to L2
(
[0, T ], H1(Dd)

)
:∫ T

0

ds
(∫

Dd
‖ ∇λk(s, u) ‖2du

)
<∞ ;

(ii) For every function G(t, u) = Gt(u) in C1,2
0 (ΩT ),∫

Dd
G(T, u) · λ(T, u)du−

∫
Dd

G(0, u) · γ(u)du

=
∫ T

0

dt

∫
Dd

du

λ(t, u) · ∂tG(t, u) +
1
2
λ(t, u) ·

∑
1≤i≤d

∂2
uiG(t, u)


−
∫ T

0

dt

∫
{1}×Td−1

dS b(ũ) · ∂u1G(t, u) +
∫ T

0

dt

∫
{0}×Td−1

dS a(ũ) · ∂u1G(t, u)
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−
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(λ)))
∑

1≤i≤d

vi∂uiG(t, u),

+
∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(λ)))[ṽ · ∇H][ṽ · ∇G].

Uniqueness of solutions of equation (2.4.9) follows from the same arguments of the uniqueness proved
in [11].

Lemma 2.4.7. Assume that π(t, du) = (ρ,p)(t, u)du in D([0, T ],M0) has finite rate function: IT (π|γ) <
∞. Then, there exists a function H in H1

0 (π) such that (ρ,p) is a weak solution to (2.4.9). Moreover,

IT (π|γ) =
1
4
‖H‖2π . (2.4.10)

The proof of this lemma is similar to the one of Lemma 10.5.3 in [9] and is therefore omitted.

2.5 IT (·|γ)-Density

The main result of this section, stated in Theorem 2.5.5, asserts that any trajectory λt, 0 ≤ t ≤ T , with
finite rate function, IT (λ|γ) <∞, can be approximated by a sequence of smooth trajectories {λn : n ≥ 1}
such that

λn −→ λ and IT (λn|γ) −→ IT (λ|γ) .

This is one of the main steps in the proof of the lower bound of the large deviations principle for the
empirical measure. The proof is mainly based on the regularizing effects of the hydrodynamic equation.
This strategy was introduced by [8].

A subset A of D([0, T ],M+ ×Md) is said to be IT (·|γ)-dense if for every π in D([0, T ],M+ ×Md)
such that IT (π|γ) < ∞, there exists a sequence {πn : n ≥ 1} in A such that πn converges to π and
IT (πn|γ) converges to IT (π|γ).

Let Π1 be the subset of D([0, T ],M0) consisting of paths π(t, du) = (ρ,p)(t, u)du whose density (ρ,p)
is a weak solution of the hydrodynamic equation (2.3.2) in the time interval [0, δ] for some δ > 0.

Lemma 2.5.1. The set Π1 is IT (·|γ)-dense.

Proof. Fix π(t, du) = (ρ,p)(t, u)du in D([0, T ],M+ ×Md) such that IT (π|γ) <∞. By Lemma 2.4.1, π
belongs to C([0, T ],M0). For each δ > 0, let (ρδ,pδ) be the path defined as

(ρδ,pδ)(t, u) =


τ(t, u) if 0 ≤ t ≤ δ ,
τ(2δ − t, u) if δ ≤ t ≤ 2δ ,
(ρ,p)(t− 2δ, u) if 2δ ≤ t ≤ T ,

where τ is the weak solution of the hydrodynamic equation (2.3.2) starting at γ. It is clear that πδ(t, du) =
(ρδ,pδ)(t, u)du belongs to Dγ , because so do π and τ and that Q(πδ) ≤ Q(π) + 2Q(τ) <∞. Moreover,
πδ converges to π as δ ↓ 0 because π belongs to C([0, T ],M0). By the lower semicontinuity of IT (·|γ),
IT (π|γ) ≤ limδ→0 IT (πδ|γ). Then, in order to prove the lemma, it is enough to prove that IT (π|γ) ≥
limδ→0 IT (πδ|γ). To this end, decompose the rate function IT (πδ|γ) as the sum of the contributions
on each time interval [0, δ], [δ, 2δ] and [2δ, T ]. The first contribution vanishes because πδ solves the
hydrodynamic equation in this interval. On the time interval [δ, 2δ], ∂tρδt = −∂tτ2δ−t = − 1

2∆τ2δ−t +∑
v∈V ṽ[v · ∇χ(θv(Λ(τ2δ−t)))] = − 1

2∆(ρδt ,p
δ
t ) +

∑
v∈V ṽ[v · ∇χ(θv(Λ(ρδt ,p

δ
t )))]. In particular, the second

contribution is equal to

sup
G∈C1,20 (ΩT )×[C(Dd)]d

{ d∑
i=1

∫ δ

0

ds

∫
Dd

du ∂xi(ρ,p) · ∂xiG−
∑
v∈V

∫ δ

0

dt

∫
Dd

duχ(θv(Λ(ρ,p)))[ṽ · ∇G]2
}

which, by Lemma 2.6.5 is bounded from above, and therefore this last expression converges to zero as
δ ↓ 0. Finally, the third contribution is bounded by IT (π|γ) because πδ in this interval is just a time
translation of the path π.
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Let Π2 be the set of all paths π in Π1 with the property that for every δ > 0 there exists ε > 0 such
that, for k = 0, . . . , d, d(πkt (·), ∂U) ≥ ε for all t ∈ [δ, T ], where ∂U stands for the boundary of U.

We begin by proving an auxiliary lemma.

Lemma 2.5.2. Let π, λ ∈ U, and let πε = (1− ε)π + ελ, 0 ≤ ε ≤ 1. Then, for all v ∈ V, we have

θv(Λ(πε)) = (1− ε)θv(Λ(π)) + εθv(Λ(λ)).

Proof. Fix some λ ∈ U. Observe that(∑
v∈V

θv(Λ(λ)),
∑
v∈V

v1θv(Λ(λ)), . . . ,
∑
v∈V

vdθv(Λ(λ))

)
= (λ0, λ1, . . . , λd)

is a linear system with d+ 1 equations and |V| unknowns (given by θv(Λ(λ)), for v ∈ V). Therefore, any
solution of this linear system can be expressed as a linear combination of λi, i = 0, 1, . . . , d. The proof
follows from this fact.

Remark 2.5.3. In the particular case when d = 1 and the set of velocities is V = {v,−v} ⊂ R, a simple
computation gives the unique solution

θv(Λ(λ0, λ1)) =
λ0

2
+
λ1

2v
and θ−v(Λ(λ0, λ1)) =

λ0

2
− λ1

2v
.

Lemma 2.5.4. The set Π2 is IT (·|γ)-dense.

Proof. By Lemma 2.5.1, it is enough to show that each path π(t, du) = (ρ,p)(t, u)du in Π1 can be
approximated by paths in Π2. Fix π in Π1 and let τ be as in the proof of the previous lemma. For each
0 < ε < 1, let (ρε,pε) = (1 − ε)(ρ,p) + ετ , πε(t, du) = (ρε,pε)(t, u)du. Note that Q(πε) < ∞ because
Q is convex and both Q(π) and Q(τ) are finite. Hence, πε belongs to Dγ since both ρ and τ satisfy the
boundary conditions. Moreover, It is clear that πε converges to π as ε ↓ 0. By the lower semicontinuity
of IT (·|γ), in order to conclude the proof, it is enough to show that

lim
N→∞

IT (πε|γ) ≤ IT (π|γ) . (2.5.1)

By Lemma 2.4.7, there exists H ∈ H1
0 (π) such that (ρ,p) solves the equation (2.4.9). Let us denote

χ(θv(Λ(ρ,p))) simply by χv(π), and define Pi,v(π) = χv(π)
(
ṽ · ∂xiH − vi

)
, and note that Pi,v(τ) =

−viχ(θv(Λ(τ))). Let also

P εi,v = (1− ε)Pi,v(π) + εPi,v(τ).

Observe that, by Lemma 2.4.7,

I(π) =
1
4
‖H‖2π,

and that, using the definition of ‖ · ‖π in (2.4.8),

1
4
‖H‖2π =

1
4

∑
i,v

∫ T

0

dt

∫
Dd

duχv(π)(ṽ · ∂xiH)2 =
1
4

∑
i,v

∫ T

0

dt

∫
Dd

du
(Pi,v + viχv(π))2

χv(π)
.

A simple computation shows that

JG(πε) =
∑
i,v

∫ T

0

∫
Dd

[P εi,v + χv(πε)vi](ṽ · ∂xiG)− χv(πε)(ṽ · ∂xiG)2

=
1
4

∑
i,v

∫ T

0

dt

∫
Dd

du
[P εi,v + χv(πε)vi]2

χv(πε)
−

(
1
2
P εi,v + χv(πε)√

χv(πε)
−
√
χv(π)(ṽ · ∂xiG)

)2

.

Let

Aε =
1
4

∑
i,v

∫ T

0

dt

∫
Dd

du
[P εi,v + χv(πε)vi]2

χv(πε)
,
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and

Bε(G) =
∫ T

0

dt

∫
Dd

du

(
1
2
P εi,v + χv(πε)√

χv(πε)
−
√
χv(π)(ṽ · ∂xiG)

)
.

This implies that

I(πε) = sup
G

JG(πε) = sup
G

{
Aε −Bε(G)2

}
= Aε − inf

G
Bε(G)2 ≤ Aε,

where the supremum and infimum are taken over in G in C∞c (ΩT )× [C∞c (Dd)]d.
It remains to be shown that Aε is uniformly integrable in ε. However, this is a simple consequence of

Lemma 2.5.2.

Let Π be the subset of Π2 consisting of all those paths π which are solutions of the equation (2.4.9)
for some H ∈ C1,2

0 (ΩT )× [C(Dd)]d.

Theorem 2.5.5. The set Π is IT (·|γ)-dense.

Proof. By the previous lemma, it is enough to show that each path π in Π2 can be approximated by
paths in Π. Fix π(t, du) = (ρ,p)(t, u)du in Π2. By Lemma 2.4.7, there exists H ∈ H1

0 (π) such that (ρ,p)
solves the equation (2.4.9). Since π belongs to Π2 ⊂ Π1, (ρ,p) is the weak solution of (2.3.2) in some
time interval [0, 2δ] for some δ > 0. In particular, ∇Hk = 0 a.e in [0, 2δ]×Dd. On the other hand, since
π belongs to Π1, there exists ε > 0 such that, for k = 0, . . . , d, d(πkt (·), ∂U) ≥ ε for δ ≤ t ≤ T . Therefore,∫ T

0

dt

∫
Dd
‖∇Ht(u)‖2 du < ∞ . (2.5.2)

Since H belongs to H1
0 (π), there exists a sequence of functions {Hn : n ≥ 1} in C1,2

0 (ΩT ) converging
to H in H1

0 (π). We may assume of course that ∇Hn
t ≡ 0 in the time interval [0, δ]. In particular,

lim
n→∞

∫ T

0

dt

∫
Dd

du ‖∇Hn
t (u)−∇Ht(u)‖2 = 0 . (2.5.3)

For each integer n > 0, let (ρn,pn) be the weak solution of (2.4.9) with Hn in place of H and set
πn(t, du) = (ρn,pn)(t, u)du. By (2.4.10) and since χ is bounded above in [0, 1] by 1/4, we have that

IT (πn|γ) =
1
2

∑
v∈V

∫ T

0

dt 〈χ(θv(Λ(ρnt ,p
n
t ))), ‖∇Hn

t ‖2〉 ≤ C0

∫ T

0

dt

∫
Dd

du ‖∇Hn
t (u)‖2 .

In particular, by (2.5.2) and (2.5.3), IT (πn|γ) is uniformly bounded on n. Thus, by Theorem 2.4.6, the
sequence πn is relatively compact in D([0, T ],M+ ×Md).

Let {πnk : k ≥ 1} be a subsequence of πn converging to some π0 in D([0, T ],M0). For every G in
C1,2

0 (ΩT ), ∫
Dd

G(T, u) · (ρnkt ,pnkt )(T, u)du−
∫
Dd

G(0, u) · γ(u)du

=
∫ T

0

dt

∫
Dd

du

(ρnkt ,pnkt )(t, u) · ∂tG(t, u) +
1
2

(ρnkt ,pnkt )(t, u) ·
∑

1≤i≤d

∂2
uiG(t, u)


−
∫ T

0

dt

∫
{1}×Td−1

dS b(ũ) · ∂u1G(t, u) +
∫ T

0

dt

∫
{0}×Td−1

dS a(ũ) · ∂u1G(t, u)

−
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρnkt ,pnkt )))
∑

1≤i≤d

vi∂uiG(t, u),

+
∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(ρnkt ,pnkt )))[ṽ · ∇Hnk ][ṽ · ∇G].
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Letting k → ∞ in this equation, we obtain the same equation with π0 and H in place of πnk and
Hnk , respectively, if

lim
k→∞

∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρnkt ,pnkt )))
∑

1≤i≤d

vi∂uiG(t, u)

=
∫ T

0

dt

∫
Dd

du
∑
v∈V

ṽ · χ(θv(Λ(ρ0
t ,p

0
t )))

∑
1≤i≤d

vi∂uiG(t, u),

lim
k→∞

∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(ρnkt ,pnkt )))[ṽ · ∇Hnk ][ṽ · ∇G]

=
∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(ρ0
t ,p

0
t )))[ṽ · ∇H][ṽ · ∇G].

(2.5.4)

We prove the second claim, the first one being simpler. Note first that we can replace Hnk by H in
the previous limit, because χ is bounded in [0, 1] by 1/4, and (2.5.3) holds. Now, (ρnk ,pnk) converges
to (ρ0,p0) weakly in L2(ΩT ) because πnk converges to π0 in D([0, T ],M0). Since IT (πn|γ) is uniformly
bounded, by Corollary 2.4.4 and Lemma 2.4.5, (ρnk ,pnk) converges to (ρ0,p0) strongly in L2(ΩT ) which
implies (2.5.4). In particular, since (2.5.2) holds, by uniqueness of weak solutions of equation (2.4.9),
π0 = π and we are done.

2.6 Large deviations

We prove in this section Theorem 2.2.1, which is the dynamical large deviations principle for the empirical
measure of boundary driven stochastic lattice gas model with many conserved quantities. The proof uses
some of the ideas introduced in [8].

2.6.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper bound is a super-exponential
estimate which allows the replacement of local functions by functionals of the empirical density in the
large deviations regime.

Let κ be as in the beginning of Section 2.4. Note that since νNκ is not the invariant state, there are
no reasons for 〈−N2LNf, f〉νNκ to be positive. The next statement shows that this expression is almost
positive.

For each function f : XN → R, let DνNκ
(f) be

DνNκ
(f) = Dex

νNκ
(f) +Dc

νNκ
(f) +Db

νNκ
(f),

where
Dex
νNκ

(f) =
∑
v∈V

∑
x∈DdN

∑
x+z∈DdN

PN (z − x, v)
∫ [√

f(ηx,z,v)−
√
f(η)

]2
νnκ (dη),

Dc
νNκ

(f) =
∑
q∈Q

∑
x∈DdN

∫
p(x, q, η)

[√
f(ηx,q)−

√
f(η)

]2
νNκ (dη),

and

Db
νNκ

(f) =
∑
v∈V

∑
x∈{1}×Td−1

N

∫
[αv(x̃/N)(1− η(x, v)) + (1− αv(x̃/N))η(x, v)]×

×
[√

f(σx,vη)−
√
f(η)

]2
νNκ (dη) +

+
∑
v∈V

∑
x∈{N−1}×Td−1

N

∫
[βv(x̃/N)(1− η(x, v)) + (1− βv(x̃/N))η(x, v)]×

×
[√

f(σx,vη)−
√
f(η)

]2
νNκ (dη).
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Proposition 2.6.1. There exist constants C1 > 0 and C2 = C2(α, β) > 0 such that for every density f
with respect to νNκ , then

< LN
√
f,
√
f >νNκ ≤ −C1DνNκ

(f) + C2N
d−2.

The proof of this proposition is elementary and is thus omitted.
Further, we may choose κ for which there exists a constant θ > 0 such that:

κ(u1, ũ) = d(−1, ũ) if 0 ≤ u1 ≤ θ ,
κ(u1, ũ) = d(1, ũ) if 1− θ ≤ u1 ≤ 1 ,

for all ũ ∈ Td−1. In that case, for every N large enough, νNκ is reversible for the process with generator
LbN and then 〈−N2LbNf, f〉νNκ is positive.

Fix L ≥ 1 and a configuration η, let IL(x, η) := IL(x) = (IL0 (x), . . . , ILd (x)) be the average of the
conserved quantities in a cube of the length L centered at x:

IL(x) =
1
|ΛL|

∑
z∈x+ΛL

I(ηz),

where, ΛL = {−L, . . . , L}d and |ΛL| = (2L+ 1)d is the discrete volume of box ΛL.
For each G ∈ C(ΩT )× C(Dd)d, and each ε > 0, let

V G,1Nε (s, η) =
1
Nd

d∑
k=0

d∑
i,j=1

∑
x∈DdN

∂uiG
k(s, x/N)

[
τxṼ

j,k
Nε

]
,

where

Ṽ j,kNε (η) =
1

(2`+ 1)d
∑
y∈ΛNε

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjτy(η(0, v)[1− η(z, v)])

−
∑
v∈V

vjvkχ(θv(Λ(I`(0)))),

and let

V G,2Nε (s, η) =
1

2Nd

∑
v∈V

∑
x∈DdN

d∑
i=1

d∑
j,k=0

vkvj∂
N
uiG

j
t (x/N)∂NuiG

k
t (x/N)×

×
{
η(x, v)[1− η(x+ ei, v)] + η(x, v)[1− η(x− ei, v)]− 2χ(θv(Λ(I`(0))))

}
Let, again, G : [0, T ]× Td−1 → Rd+1 be a continuous function, and consider the quantities

V −N (s, η,G) =
1

Nd−1

d∑
k=0

∑
x̃∈Td−1

N

Gk(s, x̃/N)
(
Ik(η(1,x̃)(s))−

∑
v∈V

vkαv(x̃/N)
)
,

V +
N (s, η,G) =

1
Nd−1

d∑
k=0

∑
x̃∈Td−1

N

Gk(s, x̃/N)
(
Ik(η(N−1,x̃)(s))−

∑
v∈V

vkβv(x̃/N)
)
,

Proposition 2.6.2. Fix G ∈ C(ΩT )× [C(Dd)]d, H in C([0, T ]× Γ)× [C(Γ)]d, a cylinder function Ψ and
a sequence {ηN : N ≥ 1} of configurations with ηN in XN . For every δ > 0,

lim
ε→0

lim
N→∞

1
Nd

log PηN
[ ∣∣∣ ∫ T

0

V G,jNε (s, ηs) ds
∣∣∣ > δ

]
= −∞ ,

lim
N→∞

1
Nd

PηN
[ ∣∣∣ ∫ T

0

V ±N (s, η,G)
∣∣∣ > δ

]
= −∞ ,

for j = 1, 2.
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The proof of the above proposition follows from Proposition 2.6.1, the replacement lemmas proved
in [11], and the computation presented in [3], p. 78, for nonreversible processes.

For each ε > 0 and π inM+×Md, for k = 0, . . . , d, denote by Ξε(πk) = πεk the absolutely continuous
measure obtained by smoothing the measure πk:

Ξε(πk)(dx) = πεk(dx) =
1
Uε

πk(Λε(x))
|Λε(x)|

dx ,

where Λε(x) = {y ∈ Dd : |y−x| ≤ ε}, |A| stands for the Lebesgue measure of the set A, and {Uε : ε > 0}
is a strictly decreasing sequence converging to 1: Uε > 1, Uε > Uε′ for ε > ε′, limε↓0 Uε = 1. Let

πN,ε =
(

Ξε(πN0 ),Ξε(πN1 ), . . . ,Ξε(πNd )
)
.

A simple computation shows that πN,ε belongs to M0 for N sufficiently large because Uε > 1, and that
for each continuous function H : Dd → Rd+1,

〈πN,ε, H〉 =
1
Nd

∑
x∈DdN

H(x/N) · IεN (x) + O(N, ε) ,

where O(N, ε) is absolutely bounded by C0{N−1 + ε} for some finite constant C0 depending only on H.
For each H in C1,2

0 (ΩT )× [C2
0 (Dd)]d consider the exponential martingale MH

t defined by

MH
t = exp

{
Nd
[〈
πNt , Ht

〉
−
〈
πN0 , H0

〉
− 1
Nd

∫ t

0

e−N
d〈πNs ,Hs〉

(
∂s +N2LN

)
eN

d〈πNs ,Hs〉 ds
]}

.

Recall from subsection 2.2 the definition of the functional ĴH . An elementary computation shows that

MH
T = exp

{
Nd
[
ĴH(πN,ε) + VHN,ε + c1H(ε) + c2H(N−1)

]}
. (2.6.1)

In this formula,

VHN,ε = −
∫ T

0

V G,1Nε (s, η) ds−
d∑
i=1

∫ T

0

V G,2Nε (s, η) ds

+ V +
N (s, η, ∂u1H) − V −N (s, η, ∂u1H) + 〈πN0 , H0〉 − 〈γ,H0〉 ;

and cjH : R+ → R, j = 1, 2, are functions depending only on H such that cjH(δ) converges to 0 as δ ↓ 0.
In particular, the martingale MH

T is bounded by exp
{
C(H,T )Nd

}
for some finite constant C(H,T )

depending only on H and T . Therefore, Proposition 2.6.2 holds for PHηN = PηNMH
T in place of PηN .

2.6.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy estimate. We
state first the following technical result.

Lemma 2.6.3. There exists a finite constant C0, depending on T , such that for every G in C∞c (ΩT ),
every integer 1 ≤ i ≤ d, 0 ≤ k ≤ d, and every sequence {ηN : N ≥ 1} of configurations with ηN in XN ,

lim
N→∞

1
Nd

log EηN
[

exp
{
Nd

∫ T

0

dt 〈πN,kt , ∂uiG〉
}]
≤ C0

{
1 +

∫ T

0

‖Gt‖22 dt
}
.

The proof of this proposition follows from Lemma 3.8 in [11], and the fact that dδηN /dνNκ ≤ CN
d

,
for some positive constant C = C(κ).

For each G in C∞c (ΩT ) and each integer 1 ≤ i ≤ d, let Q̃Gi,k : D([0, T ],M+×Md)→ R be the function
given by

Q̃Gi,k(π) =
∫ T

0

dt 〈πkt , ∂uiGt〉 − C0

∫ T

0

dt

∫
Dd

du G(t, u)2 .
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Notice that

sup
G∈C∞c (ΩT )

{
Q̃Gi,k(π)

}
=
Qi,k(π)

4C0
. (2.6.2)

Fix a sequence {Gr : r ≥ 1} of smooth functions dense in L2([0, T ], H1(Dd)). For any positive
integers m, l, let

Bkm,l =
{
π ∈ D([0, T ],M+ ×Md) : max

1≤j≤m
1≤i≤d

Q̃Gji,k(π) ≤ l
}
.

Since, for fixed G in C∞c (ΩT ) and 1 ≤ i ≤ d integer, the function Q̃Gi,k is continuous, Bm,l is a closed
subset of D([0, T ],M).

Lemma 2.6.4. There exists a finite constant C0, depending on T , such that for any positive integers
r, l and any sequence {ηN : N ≥ 1} of configurations with ηN in XN ,

lim
N→∞

1
Nd

logQηN
[
(Bkm,l)

c
]
≤ −l + C0,

where k = 0, . . . , d.

Proof. For integers 1 ≤ k ≤ r and 1 ≤ i ≤ d, by Chebychev inequality and by Lemma 2.6.3,

lim
N→∞

1
Nd

log PηN
[
Q̃Gmi,k > l

]
≤ −l + C0 .

Hence, from

lim
N→∞

1
Nd

log(aN + bN ) ≤ max
{

lim
N→∞

1
Nd

log aN , lim
N→∞

1
Nd

log bN

}
, (2.6.3)

we obtain the desired inequality.

Lemma 2.6.5. There exists a finite constant C0, depending on T , such that for every G in C∞c (ΩT )×
[C∞c (Dd)]d, and every sequence {ηN : N ≥ 1} of configurations with ηN in XN ,

lim
N→∞

1
Nd

log EνNκ
[

exp
{
Nd

∫ T

0

d∑
i=1

d∑
k=0

dt 〈πNt , ∂uiGk〉
}]
≤ C0

{
1 +

∫ T

0

‖Gt‖2π dt
}
.

In particular, we have that if (ρ,p) is the solution of (2.3.2), then

sup
G∈C1,20 (ΩT )

{ d∑
i=1

∫ T

0

ds

∫
Dd

du ∂xi(ρ,p) · ∂xiG−
∑
v∈V

∫ T

0

dt

∫
Dd

duχ(θv(Λ(ρ,p)))[ṽ · ∇G]2
}
,

is finite, and vanishes if T → 0.

Proof. Applying Feynman-Kac’s formula and using the same arguments of Lemma 3.3 in [11], we have
that

1
Nd

logEνNκ

exp

N
∫ T

0

ds

d∑
i=1

d∑
k=0

∑
x∈DdN

(Ik(ηx(s))− Ik(ηx−ei(s)))∂uiG
k(s, x/N)




is bounded above by
1
Nd

∫ T

0

λNs ds,

where λNs is equal to

sup
f

{〈
N
∑
i,k

∑
x∈DdN

(Ik(η(x))− Ik(η(x− ei)))∂uiGk(s, x/N), f
〉
νNκ

+N2 < LN
√
f,
√
f >νNκ

}
,

60



where the supremum is taken over all densities f with respect to νNκ . By Proposition 2.6.1, the expression
inside brackets is bounded above by

CNd − N2

2
DνNκ

(f) +
∑
i,k

∑
x∈DdN

{
N∂uiG

k(s, x/N)
∫

[Ik(ηx)− Ik(ηx−ei)]f(η)νNκ (dη)
}
.

We now rewrite the term inside the brackets as∑
v∈V

d∑
i=1

∑
x∈DdN

{∫
N(ṽ · ∂uiG(s, x/N))[η(x, v)− η(x− ei, v)]f(η)νNκ (dη)

}
.

Writing η(x, v)− η(x− ei, v) = η(x, v)[1− η(x− ei, v)]− η(x− ei, v)[1− η(x, v)], and applying the same
arguments in Lemma 3.8 of [11], we obtain that

N(ṽ · ∂uiG(s, x/N))
∫

[η(x, v)− η(x− ei, v)]f(η)νNκ (dη)

≤ (ṽ · ∂uiG(s, x/N))2

∫
η(x, v)[1− η(x− ei, v)]f(ηx−ei,x,v)dνNκ

+
1
4

∫
f(ηx−ei,x,v)

[
N

(
1− γx−ei , v

γx,v

)]2

νNκ (dη)

+ N2

∫
1
2

[
√
f(ηx−ei,x,v)−

√
f(η)]2νNκ (dη)

+ 2(ṽ · ∂uiG(s, x/N))2

∫
η(x, v)[1− η(x− ei, v)](

√
f(η) +

√
f(ηx−ei,x,v))2νNκ (dη),

we have that (
√
f(η) +

√
f(ηx−ei,x,v))2 ≤ 2(f(η) + f(ηx−ei,x,v)). An application of the replacement

lemma (Lemma 3.7 in [11]) concludes the proof.

2.6.3 Upper Bound

Fix a sequence {Fj : j ≥ 1} of smooth functions dense in C(Dd) for the uniform topology, with positive
coordinates. For j ≥ 1 and δ > 0, let

Dj,δ =
{
π ∈ D([0, T ],M+ ×Md) : |〈πkt , Fj〉| ≤ v̆k|V|

∫
Dd

Fj(x) dx + Cjδ , k = 0, . . . , d, 0 ≤ t ≤ T
}
,

where v̆0 = 1 and v̆k = v̆, Cj = ‖∇Fj‖∞ and ∇F is the gradient of F . Clearly, the set Dj,δ, j ≥ 1,
δ > 0, is a closed subset of D([0, T ],M+ ×Md). Moreover, if

Em,δ =
m⋂
j=1

Dj,δ ,

we have that D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n. Note, finally, that for all m ≥ 1, δ > 0,

πN,ε belongs to Em,δ for N sufficiently large. (2.6.4)

Fix a sequence of configurations {ηN : N ≥ 1} with ηN in XN and such that πN (ηN ) converges to
γ(u)du in M. Let A be a subset of D([0, T ],M+ ×Md),

1
Nd

log PηN
[
πN ∈ A

]
=

1
Nd

log EηN
[
MH
T (MH

T )−1 1{πN ∈ A}
]
.

Maximizing over πN in A, we get from (2.6.1) that the last term is bounded above by

− inf
π∈A

ĴH(πε) +
1
Nd

log EηN
[
MH
T e−N

dVHN,ε
]
− c1H(ε)− c2H(N−1) .
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Since πN (ηN ) converges to γ(u)du in M and since Proposition 2.6.2 holds for PHηN = PηNMH
T in place

of PηN , the second term of the previous expression is bounded above by some CH(ε,N) such that

lim
ε→0

lim
N→∞

CH(ε,N) = 0 .

Hence, for every ε > 0, and every H in C1,2
0 (ΩT )× [C2

0 (Dd)]d,

lim
N→∞

1
Nd

log PηN [A] ≤ − inf
π∈A

ĴH(πε) + C ′H(ε) , (2.6.5)

where lim
ε→0

C ′H(ε) = 0. Let

Br,l =
{
π ∈ D([0, T ],M+ ×Md) : max

1≤j≤r
1≤i≤d

d∑
k=0

Q̃Gji,k(π) ≤ l
}
,

and, for each H ∈ C1,2
0 (ΩT )× [C2

0 (Dd)]d, each ε > 0 and any r, l,m, n ∈ Z+, let Jr,l,m,nH,ε : D([0, T ],M+×
Md)→ R ∪ {∞} be the functional given by

Jr,l,m,nH,ε (π) =

{
ĴH(πε) if π ∈ Br,l ∩ Em,1/n ,
+∞ otherwise .

This functional is lower semicontinuous because so is ĴH ◦Ξε and because Br,l, Em,1/n are closed subsets
of D([0, T ],M+ ×Md).

Let O be an open subset of D([0, T ],M+ ×Md). By Lemma 2.6.4, (2.6.3), (2.6.4) and (2.6.5),

lim
N→∞

1
Nd

logQηN [O] ≤ max
{

lim
N→∞

1
Nd

logQηN [O ∩Br,l ∩ Em,1/n] ,

lim
N→∞

1
Nd

logQηN [(Br,l)c]
}

≤ max
{
− inf
π∈O∩Br,l∩Em,1/n

ĴH(πε) + C ′H(ε) , −l + C0

}
= − inf

π∈O
Lr,l,m,nH,ε (π) ,

where
Lr,l,m,nH,ε (π) = min

{
Jr,l,m,nH,ε (π)− C ′H(ε) , l − C0

}
.

In particular,

lim
N→∞

1
Nd

logQηN [O] ≤ − sup
H,ε,r,l,m,n

inf
π∈O

Lr,l,m,nH,ε (π) .

Note that, for each H ∈ C1,2
0 (ΩT )× [C2

0 (Dd)]d, each ε > 0 and r, l,m, n ∈ Z+, the functional Lr,l,m,nH,ε

is lower semicontinuous. Then, by Lemma A2.3.3 in [9], for each compact subset K of D([0, T ],M),

lim
N→∞

1
Nd

logQηN [K] ≤ − inf
π∈K

sup
H,ε,r,l,m,n

Lr,l,m,nH,ε (π) .

By (2.6.2) and since D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n,

lim
ε→0

lim
l→∞

lim
r→∞

lim
m→∞

lim
n→∞

Lr,l,m,nH,ε (π) ={
ĴH(π) if Q(π) <∞ and π ∈ D([0, T ],M0) ,
+∞ otherwise .

This result and the last inequality imply the upper bound for compact sets because ĴH and JH coincide
on D([0, T ],M0). To pass from compact sets to closed sets, we have to obtain exponential tightness
for the sequence {QηN }. This means that there exists a sequence of compact sets {Kn : n ≥ 1} in
D([0, T ],M) such that

lim
N→∞

1
Nd

logQηN (Knc) ≤ −n .

The proof presented in [2] for the non interacting zero range process is easily adapted to our context.
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2.6.4 Lower Bound

The proof of the lower bound is similar to the one in the convex periodic case. We just sketch it and
refer to [9], Section 10.5. Fix a path π in Π and let H ∈ C1,2

0 (ΩT ) be such that π is the weak solution
of equation (2.4.9). Recall from the previous section the definition of the martingale MH

t and denote by
PHηN the probability measure on D([0, T ], XN ) given by PHηN [A] = EηN [MH

T 1{A}]. Under PHηN and for
each 0 ≤ t ≤ T , the empirical measure πNt converges in probability to πt. Further,

lim
N→∞

1
Nd

H
(
PHηN

∣∣PηN) = IT (π|γ) ,

where H(µ|ν) stands for the relative entropy of µ with respect to ν. From these two results we can
obtain that for every open set O ⊂ D([0, T ],M+ ×Md) which contains π,

lim
N→∞

1
Nd

log PηN
[
O
]
≥ −IT (π|γ) .

The lower bound follows from this and the IT (·|γ)-density of Π established in Theorem 2.5.5.
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Part II

Particle systems with conductances
in random environments
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Chapter 3

W -Sobolev spaces: Theory,
Homogenization and Applications

Artigo em colaboracao com F.J. Valentim. Está atualmente submetido para publicação.

Abstract

Fix strictly increasing right continuous functions with left limits Wi : R → R, i = 1, . . . , d, and let
W (x) =

∑d
i=1Wi(xi) for x ∈ Rd. We construct the W -Sobolev spaces, which consist of functions f

having weak generalized gradients ∇W f = (∂W1f, . . . , ∂Wd
f). Several properties, that are analogous

to classical results on Sobolev spaces, are obtained. W -generalized elliptic and parabolic equations are
also established, along with results on existence and uniqueness of weak solutions of such equations.
Homogenization results of suitable random operators are investigated. Finally, as an application of all
the theory developed, we prove a hydrodynamic limit for gradient processes with conductances (induced
by W ) in random environments.

3.1 Introduction

The space of functions that admit differentiation in a weak sense has been widely studied in the mathe-
matical literature. The usage of such spaces provides a wide application to the theory of partial differential
equations (PDE), and to many other areas of pure and applied mathematics. These spaces have become
associated with the name of the late Russian mathematician S. L. Sobolev, although their origins predate
his major contributions to their development in the late 1930s. In theory of PDEs, the idea of Sobolev
space allows one to introduce the notion of weak solutions whose existence, uniqueness, regularities, and
well-posedness are based on tools of functional analysis.

In classical theory of PDEs, two important classes of equations are: elliptic and parabolic PDEs.
They are second-order PDEs, with some constraints (coerciveness) in the higher-order terms. The
elliptic equations typically model the flow of some chemical quantity within some region, whereas the
parabolic equations model the time evolution of such quantities. Consider the following particular classes
of elliptic and parabolic equations:

d∑
i=1

∂xi∂xiu(x) = g(x), and
{
∂tu(t, x) =

∑d
i=1 ∂xi∂xiu(t, x),

u(0, x) = g(x),
(3.1.1)

for t ∈ (0, T ] and x ∈ D, where D is some suitable domain, and g is a function. Sobolev spaces are the
natural environment to treat equations like (3.1.1) - an elegant exposition of this fact can be found in
[2].

Consider the following generalization of the above equations:

d∑
i=1

∂xi∂Wiu(x) = g(x), and
{
∂tu(t, x) =

∑d
i=1 ∂xi∂Wi

u(t, x),
u(0, x) = g(x),

(3.1.2)
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where ∂Wi
stands for the generalized derivative operator, where, for each i, Wi is a one-dimensional

strictly increasing (not necessarily continuous) function. Note that if Wi(xi) = xi, we obtain the equa-
tions in (3.1.1). This notion of generalized derivative has been studied by several authors in the literature,
see for instance, [1, 5, 10, 11, 12]. We also call attention to [1] since it provides a detailed study of such
notion. The equations in (3.1.2) have the same physical interpretation as the equations in (3.1.1). How-
ever, the latter covers more general situations. For instance, [6] and [16] argue that these equations may
be used to model a diffusion of particles within a region with membranes induced by the discontinuities
of the functions Wi. Unfortunately, the standard Sobolev spaces are not suitable for being used as the
space of weak solutions of equations in the form of (3.1.2).

One of our goals in this work is to define and obtain some properties of a space, which we call W -
Sobolev space. This space lets us formalize a notion of weak generalized derivative in such a way that,
if a function is W -differentiable in the strong sense, it will also be differentiable in the weak sense, with
their derivatives coinciding. Moreover, the W -Sobolev space will coincide with the standard Sobolev
space if Wi(xi) = xi for all i. With this in mind, we will be able to define weak solutions of equations in
(3.1.2). We will prove that there exist weak solutions for such equations, and also, for some cases, the
uniqueness of such weak solutions. Some analogous to classical results of Sobolev spaces are obtained,
such as Poincaré’s inequality and Rellich-Kondrachov’s compactness theorem.

Besides the treatment of elliptic and parabolic equations in terms of these W -Sobolev spaces, we are
also interested in studying Homogenization and Hydrodynamic Limits. The study of homogenization is
motivated by several applications in mechanics, physics, chemistry and engineering. For example, when
one studies the thermal or electric conductivity in heterogeneous materials, the macroscopic properties
of crystals or the structure of polymers, are typically described in terms of linear or non-linear PDEs for
medium with periodic or quasi-periodic structure, or, more generally, stochastic.

We will consider stochastic homogenization. In the stochastic context, several works on homogeniza-
tion of operators with random coefficients have been published (see, for instance, [13, 14] and references
therein). In homogenization theory, only the stationarity of such random field is used. The notion of
stationary random field is formulated in such a manner that it covers many objects of non-probabilistic
nature, e.g., operators with periodic or quasi-periodic coefficients.

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coefficients can be obtained by the discretization of random high-
contrast lattice structures. In this sense, we want to extend the theory of homogenization of random
operators developed in [14], as well as to prove its main Theorem (Theorem 2.16) to the context in which
we have weak generalized derivatives.

Lastly, as an application of all the theory developed for W -Sobolev spaces, elliptic operators, parabolic
equations and homogenization, we prove a hydrodynamic limit for gradient processes with conductances in
random environments. Hydrodynamic limit for gradient processes with conductances have been obtained
in [6] for the one-dimensional setup and in [16] for the d-dimensional setup. However, with the tools
developed in our present article, the proof of the hydrodynamic limit on a more general setup (in
random environments) turns out to be simpler and much more natural. Furthermore, the proof of this
hydrodynamic limit also provides an existence theorem for the generalized parabolic equations such as
the one in (3.1.2).

The hydrodynamic limit allows one to obtain a description of the thermodynamic characteristics
(e.g., temperature, density, pressure, etc.) of infinite systems assuming that the underlying dynamics is
stochastic and follows the statistical mechanics approach introduced by Boltzmann. More precisely, it
allows one to deduce the macroscopic behavior of the system from the microscopic interaction among
particles. We will consider a microscopic dynamics consisting of random walks on the lattice submitted
to some local interaction, the so-called interacting particle systems introduced by Spitzer [15], see also
[9]. Therefore, this approach justifies rigorously a method often used by physicists to establish the partial
differential equations that describe the evolution of the thermodynamic characteristics of a fluid, and
thus, the existence of weak solutions of such PDEs can be viewed as one of the goals of the hydrodynamic
limit.

The random environment we considered is governed by the coefficients of the discrete formulation of
the model (the process on the lattice). It is possible to obtain other formulations of random environments,
for instance, in [3] they proved a hydrodynamic limit for a gradient process with conductances in a random
environment whose randomness consists of the random choice of the conductances. The hydrodynamic
limit for a gradient process without conductances on the random environment we are considering was
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proved in [7]. We would like to mention that in [4] a process evolving on a percolation cluster (a lattice
with some bonds removed randomly) was considered and the resulting process turned out to be non-
gradient. However, the homogenization tools facilitated the proof of the hydrodynamic limit, which made
the proof much simpler than the usual proof of hydrodynamic limit for non-gradient processes (see for
instance [8, Chapter 7]).

We now describe the organization of the article. In Section 3.2 we define the W -Sobolev spaces
and obtain some results, namely, approximation by smooth functions, Poincaré’s inequality, Rellich-
Kondrachov theorem (compact embedding), and a characterization of the dual of the W -Sobolev spaces.
In Section 3.3 we define the W -generalized elliptic equations, and what we call by weak solutions. We
then obtain some energy estimates and use them together with Lax-Milgram’s theorem to conclude results
regarding existence, uniqueness and boundedness of such weak solutions. In Section 3.4 we define the
W -generalized parabolic equations, their weak solutions, and prove uniquenesses of these weak solutions.
Moreover, a notion of energy is also introduced in this Section. Section 3.5 consists in obtaining discrete
analogous results to the ones of the previous sections. This Section serves as preamble for the subsequent
sections. In Section 3.6 we define the random operators we are interested and obtain homogenization
results for them. Finally, Section 3.7 concludes the article with an application that is interesting for both
probability and theoretical physics, which is the hydrodynamic limit for a gradient process in random
environments. This application uses results from all the previous sections and provides a proof for
existence of weak solutions of W -generalized parabolic equations.

3.2 W -Sobolev spaces

This Section is devoted to the definition and derivation of properties of the W -Sobolev spaces. We begin
by introducing some notation, stating some known results, and giving a precise definition of these spaces
in subsection 2.2. Subsection 2.3 contains the proof of an approximation result. Poincaré’s inequality,
Rellich-Kondrachov theorem and a characterization of the dual space of these Sobolev spaces are also
obtained.

Denote by Td = (R/Z)d = [0, 1)d the d-dimensional torus, and by TdN = (Z/NZ)d = {0, . . . , N − 1}d
the d-dimensional discrete torus with Nd points.

Fix a function W : Rd → R such that

W (x1, . . . , xd) =
d∑
k=1

Wk(xk), (3.2.1)

where each Wk : R → R is a strictly increasing right continuous function with left limits (càdlàg),
periodic in the sense that for all u ∈ R

Wk(u+ 1)−Wk(u) = Wk(1)−Wk(0).

Define the generalized derivative ∂Wk
of a function f : Td → R by

∂Wk
f(x1,. . ., xk, . . . , xd) = lim

ε→0

f(x1,. . ., xk + ε, . . . , xd)− f(x1,. . ., xk,. . ., xd)
Wk(xk + ε)−Wk(xk)

, (3.2.2)

when the above limit exists and is finite. If for a function f : Td → R the generalized derivatives ∂Wk

exist for all k, denote the generalized gradient of f by

∇W f = (∂W1f, . . . , ∂Wd
f) .

Consider the operator LWk
: DWk

⊂ L2(T)→ R given by

LWk
f = ∂xk ∂Wk

f, (3.2.3)

whose domain DWk
is completely characterized in the following proposition:
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Proposition 3.2.1. The domain DWk
consists of all functions f in L2(T) such that

f(x) = a + bWk(x) +
∫

(0,x]

Wk(dy)
∫ y

0

f(z) dz

for some function f in L2(T) that satisfies∫ 1

0

f(z) dz = 0 and
∫

(0,1]

Wk(dy)
{
b+

∫ y

0

f(z) dz
}

= 0 .

The proof of Proposition 3.2.1 and further details can be found in [6]. Furthermore, they also proved
that these operators have a countable complete orthonormal system of eigenvectors, which we denote by
AWk

. Then, following [16],

AW = {f : Td → R; f(x1, . . . , xd) =
d∏
k=1

fk(xk), fk ∈ AWk
},

where W is given by (3.2.1).
We may now build an operator analogous to LWk

in Td. For a given set A, we denote by span(A)
the linear subspace generated by A. Let DW = span(AW ), and define the operator LW : DW → L2(Td)
as follows: for f =

∏d
k=1 fk ∈ AW ,

LW (f)(x1, . . . xd) =
d∑
k=1

d∏
j=1,j 6=k

fj(xj)LWk
fk(xk), (3.2.4)

and extend to DW by linearity. It is easy to see that if f ∈ DW

LW f =
d∑
k=1

LWk
f, (3.2.5)

where the application of LWk
on a function f : Td → R is the natural one, i.e., it considers f only as a

function of the kth coordinate, and keeps all the remaining coordinates fixed.
Let, for each k = 1, . . . , d, fk ∈ AWk

be an eigenvector of LWk
associated to the eigenvalue λk. Then

f =
∏d
k=1 fk belongs to DW and is an eigenvector of LW with eigenvalue

∑d
k=1 λk. Moreover, [16] proved

the following result:

Lemma 3.2.2. The following statements hold:

(a) The set DW is dense in L2(Td);

(b) The operator LW : DW → L2(Td) is symmetric and non-positive:

〈−LW f, f〉 ≥ 0,

where 〈·, ·〉 is the standard inner product in L2(Td).

3.2.1 The auxiliary space

Let L2
xk⊗Wk

(Td) be the Hilbert space of measurable functions H : Td → R such that∫
Td
d(xk⊗Wk)H(x)2 < ∞,

where d(xk⊗Wk) represents the product measure in Td obtained from Lesbegue’s measure in Td−1 and
the measure induced by Wk in T:

d(xk⊗Wk) = dx1 · · · dxk−1 dWk dxk+1 · · · dxd.

Denote by 〈H,G〉xk⊗Wk
the inner product of L2

xk⊗Wk
(Td):

〈H,G〉xk⊗Wk
=
∫

Td
d(xk⊗Wk)H(x)G(x) ,

and by ‖ · ‖xk⊗Wk
the norm induced by this inner product.
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Lemma 3.2.3. Let f, g ∈ DW , then for i = 1, . . . , d,∫
Td

(
∂xi∂Wi

f(x)
)
g(x) dx = −

∫
Td

(∂Wi
f)(∂Wi

g)d(xi⊗Wi).

In particular, ∫
Td

LW f(x)g(x) dx = −
d∑
i=1

∫
Td

(∂Wif)(∂Wig)d(xi⊗Wi).

Proof. Let f, g ∈ DW . By Fubini’s theorem∫
Td
LWi

f(x)g(x)dx =
∫

Td−1

[∫
T
LWi

f(x)g(x)dxi

]
dxi,

where dxi is the Lebesgue product measure in Td−1 on the coordinates x1, . . . , xi−1, xi+1, . . . , xd.
An application of [6, Lemma 3.1 (b)] and again Fubini’s theorem concludes the proof of this Lemma.

Let L2
xj⊗Wj ,0

(Td) be the closed subspace of L2
xj⊗Wj

(Td) consisting of the functions that have zero
mean with respect to the measure d(xj⊗Wj):∫

Td
fd(xj⊗Wj) = 0.

Finally, using the characterization of the functions in DWj
given in Proposition 3.2.1, and the defini-

tion of DW , we have that the set {∂Wj
h;h ∈ DW } is dense in L2

xj⊗Wj ,0
(Td).

3.2.2 The W -Sobolev space

We define the Sobolev space of W -generalized derivatives as the space of functions g ∈ L2(Td) such that
for each i = 1, . . . , d there exist fuctions Gi ∈ L2

xi⊗Wi,0
(Td) satisfying the following integral by parts

identity. ∫
Td

(
∂xi∂Wi

f
)
g dx = −

∫
Td

(∂Wi
f) Gid(xi⊗Wi), (3.2.6)

for every function f ∈ DW . We denote this space by H̃1,W (Td). A standard measure-theoretic argument
allows one to prove that for each function g ∈ H̃1,W (Td) and i = 1, . . . , d, we have a unique function
Gi that satisfies (3.2.6). Note that DW ⊂ H̃1,W (Td). Moreover, if g ∈ DW then Gi = ∂Wig. For this
reason for each function g ∈ H̃1,W we denote Gi simply by ∂Wi

g, and we call it the ith generalized weak
derivative of the function g with respect to W .

Lemma 3.2.4. The set H̃1,W (Td) is a Hilbert space with respect to the inner product

〈f, g〉1,W = 〈f, g〉+
d∑
i=1

∫
Td

(∂Wi
f)(∂Wi

g) d(xi⊗Wi) (3.2.7)

Proof. Let (gn)n∈N be a Cauchy sequence in H̃1,W (Td), and denote by ‖ · ‖1,W the norm induced by
the inner product (3.2.7). By the definition of the norm ‖ · ‖1,W , we obtain that (gn)n∈N is a Cauchy
sequence in L2(Td) and that (∂Wi

gn)n∈N is a Cauchy sequence in L2
xi⊗Wi,0

(Td) for each i = 1, . . . , d.
Therefore, there exist functions g ∈ L2(Td) and Gi ∈ L2

xi⊗Wi,0
(Td) such that g = limn→∞ gn, and

Gi = limn→∞ ∂Wi
gn. It remains to be proved that Gi is, in fact, the ith generalized weak derivative of

g with respect to W . But this follows from a simple calculation: for each f ∈ DW we have∫
Td

(
∂xi∂Wi

f
)
gdx = lim

n→∞

∫
Td

(
∂xi∂Wi

f
)
gndx

= − lim
n→∞

∫
Td

(∂Wi
f)(∂Wi

g)d(xi⊗Wi)

= −
∫
Td

(∂Wif)Gid(xi⊗Wi),

where we used Hölder’s inequality to pass the limit through the integral sign.
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3.2.3 Approximation by smooth functions and the energetic space

We will now obtain approximation of functions in the Sobolev space H̃1,W (Td) by functions in DW . Note
that the functions in DW can be seen as smooth, in the sense that one may apply the operator LW to
these functions in the strong sense.

Let us introduce 〈·, ·〉1,W the inner product on DW defined by

〈f, g〉1,W = 〈f, g〉 + 〈−LW f, g〉, (3.2.8)

and note that by Lemma 3.2.3,

〈f, g〉1,W = 〈f, g〉 +
d∑
i=1

∫
Td

(∂Wi
f)(∂Wi

g)d(xi⊗Wi).

Let H1,W (T) be the set of all functions f in L2(Td) for which there exists a sequence (fn)n∈N in DW
such that fn converges to f in L2(Td) and fn is a Cauchy sequence for the inner product 〈·, ·〉1,W . Such
sequence (fn)n∈N is called admissible for f .

For f , g in H1,W (Td), define
〈f, g〉1,W = lim

n→∞
〈fn, gn〉1,W , (3.2.9)

where (fn)n∈N, (gn)n∈N are admissible sequences for f , and g, respectively. By [17, Proposition 5.3.3],
this limit exists and does not depend on the admissible sequence chosen; the set DW is dense in H1,W ;
and the embedding H1,W ⊂ L2(Td) is continuous. Moreover, H1,W (Td) endowed with the inner product
〈·, ·〉1,W just defined is a Hilbert space. Denote ‖·‖1,W the norm in H1,W induced by 〈·, ·〉1,W . The space
H1,W (Td) is called energetic space. For more details on the theory of energetic spaces see [17, Chapter
5].

Note that H1,W is the space of functions that can be approximated by functions in DW with respect
to the norm ‖ · ‖1,W . The following Proposition shows that this space is, in fact, the Sobolev space
H̃1,W (Td).

Proposition 3.2.5 (Approximation by smooth functions). We have the equality of the sets

H̃1,W (Td) = H1,W (Td).

In particular, we can approximate any function f in the Sobolev space H̃1,W (Td) by functions in DW .

Proof. Fix g ∈ H1,W (Td). By definition, there exists a sequence gn in DW such that gn converges to g in
L2(Td) and gn is Cauchy for the inner product 〈·, ·〉1,W . So, for each i = 1, . . . , d there exists functions
Gi ∈ L2

xi⊗Wi,0
(Td) such that ∂Wign converges to Gi in L2

xi⊗Wi,0
(Td). Applying the Hölder’s inequality,

we deduce that for every f ∈ DW∫
Td

(
∂xi∂Wif

)
g dx = lim

n→∞

∫
Td

(
∂xi∂Wif

)
gn dx.

By Lemma 3.2.3, we obtain

lim
n→∞

∫
Td

(
∂xi∂Wi

f
)
gndx = lim

n→∞

∫
Td

(∂Wi
f)(∂Wi

gn) d(xi⊗Wi)

= −
∫

Td
(∂Wi

f)Gi d(xi⊗Wi).

Then, g ∈ H̃1,W (Td) and therefore H1,W (Td) ⊂ H̃1,W (Td).
We will now prove that H1,W (Td) is dense in H̃1,W (Td), and since both of them are complete, they

are equal. Note that since DW is dense in L2(Td) and DW ⊂ H1,W (Td), we have that H1,W (Td) is also
dense in L2(Td).

Therefore, given a function g ∈ H̃1,W (Td), we can approximate g by a sequence of functions (fn)n∈N
in H1,W (Td) with respect to the L2(Td) norm. Let Fi,n be the ith generalized weak derivative of fn with
respect to W . We have, therefore, for each h ∈ DW

lim
n→∞

∫
Td

(∂Wih)(Fi,n −Gi)d(xi⊗Wi) = − lim
n→∞

∫
Td

(
∂xi∂Wih

)
(fn − g)dx = 0.
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Denote by Fi,n : L2
xi⊗Wi,0

(Td)→ R the sequence of bounded linear functionals induced by Fi,n −Gi:

Fi,n(h) :=
∫

Td
h[Fi,n −Gi]d(xi⊗Wi),

for h ∈ L2
xi⊗Wi,0

(Td). We then note that, since the set {∂Wih;h ∈ DW } is dense in L2
xi⊗Wi,0

(Td), Fi,n
converges to 0 pointwisely. By Banach-Steinhaus’ Theorem, Fi,n converges strongly to 0, and, thus, Fi,n
converges to Gi in L2

xi⊗Wi,0
(Td), for each i = 1, . . . , d. Therefore, fn converges to g in L2(Td) and ∂Wi

fn

converges to Gi in L2
xi⊗Wi,0

(Td) for each i, i.e., fn converges to g with the norm ‖ · ‖1,W , and the density
of H1,W (Td) in H̃1,W (Td) follows.

The next Corollary shows an analogous of the classic result for Sobolev spaces with dimension d = 1,
which states that every function in the one-dimensional Sobolev space is absolutely continuous.

Corollary 3.2.6. A function f in L2(T) belongs to the Sobolev space H̃1,W (T) if and only if there exists
F in L2

W (T) and a finite constant c such that∫
(0,1]

F (y) dW (y) = 0 and f(x) = c +
∫

(0,x]

F (y) dW (y)

Lebesgue almost surely.

Proof. In [6] the energetic extension H1,W (T) has the characterization given in Corollary 3.2.6. By
Proposition 3.2.5 we have that these spaces coincide, and hence the proof follows.

From Proposition 3.2.5, we may use the notation H1,W (Td) for the Sobolev space H̃1,W (Td). Another
interesting feature we have on this space, which is very useful in the study of elliptic equations, is the
Poincaré inequality:

Corollary 3.2.7 (Poincaré Inequality). For all f ∈ H1,W (Td) there exists a finite constant C such that∥∥∥∥f − ∫
Td
f dx

∥∥∥∥2

L2(Td)

≤ C

n∑
i=1

∫
Td

(∂Wif)2
d(xi⊗Wi)

:= C‖∇W f‖2L2
W (Td).

Proof. We begin by introducing some notations. For x, y ∈ Td, i = 0, . . . , d and t ∈ T, denote

z(x, y, i) = (x1, . . . , xd−i, yd−i+1, . . . , yd) ∈ Td

and
z(x, y, t, i) = (x1, . . . , xd−i, t, yd−i+2, . . . , yd) ∈ Td.

With this notation, we may write f(x)− f(y) as the telescopic sum

f(x)− f(y) =
d∑
i=1

f(z(x, y, i− 1))− f(z(x, y, i)).
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We are now in conditions to prove this Lemma. Let f ∈ DW , then∥∥∥f − ∫
Td
fdx

∥∥∥2

L2(Td)
=
∫

Td

[ ∫
Td
f(x)− f(y)dy

]2
dx

=
∫

Td

[ ∫
Td

d∑
i=1

∫ xi

yi

∂Wi
f(z(x, y, t, i))dWi(t)dy

]2
dx

≤
∫

Td

[ ∫
Td

d∑
i=1

∫
T

∣∣∣∂Wif(z(x, y, t, i))
∣∣∣dWi(t)dy

]2
dx

≤
∫

Td

[ d∑
i=1

∫
Td−i+1

∣∣∣∂Wi
f(z(x, y, t, i))

∣∣∣dWd−i(t)⊗ yd−i+1⊗ · · ·⊗ yd
]2
dx

≤ C
∫

Td

d∑
i=1

∫
Td−i+1

∣∣∣∂Wi
f(z(x, y, t, i))

∣∣∣2dWd−i(t)⊗ dyd−i+1⊗ · · ·⊗ dyddx

= C

d∑
i=1

∫
Td

(
∂Wi

f
)2

d(xi⊗Wi),

where in the next-to-last inequality, we used Jensen’s inequality and the elementary inequality (
∑
i xi)

2 ≤
C
∑
i x

2
i for some positive constant C. To conclude the proof, one uses Proposition 3.2.5 to approximate

functions in H1,W (Td) by functions in DW .

3.2.4 A Rellich-Kondrachov theorem

In this subsection we prove an analogous of the Rellich-Kondrachov theorem for the W -Sobolev spaces.
We begin by stating this result in dimension 1, whose proof can be found in [6, Lemma 3.3].

Lemma 3.2.8. Fix some k ∈ {1, . . . , d}. The embedding H1,Wk
(T) ⊂ L2(T) is compact.

Recall that they proved this result for the energetic extension, but in view of Proposition 3.2.5, this
result holds for our Sobolev space H1,Wk

(T).

Proposition 3.2.9 (Rellich-Kondrachov). The embedding H1,W (Td) ⊂ L2(Td) is compact.

Proof. We will outline the strategy of the proof. Using the definition of the set DW and the fact that it
is dense in H1,W (Td), it is enough to show this fact for sequences in DW . From this point, the main tool
is Lemma 3.2.8 and Cantor’s diagonal method to obtain converging subsequences.

We begin by noting that by Proposition 3.2.5, it is enough to prove that the embed DW ⊂ L2(Td) is
compact.

Let C > 0 and consider a sequence (vn)n∈N in DW , with ‖vn‖1,W ≤ C for all n ∈ N. We have, by
definition of DW (see the definition at the beginning of Section 3.2), that each vn can be expressed as a
finite linear combination of elements in AW . Furthermore, each element in AW is a product of elements
in AWk

for k = 1, . . . , d. Therefore, we can write vn as

vn =
N(n)∑
j=1

αnj

d∏
k=1

gnk,j =
N(n)∑
j=1

αnj g
n
j ,

where gnk,j ∈ AWk
, αnj ∈ R, gnj =

∏d
k=1 g

n
j,k, and N(n) is chosen such that N(n) ≥ n (we can complete

with zeros if necessary). Recall that these functions gnk,j have ‖gnk,j‖L2(T) = 1, and hence, ‖gnj ‖L2(Td) = 1.
Moreover, the set {gn1 , . . . , gnN(n)} is orthogonal in L2(Td).

From orthogonality, we obtain that

N(n)∑
j=1

(αnj )2 ≤ C2, uniformly in n ∈ N.
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Note that the uniform boundedness of vn in H1,W (Td) implies the uniform boundedness of ‖gnk,j‖1,Wk
,

for all k = 1, . . . , d, j = 1, . . . , N(n) and n ∈ N. Our goal now is to apply Lemma 3.2.8 to our current
setup.

Consider the sequence of functions αn1 g
n
1,1 in H1,W1(T). By Lemma 3.2.8, this sequence has a con-

verging subsequence, and we call the limit point α1g1,1. Repeat this step d− 1 times for the sequences
gnk,1 in H1,Wk

(T), for k = 2, . . . , d, considering in each step a subsequence of the previous step, to obtain
converging subsequences, and call their limit points gk,1. At the end of this procedure, we obtain a
converging subsequence of

∏d
k=1 α

n
1 g

n
1,k, with limit point

∏d
k=1 α1g1,k ∈ L2(Td), which we will denote by

α1g1.
In the jth step, in which we want to obtain the limit point αjgj , we repeat the previous idea, with the

sequences αnj g
n
j,1 and gnj,k, with n ≤ j and k = 2, . . . , d. We note that it is always necessary to consider

a subsequence of all the previous steps.
This procedure provides limiting functions αjgj , for all j ∈ N. From now on, we use the notation vn

to mean the diagonal sequence obtained to ensure the convergence of the functions αnj g
n
j to αjgj . We

claim that the function

v =
∞∑
j=1

αjgj

is well-defined and belongs to L2(Td). To prove this claim, note that the set {gk}k∈N is orthonormal by
the continuity of the inner product. Suppose that there exists N ∈ N such that

N∑
j=1

(αj)2 > C2.

We have that the sequence of functions

vNn :=
N∑
j=1

αnj g
n
j

converges to

vN :=
N∑
j=1

αjgj .

Since ‖vNn ‖ ≤ C uniformly in n ∈ N, this yields a contradiction. Therefore v ∈ L2(Td) with the bound
‖v‖ ≤ C.

It remains to be proved that vn has a subsequence that converges to v. Choose N so large that
‖v − vN‖ < ε/3, ‖vNn − vN‖ < ε/3 and ‖vNn − vn‖ < ε/3, and use the triangle inequality to conclude the
proof.

3.2.5 The space H−1
W (Td)

Let H−1
W (Td) be the dual space to H1,W (Td), that is, H−1

W (Td) is the set of bounded linear functionals
on H1,W (Td). Our objective in this subsection is to characterize the elements of this space. This proof
is based on the characterization of the dual of the standard Sobolev space in Rd (see [2]).

We will write (·, ·) to denote the pairing between H−1
W (Td) and H1,W (Td).

Lemma 3.2.10. f ∈ H−1
W (Td) if and only if there exist functions f0 ∈ L2(Td), and fk ∈ L2

xk⊗Wk,0
(Td),

such that

f = f0 −
d∑
i=1

∂xifi, (3.2.10)

in the sense that for v ∈ H1,W (Td)

(f, v) =
∫

Td
f0vdx+

d∑
i=1

∫
Td
fi(∂Wiv)d(xi⊗Wi).
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Furthermore,

‖f‖H−1
W

= inf


(∫

Td

d∑
i=0

|fi|2dx

)1/2

; f satisfies (3.2.10)

 .

Proof. Let f ∈ H−1
W (Td). Applying the Riesz Representation Theorem, we deduce the existence of a

unique function u ∈ H1,W (Td) satisfying (f, v) = 〈u, v〉1,W , for all v ∈ H1,W (Td), that is∫
Td
uvdx+

d∑
j=1

∫
Td

(∂Wju)(∂Wjv)d(xj⊗Wj) = (f, v), for all v ∈ H1,W (Td). (3.2.11)

This establishes the first claim of the Lemma for f0 = u and fi = ∂Wiu, for i = 1, . . . , d.
Assume now that f ∈ H−1

W (Td),

(f, v) =
∫

Td
g0vdx+

d∑
i=1

∫
Td
gi(∂Wiv)d(xi⊗Wi), (3.2.12)

for g0, g1, . . . , gd ∈ L2
xj⊗Wj ,0

(Td). Setting v = u in (3.2.11), using (3.2.12), and applying the Cauchy-
Schwartz inequality twice, we deduce

‖u‖21,W ≤
∫

Td
g2

0dx+
d∑
i=1

∫
Td
∂Wi

g2
i d(xi⊗Wi). (3.2.13)

From (3.2.11) it follows that
|(f, v)| ≤ ‖u‖1,W

if ‖v‖1,W ≤ 1. Consequently
‖f‖H−1

W
≤ ‖u‖1,W .

Setting v = u/‖u‖1,W in (3.2.11), we deduce that, in fact,

‖f‖H−1
W

= ‖u‖1,W .

The result now follows from the above expression and equation (3.2.13).

3.3 W -Generalized elliptic equations

This subsection investigates the solvability of uniformly elliptic generalized partial differential equations
defined below. Energy methods within Sobolev spaces are, essentially, the techniques exploited.

Let A = (aii(x))d×d, x ∈ Td, be a diagonal matrix function such that there exists a constant θ > 0
satisfying

θ−1 ≤ aii(x) ≤ θ, (3.3.1)

for every x ∈ Td and i = 1, . . . , d. To keep notation simple, we write ai(x) to mean aii(x).
Our interest lies on the study of the problem

Tλu = f, (3.3.2)

where u : Td → R is the unknown function and f : Td → R is given. Here Tλ denotes the generalized
elliptic operator

Tλu := λu−∇A∇Wu := λu−
d∑
i=1

∂xi

(
ai(x)∂Wi

u
)
. (3.3.3)

The bilinear form B[·, ·] associated with the elliptic operator Tλ is given by

B[u, v] = λ〈u, v〉+
d∑
i=1

∫
ai(x)(∂Wiu)(∂Wiv) d(Wi ⊗ xi), (3.3.4)
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where u, v ∈ H1,W (Td).
Let f ∈ H−1

W (Td). A function u ∈ H1,W (Td) is said to be a weak solution of the equation Tλu = f if

B[u, v] = (f, v) for all v ∈ H1,W (Td).

Recall a classic result from linear functional analysis, which provides in certain circumstances the
existence and uniqueness of weak solutions of our problem, and whose proof can be found, for instance,
in [2]. Let H be a Hilbert space endowed with inner product < ·, ·> and norm ‖| · ‖|. Also, (·, ·) denotes
the pairing of H with its dual space.

Theorem 3.3.1 (Lax-Milgram Theorem). Assume that B : H×H → R is a bilinear mapping on Hilbert
space H, for which there exist constants α > 0 and β > 0 such that for all u, v ∈ H,

|B[u, v]| ≤ α‖|u‖| · ‖|v‖| and B[u, u] ≥ β‖|u‖|2.

Let f : H → R be a bounded linear functional on H. Then there exists a unique element u ∈ H such
that

B[u, v] = (f, v),

for all v ∈ H.

Return now to the specific bilinear form B[·, ·] defined in (3.3.4). Our goal now is to verify the
hypothesis of Lax-Milgram Theorem for our setup. We consider the cases λ = 0 and λ > 0 separately.
We begin by analyzing the case in which λ = 0.

Let H⊥1,W (Td) be the set of functions in H1,W (Td) which are orthogonal to the constant functions:

H⊥1,W (Td) = {f ∈ H1,W (Td);
∫

Td
f dx = 0}.

The space H⊥1,W (Td) is the natural environment to treat elliptic operators with Neumann condition.

Proposition 3.3.2 (Energy estimates for λ = 0). Let B be the bilinear form on H1,W (Td) defined in
(3.3.4) with λ = 0. There exist constants α > 0 and β > 0 such that for all u, v ∈ H1,W (Td),

|B[u, v]| ≤ α‖u‖1,W ‖v‖1,W

and for all u ∈ H⊥1,W
B[u, u] ≥ β‖u‖21,W .

Proof. By (3.3.1), the computation of the upper bound α easily follows. For the lower bound β, we have
for u ∈ H⊥1,W (Td),

‖u‖21,W =
∫

Td
u2 dx+

d∑
i=1

∫
Td

(
∂Wiu

)2

d(xi ⊗Wi).

Using Poincaré’s inequality and (3.3.1), we obtain a constant C > 0 such that the previous expression is
bounded above by

C

∫
Td

(
∂Wi

u
)2

d(xi ⊗Wi) ≤ CB[u, u].

The lemma follows from the previous estimates.

Corollary 3.3.3. Let f ∈ L2(Td). There exists a weak solution u ∈ H1,W (Td) for the equation

∇A∇Wu = f (3.3.5)

if and only if ∫
Td
fdx = 0.

In this case, we have uniquenesses of the weak solutions if we disregard addition by constant functions.
Also, let u be the unique weak solution of (3.3.5) in H⊥1,W (Td). Then

‖u‖1,W ≤ C‖f‖L2(Td),

for some constant C independent of f .
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Proof. Suppose that there exists a weak solution u ∈ H1,W (Td) of (3.3.5). Since the function v ≡ 1 ∈
H1,W (Td), we have by definition of weak solution that∫

Td
fdx = B[u, v] = 0.

Now, let f ∈ L2(Td) with
∫

Td fdx = 0. Consider the bilinear form B, defined in (3.3.4) with λ = 0,
on the Hilbert space H⊥1,W (Td). By Proposition 3.3.2, B satisfies the hypothesis of the Lax-Milgram’s
Theorem. Further, f defines the bounded linear functional in H⊥1,W (Td) given by (f, g) = 〈f, g〉 for
every g ∈ H⊥1,W (Td). Then, an application of Lax-Milgram’s Theorem yields that there exists a unique
u ∈ H⊥1,W (Td) such that

B[u, v] = 〈f, v〉 for all v ∈ H⊥1,W (Td).
Moreover, by Proposition 3.3.2, there is a β > 0 such that

β‖u‖21,W ≤ B[u, u] = 〈f, u〉 ≤ ‖f‖L2(Td)‖u‖L2(Td) ≤ ‖f‖L2(Td)‖u‖1,W .

The existence of weak solutions and the bound C in the statement of the Corollary follows from the
previous expression.

We now analyze the case in which λ > 0.

Proposition 3.3.4 (Energy estimates for λ > 0). Let f ∈ L2(Td). There exists a unique weak solution
u ∈ H1,W (Td) for the equation

λu−∇A∇Wu = f, λ > 0. (3.3.6)

This solution enjoys the following bounds

‖u‖1,W ≤ C‖f‖L2(Td)

for some constant C > 0 independent of f , and

‖u‖ ≤ λ−1‖f‖L2(Td).

Proof. Let β = min{λ, θ−1} > 0 and α = max{λ, θ} < ∞, where θ is given in (3.3.1). An elementary
computation shows that

B[u, v]| ≤ α‖u‖1,W ‖v‖1,W and B[u, u] ≥ β‖u‖21,W .

By Lax-Milgram’s Theorem, there exists a unique solution u ∈ H1,W (Td) of (3.3.6). Note that

β‖u‖21,W ≤ B[u, u] = 〈f, u〉 ≤ ‖f‖L2(Td)‖u‖L2(Td) ≤ ‖f‖L2(Td)‖u‖1,W ,

and therefore ‖u‖1,W ≤ C‖f‖L2(Td) for some constant C > 0 independent of f . The computation to
obtain the other bound is analogous.

Remark 3.3.5. Let LAW : DW → L2(Td) be given by LAW = ∇A∇W . This operator has the properties
stated in Theorem 2.1 in [16]. We now outline the main steps to prove it. Following [16], we may prove
an analogous of Lemma 3.2.2 for the operator LAW . Using the bounds on the diagonal matrix A and
Proposition 3.2.9 (Rellich-Kondrachov), we conclude that the energetic extension of the space induced by
this operator has compact embedding in L2(Td). The previous results together with [17, Theorems 5.5.a
and 5.5.c] implies that LAW has a self-adjoint extension LAW , which is dissipative and non-positive, and
its eigenvectors form a complete orthonormal set in L2(Td). Furthermore, the set of eigenvalues of this
extension is countable and its elements can be ordered resulting in a non-increasing sequence that tends
to −∞.

Remark 3.3.6. Let LAW be the self-adjoint extension given in Remark 3.3.5, and DAW its domain. For
λ > 0 the operator λI− LAW : DW → L2(Td) is bijective. Therefore, the equation

λu−∇A∇Wu = f,

has strong solution in DW if and only if f ∈ (λI − LAW )(DW ), where I is the identity operator and
(λI−LAW )(DW ) stands for the range of DW under the operator λI−LAW . Moreover, this strong solution
coincides with the weak solution obtained in Proposition 3.3.4.
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3.4 W -Generalized parabolic equations

In this Section, we study a class of W -generalized PDEs that involves time: the parabolic equations. The
parabolic equations are often used to describe in physical applications the time-evolution of the density
of some quantity, say a chemical concentration within a region. The motivation of this generalization
is to enlarge the possibility of such applications, for instance, these equations may be used to model a
diffusion of particles within a region with membranes (see [6, 17]).

We begin by introducing the class of W -generalized parabolic equations we are interested. Then,
we define what is meant by weak solution of such equations, using the W -Sobolev spaces, and prove
uniquenesses of these weak solutions. In Section 3.7, we obtain existence of weak solutions of these
equations.

Fix T > 0 and let (B, ‖ · ‖B) be a Banach space. We denote by L2([0, T ], B) the Banach space of
measurable functions U : [0, T ]→ B for which

‖U‖2L2([0,T ],B) :=
∫ T

0

‖Ut‖2Bdt <∞.

Let A = A(t, x) be a diagonal matrix satisfying the ellipticity condition (3.3.1) for all t ∈ [0, T ],
Φ : [l, r]→ R be a continuously differentiable function such that

B−1 < Φ′(x) < B,

for all x, where B > 0, l, r ∈ R are constants. We will consider the equation{
∂tu = ∇A∇WΦ(u) in (0, T ]× Td,

u = γ in {0} × Td. (3.4.1)

where u : [0, T ]× T d → R is the unknown function and γ : Td → R is given.

We say that a function ρ = ρ(t, x) is a weak solution of the problem (3.4.1) if:

• For every H ∈ DW the following integral identity holds∫
Td
ρ(t, x)H(x)dx−

∫
Td
γ(x)H(x)dx =

∫ t

0

∫
Td

Φ(ρ(s, x))∇A∇WH(x)dx ds

• Φ(ρ(·, ·)) and ρ(·, ·) belong to L2([0, T ], H1,W (Td)):∫ T

0

‖Φ(ρ(s, x))‖2L2(Td) + ‖∇WΦ(ρ(s, x))‖2L2
W (Td)ds <∞,

and ∫ T

0

‖ρ(s, x)‖2L2(Td) + ‖∇W ρ(s, x)‖2L2
W (Td)ds <∞.

Consider the energy in jth direction of a function u(s, x) as

Qj(u) = sup
H∈DW

{
2
∫ T

0

∫
Td

(∂xj∂WjH)(s, x)u(s, x)dx ds

−
∫ T

0

ds

∫
Td

[∂Wj
H(s, x)]2d(xj⊗Wj)

}
,

and the total energy of a function u(s, x) as

Q(u) =
d∑
j=1

Qj(u).

The notion of energy is important in probability theory and is often used in large deviations of Markov
processes. We also use this notion to prove the hydrodynamic limit in Section 3.7. The following lemma
shows the connection between the functions of finite energy and functions in the Sobolev space.
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Lemma 3.4.1. A function u ∈ L2([0, T ], L2(Td)) has finite energy if and only if u belongs to L2([0, T ], H1,W (Td)).
In the case the energy is finite, we have

Q(u) =
∫ T

0

‖∇Wu‖2L2
W (Td)dt.

Proof. Consider functions U ∈ L2([0, T ], L2
xj⊗Wj ,0

(Td)) as trajectories in L2
xj⊗Wj ,0

(Td), that is, consider
a trajectory U : [0, T ]→ L2

xj⊗Wj ,0
(Td) and define U(s, x) as U(s, x) := [U(s)](x).

Let u ∈ L2([0, T ], L2(Td)) and recall that the set {∂Wj
H;H ∈ DW } is dense in L2

xj⊗Wj ,0
(Td). Then

the set {∂WjH(s, x);H ∈ L2([0, T ],DW )} is dense in L2([0, T ], L2
xj⊗Wj ,0

(Td)). Suppose that u has finite
energy, and let H ∈ L2([0, T ],DW ), then

Fj(∂Wj
H) =

∫ T

0

∫
Td

(∂xj∂Wj
H)(s, x)u(s, x)dx ds

is a bounded linear functional in L2([0, T ], L2
xj⊗Wj ,0

(Td)). Consequently, by Riesz’s representation theo-
rem, there exists a function Gj ∈ L2([0, T ], L2

xj⊗Wj ,0
(Td)) such that

Fj(∂Wj
H) =

∫ T

0

∫
Td

(∂Wj
H)(x)Gj(s, x)dx ds,

for all H ∈ L2([0, T ],DW ).
From the uniqueness of the generalized weak derivative, we have that Gj(s, x) = −∂Wju(s, x).
Now, suppose u belongs to L2([0, T ], H1,W (Td)) and let H ∈ L2([0, T ],DW ). Then, we have

2
∫ T

0

∫
Td

(∂xj∂WjH)(s, x)u(s, x)dx ds−
∫ T

0

ds

∫
Td

(
∂WjH(s, x)

)2
d(xj⊗Wj) =

−2
∫ T

0

∫
Td
∂WjH(s, x)∂Wju(s, x)d(xj⊗Wj)−

∫ T

0

∫
Td

(
∂WjH(s, x)

)2
d(xj⊗Wj)

We can rewrite the right-hand side of the above expression as

−2〈∂Wj
H, 2∂Wj

u+ ∂Wj
H〉xj⊗Wj

. (3.4.2)

A simple calculation shows that, for a Hilbert space H with inner product < ·, ·>, the following
inequality holds:

− <v, u+ v> ≤ 1
4
<u, u>,

for all u, v ∈ H, and we have equality only when v = −1/2u.
Therefore, by the previous estimates and (3.4.2)

2
∫ T

0

∫
Td

(∂xj∂Wj
H)(s, x)u(s, x)dx ds−

∫ T

0

ds

∫
Td

(
∂Wj

H(s, x)
)2
d(xj⊗Wj) ≤∫ T

0

∫
Td

(
∂Wj

u(s, x)
)2
d(xj⊗Wj).

By the definition of energy, we have for each j = 1, . . . , d,

Qj(u) ≤
∫ T

0

∫
Td

(
∂Wju(s, x)

)2
d(xj⊗Wj).

Hence, the total energy is finite. Using the fact that L2([0, T ],DW ) is dense in L2([0, T ], H1,W (Td)), we
have that

Q(u) =
∑
j=1

∫ T

0

‖∂Wju‖2xj⊗Wj
dt

=
∫ T

0

‖∇Wu‖2L2
W (Td)dt.
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3.4.1 Uniqueness of weak solutions of the parabolic equation

Recall that we denote by 〈·, ·〉 the inner product of the Hilbert space L2(Td). Fix H,G ∈ L2(Td), λ > 0,
and denote by Hλ and Gλ in H1,W (Td) the unique weak solutions of the elliptic equations

λHλ −∇A∇WHλ = H,

and
λGλ −∇A∇WGλ = G,

respectively. Then, we have the following symmetry property

〈Gλ, H〉 = 〈G,Hλ〉.

In fact, both terms in the previous equality are equal to

λ

∫
Td
HλGλ +

d∑
j=1

ajj

∫
Td

(∂Wj
Hλ)(∂Wj

Gλ)d(xj⊗Wj).

Let ρ : R+ × T → [l, r] be a weak solution of the parabolic equation (3.4.1). Since ρ, Φ(ρ) ∈
L2([0, T ], H1,W (Td)), and the set DW is dense in H1,W (Td), we have for every H in H1,W (Td),

〈ρt, H〉 − 〈γ,H〉 = −
d∑
j=1

ajj

∫ t

0

〈∂WjΦ(ρs), ∂WjH〉xj⊗Wj
ds (3.4.3)

for all t > 0.
Denote by ρλs ∈ H1,W (Td) the unique weak solution of the elliptic equation

λρλs −∇A∇W ρλs = ρ(s, ·). (3.4.4)

We claim that

〈ρt , ρλt 〉 − 〈ρ0 , ρ
λ
0 〉 = −2

d∑
j=1

ajj

∫ t

0

〈∂WjΦ(ρs) , ∂Wjρ
λ
s 〉xj⊗Wj

ds (3.4.5)

for all t > 0.
To prove this claim, fix t > 0 and consider a partition 0 = t0 < t1 < · · · < tn = t of the interval [0, t].

Using the telescopic sum, we obtain

〈ρt , ρλt 〉 − 〈ρ0 , ρ
λ
0 〉 =

n−1∑
k=0

〈ρtk+1 , ρ
λ
tk+1
〉 − 〈ρtk+1 , ρ

λ
tk
〉

+
n−1∑
k=0

〈ρtk+1 , ρ
λ
tk
〉 − 〈ρtk , ρλtk〉 .

We handle the first term, the second one being similar. From the symmetric property of the weak
solutions, ρλtk+1

belongs to H1,W (Td) and since ρ is a weak solution of (3.4.1),

〈ρtk+1 , ρ
λ
tk+1
〉 − 〈ρtk+1 , ρ

λ
tk
〉 = −

d∑
j=1

ajj

∫ tk+1

tk

〈∂WjΦ(ρs) , ∂Wjρ
λ
tk+1
〉 ds .

Add and subtract 〈∂WjΦ(ρs) , ∂Wjρ
λ
s 〉 inside the integral on the right hand side of the above expression.

The time integral of this term is exactly the expression announced in (3.4.5) and the remainder is given
by

d∑
j=1

ajj

∫ tk+1

tk

{
〈∂Wj

Φ(ρs) , ∂Wj
ρλs 〉 − 〈∂Wj

Φ(ρs) , ∂Wj
ρλtk+1

〉
}
ds .
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Since ρλs is the unique weak solution of the elliptic equation (3.4.4), and the weak solution has the
symmetric property, we may rewrite the previous difference as{

〈Φ(ρs) , ρtk+1〉 − 〈Φ(ρs) , ρs〉
}
− λ

{
〈Φ(ρs)λ , ρtk+1〉 − 〈Φ(ρs)λ , ρs〉

}
.

The time integral between tk and tk+1 of the second term is equal to

−λ
∫ tk+1

tk

ds

∫ tk+1

s

〈∂WjΦ(ρs)λ , ∂WjΦ(ρr)〉 dr

because ρ is a weak solution of (3.4.1) and Φ(ρs) belongs to H1,W (Td). It follows from the boundedness
of the weak solution given in Proposition 3.3.4 and from the boundedness of the L2

xj⊗Wj
(Td) norm of

∂Wj
Φ(ρ) obtained in expression (3.4.3), that this expression is of order (tk+1 − tk)2.
To conclude the proof of claim (3.4.5) it remains to be shown that

n−1∑
k=0

∫ tk+1

tk

{
〈Φ(ρs) , ρtk+1〉 − 〈Φ(ρs) , ρs〉

}
ds

vanishes as the mesh of the partition tends to 0. Using, again, the fact that ρ is a weak solution, we may
rewrite the sum as

−
n−1∑
k=0

∫ tk+1

tk

ds

∫ tk+1

s

〈∂Wj
Φ(ρs) , ∂Wj

Φ(ρr)〉 dr .

We have that this expression vanishes as the mesh of the partition tends to 0 from the boundedness
of the L2

xj⊗Wj
(Td) norm of ∂WjΦ(ρ). This proves (3.4.5).

Recall the definition of the constant B given at the beginning of this Section.

Lemma 3.4.2. Fix λ > 0, two density profiles γ1, γ2 : T→ [l, r] and denote by ρ1, ρ2 weak solutions of
(3.4.1) with initial value γ1, γ2, respectively. Then,〈

ρ1
t − ρ2

t , ρ
1,λ
t − ρ2,λ

t

〉
≤
〈
γ1 − γ2 , γ1,λ − γ2,λ

〉
eBλt/2

for all t > 0. In particular, there exists at most one weak solution of (3.4.1).

Proof. We begin by showing that if there exists λ > 0 such that

〈H,Hλ〉 = 0,

then H = 0. In fact, we would have the following∫
Td
λ(Hλ)2dx+

d∑
j=1

ajj

∫
Td

(
∂Wj

Hλ
)2
d(xj⊗Wj) =

∫
Td
HHλdx = 0,

which implies that ‖Hλ‖H1,W (Td) = 0, and hence Hλ = 0, which yields H = 0.
Fix two density profiles γ1, γ2 : Td → [l, r]. Let ρ1, ρ2 be two weak solutions with initial values γ1,

γ2, respectively. By (3.4.5), for any λ > 0,〈
ρ1
t − ρ2

t , ρ
1,λ
t − ρ2,λ

t

〉
−
〈
γ1 − γ2 , γ1,λ − γ2,λ

〉
=

−2
∫ t

0
〈Φ(ρ1

s)− Φ(ρ2
s) , ρ

1
s − ρ2

s〉 ds + 2λ
∫ t

0

〈
Φ(ρ1

s)− Φ(ρ2
s) , ρ

1,λ
s − ρ2,λ

s

〉
ds .

(3.4.6)

Define the inner product in H1,W (Td)

〈u, v〉λ = 〈u, vλ〉.

This is, in fact, an inner product, since 〈u, v〉λ = 〈v, u〉λ by the symmetric property, and if u 6= 0, then
〈u, u〉λ > 0: ∫

Td
uuλdx = λ

∫
Td
u2
λdx+

d∑
j=1

ajj

∫
Td

(
∂Wj

uλ
)2
d(xj⊗Wj).
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The linearity of this inner product can be easily verified.
Then, we have

2λ
∫ t

0

〈
Φ(ρ1

s)− Φ(ρ2
s) , ρ

1,λ
s − ρ2,λ

s

〉
ds = 2λ

∫ t

0

〈
Φ(ρ1

s)− Φ(ρ2
s) , ρ

1
s − ρ2

s

〉
λ
ds.

By using the Cauchy-Schwartz inequality twice, the term on the right hand side of the above formula
is bounded above by

1
A

∫ t

0

〈
Φ(ρ1

s)− Φ(ρ2
s) , Φ(ρ1

s)
λ − Φ(ρ2

s)
λ
〉
ds + Aλ2

∫ t

0

〈
ρ1
s − ρ2

s , ρ
1,λ
s − ρ2,λ

s

〉
ds

for every A > 0. From Proposition 3.3.4, we have that ‖uλ‖ ≤ λ−1‖u‖, and since Φ′ is bounded by B,
the first term of the previous expression is less than or equal to

B

Aλ

∫ t

0

〈
ρ1
s − ρ2

s , Φ(ρ1
s)− Φ(ρ2

s)
〉
ds .

Choosing A = B/2λ, this expression cancels with the first term on the right hand side of (3.4.6). In
particular, the left hand side of this formula is bounded by

Bλ

2

∫ t

0

〈
ρ1
s − ρ2

s , ρ
1,λ
s − ρ2,λ

s

〉
ds .

To conclude, recall Gronwall’s inequality.

Remark 3.4.3. Let LAW : DW → L2(Td) be the self-adjoint extension given in Remark 3.3.5. For λ > 0,
define the resolvent operator GAλ = (λI − LAW )−1. Following [6, 17], another possible definition of weak
solution of equation (3.4.1) is given as follows: a bounded function ρ : [0, T ]× Td → [l, r] is said to be a
weak solution of the parabolic differential equation (3.4.1) if

〈ρt, GAλ h〉 − 〈γ,GAλ h〉 =
∫ t

0

〈Φ(ρs),LAWGAλ h〉 ds (3.4.7)

for every continuous function h : Td → R, t ∈ [0, T ], and all λ > 0. We claim that this definition of weak
solution coincides with our definition introduced at the beginning of Section 3.4. Indeed, for continuous
h : Td → R, GAλ h belongs to DW . Since DW is dense in DW with respect to the H1,W (Td)-norm, it follows
that our definition implies the current definition. Conversely, since the set of continuous functions is
dense in L2(Td), the identity (3.4.7) is valid for all h ∈ L2(Td). Therefore, for each H ∈ DW we have

〈ρt, H〉 − 〈γ,H〉 =
∫ t

0

〈Φ(ρs),LAWH〉 ds.

In particular, the above identity holds for every H ∈ DW , and therefore the integral identity in our
definition of weak solutions holds.

It remains to be checked that the weak solution of the current definition belongs to L2([0, T ], H1,W (Td)).
This follows from the fact that there exists at most one weak solution satisfying (3.4.7), that this unique
solution has finite energy, and from Lemma 3.4.1. A proof of the fact that there exists at most one
solution satisfying (3.4.7), and that this unique solution has finite energy, can be found in [6, 17].

Finally, the integral identity of our definition of weak solution has an advantage regarding the integral
identity (3.4.7), due to the fact that we do not need the resolvent operator GAλ for any λ. Moreover, we
have an explicit characterization of our test functions.

3.5 W -Generalized Sobolev spaces: Discrete version

We will now establish some of the results obtained in the above sections to the discrete version of the
W -Sobolev space. Our motivation to obtain these results is that they will be useful when studying
homogenization in Section 3.6. We begin by introducing some definitions and notations.
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Fix W as in (3.2.1) and functions f, g defined on N−1TdN . Consider the following difference operators:
∂Nxj , which is the standard difference operator,

∂Nxjf
( x
N

)
= N

[
f

(
x+ ej
N

)
− f

( x
N

)]
,

and ∂NWj
, which is the Wj-difference operator:

∂NWj
f
( x
N

)
=

f
(
x+ej
N

)
− f

(
x
N

)
W
(
x+ej
N

)
−W

(
x
N

) ,
for x ∈ TdN . We introduce the following scalar product

〈f, g〉N :=
1
Nd

∑
x∈TdN

f(x)g(x),

〈f, g〉Wj ,N :=
1

Nd−1

∑
x∈TdN

f(x)g(x)
(
W ((x+ ej)/N)−W (x/N)

)
,

〈f, g〉1,W,N := 〈f, g〉N +
d∑
j=1

〈∂NWj
f, ∂NWj

g〉Wj ,N ,

and its induced norms

‖f‖2L2(TdN ) = 〈f, f〉N , ‖f‖2L2
Wj

(TdN ) = 〈f, f〉Wj ,N and ‖f‖2H1,W (TdN ) = 〈f, f〉1,W,N .

These norms are natural discretizations of the norms introduced in the previous sections. Note
that the properties of the Lebesgue’s measure used in the proof of Corollary 3.2.7, also holds for the
normalized counting measure. Therefore, we may use the same arguments of this Corollary to prove its
discrete version.

Lemma 3.5.1 (Discrete Poincaré Inequality). There exists a finite constant C such that∥∥∥∥∥∥f − 1
Nd

∑
x∈Td

f

∥∥∥∥∥∥
L2(TdN )

≤ C‖∇NW f‖L2
W (TdN ),

where

‖∇W f‖2L2
W (TdN ) =

d∑
j=1

‖∂NWj
f‖2L2

Wj
(TdN ),

for all f : N−1TdN → R.

Let A be a diagonal matrix satisfying (3.3.1). We are interested in studying the problem

TNλ u = f, (3.5.1)

where u : N−1TdN → R is the unknown function, f : N−1TdN → R is given, and TNλ denotes the discrete
generalized elliptic operator

TNλ u := λu−∇NA∇NWu, (3.5.2)

with

∇NA∇NWu :=
d∑
i=1

∂Nxi

(
ai(x/N)∂NWi

u
)
.

The bilinear form BN [·, ·] associated with the elliptic operator TNλ is given by

BN [u, v] = λ〈u, v〉N +

+ 1
Nd−1

∑d
i=1

∑
x∈TdN

ai(x/N)(∂NWi
u)(∂NWi

v)[Wi((xi + 1)/N)−Wi(xi/N)],
(3.5.3)
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where u, v : N−1TdN → R.
A function u : N−1TdN → R is said to be a weak solution of the equation TNλ u = f if

BN [u, v] = 〈f, v〉N for all v : N−1TdN → R.

We say that a function f : N−1TdN → R belongs to the discrete space of functions orthogonal to the
constant functions H⊥N (TdN ) if

1
Nd

∑
x∈TdN

f(x/N) = 0.

The following results are analogous to the weak solutions of generalized elliptic equations for this
discrete version. We remark that the proofs of these lemmas are identical to the ones in the continuous
case. Furthermore, the weak solution for the case λ = 0 is unique in H⊥N (TdN ).

Lemma 3.5.2. The equation
∇NA∇NWu = f,

has weak solution u : N−1TdN → R if and only if

1
Nd

∑
x∈TdN

f(x) = 0.

In this case we have uniqueness of the solution disregarding addition by constants. Moreover, if u ∈
H⊥N (TdN ) we have the bound

‖u‖H1,W (TdN ) ≤ C‖f‖L2(TdN ), and ‖u‖L2(TdN ) ≤ λ−1‖f‖L2(TdN ),

where C > 0 does not depend on f nor N .

Lemma 3.5.3. Let λ > 0. There exists a unique weak solution u : N−1TdN → R of the equation

λu−∇NA∇NWu = f. (3.5.4)

Moreover,
‖u‖H1,W (TdN ) ≤ C‖f‖L2(TdN ), and ‖u‖L2(TdN ) ≤ λ−1‖f‖L2(TdN ),

where C > 0 does not depend neither on f nor N .

Remark 3.5.4. Note that in the set of functions in TdN we have a “Dirac measure” concentrated in a
point x as a function: the function that takes value Nd in x and zero elsewhere. Therefore, we may
integrate these weak solutions with respect to this function to obtain that every weak solution is, in fact,
a strong solution.

3.5.1 Connections between the discrete and continuous Sobolev spaces

Given a function f ∈ H1,W (Td), we can define its restriction fN to the lattice N−1TdN as

fN (x) = f(x) if x ∈ N−1TdN .

However, given a function f : N−1TdN → R it is not straightforward how to define an extension
belonging to H1,W (Td). To do so, we need the definition of W -interpolation, which we give below.

Let fN : N−1TN → R and W : R→ R, a strictly increasing right continuous function with left limits
(càdlàg), and periodic. The W -interpolation f∗N of fN is given by:

f∗N (x+ t) :=
W ((x+ 1)/N)−W ((x+ t)/N)
W ((x+ 1)/N)−W (x/N)

f(x) +

+
W ((x+ t)/N)−W (x/N)
W ((x+ 1)/N)−W (x/N)

f(x+ 1)
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for 0 ≤ t < 1. Note that

∂f∗N
∂W

(x+ t) =
f(x+ 1)− f(x)

W ((x+ 1)/N)−W (x/N)
= ∂NW f(x).

Using the standard construction of d-dimensional linear interpolation, it is possible to define the
W -interpolation of a function fN : TdN → R, with W (x) =

∑d
i=1Wi(xi) as defined in (3.2.1).

We now establish the connection between the discrete and continuous Sobolev spaces by showing how
a sequence of functions defined in TdN can converge to a function in H1,W (Td).

We say that a family fN ∈ L2(TdN ) converges strongly (resp. weakly) to the function f ∈ L2(Td) as
N →∞ if f∗N converges strongly (resp. weakly) to the function f . From now on we will omit the symbol
“ ∗ ” in the W -interpolated function, and denoting them simply by fN .

The convergence in H−1
W (Td) can be defined in terms of duality. Namely, we say that a functional fN

on TdN converges to f ∈ H−1
W (Td) strongly (resp. weakly) if for any sequence of functions uN : TdN → R

and u ∈ H1,W (Td) such that uN → u weakly (resp. strongly) in H1,W (Td), we have

(fN , uN )N −→ (f, u), as N →∞.

Remark 3.5.5. Suppose in Lemma 3.5.3 that f ∈ L2(Td), and let u be a weak solution of the problem
(3.5.4), then we have the following bound

‖u‖H1,W (TdN ) ≤ C‖f‖L2(Td),

since ‖f‖L2(TdN ) → ‖f‖L2(Td) as N →∞.

3.6 Homogenization

In this “brief” Section we prove a homogenization result for the W -generalized differential operator. We
follow the approach considered in [14]. The study of homogenization is motivated by several applications
in mechanics, physics, chemistry and engineering. The focus of our approach is to study the asymptotic
behavior of effective coefficients for a family of random difference schemes whose coefficients can be
obtained by the discretization of random high-contrast lattice structures.

This Section is structured as follows: in subsection 6.1 we define the concept of H-convergence
together with some properties; subsection 6.2 deals with a description of the random environment along
with some definitions, whereas the main result is proved in subsection 6.3.

3.6.1 H-convergence

We say that the diagonal matrix AN = (aNjj) H-converges to the diagonal matrix A = (ajj), denoted by

AN
H−→ A, if, for every sequence fN ∈ H−1

W (TdN ) such that fN → f as N →∞ in H−1
W (Td), we have

• uN → u0 weakly in H1,W (Td) as N →∞,

• aNjj∂NWj
uN → ajj∂Wju0 weakly in L2

xj⊗Wj
(Td) for each j = 1, . . . , d,

where uN : TdN → R is the solution of the problem

λuN −∇NAN∇NWuN = fN ,

and u0 ∈ H1,W (Td) is the solution of the problem

λu0 −∇A∇Wu0 = f.

The notion of convergence used in both items above was defined in subsection 3.5.1.
We now obtain a property regarding H-convergence.
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Proposition 3.6.1. Let AN H−→ A, as N →∞, with uN being the solution of

λuN −∇NAN∇NWuN = f,

where f ∈ H−1
W (Td) is fixed. Then, the following limit relations hold true:

1
Nd

∑
x∈TdN

u2
N (x)→

∫
Td
u2

0(x)dx,

and

1
Nd−1

d∑
j=1

∑
x∈TdN

aNjj(x)(∂NWj
uN (x))2 [Wj((xj + 1)/N)−Wj(xj/N)]

→
d∑
j=1

∫
Td
ajj(x)(∂Wj

u0(x))2d(xj⊗Wj),

as N →∞.

Proof. We begin by noting that
1
Nd

∑
x∈TdN

f(uN − u0)→ 0, (3.6.1)

as N →∞ since uN − u0 converges weakly to 0 in H1,W (Td). On the other hand, we have

1
Nd

∑
x∈TdN

f(uN − u0) =
1
Nd

∑
x∈TdN

(λuN −∇NAN∇NWuN )(uN − u0)

=
λ

Nd

∑
x∈TdN

u2
N −

1
Nd

∑
x∈TdN

uN∇NAN∇NWuN

− λ

Nd

∑
x∈TdN

uNu0 +
1
Nd

∑
x∈TdN

u0∇NAN∇NWuN .

Using the weak convergences of uN and ajj∂
N
Wj
uN , and the convergence in (3.6.1), we obtain, after a

summation by parts in the above expressions,

λ

Nd

∑
x∈TdN

u2
N +

1
Nd−1

d∑
j=1

∑
x∈TdN

aNjj(∂
N
Wj
uN )2[Wj((xj + 1)/N)−Wj(xj)]

N→∞−→ λ

∫
Td
u2

0dx+
d∑
j=1

∫
Td
ajj(∂Wju0)2d(xj⊗Wj). (3.6.2)

By Lemma 3.5.3, the sequence uN is ‖ · ‖1,W bounded uniformly. Suppose, now, that uN does not
converge to u0 in L2(Td). That is, there exist ε > 0 and a subsequence (uNk) such that

‖uNk − u0‖L2(Td) > ε,

for all k. By Rellich-Kondrachov Theorem (Proposition 3.2.9), we have that there exists v ∈ L2(Td) and
a further subsequence (also denoted by uNk) such that

uNk
k→∞−→ v, in L2(Td).

This implies that
uNk → v, weakly in L2(Td),

but this is a contradiction, since

uNk → u0, weakly in L2(Td),

and ‖v−u0‖L2(Td) ≥ ε. Therefore, uN → u0 in L2(Td). The proof thus follows from expression (3.6.2).

This Proposition shows that even though the H-convergence only requires weak convergence in its
definition, it yields a convergence in the strong sense (convergence in the L2-norm).

86



3.6.2 Random environment

In this subsection we introduce the statistically homogeneous rapidly oscillating coefficients that will be
used to define the random W -generalized difference elliptic operators, where the W -generalized difference
elliptic operator was given in Section 3.5.

Let (Ω,F , µ) be a standard probability space and {Tx : Ω→ Ω;x ∈ Zd} be a group of F-measurable
and ergodic transformations which preserve the measure µ:

• Tx : Ω→ Ω is F-measurable for all x ∈ Zd,

• µ(TxA) = µ(A), for any A ∈ F and x ∈ Zd,

• T0 = I , Tx ◦ Ty = Tx+y,

• For any f ∈ L1(Ω) such that f(Txω) = f(ω) µ-a.s for each x ∈ Zd, is equal to a constant µ-a.s.

The last condition implies that the group Tx is ergodic.
Let us now introduce the vector-valued F-measurable functions {aj(ω); j = 1, . . . , d} such that there

exists θ > 0 with
θ−1 ≤ aj(w) ≤ θ,

for all ω ∈ Ω and j = 1, . . . , d. Then, define the diagonal matrices AN whose elements are given by

aNjj(x) := aNj = aj(TNxω) , x ∈ T dN , j = 1, . . . , d. (3.6.3)

3.6.3 Homogenization of random operators

Let λ > 0, fN be a functional on the space of functions hN : TdN → R, f ∈ H−1
W (Td) (see also, subsection

3.2.5), uN be the unique weak solution of

λuN −∇NAN∇NWuN = fN ,

and u0 be the unique weak solution of

λu0 −∇A∇Wu0 = f. (3.6.4)

For more details on existence and uniqueness of such solutions see Sections 3.3 and 3.5.
We say that the diagonal matrix A is a homogenization of the sequence of random matrices AN if

the following conditions hold:

• For each sequence fN → f in H−1
W (Td), uN converges weakly in H1,W to u0, when N →∞;

• aNi ∂NWi
uN → ai∂Wi

u, weakly in L2
xi⊗Wi

(Td) when N →∞.

Note that homogenization is a particular case of H-convergence.
We will now state and prove the main result of this Section.

Theorem 3.6.2. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (ω) admits a homogenization, where the homogenized
matrix A does not depend on the realization ω.

Proof. Fix f ∈ H−1(Td), and consider the problem

λuN −∇NAN∇NWuN = f.

Using Lemma 3.5.3 and Remark 3.5.5, there exists a unique weak solution uN of the problem above,
such that its HN

1,W norm is uniformly bounded in N . That is, there exists a constant C > 0 such that

‖uN‖H1,W (TdN ) ≤ C‖f‖L2(Td).

Thus, the L2(TdN )-norm of aNi ∂
N
Wi
uN is uniformly bounded.
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From W -interpolation (see subsection 3.5.1) and the fact that H1,W (Td) is a Hilbert space (Lemma
3.2.4), there exists a convergent subsequence of uN (which we will also denote by uN ) such that

uN → u0, weakly in H1,W (Td),

and
aNi ∂

N
Wi
uN → v0 weakly in L2(Td), (3.6.5)

as N →∞; v0 being some function in L2
xi⊗Wi

(Td).
First, observe that the weak convergence in H1,W (Td) implies that

∂NWi
uN

N→∞−→ ∂Wi
u weakly in L2

xi⊗Wi
(Td). (3.6.6)

From Birkhoff’s ergodic theorem, we obtain the almost sure convergence, as N tends to infinity, of the
random coefficients:

aNi −→ ai, (3.6.7)

where ai = E[aN0
i ], for any N0 ∈ N.

From convergences in (3.6.5), (3.6.6) and (3.6.7), we obtain that

v0 = ai∂Wi
u0,

where, from the weak convergences, u0 clearly solves problem (3.6.4).
To conclude the proof it remains to be shown that we can pass from the subsequence to the sequence.

This follows from uniquenesses of weak solutions of the problem (3.6.4).

Remark 3.6.3. At first sight, one may think that we are dealing with a very special class of matrices A
(diagonal matrices). Nevertheless, the random environment for random walks proposed in [14, Section
2.3], which is also exactly the same random environment employed in [7], results in diagonal matrices.
This is essentially due to the fact that in symmetric nearest-neighbor interacting particle systems (for
example, the zero-range dynamics considered in [7]), a particle at a site x ∈ TdN may jump to the sites
x ± ej, j = 1, . . . , d. In such a case, the jump rate from x to x + ej determines the jth element of the
diagonal matrix.

Remark 3.6.4. Note that if u ∈ DW is a strong solution (or weak, in view of Remark 3.5.4) of

λu−∇A∇Wu = f

and uN is strong solution of the discrete problem

λuN −∇NAN∇NWuN = f

then, the homogenization theorem also holds, that is, uN also converges weakly in H1,W to u.

3.7 Hydrodynamic limit of gradient processes with conductances
in random environment

Lastly, as an application of all the theory developed in the previous sections, we prove a hydrodynamic
limit for gradient processes with conductances in random environments. Hydrodynamic limits for gradient
processes with conductances have been obtained in [6] for the one-dimensional setup and in [16] for the
d-dimensional setup. However, the proof given here is much simpler and more natural, in view of the
theory developed here, than the proofs given in [6, 17]. Furthermore, the proof of this hydrodynamic
limit also provides an existence theorem for the W -generalized parabolic equations in (3.4.1).

The hydrodynamic limit allows one to deduce the macroscopic behavior of the system from the micro-
scopic interaction among particles. Moreover, this approach justifies rigorously a method often used by
physicists to establish the partial differential equations that describe the evolution of the thermodynamic
characteristics of a fluid.

This Section is structured as follows: in subsection 7.1 we present the model, derive some properties
and fix the notations; subsection 7.2 deals with the hydrodynamic equation; finally, subsections 7.3 and
7.4 are devoted to the proof of the hydrodynamic limit.
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3.7.1 The exclusion processes with conductances in random environments

Fix a typical realization ω ∈ Ω of the random environment defined in Section 3.6. For each x ∈ TdN and
j = 1, . . . , d, define the symmetric rate ξx,x+ej = ξx+ej ,x by

ξx,x+ej =
aNj (x)

N [W ((x+ ej)/N)−W (x/N)]
=

aNj (x)
N [Wj((xj + 1)/N)−Wj(xj/N)]

. (3.7.1)

where aNj (x) is given by (3.6.3), and e1, . . . , ed is the canonical basis of Rd. Also, let b > −1/2 and

cx,x+ej (η) = 1 + b{η(x− ej) + η(x+ 2 ej)} ,

where all sums are modulo N .
Distribute particles on TdN in such a way that each site of TdN is occupied at most by one particle.

Denote by η the configurations of the state space {0, 1}TdN so that η(x) = 0 if site x is vacant, and
η(x) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is a continuous-time Markov
process {ηt : t ≥ 0} with state space {0, 1}TdN = {η : TdN → {0, 1}}, whose generator LN acts on
functions f : {0, 1}TdN → R as

(LNf)(η) =
d∑
j=1

∑
x∈TdN

ξx,x+ejcx,x+ej (η) {f(σx,x+ejη)− f(η)} , (3.7.2)

where σx,x+ejη is the configuration obtained from η by exchanging the variables η(x) and η(x+ ej):

(σx,x+ejη)(y) =


η(x+ ej) if y = x,

η(x) if y = x+ ej ,

η(y) otherwise.
(3.7.3)

We consider the Markov process {ηt : t ≥ 0} on the configurations {0, 1}TdN associated to the generator
LN in the diffusive scale, i.e., LN is speeded up by N2.

We now describe the stochastic evolution of the process. After a time given by an exponential
distribution, a random choice of a point x ∈ TdN is made. At rate ξx,x+ej the occupation variables η(x),
η(x+ej) are exchanged. Note that only nearest neighbor jumps are allowed. The conductances are given
by the function W , whereas the random environment is given by the matrix AN := (aNjj(x))d×d. The
discontinuity points of W may, for instance, model a membrane which obstructs the passage of particles
in a fluid. For more details see [16].

The effect of the factor cx,x+ej (η) is the following: if the parameter b is positive, the presence of
particles in the neighboring sites of the bond {x, x+ ej} speeds up the exchange rate by a factor of order
one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the
exchange rate also by a factor of order one. More details are given in Remark 3.7.1 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the
Bernoulli product measures {νNα : 0 ≤ α ≤ 1} are invariant, in fact reversible, for the dynamics. The
measure νNα is obtained by placing a particle at each site, independently from the other sites, with
probability α. Thus, νNα is a product measure over {0, 1}TdN with marginals given by

νNα {η : η(x) = 1} = α

for x in TdN . For more details see [8, chapter 2].

Consider the random walk {Xt}t≥0 of a particle in TdN induced by the generator LN given as follows.
Let ξx,x+ej given by (3.7.1). If the particle is on a site x ∈ TdN , it will jump to x+ej with rate N2ξx,x+ej .
Furthermore, only nearest neighbor jumps are allowed. The generator LN of the random walk {Xt}t≥0

acts on functions f : TdN → R as

LNf
( x
N

)
=

d∑
j=1

LjNf
( x
N

)
,
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where,

LjNf
( x
N

)
= N2

{
ξx,x+ej

[
f
(x+ ej

N

)
− f

( x
N

)]
+ ξx−ej ,x

[
f
(x− ej

N

)
− f

( x
N

)]}
It is not difficult to see that the following equality holds:

LNf(x/N) =
d∑
j=1

∂Nxj (a
N
j ∂

N
Wj
f)(x) := ∇NAN∇NW f(x). (3.7.4)

Note that several properties of the above operator have been obtained in Section 3.5. The counting
measure mN on N−1TdN is reversible for this process. This random walk plays an important role in the
proof of the hydrodynamic limit of the process ηt, as we will see in subsection 7.3.

Let D(R+, {0, 1}T
d
N ) be the path space of càdlàg trajectories with values in {0, 1}TdN . For a measure

µN on {0, 1}TdN , denote by PµN the probability measure on D(R+, {0, 1}T
d
N ) induced by the initial state

µN and the Markov process {ηt : t ≥ 0}. Expectation with respect to PµN is denoted by EµN .

Remark 3.7.1. The specific form of the rates cx,x+ei is not important, but two conditions must be
fulfilled. The rates must be strictly positive, they may not depend on the occupation variables η(x),
η(x + ei), but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter
7 in [8] for the definition of gradient processes).

We may define rates cx,x+ei to obtain any polynomial Φ of the form Φ(α) = α +
∑

2≤j≤m ajα
j,

m ≥ 1, with 1 +
∑

2≤j≤m jaj > 0. Let, for instance, m = 3. Then the rates

ĉx,x+ei(η) = cx,x+ei(η) +
b {η(x− 2ei)η(x− ei) + η(x− ei)η(x+ 2ei) + η(x+ 2ei)η(x+ 3ei)} ,

satisfy the above three conditions, where cx,x+ei is the rate defined at the beginning of Section 2 and a,
b are such that 1 + 2a+ 3b > 0. An elementary computation shows that Φ(α) = 1 + aα2 + bα3.

3.7.2 The hydrodynamic equation

The hydrodynamic equation is, roughly, a PDE that describes the time evolution of the thermodynamical
quantities of the model in a fluid.

Let A = (ajj)d×d be a diagonal matrix with ajj > 0, j = 1, . . . , d, and consider the operator

∇A∇W :=
d∑
j=1

ajj∂xj∂Wj

defined on DW .
A sequence of probability measures {µN : N ≥ 1} on {0, 1}TdN is said to be associated to a profile

ρ0 : Td → [0, 1] if

lim
N→∞

µN

∣∣∣ 1
Nd

∑
x∈TdN

H(x/N)η(x)−
∫
H(u)ρ0(u)du

∣∣∣ > δ

 = 0 (3.7.5)

for every δ > 0 and every function H ∈ DW .
Let γ : Td → [l, r] be a bounded density profile and consider the parabolic differential equation{

∂tρ = ∇A∇WΦ(ρ)
ρ(0, ·) = γ(·) , (3.7.6)

where the function Φ : [l, r] → R is given as in the beginning of Section 3.4, and t ∈ [0, T ], for T > 0
fixed.

Recall, from Section 3.4, that a bounded function ρ : [0, T ]×Td → [l, r] is said to be a weak solution
of the parabolic differential equation (3.7.6) if the following conditions hold. Φ(ρ(·, ·)) and ρ(·, ·) belong
to L2([0, T ], H1,W (Td)), and we have the integral identity∫

Td
ρ(t, u)H(u)du−

∫
Td
ρ(0, u)H(u)du =

∫ t

0

∫
Td

Φ(ρ(s, u))∇A∇WH(u)du ds ,
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for every function H ∈ DW and all t ∈ [0, T ].
Existence of such weak solutions follow from the tightness of the process proved in subsection 7.3,

and from the energy estimate obtained in Lemma 3.7.5. Uniquenesses of weak solutions was proved in
subsection 3.4.1.

Theorem 3.7.2. Fix a continuous initial profile ρ0 : Td → [0, 1] and consider a sequence of probability
measures µN on {0, 1}TdN associated to ρ0, in the sense of (3.7.5). Then, for any t ≥ 0,

lim
N→∞

PµN

∣∣∣ 1
Nd

∑
x∈TdN

H(x/N)ηt(x)−
∫
H(u)ρ(t, u) du

∣∣∣ > δ

 = 0

for every δ > 0 and every function H ∈ DW . Here, ρ is the unique weak solution of the non-linear
equation (3.7.6) with l = 0, r = 1, γ = ρ0 and Φ(α) = α+ aα2.

Let M be the space of positive measures on Td with total mass bounded by one endowed with the
weak topology. Recall that πNt ∈M stands for the empirical measure at time t. This is the measure on
Td obtained by rescaling space by N and by assigning mass 1/Nd to each particle:

πNt =
1
Nd

∑
x∈TdN

ηt(x) δx/N , (3.7.7)

where δu is the Dirac measure concentrated on u.
For a function H : Td → R, 〈πNt , H〉 stands for the integral of H with respect to πNt :

〈πNt , H〉 =
1
Nd

∑
x∈TdN

H(x/N)ηt(x) .

This notation is not to be mistaken with the inner product in L2(Td) introduced earlier. Also, when πt
has a density ρ, π(t, du) = ρ(t, u)du.

Fix T > 0 and let D([0, T ],M) be the space ofM-valued càdlàg trajectories π : [0, T ]→M endowed
with the uniform topology. For each probability measure µN on {0, 1}TdN , denote by QW,N

µN the measure
on the path space D([0, T ],M) induced by the measure µN and the process πNt introduced in (3.7.7).

Fix a continuous profile ρ0 : Td → [0, 1] and consider a sequence {µN : N ≥ 1} of measures on
{0, 1}TdN associated to ρ0 in the sense (3.7.5). Further, we denote by QW the probability measure on
D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du, where ρ is the unique weak
solution of (3.7.6) with γ = ρ0, lk = 0, rk = 1, k = 1, . . . , d and Φ(α) = α+ bα2.

In subsection 3.7.3 we show that the sequence {QW,N
µN : N ≥ 1} is tight, and in subsection 3.7.4 we

characterize the limit points of this sequence.

3.7.3 Tightness

The goal of this subsection is to prove tightness of sequence {QW,N
µN : N ≥ 1}. We will do it by showing

that the set of equicontinuous paths of the empirical measures (3.7.7) has probability close to one.
Fix λ > 0 and consider, initially, the auxiliary M-valued Markov process {Πλ,N

t : t ≥ 0} defined by

Πλ,N
t (H) = 〈πNt , HN

λ 〉 =
1
Nd

∑
x∈Zd

HN
λ (x/N)ηt(x),

for H in DW , where HN
λ is the unique weak solution in H1,W (TdN ) (see Section 3.5) of

λHN
λ −∇NAN∇NWHN

λ = λH −∇A∇WH,

with the right-hand side being understood as the restriction of the function to the lattice TdN (see
subsection 3.5.1).

We first prove tightness of the process {Πλ,N
t : 0 ≤ t ≤ T},then we show that {Πλ,N

t : 0 ≤ t ≤ T}
and {πNt : 0 ≤ t ≤ T} are not far apart.
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It is well known [8] that to prove tightness of {Πλ,N
t : 0 ≤ t ≤ T} it is enough to show tightness of

the real-valued processes {Πλ,N
t (H) : 0 ≤ t ≤ T} for a set of smooth functions H : Td → R dense in

C(Td) for the uniform topology.
Fix a smooth function H : Td → R. Keep in mind that Πλ,N

t (H) = 〈πNt , HN
λ 〉, and denote by MN,λ

t

the martingale defined by

MN,λ
t = Πλ,N

t (H) − Πλ,N
0 (H) −

∫ t

0

dsN2LN 〈πNs , HN
λ 〉 . (3.7.8)

Clearly, tightness of Πλ,N
t (H) follows from tightness of the martingale MN,λ

t and tightness of the additive
functional

∫ t
0
dsN2LN 〈πNs , HN

λ 〉.
A long computation, albeit simple, shows that the quadratic variation 〈MN,λ〉t of the martingale

MN,λ
t is given by:

1
N2d−1

d∑
j=1

∑
x∈Td

[∂NW,jH
N
λ (x/N)]2[W ((x+ ej)/N)−W (x/N)]×

×
∫ t

0

cx,x+ej (ηs) [ηs(x+ ej)− ηs(x)]2 ds .

In particular, by Lemma 3.5.3,

〈MN,λ〉t ≤
C0t

N2d−1

d∑
j=1

‖HN
λ ‖2Wj ,N ≤

C(H)t
λNd

,

for some finite constant C(H), which depends only on H. Thus, by Doob inequality, for every λ > 0,
δ > 0,

lim
N→∞

PµN
[

sup
0≤t≤T

∣∣MN,λ
t

∣∣ > δ

]
= 0 . (3.7.9)

In particular, the sequence of martingales {MN,λ
t : N ≥ 1} is tight for the uniform topology.

It remains to be examined the additive functional of the decomposition (3.7.8). The generator of the
exclusion process LN can be decomposed in terms of the generator of the random walk LN . By a long
but simple computation, we obtain that N2LN 〈πN , HN

λ 〉 is equal to

d∑
j=1

{ 1
Nd

∑
x∈TdN

(LjNH
N
λ )(x/N) η(x)

+
b

Nd

∑
x∈TdN

[
(LjNH

N
λ )((x+ ej)/N) + (LjNH

N
λ )(x/N)

]
(τxh1,j)(η)

− b

Nd

∑
x∈TdN

(LjNH
N
λ )(x/N)(τxh2,j)(η)

}
,

where {τx : x ∈ Zd} is the group of translations, so that (τxη)(y) = η(x+ y) for x, y in Zd, and the sum
is understood modulo N . Also, h1,j , h2,j are the cylinder functions

h1,j(η) = η(0)η(ej) , h2,j(η) = η(−ej)η(ej) .

Since HN
λ is the weak solution of the discrete equation, we have by Remark 3.5.4 that it is also a

strong solution. Then, we may replace LNHN
λ by UNλ = λHN

λ −H in the previous formula. In particular,
for all 0 ≤ s < t ≤ T ,∣∣∣ ∫ t

s

dr N2LN 〈πNr , HN
λ 〉
∣∣∣ ≤ (1 + 3|b|)(t− s)

Nd

∑
x∈TdN

|UNλ (x/N)| .
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It follows from the estimate given in Lemma 3.5.3, and from Schwartz inequality, that the right hand
side of the previous expression is bounded above by C(H, b)(t − s) uniformly in N , where C(H, b) is
a finite constant depending only on b and H. This proves that the additive part of the decomposition
(3.7.8) is tight for the uniform topology and, therefore, that the sequence of processes {Πλ,N

t : N ≥ 1}
is tight.

Lemma 3.7.3. The sequence of measures {QW,N
µN

: N ≥ 1} is tight for the uniform topology.

Proof. Fix λ > 0. It is enough to show that for every function H ∈ DW and every ε > 0, we have

lim
N→∞

PµN
[

sup
0≤t≤T

|Πλ,N
t (H)− 〈πNt , H〉 | > ε

]
= 0,

whence tightness of πNt follows from tightness of Πλ,N
t . By Chebyshev’s inequality, the last expression

is bounded above by

EµN
[

sup
0≤t≤T

|Πλ,N
t (H)− 〈πNt , H〉 |2

]
≤ 2‖HN

λ −H‖2N ,

since there exists at most one particle per site. By Theorem 3.6.2 and Proposition 3.6.1, ‖HN
λ −H‖2N → 0

as N →∞, and the proof follows.

3.7.4 Uniqueness of limit points

We prove in this subsection that all limit points Q∗ of the sequence QW,N
µN are concentrated on absolutely

continuous trajectories π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the hydrodynamic
equation (3.7.6) with l = 0, r = 1 and Φ(α) = α+ aα2.

We now state a result necessary to prove the uniqueness of limit points. Let, for a local function
g : {0, 1}Zd → R, g̃ : [0, 1]→ R be the expected value of g under the stationary states:

g̃(α) = Eνα [g(η)] .

For ` ≥ 1 and d-dimensional integer x = (x1, . . . , xd), denote by η`(x) the empirical density of particles
in the box B`+(x) = {(y1, . . . , yd) ∈ Zd ; 0 ≤ yi − xi < `}:

η`(x) =
1
`d

∑
y∈B`+(x)

η(y) .

Proposition 3.7.4 (Replacement lemma). Fix a cylinder function g and a sequence of functions {FN :
N ≥ 1}, FN : N−1TdN → R such that

lim
N→∞

1
Nd

∑
x∈TdN

FN (x/N)2 < ∞ .

Then, for any t > 0 and any sequence of probability measures {µN : N ≥ 1} on {0, 1}TdN ,

lim
ε→0

lim
N→∞

EµN
[ ∣∣∣ ∫ t

0

1
Nd

∑
x∈TdN

FN (x/N)
{
τxg(ηs)− g̃(ηεNs (x)) ds

}∣∣∣ ] = 0 .

The proof can be found in [16, subsection 5.3].
Let Q∗ be a limit point of the sequence QW,N

µN and assume, without loss of generality, that QW,N
µN

converges to Q∗.
Since there is at most one particle per site, it is clear that Q∗ is concentrated on trajectories πt(du)

which are absolutely continuous with respect to the Lebesgue measure, πt(du) = ρ(t, u)du, and whose
density ρ is non-negative and bounded by 1.
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Fix a function H ∈ DW and λ > 0. Recall the definition of the martingale MN,λ
t introduced in the

previous section. From (3.7.9) we have, for every δ > 0,

lim
N→∞

PµN
[

sup
0≤t≤T

∣∣MN,λ
t

∣∣ > δ

]
= 0 ,

and from (3.7.8), for fixed 0 < t ≤ T and δ > 0, we have

lim
N→∞

QW,N
µN

[ ∣∣∣〈πNt , HN
λ 〉 − 〈πN0 , HN

λ 〉 −
∫ t

0

dsN2LN 〈πNs , HN
λ 〉
∣∣∣ > δ

]
= 0.

Note that the expression N2LN 〈πNs , HN
λ 〉 has been computed in the previous subsection in terms

of generator LN . On the other hand, LNHN
λ = λHN

λ − λH + ∇A∇WH. Since there is at most one
particle per site, we may apply Theorem 3.6.2 to replace 〈πNt , HN

λ 〉 and 〈πN0 , HN
λ 〉 by 〈πt, H〉 and 〈π0, H〉,

respectively, and replace LNHN
λ by ∇A∇WH plus a term that vanishes as N →∞.

Since Eνα [hi,j ] = α2, i = 1, 2 and j = 1, . . . , d, we have by Proposition 3.7.4 that, for every t > 0,
λ > 0, δ > 0, i = 1, 2,

lim
ε→0

lim
N→∞

PµN
[ ∣∣∣ ∫ t

0

ds
1
Nd

∑
x∈TdN

∇A∇WH(x/N)×

×
{
τxhi,j(ηs)−

[
ηεNs (x)

]2} ∣∣∣ > δ
]

= 0.

Since ηεNs (x) = ε−dπNs (
∏d
j=1[xj/N, xj/N + εej ]), we obtain, from the previous considerations, that

lim
ε→0

lim
N→∞

QW,N
µN

[ ∣∣∣ 〈πt, H〉 −
− 〈π0, H〉 −

∫ t

0

ds
〈

Φ
(
ε−dπNs (

d∏
j=1

[·, ·+ εej ])
)
, ∇A∇WH

〉∣∣∣ > δ

 = 0 .

Using the fact that QW,N
µN converges in the uniform topology to Q∗, we have that

lim
ε→0

Q ∗
[ ∣∣∣〈πt, GλH〉 − 〈π0, GλH〉 −

−
∫ t

0

ds
〈

Φ
(
ε−dπs(

d∏
j=1

[·, ·+ εej ])
)
, Uλ

〉∣∣∣ > δ

 = 0 .

Recall that Q∗ is concentrated on absolutely continuous paths πt(du) = ρ(t, u)du with positive density
bounded by 1. Therefore, ε−dπs(

∏d
j=1[·, ·+ εej ]) converges in L1(Td) to ρ(s, .) as ε ↓ 0. Thus,

Q∗
[ ∣∣∣〈πt, H〉 − 〈π0, H〉 −

∫ t

0

ds 〈Φ(ρs) , ∇A∇WH〉
∣∣∣ > δ

]
= 0.

Letting δ ↓ 0, we see that, Q∗ a.s.,∫
Td
ρ(t, u)H(u)du−

∫
Td
ρ(0, u)H(u)du =

∫ t

0

∫
Td

Φ(ρ(s, u))∇A∇WH(u)du ds .

This identity can be extended to a countable set of times t. Taking this set to be dense we obtain,
by continuity of the trajectories πt, that it holds for all 0 ≤ t ≤ T .

We now have a lemma regarding the energy of such limit points whose proof can be found in [16,
Section 6].

Lemma 3.7.5. There exists a finite constant K1, depending only on b, such that

EQ∗W

[
sup
H∈DW

{∫ T

0

ds

∫
Td
dx (∂xj∂Wj

H)(s, x) Φ(ρ(s, x))

− K1

∫ T

0

ds

∫
Td

[∂Wj
H(s, x)]2 d(xj ⊗Wj)

}]
≤ K0.
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From Lemma 3.7.5, we may conclude that all limit points have, almost surely, finite energy, and
therefore, by Lemma 3.4.1, Φ(ρ(·, ·)) ∈ L2([0, T ], H1,W (Td)). Analogously, it is possible to show that
ρ(·, ·) has finite energy and hence it belongs to L2([0, T ], H1,W (Td)).

Proposition 3.7.6. As N ↑ ∞, the sequence of probability measures QW,N
µN converges in the uniform

topology to QW .

Proof. In the previous subsection, we showed that the sequence of probability measures QW,N
µN is tight for

the uniform topology. Moreover, we just proved that all limit points of this sequence are concentrated
on weak solutions of the parabolic equation (3.7.6). The proposition now follows from the uniqueness
proved in subsection 3.4.1.

Proof of Theorem 3.7.2. Since QW,N
µN converges in the uniform topology to QW , a measure which is

concentrated on a deterministic path, for each 0 ≤ t ≤ T and each continuous function H : Td → R,
〈πNt , H〉 converges in probability to

∫
Td duρ(t, u)H(u), where ρ is the unique weak solution of (3.7.6)

with lk = 0, rk = 1, γ = ρ0 and Φ(α) = α+ aα2.
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[10] J.-U. Löbus, Generalized second order differential operators. Math. Nachr. 152, 229-245 (1991).

[11] P. Mandl, Analytical treatment of one-dimensional Markov processes, Grundlehren der mathematis-
chen Wissenschaften, 151. Springer-Verlag, Berlin, 1968.

[12] H.P. McKean. Elementary solutions for certain parabolic partial differential equations. TAMS, 82,
519-548. 1956

[13] G. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coef-
ficients, Seria Coll. Math. Soc. Janos Bolyai vol. 27, North-Holland (1979).

[14] A. Piatnitski, E. Remy, Homogenization of Elliptic Difference Operators, SIAM J. Math. Anal.
Vol.33, pp. 53-83, (2001).

[15] F. Spitzer. Interacting of Markov processes. Adv. Math, 5, 246-290. 1970.

[16] F.J. Valentim, Hydrodynamic limit of gradient exclusion processes with conductance on Zd..Preprint,
Available at arXiv:0903.4993v1 (2009).

[17] E. Zeidler, Applied Functional Analysis. Applications to Mathematical Physics.. Applied Mathemat-
ical Sciences, 108. Springer-Verlag, New York, (1995).

96



Chapter 4

Equilibrium fluctuations for
exclusion processes with
conductances in random
environments

Artigo em colaboração com J. Farfan e F.J. Valentim. Foi publicado no periódico Stochastic Processes
and Their Applications, 120, p. 1535-1562, 2010.

Abstract

Fix a function W : Rd → R such that W (x1, . . . , xd) =
∑d
k=1Wk(xk), where d ≥ 1, and each function

Wk : R→ R is strictly increasing, right continuous with left limits. We prove the equilibrium fluctuations
for a gradient exclusion process with conductances, induced by W , in random environments when the
system starts from an equilibrium measure. The asymptotic behavior of the empirical distribution is
governed by the unique solution of a stochastic differential equation taking values in a certain nuclear
Fréchet space.

4.1 Introduction

In this article we study the equilibrium fluctuations for a gradient exclusion process with conductances
in random environments, which can be viewed as a central limit theorem for the empirical distribution
of particles when the system starts from an equilibrium measure.

Let W : Rd → R be a function such that W (x1, . . . , xd) =
∑d
k=1Wk(xk), where d ≥ 1 and each

function Wk : R→ R is strictly increasing, right continuous with left limits (càdlàg), and periodic in the
sense that Wk(u + 1) −Wk(u) = Wk(1) −Wk(0), for all u ∈ R. The inverse of the increments of the
function W will play the role of conductances in our system.

The random environment we considered is governed by the coefficients of the discrete formulation of
the model (the process on the lattice). We will assume the underlying random field is ergodic, stationary
and satisfies an ellipticity condition.

Informally, the exclusion process with conductances induced by W in random environments is an
interacting particle systems on the d-dimensional discrete torus N−1TdN , in which at most one particle
per site is allowed, and only nearest-neighbor jumps are permitted. Moreover, the jump rate in the
direction ej is proportional to the reciprocal of the increments of W with respect to the jth coordinate
times a term a(ω) coming from an elliptic and ergodic random field. Such a system can be understood as
a model for diffusion in heterogeneous media. More precisely, it may model diffusions in which permeable
membranes, at the points of discontinuities of W , tend to reflect particles, creating space discontinuities
in the density profiles. Note that these membranes are (d − 1)-dimensional hyperplanes embedded in
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a d-dimensional environment. Moreover, if we consider Wj having more than one discontinuity point
for more than one j, these membranes will be more sophisticated manifolds, for instance, unions of
(d− 1)-dimensional boxes.

The purpose of this article is to study the density fluctuation field of this system as N → ∞, and
also the influence of the randomness in this limit. For any realization of the random environment, the
scaling limit depends on the randomness only through some constants which depend on the distribution
of the random transition rates, but not on the particular realization of the random environment.

The evolution of one-dimensional exclusion processes with random conductances has attracted some
attention recently [9, 3, 4, 5]. The hydrodynamic limit proved in [9] was obtained independently in [2]. In
all of these papers, a hydrodynamic limit was proved. The hydrodynamic limit may be interpreted as a
law of large numbers for the empirical density of the system. Our goal is to go beyond the hydrodynamic
limit and provide a new result for such processes, which is the equilibrium fluctuations and can be seen
as a central limit theorem for the empirical density of the process.

To prove the equilibrium fluctuations, we would like to call attention to the main tools we needed: (i)
the theory of nuclear spaces and (ii) homogenization of differential operators. The first one followed the
classical approach of Kallianpur and Perez-Abreu [11] and Gel’fand and Vilenkin [6]. Nuclear spaces are
very suitable to attain existence and uniqueness of solutions for a general class of stochastic differential
equations. Furthermore, tightness of processes on such spaces was established by Mitoma [13]. A wide
literature on these spaces can be found cited inside the fourth volume of the amazing collection by
Gel’fand [6]. The second tool is motivated by several applications in mechanics, physics, chemistry and
engineering. We will consider stochastic homogenization. In the stochastic context, several works on
homogenization of operators with random coefficients have been published (see, for instance, [14, 15] and
references therein). In homogenization theory, only the stationarity of such random field is used. The
notion of stationary random field is formulated in such a manner that it covers many objects of non-
probabilistic nature, e.g., operators with periodic or quasi-periodic coefficients. We follow the approach
given in [16], which was introduced by [15].

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coefficients can be obtained by the discretization of random high-
contrast lattice structures. Furthermore, the introduction of a corrected empirical measure was needed.
The corrected empirical measure was used in the literature, for instance, by [9, 5, 7, 17, 16]. It can be
understood as a version of Tartar’s compensated compactness lemma in the context of particle systems.
In this situation, the averaging due to the dynamics and the inhomogeneities introduced by the random
media factorize after introducing the corrected empirical process, in such a way that we can average
them separately. It is noteworthy that we managed to prove an equivalence between the asymptotic
behavior with respect to both the corrected empirical measure and the uncorrected one. This equivalence
was helpful in the sense that whenever the calculation with the corrected empirical measure turned
cumbersome, we changed to a calculation with respect to the uncorrected one, and the other way around.
This whole approach made the proof a more simpler than the usual one with respect solely to the corrected
empirical measure developed in the articles mentioned above.

We now describe the organization of the article. In Section 4.2 we state the main results of the article;
in Section 4.3 we define the nuclear space needed in our context; in Section 4.4 we recall some results
obtained in [16] about homogenization, and then we prove the equilibrium fluctuations by showing that
the density fluctuation field converges to a process that solves the martingale problem. We also show
that the solution of the martingale problem corresponds to a generalized Ornstein-Uhlenbeck process.
In Section 4.5 we prove tightness of the density fluctuation field, as well as tightness of other related
quantities. In Section 4.6 we prove the Boltzmann-Gibbs principle, which is a key result for proving the
equilibrium fluctuations. Finally, the Appendix contains some known results about nuclear spaces and
stochastic differential equations evolving on topologic dual of such spaces.

4.2 Notation and results

Denote by Td = (R/Z)d = [0, 1)d the d-dimensional torus, and by TdN = (Z/NZ)d = {0, . . . , N − 1}d the
d-dimensional discrete torus with Nd points.
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Fix a function W : Rd → R such that

W (x1, . . . , xd) =
d∑
k=1

Wk(xk), (4.2.1)

where each Wk : R → R is a strictly increasing right continuous function with left limits (càdlàg),
periodic in the sense that for all u ∈ R

Wk(u+ 1)−Wk(u) = Wk(1)−Wk(0).

Define the generalized derivative ∂Wk
of a function f : Td → R by

∂Wk
f(x1,. . ., xk, . . . , xd) = lim

ε→0

f(x1,. . ., xk + ε, . . . , xd)− f(x1,. . ., xk,. . ., xd)
Wk(xk + ε)−Wk(xk)

, (4.2.2)

when the above limit exists and is finite. If for a function f : Td → R the generalized derivatives ∂Wk

exist for all k = 1, . . . , d, denote the generalized gradient of f by

∇W f = (∂W1f, . . . , ∂Wd
f) .

Further details on these generalized derivatives can be found in subsection 4.3.1 and in the article [16].
We now introduce the statistically homogeneous rapidly oscillating coefficients that will be used to

define the random rates of the exclusion process with conductances of which we want to study the
equilibrium fluctuations.

Let (Ω,F , µ) be a standard probability space and {Tx : Ω → Ω;x ∈ Zd} be an ergodic group of
F-measurable transformations which preserve the measure µ:

• Tx : Ω→ Ω is F-measurable for all x ∈ Zd,

• µ(TxA) = µ(A), for any A ∈ F and x ∈ Zd,

• T0 = I , Tx ◦ Ty = Tx+y,

• Any f ∈ L1(Ω) such that f(Txω) = f(ω) µ-a.s for each x ∈ Zd, is equal to a constant µ-a.s.

The last condition implies that the group Tx is ergodic.
Let us now introduce the vector-valued F-measurable functions {aj(ω); j = 1, . . . , d} that satisfy an

ellipticity condition: there exists θ > 0 such that

θ−1 ≤ aj(ω) ≤ θ,

for all ω ∈ Ω and j = 1, . . . , d. Then, define the diagonal matrices AN whose elements are given by

aNjj(x) := aNj = aj(TNxω) , x ∈ T dN , j = 1, . . . , d. (4.2.3)

Fix a typical realization ω ∈ Ω of the random environment. For each x ∈ TdN and j = 1, . . . , d, define
the symmetric rate ξx,x+ej = ξx+ej ,x by

ξx,x+ej =
aNj (x)

N [W ((x+ ej)/N)−W (x/N)]
=

aNj (x)
N [Wj((xj + 1)/N)−Wj(xj/N)]

, (4.2.4)

where e1, . . . , ed is the canonical basis of Rd.
Distribute particles on TdN in such a way that each site of TdN is occupied at most by one particle.

Denote by η the configurations of the state space {0, 1}TdN so that η(x) = 0 if site x is vacant, and
η(x) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is the continuous-time Markov
process {ηt : t ≥ 0} with state space {0, 1}TdN = {η : TdN → {0, 1}}, whose generator LN acts on functions
f : {0, 1}TdN → R as

(LNf)(η) =
d∑
j=1

∑
x∈TdN

ξx,x+ejcx,x+ej (η) {f(σx,x+ejη)− f(η)} , (4.2.5)
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where σx,x+ejη is the configuration obtained from η by exchanging the variables η(x) and η(x+ ej):

(σx,x+ejη)(y) =


η(x+ ej) if y = x,

η(x) if y = x+ ej ,

η(y) otherwise,
(4.2.6)

and
cx,x+ej (η) = 1 + b{η(x− ej) + η(x+ 2 ej)} ,

with b > −1/2 , and where all sums are modulo N .
We consider the Markov process {ηt : t ≥ 0} on the configurations {0, 1}TdN associated to the generator

LN in the diffusive scale, i.e., LN is speeded up by N2.
We now describe the stochastic evolution of the process. Let x = (x1, . . . , xd) ∈ TdN . At rate

ξx,x+ejcx,x+ej (η) the occupation variables η(x), η(x + ej) are exchanged. Note that the random field
affects the rate by a multiplicative factor. If W is differentiable at x/N ∈ [0, 1)d, the rate at which
particles are exchanged is of order 1 for each direction, but if some Wj is discontinuous at xj/N , it no
longer holds. In fact, assume, to fix ideas, that Wj is discontinuous at xj/N , and smooth on the segments
(xj/N, xj/N +εej) and (xj/N−εej , xj/N). Assume, also, that Wk is differentiable in a neighborhood of
xk/N for k 6= j. In this case, the rate at which particles jump over the bonds {y−ej , y}, with yj = xj , is
of order 1/N , whereas in a neighborhood of size N of these bonds, particles jump at rate 1. Thus, note
that a particle at site y− ej jumps to y at rate 1/N and jumps at rate 1 to each one of the 2d− 1 other
options. Particles, therefore, tend to avoid the bonds {y − ej , y}. However, since time will be scaled
diffusively, and since on a time interval of length N2 a particle spends a time of order N at each site y,
particles will be able to cross the slower bond {y − ej , y}. Therefore, the conductances are induced by
the function W through the inverse of the gradient of W , whereas the random environment is given by
the diagonal matrix AN := (aNjj(x))d×d.

The effect of the factor cx,x+ej (η) is the following: if the parameter b is positive, the presence of
particles in the neighboring sites of the bond {x, x+ ej} speeds up the exchange rate by a factor of order
one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the
exchange rate also by a factor of order one. More details are given in Remark 4.2.2 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the
Bernoulli product measures {νNρ : 0 ≤ ρ ≤ 1} are invariant, in fact reversible, for the dynamics. The
measure νNρ is obtained by placing a particle at each site, independently from the other sites, with
probability ρ. Thus, νNρ is a product measure over {0, 1}TdN with marginals given by

νNρ {η : η(x) = 1} = ρ

for x in TdN .
Consider the random walk {Xt}t≥0 of a particle in TdN induced by the generator LN given as follows.

Let ξx,x+ej given by (4.2.4). If the particle is on a site x ∈ TdN , it will jump to x+ej with rate N2ξx,x+ej .
Furthermore, only nearest neighbor jumps are allowed. The generator LN of the random walk {Xt}t≥0

acts on functions f : TdN → R as

LNf
( x
N

)
=

d∑
j=1

LjNf
( x
N

)
,

where,

LjNf
( x
N

)
= N2

{
ξx,x+ej

[
f
(x+ ej

N

)
− f

( x
N

)]
+ ξx−ej ,x

[
f
(x− ej

N

)
− f

( x
N

)]}
It is not difficult to see that the following equality holds:

LNf(x/N) =
d∑
j=1

∂Nxj (a
N
j ∂

N
Wj
f)(x) := ∇NAN∇NW f(x), (4.2.7)

where, ∂Nxj is the standard difference operator:

∂Nxjf
( x
N

)
= N

[
f

(
x+ ej
N

)
− f

( x
N

)]
,
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and ∂NWj
is the Wj-difference operator:

∂NWj
f
( x
N

)
=

f
(
x+ej
N

)
− f

(
x
N

)
W
(
x+ej
N

)
−W

(
x
N

) ,
for x ∈ TdN . Several properties of the above operator have been obtained in [16].

The counting measure mN on N−1TdN is reversible for this process. This random walk plays an
important role in the proof of the equilibrium fluctuations of the process ηt, as we will see in subsection
4.4.1.

Now we state a central limit theorem for the empirical measure, starting from an equilibrium measure
νρ. Fix ρ > 0 and denote by SW (Td) the generalized Schwartz space on Td, whose definition as well as
some properties are given in Section 4.3.

Denote by Y N· the density fluctuation field, which is the bounded linear functional acting on functions
G ∈ SW (Td) as

Y Nt (G) =
1

Nd/2

∑
x∈TdN

G(x)[ηt(x)− ρ]. (4.2.8)

Let D([0, T ], X) be the path space of càdlàg trajectories with values in a metric space X. In this
way we have defined a process in D([0, T ],S ′W (Td)), where S ′W (Td) is the topologic dual of the space
SW (Td).
Theorem 4.2.1. Consider the fluctuation field Y N· defined above. Then, Y N· converges weakly to the
unique S ′W (Td)-solution, Yt ∈ D([0, T ], S′W (Td)), of the stochastic differential equation

dYt = φ′(ρ)∇A∇WYtdt+
√

2χ(ρ)φ′(ρ)AdNt, (4.2.9)

where χ(ρ) = ρ(1 − ρ), φ(ρ) = ρ + bρ2, and φ′ is the derivative of φ, φ′(ρ) = 1 + 2bρ; A is a constant
diagonal matrix with jth diagonal element given by aj := E(aNj ), for any N ∈ N; and Nt is a S ′W (Td)-
valued mean-zero martingale, with quadratic variation

〈N(G)〉t = t

d∑
j=1

∫
Td

[
∂Wj

G(x)
]2
d(xj ⊗Wj),

where d(xj ⊗Wj) is the product measure dx1 ⊗ · · · ⊗ dxj−1 ⊗ dWj ⊗ dxj+1 ⊗ · · · ⊗ dxd. Furthermore,
Nt is a Gaussian process with independent increments. More precisely, for each G ∈ SW (Td), Nt(G)
is a time deformation of a standard Brownian motion. The process Yt is known in the literature as the
generalized Ornstein-Uhlenbeck process with characteristics φ′(ρ)∇A∇W and

√
2χ(ρ)φ′(ρ)A∇W .

The proof of this theorem is given in Section 4.4.

Remark 4.2.2. The specific form of the rates cx,x+ei is not important, but two conditions must be
fulfilled. The rates must be strictly positive, they may not depend on the occupation variables η(x),
η(x + ei), but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter
7 in [12] for the definition of gradient processes).

We may define rates cx,x+ei to obtain any polynomial φ of the form φ(α) = α+
∑

2≤j≤m ajα
j, m ≥ 1,

with 1 +
∑

2≤j≤m jaj > 0. Let, for instance, m = 3. Then the rates

ĉx,x+ei(η) = cx,x+ei(η) +
b {η(x− 2ei)η(x− ei) + η(x− ei)η(x+ 2ei) + η(x+ 2ei)η(x+ 3ei)} ,

satisfy the above three conditions, where cx,x+ei is the rate defined at the beginning of Section 2 and a,
b are such that 1 + 2a+ 3b > 0. An elementary computation shows that φ(α) = 1 + aα2 + bα3.

4.3 The space SW (Td)

In this Section we build the space SW (Td), which is associated to the operator LW = ∇∇W . This space,
as we shall see, is a natural environment to attain existence and uniqueness of solutions of the stochastic
differential equation (4.2.9). Furthermore, several lemmas are obtained to fulfill the conditions to ensure
existence and uniqueness of such solutions.
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4.3.1 The operator LW

Consider the operator LWk
: DWk

⊂ L2(T)→ R given by

LWk
f = ∂xk ∂Wk

f, (4.3.1)

whose domain DWk
consists of all functions f in L2(T) such that

f(x) = a + bWk(x) +
∫

(0,x]

Wk(dy)
∫ y

0

f(z) dz

for some function f in L2(T) that satisfies∫ 1

0

f(z) dz = 0 and
∫

(0,1]

Wk(dy)
{
b+

∫ y

0

f(z) dz
}

= 0 .

In [5] the authors prove that these operators have a countable complete orthonormal system of eigenvec-
tors, which we denote by AWk

. Then, following [17], we define

AW = {f : Td → R : f(x1, . . . , xd) =
d∏
k=1

fk(xk), fk ∈ AWk
},

where W is given by (4.2.1).
We may now build an operator analogous to LWk

in Td. For a given set A, we denote by span(A)
the linear space generated by A. Let DW = span(AW ), and define the operator LW : DW → L2(Td) as
follows: for f =

∏d
k=1 fk ∈ AW ,

LW (f)(x1, . . . xd) =
d∑
k=1

d∏
j=1,j 6=k

fj(xj)LWk
fk(xk), (4.3.2)

and extend to DW by linearity. It is easy to see that if f ∈ DW ,

LW f =
d∑
k=1

LWk
f, (4.3.3)

where the application of LWk
on a function f : Td → R is the natural one, i.e., it considers f only as a

function of the kth coordinate, and keeps all the remaining coordinates fixed.
Let, for each k = 1, . . . , d, fk ∈ AWk

be an eigenvector of LWk
associated to the eigenvalue λk. Then

f =
∏d
k=1 fk belongs to DW and is an eigenvector of LW with eigenvalue

∑d
k=1 λk. Moreover, [17] proved

the following result:

Lemma 4.3.1. The following statements hold:

(a) The set DW is dense in L2(Td);

(b) The operator LW : DW → L2(Td) is symmetric and non-positive:

〈−LW f, f〉 ≥ 0,

where 〈·, ·〉 is the standard inner product in L2(Td).

Also, the set AW forms a complete, orthonormal, countable system of eigenvectors for the operator
LW . Let AW = {ϕj}j≥1, {αj}j≥1 be the corresponding eigenvalues of −LW , and consider DW = {v =∑∞
j=1 vjϕj ∈ L2(Td);

∑∞
j=1 v

2
jα

2
j < +∞}. We define the operator LW : DW → L2(Td) by

−LW v =
+∞∑
j=1

αjvjϕj (4.3.4)

The operator LW is clearly an extension of the operator LW , and we present some properties of this
operator in Proposition 4.3.2, whose proof can be found in [17].
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Proposition 4.3.2. The operator LW : DW → L2(Td) enjoys the following properties:

(a) The domain DW is dense in L2(Td). In particular, the set of eigenvectors AW = {ϕj}j≥1 forms a
complete orthonormal system;

(b) The eigenvalues of the operator −LW form a countable set {αj}j≥1. All eigenvalues have finite
multiplicity, and it is possible to obtain a re-enumeration {αj}j≥1 such that

0 = α1 ≤ α2 ≤ · · · and lim
n→∞

αn =∞;

(c) The operator I− LW : DW → L2(Td) is bijective;

(d) LW : DW → L2(Td) is self-adjoint and non-positive:

〈−LW f, f〉 ≥ 0;

(e) LW is dissipative.

4.3.2 The nuclear space SW (Td)

Our goal is to build a countably Hilbert nuclear space associated the self-adjoint operator LW . The
reader is referred to Appendix.

Let {ϕj}j≥1 be the complete orthonormal set of the eigenvectors (in L2(Td)) of the operator L =
I− LW , and {λj}j≥1 the associated eigenvalues. Note that λj = 1 + αj .

Consider the following increasing sequence ‖ · ‖n, n ∈ N, of Hilbertian norms:

〈f, g〉n =
∞∑
k=1

〈Pkf,Pkg〉λ2n
k k

2n,

where we denote by Pk the orthogonal projection on the linear space generated by the eigenvector ϕk.
So,

‖f‖2n =
∞∑
k=1

‖Pkf‖2λ2n
k k

2n,

where ‖ · ‖ is the L2(Td) norm.
Consider the Hilbert spaces Sn which are obtained by completing the space DW with respect to the

inner product 〈·, ·〉n.
The set

SW (Td) =
∞⋂
n=0

Sn

endowed with the metric (4.7.2) is our countably Hilbert space, and even more, it is a countably Hilbert
nuclear space, see the Appendix for further details. In fact, fixed n ∈ N and m > n+ 1/2, we have that
{ 1

(jλj)
mϕj}j≥1 is a complete orthonormal set in Sm. Therefore,

∞∑
j=1

‖ 1
(jλj)

mϕj‖2n ≤
∞∑
j=1

1
j2(m−n)

<∞.

The above formula corresponds to formula (4.7.3) in Appendix.

Lemma 4.3.3. Let LW : DW → L2(Td) be the operator obtained in Theorem 4.3.2. We have

(a) LW is the generator of a strongly continuous contraction semigroup {Pt : L2(Td)→ L2(Td)}t≥0;

(b) LW is a closed operator;

(c) For each f ∈ L2(Td), t 7→ Ptf is a continuous function from [0,∞) to L2(Td);
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(d) LWPtf = PtLW f for each f ∈ LW and t ≥ 0;

(e) (I− LW )nPtf = Pt(I− LW )nf for each f ∈ DW ,t ≥ 0 and n ∈ N;

Proof. Item (a) follows from Theorem 4.3.2 and Hille-Yosida’s theorem. Items (b), (c) and (d) follows
from item (a), see, for instance, [1, chapter 1]. Item (e) follows from item (d) and from the fact that
LW f = LW f if f ∈ DW .

The next Lemma permits to conclude that the semigroup {Pt : t ≥ 0} acting on the domain SW (Td)
is a C0,1-semigroup, whose definition is recalled in Appendix 4.7.2.

Lemma 4.3.4. Let {Pt : t ≥ 0} the semigroup whose infinitesimal generator is LW . Then for each
q ∈ N we have:

‖Ptf‖q ≤ ‖f‖q,
for all f ∈ SW (Td). In particular, {Pt : t ≥ 0} is a C0,1-semigroup.

Proof. Let f ∈ DW , then

f =
k∑
j=1

βjϕj ,

for some k ∈ N, and some constants β1, . . . , βk. A simple calculation shows that

Ptf =
k∑
j=1

βje
t(1−λj)ϕj .

Therefore, for f ∈ DW :

‖Ptf‖2n = ‖
k∑
j=1

βje
t(1−λj)ϕj‖n

=
k∑
j=1

‖βjet(1−λj)ϕj‖2λ2n
j j

2n

≤
k∑
j=1

‖βjϕj‖2λ2n
j j

2n = ‖f‖2n

We use the density of DW in SW (Td) to conclude the proof of the lemma.

Lemma 4.3.5. The operator LW belongs to L(SW (Td),SW (Td)), the space of linear continuous operators
from SW (Td) into SW (Td).

Proof. Let f ∈ SW (Td), and {ϕj}j≥1 be the complete orthonormal set of eigenvectors of LW , with
{(1− λj)}j≥1 being their respectively eigenvalues. We have that

f =
∞∑
j=1

βjϕj , with
∞∑
j=1

β2
j <∞.

We also have that

LW f =
∞∑
j=1

(1− λj)βjϕj .

For every n ∈ N:

‖LW f‖2n =
∞∑
k=1

‖Pk(LW f)‖2λ2n
k k

2n =
∞∑
k=1

‖βk(1− λk)ϕk‖2λ2n
k k

2n

=
∞∑
k=1

‖βkϕk‖2(1− λk)2λ2n
k k

2n

≤ 2
∞∑
k=1

‖Pkf‖2λ2n
k k

2n + 2
∞∑
k=1

‖Pkf‖2λ2(n+1)
k k2(n+1)

= 2(‖f‖n + ‖f‖n+1).
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Therefore, by the definition of SW (Td), LW f belongs to SW (Td). Furthermore, LW is continuous
from SW (Td) to SW (Td).

4.4 Equilibrium Fluctuations

We begin by stating some results on homogenization of differential operators obtained in [16], which will
be very useful along this section.

Let L2
xi⊗Wi

(Td) be the space of square integrable functions with respect to the product measure
dx1 ⊗ · · · ⊗ dxi−1 ⊗ dWi ⊗ dxi+1 ⊗ · · · ⊗ dxd, and H1,W (Td) be the Sobolev space with W -generalized
derivatives. More precisely, H1,W (Td) is the space of functions g ∈ L2(Td) such that for each i = 1, . . . , d
there exist functions Gi ∈ L2

xi⊗Wi,0
(Td) satisfying the following integral by parts identity.∫

Td

(
∂xi∂Wif

)
g dx = −

∫
Td

(∂Wif) Gid(xi⊗Wi), (4.4.1)

for every function f ∈ SW (Td). We denote Gi simply by ∂Wi
g. See [16] for further details on this space.

Let λ > 0, f be a functional on H1,W (Td), uN be the unique weak solution of

λuN −∇NAN∇NWuN = f,

and u0 be the unique weak solution of

λu0 −∇A∇Wu0 = f. (4.4.2)

For more details on existence and uniqueness of such solutions see [16].
In this context, we say that the diagonal matrix A is a homogenization of the sequence of random

matrices AN , denoted by AN H−→ A, if the following conditions hold:

• uN converges weakly in H1,W (Td) to u0, when N →∞;

• aNi ∂NWi
uN → ai∂Wi

u, weakly in L2
xi⊗Wi

(Td) when N →∞.

Theorem 4.4.1. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (ω) admits a homogenization, where the homogenized
matrix A does not depend on the realization ω.

The following proposition regards the convergence of energies:

Proposition 4.4.2. Let AN H−→ A, as N →∞, with uN being the solution of

λuN −∇NAN∇NWuN = f,

where f is a fixed functional on H1,W (Td). Then, the following limit relations hold true:

1
Nd

∑
x∈TdN

u2
N (x)→

∫
Td
u2

0(x)dx,

and

1
Nd−1

d∑
j=1

∑
x∈TdN

aNjj(x)(∂NWj
uN (x))2 [Wj((xi + 1)/N)−Wj(xi/N)]

→
d∑
j=1

∫
Td
ajj(x)(∂Wj

u0(x))2d(xj⊗Wj),

as N →∞.
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4.4.1 Martingale Problem

We say that Yt ∈ S ′W (Td) solves the martingale problem with initial condition Y0 if for any G ∈ SW (Td)

Mt(G) = Yt(G)− Y0(G)− φ′(ρ)
∫ t

0

Ys(∇A∇WG)ds (4.4.3)

is a martingale with quadratic variation

〈Mt(G)〉 = 2tχ(ρ)φ′(ρ)
d∑
j=1

∫
Td
ajj
(
∂Wj

G
)2
d(xj ⊗Wj). (4.4.4)

Observe that if Yt is the generalized Ornstein-Uhlenbeck process with characteristics φ′(ρ)∇A∇W and√
2χ(ρ)φ′(ρ)A∇W , then Yt solves the martingale problem above.
Recall that Y N. is the bounded linear functional acting on functions G ∈ SW (Td):

Y Nt (G) =
1

Nd/2

∑
x∈Td

G(x)
[
ηt(x)− ρ

]
. (4.4.5)

This process Y N· is called density fluctuation field.
Denote byQN the distribution inD([0, T ],SW (Td)) induced by the process Y Nt and initial distribution

νρ. Our goal is to show that any limit point of Y N· solves the martingale problem. To this end, we need
to introduce the corrected density fluctuation field :

Y N,λt (G) =
1

Nd/2

∑
x∈Td

GλN (x)
[
ηt(x)− ρ

]
, (4.4.6)

where GλN is the weak solution for the equation

λGλN − LNGλN = λG−∇A∇WG (4.4.7)

that, via homogenization, converges to G which is the trivial solution of the problem

λG−∇A∇WG = λG−∇A∇WG.

The processes Y N· and Y N,λ· have the same asymptotic behavior, as we will see. But some calculations
are simpler with one of them than with the other. In this way, we have defined two processes in
D([0, T ],S ′W (Td)), where S ′W (Td) is the topologic dual of the space SW (Td).

Given a process Y· in D([0, T ],S ′W (Td)), and for t ≥ 0, let Ft be the σ-algebra generated by Ys(H)

for s ≤ t and H ∈ SW (Td). Furthermore, set F∞ = σ
(⋃

t≥0 Ft
)

. Denote by QλN the distribution on

D([0, T ],S ′W (Td)) induced by the corrected density fluctuation field Y N,λ· and initial distribution νρ.
Theorem 4.2.1 is a consequence of the following result about the corrected fluctuation field.

Theorem 4.4.3. Let Q be the probability measure on D([0, T ],S ′W (Td)) corresponding to the generalized
Ornstein-Uhlenbeck process of mean zero and characteristics φ′(ρ)∇ · A∇W ,

√
2χ(ρ)φ′(ρ)A∇W . Then

the sequence {QλN}N≥1 converges weakly to the probability measure Q.

Note also that the above theorem implies that any limit point of Y N· solves the martingale problem
(4.4.3)-(4.4.4).

Before proving the Theorem 4.4.3, we will state and prove a lemma. This lemma shows that tightness
of Y N,λt follows from tightness of Y Nt , and even more, that they have the same limit points. So we can
derive our main theorem from Theorem 4.4.3.

Lemma 4.4.4. For all t ∈ [0, T ] and G ∈ SW (Td), limN→∞Eνρ
[
Y Nt (G)− Y N,λt (G)

]2 = 0.

Proof. By convergence of energies, we have that limN→∞GλN = G in L2
N (Td), i.e.

‖GλN −G‖2N :=
1
Nd

∑
x∈TdN

[GλN (x/N)−G(x/N)]2 → 0, as N →∞. (4.4.8)
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Since νρ is a product measure we obtain

Eνρ
[
Y Nt (G)− Y N,λt (G)

]2 =

= Eνρ
[ 1
Nd

∑
x,y∈TdN

[GλN (x/N)−G(x/N)][GλN (y/N)−G(y/N)](ηt(x)− ρ)(ηt(y)− ρ)
]

=

= Eνρ
[ 1
Nd

∑
x∈TdN

[GλN (x/N)−G(x/N)]2(ηt(x)− ρ)2
]
≤ C(ρ)

Nd

∑
x∈TdN

[GλN (x/N)−G(x/N)]2,

where C(ρ) is a constant that depend on ρ. By (4.4.8) the last expression vanishes as N →∞.

Proof of Theorem 4.4.3
Consider the martingale

MN
t (G) = Y Nt (G)− Y N0 (G)−

∫ t

0

N2LNY
N
s (G)ds (4.4.9)

associated to the original process and

MN,λ
t (G) = Y N,λt (G)− Y N,λ0 (G)−

∫ t

0

N2LNY
N,λ
s (G)ds (4.4.10)

associated to the corrected process.
A long, albeit simple, computation shows that the quadratic variation of the martingale MN,λ

t (G),
〈MN,λ(G)〉t, is given by:

1
Nd−1

d∑
j=1

∑
x∈Td

aNjj [∂
N
Wj
GλN (x/N)]2[W ((x+ ej)/N)−W (x/N)]× (4.4.11)

×
∫ t

0

cx,x+ej (ηs) [ηs(x+ ej)− ηs(x)]2 ds .

Is not difficult see that the quadratic variation of the martingale MN
t (G), 〈MN (G)〉t, has the expres-

sion (4.4.11) with G replacing GλN . Further,

Eνρ
[
cx,x+ej (η) [ηs(x+ ej)− ηs(x)]2

]
= Eνρ [1 + b(η(x− ej) + η(x))]Eνρ [(η(x+ ej)− η(x))2]
= 2(1 + 2bρ)ρ(1− ρ)
= 2φ′(ρ)χ(ρ).

Lemma 4.4.5. Fix G ∈ SW (Td) and t > 0, and let 〈MN,λ(G)〉t and 〈MN (G)〉t be the quadratic variation
of the martingales MN,λ

t (G) and MN
t (G), respectively. Then,

lim
N→∞

Eνρ
[
〈MN,λ(G)〉t − 〈MN (G)〉t

]2 = 0. (4.4.12)

Proof. Fix G ∈ SW (Td) and t > 0. A straightforward calculation shows that

Eνρ
[
〈MN,λ(G)〉t − 〈MN (G)〉t

]2 ≤
≤
[
k2t2

1
Nd−1

d∑
j=1

∑
x∈Td

aNjj [
(
∂NWj

GλN (x/N)
)2 − (∂NWj

G(x/N)
)2][W ((x+ ej)/N)−W (x/N)]

]2
,

where the constant k comes from the integral term. By the convergence of energies (Proposition 4.4.2),
the last term vanishes as N →∞.
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Lemma 4.4.6. Let G ∈ SW (Td) and d ≥ 1. Then

lim
N→∞

Eνρ

[ 1
Nd−1

∫ t

0

ds

d∑
j=1

∑
x∈Td

aNjj
(
∂NWj

G(x/N)
)2[W ((x+ ej)/N)−W (x/N)]×

×
[
cx,x+ej (ηs) [ηs(x+ ej)− ηs(x)]2 − 2χ(ρ)φ′(ρ)

]]2
= 0.

Proof. The case d = 1 follows from calculations similar to the ones found in Lemma 12 of [8].
Fix G ∈ SW (Td) and d > 1. The term in the previous expression is less than or equal to

t2θ4C(ρ)
Nd−1

‖∇NWG‖4W,N,4, (4.4.13)

where

‖∇NWG‖4W,N,4 :=
1

Nd−1

d∑
j=1

∑
x∈Td

(
∂NWj

G(x/N)
)4[W ((x+ ej)/N)−W (x/N)].

Thus, since for G ∈ SW (Td), ‖∇NWG‖4W,N,4 is bounded, the term in (4.4.13) converges to zero as N →
∞.

So, by Lemma 4.4.5 and 4.4.6, 〈MN,λ(G)〉t is given by

2tχ(ρ)φ′(ρ)
Nd−1

d∑
j=1

∑
x∈Td

aNjj
(
∂NWj

GλN (x/N)
)2[W ((x+ ej)/N)−W (x/N)]

plus a term that vanishes in L2
νρ(T

d) as N → ∞. By the convergence of energies, Proposition 4.4.2, it
converges, as N →∞, to

2tχ(ρ)φ′(ρ)
d∑
j=1

∫
Td
aNjj
(
∂WjG(x)

)2
dxj⊗Wj .

Our goal now consists in showing that it is possible to write the integral part of the martingale as
the integral of a function of the density fluctuation field plus a term that goes to zero in L2

νρ(T
d). By a

long, but simple, computation, we obtain that

N2LNY
N,λ
s (G) =

d∑
j=1

{ 1
Nd/2

∑
x∈TdN

LjNG
λ
N (x/N) ηs(x)

+
b

Nd/2

∑
x∈TdN

[
LjNG

λ
N ((x+ ej)/N) + LjNG

λ
N (x/N)

]
(τxh1,j)(ηs)

− b

Nd/2

∑
x∈TdN

LjNG
λ
N (x/N)(τxh2,j)(ηs)

}
,

where {τx : x ∈ Zd} is the group of translations, so that (τxη)(y) = η(x+ y) for x, y in Zd, and the sum
is understood modulo N . Also, h1,j , h2,j are the cylinder functions

h1,j(η) = η(0)η(ej) , h2,j(η) = η(−ej)η(ej) .

Note that inside the expression N2LNY
N,λ
s we may replace LjNGλN by aj∂xj∂WjG. Indeed, the

expression
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Eν(ρ)

{∫ t

0

d∑
j=1

1
Nd/2

∑
x∈TdN

[
LjNG

λ
N (x/N)− aj∂xj∂Wj

G(x/N)
] (
ηs(x)− ρ

)
+

+
b

Nd/2

∑
x∈TdN

[
LjNG

λ
N ((x+ ej)/N)− aj∂xj∂Wj

G((x+ ej)/N) +

LjNG
λ
N (x/N)− aj∂xj∂Wj

G(x/N)
](

(τxh1,j)(ηs)− ρ2
)
−

− b

Nd/2

∑
x∈TdN

[
LjNG

λ
N (x/N)− aj∂xj∂WjG(x/N)

](
(τxh2,j)(ηs)− ρ2

)}2

.

is less than or equal to

C(ρ, b)
∫ t

0

1
Nd

∑
x∈Td

[
LNG

λ
N (x/N)−∇A∇WG(x/N)

]2
.

Now, recall that GλN is solution of the equation (4.4.7), and therefore, the previous expression is less
than or equal to

t C(ρ, b)
λ2

‖GλN −G‖2N ,

thus, by homogenization and energy estimates in Theorem 4.4.1 and Proposition 4.4.2, respectively, the
last expression converges to zero as N →∞.

By the Boltzmann Gibbs principle, Theorem 4.6.1, we can replace (τxhi,j)(ηs)− ρ2 by 2ρ[ηs(x)− ρ]
for i = 1, 2. Doing so, the martingale (4.4.10) can be written as

MN,λ
t (G) = Y N,λt (G)− Y N,λ0 (G)−

∫ t

0

1
Nd/2

∑
x∈Td

∇A∇WG(x/N)φ′(ρ)
(
ηs − ρ

)
ds, (4.4.14)

plus a term that vanishes in L2
νρ(T

d) as N →∞.
Notice that, by (4.4.5), the integrand in the previous expression is a function of the density fluctuation

field Y Nt . By Lemma 4.4.4, we can replace the term inside the integral of the above expression by a term
which is a function of the corrected density fluctuation field Y N,λt .

¿From the results of Section 4.5, the sequence {QλN}N≥1 is tight and let Qλ be a limit point of it.
Let Yt be the process in D([0, T ],S ′W (Td)) induced by the canonical projections under Qλ. Taking the
limit as N →∞, under an appropriate subsequence, in expression (4.4.14), we obtain that

Mλ
t (G) = Yt(G)− Y0(G)−

∫ t

0

Ys(φ′(ρ)∇ ·A∇WG)ds (4.4.15)

where Mλ
t is some S ′W (Td)-valued process. In fact, Mλ

t is a martingale. To see this, note that for a mea-
surable set U with respect to the canonical σ-algebra Ft, EQλN [MN,λ

t (G)1U ] converges to EQλ [Mλ
t (G)1U ].

Since MN,λ
· (G) is a martingale, EQλN [MN,λ

T (G)1U ] = EQλN [MN,λ
t (G)1U ]. Taking a further subsequence if

necessary, this last term converges to EQλ [Mλ
t (G)1U ], which proves that Mλ

· (G) is a martingale for any
G ∈ SW (Td). Since all the projections of Mλ

t are martingales, we conclude that Mλ
t is a S ′W (Td)-valued

martingale.
Now, we need obtain the quadratic variation 〈Mλ(G)〉t of the martingale Mλ

t (G). A simple applica-
tion of Tchebyshev’s inequality proves that 〈MN,λ(G)〉t converges in probability to

2tχ(ρ)φ′(ρ)
d∑
j=1

∫
Td
aj

[
∂WjG

]2
d(xj⊗Wj),

Where χ(ρ) stand for the static compressibility given by χ(ρ) = ρ(1 − ρ). Remember the definition of
quadratic variation. We need to prove that

Nλ
t (G) := Mλ

t (G)2 − 2tχ(ρ)φ′(ρ)
d∑
j=1

∫
Td
aj

[
∂Wj

G
]2
d(xj⊗Wj)
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is a martingale. The same argument we used above applies now if we can show that supN EQλN [MN,λ
T (G)4] <

∞ and supN EQλN [〈MN,λ(G)〉2T ] <∞. Both bounds follows easily from the explicit form of 〈MN,λ(G)〉t
and (4.4.14).

On the other hand, by a standard central limit theorem, Y0 is a Gaussian field with covariance

E
[
Y0(G)Y0(H)

]
= χ(ρ)

∫
Td
G(x)H(x)dx.

Therefore, by Theorem 4.4.7, Qλ is equal to the probability distribution Q of a generalized Ornstein-
Uhlenbeck process in D([0, T ],S ′W (Td)) (and it does not depend on λ). By uniqueness of the generalized
Ornstein-Uhlenbeck processes (also due to Theorem 4.4.7), the sequence {QλN}N≥1 has at most one limit
point, and from tightness, it does have a unique limit point. This concludes the proof of Theorem 4.4.3.

4.4.2 Generalized Ornstein-Uhlenbeck Processes

In this subsection we show that the generalized Ornstein-Uhlenbeck process obtained as the solution
martingale problem which we are interested, is also a S ′W (Td)-solution of a stochastic differential equation,
and then we apply the theory in Appendix to conclude that there is at most one solution of the martingale
problem. Moreover, we also conclude that this process is a Gaussian process.

Theorem 4.4.7. Let Y0 be a Gaussian field on S ′W (Td). Then the unique S ′W (Td)-solution, Yt, of the
stochastic differential equation

dYt = φ′(ρ)∇A∇WYtdt+
√

2χ(ρ)φ′(ρ)AdNt, (4.4.16)

solves the martingale problem (4.4.3)-(4.4.4) with initial condition Y0, where Nt is a mean-zero S ′W (Td)-
valued martingale with quadratic variation given by

〈N(G)〉t = t

d∑
j=1

∫
Td

[
∂Wj

G
]2
d(xj ⊗Wj).

Moreover, Yt is a Gaussian process.

Proof. In view of definition of solutions in Appendix, Yt is a S ′W (Td)-solution of (4.4.16). In fact, by
hypothesis Yt satisfies the integral identity (4.4.3), and is also an additive functional of a Markov process.

We now check the conditions in Proposition 4.7.1 to ensure uniqueness of S ′W (Td)-solutions of (4.4.16).
Since by hypothesis Y0 is a Gaussian field, condition 1 is satisfied, and since the martingale Mt has the
quadratic variation given by (4.4.4), we use Remark 4.7.2 to conclude that condition 2 holds. Condition
3 follows from Lemmas 4.3.4 and 4.3.5. Therefore Yt is unique.

Finally, by Blumenthal’s 0-1 law for Markov processes, Mt and Y0 are independent, since for measur-
able setsA andB, P (Y0 ∈ A,Mt ∈ B) = E(1Y0∈A1Mt∈B) = E[E(1Y0∈A1Mt∈B |F0+)] = E[1Y0∈AE(1Mt∈B |F0+)] =
E[1Y0∈AP (Mt ∈ B)] = P (Y0 ∈ A)P (Mt ∈ B). Applying Lévy’s martingale characterization of Brownian
motions, the quadratic variation of Mt, given by (4.4.4), yields that Mt is a time deformation of a Brow-
nian motion. Therefore, Mt is a Gaussian process with independent increments. Since Y0 is a Gaussian
field, we apply Proposition 4.7.3 to conclude that Yt is a Gaussian process in D([0, T ], S′W (Td)).

4.5 Tightness

In this section we prove tightness of the density fluctuation field {Y N· }N introduced in Section 4.2. We
begin by stating Mitoma’s criterion [13]:

Proposition 4.5.1. Let Φ∞ be a nuclear Fréchet space and Φ′∞ its topological dual. Let {QN}N be a
sequence of distributions in D([0, T ],Φ′∞), and for a given function G ∈ Φ∞, let QN,G be the distribu-
tion in D([0, T ],R) defined by QN,G [y ∈ D([0, T ],R); y(·) ∈ A] = QN [Y ∈ D([0, T ],Φ′∞);Y (·)(G) ∈ A].
Therefore, the sequence {QN}N is tight if and only if {QN,G}N is tight for any G ∈ Φ∞.
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¿From Mitoma’s criterion, {Y N· }N is tight if and only if {Y N· (G)}N is tight for any G ∈ SW (Td),
since SW (Td) is a nuclear Fréchet space. By Dynkin’s formula and after some manipulations, we see that

Y Nt (G) = Y N0 (G)
∫ t

0

d∑
j=1

{ 1
Nd/2

∑
x∈TdN

LjNGN (x/N) ηs(x)

+
b

Nd/2

∑
x∈TdN

[
LjNGN ((x+ ej)/N) + LjNGN (x/N)

]
(τxh1,j)(ηs)

− b

Nd/2

∑
x∈TdN

LjNGN (x/N)(τxh2,j)(ηs)
}
ds +MN

t (G), (4.5.1)

where MN
t (G) is a martingale of quadratic variation

〈MN (G)〉t =
1

Nd−1

d∑
j=1

∑
x∈Td

aNjj [∂
N
Wj
GN (x/N)]2[W ((x+ ej)/N)−W (x/N)]×

×
∫ t

0

cx,x+ej (ηs) [ηs(x+ ej)− ηs(x)]2 ds .

In order to prove tightness for the sequence {Y N· (G)}N , it is enough to prove tightness for {Y N0 (G)}N ,
{MN
· (G)}N and the integral term in (4.5.1). The easiest one is the initial condition: from the usual central

limit theorem, Y N0 (G) converges to a normal random variable of mean zero and variance χ(ρ)
∫
G(x)2dx,

where χ(ρ) = ρ(1− ρ). For the other two terms, we use Aldous’ criterion:

Proposition 4.5.2 (Aldous’ criterion). A sequence of distributions {PN} in the path space D([0, T ],R)
is tight if:

i) For any t ∈ [0, T ] the sequence {PNt } of distributions in R defined by PNt (A) = PN [y ∈ D([0, T ],R) : y(t) ∈ A]
is tight,

ii) For any ε > 0,

lim
δ>0

lim
n→∞

sup
τ∈ΥT
θ≤δ

PN
[
y ∈ D([0, T ],R) : |y(τ + θ)− y(τ)| > ε

]
= 0,

where ΥT is the set of stopping times bounded by T and y(τ + θ) = y(T ) if τ + θ > T .

Now we prove tightness of the martingale term. By the optional sampling theorem, we have

QN
[∣∣MN

τ+θ(G)−MN
τ (G)

∣∣ > ε
]
≤ 1
ε2
EQN

[〈
MN
τ+θ(G)

〉
−
〈
MN
τ (G)

〉]
=

1
ε2
[〈
MN
τ+θ(G)

〉
−
〈
MN
τ (G)

〉]
=

1
ε2Nd−1

d∑
j=1

∑
x∈TdN

ajj(x)[∂NWj
G(x/N)]2[W ((x+ ej)/N)−W (x)]

×
∫ t+δ

t

cx,x+ej (ηs)[ηs(x+ ej)− ηs(x)]2ds

≤ δ

ε2
(1 + 2|b|)θ 1

Nd−1

d∑
j=1

∑
x∈TdN

[∂NWj
G(x/N)]2[W ((x+ ej)/N)−W (x)] (4.5.2)

≤ δ

ε2
(1 + 2|b|)θ(‖∇WG‖2W + δ),

forN sufficiently large, since the rightmost term on (4.5.2) converges to ‖∇WG‖2W , asN →∞. Therefore,
the martingale MN

t (G) satisfies the conditions of Aldous’ criterion. The integral term can be handled in
a similar way:
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EQN

[ ( ∫ τ+δ

τ

1
Nd/2

d∑
j=1

∑
x

{
LjNG(x/N)(ηt − ρ)

+ b[LjNG((x+ ej)/N) + LjNG(x/N)](τxh1 − ρ2)

− bLjNG(x/N)(τxh2 − ρ2)
)2

dt
]

≤ δC(b)
1
Nd

d∑
j=1

∑
x∈TdN

(
LjNG(x/N)

)2

≤ δC(G, b),

where C(b) is a constant that depends on b, and C(G, b) is a constant that depends on C(b) and on the
function G ∈ SW (Td). Therefore, we conclude, by Mitoma’s criterion, that the sequence {Y N· }N is tight.
Thus, the sequence of S ′W (Td)-valued martingales {MN

· }N is also tight.

4.6 Boltzmann-Gibbs Principle

We show in this section that the martingales MN
t (G) introduced in Section 4.4 can be expressed in terms

of the fluctuation fields Y Nt . This replacement of the cylinder function (τxhi,j)(ηs)− ρ2 by 2ρ[ηs(x)− ρ]
for i = 1, 2, constitutes one of the main steps toward the proof of equilibrium fluctuations.

Recall that (Ω,F , µ) is a standard probability space where we consider the vector-valued F-measurable
functions {aj(ω); j = . . . , d} that form our random environment (see Sections 4.2 and 4.4 for more de-
tails).

Take a function f : Ω× {0, 1}TdN → R. Fix a realization ω ∈ Ω, and let x ∈ TdN , define

f(x, η) = f(x, η, ω) =: f(TNxω, τxη),

where τxη is the shift of η to x: τxη(y) = η(x+ y).
We say that f is local if there exists R > 0 such that f(ω, η) depends only on the values of η(y) for

|y| ≤ R. On this case, we can consider f as defined in all the spaces Ω× {0, 1}TdN for N ≥ R.
We say that f is Lipschitz if there exists c = c(ω) > 0 such that for all x, |f(ω, η) − f(ω, η′)| ≤

c|η(x) − η′(x)| for any η, η′ ∈ {0, 1}TdN such that η(y) = η′(y) for any y 6= x. If the constant c can be
chosen independently of ω, we say that f is uniformly Lipschitz.

Theorem 4.6.1. (Boltzmann-Gibbs principle)
For every G ∈ SW (Td), every t > 0 and every local, uniformly Lipschitz function f : Ω×{0, 1}TdN → R,

it holds

lim
N→∞

Eνρ

[ ∫ t

0

1
Nd/2

∑
x∈TdN

G(x)Vf (x, ηs)ds
]2

= 0, (4.6.1)

where
Vf (x, η) = f(x, η)− Eνρ

[
f(x, η)

]
− ∂ρE

[ ∫
f(x, η)dνρ(η)

](
η(x)− ρ

)
.

Here, E denotes the expectation with respect to µ, the random environment.

Let f : Ω × {0, 1}TdN → R be a local, uniformly Lipschitz function and take f(x, η) = f(θNxω, τxη).
Fix a function G ∈ SW (Td) and an integer K that shall increase to∞ after N . For each N , we subdivide
TdN into non-overlapping boxes of linear size K. Denote them by {Bi, 1 ≤ i ≤ Md}, where M = [NK ].
More precisely,

Bi = yi + {1, . . . ,K}d,

where yi ∈ TdN , and Bi ∩Br = ∅ if i 6= r. We assume that the points yi have the same relative position
on the boxes.
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Let B0 be the set of points that are not included in any Bi, then |B0| ≤ dKNd−1. If we restrict the
sum in the expression that appears inside the integral in (4.6.1) to the set B0, then its L2

νρ(T
d)-norm

clearly vanishes as N → +∞, since the variables Vf (x, η) are independent and have mean zero.
Let Λsf be the smallest cube centered at the origin that contains the support of f and define sf as

the radius of Λsf . Denote by B0
i the interior of the box Bi, namely the sites x in Bi that are at a distance

at least sf + 2 from the boundary:

B0
i = {x ∈ Bi, d(x,TdN \Bi) > sf + 2}.

Denote also by Bc the set of points that are not included in any B0
i . By construction, it is easy to

see that |Bc| ≤ dNd( c(f)
K + K

N ), where c(f) is a constant that depends on f .
We have that for continuous H : Td → R,

1
Nd/2

∑
x∈TdN

H(x)Vf (x, ηt) =
1

Nd/2

∑
x∈Bc

H(x)Vf (x, ηt)+

+
1

Nd/2

Md∑
i=1

∑
x∈B0

i

[
H(x)−H(yi)

]
Vf (x, ηt) +

1
Nd/2

Md∑
i=1

H(yi)
∑
x∈B0

i

Vf (x, ηt).

Note that we may take H continuous, since the continuous functions are dense in L2(Td). The first step
is to prove that

lim
K→∞

lim
N→∞

Eνρ

[ ∫ t

o

1
Nd/2

∑
x∈Bc

H(x)Vf (x, ηt)ds
]2

= 0.

As νρ is an invariant product measure and Vf has mean zero with respect to the measure νρ, the last
expectation is bounded above by

t2

Nd

∑
x,y∈Bc
|x−y|≤2sf

H(x)H(y)Eνρ
[
Vf (x, η)Vf (y, η)

]
.

Since Vf belongs to L2
νρ(T

d) and |Bc| ≤ dNd( c(f)
K + K

N ), the last expression vanishes by taking first
N → +∞ and then K → +∞.

¿From the continuity of H, and applying similar arguments, one may show that

lim
N→∞

Eνρ
[ ∫ t

0

1
Nd/2

Md∑
i=1

∑
x∈B0

i

[
H(x)−H(yi)

]
Vf (x, ηt)ds

]2
= 0.

In order to conclude the proof it remains to be shown that

lim
K→∞

lim
N→∞

Eνρ

[ ∫ t

0

1
Nd/2

Md∑
i=1

H(yi)
∑
x∈B0

i

Vf (x, ηt)ds
]2

= 0. (4.6.2)

To this end, recall proposition A 1.6.1 of [12]:

Eνρ

[∫ t

0

V (ηs)ds
]
≤ 20θt‖V ‖2−1, (4.6.3)

where ‖ · ‖−1 is given by

‖V ‖2−1 = sup
F∈L2(νρ)

{
2
∫
V (η)F (η)dνρ − 〈F,LNF 〉ρ

}
,

and 〈·, ·〉ρ denotes the inner product in L2(νρ).
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Let L̃N be the generator of the exclusion process without the random environment, and without the
conductances (that is, taking a(ω) ≡ 1, and Wj(xj) = xj , for j = 1, . . . , d, in (4.2.5)), and also without
the diffusive scaling N2:

L̃Ng(η) =
d∑
j=1

∑
x∈TdN

cx,x+ej (η)
[
g(ηx,x+ej )− g(η)

]
,

for cylindric functions g on the configuration space {0, 1}TdN .
For each i = 1, ..,Md denote by ζi the configuration {η(x), x ∈ Bi} and by L̃Bi the restriction of the

generator L̃N to the box Bi, namely:

L̃Bih(η) =
∑

x,y∈Bi
|x−y|=1/N

cx,y(η)
[
h(ηx,y)− h(η)

]
.

We would like to emphasize that we introduced the generator L̃N because it is translation invariant.
Now we introduce some notation. Let L2(P ⊗ νρ) the set of measurable functions g such that

E[
∫
g(ω, η)2dνρ] <∞. Fix a local function h : Ω×{0, 1}TdN → R in L2(P ⊗ νρ), measurable with respect

to σ(η(x), x ∈ B1), and let hi be the translation of h by yi − y1: hi(x, η) = h(θ(yi−y1)Nω, τyi−y1η).
Consider

V NH,h(η) =
1

Nd/2

Md∑
i=1

H(yi)L̃Bihi(ζi).

The strategy of the proof (4.6.2) is the following: we show that V NH,h vanishes in some sense as
N →∞, and then, that the difference between Vf and V NH,h also vanishes, as N →∞. The result follows
a simple triangle inequality. The first part is done by obtaining estimates on boxes, whereas the second
part mainly considers the projections of Vf on some appropriate Hilbert spaces, plus ergodicity of the
environment.

Let

LW,Bih(η) =
d∑
j=1

∑
x∈Bi

cx,x+ej (η)
Naj(x)

W (x+ ej)−W (x)
[h(ηx,x+ej )− h(η)].

Note that the following estimate holds

Md∑
i=1

〈h,−LW,Bih〉ρ ≤ 〈h,−LNh〉ρ.

Furthermore,

〈f,−L̃Bih〉 ≤ max
1≤k≤d

{Wk(1)−Wk(0)}
N

θ〈h,−LW,Bih〉ρ.

Using the Cauchy-Schwartz inequality, we have, for each i,

〈L̃Bihi, F 〉ρ ≤
1

2γi
〈−L̃Bihi, hi〉ρ +

γi
2
〈F,−L̃BiF 〉ρ,

where γi is a positive constant.
Therefore,

2
∫
V NH,h(η)F (η)dνρ ≤

2
Nd/2

Md∑
i=1

H(yi)
[

1
2γi
〈−L̃Bihi, hi〉ρ +

γi
2
〈F,−L̃BiF 〉ρ

]
. (4.6.4)

Choose

γi =
N1+d/2

θmax1≤k≤d{Wk(1)−Wk(0)}|H(yi)|
,
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and observe that the generator LN is already speeded up by the factor N2. We, thus, obtain

2
Nd/2

Md∑
i=1

H(yi)
γi
2
〈F,−L̃BiF 〉ρ ≤ 〈F,−L̃NF 〉ρ.

The above bound and (4.6.4) allow us to use inequality (4.6.2) on V NH,h, with the generator LW,Bi .
Therefore, we have that the expectation in (4.6.3) with V NH,h is bounded above by

20θt
Nd/2

Md∑
i=1

|H(yi)|
γi

〈−L̃Bihi, hi〉ρ,

which in turn is less than or equal to

20t‖H‖∞Mdθ2

Nd+1 max1≤k≤d{Wk(1)−Wk(0)}

Md∑
i=1

1
Md
〈−L̃Bihi, hi〉ρ.

By Birkhoff’s ergodic theorem, the sum in the previous expression converges to a finite value as N →∞.
Therefore, this whole expression vanishes as N →∞. This concludes the first part of the strategy of the
proof.

To conclude the proof of the theorem it is enough to show that

lim
K→∞

inf
h∈L2(νρ⊗P )

lim
N→∞

Eνρ

[ ∫ t

0

1
Nd/2

Md∑
i=1

H(yi)
{ ∑
x∈B0

i

Vf (x, ηs)− L̃Bihi(ζi(s))
}]2

= 0.

To this end, observe that the expectation in the previous expression is bounded by

t2

Nd

Md∑
i=1

||H||2∞Eνρ
( ∑
x∈B0

i

Vf (x, η)− L̃Bihi(ζi)
)2

,

because the measure νρ is invariant under the dynamics and the supports of Vf (x, η) − L̃Bihi(ζi) and
Vf (y, η)− L̃Brhr(ζr) are disjoint for x ∈ B0

i and y ∈ B0
r , with i 6= r.

By the ergodic theorem, as N →∞, this expression converges to

t2

Kd
||H||2∞E

[ ∫ ( ∑
x∈B0

1

Vf (x, η)− L̃B1h(ω, η)
)2

dνρ

]
. (4.6.5)

So, it remains to be shown that

lim
K→∞

t2

Kd
||H||2∞ inf

h∈L2(νρ⊗P )
E
[ ∫ ( ∑

x∈B0
1

Vf (x, η)− L̃B1h(ω, η)
)2

dνρ

]
= 0.

Denote by R(L̃B1) the range of the generator L̃B1 in L2(νρ⊗P ) and by R(L̃B1)⊥ the space orthogonal
to R(L̃B1). The infimum of (4.6.5) over all h ∈ L2(νρ ⊗ P ) is equal to the projection of

∑
x∈B0

1
Vf (x, η)

into R(L̃B1)⊥.
The set R(L̃B1)⊥ is the space of functions that depends on η only through the total number of

particles on the box B1. So, the previous expression is equal to

lim
K→∞

t2||H||2∞
Kd

E
[ ∫ (

Eνρ

[ ∑
x∈B0

1

Vf (x, η)
∣∣∣ηB1

])2

dνρ

]
(4.6.6)

where ηB1 = K−d
∑
x∈B1

η(x).
Let us call this last expression I0. Define ψ(x, ρ) = Eνρ [f(θxω)]. Notice that Vf (x, η) = f(x, η) −

ψ(x, ρ)−E[∂ρψ(x, ρ)]
(
η(x)−ρ

)
, since in the last term the partial derivative with respect to ρ commutes

115



with the expectation with respect to the random environment. In order to estimate the expression (4.6.6),
we use the elementary inequality (x+y)2 ≤ 2x2 + 2y2. Therefore, we obtain I0 ≤ 4(I1 +I2 +I3), where

I1 =
1
Kd

E
[ ∫ ( ∑

x∈B0
1

Eνρ
[
f(x, η)|ηB1

]
− ψ(x, ηB1)

)2

dνρ

]
,

I2 =
1
Kd

E
[ ∫ ( ∑

x∈B0
1

ψ(x, ηB1)− ψ(x, ρ)− ∂ρψ(x, ρ)[ηB1 − ρ]
)2

dνρ

]
,

I3 =
1
Kd

E
[
Eνρ

[( ∑
x∈B0

1

(
∂ρψ(x, ρ)− E[∂ρψ(x, ρ)]

)[
ηB1 − ρ

])2]]
.

Recall the equivalence of ensembles (see Lemma A.2.2.2 in [12]):

Lemma 4.6.2. Let h : {0, 1}TdN → R be a local uniformly Lipschitz function. Then, there exists a
constant C that depends on h only through its support and its Lipschitz constant, such that∣∣∣Eνρ [h(η)|ηS ]− EνηS [h(η)]

∣∣∣ ≤ C

Sd
,

where S ∈ N, and

ηS(x) =
1
Sd

∑
y∈CS

η(y),

with CS = {0, . . . , S − 1}d.

Applying Lemma 4.6.2, we get

1
Kd

E
[ ∫ ( ∑

x∈B0
1

Eνρ
[
f(x, η)|ηB1

]
− ψ(x, ηB1)

)2

dνρ

]
≤ C

Kd
,

which vanishes as K →∞.
Using a Taylor expansion for ψ(x, ρ), we obtain that

1
Kd

E
[ ∫ ( ∑

x∈B0
1

ψ(x, ηB1)− ψ(x, ρ)− ∂ρψ(x, ρ)[ηB1 − ρ]
)2

dνρ

]
≤ C

Kd
,

and also goes to 0 as K →∞.
Finally, we see that

I3 = Eνρ
[
(η(0)− ρ)2

]
· E
[( 1
Kd

∑
x∈B0

1

(∂ρψ(x, ρ)− E[∂ρψ(x, ρ)]
)2]

and it goes to 0 as K →∞ by the L2-ergodic theorem. This concludes the proof of Theorem 4.6.1.

4.7 Appendix: Stochastic differential equations on nuclear spaces

4.7.1 Countably Hilbert nuclear spaces

In this subsection we introduce countably Hilbert nuclear spaces which will be the natural environment
for the study of the stochastic evolution equations obtained from the martingale problem. We will begin
by recalling some basic definitions on these spaces. To this end, we follow the ideas of Kallianpur and
Perez-Abreu [10, 11] and Gel’fand and Vilenkin [6].

Let Φ be a (real) linear space, and let ‖ · ‖r, r ∈ N be an increasing sequence of Hilbertian norms.
Define Φr as the completion of Φ with respect to ‖ · ‖r. Since for n ≤ m

‖f‖n ≤ ‖f‖m for all f ∈ Φ, (4.7.1)
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we have,
Φm ⊂ Φn for all m ≥ n.

Let

Φ∞ =
∞⋂
r=1

Φr.

Then Φ∞ is a Fréchet space with respect to the metric

ρ(f, g) =
∞∑
r=1

2−r
‖f − g‖r

1 + ‖f − g‖r
, (4.7.2)

and (Φ∞, ρ) is called a countably Hilbert space.
A countably Hilbert space Φ∞ is called nuclear if for each n ≥ 0, there exists m > n such that the

canonical injection πm,n : Φm → Φn is Hilbert-Schmidt, i.e., if {fj}j≥1 is a complete orthonormal system
in Φm we have

∞∑
j=1

‖fj‖2n <∞. (4.7.3)

We now characterize the topologic dual Φ′∞ of the countably Hilbert nuclear space Φ∞ in terms of
the topologic dual of the auxiliary spaces Φn.

Let Φ′n be the dual (Hilbert) space of Φn, and for φ ∈ Φ′n let

‖φ‖−n = sup
‖f‖n≤1

|φ[f ]|,

where φ[f ] means the value of φ at f . Equation (4.7.1) implies that

Φ′n ⊂ Φ′m for all m ≥ n.

Let Φ′∞ be the topologic dual of Φ∞ with respect to the strong topology, which is given by the
complete system of neighborhoods of zero given by sets of the form, {φ ∈ Φ′∞ : ‖φ‖B < ε}, where
‖φ‖B = sup{|φ[f ]| : f ∈ B} and B is a bounded set in Φ∞. So,

Φ′∞ =
∞⋃
r=1

Φ′r.

4.7.2 Stochastic differential equations

The aim of this subsection is to recall some results about existence and uniqueness of stochastic evolution
equations in nuclear spaces.

We denote by L(Φ∞,Φ∞) (resp. L(Φ′∞,Φ
′
∞)) the class of continuous linear operators from Φ∞ to

Φ∞ (resp.Φ′∞ to Φ′∞).
A family {S(t) : t ≥ 0} of the linear operators on Φ∞ is said to be a C0,1-semigroup if the following

three conditions are satisfied:

• S(t1)S(t2) = S(t1 + t2) for all t1, t2 ≥ 0, S(0) = I.

• The map t→ S(t)f is Φ∞-continuous for each f ∈ Φ∞.

• For each q ≥ 0 there exist numbers Mq > 0, σq > 0 and p ≥ q such that

‖S(t)f‖q ≤Mq e
σqt‖f‖p for all f ∈ Φ∞, t > 0.

Let A in L(Φ∞,Φ∞) be infinitesimal generator of the semigroup {S(t) : t ≥ 0} in L(Φ∞,Φ∞). The
relations

φ[S(t)f ] := (S′(t)φ)[f ] for all t ≥ 0, f ∈ Φ∞ and φ ∈ Φ′∞;
φ[Af ] := (A′φ)[f ] for all f ∈ Φ∞ and φ ∈ Φ′∞;
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define the infinitesimal generator A′ in L(Φ′∞,Φ
′
∞) of the semigroup {S′(t) : t ≥ 0} in L(Φ′∞,Φ

′
∞).

Let (Σ,U , P ) be a complete probability space with a right continuous filtration (Ut)t≥0, U0 containing
all the P -null sets of U , and M = (Mt)t≥0 be a Φ′∞-valued martingale with respect to Ut, i.e., for each
f ∈ Φ∞, Mt[f ] is a real-valued martingale with respect to Ut, t ≥ 0. We are interested in results of
existence and uniqueness of the following Φ′∞-valued stochastic evolution equation:

dξt = A′ξtdt+ dMt, t > 0,
ξ0 = γ,

(4.7.4)

where γ is a Φ′∞-valued random variable, and A is the infinitesimal generator of a C0,1-semigroup on
Φ∞.

We say that ξ = (ξt)t≥0 is a Φ′∞-solution of the stochastic evolution equation (4.7.4) if the following
conditions are satisfied:

• ξt is Φ′∞-valued, progressively measurable, and Ut-adapted;

• the following integral identity holds:

ξt[f ] = γ[f ] +
∫ t

0

ξs[Af ]ds+Mt[f ],

for all f ∈ Φ∞, t ≥ 0 a.s..

It is proved in [11, Corollary 2.2] the following result on existence and uniqueness of solutions of the
stochastic differential equation (4.7.4):

Proposition 4.7.1. Assume the conditions below:

(H1) γ is a Φ′∞-valued U0-measurable random element such that, for some r0 > 0, E|γ|2−r0 <∞;

(H2) M = (Mt)t≥0 is a Φ′∞-valued martingale such that M0 = 0 and, for each t ≥ 0 and f ∈
Φ, E(Mt[f ])2 <∞;

(H3) A is a continuous linear operator on Φ∞, and is the infinitesimal generator of a C0,1-semigroup
{S(t) : t ≥ 0} on Φ∞.

Then the Φ′∞-valued homogeneous stochastic evolution equation (4.7.4) has a unique solution ξ = (ξt)t≥0

given explicitly by the “evolution solution”:

ξt = S′(t)γ +
∫ t

0

S′(t− s)dMs.

Remark 4.7.2. The statement E(Mt[f ])2 < ∞ in condition 2 of Proposition 4.7.1 is satisfied if
E(Mt[f ])2 = tQ(f, f), where f ∈ Φ∞, and Q(·, ·) is a positive definite continuous bilinear form on
Φ∞ × Φ∞.

We now state a proposition, whose proof can be found in Corollary 2.1 of [11], that gives a sufficient
condition for the solution ξt of the equation (4.7.4) be a Gaussian process.

Proposition 4.7.3. Assume γ is a Φ′∞-valued Gaussian element independent of the Φ′∞-valued Gaussian
martingale with independent increments Mt. Then, the solution ξ = (ξt) of (4.7.4) is a Φ′∞-valued
Gaussian process.
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