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Resumo

Esta tese estd dividida em duas partes, contendo um total de quatro artigos. Na primeira parte obte-
mos o limite hidrodinadmico para um sistema de particulas com velocidades em contato com reservatoérios
infinitos de particulas, e em seguida, obtemos o principio dos grandes desvintios dinamicos para este
processo. Na segunda parte estudamos sistemas de particulas com condutancias em meios aleatorios,
para tanto provamos a homogenizacao de certos operadores elipticos, e a partir dai provamos um limite
hidrodinamico para tais processos. Por fim, utilizamos a teoria de homogenizacao obtida para provar
flutuagdes no equilibrio para esses processos.

Antes de cada resultado fazemos uma introducao, levantando aspectos histéricos do problema e
dizemos a situacdo em que o artigo se encontra (se estd publicado, aceito ou submetido).
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Introducao

Sistemas de Particulas interagentes tém sido assunto de intenso estudo nas ultimas décadas devido ao
fato que, ao mesmo tempo que contemplam muitas propriedades coletivas encontradas em sistemas fisicos
real, eles sao, até certo ponto, trataveis matematicamente. Seus estudos tém permitido, em muitos casos,
um entendimentos detalhado de mecanismo microscopico através destes fendomenos coletivos. Estamos
especialmente interessados no estudo do comportamento hidrodinamico de sistemas de particulas que
preservam quantidades termodinamicas, tais como, o processo de exclusao simples e o processo Zero-
range, ambos introduzido por Spitzer [19]. Problemas como limite hidrodindmico, grandes desvintios e
flutuagoes sdo tipicamente abordados. Referenciamos o livro [13] para mais detalhes. Equagoes difer-
enciais parciais, fisica matematica e probabilidade sao algumas dreas da ciéncia vastamente exploradas
nestes estudos.

O limite hidrodindmico torna possivel descrever as caracteristicas termodindmicas (por exemplo,
temperatura, densidade, pressdo, etc.) de sistemas infinitos assumindo que a dindmica envolvida é
estocastica e segue a abordagem da mecénica estatistica introduzida por Boltzmann. Mais precisamente,
ela permite a dedugao do comportamento macroscépico do sistema a partir da interacao microcopica
entre as particulas. Neste plano de trabalho iremos considerar dindmicas microscopicas consistindo
de passeios aleatdrios no reticulado submetidas a alguma interacao local, estas dinamicas sao dadas
pelos sistemas de particulas interagentes. Portanto, esta abordagem justifica rigorosamente um método
bastante utilizado por fisicos para obter equagoes diferenciais parciais que descrevem a evolugao de
caracteristicas termodinamicas de um fluido, e portanto a existéncia de solugoes fracas de tais equagoes
diferenciais parciais podem ser vistas como um dos objetivos do limite hidrodindmico.

Nos ultimos anos tém havido um progresso consideravel no entendimento de estados estacionarios
fora do equilibrio: sistemas difusivos em contato com diferentes reservatérios impondo um gradiente nas
quantidades conservadas do sistema. Nestes sistemas, existe um fluxo de matéria através do sistema e
a dindmica resultante ndo é reversivel. A principal diferenga com relagio a estados em equilibrio (re-
versfveis) é a seguinte: no equilibrio, a medida invariante, que determina as propriedades termodinamicas
¢é dada pela distribuicao de Gibbs especificada pelo Hamiltoniano. Por outro lado, em estados fora do
equilibrio, a construgao de estados estacionarios requer a solucao de um problema dinamico. Uma das
propriedades tipicas e impressionantes desses sistemas é a presenga de correlagao de longo alcance. Para
os modelos de exclusio simples e simétricos isto ja foi feito no artigo pioneiro de Spohn [20]. N6s referimos
também para [1, 2] para duas resenhas recentes sobre este tépico.

O comportamento hidrodinamico do processo de exclusao unidimensional com bordos estocasticos foi
estudado por [3], [4] e [14]. Além disso, Landim, Olla e Volchan [15] consideraram o comportamento de
uma particula marcada num processo de exclusao simples simétrico sob a agao de uma constante externa,
e fizeram conexoes entre o comportamento de uma particula marcada nessa situagdo com um processo
com reservatorios infinitos.

Nos consideramos estados estaciondrios fora do equilibrio, onde a auséncia do equilibrio é devida
a campos externos ou potenciais quimicos no bordo, donde existe um fluxo de quantidades fisicas, tais
como calor, carga elétrica, ou substancias quimicas através do sistema. O comportamento hidrodindmico
para este tipo de processo em qualquer dimenséo foi resolvido por [3, 4]. No entanto, eles resolveram
este problema apenas para o caso em que a Unica quantidade termodinamica observavel é a densidade
empirica.

Considere agora a seguinte notacdo: Sejam D% = Sy x T‘]jv_l, com Sy = {1,...,.N —1} e D% =
[0,1] x T9!. Mais ainda, seja ¥V C R? um conjunto finito de velocidades v = (vy,...,v4). Assuma que
V é invariante por reflexdo e permutacao de coordenadas:

(U17 <oy Ui—1, = U35 Vit 1, - - ,'Ud) € (vo(l)a ce ,’Uo-(d))

pertencem a V para todo 1 < i < d, e todas as permutagées o de {1,...,d}, dado que (v1,...,vq)
pertence a V.

Nos trabalhos de [9] e [17], que contém resultados apresentados nesta tese, um processo de exclusao
com velocidades e bordos estocasticos foi estudado, de tal forma que a equacdo hidrodinamica obtida
tem a forma



0pp)+ 3 010 VF(p,p)] = 5A(p),
veEV

onde v = (1,v1,...,v4), p é a densidade e p = (p1,...,pa) € 0 momento. F é uma quantidade ter-
modinamica determinada pelas propriedades ergddicas da dinamica.

Este processo pode ser descrito informalmente como se segue. Para um ponto z = (1, ...,74) € R%,
seja & = (xg,...,2q). Fixe uma velocidade v € V, um inteiro N > 1, e densidades com dominio no bordo
0<ay(-)<1le0< () <1; em um tempo dado, cada sitio do conjunto {1,...,N —1} x {0,..., N —
1}9=1 est4 ou vazio, ou ocupado por uma particula numa velocidade v. No volume, cada particula tenta
pular para algum de seus vizinhos com mesma velocidade, com uma taxa fracamente assimétrica. Para
respeitar a regra de exclusao, a particula s6 pula de o sitio alvo na mesma velocidade v estiver vazio;
caso contrario nada acontece. No bordo, sitios com primeiras coordenadas dadas por 1 ou N — 1 tém
particulas sendo criadas ou destruidas de tal forma que as densidades locais sdo a, (Z) e 5,(Z): com taxa
o, (Z/N) uma particula é criada em {1} x {Z} se o sitio estd vazio, e com taxa 1 — a,,(Z) a particula em
{1} x {Z} é removida se o sitio estd ocupado, com taxa 3, (%) uma particula é criada em {N —1} x {Z} se
o sitio estd vazio, e com taxa 1 — 3,(Z) a particula em {N — 1} x {Z} é removida se o sitio estd ocupado.
Superposta a essa dindmica, existe um processo de colisao que troca velocidades de particulas no mesmo
sitio de uma forma que o momento é conservado. Nosso principal interesse é examinar o modelo de gases
estocasticos dado pelo gerador Ly que é a superposicao da dinamica do bordo com a colisao e exclusao:

Ly = N>{Lh + LS + LS},

onde E’J’V denota o gerador que modela a parte da dindmica em que uma particula no bordo pode entrar
ou sair do sistema, L% denota o gerador que modela a parte de colisao da dinamica e, por fim, L5
modela a parte de exclusao da dinamica. Note que o tempo foi acelerado difusivamente no gerador do
processo.

Seja f uma funcao em Xpy. O gerador da parte de exclusdo da dinamica, £57, é dado por

LXHM =D D vl —n(zv)]Py(z—z,0) [f(n™>") = f)],

veV z,z+2€DY,

onde
n(y,v) sew=vez=muz,
noY(z,w) =< nlz,v) sew=vez=y,
n(z,w)  caso contrario.

Vale a pena notar que o gerador pode ser decomposto na parte simétrica e assimétrica:

ex __ pex,l ex,2
&=L 4 Lo,

onde
L =53 X Aol nE] o) - o),
sy

EFNm =53 X w0l =0 0)lp( = 2,0) [F67) = £0).

veV z,x+2€DY

O gerador da parte de colisdo da dinamica, £, é dado por

LYHM) = D> py.a.n) [f@r) = f)],

yeDY q€Q
onde Q é o conjunto de todas as colisoes que preservam momento:

Q:{q:(vaw,v/,w/)EV4:U+U}:’UI+U}/}7



a taxa p(y,q,n) é dada por

Py, q,m) = ny, v)ny, w)[L —nly, v")][1 —n(y, w")],

e para g = (vp, v1, V2, v3), a configuracao n¥:? apds a colisdo é definida como

79 (2, u) = n(y,vj42) se z=y e u=wv; para :,ﬂgum 0<35<3,
n(z, ) caso contrério,

onde o indice v; o deve ser entendido médulo 4.

Particulas com v e w no mesmo sitio colidem com taxa 1 e produzem duas particulas com velocidades
v’ e w’ naquele sitio.

Finalmente, o gerador da parte da dinamica do bordo é dado por

(LX) = D D low(@/ N1 = n(z,v)] + (1= au(@/N))i, 0)[f (0™ n) = f(n)]
zeDY, veEV
11:1
D D IBu@/N)L = (e v)] + (L= Bo(@/N))n(a, 0)[f (0™ n) — F(n)],

zeD% veV
r1=N-—1

onde & = (z2,...,z4),
, 1—n(z,w), se w=vey=u
T,V — ’ ’ ’
g 77(y> w) { 77(% w), caso contrario. ’

e para todo v € V, ay, B, € C?(T4"1). Nés também assumimos que, para todo v € V, a, e (3, tém
imagem pertencendo a algum subconjunto compacto de (0,1). As fungdes «, e (,, que afetam as taxas
de nascimento e morte no bordo representam as densidades dos reservatérios.

Em [17] foi provado que realmente o modelo satisfaz um comportamento hidrodindmico, com uma
equacao diferencial parcial como a descrita acima.

No artigo [9], foi provado um principio de grandes desvintios dindmicos para um modelo com bordos
estocasticos tendo mais de uma quantidade observada. Como acontece normalmente, a principal dificul-
dade aparece na prova da cota inferior, onde é preciso mostrar que qualquer trajetoria Ay, 0 < ¢ < T,
com fungdo taxa finita, I7(A) < oo, pode ser aproximada por uma sequéncia de trajetérias regulares
{A\":n > 1} tais que

A" — X e Ip(\") — Ip(N).

Para evitar essa dificuldade, foi seguido o método introduzido em [8]. E bem conhecido que se
I7(X\) < 0o, entdo existe um campo externo H associado a A, no sentido de que A resolve uma equagao
hidrodindmica perturbada por um campo externo H. A estratégia de [8] é aproximar o campo externo
H por uma sequéncia de funcgoes suaves, H,, e entdao mostrar que as solugoes fracas das equagoes
hidrodinamicas perturbadas por H,, correspondentes, convergem para A no sentido descrito acima.

Também estudamos os processos com condutdncias em meios aleatérios. Nés trabalhamos com o
meio aleatério através da homogenizagao de operadores elipticos.

Os primeiros resultados rigorosos para operadores elipticos aleatérios na forma divergente com coefi-
cientes estocasticamente homogéneos foram obtidos por Papanicolaou e Varadhan in [16].

A descricao matemdtica de meios microscopicamente heterogéneos, usualmente envolve fungoes rapi-
damente oscilantes. O objetivo da teoria da homogenizagao é fornecer uma rigorosa descrigao macroscopica
do meio estudado. Com uma vasta literatura, homogenizagao se firma como uma area bem desenvolvida.

Os problemas de homogenizacao para varias estruturas aleatérias sdo amplamente discutidos na
literatura fisica e matematica.

No trabalho [18], cujos resultados sdo apresentados nesta tese, a nogao de espagos de Sobolev no
toro d-dimensional é generalizada. Mais precisamente, consideremos d fungoes estritamente crescentes
continuas a direita, com limites a esquerda W; : R - R, i =1,...,d, e fazendo W (z) = Z?Zl W;(z;) para
x € R?, consideramos o espaco W-Sobolev consistindo das funcdes f que possuem gradiente generalizado
no sentido fraco. Varias propriedades, que sao andlogas aos cldssicos resultados de espagos de Sobolev,
sao obtidas. Uma classe de equagoes elipticas e parabdlicas W-generalizada sao introduzidas obtendo



resultados de existéncia e unicidade de solugoes fracas. Resultados de homogenizacao de uma classe de
operadores aleatorios sao investigados. Finalmente, como aplicagao de toda esta teoria desenvolvida, nés
provamos um limite hidrodindmico para processos gradientes com conduténcias (induzida por W) em
ambientes aleatorios.

Informalmente, o processo de exclusdao com condutancias induzidas por W em ambientes aleatérios
é um sistema de particulas interagentes no toro discreto d-dimensional N _1'1[“}\,, na qual no maximo
uma particula por sitio é permitida, e apenas pulos para vizinhos mais proximos sao permitidos. Mais
ainda, a taxa de pulo na diregao e; é proporcional ao reciproco dos incrementos de W com respeito a
j-ésima coordenada vezes um termo a(w) vindo de um campo aleatério ergddico e eliptico. Tal sistema
pode ser entendido como um modelo de difusao em meios heterogéneos. Por exemplo, ele pode modelar
difusoes de particulas em um meio com membranas permeavei nos pontos de descontinuidades de W,
que tende a refletir particulas, creando descontinuidades espaciais nos perfis de densidades. Note que
essas membranas sao hiperplanos (d — 1)-dimensionais imersos em um ambiente d-dimensional. Mais
ainda, se nds considerarmos que W; tem mais de um ponto de descontinuidade para mais de um j, essas
membranas serdo variedades mais sofistifcadas, por exemplo, unides de caixas (d — 1)-dimensionais.

A evolucao do processo de exclusdao simples unidimensional com conduténcias tem atraido muita
atencao recentemente [5, 6, 7, 11, 12], com o limite hidrodindmico provado em [12] tendo sido também
obtido em [5], independetemente. Em todos esses artigos, um limite hidrodindmico foi provado. O limite
hidrodindmico pode ser interpretado como uma lei dos grandes nimeros para a densidade empirica do
sistema.

Mais formalmente, denote por T¢ = (R/Z)¢ = [0,1)¢ o toro d-dimensional, e por T4, = (Z/NZ)¢ =
{0,...,N —1}% o toro discreto d-dimensional com N? pontos.

Fixe uma funcio W : R? — R tal que

M=

W(.’L‘l,...,l‘d) = W;g(xk),

k=1

onde cada W : R — R é uma funcao estritamente crescente, continua a direita e como limites & esquerda
(cadlag), periédica no sentido de que para todo u € R

Wi(u+1) = Wi(u) = Wi(1) — Wi(0).

Defina a derivada generalizada dyy, de uma funcio f : T¢ — R por

. [, xpt e xg) — f(@1,e . Ty Tg)
0 =1
ka(xla s Ly 5Id) 61_1)% Wk(xkr ¥ 6) — Wk:<xk) 5

quando o limite acima existir e for finito. Se para uma funcdo f : T¢ — R as derivadas generalizadas
Ow, existem para todo k =1,...,d, denote o gradiente generalizado de f por

Vwf=0w/f - ...0w,f).

Mais detalhes sobre essa derivada generalizada podem ser encontrados no artigo [18].

Agora nés vamos introduzir os coeficientes homogéneos estatisticamente e rapidamente oscilantes que
serao usados para definir as taxas aleatdrias do processo de exclusdo com condutéancias.

Seja (2, F, ) um espaco de probabilidade e {7, : © — Q;z € Z4} um grupo ergddico de trans-
formacoes F-mensuraveis que preservam a medida u:

o T, :Q — Q é F-mensuravel para todo = € Z%,
o u(T,A) = u(A), para todo A € Fex € Z9,
o Ty=1, TyoT, =Ty,

e Todo f € LY(Q) tal que f(T,w) = f(w) p-q.t.p. para todo x € Z%, é igual a uma constante
u-q.t.p..



A dltima condigao implica que o grupo T} é ergddico.
Vamos agora introduzir as fungoes a valores vetoriais F-mensuraveis {a;(w);j = 1,...,d} que satis-
fazem uma condicao de elipticidade: existe 6 > 0 tal que

1 < a;(w) <46,

para todo w € Qe j = 1,...,d. Entdo, defina as matrizes diagonais A" cujos elementos sdo dados por
aévj(a:) = aév =a;(Tnew), 2€T8, j=1,...,d
Fixe uma realizacdo tipica w € Q do ambiente aleatério. Para cada x € T4 e j = 1,...,d, defina a

taxa simétrica £z pye; = Exte;,x POT

aj’ (z) _ aj’ (x)

$opte; = NW((z+¢;)/N) =W (x/N)] _ NW;((z; + 1)/N) — W;(z;/N)]’

onde eq,...,eq é a base canonica do R

Distribua particulas em ']I“]i\, de tal forma que cada sitio de ']Tﬁl\, estd ocupado por no méximo uma
particula. Denote por 1 as configuagoes do espago de estados {0, I}T(Ij\f tal que n(z) = 0 se o sitio x estd
vazio, e n(x) = 1 se o sitio z tem particula.

O processo de exclusao com condutancias em um ambiente aleatério é um processo de Markov a
tempo continuo {n; : ¢ > 0} com espago de estados {0, 1}T7V = {n:T% — {0,1}}, cujo gerador Ly age
em fungoes f : {0, 1}TdN — R como

d
(Lnf)n) = Z Z Eo,ote; Coate; (1) {flo™*m) — f(n)}

J=1zeT¢
onde o4y é a configuragio obtida de n apds trocar as varidveis n(z) e n(z + e;):

n(z+e;) sey=u,
(e™*Fein)(y) =  n(x) sey=1x+ej,
n(y) caso contrario,

Coate; (M) = 1 + b{n(z —ej) +n(z +2¢))},
com b > —1/2, e onde todas as somas sdo médulo N.

Nés consideramos o processo de Markov {n; : ¢ > 0} nas sobre as configuracoes {0, I}Tlljv associadas
ao gerador Ly na escala difusiva, i.e., Ly esta acelerado por N2.

Nés agora descrevemos a evolugdo estocdstica do processo. Seja x = (x1,...,24) € T‘fv. Com taxa
§e,ate;Caote; (1)) as varidveis ocupacionais n(z), n(z + e;) sdo trocadas. Note que o campo aleatério
afeta a taxa por um fator multiplicativo. Se W ¢ diferenciavel em z/N € [0,1)?, a taxa pela qual as
particulas s@o trocadas é de ordem 1 para cada direcdo, mas se algum W; é descontinuo em x; /N, isso
nao vale mais. De fato, assuma, para fixar idéias, que W; é descontinuo em z;/N, e suave nos segmentos
(zj/N,x;/N +¢ce;) e (xj/N — ce;,x;/N). Assuma, também, que Wy, é diferencidvel na vizinhanca de
x/N para k # j. Neste caso, a taxa pela qual particulas pulam através dos elos da forma {y — e;, y},
com y; = x;, ¢ de ordem 1/N, onde numa vizinhanga de tamanho N destes pontos, particulas pulam
com taxa 1. Portanto, note que uma particula no sitio y — e; pula para y com taxa 1/N e pula com taxa
1 para cada uma das 2d — 1 outras opcoes. Particulas, portanto, tendem a evitar os elos {y —e;,y}. No
entanto, como o tempo serd re-escalonado difusivamente, e como num intervalo de tempo de tamanho N2
uma particula passa um tempo de ordem N em cada sitio y, particulas serao capazes de cruzar os elos
mais lentos {y —e;,y}. Desta forma, as conduténcias sao induzidas pela fungdo W através da inversa do
gradiente de W, donde por sua vez, o ambiente aleatério é dado pela matriz diagonal AV := (a% (2))dxad-

O efeito do fator ¢ ,1¢;(n) é o seguinte: se o pardmetro b é positivo, a presenga de particulas na
vizinhanga do elo {z,x + e;} aumenta a taxa de troca por um fator de ordem 1, e se o pardmetro b é
negativo, a presenca de particulas nos sitios vizinhos diminui a taxa de troca, também, por um fator de
ordem 1.



Por fim, em [10], cujos resultados sao apresentados nesta tese, definimos o espago de Fréchet nuclear
Sw(T?), e provamos as flutuacdes no equilibrio para o modelo com condutancias. Mais precisamente,
denote por YV o campo de flutuacdes de densidades, que é o funcional linear limitado agindo em funcdes
G € Sw(T?) como

VNG = O Gl — gl

d
zeTg,

Foi provado que se YV é o campo de flutuacoes de densidades definido acima, entdo, YV converge
fracamente pra tnica solucio em Sfy,(T?) (o dual topolégico do Sw(T?), Y; € D([0,T], Sy (T4)), da
equagao diferencial estocéstica

dY; = ¢/ (p) VAV Ydt + \/2x(p)¢' (p) AdN,

onde x(p) = p(1—p), ¢(p) = p+bp?, e ¢'(p) = 1+2bp; A é uma matriz constante diagonal, como j-ésimo
elemento dado por a; := E(aé\l)7 para todo N € N; e N; é um martingal de média zero com valores em
Sty (T9), com variagio quadratica

d
(N(G)) = tZ/ [8WjG(x)}2 d(z? @ Wy),
j=17T

onde d(z/ ® W;) é a medida produto do1 ® -+ ® dzj—1 ® dW; ® dej41 ® - - ® dxg. Mais ainda, N; é
um processo Gaussiano com incrementos independentes. O processo Y; é conhecido na literatura como
o processo de Ornstein-Uhlenbeck generalizado com caracteristicas ¢'(p) VAV e 1/2x(p)¢’ (p) AV .
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Chapter 1

Hydrodynamic limit for a boundary
driven stochastic lattice gas model
with many conserved quantities

Artigo publicado no periédico Journal of Statistical Physics, 139, p. 219-251, 2010.

abstract

We prove the hydrodynamic limit for a particle system in which particles may have different velocities.
We assume that we have two infinite reservoirs of particles on the boundary: this is the so-called boundary
driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process
with collision among particles having different velocities.

1.1 Introduction

Interacting particle systems have been the subject of intense studies during the last 30 years due to
the fact that, in one hand, they present many of the collective features that are found in real physical
systems, and, in the other hand they are, up to some extent, mathematically tractable. Their study
has led in many cases to a more detailed understanding of the microscopic mechanisms behind those
collective phenomena. We refer to [14] for further references, and to [5] for recent results.

Since their introduction by Spitzer [21], the simple exclusion process and the zero-range process have
been among the most studied interacting particles systems, and they have served as a test field for new
mathematical and physical ideas.

In the last years there has been considerable progress in understanding stationary non equilibrium
states: reversible systems in contact with different reservoirs at the boundary imposing a gradient on
the conserved quantities of the system. In these systems there is a flow of matter through the system
and the dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is
the following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is
given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilibrium
states the construction of the stationary state requires the solution of a dynamical problem. One of
the most striking typical property of these systems is the presence of long-range correlations. For the
symmetric simple exclusion this was already shown in a pioneering paper by Spohn [22]. We refer to
[4, 7] for two recent reviews on this topic.

The hydrodynamic behavior of the one-dimensional boundary driven exclusion process was studied
by [8], [9] and [15]. Also, Landim, Olla and Volchan [18] considered the behavior of a tagged particle in a
one-dimensional nearest-neighbor symmetric exclusion process under the action of an external constant,
and made connections between the behavior of a tagged particle in this situation and a process with
infinite reservoirs.
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We consider a stationary non-equilibrium state, whose non-equilibrium is due to external fields and /or
different chemical potentials at the boundaries, in which there is a flow of physical quantities, such as
heat, electric charge, or chemical substances, across the system. The hydrodynamic behavior for this
kind of processes in any dimension has been solved by [8, 9]. Nevertheless, they have solved this problem
only for the case where the unique thermodynamic observable quantity is the empirical density.

Our goal is to extend their results to the situation when there are several thermodynamic variables:
density and momentum. It is not always clear that a closed macroscopic dynamical description is possible.
However, we show that the system can be described by a hydrodynamic equation: fix a macroscopic time
interval [0, T], and consider the dynamical behavior of the empirical density and momentum over such an
interval. The law of large numbers for the empirical density and momentum is then called hydrodynamic
limit and, in the context of the diffusive scaling limit here considered, is given by a system of parabolic
evolution equations which is called hydrodynamic equation. Once the hydrodynamic limit for this model
is rigorously established, a reasonable goal is to find an explicit connection between the thermodynamic
potentials and the dynamical macroscopic properties like transport coefficients. The study of large
deviations provides such a connection. The dynamical large deviation for boundary driven exclusion
processes in any dimension with one conserved quantity has been recently proved in [11].

The dynamical large deviations for the model with many conserved quantities is studied at [12], and
the hydrodynamic limit obtained in this article is important for such large deviations.

The model which we will study can be informally described as follows: fix a velocity v, an integer
N > 1, and boundary densities 0 < a,(+) < 1 and 0 < 3,(+) < 1; at any given time, each site of the set
{1,...,N—1} x{0,..., N — 1}~ is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric
rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is
empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or N — 1
have particles being created or removed in such a way that the local densities are «,(Z) and §,(Z): at
rate a, (Z/N) a particle is created at {1} x {Z} if the site is empty, and at rate 1 — «,(Z) the particle at
{1} x {&} is removed if the site is occupied, and at rate (3,(Z) a particle is created at {N — 1} x {Z} if
the site is empty, and at rate 1 — 3, (Z) the particle at {N — 1} x {Z} is removed if the site is occupied.
Superposed to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved.

Similar models have been studied by [1, 10, 20]. In fact, the model we consider here is based on the
model of Esposito et al. [10] which was used to derive the Navier-Stokes equation. It is also noteworthy
that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two
conserved quantities have been studied in [3].

Under diffusive time scaling, assuming local equilibrium, it is not difficult to show that the evolution
of the thermodynamic quantities is described by the parabolic system of equations

- 1
0i(p,p)+ Y 0 [v-VF(p,p)] = 34, p); (1.1.1)
%
where o = (1,v1,...,v4), p stands for the density and p = (p1,...,pq) for the momentum. F is a

thermodynamical quantity determined by the ergodic properties of the dynamics.
Therefore, the purpose of this article is to define an interacting particle system whose macroscopic
density profile evolves according to the partial differential equation given by (1.1.1) with initial condition

(p,p)(0,-) = (po,Po)(-) and (p, p)(t,z) = (p, p)p(x),z € D,

with D being a suitable domain, and the equality on the boundary being on the trace sense.

This equation derives from the underlying stochastic dynamics through an appropriate scaling limit
in which the microscopic time and space coordinates are rescaled diffusively. The hydrodynamic equation
(1.1.1) thus represents the law of large numbers for the empirical density and momentum of the stochastic
lattice gas. The convergence has to be understood in probability with respect to the law of the stochastic
lattice gas. Finally, the initial condition for (1.1.1) depends on the initial distribution of particles. Of
course many microscopic configurations give rise to the same initial condition (pg, py)(-)-

The article is organized as follows: in Section 1.2 we establish the notation and state the main results
of the article; in Section 1.3, we prove the hydrodynamic limit for the particle system we are interested
in; the proof of a Replacement Lemma needed for the hydrodynamic limit is postponed to Section 1.4;
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in Section 1.5 we prove the uniqueness of weak solutions of the hydrodynamic equations also needed for
the hydrodynamic limits.

1.2 Notation and results

Let T = {0,...,N — 1}? = (Z/NZ)%, the d-dimensional discrete torus, and let D}, = Sy x T% !, with
Sy =1{1,...,N —1}. Further, let also ¥ C R? be a finite set of velocities v = (v1,...,vq). Assume that
V is invariant under reflexions and permutations of the coordinates:

(Ula sy Vi1, =V, Uiy - - - avd) and (va'(l)7 .. 'ava'(d))

belong to V for all 1 < i < d, and all permutations o of {1,...,d}, provided (v1,...,vq) belongs to V.
Finally, denote the d-dimensional torus by T¢ = [0,1)? = (R/Z)<.

On each site of D%, at most one particle for each velocity is allowed. We denote: the number of
particles with velocity v at z, v € V, € D%, by n(z,v) € {0, 1}; the number of particles in each velocity
v at a site x by 7, = {n(z,v);v € V}; and a configuration by n = {n,;z € D%}. The set of particle

d
configurations is Xy = ({0, 1}V)DN.

On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system
evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles
of the same velocity, and (ii) binary collision between particles of different velocities. Let p(z,v) be an
irreducible probability transition function of finite range, and mean velocity v:

Z xp(x,v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to site z + y for a
particle with velocity v is

1
1(5y,6j + 5y7—ej) + NP(%“%

DN | =

PN(yav) =

d
Jj=

where 0, , stands for the Kronecker delta, which equals one if # = y and 0 otherwise, and {e1,...,eq} is
the canonical basis in RY.

1.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator £y which is the
superposition of the boundary dynamics with the collision and exclusion:

Ly = N2{L5 + LS + LY, (1.2.1)

where L4 stands for the generator which models the part of the dynamics at which a particle at the
boundary can enter or leave the system, L£4; stands for the generator which models the collision part of
the dynamics and lastly, £%7 models the exclusion part of the dynamics. Let f be a local function on
Xn. The generator of the exclusion part of the dynamics, L%, is given by

LFNHM =Y > 0zl —n(zv)]Py(z—,0) [f(1"*") = fn)],

veV z,x+2€DY,

where
n(y,v) ifw=wvandz=uz,
N (z,w) = ¢ nlz,v) if w=wvandz=y,
n(z, w) otherwise.

We will often use the decomposition

er __ pex,l ex,2
= L6 4 L502
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where

L Hm =53 X o)l - o) - o),

veV g at2eDY
|z—z|=1

and

(LY ) = % S0 n@)l =z 0)p(z - z,0) [f(n™7Y) = f)].

veEV z,x+2€DY,

The generator of the collision part of the dynamics, £, is given by

LYHm) = D> py.a.n) [f@r) - f)],

yeDY q€Q
where Q is the set of all collisions which preserve momentum:
Q={qg=(v,w,v,w) eV :vtw=1v 4w},
the rate p(y, ¢,n) is given by

Py, a:m) =1y, v)n(y, w)[1 = n(y, v")][1 = nly, w")],

and for ¢ = (vg, v1,v2,v3), the configuration n¥'? after the collision is defined as

n"9(z,u) = n(y,vj42) if 2=y and u = v; fo.r some 0 < 5 < 3,
n(z,u) otherwise,

where the index of v;19 should be taken modulo 4.

Particles of velocities v and w at the same site collide at rate one and produce two particles of
velocities v and w’ at that site.

Finally, the generator of the boundary part of the dynamics is given by

LN = D D lew(@/N)[1 = nlz,v)] + (1 — ay(@/N))n(z, v)][f(@™n) — f(n)]
zeDY veV
+ D Y Bu@/N)[L = n(x,v)] + (1= Bu(&/N))n(, 0)][f (e"n) = f(n)],

zeD% VeV
11:N71

where T = (IQ, s 7Id),

v _ 1*77(%10), it w=wv andy:m’
o"'n(y, w) = { n(y, w), otherwise.

)

and for every v € V, au,, 8, € C?(T4!). We also assume that, for every v € V, a,, and 3, have images
belonging to some compact subset of (0,1). The functions «, and (3,, which affect the birth and death
rates at the two boundaries, represent the densities of the reservoirs.

Note that time has been speeded up diffusively in (1.2.1). Let {n(t),¢ > 0} be the Markov process
with generator £y and denote by {SV,t > 0} the semigroup associated to L.

Let D(R4, Xn) be the set of right continuous functions with left limits taking values on Xy. For
a probability measure p on Xy, denote by P, the measure on the path space D(R;, Xy) induced by
{n(t) : t > 0} and the initial measure p. Expectation with respect to P, is denoted by E,,.

1.2.2 Mass and momentum

For each configuration & € {0,1}Y, denote by Iy(£) the mass of & and by I(¢), k = 1,...,d, the

momentum of &:
Io(§) =Y &), k(€)= vé(v).

veEV veY
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Set I(¢) = (Io(&),...,14(€)). Assume that the set of velocities is chosen in such a way that the
unique quantities conserved by the random walk dynamics described above are mass and momentum:
Doz py I (nz). Two examples of sets of velocities satisfying these conditions can be found at [10].

For each chemical potential A = (), ..., Aq) € R4 denote by m, the measure on {0,1}Y given by

ma(§) = exp{A-I(£)}, (1.2.2)

1
Z(A)
where Z(A) is a normalizing constant. Note that my is a product measure on {0,1}, i.e., that the
variables {{(v) : v € V} are independent under my.

Denote by ,ug the product measure on X, with marginals given by

Nz, ) =& =ma(9),

for each £ in {0,1}Y and = € D%. Note that {n(x,v) : x € D%, v € V} are independent variables under
pX, and that the measure p is invariant for the exclusion process with periodic boundary condition.
The expectation under p) of the mass and momentum are given by

p(A) = By [lo(na)) =) 6u(A
veyY

pe(N) = E [ (n2)] kae
veEY

In this formula 6, (\) denotes the expected value of the density of particles with velocity v under my:

exp {)\0 + 22:1 )\kvk}
1+ exp {)\0 + Zi:l )\kvk}

0u(A) := B,y [§(v)] =

Denote by (p, p)(A) := (p(X),p1(A),...,pa(A)) the map that associates the chemical potential to the
vector of density and momentum. It is possible to prove that (p,p) is a diffeomorphism onto {4 C R4+,
the interior of the convex envelope of {I(¢),¢ € {0,1}V}. Denote by A = (Ag,...,Aq) : & — R the
inverse of (p, p). This correspondence allows one to parameterize the invariant states by the density and
momentum: for each (p,p) in U we have a product measure V’J)\jp = M%(pm) on Xy.

1.2.3 Hydrodynamic limit for the boundary driven exclusion process

Let D% =[0,1] x T¢"!. Fix po : D* — R, and p, : D¢ — R%, where py = (po.1,---,Po.d). We say that
a sequence of probablhty measures (uy)y on Xy is assoc1ated to the density profile pg and momentum
profile p,, if, for every continuous function G : D¢ — R and for every § > 0,

A}LTHOOMN n: Nd Z ( )Io% / G(u)po(u)du| > 6| =0,

.LEDd

and for every 1 < k <d

lim p [n: % Z G(%) Ik(nx)—/Dd G(u)por(u)du| > | =0.

N—o0 ;
zeDg

Fix T > 0 and let (B, || - ||g) be a Banach space. We denote by L2([0,T], B) the Banach space of
measurable functions U : [0,T] — B for which

T
U125 0,21, = / U3t < oo.

Moreover, we denote by H'(D?) the Sobolev space of measurable functions in L?(D?) that have gener-
alized derivatives in L2(D?).
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For x = (x1,%) € {0,1} x T4~ let

a(Z) = ep(w(Z), v1iay (), . .., vaa (T)), if z1 =0,
d(z) = (1.2.3)
b(Z) = v (Bu(T), v16u(Z), ..., vaBu(T)), if xp = 1.

Fix a bounded density profile pg : D? — R, and a bounded momentum profile p, : D¢ — R4, A
bounded function (p,p) : [0,7] x D¢ — R, x R? is a weak solution of the system of parabolic partial
differential equations

0 (p,P) + X per ¥ [v - VX (0,(A(p, )] = 3A(p, p),
(p,p)(0,-) = (po, po)(-) and (p, p)(t, ) = d(x),z € {0,1} x T4,

if for every vector valued function H : [0,T] x D¢ — R+ of class C2 ([0, 7] x D?) vanishing at the
boundary, we have

(1.2.4)

H(T,u) - (p,p)(T,w)du— | H(0,u) - (po, po)(w)du
Dd Dd

T 1 )
:/0 dt/Dddu (0. 9)(t ) - H (1) + 5 (o, ) (6) - S OF, H(t,u

1<i<d

T T
_ / dt / dS b(@) - B, H(t,u) + / dt / dS a(ii) - O, H(t, )
0 {1} xTd—1 {0} xTd-1

/ dt/Dd du S5 x(0uAp,p) S vil, Ht, ),

vEV 1<i<d

dS being the Lebesgue measure on T4,
We say that that the solution (p, p) has finite energy if its components belong to L2([0,T], H'(D%)):

/OT ds </D |Vp(s,u)|2du) < oo,
/OT ds (/Dd ||Vpk(3,u)||2du> < o0,

for k =1,...,d, where V f represents the generalized gradient of the function f.
In Section 1.5 we prove that there exists at most one weak solution of the problem (1.2.4).

and

Theorem 1.2.1. Let (uV)n be a sequence of probability measures on Xn associated to the profile
(po,Po)- Then, for every t > 0, for every continuous function H : D — R vanishing at the boundary,
and for every d > 0,

lim P, ~ Nd Z H( )IO N:(t)) — H(u)p(t,u)du| > 06| =0,

N=ee zeD$ b

and for 1 <k <d

lim P,~ Nd Z ( )Ik N ( ))—/DdH(u)pk(t,u)du >0 =0,

N—oo
wEDd

where (p,p) has finite energy and is the unique weak solution of equation (1.2.4).

The strategy to prove Theorem 1.2.1 is to use a replacement lemma, together with some estimates
on Dirichlet forms and entropies for this boundary driven process.

19



1.3 Hydrodynamic limit for the boundary driven process

Fix T > 0, let M be the space of finite positive measures on D? endowed with the weak topology,
and let M be the space of bounded variation signed measures on D? endowed with the weak topology.
Let My x M9 be the cartesian product of these spaces endowed with the product topology, which is
metrizable.

Recall that the conserved quantities are the mass and momentum presented in subsection 1.2.2. For

k=0,...,d, denote by Wf N the empirical measure associated to the kth conserved quantity:
1
k,N
J;EDdN

where §,, stands for the Dirac measure supported on u. We denote by < Wf ’N, H > the integral of a test
function H with respect to an empirical measure Wf N

Let D([0,T], M4 x M%) be the set of right continuous functions with left limits taking values on
M, x M. We consider the sequence of probability measures on D([0,T], My x M) (Qn)y that
corresponds to the Markov process ml¥ = (a0 ... 7% starting from .

Let V be an open neighborhood of D¢, and consider, for each v € V, smooth functions Ky V —(0,1)
in C3(V), for k = 0,...,d. We assume that each Ky, has its image contained in some compact subset
of (0,1), that the restriction of k = >, .\,(k§, viKY, ..., v4KY) to {0} x T4~1 equals the vector valued
function a(-) defined in (1.2.3), and that the restriction of x to {1} x T¢~! equals the vector valued
function b(-), also defined in (1.2.3), in the sense that x(z) = d(z1, %) if x € {0,1} x T4-1.

Further, we may choose x for which there exists a constant 8 > 0 such that:

k(uy, @) =d(—1,a) if 0<u; <90,
k(uy, @) = d(1,a) if 1-0<u; <1,
for all @ € T?~!. In that case, for every N large enough, v¥ is reversible for the process with generator
LY and then (—N2L8 f, f)un is positive.
We then consider v/Y the product measure on Xy with marginals given by

V/{;V{n : 77(557 ) = g} = mA(K(T))(§)7
where my(-) was defined in (1.2.2). Note that with this choice, for N sufficiently large, we have that if
z € {1} x T% ', then E,x[n(z,v)] = ay(Z/N) and if z € {N — 1} x T4, then E,xn(x,v)] = Bu(Z/N).
1.3.1 Entropy estimates

Let us recall some definitions. Recall that S} is the semigroup associated to the generator Ly =
N2(LSF + LS + LY). Denote by f; = f¥ the Radon-Nikodym derivative of u¥ SV with respect to v .
Define D, by

DV,QV = Dﬁgfc\f +D$N +DZN?

where

G- 3 X pv-wo) [ (VI - VW) v,

veV zeD% a+2z€DY,

AED DY /p(x,q,n) {\/f(nx’q) - \/mrv,iv(dn),

9€Q zeDY,
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and

VN = Z Z /[Oév(f/N)(l —n(z,v)) + (1 — ap(2/N))n(x,v)]x

vEY pe{1}xT4?

< [V~ VT v dn) +
Y /[ﬂv(i“/N)(l—n(w,v))+(1—ﬂv(56/N))77(x,v)]><

d—1
VEV 2 {N-1}xTY

2
x |VF@m ) = /T v (an).
Proposition 1.3.1. There exists a finite constant C = C(«, 3) such that
O H(pN S vy < —=N?D,~ (f:) + CN“. (1.3.2)

Proof: Denote by L the adjoint operator of £y with respect to Y. Then, f; is the solution of the
forward equation

atft :N2£T/ft7
fo=du® jav

Thus,
O H (N SNy = / N2L* filog frdv® +[ N2LY fodv®y :/ fiN?Ly log frdv®
= N2/ft(£N log f; — ;ft)d N +N2/£thdu5.
Note that the last term is the price paid for not using an invariant measure.

Since for every a,b > 0, alog(b/a) — (b— a) is less than or equal to —(vb—/a)?, for every x,y € D%,
we have

2
JoLsE, Vo fi = L5, o fu < —Pu(y = 2.0) [VEGP") = VE)|

An analogous calculation for the other parts of the generator permits to conclude that

NQ/ft(EN log fi — 'C]L)\L;ft)dl/fiv < —N’D,n(f1).

To conclude the proposition we need a bound for N? [ Ly fidv)Y. Let us write it explicitly:

NQ/Lthdu NQ/(LZe“ft YL, 1 LS f 4 Lo fi)dy

Now, we compute each term inside this integral separately.

NQ/Eﬁ’lftdun NQ/Z > Z — Va0 Ve, 0) — f()]dvY

veVY g;eDd Jj=1

[y oy S0~ D+ 00y ) — F)Y

veV zeD, j=1

where 0, represents a configuration with one particle at position x and velocity v, and no particles
elsewhere. Then, if we let

Yoo = 00 (A(r(2))) /(1 = 0, (A(x(2)))),
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the change of variables 1) — 05 + 0a4e, 0 = &, changes the measure as dv)Y (n)/dvY (&) = Yo ,u/Vote, v-
Hence, after changing the variables, we obtain

NQ/civ’C’lftdu}j = NQZZ/ > { Jeo ]ft(n)dViV

ey j=1 EDd ’Yere]v
s WSS [ o
eV j=1 eDd 7:6 €;,v

YN[ A

veY j=1 zeD%

+ NZ/ S & (@) folm)dv

veV rEDd
xr1= 1

- NZ/ Z t(n)dz/,iv.

veV wEDd
xr1= N 1

Since 7z, is smooth and does not vanish, we can bound the above quantity by C; N 4 where C; is a
constant depending only on « and 3. By a similar approach, one may conclude that

Nz/ﬁezzftdy <ZZ”J Z u790v

veY j=1 xEDd

which is clearly bounded by CoN?, where C5 is a constant depending only on o and £3.
We now move to the generator with respect to collision. The change of variables n¥'¢ = ¢ changes
the measure as dv® (n)/dv) (&) = (o Wyw)/(Vy,oVyw), Where v + w = v’ + w’. Then, clearly,

(Vy.vYy.w)/ (Vg0 Yywr) = 1, and therefore
N? / LS frdvy =0
Lastly, we note that the change of variables 0®%n = ¢ changes the measure dvY (n)/dvY (¢) =

ay(Z/N)/(1 = ay(Z/N)) or (1 — a,(Z/N))/a,(Z/N), depending on whether there is or there is not a
particle at the site = with velocity v, and analogously for 3. Therefore, a simple computation shows that

N? / LY frdv =

which concludes the Proposition. [
Let < f,g >, be the inner product in L?(v) of f and g:

< f9>0= / fodv.

Proposition 1.3.2. There exist constants C1 > 0 and Co = Ca(c, 3) > 0 such that for every density f
with respect to v, then

< EN\/fa \/? >Vi\’§ *OlDué\’ (f) + CQNd72-

Proof: A simple computation permits to conclude that D¢ DN and D? py are both non-negative. Finally,
the computation for D¢ follows the same lines as those on the proof of Proposmon 1.3.2, and on Lemmas
1.3.4 and 1.3.5, and is therefore omitted. OJ
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1.3.2 Replacement lemma for the boundary

Fix k =0,...,d, a continuous function G : [0,7] x T¢~! — R4l and consider the quantities
1 -
Vkl(S,ﬂaOéaG) = Nd-1 Z Gk(saff/N)(Ik(ﬂa ;c) kaav (Z/N) )
ZeTH veEV

(87767 ) Nd 1 Z Gksx/N)(Ik(n(N 13:) kaﬁv l’/N)

;cE’]I‘d 1 veyY

Ne—1

VEi(s,n,a,G) = Nd T Z Gr(s iﬂ)(Ik(ﬁu #(8) — — Z (1,3 (s )
xE’]I‘d 1 r1=1
and
1 1 Ry
Vi2(s,m,B,G) = N1 Z Gr(s,T) (Ik(U(N—Li)(S)) ~ Ne Z Ik(n(N—l,i)(S)))a
FeTi-t € o=N(—e-1

where s € [0,T], and G, 0 < k < d are the components of function G.

The main result of this subsection is the following Lemma:

Lemma 1.3.3. For each 0 <t <T,0<k <d, and G :[0,T] x D* — R continuous,

t .
lim E,~ [/ dstj(s,n,C,G)H =0,
0

N—o0

where j = 1,2, and ( = «, 5.
Proof: Tt is clear that ij is bounded for each 0 < k < d, and 5 = 1,2. By the entropy inequality,

N H /OtdsV,g(s,n,C,G)H <

H(pNvy) 1
< Nd +ANd log E,~ |exp

for all A > 0. We have that the first term on the right-hand side is bounded by CA~!, for some constant
C. To prove this result we must show that the limit of the second term is less than or equal to 0 as
N — oo for some suitable choice of A > 0. Since el < e* + e~ ® and l‘iimNHOo N*dlog{aN +bn} <
max{limy_,.c N~%log(an), limy_.o N ~%log(by)}, replacing V! by —V;/, or more precisely, replacing
Gy by —Gy, we are able to conclude that we only need to prove the previous statement without the
absolute values in the exponent. Let Wy (s) = AN9V/(s,n,(,G). Then, by Feynman-Kac’s formula (see,
for instance, [2, 14]), we have

t
/ dSANde](Sanvc?G)‘}] )

0

t .
BN {exp {/ dsANde] (s,n,C,G)}] =< ng’“l, 1>,~,
0

where S;/Ktk is a semigroup associated to the operator £}V = L + Wy (t), for more details see [14, A.1.7],
see also [2]. Then, by Cauchy-Schwarz

< SPFL 1 >N << S S >

Ny of £V, L)*, is equal to L% + Wi(t).

K

On the other hand, since Wy, is bounded, the adjoint in L?(v

We have that
By < SIF1, SV 1 >, < (L% 4 £)e SV, S >

= 2<LFSMFLSTEL >< Aw, (8) < SYFLSTEL >y,
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where Aw, (s) = SUD | £ 2 v )y {< Wi(s), f >N+ <Lnf, f >l,év}. Therefore, we obtained that

1

mlogEyév {exp{‘ /Ot dsANdej(s,n,C,G)‘}] <

t . <£ \/7’\/7>V{V
S/O dw;p{/Vé(s,n,C,G)f(n(S))dViv+ NANd—2 ] }

In this formula the supremum is taken over all densities f with respect to v/Y, and recall that < f, g >,
stands for the inner product in L?(v) of f and g. An application of Proposition 1.3.2 permits to conclude
that < Ly, Vf >, is bounded above by CN?%2, where C > 0 is some constant. Thus, if we choose,
for instance, A = N, the proof follows from an application of the auxiliary Lemmas 1.3.4 and 1.3.5 given
below. [

Lemma 1.3.4. For every 0 <t < T, 0 <k <d, and every continuous G : [0,T] X Tdé-1 Rd'H,

t
Jim E,~ UO dSVkl(S,n,é,G)} =0,
where ( = a, (.

Proof: We will only prove for «, since for 3 the proof is entirely analogous. Note that G is continuous
and its domain is compact, hence, we may prove the above result without G. Set f, =1/t fot fsds. With
this notation we can write the expectation above, without G, as

N‘f—l > /?t(n) [Ik(n(m) - ka%(fﬂ/N)] dv,

o omd—1
Z€Ty veEVY

v 5 S [T n(18),0) - au@/N) dv.

FeTy ! veY

Then, splitting the integral into the integral over the sets [n((1,Z),v) = 0] and [n((1,Z),v) = 1], and
changing the variables as 1 — n(zy,v) = £, we obtain

% > /ﬁ(n) [Ik(n(m) - kaav(i/N)] dvy

zeTd vEV
t —
= W Z Z ’Uk/Pa,n |_7t(77) - ft(’l’} — O(l,i),v)] dI/,iV’
zgeTd 1 veV

where

Poy = aw(Z/N)(1=n((1,2),v)) + (1 = aw(2/N))n((1, L), v).
Writing {a — b} = {f,(n) — F.(n —01.2).0)} as {v/a— vVb}{y/a+ Vb} and applying Cauchy-Schwarz, the
above expression is bounded by

2t Zvev Vg
A N

where Dui}ﬂb(?t) is the Dirichlet form of f, with respect to £%. Then, choosing A = v/N, the proof
of the Lemma follows from an application of Proposition 1.3.2 together with the fact that the Dirichlet
form is convex. [

t _
d—1 ADyéV,b(ft)a

The next Lemma concludes the boundary behavior of the particle system.
Lemma 1.3.5. For each 0 <t < T, 0<k <d, and continuous G : [0,T] x D?,
- t
i fim B [ /0 dsV2(s,m,¢,G)| =0,

where ( = a, (.
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Proof: First of all, note that since G is continuous and its domain [0, 7] x D9 is compact, it is enough
to prove the result without the multiplying factor G. Moreover, we will only prove the first limit above,
since the proof of the second one is entirely analogous. Considering the notation used to prove Lemma
1.3.4, we may write the expectation above, without G, as

t 1 Ne—1
Nd-1 Z Ik(n(l 1) " Ne Z I 77(«70130) dV

. d—1 1
zeTy 1=

We now obtain, by a change of variables and a telescopic sum, that the absolute value of the above
expression is bounded above by

Ne—1 y—1 x1 r1—1
v 3w 3 S [ [ o T TT o] |
ETd 1 y=1 z1=1 i=1
where K is a constant which depends on «, B and d, 21 = 1,...,2y—1 = ¥y is the path from the origin to y

across the first coordinate of the space, and 7., () - - - 72, (1) is the sequence of nearest neighbor exchanges
that represents the path along z1, ..., 2;. By Cauchy-Schwarz, this expression is bounded above by

2

Ne—1 y—1 €1 x1—1

oD DI D SF B INEA( ) CCHENEAS | R0
zeTq ! y=1 z1=1 i=1 i=1
Ne—1 y—1 -l
Nd 1 Z Z Z Kl/ [ff HTz, ff(H Tzz(n)) dyé\f’
S e y=1 z1=1 i=1

for every A > 0. Now, we can bound above the last expression by

tAKl tKQNE
Nd—1 vl (ft) + A

for every A > 0, where K> is a constant that depends on Kj. Then, choosing A = /e N and applying
Proposition 1.3.2, we conclude the proof of this Lemma. [

1.3.3 Tightness
To prove tightness of the sequence (Qn)n, it is enough to prove that for every k =0,...,d

fi T e | sup |5 3 8 () B0 = 53 32 () ) | =0
[t s|<5 zeDY zeD¢,

for any smooth test function H : D? — R vanishing at the boundary.
Fix 0 < k < d, then, by Dynkin’s formula

t
MF=<afN H> - <abN > —/ Ly < 7N H > ds (1.3.3)
0
is a martingale. On the other hand,
t
E,~[MF]? =E,~ {/ {Ly <N H>? 2<abN 0>y <abN H>Yds|.
0

Writing the above expression as four sums, the first corresponds to the nearest neighbor symmetric
exclusion process and the other corresponds to the asymmetric exclusion process, the third and fourth
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corresponding to the collision and boundary parts of the dynamics, respectively. A long, albeit simple

computation shows that all of these sums are of order O(N~%), and therefore, the right-hand side of the

above expression is of the same order. Thus, by Doob’s inequality, E,,~ [supy<,<;(Mf)?] = O(N~9).
Hence, by (1.3.3) and the above estimates, we have

Ndz () @) NdZ (%) 1) +

zeD¢ zeD%

Nd Z Z Z/ 2,0)vn,-(0,0)[1 — (2, v)]2;(0u,; H) (%) dr +

J=1g,zeDg, veV

i 2 / @ (2) near+ i 3 [ 0uH (%)

zGDN
=N-1

o”'ulH Ik(%(r))dr + Ry +O(N~H)+O(NY,

IGDd s

where the terms were obtained from Ly < 7% H > by means of summation by parts, and the
replacement of discrete derivatives and discrete Laplacian by the continuous ones, and Ry is the error
coming from such replacements. Since p is of finite range, the error Ry is uniformly of order O(N~1).
Finally, by using Lemma 1.3.3 and a calculation similar to the one found in equation (1.3.9), we have
that LY < 75N H >= O(N~!). Tightness thus follows from the above estimates.

Our next goal is to prove the replacement lemma. To do so, we need the following result known as
equivalence of ensembles, which will be used in the proofs of the one block estimate and of the two block
estimate.

1.3.4 Equivalence of ensembles

Fix L > 1 and a configuration 7, let I”(x,n) := I*(z) = (I} (z),...,1%(x)) be the average of the
conserved quantities in a cube of the length L centered at z:

It Z I 77z
Z€T+AL

where, Ay = {—L,...,L}? and |Az| = (2L + 1) is the discrete volume of box Az.
Let U7, be the set of all possible values of I”(0,7) when 7 runs over ({0, I}V)AL, that is,

v, = {IL(O,n);n e ({0,1}")“}.

Note that %, is a finite subset of the convex envelope of {I(£) : € € {0,1}V}. The set of configurations
({o, I}V)AL splits into invariant subsets: for ¢ in Uy, let

or= {n e ({0, ) 15(0) = 1,} .

For each % in Uy, define the canonical measure vy, ; as the uniform probability measure on H (7). Note
that for every A in R4+!

ap i) = py” ( ‘IL = z) .
Let < g; f >, stands for the covariance of g and f with respect to u: < g; f >,= E,[fg] — E.[f]E.[g].

Proposition 1.3.6. (Equivalence of ensembles): Fiz a cube Ay C Ap. For each © € Uy, denote by
vt the projection of the canonical measure va, i on Ay and by ut the projection of the grand canonical
measure ,uILX(i) on Ng. Then, there exists a finite constant C(£,V), depending only on £ and V, such that

(e, V)

. 1/2
|AL| <f7f>ue

Bt [f] = Ee[f]] <
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for every function f : ({0, 1}V)A‘ — R.

The proof of Proposition 1.3.6 can be found in Beltrdn and Landim [1].

1.3.5 Replacement lemma

We now state the replacement lemma that will allow us to prove that the limit points ) are concentrated
on weak solutions of (1.2.4).

Lemma 1.3.7. (Replacement lemma): For all § > 0,1 <j<d, 0<k <d:

lim hmIP’N / Ndz ng\fc ))ds >4d| =0,

e—0 N—oo
zeDY

where

Vit = 2€+1 2¢+1)d Z ka Z 2,0)z; 7y(n(0,v)[1 — n(z,v)] Zvjvkx W (A(T(0))))|-

yEANy vEYV 2€74 veVY
(1.3.4)

Note that Vii,k is well-defined for large N since p(-,v) is of finite range. We now observe that
Propositions 1.3.2 and 1.3.2 permit us to prove the following replacement lemma for the boundary
driven exclusion process by using the process without the boundary part of the generator (see [17] for
further details). We postpone the rest of the proof to Section 1.4.

1.3.6 Energy estimates

We will now define some quantities to prove that each component of the solution vector belongs, in fact,
to H'([0,T] x D). The proof is similar to the one found in [15].
Let the energy Q : D([0,T], M) — [0, 0] be given by

with

T T
Q;(m) = sup {2/ dt < my,0,,Gy > —/ / duG(t,u)Q} ,
GeCx(Qr) 0 0 Dd

where Q7 = (0,T) x D¢ and C2°(Qr) stands for the set of infinitely differentiable functions (with respect
to both the time and space) with compact support in Qp. Let now, for any G € C*(Qr), 1 <1i < d and
C >0, Q% : D([0,T], M) — R be the functional given by

T T
QSC(W) = / ds < g, 0y, Gs > —C/ ds/ duG (s, u)?.
0 0 Dd

Note that 0:(m)
i(m
sup {Q%:} ==~ (1.3.5)
GeC=(Qr) 4C
Lemma 1.3.8. There exists a constant Cy = Co(k) > 0, such that for every i = 1,...,d, every k =

0,...,d, and every function G in C(Qr)

N@O@ ~log E,v [exp {NdQZ o, (mVF) 1] < Co.
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Proof: Applying Feynman-Kac’s formula and using the same arguments in the proof of Lemma 1.3.3,
we have that

1 T
mlogEyév exp N/o ds Z (I:(n2(8)) — I(Nz—e,; (8)))G(s,2/N)

wEDdN
is bounded above by
T
ﬁ/@ /\S dS,
where \Y is equal to
sup { (NS J1kto) = T = )Gl N). £) o N* < Ex T/ F 0 ).

zeD%

where the supremum is taken over all densities f with respect to Y. By Proposition 1.3.2, the expression
inside brackets is bounded above by

ent -+ {Nc:(s,m/m / [mm)—fk(%einf(n)v?(dn)}-

We now rewrite the term inside the brackets as

oY [{NG(a/N)lnta,) - e - eso)) o (dm)}

veY IeDd

After a simple computation, we may rewrite the terms inside the brackets of the above expression as

NG(s,2/N) [ lnfe,0) = nta — e o)l ()

— NG(s,z/N) / 0z, 0) f () (dn)

— NG(S,I/N)/U(x,v)f(ﬁxfei’z’v)%uﬁ(dn)

— NG(s,z/N) / 0@ 0)[f(m) — Fl®=em ) (d)

e e

< Gls.o/N)P [ gl )
+ i/n(x,v)f(nx_e“x’”) [N (1 - %7;“)]2 v (dn)

+ NZ\/%[\/f(nazfei,zv \/f 2 N d?]
4 26(sa/NP [ o) (VT + T2 (),

which is clearly bounded by C; + C1G(s,z/N)?, by some positive constant C; = C1(k), since 7., is
smooth and the fact that f is a density with respect to v¥. Thus, letting Cy = C + Cj, the statement
of the Lemma holds. [0

It is well-known that Q(r) is finite if and only if 7 has a generalized gradient, Vi = (O, 7, ..., 0y, 7),

and .
3(r) :/0 /D du| V', ()
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In which case, Q(7) = Q(m). Recall that the sequence (Qx)x defined in the beginning of this section is
tight. We have then the following proposition:

Proposition 1.3.9. Let Q* be any limit point of the sequence of measures (Q™)n. Then,

Eq- [ / s ( /, ||v,o<s,u>||2du>] < oo,
Eq [/OTds (/D ||vpk<s,u>||2du)] < .

Proof: We thus have to prove that the energy Q() is almost surely finite. Fix a constant Cp > 0
satisfying the statement of Lemma 1.3.8. Let {G,, : 1 < m < r} be a sequence of functions in C§°(Qr)
(the space of infinitely differentiable functions vanishing at the boundary) and 1 <i < d, and 0 < k < d,
be integers. By the entropy inequality, there is a constant C' > 0 such that

and

e L ()] s s o (0]

1<m<r 1<m<r
Therefore, Lemma 1.3.8 together with the elementary inequalities
N@oo N4 log(aN + bN) < N@oo maX{N@oo N—d log(aN), N@oo N~ log(bN)}

and exp{max{z1,...,2,}} <exp(z1)+ -+ exp(z,) imply that

G N,k _ : G N,k
For | max {00 0)] = i B | max {05, ("4}
< C+CCy.

Using this, the equation (1.3.5) and the monotone convergence theorem, we obtain the desired result. O

1.3.7 Proof of Theorem 1.2.1

Note that all limit points @* of (Qxn)n are concentrated on absolutely continuous measures with respect
to the Lebesgue measure since there is at most one particle per site, that is,

Q*{m; 7" (du) = py.(u)du, for all 0 < k < d} =1,

where 7% denotes the kth component of m and py = p.

For k£ =0,...,d, denote, again, by ﬂf N the empirical measure associated to the kth thermodynamic
quantity:
1
kN
T = Z I (02 (8)) 6 /-
zeD¢
Further, denote by ﬂf b1 and 7rf AON-1 e empirical measures associated to the kth thermodynamic

quantity restricted to the boundaries:

1
k,N,b;
L N Z I (e (t))0a /N,

xEDdN
zl:i

fori=1,N —1.
To compute Ly < Wf’N,H > for this process, we note that £ I;(n,) vanishes for k = 0,...,d,
because the collision operator preserves local mass and momentum.

Since, in our definition of weak solution we considered test functions H vanishing at the boundary,
that is, H(z) = 0, if z € {0,1} x T?!, we assume that H vanishes at the boundary as well.

29



Now, we consider the martingale
N,H N N !
M, ;" =< 7rf’ JH > — <7T§’ JH > —/ N2Ly <7rf’N,H> ds,
0
which can be decomposed into

t
MmN = <apN H> - <y H > —/O N2LS < 7b N H > ds (1.3.6)

t i
/ N2LSE? < abN H > ds — / N2LS < 7B N H > ds. (1.3.7)
0 0

We first prove that
/Ot N2Lh <7t N i > ds (1.3.8)
vanishes as N — oco. A simple calculation shows that
N2LYn(z,v) = N? [a (&/N) = n(z,v)], if @1 =1,
and
N2LYn(x,v) = N2 [B,(2/N) — n(z,v)], if 2, = N —1.

Since H vanishes on the boundary, H((z +e;)/N)=0ifx; = N —1, and H((z —e1)/N) =0if 21 = 0.
Then, we have the equalities NH (z/N) = Y H((z — e1)/N), if 21 = 1, and NH(z/N) = —0Y H(z/N),
if 1 = N — 1. Therefore, we obtain

NQE?V <ahN H> = ﬁerD% Zvev Vg [ty (i) - n(x,v)]aﬁH (337\[61)
xr1=1

N
o Nﬂ}*1 Z z€DY ZUEV ’Uk[ﬁ(

r1=N-—1

(1.3.9)

We now use the last computation together with Lemma 1.3.3 to conclude that (1.3.8) vanishes as N — oo.
Further, after two summations by parts of the integrand on the right-hand term of (1.3.6), we have
that

t t
1
/N2£?’1<7T§’N,H>ds = 5/ <7t N ANH > ds
0 0
kN, ba—
+ <7 ON 1,817H>*<7T5’N’b1,35/;H>,

1

and after one summation by parts on the right-hand term of (1.3.7), and noting again that H vanishes
at the boundaries, we have that

t t d
1
/ N2LE? < 7N H > ds = *W/ >0 o) (5) W ds,
0 0 j=1 zeTY,

where 7, stands for the translation by x on the state space Xy so that (7,7)(y,v) = n(x + y,v) for all
xz,y € Z% v €V, and W].A;’S is given by:
N,
WY =S w3 pe0) 2500, 0)[1 = 7 (2,0)]

veEV  zeZd

where vy = 1. Since p(-,v) is of finite range,
N,s
Ep,f {Wj,k } = kavjx(ev()‘))a
veV

where x(a) = a(1 — a). Now, note that E,~(n(z,v)) = a,(z/N) if z € {1} x T4 and E,y(n(z,v)) =
By(x/N) if € {N — 1} x T4 .
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We then apply Lemma 1.3.7 to write the martingale in terms of the empirical measure. Further, we
apply the replacement lemma for the boundary (Lemma 1.3.3) to obtain that all limit points satisfy the
integral identity in the definition of weak solution of the problem (1.2.4).

Using the previous computations and the tightness of the sequence of measures @ (for more details
see [14, Chapter 5]) we conclude that all limit points are concentrated on weak solutions of

- 1
p)+ Y 0[v Vx(Ou(Ap,p))] = 5 A ),
veEV
with boundary conditions, given in the trace sense, by
(p,p)(t,x) = a(&), for z € {0} x T~ (1.3.10)
and
(p,P)(t, ) = b(E), for z € {1} x T4, (1.3.11)

where a(-) and b(-) were defined in equation (1.2.3), and vg = 1. The uniqueness of weak solutions of the
above equation implies that there is at most one limit point. Moreover, by Proposition 1.3.9, each limit
point of (Qx)n is concentrated on a vector of measures with finite energy, that is: whose components
have densities with respect to the Lebesgue measure that belong to the Sobolev space H'(D?). This
completes the proof of the theorem. [J

1.4 Proof of the replacement lemma

As mentioned in the subsection 1.3.5, we only have to prove this result for the process without the
boundary dynamics. In this case, we have a product invariant measure given by ué\fp

Let 4™V (T) be the Cesaro mean of uV SN, namely:

1 T
W) =3 [ s
T 0

and let ﬁ « be the Radon-Nikodym density of p™¥ (T") with respect to u;\fp. We have that the Dirichlet

=N =N
form of fr 4, Dn(fr 4 V)p), is bounded by CN9=2/2T, where C is some constant. Therefore, to prove
the replacement lemma, it is enough to show that

T Tim / 7 S0 mVAE () ) pldn) = 0.

0
e— N—)OODN(f’Vpp <CNd 2 :z:GDd

From now on we will simply write the Dirichlet form of a function f with respect to the measure ué\fp
as Dy (f)-
To prove the replacement lemma, we will prove the one and two block estimates:

Lemma 1.4.1. (One block estimate): For every constant C' >0, for 1 < j <d and for 0 < k <d:

lim lim sup / Tij’k n) f(n)v (dn) =0,
ZHOON_)OODN(f)<CNd 5 Nd xEDd 14 )( ) ( ) p,p( )

where Vej’k(n) was defined in Lemma 1.3.7.

Lemma 1.4.2. (Two block estimate): For every constant C >0, for 1 < j <d and for 0 <k <d:

- 1
lim lim lim sup sup /— ’Ie(m—l—y) — IV ()| f(n)v) =0,
{—00 €e—=0 N—o0 Dy (f)<SCNd-2 y€A .y Nd xEXD:d pip

N

where I(x) was defined in subsection 1.3.4.
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1.4.1 Proof of one block estimate

We begin by noting that the exclusion rule and the fact that V is finite prevents large densities or large
momentum on I(0).
We have that the measure 2

».p 18 translation invariant. Therefore, we can write the sum on one block
estimate as

/sz’k(n) % Z T f (W)Vé\,’p(dn):/ij’k(n)?(n)’/ﬁ]p(dn)’

zeD¢

where f stands for the space average of all translations of f:

= % Z T2 f (1)

d
zeDg

Denote by X, the configuration space ({0, 1}\2) ‘. by ¢ some configuration on X, and by Vp p the
product measure l/pp restricted to X,. For a dens1ty f Xy — Ry, fo stands for the conditional
expectation of f with respect to the o-algebra generated by {n(z,v) : x € Ay,v € V}, that is obtained

by integrating all coordinates outside this hypercube:

1
fé(xz) = m/1{n:n(z,v):§(z,v),ZGA[,UGV}f(n) p,p(dn)

PP

for f e Xy. ]

Since V] (n) depends on the configuration 7 only through the occupation variables {n(z,v) : « €
Ag,v € V}, in the last integral we can replace f by f,. In particular, to prove the lemma it is enough to
show that

T fm oswp [V, () =0 (1.4.1)

t—00 N—0o p i (f)<CNd-2

We will now compute some estimates on the Dirichlet form. Let < -,- >, be the inner product in
L?(v). For positive f, denote the Dirichlet form of f as:

Dn(f) = —<VF(LF+LWS >y,

= —-< \/?7 ‘C?\/'z 1f >V[1)\{p —< \/>7£§Va?’2f >U}J\fp —< \/Yv'c?\ff >V[1)\{p
= Dna(f)+ Dn2(f) + Dn.c(f).

We have that

wﬁ:ED%
and
Dne(f)= > (),
a:EDj“V
where
1) = 3 5 [ W5 - Vf)
7 veY
120 = Y [ e oW - V)
veEY
and
I€U(f) Z/ (@, ¢, MV F ™) — f(n dn).
qeQ
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Since the Dirichlet form is translation invariant and convex, we have that Dy (f) < Dx(f).

Now, let
Lip) — 47(1) 2 (2) £,(c)
CIORED DRECIGRES DEEVICIORS pRrEl)
z,z€EN, T,z€ENy ISV
|z—z]=1
where each () equals 1) with 1/ p replacing u p- By using Schwarz inequality and the definition of

fe, we obtain that
15 (Fo) < IV, 12D (Fy) < IQU(F) and 129 (F,) < I(F)

for every z, z € Ay. Therefore,

Z I:g}g(?f)—'_ Z NIffg fo)+ ZIJ(CC)(?@)'

|x,ze‘A4 z,2€N, TEN,
r—z|=1
. : : 7 7))z (1) 7 2) 7y _ 72 7
On the other hand, by translation invariance of f, Iz.:(f) = I}, .1, (f), Ioz(f) = LY, .4, (f) and
Ia(cc) (f) = I(gc) (f). Hence,

& d
D7y < eSS @ + S ) ¢ e )@
i=1 yEA,
(20+1)?
- Nd
Since the Dirichlet form is positive, Dy (f) < CN%2 implies that Dy 1(f) < ON%2, Dya(f) <
CN% ! and Dy .(f) < CN%2. Thus,

(Dna(f) + Dna2(f) + Dy.e(f))-

D*(f,) <3C(20+1)“N~2 := Co(C, )N 2.

Therefore, the Dirichlet form of f, vanishes as N T co. Hence, by (1.4.1), to prove the one block estimate
we must show that
lim lim sup / VIO F(OVE ,(dE) =0 (1.4.2)
=00 N=00 De(£)<Co(CON ’

N
pp
We will now take the limit as N T oco. To do so, we note that Ve]’k < (', where C; is some constant,

and therefore

with the supremum carried over all densities with respect to v

/X VIE(©) (€)Y, (dE) < Cy.

This subset of M (X,) is compact for the weak topology, and since it is compact, for each N, there
exists a density fy with Dirichlet form bounded by CoN 2 that reaches the supremum. Let now N,, be
a subsequence such that

tim [ V7" f, (0 (d€) = T / VIR() fr (€)1 (dE).

n—oo

To keep notation simple, assume, without loss of generality, that the sequences N,, and N coincide.
By compactness, we can find a convergent subsequence fy,. Denote by fo the weak limit. Since the
Dirichlet form is lower semicontinuous

Dz(fOO) =0

Moreover, by weak continuity,

lim [ V7€) f, ()] p(d€) = / V() foo (VL (dE).

n—oo

In conclusion, expression (1.4.2) is bounded above by

Fn  sup / VIR () FEWE (de).

L—o00 DE(£)=0
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We will now decompose along sets with a fixed number of conserved quantities.

Recall that Uy, is the set of all possible values of I”(0) when 7 runs over ({0,1}V)Ar. Further, Uy,
is finite. Furthermore, consider for each ¢ in 2, the canonical measure vy, ; defined in subsection 1.3.4;
and moreover, recall that

vaa() = uye (|17 =1).

A probability density with Dirichlet form equal to zero is constant on each set with a fixed number
of conserved quantities. It is convenient therefore to decompose each density f along these sets. Thus

/ VIR FEVNp(de) = > Ti(f /j’ ve 3 (d€),

JET,

where,
Ty(f) = / Loy ) FE (dE).

Since Zjew(j) T;(f) = 1, to conclude the proof of the one block estimate, we must show that

lim sup /Véj’k(f)wyj(df) =0.
{— o0 jEV,

Since the measure vy ; is concentrated on configurations with conserved quantity j, the last integral

equals

/ 2£+1 CYRRELY] Z ka Zp (z,v)z;Ty(R(&, 2,v) ZvjvkE h(&, e1,v)]| ve;(dE),
yeEA, vEV z veY
where h(€, 2,v) = £(0,v)(1 — £(2,v)).

Fix some positive integer n, that shall increase to infinity after /. Decompose the set A, in cubes
of length 2k + 1. Consider the set A = {(2n+ 1)z,z € Z?} N Ay_,, and enumerate its elements: A =
{z1,...,24} in such a way that |z;| < |z;] for ¢ < j. For 1 < i < ¢, let B; = z; + A,,. Note that
B; N Bj =0ifq = j and that Ulgiqui C Ay. Let Bg = Ap— UlSiSqBi- By construction |Bo| < Kned-1
for some universal constant K. The previous integral is bounded above by

q
B,
ZO:A4| > w7 3 ople 0z e 2 0) B (€ en, )] | v (de).

veV yeB; =z

Since |Bo| < Knt™1, 3 0r&(0,v)(1 — £(z,v)) has mean Y, vpx(0,(A(4))), and |3, 5. p(2,v)2] is
bounded, the sum is equal to

A,
|Ael|z/ |B > D (=) (A6, 2,0)) = v (6 e1,0)] | v (d€)
vey

yEB z

plus a term of order O(n/f). Since the distribution of {{(z,v); z € B;,v € V} does not depend on i, the
previous sum is equal to

/ ka ﬁ Z Zp(z,v)ijy(h(g,z,v))—vjEV;;[h(f,el,v)] ve 5 (dE)

yeEN,, =2

plus a term of order O(n/¢).
d
Now, let uy be the product measure on ({O, I}V)Z with marginals given by

pain i n(x,-) = £ = ma(§),

for each ¢ € {0,1}Y and x € Z?. Therefore, E,[£(0,v)(1 — &(e1,v))] = Ey, [€(0,
vj = pia(j)- Moreover, if in the equivalence of ensembles we choose L = L(£ ) [C(,V)

v)(1 — &(e1,v))], where
|, where C(£,V)
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is the constant given in the equivalence of ensembles, we can replace the canonical measure by the grand
canonical measure paying a price of order oy(1). Therefore, we can write the previous integral as

J X0 mm 30 (e )6, 2o0) =0 By G e, | ()

veEVY

plus a term of order og(1). We now note that v; equals Vf on Ay. Then, the integral can be written as

/ ka on +1 oyl Z Zp 2,0)25Ty (M, 2,v)) — v; By [M(E, e1,v)] | | v5(dE)

veV YyeEA, =2

plus a term of order oy(1). Let now,

=D v 2n+1 g 2 Y (2 0) 2y (B(E, 2,)) = v By (€, e1,0)] ||

veEY yeN, =z

but we know that £, [h(,e1,v)] = x(0,(A(F))), then,

ka 2n+1 o T 1d Z gp z,0 ZgTy f,Z ’U)) UJX( (A(J)))

veY

d
Now, ({0, I}V)Z is compact on the product topology, and also, all the marginals of v; converge to
the marginals of v, ,, when j — (p,p) as £ — oco. Then, v; converges weakly to v, . Further, since
95 (&) — gpp(&) for every £, we have from Theorem 5.5 of Billingsley [6], that

/ 05(©w3(de) == | (€ p(de),

this convergence being uniform on compact subsets of R, x R?. Then, since the remainder term is oy(1),
the limit as £ — oo and j — (p,p) is

[l X o X 5n(e ) (16,2, 0)-3 B (Ap.p)) | ().

yEAN, vEV z veV

On the other hand, as k T co, by the law of large numbers, this integral converges to 0.
Therefore, the one block estimate is proved. [

1.4.2 Proof of the two block estimate

To prove the two block estimate, it is enough to show that

- 1
lim lim lim sup sup / — ‘Iz(:ﬂ)
Zﬂooe—>ON—>ooDN(f)§CNd72 ye(Aen\Ay) Nd mEZDd
N
— I (e + )| (v} (dn) = 0. (1.4.3)

As for the one block estimate, we can rewrite this integral as

[~ 1'w| 7oy .

where f stands for the average of all space translations of f. I Z(O) and I e(y) depend of the configuration
n only through the occupation variables {n(z,v) : © € Ay ¢,v € V}, where

Ayo={~t,..., 03 Uy +{—£,....0%.
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We now introduce some notation. For positive integer ¢, let X2* denote the configuration space
({071}V)Ae X ({O,I}V)A'Z7 ¢ = (&,&) the configurations of X2 and the product measure v, re-
stricted to X2* (which does not depend on N) by 1/2:;;. Denote by f, ¢ the conditional expectation of f
with respect to the o-algebra generated by {n(z,v) :x € Ay 4,v € V}.

Since IE(O) and Ié(y) depend on 7(z,v), for * € A, ¢ and v € V, we may replace f by ?y,é’ and then,

we can rewrite (1.4.3) as

lim lim lim sup sup /Nd Z ‘Ee (0)|f,, e(@”ﬁ,’fy(df) =0,

£— 00 e—0 N—oo Dy (f)<CNI-2 ye(Acy\Ag)

where

Bw)=r 2 1),

z€x+Ay

Now, we need to obtain information concerning the density ?y,f from the bound on the Dirichlet form
of f. Then, let D> be the Dirichlet form defined on positive densities h : X>¢ — R, by

D*%(h) = I o(h) + D (h) + D3(h),

where,
2
D=3 [| & 5oy T v Vi - Vi@,
veV z,2€EN, T,2E€EN,
|z—z]|=1
2
+ >N / (z.q,:&1) { h( f’q,ﬁz)—\/h(f)] vyp(df),
r€EA, vEV
) 1 1 ww-i—zv 2 2,0
=Y [| T 3+x 2 st [Vaeg ) - Vi@ s
veV |if,§\1¥1 z,2ENy
2
+ > Z/ (z,4,&1) { h(flafg’q)—vh(ﬁ)] virp(dE),
zEAN, vEV
and,
2
Bo) = X [ | 5+ gpteol| [Vae g+ - Vi@ s
veVY |z|= 1
2
= X [voae [y ?’q,@)w(s)] 2L ()
veV
2
+ Z/ Z + pzv [ W& 67" - VW&)] v (dé)
veV |z|= 1
2
£ %[00 Vit g - Vi@ e,
veEV
where

0,4+,v _ gi(oa U) + 17 if £ =0 and w = Us
& (z,w) = { &i(z,w), otherwise.

This Dirichlet form corresponds to an interacting particle system on (V x Ag) x (V x Ag), where
particles evolve according to an exclusion process with collisions among velocities on each coordinate
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and where particles from the origin of one of the coordinates at some velocity can jump to the origin of
the other at this velocity and vice-versa.
Using the same idea as for the one-block estimate, we can prove that

Dti](fy,e) < Dn(f) and Dg(?y,@) < Dn(f),

and hence, B B
D{(fy,l) + Dg(fy,e) <2CoN72,

for every density f with Dirichlet form Dy (f) bounded by CN?~2. It remains to be shown that we can
also estimate the Dirichlet form IS,O(?M) by the Dirichlet form of f.
We begin by noting that
Io(h) = Igo(h) + Ig (h),

where,

2
0 =3 | 3 5+ o) [ / { e ) - h(&)}

veV | |z|=1
2
+[ (X, €077 — h(f)] vﬁ:ﬁ(doy
and

i = Y| p<o7q,sl>[ W0, 65) — h(&)] V24 (de)

veEV

+ 2 / p(qu,&)[ h(é1,67) — h(é)]Zuﬁgf,(dg).

veVY

Then, a simple calculation shows that
0,2 7 [O¥ara
153(F,.0) <218 (F),

and therefore Ig:g (f,.¢) is also of order N=2. We then have to obtain a bound for Ig:é(?y,[).
Following the same lines used to prove that Ifxi(zj ) (f) < I;J ; (f) in the proof of the one block estimate,

for 7 = 1,2, ¢, we have that each density f, with respect to Z/’J)Yp, Ig:é (?yj), is bounded above by:

22 Z %4_%])(2’1}) /[\/f(no,y,v) — \/f(n):|21/gp(dn). (1.4.4)

veV ||z|=1

Let (zx)o<k<||y|| Pe a path from the origin to y, that is, a sequence of sites such that the first one is
the origin, the last one is y and the distance between two consecutive sites is equal to 1:

2o = 0,2y =y and |41 — 2| = 1 for every 0 < k < |[Jy|]| — 1,

|| - ||| is the sum norm:

1yl = D7 Lyl

1<i<d
Let 7, - - - 72, (n) be the sequence of nearest neighbor exchanges that represents the path along x4, ..., z;.
Then, by using the telescopic sum
lylll=1 k k—1
VACEZDERVAIO N S INFAS | AR | EA )
k=0 i=1 i=1
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and the Cauchy-Schwarz inequality

yi=1 1\ ? llyll—1
dooa| <yl Y ai,
k=0 k=0
we obtain that (1.4.4) is bounded by
2
_ =1 [ &
23|S0 S+ o |l Y2 |y T ) - Hm A, ()
veV ||z|=1 k=0 =1
llyll1—1 B
<2220l ) e ()
Since f is translation invariant, for each k, ka oo (f) = lk +z _— +.(f) for all z € Z*. Hence,

Ig(clk),xkﬂ(f) < N~— dDN(f). In particular,

Igo(Fye) < 2972)|yl| PN =Dy ().

Recall that y € Ay, and hence |y| < 2Ne, | - | is the max norm. Then, |||y||| < d|y| < 2dNe. Since the
Dirichlet form is assumed to be bounded by C N?~2, we have proved that

14,0 < 2ECe

We have, therefore, proved that for every density f with Dirichlet form bounded by CN%~2 and for every
d-dimensional integer with max norm between 2¢ and 2N,

D*(F,,) < Ca(C,d, 0)é?

We can now restrict ourselves to densities f such that D“(?y’@) < Cy€?, that vanishes as € | 0. In
particular, to conclude the proof, it is enough to show that

Fm Tm sup / BL(0) — BL(0)|£(6)v24 (de) =0,

{—00 e—0 D2 e(f)<0262

this time, however, the supremum is taken over all densities with respect to l/g:f;. The rest of the proof
follows the same lines as the ones in the one block estimate, beginning by decomposing the Dirichlet
form along the sets having fixed conserved quantities and then applying the equivalence of ensembles.
Therefore, the two block estimate is proved. [

1.5 Uniqueness

To conclude the proof of the hydrodynamic limit, it remains to be proven the uniquenesses for the
solutions of problems (1.2.4) and (1.2.4). The strategy we used to prove this result was employed by
Oleinik and Kruzhkov [19] and is due to Yu.A. Dubinskii.

Let v and w be two weak solutions to the problem (1.2.4), corresponding to the same initial function
vo. Fix some j =1,...,d+1, and let H; € C% ([0,T] x D?) be such that H;(T,z) = 0, for all z. Then
the integral identity for ¥ — w holds:

/OTdt/DddWﬂ‘—%‘) o+ Y o H / dt / dz> " 0i(g0(v) = 90(@)) Y vid Hy = (1.5.1)

1< <d vev 1<i<d

where g,(v) = x(0,(A(v))), v;,w; and H; are the components of v,w and H, respectively. If v; = w;,
we already have what we want, thus, suppose v; # w;. Introducing the notation

3= 9o (V) — gv(w)

Vi — Wy
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we have that we can write (1.5.1) as

/ dt/ dQIJ i — wJ 8tH + = Z Hj + Z’Ujﬂg Z ’UiauiHj =0. (152)
Dd

1<z<d veEV 1<i<d

Now, let 37™ be a sequence of smooth functions which converge in L2([0,T] x D) to 3}, as m — oo.
We denote by Hjm(t, x) the classical solution of the equation

5tH§”+% Do ORHT Y B Y w0 H = b, (1.5.3)

1<i<d vey 1<i<d
HI"(T,z) =0,H]"(0,z) =0,

where ®; is a smooth function finite in [0, '] x D?. For more details on the solutions of partial differential
equations of the parabolic type, the reader is referred to Friedman [13], and for details on solutions of
systems of linear partial differential equations of the parabolic type in general, the reader is referred to
Ladyzenskaja et al. [16].

Now, if we replace H; in (1.5.2) by H]" and use (1.5.3), we obtain:

T T ) )
/0 dt/Dd dx(uj—wj)q>j+/0 dt/Dd dr(v; —wj) | D 0B =™ Y 0y HM| =0.  (15.4)

vEY 1<i<d

Finally, since we are in a compact domain and the coefficients 3/ are smooth, we have that there
exists an M > 0 such that |H}"| < M. Since these coeffiecients converge in L?([0, 7] x D%), the constant

M may be taken to be independent of m. Multiplying (1.5.3) by H}", integrating over [0, 7] x D?, and
then integrating by parts, we have that

OH" . 1
B3I g O, H™ —dH™ | —= H™)2.
/ a D dx i=1 ( Ou; ) / dt/Dd e U]ﬁv J Z Vil Hj J 2 da(H]")

veY 1<i<d D

On applying the elementary inequality |ab] < ea® 4 b%/(4€) and using that [H}*| < M, we obtain that

oHT®
/ dt/ dx ( ) <C,
Dd P aul

where C' is a constant that may depend on M and ®, but not on m.

Therefore, by applying the Cauchy-Schwartz inequality and using that 5™ converges to 3/ in the
L2-norm, we see that the second term on the left-hand side of equation (1.5.4) tends to zero as m tends
to infinity. This implies that for every € > 0 there exists m such that the absolute value of the second
term on the left-hand side of equation (1.5.4) is less than €. We, then, have obtained that

Ve >0: dt | dx(v; ®;| <e

’

Td

and hence, for each j =1,...,d + 1, v; = w;. Therefore v = w. O
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Chapter 2

Dynamical large deviations for a
boundary driven stochastic lattice
gas model with many conserved
quantities

Artigo feito em colaboracdo com J. Farfan e F.J. Valentim. Foi publicado no periédico Journal of
Statistical Physics, 139, p. 658-685, 2010.

Abstract

We prove the dynamical large deviations for a particle system in which particles may have different
velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the
so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple
exclusion process with collision among particles having different velocities.

2.1 Introduction

In the last years there has been considerable progress in understanding stationary non equilibrium states:
reversible systems in contact with different reservoirs at the boundary imposing a gradient on the con-
served quantities of the system. In these systems there is a flow of matter through the system and the
dynamics is not reversible. The main difference with respect to equilibrium (reversible) states is the
following. In equilibrium, the invariant measure, which determines the thermodynamic properties, is
given for free by the Gibbs distribution specified by the Hamiltonian. On the contrary, in non equilib-
rium states the construction of the stationary state requires the solution of a dynamical problem. One
of the most striking typical property of these systems is the presence of long-range correlations. For the
symmetric simple exclusion this was already shown in a pioneering paper by Spohn [13]. We refer to
[5, 7] for two recent reviews on this topic.

We discuss this issue in the context of stochastic lattice gases in a box of linear size N with birth
and death process at the boundary modeling the reservoirs. We consider the case when there are many
thermodynamic variables: the local density denoted by p, and the local momentum denoted by py,
k=1,...,d, d being the dimension of the box.

The model which we will study can be informally described as follows: fix a velocity v, an integer
N > 1, and boundary densities 0 < a,(-) < 1 and 0 < 3,(+) < 1; at any given time, each site of the set
{1,...,N—1} x{0,..., N —1}471 is either empty or occupied by one particle at velocity v. In the bulk,
each particle attempts to jump at any of its neighbors at the same velocity, with a weakly asymmetric
rate. To respect the exclusion rule, the particle jumps only if the target site at the same velocity v is
empty; otherwise nothing happens. At the boundary, sites with first coordinates given by 1 or N — 1

42



have particles being created or removed in such a way that the local densities are a,,(Z) and §,(Z): at
rate o, (Z/N) a particle is created at {1} x {Z} if the site is empty, and at rate 1 — a,,(Z) the particle at
{1} x {&} is removed if the site is occupied, and at rate (3,(Z) a particle is created at {N — 1} x {z} if
the site is empty, and at rate 1 — 3, (%) the particle at {N — 1} x {Z} is removed if the site is occupied.
Superposed to this dynamics, there is a collision process which exchange velocities of particles in the
same site in a way that momentum is conserved.

Similar models have been studied by [1, 7, 10]. In fact, the model we consider here is based on the
model of Esposito et al. [7] which was used to derive the Navier-Stokes equation. It is also noteworthy
that the derivation of hydrodynamic limits and macroscopic fluctuation theory for a system with two
conserved quantities have been studied in [4].

The hydrodynamic limit for the above model has been proved in [11]. The hydrodynamic equation
derives from the underlying stochastic dynamics through an appropriate scaling limit in which the micro-
scopic time and space coordinates are rescaled diffusively. The hydrodynamic equation thus represents
the law of large numbers for the empirical density of the stochastic lattice gas. The convergence has to
be understood in probability with respect to the law of the stochastic lattice gas. Once it is established
a natural question is to consider large deviations.

This article thus provides a derivation of the dynamical large deviations for this model, and the proof
follows the method introduced in [8]. The main difference is that their proof of It (-|y)-density relied on
some energy estimates that we were not able to achieve due to the presence of velocities. Therefore, we
had to overcome problem by taking a different approach at that part.

The article is organized as follows: in Section 2.2 we establish the notation and state the main results
of the article; in Section 2.3, we review the hydrodynamics for this model, that was obtained in [11]; in
Section 2.4, several properties of the rate function are derived; Section 2.5 proves the I (-|v)-density,
which is a key result for proving the lower bound; finally, in Section 2.6 the proofs of the upper and lower
bounds of the dynamical large deviations are given.

2.2 Notation and Results

Fix a positive integer d > 1. Denote by D? the open set (0,1) x T¢~! where T* is the k-dimensional
torus [0,1)%, and by I the boundary of D% T = {(uy,...,uq) € [0,1] x T4"1:uy = £1}.

For an open subset A of R x T?~1 C™(A), 1 < m < +4oo, stands for the space of m-continuously
differentiable real functions defined on A. Let CJ*(A) (resp. CI"(A)), 1 < m < 400, be the subset of
functions in C™(A) which vanish at the boundary of A (resp. with compact support in A).

For an integer N > 1, denote by T‘fv_l ={0,..., N —1}971 the discrete (d — 1)-dimensional torus of
length N. Let D = {1,...,N — 1} x T% " be the cylinder in Z? of length N — 1 and basis T% ! and
let Ty = {(21,...,7q) €Zx T4 |2y =1 or z; = (N — 1)} be the boundary of D%.

Let V C R? be a finite set of velocities v = (vy,...,v4). Assume that V is invariant under reflexions
and permutations of the coordinates:

(V1,3 Vie1, =Vi, Vig1, - - -, Va) AN (Vp(1), -+ Vo(a))

belong to V for all 1 <4 < d, and all permutations o of {1,...,d}, provided (vy,...,vq) belongs to V.

On each site of D¢, at most one particle for each velocity is allowed. We denote: the number of
particles with velocity v at z, v € V, € D%, by n(z,v) € {0, 1}; the number of particles in each velocity
v at a site @ by 7, = {n(z,v);v € V}; and a configuration by 7 = {n,;2 € D%}. The set of particle

d
configurations is Xy = ({0, 1}V)DN.

On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system
evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles
of the same velocity, and (ii) binary collision between particles of different velocities. Let p(z,v) be an
irreducible probability transition function of finite range, and mean velocity v:

Z xp(x,v) = v.

The jump law and the waiting times are chosen so that the jump rate from site = to site x + y for a
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particle with velocity v is

d
1 1
PN(y7 ’U) = 5 Zl((;y,ej + 597—6_7‘) + Np(ya U),
j=
where 0, , stands for the Kronecker delta, which equals one if 2 = y and 0 otherwise, and {ei,...,eq} is

the canonical basis in R<.

2.2.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator £y which is the
superposition of the boundary dynamics with the collision and exclusion:

Ly = N*LY + LS + LS, (2.2.1)

where L4 stands for the generator which models the part of the dynamics at which a particle at the
boundary can enter or leave the system, L£4; stands for the generator which models the collision part of
the dynamics and lastly, L% models the exclusion part of the dynamics. Let f be a local function on
Xn. The generator of the exclusion part of the dynamics, L%, is given by

LXHM =Y D vl —n(zv)]Py(z—z,0) [f(n">") = f)],

veV z,z+2€DY,

where
n(y,v) ifw=wvand z=uz,
oY (z,w) =< nlz,v) fw=wvand z=y,
n(z, w) otherwise.

The generator of the collision part of the dynamics, L%, is given by

yeDY q€Q
where Q is the set of all collisions which preserve momentum:
Q={q=(v,w,v,w)eV:v+w=1v 4w},

the rate p(y, ¢,n) is given by

Py, q;n) =y, v)n(y, w)[1 —n(y,v")][1 = nly,w")],

and for ¢ = (vp, v1, V2, v3), the configuration n¥:? after the collision is defined as

79 (2, u) = n(y,vj42) if 2=y and u = v, fo.r some 0 < j < 3,
n(z,u) otherwise,

where the index of v;15 should be taken modulo 4.

Particles of velocities v and w at the same site collide at rate one and produce two particles of
velocities v’ and w’ at that site.

Finally, the generator of the boundary part of the dynamics is given by

(LN = Y D la(@/N)[L =0z, 0)] + (1= au(@/N))n(z, v)][f (6" n) = f(1)]

zeDY veV
xr1=1

+ Y D B@/N)L =@, 0)] + (1= By (F/N))n(z, v)][f (e n) — f(n)],
xEDfV veV
11:N71

where T = (z2,...,2q),

b

1—n(z,w), if w=vandy==x
T,V — ) ’ ’
a"'n(y, w) { n(y, w), otherwise.
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and for every v € V, a,, B, € C*(T4~1). Note that time has been speeded up diffusively in (2.2.1). We
also assume that, for every v € V, «, and 3, have images belonging to some compact subset of (0, 1).
The functions «, and (3,, which affect the birth and death rates at the two boundaries, represent the
densities of the reservoirs.

Let D(R4, Xn) be the set of right continuous functions with left limits taking values on Xy. For
a probability measure p on Xy, denote by P, the measure on the path space D(R,, Xy) induced by
{n(t) : t > 0} and the initial measure p. Expectation with respect to P, is denoted by E,,.

2.2.2 Mass and momentum

For each configuration ¢ € {0,1}Y, denote by Iy(¢) the mass of ¢ and by I..(¢), k = 1,...,d, the

momentum of &:
6= &), (&= u&@)

veV veY

Set I(§) = (Io(&),...,1a(€)). Assume that the set of velocities is chosen in such a way that the
unique quantities conserved by the random walk dynamics described above are mass and momentum:
Y e Di. I(n,). Two examples of sets of velocities satisfying these conditions can be found at [7].

For each chemical potential A = (Ao, ..., \q) € R denote by m, the measure on {0,1}Y given by

m(§) =

1
AT 2.2.2
2o @0 1), (222)
where Z(A) is a normalizing constant. Note that my is a product measure on {0,1}, i.e., that the
variables {£(v) : v € V} are independent under my.
Denote by 13 the product measure on Xy, with marginals given by

Nn o) =& =mal),

for each ¢ in {0,1}Y and x € DY,. Note that {n(z,v) : € D%, v € V} are independent variables under
ug , and that the measure Mg is invariant for the exclusion process with periodic boundary condition.
The expectation under ug of the mass and momentum are given by

p(A) = By [Lo(na)] =Y 6u(A
vey

peN) = By [Te(n)] =D vkbs(A
veV

In this formula 6,(\) denotes the expected value of the density of particles with velocity v under my:

exp {)\0 + 22:1 /\kvk}
1+ exp {AO + Zzzl )\kvk} .

0u(A) := By [§(v)] =

Denote by (p, p)(A) := (p(X),p1(A),...,pi(A)) the map that associates the chemical potential to the
vector of density and momentum. It is possible to prove that (p,p) is a diffeomorphism onto {4 ¢ R4+,
the interior of the convex envelope of {I(f),{ e {0, 1}V}. Denote by A = (Ag,...,Aq) : 4 — R the
inverse of (p,p). This correspondence allows one to parameterize the invariant states by the density and
momentum: for each (p, p) in 4 we have a product measure ugp = Mf(p,p) on Xy.

2.2.3 Dynamical large deviations

Fix T > 0, let M be the space of finite positive measures on D? endowed with the weak topology,
and let M be the space of bounded variation signed measures on D? endowed with the weak topology.
Let My x M9 be the cartesian product of these spaces endowed with the product topology, which is
metrizable. Let also M be the subset of M, x M¢% of all absolutely continuous measures with respect
to the Lebesgue measure satisfying;:
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={ 7 eMixM*:n(du) = (p,p)(u)du and
0 < () < V], k(@] S HVLE =10 d, e},

where ¥ = max,ey v;. Let D([0,T], M4 x M%) be the set of right continuous functions with left limits
taking values on M, x M? endowed with the Skorohod topology. M is a closed subset of M x M¢
and D(]0,T], M°) is a closed subset of D([0,T], M, x M%),

For a measure m € M, denote by (m, G) the integral of G with respect to .

Let Qr = (0,T7) x D% and Q7 = [0,T] x D4. For 1 < m,n < +o0, denote by C"™"(Qr) the space of
functions G = Gy(u) : Qr — R with m continuous derivatives in time and n continuous derivatives in
space. We also denote by CJ""(Qr) (resp. C2°(Qr)) the set of functions in C™"(Qr) (resp. C>>(Q7))
which vanish at [0,7] x T’ (resp. with compact support in Q7).

Let the energy Q : D([0,T], M) — [0, 0] be given by

d
ZZ:Z sup / dt (pk.t, Ou, Gr) / dt . G(t,u)? du}

T Gecs(Qr)

where py (u) = pi(t, u) and po¢(u) = p(t, u). o
For each G € Cy’ 2(QT) x [C3(D9)]* and each measurable function v : DI — [0,|V|] x [-#[V], 8[V]]4,
v = (po,Py); let Jg = Ja~1 : D([0,T], M®) — R be the functional given by

Ja(m) = G(T u) - (p, p)(T, u)du — - G(0,u) - (po, Py) (u)du
- / dt/Dd du < (p,p)(t,u) - 0:G(t,u) + ,p)(t,u)~1<zl:<d8iG t,u

+ /dt/ dS (i) - Dy, G(t,u) — /dt/ dS a() - 8y, G(t, u)
{1} xTd-1 {0} xTd-1

4 / dt/Dd du S5 X0 App) S 0, Gl u)

veV 1<i<d

- / dt/DdduZ

veV

( vkﬁlef(U)> X(0u(A(p, p))),
k=0

where x(r) = (1 — r) is the static compressibility and m;(du) = (p,p)(t,u)du. Define Jo = Jg .1
D([0,T], M x M%) — R by

Jo(m) Ja(r) if w € D(]0,T], M°),
m) =
“ 400 otherwise .

We define the rate functional I7(-|y) : D([0,T], M x M%) — [0, +o0] as

sup {Ja(m)} if Q(m) < o0
Ir(7|y) = { Gecy?(@r)x[cz(D))e
+o00 otherwise .

We now present the main result of this article, whose proof is given in Section 2.6, which is the
dynamical large deviations for this boundary driven exclusion process with many conserved quantities.

Theorem 2.2.1. Fiz T > 0 and a measurable function (py,py) : D% — [0, |V|] x [=|V],8|V|]¢. Consider
a sequence NN of configurations in Xy associated to v = (po, py) in the sense that:

A}im (T (™M), q) = G(u)po(u) du,
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and

lim (x (1™),G) = [ Glupe(w)du, k=1,....d,
N —oo D

for every continuous function G : D — R. Then, the measure Qv = Pyn (7)™ on D([0,T], M4 x
M) satisfies a large deviation principle with speed N¢ and rate function Ir(-|y). Namely, for each
closed set C C D([0,T], M4 x M%),

— 1
lim —
N

1 5valog @y (€) < — inf Ir(n]y)

and for each open set O C D([0,T], My x M%),

. 1 .
lim -5 log Qv (0) 2 — inf Ir(xly).

N—o0

Moreover, the rate function It (-|y) is lower semicontinuous and has compact level sets.

2.3 Hydrodynamics

Fix T > 0 and let (B,]| - ||g) be a Banach space. We denote by L?([0,7], B) the Banach space of
measurable functions U : [0,T] — B for which

T
1012 0.1, = / U dt < oo,

Moreover, we denote by H'(D?) the Sobolev space of measurable functions in L?(D%) that have gener-
alized derivatives in L2(D?).
For x = (x1,%) € {0,1} x T4~ let

a(®) =3 ep(au(E),v1040(T), . .., va0y(T)), if z1 =0,
d(z) = (2.3.1)
b(f) = Zue\)(ﬁ’u(‘%)) Ulﬂv(f)a oo 7vd/6’u (i'))a if xr1 = 1.

Fix a bounded density profile pg : D* — R, and a bounded momentum profile p, : D¢ — R4, A
bounded function (p,p) : [0,7] x D¢ — R, x R? is a weak solution of the system of parabolic partial
differential equations

(P, P) + X per T [v - VX(0u(Alp,p)))] = 3A(p, p),
(p,2)(0,-) = (po, P) () and (p,p)(t,z) = d(z),z € {0,1} x T,

if for every vector valued function H : [0,T] x D¢ — R4 of class C*2 ([0, 7] x D) vanishing at the
boundary, we have

(2.3.2)

4 H(T’ u) ’ (p’p)(Ta u)du - D H(O’ u) ’ (p07p0)(u)du

D
T 1 )
= [ [ w0+ Gepn - 3 GEHE)

1<i<d

T T
- / it / dS b(@) - D, H(t,u) + / dt / dS a(ii) - 0, H(t, )
0 {1}xTd=1 0 {0} xTd-1

T
7/0 dt/Dd du > - x(0,(Alp,p)) D vidu, H(t,u),

veY 1<i<d

dS being the Lebesgue measure on T4,
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We say that that the solution (p, p) has finite energy if its components belong to L2([0,T], H'(D%)):

/OT ds (/D |VP(8,u)|2du) <o
/OT ds (/Dd ||Vpk(s,u)||2du) < oo,

for k=1,...,d, where V f represents the generalized gradient of the function f.
In [11] the following theorem was proved:

and

Theorem 2.3.1. Let (u¥)y be a sequence of probability measures on Xx associated to the profile
(po,Pg)- Then, for every t > 0, for every continuous function H : D — R vanishing at the boundary,
and for every d > 0,

Jim P,y % 3 H(E) lo(ne (1)) = | H(w)p(t,u)du| > 5| =0,

and for 1 <k <d

lim P,~ Nd Z ( )I;c (7 ( ))—/DdH(u)pk(t,u)du >4d| =0,

N—oo
a:EDd

where (p, p) has finite energy and is the unique weak solution of equation (2.3.2).

2.4 The rate function Ir(-|7y)

We examine in this section the rate function Ir(-|y). The main result, presented in Theorem 2.4.6
below, states that I7(:|y) has compact level sets. The proof relies on two ingredients. The first one,
stated in Lemma 2.4.2, is an estimate of the energy and of the H_; norm of the time derivative of
a trajectory in terms of the rate function. The second one, stated in Lemma 2.4.5, establishes that
sequences of trajectories, with rate function uniformly bounded, which converges weakly in L? converge
in fact strongly. We follow the strategy introduced in [8].

Recall that V is an open neighborhood of D¢, and consider, for each v € V, smooth functions
kY V. — (0,1) in C%*(V), for k = 0,...,d. We assume that each x} has its image contained in some
compact subset of (0,1), that the restriction of k =Y, o\, (K, v1KY, ..., varY) to {0} x T~ equals the
vector valued function a(-) defined in (2.3.1), and that the restriction of x to {1} x T?~! equals the vector
valued function b(-), also defined in (2.3.1), in the sense that x(z) = d(z1, %) if x € {0,1} x T4~1.

Let L?(D?) be the Hilbert space of functions G : D — R such that [, |G(u)]*du < oo equipped

with the inner product
(G,F)e = / G(u) F(u) du
Q

and the norm of L2(D?) is denoted by | - ||2.
Recall that H'(D?) is the Sobolev space of functions G' with generalized derivatives d,, G, ..., 0,,G
in L2(D?). HY(D?) endowed with the scalar product (-, )1 2, defined by

d
(G, F)1= (G, F)y Za G, 0y, F)s

is a Hilbert space. The corresponding norm is denoted by || -

Recall that we denote by C°(D?) the set of infinitely differentiable functions G : D¢ — R, with
compact support in D% Denote by HE(D?) the closure of C2°(D%) in H'(D?). Since D is bounded,
by Poincaré’s inequality, there exists a finite constant C' such that for all G € Hg(D?)

d
IGI3 < C> (0u,G, 0u,G)2
j=1
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This implies that, in H3(D9)

d 1/2
1Gll120 = {Z 0., G, 0., G)s }
Jj=1

is a norm equivalent to the norm || - ||1,2. Moreover, H}(D?) is a Hilbert space with inner product given
by
d
(G, Thzo = Y (00,G, O, )2
j=1

To assign boundary values along the boundary I' of D? to any function G in H'(D?), recall, from the
trace Theorem ([14], Theorem 21.A.(e)), that there exists a continuous linear operator Tr : H'(D%) —
L*(T), called trace, such that Tr(G) = G| if G € H'(D?) N C(D9). Moreover, the space H(D?) is the
space of functions G in H'(D?) with zero trace ([14], Appendix (48b)):

H{(D* ={G e H'(D?): Tx(G) =0} .

Finally, denote by H~!(D?) the dual of H}(D?). H=(D?) is a Banach space with norm || -||_; given
by
s = s fotw6) - [ VGl
GeCe (D) Dd
where (v, G)_1,1 stands for the values of the linear form v at G.
For each G € C°(Qr) and each integer 1 < i < d, let QF, : D([0,T], M°) — R be the functional
given by

T T
QY (m) :2/0 dt (mf, 0u,G) —/O dt/Dd du G(t,u)?,

where 7 = (7%, 7!,... 7). Recall, from subsection 2.2, that the energy Q(n) is given by

d d
=Y ) Qik(m), with Qix(m)= sup QT (7).
k=0 i=1

GeC(Qr)

The functional QZGk is convex and continuous in the Skorohod topology. Therefore Q; , and Q are
convex and lower semicontinuous. Furthermore, it is well known that a measure 7 (¢, du) = (p, p)(t, u)du
in D([0,T], M4 x M¢9) has finite energy, Q(7) < oo, if and only if its density p and its momentum p
belong to L2([0,T], H*(D%)). In such case

d T
=3 [t [ auw|Fpwl? < o
k=0"0 be

where po +(u) = p(t,u). We also have that Q(r) = O(r).

Let D, = D, be the subset of C([0,7], M°) consisting of all paths 7(t,du) = (p,p)(t,u)du with
initial profile y(-) = (po, Py)(+), finite energy Q(w) (in which case p; and p, belong to Hl( d) for almost
all 0 < ¢ < T and so Tr(p,) is well defined for those t) and such that Tr(p,) = do and Tr(pg,.) = di,
k=1,...,d, for almost all ¢ in [0, T], where d(-) = (do(-),d1("),...,da(")).

Lemma 2.4.1. Let 7 be a trajectory in D([0,T], M4 x M%) such that I7(r|y) < oco. Then m belongs to
D,.

Proof. Fix a path 7 in D([0,7], M, x M%) with finite rate function, I (7|y) < co. By definition of Ir,
7 belongs to D([0,T], M?). Denote its density and momentum by (p,p): 7 (t,du) = (p, p)(t, u)du.

The proof that (p,p)(0,-) = 7(-) is similar to the one of Lemma 3.5 in [6], and the proof that
Tr(pt) = do, Tr(pre) = di, k =1,...,d, is similar to the one found in Lemma 4.1 in [8]. The fact that
7 has finite energy follows from Lemma 2.6.4.
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We deal now with the continuity of 7. We claim that there exists a positive constant C; such that,
for any g € C°(D?), and any 0 < s <7 < T,

[(7r,9) = (mosg)| < Colr = )2 {Co+ In(xy) +llgl no + (r = )2 Aglh} . (24.)

Indeed, for each § > 0, let ¢° : [0, 7] — R be the function given by

o

fo<t<sorr+d<t<T,
t—s :

A e ifs<t<s+9,

r—s t) =

(r=s) 70" ifs+s<t<r,

1-55 ifr<t<r+d,

—_

and let G®(t,u) = ¢°(t)g(u). Of course, G® can be approximated by functions in CJ'*(€27) and then

(r—s)!/2 lim Jgs (m) = <7rr,g>—<W579>—/Tdt<7rt,Ag>

. d
/ dt /Dd du Z 0 x(0,(A(p,p))) Zviauig(u)

veY

+

(Tils)l/z /:dt/DdduZ

veV

d 2
(Z amvkg’%u)) X(0,(A(p,p))

k=0

To conclude the proof, we observe that the left-hand side is bounded by (r—s)*/2Ir(7|y), that y is positive
and bounded above on [0, 1] by 1/4, and finally, we use the elementary inequality 2ab < a? + b?. O

Denote by L2([0, T, H} (D%))* the dual of L2([0, T], HZ (D%)). By Proposition 23.7 in [14], L2([0, T], HL(D?))*
corresponds to L2([0,T], H~*(D%)) and for v in L%([0,T], H}(D%))*, G in L2([0,T], H:(D%)),

(v,G)-11 = /0 (ve, Gy)—1,1 dt (2.4.2)

where the left hand side stands for the value of the linear functional v at G. Moreover, if we denote by

vl =1 the norm of v,
T
o2, = / e

Fix a path (¢, du) = (p, p)(t,w)du in D., and suppose that for k =0,...,d

T T
sup {2/ dt (pi +, 0t Hy)o —/ dt/ du HVHtHQ} < . (2.4.3)
) 0 ’ 0 Dd

HeCg (Qr

In this case, for each k, Oypy : C°(Qr) — R defined by

T
Oipe(H) = —/ (Pk,t; O Hy)o dt
0
can be extended to a bounded linear operator d;py : L?([0,T], Hi(D%)) — R. It belongs therefore

to L2([0,T], H}(D4)* = L2([0,T], H~*(D%)). In particular, there exists v¥ = {vF : 0 <t < T} in
L%([0,T), H~Y(D%)), which we denote by vf = 9;py.+, such that for any H in L2([0,T], H} (D)),

T
(Owpr, HY) 11 = / (Oepryt, He)—1,1 dt .
0

Moreover,

T
loprl? / 10|12 dt

T T
—  swp {2/ dt<pk,t,ath>r/ dt/ du||VHt||2}.
HeC (Qr) 0 0 D4
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Denote by (0:(p,p), G))—1,1 the linear functional given by

d

(01(p,p), G 11 =Y _(Oupr H) 1.1,

k=0

with

1: (o, P)I12 1

d
Z 10 |||%1
=0
Let W be the set of paths 7 (t,du) = (p, p)(t,u)du in D, such that (2.4.3) holds, i.e., such that O;py,

belongs to L2 ([0,7], H~*(D?)). For G in L? ([0, T], [H§(D")]**'), let Jo : W — R be the functional
given by

1 T
Jo(m) = {(Bulp.p),G-1a+ 5 / @t [ ¥ (p.p)tu) - VOt

- / dt/ du Y 0 x(0 p) > vidy,G(t,u)

vEY 1<i<d
— dt du
Dd

(Zwﬁawbc:k >x<9v<A<p,p>>>,

Note that Jg(m) = Jg(m) for every G in C°(Qr) x [C2°(D*)]?. Moreover, since J.(m) is continuous in
L2 ([0, 7], [H}(D%))4+1) and since C°(Qr) is dense in Cy*(Qr) and in L2([0,T], H(D?)), for every 7
in W,

veV

Ip(mly) = sup Ja(m) = sup Ja(m). (2.4.4)
GeCgrQrx[Cx (D)4 GeL2([0,T],[Hg]?+1)

Lemma 2.4.2. There exists a constant Cy > 0 such that if the density and momentum (p,p) of some
path 7(t,du) = (p, p)(t,u)du in D([0,T], M°) has generalized gradients, Vp and Vpg, k =1,...,d. Then

18:(p, P)I2 < Co{lr(nly) +Q(n)} (2.4.5)

d T
kZ_o/o dt/Dddu IVprt,w)|? < Co{lIr(rly)+1}. (2.4.6)

Proof. Fix a path 7(t,du) = (p,p)(t,u)du in D([0,T], M?). In view of the discussion presented before
the lemma, we need to show that the left hand side of (2.4.3) is bounded by the right hand side of
(2.4.5). Such an estimate follows from the definition of the rate function I (-|y) and from the elementary
inequality 2ab < Aa? + A~1b2.

To prove (2.4.6), observe that

d

T
I(r) > Ja(m) = 0m(G)+ 5 /dt/ duS (O, (0,9), 00,2
0 D4 i=1
d

+ /dt/ du ) D 5(vi0a,G)
Dd

UEV i=1

- / dt/Dd duZZ(Zw@ﬁ) X0 (A(p, p)))

vey i=1

o (G / dt/ du’S (02 (p, ), 02, G) 2—0/ dtZ||VG’“||27
D4 1

1=

vV

where C is constant obtained from the elementary inequality 2ab < a? + b?, the fact that V is finite, and
that x is bounded above by 1/4 in [0, 1].
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Now, consider G = K (7 — k), and note that 7 — x belong to L2([0, T], H}(D?)), which implies that
it may be approximated by C2° functions. Therefore Oyn(G) = (wr,n7 — k) — (7o, To — K), which is
bounded by some constant C. We, then, obtain that

T K d K d d
1) > [ a0t 53T IV - 5 D0 00). 00k = O S IV (i~ )
k=0 i=1 k=0
T d K d d
> /O at{ (K/4-20K2) 3 IVpelB} = 5 2 IVAl3 — 20K [ Vrllf — €
k=0 k=0 k=0

where in the last inequality we used the Cauchy-Schwartz inequality and the elementary inequalities
2ab < a® + b2. The proof thus follows from choosing a suitable K, the estimate given in (2.4.5), and the
fact we have a fixed smooth function x. O

Corollary 2.4.3. The density (p,p) of a path ©(t,du) = (p,p)(t,u)du in D([0,T], M) is the weak
solution of the equation (2.3.2) and initial profile v if and only if the rate function Ir(w|y) vanishes.
Moreover, if any of the above conditions hold, ™ has finite energy (Q(m) < 00).

Proof. On the one hand, if the density (p,p) of a path 7 (t,du) = (p,p)(t,u)du in D([0,T], M°) is the
weak solution of equation (2.3.2) with initial condition is , in the formula of Jg(m), the linear part
in G vanishes which proves that the rate functional I (7|y) vanishes. On the other hand, if the rate
functional vanishes, the path (p,p) belongs to L?([0,T], [H'(D?)]4*!) and the linear part in G of Jg()
has to vanish for all functions G. In particular, (p, p) is a weak solution of (2.3.2). Moreover, if the rate
function is finite, by the previous lemma, 7 has finite energy. Accordingly, if 7 is a weak solution, we
have from Theorem 2.3.1 that it has finite energy. O

For each ¢ > 0, let E, be the level set of Ir(n|y) defined by
Ey={m e D([0,T], M) : In(m|y) < q} .

By Lemma 2.4.1, E, is a subset of C([0,7], M°). Thus, from the previous lemma, it is easy to deduce
the next result.

Corollary 2.4.4. For every q > 0, there exists a finite constant C(q) such that

d T
swp {lo(pp)l2s + 3 [t [ auViewlP} < Clo).
TeE, k—0"0 Dd

Next result together with the previous estimates provide the compactness needed in the proof of the
lower semicontinuity of the rate function.

Lemma 2.4.5. Let {p" :n > 1} be a sequence of functions in L*(Q) such that uniformly on n,
T 2 T 2
e la+ [ atlowtl?, < C
0 0

for some positive constant C. Suppose that p € L*(Qr) and that p™ — p weakly in L*(Qr). Then p, — p
strongly in L*(Qr).

Proof. Since H'(D?) c L?(D%) c H—'(D?) with compact embedding H'(D?%) — L?(D%), from Corol-
lary 8.4, [12], the sequence {p,} is relatively compact in L?([0,T7], L?>(D)). Therefore the weak conver-
gence implies the strong convergence in L?([0, T, L*(D)). O

Theorem 2.4.6. The functional I (-|y) is lower semicontinuous and has compact level sets.

Proof. We have to show that, for all ¢ > 0, E, is compact in D([0,T], M). Since E, C C([0,7], M) and
C([0,T], M) is a closed subset of D([0,T], M), we just need to show that E, is compact in C([0, 7], M?).
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We will show first that E, is closed in C([0,T], M°). Fix ¢ € R and let {7 : n > 1} be a sequence
in E, converging to some 7 in C([0,7], M°). Then, for all G € C(Qr) x [C(D4)]4,

T T
lim dt <7TZL, Gt> = / dt <7Tt, Gt> .
Notice that this means that 7% — 7% weakly in L?(Q27), for each k = 0,...,d, which together with
Corollary 2.4.4 and Lemma 2.4.5 imply that 7% — 7% strongly in L?(Qr). From this fact and the

definition of Jg it is easy to see that, for all G in Cy”*(Q7) x [C3(D?)]4,
lim Jg(ﬂ'n) = Jc;(ﬂ) .
This limit, Corollary 2.4.4 and the lower semicontinuity of Q permit us to conclude that Q(w) < C(q)

and that Ip(w|y) < gq.
We prove now that £ is relatively compact. To this end, it is enough to prove that for every

continuous function G : D4 — R, and every k= 0,...,d,
lim sup sup |(zF,G)— (z*, G) =0. (2.4.7)
=0 recE, 0<s,r<T
|[r—s|<d

Since E, C C([0,7], M), we may assume by approximations of G in L'(D?) that G € C>(D?). In
which case, (2.4.7) follows from (2.4.1). O

We conclude this section with an explicit formula for the rate function I7(-|y). For each 7(t,du) =
(p,p)(t,u)du in D(]0,T], M°), denote by H{(n) the Hilbert space induced by Cy”*(Q7) endowed with
the inner product (-, ), defined by

(H, G :UGZV /O dt /D dux(6,(A(p, p)))[6- V][5 VG). (2.4.8)

Induced means that we first declare two functions F, G in Cy*(Qr) to be equivalent if (F—G, F—G), = 0
and then we complete the quotient space with respect to the inner product (-, -),. The norm of H{(m)
is denoted by || - || .

Fix a path 7 in D([0, 7], M°) and a function H in H}(w). A measurable function A : [0,7] x D¢ —
R, x R? is said to be a weak solution of the nonlinear boundary value parabolic equation

DN+ Y ey 90n, [X(Ou(AN)) (vi — - 0, H)] = AN,
AO,-) =~() (2.4.9)
At, ) =d(z),z € {0,1} x T4

if it satisfies the following two conditions.

(i) For k=0,...,d, A\ belongs to L* ([0, T], H*(D)):

T
/ ds(/ | VAk(s,u) H2du) <00
0 DA

(ii) For every function G(t,u) = Gy(u) in Cy*(Qr),

G(T,u) - MT,u)du — / G(0,u) - y(u)du

Dd Dd

T
:/ dt/ du A(t,u)-atG(t,u)+1A(t,u)- > 092Gt u)
0 Dd 2 i

1<i<d

T T
—/ dt/ dS b(w) - Oy, G(t,u) +/ dt/ dS a(a) - Oy, G(t,u)
0 {1}xTd=1 0 {0} xTd—1
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/ dt/Dddu Zv x(6 A)) Z 0;0u,G(t, u),

veV 1<i<d

+Z/ @t [ dux(0,(AN) - VH]- VG

veY

Uniqueness of solutions of equation (2.4.9) follows from the same arguments of the uniqueness proved
n [11].

Lemma 2.4.7. Assume that 7(t,du) = (p,p)(t,u)du in D(]0,T], M) has finite rate function: Ir(w|y) <
0o. Then, there exists a function H in Hg () such that (p,p) is a weak solution to (2.4.9). Moreover,

1
Ir(wly) = FIHIIZ - (2.4.10)

The proof of this lemma is similar to the one of Lemma 10.5.3 in [9] and is therefore omitted.

2.5 Ip(:|y)-Density

The main result of this section, stated in Theorem 2.5.5, asserts that any trajectory A\;, 0 < ¢ < T, with
finite rate function, IT(\|y) < oo, can be approximated by a sequence of smooth trajectories {\" : n > 1}
such that

This is one of the main steps in the proof of the lower bound of the large deviations principle for the
empirical measure. The proof is mainly based on the regularizing effects of the hydrodynamic equation.
This strategy was introduced by [8].

A subset A of D([0,T], M, x M%) is said to be Ir(-|y)-dense if for every 7 in D([0,T], M4 x M%)
such that Ir(w|y) < oo, there exists a sequence {n™ : n > 1} in A such that 7™ converges to = and
Ip (7™ |7y) converges to Ir(m|y).

Let II; be the subset of D(]0, T], M?) consisting of paths (¢, du) = (p, p)(t, u)du whose density (p, p)
is a weak solution of the hydrodynamic equation (2.3.2) in the time interval [0, §] for some § > 0.

Lemma 2.5.1. The set 11y is I7(-|y)-dense.

Proof. Fix 7(t,du) = (p, p)(t,u)du in D([0,T], M + x M%) such that Ir(7|y) < co. By Lemma 2.4.1, ©
belongs to C([O,T],./\/lo) For each § > 0, let (p°, p°) be the path defined as

(t, ) ifo<t<s,
(26 — t,u) if 6 <t<20,
(pa )(t—26,u) 1f25§t§Ta

(0, P°)(t,u) =

where 7 is the weak solution of the hydrodynamic equation (2.3.2) starting at . It is clear that 70 (¢, du) =
(p°, p°)(t,u)du belongs to D., because so do m and 7 and that Q(7°) < Q(r) + 2Q(7) < co. Moreover,
70 converges to 7 as 6 | 0 because m belongs to C([0, 7], M°). By the lower semicontinuity of Ir(-|7),
Ir(nly) < limgs_ o I7(70|y). Then, in order to prove the lemma, it is enough to prove that Ir(m|y) >
lims_ I (7°|y). To this end, decompose the rate function I (7%|y) as the sum of the contributions
on each time interval [0,6], [§,26] and [2,T]. The first contribution vanishes because 7 solves the
hydrodynamic equation in this interval. On the time interval [4, 24], (“)tpf = —OTo5_¢ = —%Am,t +
ey 0l VX(0u(A(T25-4)))] = =2 A8, DY) + ey O[v - VX (04 (A(p,p?)))]. In particular, the second
contribution is equal to

Z/ ds/ du Oy, (p,p) - 0, G —
c(Dd))¢

which, by Lemma 2.6.5 is bounded from above, and therefore this last expression converges to zero as
§ | 0. Finally, the third contribution is bounded by Ir(7|y) because 7 in this interval is just a time
translation of the path . O

) / dt [ dux(0.(A )5 VEI}

Gecy 2(9 ) vEV
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Let II5 be the set of all paths « in II; with the property that for every § > 0 there exists € > 0 such
that, for k =0,...,d, d(7F(-),0U) > € for all ¢ € [5, T], where O stands for the boundary of 4.
We begin by proving an auxiliary lemma.

Lemma 2.5.2. Let m, A € 8, and let 7€ = (1 —e)m + €A, 0 < e < 1. Then, for all v €V, we have

00 (A(7€)) = (1 — €)0, (A(m)) + by (A(N)).

Proof. Fix some \ € 4. Observe that

(Z 0, (AN), Y v10,(AN), ..., Y vdev(A(A))> = (Ao, M, M)

veY veV veV

is a linear system with d + 1 equations and |V| unknowns (given by 6, (A(\)), for v € V). Therefore, any
solution of this linear system can be expressed as a linear combination of A;, i = 0,1,...,d. The proof
follows from this fact. O

Remark 2.5.3. In the particular case when d = 1 and the set of velocities is V = {v, —v} C R, a simple
computation gives the unique solution

A A A A
0, (A(Aos A1) = 20 + ﬁ and  0_,(A(No, M) = ?0 _ ﬁ

Lemma 2.5.4. The set Il is I7(+|v)-dense.

Proof. By Lemma 2.5.1, it is enough to show that each path #(¢,du) = (p,p)(t,u)du in II; can be
approximated by paths in IIs. Fix 7 in ITy and let 7 be as in the proof of the previous lemma. For each
0<e<l1let (p%,p%) = (1—¢€)p,p) +er, m(t,du) = (p°, p°)(t,u)du. Note that Q(n%) < co because
Q is convex and both Q(7) and Q(r) are finite. Hence, 7° belongs to D., since both p and 7 satisfy the
boundary conditions. Moreover, It is clear that 7#¢ converges to m as € | 0. By the lower semicontinuity
of It (+|]v), in order to conclude the proof, it is enough to show that

T Ir(n}y) < Ir(al). (2.5.1)
N—oc0

By Lemma 2.4.7, there exists H € H}(m) such that (p,p) solves the equation (2.4.9). Let us denote
x (8, (A(p,p))) simply by x,(m), and define P, ,(7) = xv(ﬂ)(ﬁ <Oy, H — vi), and note that P, ,(7) =
—v;X(0,(A(7))). Let also

Py =1 = €e)Piy(m) + ebiy(7).
Observe that, by Lemma 2.4.7,
1
I(m) = ~||H|?
(m) = 112,
and that, using the definition of || - || in (2.4.8),

. 2
%IIHH?}— Z/ dt duxv (D - Oy, H)? Z/ gt [ gy i HVixe(m)”

Xo (™)

A simple computation shows that

Z// o+ Xo (1)) (0 - 02,G) = X0 (7) (0 - 8, G)?

. i2 Piev 1)776 ~ 2
,Z/ dt/Dd iy ()] —(é () XU(W)(v.axiG)>.

Xv ﬂ-e) Xv(’fré)
Let " P )
1 <+ X (),
s [T [ adPatenl
4 iw 70 Dd Xo (7€)
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and

1PE +Xv( ‘) .

I(n) = sup Jo(n) = sup {Ac — B(G)*} = A — iréfBe(G)Q < A,
G G

This implies that

where the supremum and infimum are taken over in G in C°(Qr) x [C°(D)]4.
It remains to be shown that A, is uniformly integrable in e. However, this is a simple consequence of
Lemma 2.5.2. O

Let IT be the subset of Il consisting of all those paths 7 which are solutions of the equation (2.4.9)
for some H € Cy*(Qr) x [C(D?))¢.
Theorem 2.5.5. The set I is Ip(-|y)-dense.

Proof. By the previous lemma, it is enough to show that each path 7 in Il; can be approximated by
paths in II. Fix 7(¢,du) = (p,p)(t,u)du in II5. By Lemma 2.4.7, there exists H € Hj () such that (p, p)
solves the equation (2.4.9). Since 7 belongs to IIy C IIj, (p,p) is the weak solution of (2.3.2) in some
time interval [0, 28] for some & > 0. In particular, VH* = 0 a.e in [0, 2] x D?. On the other hand, since
7 belongs to Iy, there exists € > 0 such that, for k = 0,...,d, d(7F(-),04) > € for § <t < T. Therefore,

T
/ dt/ IV H, ()2 du < oo (2.5.2)
0 Dd

Since H belongs to H{ (), there exists a sequence of functions {H" : n > 1} in C”*(Q7) converging
to H in Hg(m). We may assume of course that VH] = 0 in the time interval [0, ]. In particular,

T
lim dt/ du |VH](u) — VH(u)|[* =0. (2.5.3)
Dé

n—oo 0

For each integer n > 0, let (p™,p™) be the weak solution of (2.4.9) with H™ in place of H and set
7 (t, du) = (p™, p™)(t,u)du. By (2.4.10) and since y is bounded above in [0, 1] by 1/4, we have that

(") = 2/ dt (x(0,(Ao7 }))). ||VH“||><00/ dt/ du ||V HP ()2

In particular, by (2.5.2) and (2.5.3), I (7" |y) is uniformly bounded on n. Thus, by Theorem 2.4.6, the
sequence 7" is relatively compact in D([0, 7], M4 x M?).

Let {7™ : k > 1} be a subsequence of 7™ converging to some 7° in D([0, 7], M°). For every G in
€y’ (@),

/ G(T, u) - (7, i) (T, )t — / G(0,u) - 7(u)du
Dd

Dd

T
T T 1
= [Car [ dud @ pe - a6 + 5@ BN 3 046
0 D

1<i<d

T T
- / dt / dS b(i) - B, Gt u) + / dt / dS a(ii) - D, G(t, u)
0 (1} xTd—1 0 {0} xTd—1

/ dt/Dd du Zv X (0 (A(pi™, pi*))) Z v;04,G(t, ),

veY 1<i<d

> / dt [ dux(0. AR P ) o VH - VE)

veY
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Letting k — oo in this equation, we obtain the same equation with 7° and H in place of 7™ and
H™ | respectively, if

T
tin [t [ du 3 0@ Y 00,6l
0 D4

k—oo
=y 1<i<d
T
_ / dt/ du S5 xOAGD D) Y 00 Gt u),
0 DY ey 1<i<d

T (2.5.4)
lim ;,/0 dt /Dd dux (0, (A(p™*, pi* ) [0 - VH™ ][5 - VG]

k—oo
v

T
=> / dt /D dux(Bu (A, P[5 - VH][D - VG,

veEV

We prove the second claim, the first one being simpler. Note first that we can replace H™* by H in
the previous limit, because x is bounded in [0, 1] by 1/4, and (2.5.3) holds. Now, (p™*,p™*) converges
to (p°, p°) weakly in L2(21) because 7™ converges to 7° in D([0,T], M?). Since Ir(7™|y) is uniformly
bounded, by Corollary 2.4.4 and Lemma 2.4.5, (p"*, p"*) converges to (p°, p°) strongly in L?(£27) which
implies (2.5.4). In particular, since (2.5.2) holds, by uniqueness of weak solutions of equation (2.4.9),

70 = 7 and we are done. O

2.6 Large deviations

We prove in this section Theorem 2.2.1, which is the dynamical large deviations principle for the empirical
measure of boundary driven stochastic lattice gas model with many conserved quantities. The proof uses
some of the ideas introduced in [8].

2.6.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper bound is a super-exponential
estimate which allows the replacement of local functions by functionals of the empirical density in the
large deviations regime.

Let x be as in the beginning of Section 2.4. Note that since /Y is not the invariant state, there are
no reasons for (—N2Ly f, f)vy to be positive. The next statement shows that this expression is almost
positive.

For each function f: Xny — R, let D,~(f) be

Dy (f) = DS (f) + Diy () + Dl (F),

where
G- % X Pute-wo) [ (VI - Vi) v,
vEV zeDY x+2€DY
=3 3 [ ptean) [VEED - ViG] v,
‘ZEQ:EED?V
and

Dle(N=3% 3 [laula/N) - n(e.v) + (1 - a@/N)nle. o))

d—1
vEV 2 {1} xTY

< [T — /)] v dn) +
+ Y Y [N a0 + (- BN )]

d—1
vEV e {N-1}xT%

X {\/f(ff‘”"”n) — \/f(n)} " (dn).
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Proposition 2.6.1. There exist constants C; > 0 and Cy = Co(ar, ) > 0 such that for every density f
with respect to I/N then

< Ly VI AT >n< —CiDyy (f) + CoN42.
The proof of this proposition is elementary and is thus omitted.
Further, we may choose k for which there exists a constant § > 0 such that:
k(u1, @) = d(—1,a) if 0<u; <46,
k(uy, @) = d(1,a) if 1-0<u; <1,
for all & € T?~!. In that case, for every N large enough, vV is reversible for the process with generator
LY and then (— N2£ ~nfs fluy is positive.

Fix L > 1 and a configuration 7, let I (xz,n) := I*(2) = (If(2),...,Ik(x)) be the average of the
conserved quantities in a cube of the length L centered at x:

1
I"z)= 7= > I(n),
|AL| zEx+AL

where, Ay = {—L,...,L}* and [Az| = (2L + 1)% is the discrete volume of box Ap.
For each G € C(Qr) x C(D)? and each ¢ > 0, let

Vﬁal (s,m) Nd Z Z Z Du,G*(s,2/N) [Txvaf} ,

k=01,j=1ze DY,

where
Vit (n) = 2£+1 G 2 2 2 P )zm 0. )L - n(z )
YyEAN: VEV z€Z4
=3 (6. (AT ),
veY
and let

d d
VSR (s,m) Nd Z Z Z Z vkvj(?NG] (x/N)OY Gy (z/N) x

VeV weDd, i=1 j,k=0
x e, 0)[1 = 0@+ e, 0)] + 0z, v)[1 = 0z — e, v)] - 20 (AT (O)))) }
Let, again, G : [0, 7] x T?~! — R9*+! be a continuous function, and consider the quantities

Vy (s,n,G) = Nd il Z Z Gi(s x/N)(Ik(n(l 2 (s kaav x/N)

k=0 i1 veY
Vi(s,m,G) = Nd T Z Z Gr(s x/N)(Ik( N(N-1,5)(5 kaﬁv x/N)
k= OTETd e vey

Proposition 2.6.2. Fiz G € C(Qr) x [C(D))¢, H in C([0,T] xT) x [C(D)]?, a cylinder function ¥ and
a sequence {n™ : N > 1} of configurations with 0™ in Xy. For every § > 0,

i:%in 2 1Py / W o ds] > 0] = oo,
hm Nd P~ / Visn, >5} = —00,

forj=1,2.
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The proof of the above proposition follows from Proposition 2.6.1, the replacement lemmas proved
in [11], and the computation presented in [3], p. 78, for nonreversible processes.

For each € > 0 and 7 in My x M, for k =0,...,d, denote by Z () = w5 the absolutely continuous
measure obtained by smoothing the measure 7y:

1 m(Ac(@))

Ze(me)(de) = mi(de) = 7=,

dx ,

where A () = {y € D% : |y—x| < ¢}, |A| stands for the Lebesgue measure of the set A, and {U. : & > 0}
is a strictly decreasing sequence converging to 1: U, > 1, U, > U for € > ¢/, lim,|o U. = 1. Let

N = (B B, Eel)),

A simple computation shows that 7V>¢ belongs to M for N sufficiently large because U, > 1, and that
for each continuous function H : D¢ — R4+

(N HY = % S H(z/N) - IN(@) + O(N,e)
acEDJdV

where O(N, €) is absolutely bounded by Co{N ~1 4+ ¢} for some finite constant Cy depending only on H.
For each H in Cy”*(Q7) x [C3(D?)]¢ consider the exponential martingale M/ defined by

MtH = exp{Nd{<7T7fV,Ht>—<7rév,H0>

1

t
~ N / e~ N (m H) (8s +N2£N) N (m ' He) ds] }
0

Recall from subsection 2.2 the definition of the functional J. An elementary computation shows that

ME = exp {Nd [jH(wNﬁs) +VE .+ k(o) + cz(Nfl)} } . (2.6.1)
In this formula,
TG e G2
V%’E = —/ Ve (s,m)ds — Z/ Vi (s,m)ds
0 = Jo

+ VZ;/"F(SaT]78U1H) - V]\?(san78u1H) + <7Tév7H0>_<fY’HO>;

and ¢, : Ry — R, j = 1,2, are functions depending only on H such that ¢};(8) converges to 0 as ¢ | 0.
In particular, the martingale M is bounded by exp {C(H7 T)Nd} for some finite constant C(H,T)
depending only on H and T'. Therefore, Proposition 2.6.2 holds for IP’{;[N =P~ M%{ in place of P, ~.

2.6.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy estimate. We
state first the following technical result.

Lemma 2.6.3. There exists a finite constant Cy, depending on T, such that for every G in C°(Q2r),
every integer 1 < i <d, 0 < k <d, and every sequence {n" : N > 1} of configurations with n" in Xy,

— 1
lim —

i log I, v [exp{Nd/OTdt (ﬂiv’k,(?uiG>H < Co{1+/OT ||Gt||§dt} .

The proof of this proposition follows from Lemma 3.8 in [11], and the fact that dé,~ /dv) < cN,
for some positive constant C' = C(k). 3

For each G in C°(r) and each integer 1 < i < d, let Q) : D([0,T], M x M%) — R be the function
given by

T T
chfk(ﬂ) = / dt (rf,0,,Gt) — Co/ dt du G(t,u)? .
0 0 Dd
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Notice that

sup {QZG,C(W)} = Qi (m) . (2.6.2)

GeCxr(Qr) 400

Fix a sequence {G, : r > 1} of smooth functions dense in L2([0,T], H'(D?)). For any positive
integers m, [, let

ko _ dy . ;G
Bk, = {7r € D(0.T My x M)+ max O (m) < z}.
1<i<d

Since, for fixed G in C°(Qr) and 1 < ¢ < d integer, the function Qle is continuous, B, ; is a closed
subset of D([0,T], M).

Lemma 2.6.4. There exists a finite constant Cy, depending on T, such that for any positive integers

r, 1 and any sequence {n™ : N > 1} of configurations with n™ in Xy,

N@oo IOan [( ml) ] < =1+ Cy,

where k=10,...,d.

Proof. For integers 1 < k < r and 1 < ¢ < d, by Chebychev inequality and by Lemma 2.6.3,
m DGm < C,
I log Py (8% > 1] <1+ Co.
Hence, from
Tiil (any +bn) < Tiil Tiil b (2.6.3)
NgnooNd oslan N) = max NgnooNd OgaN’NgnooNd OBON [ o

we obtain the desired inequality. O

Lemma 2.6.5. There exists a finite constant Cy, depending on T, such that for every G in C°(Qr) X
[C2(DD))?, and every sequence {n™ : N > 1} of configurations with n™ in Xy,

d
hm mlogE N exp Nd/ ZZdt <7T;N,<9u71Gk>H < Co{1+/OT|Gt|727dt}-

N=oo i=1 k=0
In particular, we have that if (p,p) is the solution of (2.3.2), then

d

sup {Z/T ds du Ox, (pyP) - 01,G — Z/ dt dux (6,(A(p,p)))[v - VG]Q},

Gecy* @) L Jo =
is finite, and vanishes if T — 0.

Proof. Applying Feynman-Kac’s formula and using the same arguments of Lemma 3.3 in [11], we have
that

T d d
Salog B,y fexpd N / 1535 ST 0 (9)) — (s ()00, G (5,2/N)

i=1 k=0 ze D4,
IR
m/o AS dS,
where A\ is equal to

sup{<NZ Z I(n — I(n(x — ei)))auin(s,x/N),fEév—i— N? < Ly T, \/f>,,'z€v },

i,k wEDd

is bounded above by
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where the supremum is taken over all densities f with respect to Y. By Proposition 2.6.1, the expression
inside brackets is bounded above by

N

— N+3 X {woucH e/ [1tm) = el () |

i,k zeD%,
We now rewrite the term inside the brackets as
Y Y { [ 56 0u6ts.0/ o) ~ o~ excol st @ }.
veV i=1 zeDd

Writing n(z,v) — n(z — e;,v) = n(x,v)[1 —n(x — e;,v)] — n(z — e;,v)[1 — n(x,v)], and applying the same
arguments in Lemma 3.8 of [11], we obtain that

N(@ - 0,,G(s,2/N)) / Iz, v) — 0z — s, 0)] f(n) (d)

IN

(6 0. Gls,2/N))? / (e, 0)[1 = 0 — e, 0)] (7655 )

2
+ i / FnP=eomv) [N (1 - %%UU)] vy (dn)
+ N [ S - R
20 0 Gls,a/ NP [ n(a0)[1 = e s o)) (VTG + /T 2 ),

we have that (1/f(n) + \/f(n*=®))2 < 2(f(n) + f(n® ¢=v)). An application of the replacement
lemma (Lemma 3.7 in [11]) concludes the proof. O

2.6.3 Upper Bound

Fix a sequence {Fj : j > 1} of smooth functions dense in C (ﬁ) for the uniform topology, with positive
coordinates. For j > 1 and 6 > 0, let

ng_{ﬁeD([OT}M+de) (xk, F >\<1”;k\v|/ w)de + C;6 k=0, d,ogth},

where ° = 1 and % = ¥, C; = |[VF}||w and VF is the gradient of F. Clearly, the set D;s, j > 1,
§ > 0, is a closed subset of D([0,T], M, x M%). Moreover, if

m
E,; = ﬂ Djs,
i=1

we have that D([0, T], M°) = Np>1 Nim>1 B 1/n- Note, finally, that for all m > 1,6 > 0,

7% belongs to E,, s for N sufficiently large. (2.6.4)

Fix a sequence of configurations {n’¥ : N > 1} with ¥ in Xy and such that 7™V (n")

y(u)du in M. Let A be a subset of D([0,T], My x M%),

converges to

1 1 _
WIOanN [ﬂ'N €A = WlogEnN [MT{J (MEY 1 1{x"N ¢ A}] .
Maximizing over 7V in A, we get from (2.6.1) that the last term is bounded above by

P | vy B
7#22‘]1{(# )+ mlOgEnN [Mq{ie N VN,E} —ch(e) — (N1,
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Since 7V (™) converges to vy(u)du in M and since Proposition 2.6.2 holds for PTI;’N =P, MH in place
of P, ~, the second term of the previous expression is bounded above by some Cp (g, N) such that

M(
lim lim Cg(e,N) =0.

e—0N—oo

Hence, for every e > 0, and every H in Cy”*(Qr) x [C2(D?)]4,

A}gnoo Nd log P, ~ [A] < _;Iel,le Ju (7)) + Cy(e), (2.6.5)

where lim Ch(e) =0. Let
B, = {7r e D([0,T), My x M%) : max ZQW }

1<5<r
1<i<d k=0

and, for each H € Cy*(Qr) x [C3(D%)]%, each ¢ > 0 and any 7,1, m,n € Z, , let J;jfém’" : D([0,T], M4 x
M%) — RU {oo} be the functional given by

Jrlmn(ﬂ_): {jH(ﬂ-E) ifﬂ-eBT,lmEm,l/nv

He 400 otherwise .

This functional is lower semicontinuous because so is .J 1 °Z¢ and because B, Ep, 1/, are closed subsets
of D([0,T], M4 x M%),
Let O be an open subset of D([0,T], My x M%). By Lemma 2.6.4, (2.6.3), (2.6.4) and (2.6.5),
— 1 — 1
]\}gnoo Na logQ,~[0] < max { ngnOo ~a logQ,~n[ON By NEy, /4],
T 105 @ [(B) )}

Ju(7%) 4+ Ciy(e), -1+ C’o}

IN

max{ — inf
ﬂEOﬁBT‘lﬁEmyl/n

= —inf L™ (),
where
Ly () = min { T (7) = Chye) 1= Co
In particular,

1 .
lim —lo O] < - su inf L7 (7).
Neooo Nd gQ'r]N[ ] = H75,7«7ll?7n7n re) H,.e ( )

Note that, for each H € Cy”*(Qr) x [C2(D9)]?, each ¢ > 0 and r,l,m,n € Z, , the functional L%{’Em’”
is lower semicontinuous. Then, by Lemma A2.3.3 in [9], for each compact subset K of D([0,T], M),

— 1
m — 1 K] < — inf Lrhmm(r).
WL ol s — e s e ()

By (2.6.2) and since D([0,T], M°) = Np>1 Nim>1 Enm 1/,

- I
lim lim lim lim lim L% ) =
£—01l—00 r—00 M—00 N—00

{JH(T&') if Q(7) < 0o and 7 € D([0,T], M?),

+00 otherwise .

This result and the last inequality imply the upper bound for compact sets because Ju and Jy coincide
on D([0,T], M"). To pass from compact sets to closed sets, we have to obtain exponential tightness
for the sequence {Q,~}. This means that there exists a sequence of compact sets {, : n > 1} in
D([0,T], M) such that

hm Ndloan ~ (K, < —n.
The proof presented in [2] for the non interacting zero range process is easily adapted to our context.
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2.6.4 Lower Bound

The proof of the lower bound is similar to the one in the convex periodic case. We just sketch it and
refer to [9], Section 10.5. Fix a path 7 in IT and let H € Cy*(Q7) be such that 7 is the weak solution
of equation (2.4.9). Recall from the previous section the definition of the martingale M/ and denote by
]P’;IN the probability measure on D([0,T], Xn) given by ]P’;IN [A] = E,~ [M#1{A}]. Under ]P’f;{N and for

each 0 <t < T, the empirical measure 7} converges in probability to ;. Further,

) 1
i 7 (B35 [Py ) = Fr(al).

where H(p|v) stands for the relative entropy of p with respect to v. From these two results we can
obtain that for every open set O C D([0,T], M4 x M¢?) which contains T,

. 1
NhjmoO ~a logP,~ [O] > —Ip(n]v).

The lower bound follows from this and the Ir(-|vy)-density of II established in Theorem 2.5.5.
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Particle systems with conductances
in random environments
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Chapter 3

IW-Sobolev spaces: Theory,
Homogenization and Applications

Artigo em colaboracao com F.J. Valentim. Estd atualmente submetido para publicacao.

Abstract

Fix strictly increasing right continuous functions with left limits W; : R — R, ¢ = 1,...,d, and let
W(z) = 25:1 Wi(z;) for x € RY. We construct the W-Sobolev spaces, which consist of functions f
having weak generalized gradients Vi f = (0w, f,...,0w,f). Several properties, that are analogous
to classical results on Sobolev spaces, are obtained. W-generalized elliptic and parabolic equations are
also established, along with results on existence and uniqueness of weak solutions of such equations.
Homogenization results of suitable random operators are investigated. Finally, as an application of all
the theory developed, we prove a hydrodynamic limit for gradient processes with conductances (induced
by W) in random environments.

3.1 Introduction

The space of functions that admit differentiation in a weak sense has been widely studied in the mathe-
matical literature. The usage of such spaces provides a wide application to the theory of partial differential
equations (PDE), and to many other areas of pure and applied mathematics. These spaces have become
associated with the name of the late Russian mathematician S. L. Sobolev, although their origins predate
his major contributions to their development in the late 1930s. In theory of PDEs, the idea of Sobolev
space allows one to introduce the notion of weak solutions whose existence, uniqueness, regularities, and
well-posedness are based on tools of functional analysis.

In classical theory of PDEs, two important classes of equations are: elliptic and parabolic PDEs.
They are second-order PDEs, with some constraints (coerciveness) in the higher-order terms. The
elliptic equations typically model the flow of some chemical quantity within some region, whereas the
parabolic equations model the time evolution of such quantities. Consider the following particular classes
of elliptic and parabolic equations:

d _—d

for t € (0,T] and « € D, where D is some suitable domain, and g is a function. Sobolev spaces are the
natural environment to treat equations like (3.1.1) - an elegant exposition of this fact can be found in

[2].

Consider the following generalization of the above equations:

d N d
;amawiu(x): g(z), and {0tu(t,w)u—(0§;3_;3;(gv’viU(tvx), (3.1.2)
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where O, stands for the generalized derivative operator, where, for each i, W; is a one-dimensional
strictly increasing (not necessarily continuous) function. Note that if W;(x;) = x;, we obtain the equa-
tions in (3.1.1). This notion of generalized derivative has been studied by several authors in the literature,
see for instance, [1, 5, 10, 11, 12]. We also call attention to [1] since it provides a detailed study of such
notion. The equations in (3.1.2) have the same physical interpretation as the equations in (3.1.1). How-
ever, the latter covers more general situations. For instance, [6] and [16] argue that these equations may
be used to model a diffusion of particles within a region with membranes induced by the discontinuities
of the functions W;. Unfortunately, the standard Sobolev spaces are not suitable for being used as the
space of weak solutions of equations in the form of (3.1.2).

One of our goals in this work is to define and obtain some properties of a space, which we call W-
Sobolev space. This space lets us formalize a notion of weak generalized derivative in such a way that,
if a function is W-differentiable in the strong sense, it will also be differentiable in the weak sense, with
their derivatives coinciding. Moreover, the W-Sobolev space will coincide with the standard Sobolev
space if W;(x;) = x; for all 7. With this in mind, we will be able to define weak solutions of equations in
(3.1.2). We will prove that there exist weak solutions for such equations, and also, for some cases, the
uniqueness of such weak solutions. Some analogous to classical results of Sobolev spaces are obtained,
such as Poincaré’s inequality and Rellich-Kondrachov’s compactness theorem.

Besides the treatment of elliptic and parabolic equations in terms of these WW-Sobolev spaces, we are
also interested in studying Homogenization and Hydrodynamic Limits. The study of homogenization is
motivated by several applications in mechanics, physics, chemistry and engineering. For example, when
one studies the thermal or electric conductivity in heterogeneous materials, the macroscopic properties
of crystals or the structure of polymers, are typically described in terms of linear or non-linear PDEs for
medium with periodic or quasi-periodic structure, or, more generally, stochastic.

We will consider stochastic homogenization. In the stochastic context, several works on homogeniza-
tion of operators with random coefficients have been published (see, for instance, [13, 14] and references
therein). In homogenization theory, only the stationarity of such random field is used. The notion of
stationary random field is formulated in such a manner that it covers many objects of non-probabilistic
nature, e.g., operators with periodic or quasi-periodic coefficients.

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coefficients can be obtained by the discretization of random high-
contrast lattice structures. In this sense, we want to extend the theory of homogenization of random
operators developed in [14], as well as to prove its main Theorem (Theorem 2.16) to the context in which
we have weak generalized derivatives.

Lastly, as an application of all the theory developed for W-Sobolev spaces, elliptic operators, parabolic
equations and homogenization, we prove a hydrodynamic limit for gradient processes with conductances in
random environments. Hydrodynamic limit for gradient processes with conductances have been obtained
in [6] for the one-dimensional setup and in [16] for the d-dimensional setup. However, with the tools
developed in our present article, the proof of the hydrodynamic limit on a more general setup (in
random environments) turns out to be simpler and much more natural. Furthermore, the proof of this
hydrodynamic limit also provides an existence theorem for the generalized parabolic equations such as
the one in (3.1.2).

The hydrodynamic limit allows one to obtain a description of the thermodynamic characteristics
(e.g., temperature, density, pressure, etc.) of infinite systems assuming that the underlying dynamics is
stochastic and follows the statistical mechanics approach introduced by Boltzmann. More precisely, it
allows one to deduce the macroscopic behavior of the system from the microscopic interaction among
particles. We will consider a microscopic dynamics consisting of random walks on the lattice submitted
to some local interaction, the so-called interacting particle systems introduced by Spitzer [15], see also
[9]. Therefore, this approach justifies rigorously a method often used by physicists to establish the partial
differential equations that describe the evolution of the thermodynamic characteristics of a fluid, and
thus, the existence of weak solutions of such PDEs can be viewed as one of the goals of the hydrodynamic
limit.

The random environment we considered is governed by the coefficients of the discrete formulation of
the model (the process on the lattice). It is possible to obtain other formulations of random environments,
for instance, in [3] they proved a hydrodynamic limit for a gradient process with conductances in a random
environment whose randomness consists of the random choice of the conductances. The hydrodynamic
limit for a gradient process without conductances on the random environment we are considering was
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proved in [7]. We would like to mention that in [4] a process evolving on a percolation cluster (a lattice
with some bonds removed randomly) was considered and the resulting process turned out to be non-
gradient. However, the homogenization tools facilitated the proof of the hydrodynamic limit, which made
the proof much simpler than the usual proof of hydrodynamic limit for non-gradient processes (see for
instance [8, Chapter 7]).

We now describe the organization of the article. In Section 3.2 we define the W-Sobolev spaces
and obtain some results, namely, approximation by smooth functions, Poincaré’s inequality, Rellich-
Kondrachov theorem (compact embedding), and a characterization of the dual of the W-Sobolev spaces.
In Section 3.3 we define the W-generalized elliptic equations, and what we call by weak solutions. We
then obtain some energy estimates and use them together with Lax-Milgram’s theorem to conclude results
regarding existence, uniqueness and boundedness of such weak solutions. In Section 3.4 we define the
W -generalized parabolic equations, their weak solutions, and prove uniquenesses of these weak solutions.
Moreover, a notion of energy is also introduced in this Section. Section 3.5 consists in obtaining discrete
analogous results to the ones of the previous sections. This Section serves as preamble for the subsequent
sections. In Section 3.6 we define the random operators we are interested and obtain homogenization
results for them. Finally, Section 3.7 concludes the article with an application that is interesting for both
probability and theoretical physics, which is the hydrodynamic limit for a gradient process in random
environments. This application uses results from all the previous sections and provides a proof for
existence of weak solutions of W-generalized parabolic equations.

3.2 W-Sobolev spaces

This Section is devoted to the definition and derivation of properties of the WW-Sobolev spaces. We begin
by introducing some notation, stating some known results, and giving a precise definition of these spaces
in subsection 2.2. Subsection 2.3 contains the proof of an approximation result. Poincaré’s inequality,
Rellich-Kondrachov theorem and a characterization of the dual space of these Sobolev spaces are also
obtained.

Denote by T¢ = (R/Z)? = [0,1)? the d-dimensional torus, and by T = (Z/NZ)% = {0,...,N — 1}¢
the d-dimensional discrete torus with N¢ points.

Fix a function W : R — R such that

M=

W(xl,...,md) = Wk(ﬂjk), (321)

k=1

where each Wy, : R — R is a strictly increasing right continuous function with left limits (cadlag),
periodic in the sense that for all u € R

Define the generalized derivative 9y, of a function f: T¢ — R by

ow, f(x15e - Tk, - Ta) = lim f@iwaet 6 Ta) = f@1 s Th s Ta)

e—0 Wk(xk -+ 6) — Wk(xk) ’ <3.2.2>

when the above limit exists and is finite. If for a function f : T — R the generalized derivatives Ay,
exist for all k, denote the generalized gradient of f by

va = (8W1f7"'7awdf) .
Consider the operator Ly, : Dw, C L*(T) — R given by
Ly, [ = 0u, 0w, [, (3.2.3)

whose domain Dyy, is completely characterized in the following proposition:
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Proposition 3.2.1. The domain Dy, consists of all functions f in L?(T) such that
y
f@) = a + Wi(e) + [ Wildy) / i(2) d=
(0,z] 0

for some function § in L*(T) that satisfies

/Olf(z)dz =0 and Wk(dy){b—l—/oyf(z)dz} — 0.

(0,1]

The proof of Proposition 3.2.1 and further details can be found in [6]. Furthermore, they also proved
that these operators have a countable complete orthonormal system of eigenvectors, which we denote by
Aw,.. Then, following [16],

d
Aw = {f T = R; f(wr,. .., xa) = [] falan), fx € Aw,},
k=1

where W is given by (3.2.1).
We may now build an operator analogous to Ly, in T¢. For a given set A, we denote by span(A)
the linear subspace generated by A. Let Dy = span(Aw ), and define the operator Ly : Dy — L?(T%)

as follows: for f = [1¢_, fr € Aw,

4 d
Lw(f)(z1,.. . za) = Z | H fi(xi) Lw, fu(xr), (3.2.4)

and extend to Dy by linearity. It is easy to see that if f € Dy,

d
Lwf=> Lw,f, (3.2.5)

k=1

where the application of Ly, on a function f: T¢ — R is the natural one, i.e., it considers f only as a
function of the kth coordinate, and keeps all the remaining coordinates fixed.

Let, for each k =1,...,d, fr € Aw, be an eigenvector of Ly, associated to the eigenvalue A;. Then
f= szl /& belongs to Dy and is an eigenvector of Ly, with eigenvalue 22:1 Ak. Moreover, [16] proved
the following result:

Lemma 3.2.2. The following statements hold:
(a) The set Dy is dense in L?(T?);
(b) The operator Ly : Dy — L2(T?) is symmetric and non-positive:
(Lw/f,f) =0,

where (-,-) is the standard inner product in L?(T?).

3.2.1 The auxiliary space

Let L2 (T?) be the Hilbert space of measurable functions H : T¢ — R such that

k@ Wy,
/ d(z*@ W) H(x)? < oo,
Td

where d(z*® W}) represents the product measure in T¢ obtained from Lesbegue’s measure in T?~! and
the measure induced by Wy in T:

dzF@Wy) = day---dxp_1 AWy, dogyy - - - dag.
T4):

Denote by (H, G)kgw, the inner product of L2, (

(H,G)prgw, = s d(z* @ W) H(x) G(z) ,

and by | - ||zrew,, the norm induced by this inner product.
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Lemma 3.2.3. Let f,g € Dy, then fori=1,...,d,
/T (OnOw ()9l do = ~ / (O ) Ow, g W)
In particular, ;
[ s @) de = =32 [ w1 ow )it W
Proof. Let f,g € Dy. By Fubini’s theorem )
[ cws@gs = [ { | £ p@torda| do'

where dz? is the Lebesgue product measure in T~! on the coordinates x1, ..., Ti_1, Tit1, ..., Tq.
An application of [6, Lemma 3.1 (b)] and again Fubini’s theorem concludes the proof of this Lemma.
O

2
Let LM®W%0

mean with respect to the measure d(z?® W;):

(T9) be the closed subspace of Lij®Wj (T9) consisting of the functions that have zero

N fd(z? @ W;) = 0.

Finally, using the characterization of the functions in Dy, given in Proposition 3.2.1, and the defini-

tion of Dy, we have that the set {Ow,h; h € Dy} is dense in Liﬂ@W_,»,o(Td)'

3.2.2 The W-Sobolev space

We define the Sobolev space of WW-generalized derivatives as the space of functions g € L?(T?) such that
for each ¢ = 1,...,d there exist fuctions G; € Li@m 0(Tl‘d) satisfying the following integral by parts
identity. /

[ @utwrygte = — [ @up) Gatato W), (3.2.6)
T Td

for every function f € Dyy. We denote this space by H- 1w (T?). A standard measure-theoretic argument
allows one to prove that for each function g € INJLW(Td) and i = 1,...,d, we have a unique function
G; that satisfies (3.2.6). Note that Dy C ﬂl,w(’]l‘d). Moreover, if g € Dy then G; = Ow,g. For this
reason for each function g € H 1,w we denote G; simply by 0w, g, and we call it the ith generalized weak
derivative of the function g with respect to W.

Lemma 3.2.4. The set I:ILW(Td) is a Hilbert space with respect to the inner product

d
hanw = (1.0 + Y [ 0w ) Owig) dla' W) (3:2.)

Proof. Let (gn)nen be a Cauchy sequence in Hj 1y (T¢), and denote by || - ||1.w the norm induced by
the inner product (3.2.7). By the definition of the norm || - |1, we obtain that (g,)nen is a Cauchy

sequence in L?(T%) and that (9w, gn)nen is a Cauchy sequence in L2, ((T?) for each i = 1,...,d.
Therefore, there exist functions g € L?(T%) and G; € Lii®wi o(T%) such that g = lim,_. gn, and

G, = limy,_.oc Ow,gn. It remains to be proved that G; is, in fact, the ith generalized weak derivative of
g with respect to W. But this follows from a simple calculation: for each f € Dy, we have

/d (Gmiﬁwif)gdx = lim (aziawlf)gndx
T

n—o0 [ma

= — lim [ (Ow.f)(Ow.g)d(z'® W;)
n—0o0 Td

_ /T (0w, f)Gid(' 0 W),

where we used Hélder’s inequality to pass the limit through the integral sign. O
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3.2.3 Approximation by smooth functions and the energetic space

We will now obtain approximation of functions in the Sobolev space H LW(Td) by functions in Dyy. Note
that the functions in Dy can be seen as smooth, in the sense that one may apply the operator Ly to
these functions in the strong sense.

Let us introduce (-, )1 w the inner product on Dy, defined by

(fLohw = (f,9) + (~Lwf,g), (3.2.8)
and note that by Lemma 3.2.3,

d
Fanw = (g + 3 [ @wepOw)ie's W),

Let Hy w(T) be the set of all functions f in L2(T?) for which there exists a sequence (fy,)nen in Dy
such that f,, converges to f in L?(T?) and f,, is a Cauchy sequence for the inner product (-, )1 1. Such
sequence (fp)nen is called admissible for f.

For f, g in Hy w(T?), define

(frohw = T (fo,gn)1w (3.2.9)

where (f5)nen, (gn)nen are admissible sequences for f, and g, respectively. By [17, Proposition 5.3.3],
this limit exists and does not depend on the admissible sequence chosen; the set Dy, is dense in Hy
and the embedding H; 1 C L%(T?) is continuous. Moreover, Hy yy-(T?) endowed with the inner product
(-, )1,w just defined is a Hilbert space. Denote |||,  the norm in Hy w induced by (-, -)1,w. The space

Hyw(T9) is called energetic space. For more details on the theory of energetic spaces see [17, Chapter
5].

Note that H; y is the space of functions that can be approximated by functions in Dy, with respect
to the norm || - [|1,w. The following Proposition shows that this space is, in fact, the Sobolev space
Hyw (T9).

Proposition 3.2.5 (Approximation by smooth functions). We have the equality of the sets
Hyw (T = Hyw (TY).
In particular, we can approximate any function f in the Sobolev space ﬁLW(']I‘d) by functions in Dyy .

Proof. Fix g € HLW(']I‘d). By definition, there exists a sequence g,, in Dy such that g,, converges to g in

L?(T?) and g,, is Cauchy for the inner product (-, Y1.w. So, for each i = 1,...,d there exists functions
G; € Lii®wi70(71‘d) such that dw,g, converges to G; in Li,i®wi70(’ﬂ‘d). Applying the Holder’s inequality,

we deduce that for every f € Dy

/ (811.8Wif)g dr = lim (amiawif)gn dx.
Td

n—oo [ra

By Lemma 3.2.3, we obtain

lim (02,0w, f)gndz = lim (Ow, ) (0w, gn) d(z' @ W;)

n—00 1 a n—00 Jra
Td

Then, g € Hy w(T%) and therefore Hy yw(T%) C Hy w (T9).

We will now prove that Hj y (T¢) is dense in fILW(']I‘d), and since both of them are complete, they
are equal. Note that since Dy is dense in L?(T%) and Dy, C Hy w (T?), we have that Hy w (T?) is also
dense in L?(T%).

Therefore, given a function g € Hy w (T?), we can approximate g by a sequence of functions (f,)nen
in Hy w (T?) with respect to the L?(T?) norm. Let F;,, be the ith generalized weak derivative of f,, with
respect to W. We have, therefore, for each h € Dy,

lim [ (0w, h)(Fin — Gi)d(z'®@ W;) = — lim (92,0w, 1) (fr, — g)dz = 0.

n—oo Td n—oo Td
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Denote by F; , : Lii@)Wi O(Td) — R the sequence of bounded linear functionals induced by F; , — G;:

Finlh) = / WFsn — Gild(a'e W),
Td

for h € Li@wi,o(’]rd)' We then note that, since the set {Ow,h; h € Dy} is dense in Li@wi,o(’]rd)a Fin
converges to 0 pointwisely. By Banach-Steinhaus’ Theorem, F; ,, converges strongly to 0, and, thus, F; ,
converges to G; in Li@WhO(Td), for each i = 1,...,d. Therefore, f, converges to g in L?(T¢) and oy, f,
converges to G; in Lil@wi,o (T?) for each 4, i.e., f, converges to g with the norm || - ||1,w, and the density
of Hy w(T?) in Hy w(T?) follows. O

The next Corollary shows an analogous of the classic result for Sobolev spaces with dimension d = 1,
which states that every function in the one-dimensional Sobolev space is absolutely continuous.

Corollary 3.2.6. A function f in L*(T) belongs to the Sobolev space fILW(']I‘) if and only if there exists
F in L},(T) and a finite constant ¢ such that

F)dW(y) = 0 and f(z) = ¢ + / Fy) dW(y)
(0,1] (0,2]

Lebesgue almost surely.

Proof. In [6] the energetic extension Hp w (T) has the characterization given in Corollary 3.2.6. By
Proposition 3.2.5 we have that these spaces coincide, and hence the proof follows. O

From Proposition 3.2.5, we may use the notation Hy y (T?) for the Sobolev space Hy w (T%). Another
interesting feature we have on this space, which is very useful in the study of elliptic equations, is the
Poincaré inequality:

Corollary 3.2.7 (Poincaré Inequality). For all f € Hy w(T?) there exists a finite constant C such that

[

Proof. We begin by introducing some notations. For z,5 € T¢, i =0,...,d and t € T, denote

2

IN

CZ; /T (Bw, f)? d(z* @ W;)

ClIVw fli7a (ray-

L2(T4)

Z(.I,y,’l,) = (‘Tlﬂ ces Ld—is Yd—it1, - - - 7yd) S Td
and
Z(I7yat7i) = (1'1, e a'rd—iytvyd—i+27 e 7yd) S Td'
With this notation, we may write f(z) — f(y) as the telescopic sum

d

f@) = fly) =) fla(a,y.i—1)) = f(z(z,9,1).

i=1
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We are now in conditions to prove this Lemma. Let f € Dy, then

Hf_/ ‘Lz T4) _/Td [/Tdf(ff)—f(y)dyrdm

-1/ ; [ o et )iy
<1/ i [ Jow.rpti]awioyas] o
S

- Cg/m (6W1f)2d($i® Wi),

where in the next-to-last inequality, we used Jensen’s inequality and the elementary inequality (3, x;)? <
c>, x? for some positive constant C. To conclude the proof, one uses Proposition 3.2.5 to approximate
functions in Hy w(T¢) by functions in Dy O

2
3Wif(2(957y,t,i))‘de—i(t)Q? Yd—it1® Q@ yq| dw

2
ow, [(z(z,y,t, i))‘ AWq—i(t)® dyq—i+1® - - - @ dyqdx

3.2.4 A Rellich-Kondrachov theorem

In this subsection we prove an analogous of the Rellich-Kondrachov theorem for the W-Sobolev spaces.
We begin by stating this result in dimension 1, whose proof can be found in [6, Lemma 3.3].

Lemma 3.2.8. Fiz some k € {1,...,d}. The embedding Hy w, (T) C L*(T) is compact.

Recall that they proved this result for the energetic extension, but in view of Proposition 3.2.5, this
result holds for our Sobolev space Hi w, (T).

Proposition 3.2.9 (Rellich-Kondrachov). The embedding Hy w(T?) C L2(T9) is compact.

Proof. We will outline the strategy of the proof. Using the definition of the set Dy, and the fact that it
is dense in HLW(']I‘d), it is enough to show this fact for sequences in Dy . From this point, the main tool
is Lemma 3.2.8 and Cantor’s diagonal method to obtain converging subsequences.

We begin by noting that by Proposition 3.2.5, it is enough to prove that the embed Dy, C L?(T?) is
compact.

Let C' > 0 and consider a sequence (vp)nen in Dy, with ||v,|1,w < C for all n € N. We have, by
definition of Dy (see the definition at the beginning of Section 3.2), that each v,, can be expressed as a
finite linear combination of elements in Ay . Furthermore, each element in Ay is a product of elements
in Aw, for k=1,...,d. Therefore, we can write v,, as

2

n

N(n)

d
Hgk,] Za g_]a

HM

where gi ; € Aw,, o] € R, g7 = Hi:l gj1» and N(n) is chosen such that N(n) > n (we can complete
with zeros if necessary). Recall that these functions g’ ; have ||g; ;[ L2(r) = 1, and hence, [|g7 || z2(ray = 1.
Moreover, the set {g7, ... ’9?/(71)} is orthogonal in L2(T9).

From orthogonality, we obtain that

Z (@™)? < C?, uniformly in n € N.
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Note that the uniform boundedness of v,, in Hy i (T?) implies the uniform boundedness of || i il wis
forall k=1,...,d,j=1,...,N(n) and n € N. Our goal now is to apply Lemma 3.2.8 to our current
setup.

Consider the sequence of functions afg7'; in Hy w,(T). By Lemma 3.2.8, this sequence has a con-
verging subsequence, and we call the limit point o;¢1,1. Repeat this step d — 1 times for the sequences
g1 in Hiw, (T), for k=2,...,d, considering in each step a subsequence of the previous step, to obtain
converging subsequences, and call their limit points gi ;. At the end of this procedure, we obtain a
converging subsequence of HZ:1 a9y, with limit point ngl 191k € L?(T?), which we will denote by
Q1g1-

In the jth step, in which we want to obtain the limit point «;g;, we repeat the previous idea, with the
sequences a7 g;'y and 95 ko> withn < jand k= 2,...,d. We note that it is always necessary to consider
a subsequence of all the previous steps.

This procedure provides limiting functions g, for all j € N. From now on, we use the notation v,
to mean the diagonal sequence obtained to ensure the convergence of the functions a7 gj' to a;g;. We
claim that the function -

v = Z a;4g;
j=1

is well-defined and belongs to L?(T%). To prove this claim, note that the set {gx }xen is orthonormal by
the continuity of the inner product. Suppose that there exists N € N such that

N

Z(aj)Q > 2,

j=1

We have that the sequence of functions
N

N ._ n.n
v, = g ajg;
Jj=1
converges to

N

N._E: 0

v o= Q;gj.
j=1

Since |[vY|| < C uniformly in n € N, this yields a contradiction. Therefore v € L?(T?) with the bound
o] < C.

It remains to be proved that v, has a subsequence that converges to v. Choose N so large that
lo— oM < €/3, | —vN| < €/3 and ||[vY — v,|| < €/3, and use the triangle inequality to conclude the
proof.

O

3.2.5 The space H;/(T9)

Let H,;'(T%) be the dual space to Hy w (T%), that is, Hy,'(T?) is the set of bounded linear functionals
on Hl)W(Td). Our objective in this subsection is to characterize the elements of this space. This proof
is based on the characterization of the dual of the standard Sobolev space in R? (see [2]).

We will write (-, -) to denote the pairing between Hyy'(T9) and Hy w (T?).

Lemma 3.2.10. f € Hy'(T?) if and only if there exist functions fo € L*(T9), and fx € LZow, o(T4),
such that 7

d
f="Ffo=> 0ufi (3.2.10)

=1

in the sense that for v € Hy w(T?)

d .
(f, U) = /Td fovdl‘ + Z /Ed fl(awl’lj)d(.%Z@ Wl)
=1
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Furthermore,
d 1/2
_ 2 . )
||f||H;V1 = inf (/Td ; | fil dac) i f satisfies (3.2.10)

Proof. Let f € Hv_vl (T9). Applying the Riesz Representation Theorem, we deduce the existence of a
unique function u € Hy w (T?) satisfying (f,v) = (u,v)1 w, for all v € Hy w (T?), that is

d
/ uvdz + Z/ (0w, u)(Ow,v)d(z? @ W;) = (f,v), forall ve Hy w (TY). (3.2.11)
Td = Td

This establishes the first claim of the Lemma for fo = u and f; = Ow,u, fori =1,...,d.
Assume now that f € H,;'(T%),

d .
(fyv) = /Td govdz + ;/Td 9i(Ow,v)d(z' @ W), (3.2.12)

for go,g1,...,94 € LZJ@Wj o(T%). Setting v = w in (3.2.11), using (3.2.12), and applying the Cauchy-
Schwartz inequality twice, we deduce

d
Jul| 5 < /W gadx + Z /w Ow, g2d(z' @ Wy). (3.2.13)
=1

From (3.2.11) it follows that
|(fs o)l < llulliw

if ||v|l1,w < 1. Consequently
1l ey < Nl

Setting v = u/||lul|1,w in (3.2.11), we deduce that, in fact,
1Fllrr =l

The result now follows from the above expression and equation (3.2.13). O

3.3 W-Generalized elliptic equations

This subsection investigates the solvability of uniformly elliptic generalized partial differential equations
defined below. Energy methods within Sobolev spaces are, essentially, the techniques exploited.
Let A = (aii(2))axd, © € T<, be a diagonal matrix function such that there exists a constant 6 > 0
satisfying
07 <ayu(r) <0, (3.3.1)

for every x € T and i = 1,...,d. To keep notation simple, we write a;(z) to mean a;(z).
Our interest lies on the study of the problem

Thu = f, (3.3.2)

where u : T¢ — R is the unknown function and f : T¢ — R is given. Here Ty denotes the generalized
elliptic operator

d
Thu := du—VAVyu := lu— Z O, (ai(sr:)awiu). (3.3.3)
i=1

The bilinear form B[-, -] associated with the elliptic operator T} is given by
d
Blu,v] = Mu,v) + / ai () (Bw, u) (Ow,v) d(W; @ z;), (3.3.4)
i=1

(0]



where u,v € Hy yw (T%).
Let f € Hy'(T4). A function u € Hy 1 (T9) is said to be a weak solution of the equation Thu = f if

Blu,v] = (f,v) for all v & Hy w(T?).

Recall a classic result from linear functional analysis, which provides in certain circumstances the
existence and uniqueness of weak solutions of our problem, and whose proof can be found, for instance,
in [2]. Let H be a Hilbert space endowed with inner product <-,-> and norm ||| - |||. Also, (-,-) denotes
the pairing of H with its dual space.

Theorem 3.3.1 (Lax-Milgram Theorem). Assume that B: H xH — R is a bilinear mapping on Hilbert
space ‘H, for which there exist constants a > 0 and > 0 such that for all u,v € H,

| Blu,v]| < al[ull| - [v]]] and Blu,u] > glull*

Let f: ' H — R be a bounded linear functional on H. Then there exists a unique element u € H such
that

B[uvw] = (fﬂ)),
for allv € H.

Return now to the specific bilinear form B[, -] defined in (3.3.4). Our goal now is to verify the
hypothesis of Lax-Milgram Theorem for our setup. We consider the cases A = 0 and A > 0 separately.
We begin by analyzing the case in which A = 0.

Let Hiyy (T?) be the set of functions in Hy yw (T?) which are orthogonal to the constant functions:

i (1) = {f € Hyw (@) [ fda o).

The space H f:W (T?) is the natural environment to treat elliptic operators with Neumann condition.

Proposition 3.3.2 (Energy estimates for A = 0). Let B be the bilinear form on Hy w(T%) defined in
(3.3.4) with A = 0. There exist constants o > 0 and 3 > 0 such that for all u,v € Hy w (T9),

| Blu, ]| < offu

Lw [vllw
and for all v € HﬁW
Blu, u) > Bl|ullf -

Proof. By (3.3.1), the computation of the upper bound « easily follows. For the lower bound 3, we have
for u € HﬁW(Td),

d
2 .
Hmw:Aﬁm+ZAAm@Mﬂmm
=1 )

Using Poincaré’s inequality and (3.3.1), we obtain a constant C' > 0 such that the previous expression is
bounded above by

2 .
C <8Wiu> d(z' ® W;) < CBlu, ul.

Td
The lemma follows from the previous estimates. O

Corollary 3.3.3. Let f € L*(T%). There exists a weak solution u € Hy w (T?) for the equation
VAVwu = f (3.3.5)
if and only if

fdx = 0.
Td
In this case, we have uniquenesses of the weak solutions if we disregard addition by constant functions.
Also, let u be the unique weak solution of (3.3.5) in HIL)W(Td). Then

1w < Cllfllz2(ray,

[[u

for some constant C independent of f.
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Proof. Suppose that there exists a weak solution u € Hj w (T%) of (3.3.5). Since the function v = 1 €
Hiy w(T?), we have by definition of weak solution that

/ fdx = Blu,v] = 0.
Td

Now, let f € L*(T%) with [i, fdz = 0. Consider the bilinear form B, defined in (3.3.4) with A = 0,
on the Hilbert space H f:W(']I‘d). By Proposition 3.3.2, B satisfies the hypothesis of the Lax-Milgram’s
Theorem. Further, f defines the bounded linear functional in HﬁW(Td) given by (f,g) = (f,g) for
every g € H f:W (T?). Then, an application of Lax-Milgram’s Theorem yields that there exists a unique
u € HIL,W (T9) such that

Blu,v] = (f,v) for allv € HfjW(']I‘d).
Moreover, by Proposition 3.3.2, there is a 8 > 0 such that
Bllulltw < Blu,ul = (f,u) < || fllzallull 2 ey < 11z rayllull,w-

The existence of weak solutions and the bound C in the statement of the Corollary follows from the
previous expression. O

We now analyze the case in which A > 0.

Proposition 3.3.4 (Energy estimates for A > 0). Let f € L?(T%). There exists a unique weak solution
u € Hyw(T?) for the equation
A —VAVyu = f, A>0. (3.3.6)

This solution enjoys the following bounds

||U||1,W < C||f||L2(Td)
for some constant C > 0 independent of f, and

lull < X7HIFl 22 (ray-

Proof. Let 3 = min{\,07'} > 0 and a = max{\,0} < oo, where 6 is given in (3.3.1). An elementary
computation shows that

Blu, v]| < affu

lw l[vllw  and  Blu,u] > Bllul]? -

By Lax-Milgram’s Theorem, there exists a unique solution u € Hy 1w (T%) of (3.3.6). Note that

ﬂ”UH%W < Blu,u] = (f,u) < ||fHL2(1rd)||U||L2(Ird) < Hf||L2(11‘d)||u||1,W7

and therefore |[ull1,w < C||f|L2(ray for some constant C' > 0 independent of f. The computation to
obtain the other bound is analogous. O

Remark 3.3.5. Let ]L{;‘V : Dy — L2(T?) be given by i}, = VAV, . This operator has the properties
stated in Theorem 2.1 in [16]. We now outline the main steps to prove it. Following [16], we may prove
an analogous of Lemma 3.2.2 for the operator ]L{j‘v. Using the bounds on the diagonal matriz A and
Proposition 3.2.9 (Rellich-Kondrachov), we conclude that the energetic extension of the space induced by
this operator has compact embedding in L*(T?). The previous results together with [17, Theorems 5.5.a
and 5.5.c] implies that L{}V has a self-adjoint extension E{j‘v, which is dissipative and non-positive, and
its eigenvectors form a complete orthonormal set in L*(T?). Furthermore, the set of eigenvalues of this
extension is countable and its elements can be ordered resulting in a non-increasing sequence that tends
to —oo.

Remark 3.3.6. Let E{j‘v be the self-adjoint extension given in Remark 3.3.5, and D§‘V its domain. For
A > 0 the operator Al — E{j‘v : Dw — L%(T9) is bijective. Therefore, the equation

A — VAVywu = f,

has strong solution in Dy if and only if f € (Al — L{,)(Dw ), where 1 is the identity operator and
(AL — £4,)(Dw) stands for the range of Dy, under the operator Nl — L,. Moreover, this strong solution
coincides with the weak solution obtained in Proposition 3.3.4.
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3.4 W-Generalized parabolic equations

In this Section, we study a class of W-generalized PDEs that involves time: the parabolic equations. The
parabolic equations are often used to describe in physical applications the time-evolution of the density
of some quantity, say a chemical concentration within a region. The motivation of this generalization
is to enlarge the possibility of such applications, for instance, these equations may be used to model a
diffusion of particles within a region with membranes (see [6, 17]).

We begin by introducing the class of W-generalized parabolic equations we are interested. Then,
we define what is meant by weak solution of such equations, using the W-Sobolev spaces, and prove
uniquenesses of these weak solutions. In Section 3.7, we obtain existence of weak solutions of these
equations.

Fix T > 0 and let (B, || - ||g) be a Banach space. We denote by L?([0,T], B) the Banach space of
measurable functions U : [0,T] — B for which

T
01 oy = [ 10l < .

Let A = A(t,z) be a diagonal matrix satisfying the ellipticity condition (3.3.1) for all ¢ € [0,T],
® : [I,7] — R be a continuously differentiable function such that

B! < d'(z) < B,
for all x, where B > 0, [, € R are constants. We will consider the equation

{ Opu = VAV ®(u) in (0,7] x T,

u=r in {0} x T<. (3.4.1)

where u : [0,T] x T? — R is the unknown function and 7 : T¢ — R is given.

We say that a function p = p(t, ) is a weak solution of the problem (3.4.1) if:
e For every H € Dy the following integral identity holds

/W P(t,x)H(x)dz/Td’y(x)H(a:)dx/Ot /Edfb(p(s,x))VAVWH(x)dxds

e ®(p(-,-)) and p(-,-) belong to L2([0,T], Hy w (T¢)):

T
1005, 0)) oy + 19w @05, 2)) 5, o s < o,
0
and

T
| 1500 oy + 19510 5, o s < .
0

Consider the energy in jth direction of a function u(s,x) as

Q;(u) = sup {2/0T /Td(axj[)WjH)(s,z)u(s,:c)dzds

HeDwy
T .
- / ds / Ow, H (s, 2)d(2’ & Wj)},
0 Td
and the total energy of a function u(s,z) as
d
o) =3 0;(u).
j=1

The notion of energy is important in probability theory and is often used in large deviations of Markov
processes. We also use this notion to prove the hydrodynamic limit in Section 3.7. The following lemma
shows the connection between the functions of finite energy and functions in the Sobolev space.
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Lemma 3.4.1. A functionu € L*([0, T, L?>(T%)) has finite energy if and only if u belongs to L*([0, T], Hy w (T%)).
In the case the energy is finite, we have

T
Q) = [ IV walls, oyt

Proof. Consider functions U € L?([0, T, Li@W O(Td)) as trajectories in LEJ®W of

a trajectory U : [0,T] — Li@w O(Td) and define U(s,z) as U(s,z) := [U(s)](x).
Let u € L*([0,7], L*(T?)) and recall that the set {Ow, H; H E Dy } is dense in LW@W o(T?). Then

the set {Ow, H(s,z); H € L*([0,T],Dy )} is dense in L*([0,T], L x@w ofT 4)). Suppose that u has finite

energy, and let H € L%([0,T], Dy ), then

_ /T Ad(axjaWjH)(s, z) u(s, x)dz ds

2 2
is a bounded linear functional in L?([0, 17, Liigw,; .0

rem, there exists a function G; € L*([0, T, in@W O(Td)) such that

T9), that is, consider

(T%)). Consequently, by Riesz’s representation theo-

Fi(Ow, H) / (Ow, H)(x) G;(s,x)dx ds,
Td
for all H € L*([0,T], Dw).

From the uniqueness of the generalized weak derivative, we have that G(s,z) = —0w,u(s, ).
Now, suppose u belongs to L%([0,T], H; w(T%)) and let H € L?([0,7],Dy ). Then, we have

/ (02, 0w, H)(s,2)u ssr:dxds—/ ds (ow, H Sa?) d(z? @ W;) =
Td Td

,2/0 » Ow, H (s,z)0w,u(s, z)d(z’ @ W;) / y (0w, H(s, m)) (7 ® W;)

We can rewrite the right-hand side of the above expression as
—2<8WjH, 28Wju + 8WjH>Ij®W].. (342)

A simple calculation shows that, for a Hilbert space H with inner product <-,->, the following
inequality holds:

1
— <v,u+v>< 1 <u, u>,

for all u,v € H, and we have equality only when v = —1/2u.
Therefore, by the previous estimates and (3.4.2)

T T
2/ / (Oz; 0w, H)(s,x) u(s,z)dx ds — / ds (0w, H (s, x))2 d(z? @ W;) <

0 Td 0 Td

T ) _
/ (Ow,u(s,z))” d(z! @ Wy).

0 J1d
By the definition of energy, we have for each j =1,...,d,
/ (0w, u(s, z) ($]® W;).
Td

Hence, the total energy is finite. Using the fact that L2([0, 7], Dy ) is dense in L2([0,T], Hy w (T?)), we
have that

Q(u)

T
S [ ol
j=1

T
/0 IVwulZs radt.
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3.4.1 Uniqueness of weak solutions of the parabolic equation

Recall that we denote by (-, -) the inner product of the Hilbert space L?(T%). Fix H,G € L*(T%), A > 0,
and denote by Hy and G in Hy y (T¢) the unique weak solutions of the elliptic equations

MNH, — VAV Hy = H,

and
MG\ — VAV G, =G,

respectively. Then, we have the following symmetry property
(Gx, H) = (G, Hy).

In fact, both terms in the previous equality are equal to

)\/ H,\G)\—anﬂ/ 8W H,\)(@W G)\) (CCJ@W)
Td Td

j=1

Let p : Ry x T — [I,7] be a weak solution of the parabolic equation (3.4.1). Since p, ®(p) €
L%([0,T), Hy w(T%)), and the set Dy is dense in Hy y (T?), we have for every H in Hy w (T9),

(pr, H) — Zaﬂ / (Ow, ®(ps), 0w, H) wigw, ds (3.4.3)
for all ¢ > 0.
Denote by p} € H LW(Td) the unique weak solution of the elliptic equation
Apd = VAVl = p(s, ). (3.4.4)
We claim that
(ot p7) = (pos o) = 22% / (0w, ®(ps) » Ow, ) aigw, ds (3.4.5)

for all ¢ > 0.
To prove this claim, fix ¢ > 0 and consider a partition 0 =t < t; < - -+ < ¢, = t of the interval [0, ¢].
Using the telescopic sum, we obtain

n—1

<pt7 p?) - <pOa p())\> = Z<ptk+1 ) pi\k+1> - <ptk+1 ) pi\k>
k=0

n—1

+ ) bt PN — (o o) -

k=0

We handle the first term, the second one being similar. From the symmetric property of the weak
solutions, pf‘k_H belongs to Hy w (T¢) and since p is a weak solution of (3.4.1),

tht1
(Preosss Phys) — Prugas P1) = Zam / (Ow, ®(ps) , Ow,pi)., ) ds -

Add and subtract (9w, ®(ps), Ow,p2) inside the integral on the right hand side of the above expression.
The time integral of this term is exactly the expression announced in (3.4.5) and the remainder is given
by

fest A A
Zaﬂ/ { 8qu)(p5), aijs> - <8qu)(ps> ) aijtk+1>} ds .
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Since p? is the unique weak solution of the elliptic equation (3.4.4), and the weak solution has the
symmetric property, we may rewrite the previous difference as

{@00). o) = (@00, )} = M@0 i) = (@) 90}

The time integral between ¢ and ¢ of the second term is equal to

tht1 tht1
—)\/ ds/ (0w, ®(ps)”, Ow, ®(py)) dr
tr s

because p is a weak solution of (3.4.1) and ®(p,) belongs to Hy w (T?). It follows from the boundedness

of the weak solution given in Proposition 3.3.4 and from the boundedness of the Li@wj (T?) norm of

Ow,; ®(p) obtained in expression (3.4.3), that this expression is of order ({41 — tr)2.
To conclude the proof of claim (3.4.5) it remains to be shown that

nz:l/ttkﬂ {@(Ps)a Ptiir) — (P(ps), ps>}ds

k=0

vanishes as the mesh of the partition tends to 0. Using, again, the fact that p is a weak solution, we may
rewrite the sum as

n—1 tht+1 tht1
=S s [ w00 o () dr
k=0 "tk s

We have that this expression vanishes as the mesh of the partition tends to 0 from the boundedness

of the Lia@wj (T%) norm of Ay, ®(p). This proves (3.4.5).

Recall the definition of the constant B given at the beginning of this Section.

Lemma 3.4.2. Fiz \ > 0, two density profiles v*, 4% : T — [I, 7] and denote by p', p* weak solutions of
(3.4.1) with initial value v, 2, respectively. Then,

<pt1 — 0t - pf“> < <71 -7,y - 72’A> P2
for allt > 0. In particular, there exists at most one weak solution of (3.4.1).
Proof. We begin by showing that if there exists A > 0 such that
(H,H*) =0,

then H = 0. In fact, we would have the following

d ) .

/ MH)?dz + Zajj/ (0w, HY) d(’@W;) = [ HHdz =0,
T Td

=1 B

which implies that ||H)\HH1,W(Td) =0, and hence H) = 0, which yields H = 0.
Fix two density profiles 4!, 42 : T¢ — [I,7]. Let p', p? be two weak solutions with initial values 71,
72, respectively. By (3.4.5), for any A > 0,

<pt1—p?,pi’A—pf’A>—<71—72,7“—7“> = 5.4
t t -
=2 [y (@(p}) = @(p2), pt = p2)ds + 2X fy (@(p) = @(p2), Pl — V) ds .
Define the inner product in Hy y (T%)
(u,v)x = (u,v*).

This is, in fact, an inner product, since (u,v)y = (v,u) by the symmetric property, and if u # 0, then
(u,u)y > 0:

d
/ uuydr = )\/ u3dx + Z ajj/ ((‘3W,u,\)2 d(z7 @ W;).
T4 T4 = e
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The linearity of this inner product can be easily verified.
Then, we have

t t
20 [ (006}~ 0062, o1 = 2% ) ds =21 [ (06}~ 0(62) . gt - 12) s
0 0 A

By using the Cauchy-Schwartz inequality twice, the term on the right hand side of the above formula
is bounded above by

1 ‘ 1 2 I\ A 2\ A 2 ‘ 1 2 1, 2,
*/ <¢>(ps)—¢>(ps),¢’(ps) = ®(p;) >d8 + AX / <ps—ps7ps’ - py >d8
A Jy 0

for every A > 0. From Proposition 3.3.4, we have that ||u*|| < A7!||lu/|, and since ®’ is bounded by B,
the first term of the previous expression is less than or equal to

B t
T, (ph = o) o) ds

Choosing A = B/2\, this expression cancels with the first term on the right hand side of (3.4.6). In
particular, the left hand side of this formula is bounded by

BX [*
-5 <Pi —p2, pit - Pg’/\> ds .
0

To conclude, recall Gronwall’s inequality. O

Remark 3.4.3. Let E";‘V : Dy — L2(T) be the self-adjoint extension given in Remark 3.3.5. For A\ > 0,
define the resolvent operator G{ = (Al — L#,)~L. Following [6, 17], another possible definition of weak
solution of equation (3.4.1) is given as follows: a bounded function p : [0,T] x T¢ — [I, 7] is said to be a
weak solution of the parabolic differential equation (3.4.1) if

<m@m—m@m=AWMﬂ%%m (3.47)

for every continuous function h : T* — R, t € [0,T], and all A > 0. We claim that this definition of weak
solution coincides with our definition introduced at the beginning of Section 3.4. Indeed, for continuous
h:T? — R, th belongs to Dyy. Since Dy, is dense in Dy with respect to the Hy yw (T?)-norm, it follows
that our definition implies the current definition. Conversely, since the set of continuous functions is
dense in L2(T?), the identity (3.4.7) is valid for all h € L?>(T?). Therefore, for each H € Dy we have

<%m—mm=4@%mmw&

In particular, the above identity holds for every H € Dy, and therefore the integral identity in our
definition of weak solutions holds.

It remains to be checked that the weak solution of the current definition belongs to L*([0, T, H1,w (T<)).
This follows from the fact that there exists at most one weak solution satisfying (3.4.7), that this unique
solution has finite energy, and from Lemma 8.4.1. A proof of the fact that there exists at most one
solution satisfying (3.4.7), and that this unique solution has finite energy, can be found in [6, 17].

Finally, the integral identity of our definition of weak solution has an advantage regarding the integral
identity (3.4.7), due to the fact that we do not need the resolvent operator Gf for any \. Moreover, we
have an explicit characterization of our test functions.

3.5 WW-Generalized Sobolev spaces: Discrete version
We will now establish some of the results obtained in the above sections to the discrete version of the

W-Sobolev space. Our motivation to obtain these results is that they will be useful when studying
homogenization in Section 3.6. We begin by introducing some definitions and notations.
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Fix W as in (3.2.1) and functions f, g defined on N~'T%,. Consider the following difference operators:
8916\; , which is the standard difference operator,

e (5) = v (52) - (3]

and 8%],, which is the Wj-difference operator:

N x f HTEJ *f(%)
s (z) - 25

for x € 'JT‘I{,. We introduce the following scalar product

(f,9)n = Nd > fl=

a:G'Jl"i
(9w, =Ni S F@)ga) (W (@ + e)/N) = W(a/N)),
z€TY,
d
(fohwn = Z o, [, 00, 9)w;

and its induced norms
Hf”[/z ']1‘d <f7 f>N7 ||f||i€vj('[r7\]) = <f7 f>Wj,N and ||fH?qLW('ﬂ~]dv) = <f7f>1,W,N~

These norms are natural discretizations of the norms introduced in the previous sections. Note
that the properties of the Lebesgue’s measure used in the proof of Corollary 3.2.7, also holds for the
normalized counting measure. Therefore, we may use the same arguments of this Corollary to prove its
discrete version.

Lemma 3.5.1 (Discrete Poincaré Inequality). There exists a finite constant C' such that

1
f— Nd Z f < C||V{/VVfHL%V(1r;lV)

Td
re L2(T%)
where

IVwFIZz e Znawfn Ty

for all f: N7'T% — R.
Let A be a diagonal matrix satisfying (3.3.1). We are interested in studying the problem
TNu=f, (3.5.1)

where u : N~'T4 — R is the unknown function, f : N~'T4 — R is given, and T)I\V denotes the discrete
generalized elliptic operator

TNy == Mu— VN AV u, (3.5.2)
with
VNAVN u = Za (al (z/N)ow, u)
The bilinear form B[, -] associated with the elliptic operator T;\V is given by

BNu,v] = Mu,v)n +

L e (3.5.3)
T 2oim1 Doend, @i(@/N) (O, w) (O, v)[Wi((i + 1)/N) — Wi(ai/N)),
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where u,v : N7!T% — R.
A function u : N™!T% — R is said to be a weak solution of the equation TNu = f if

BNu,v] = (f,v)y forall v: N'T4 — R.

We say that a function f: N~1T4, — R belongs to the discrete space of functions orthogonal to the
constant functions Hx(T4,) if

ﬁ S fa/N) =o.

.cTd
zeTy

The following results are analogous to the weak solutions of generalized elliptic equations for this
discrete version. We remark that the proofs of these lemmas are identical to the ones in the continuous
case. Furthermore, the weak solution for the case A = 0 is unique in Hyx (T4%).

Lemma 3.5.2. The equation
vNAVRu = f,

has weak solution u : N~1T4, — R if and only if
1
~i 2 f@)=0.
wET%

In this case we have uniqueness of the solution disregarding addition by constants. Moreover, if u €
H3(T4,) we have the bound

lull v rey < ClfllL2eray, and fullpzerey < /\71||fHL2(’H"]{,)a
where C' > 0 does not depend on f nor N.
Lemma 3.5.3. Let A > 0. There exists a unique weak solution u : N_I'H“]i\, — R of the equation
M — VNAVYu = f. (3.5.4)
Moreover,

lull 2, wrey < ClfllL2eray, and fullpzerey < Afl”fHL?(ﬂr;lv),

where C' > 0 does not depend neither on f nor N.

Remark 3.5.4. Note that in the set of functions in ’]I“Iiv we have a “Dirac measure” concentrated in a
point x as a function: the function that takes value N in x and zero elsewhere. Therefore, we may
integrate these weak solutions with respect to this function to obtain that every weak solution is, in fact,
a strong solution.

3.5.1 Connections between the discrete and continuous Sobolev spaces

Given a function f € Hy w(T%), we can define its restriction fx to the lattice N =T as
fn(z) = f(z) if =€ N7'TY,.

However, given a function f : N~'T¢ — R it is not straightforward how to define an extension
belonging to Hl’W('H‘d). To do so, we need the definition of W-interpolation, which we give below.

Let fy : N"!'Ty — Rand W : R — R, a strictly increasing right continuous function with left limits
(cadlag), and periodic. The W-interpolation f3 of fy is given by:

W((z+1)/N) = W((z+1t)/N)

In(@+) W+ /N W@/ @
W((z +0)/N) - W(/N)
Y W N) =W @Y
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for 0 <t < 1. Note that

ofy
oW

flz+1) — f(z)
W((z+1)/N) - W(z/N)

(2 +1) = — O f().

Using the standard construction of d-dimensional linear interpolation, it is possible to define the
W-interpolation of a function fy : T4, — R, with W (z) = Ele Wi (x;) as defined in (3.2.1).

We now establish the connection between the discrete and continuous Sobolev spaces by showing how
a sequence of functions defined in T%; can converge to a function in Hy y (T9).

We say that a family fy € L?(T%) converges strongly (resp. weakly) to the function f € L?(T%) as
N — oo if f3 converges strongly (resp. weakly) to the function f. From now on we will omit the symbol
“* 7 in the W-interpolated function, and denoting them simply by fy-.

The convergence in Hy,' (T?) can be defined in terms of duality. Namely, we say that a functional fy
on TY, converges to f € HV_V1 (T?) strongly (resp. weakly) if for any sequence of functions uy : T¢ — R
and u € Hy w(T%) such that uy — u weakly (resp. strongly) in Hy y (T%), we have

(fv,un)n — (f,u), as N — oo.

Remark 3.5.5. Suppose in Lemma 3.5.3 that f € L*(T?), and let u be a weak solution of the problem
(3.5.4), then we have the following bound

HUHHLW(Tj{,) < C”fHLz(Td)a

since || fll2(ray = [ fllL2(ray as N — oo.

3.6 Homogenization

In this “brief” Section we prove a homogenization result for the W-generalized differential operator. We
follow the approach considered in [14]. The study of homogenization is motivated by several applications
in mechanics, physics, chemistry and engineering. The focus of our approach is to study the asymptotic
behavior of effective coefficients for a family of random difference schemes whose coefficients can be
obtained by the discretization of random high-contrast lattice structures.

This Section is structured as follows: in subsection 6.1 we define the concept of H-convergence
together with some properties; subsection 6.2 deals with a description of the random environment along
with some definitions, whereas the main result is proved in subsection 6.3.

3.6.1 H-convergence

We say that the diagonal matrix AY = (a%) H-converges to the diagonal matrix A = (a;;), denoted by
AN LA, for every sequence fN € HyH(T4) such that f¥ — f as N — oo in Hy;!(T%), we have
e uy — ug weakly in Hl,W(Td) as N — oo,
o a0 un — a;;Ow,up weakly in Li@wj (T?) for each j =1,...,d,
where uy : T4 — R is the solution of the problem
AUN — VNANV{/\{,UN = fn,
and ug € HLW(Td) is the solution of the problem

)\’U,O - VAVWUO = f

The notion of convergence used in both items above was defined in subsection 3.5.1.
We now obtain a property regarding H-convergence.
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Proposition 3.6.1. Let AN A, A, as N — oo, with uy being the solution of
Muy — VNANY Y uy = f,
where f € Hy;, Y(T?) is fized. Then, the following limit relations hold true:

m Z ui(r) — [ wui(z)dr,

mET% T

and
.
N1 > ayy (@) Oy, un (2))® Wy (25 + 1)/N) = Wy(a;/N)]
J=1lzeT¢,
d .
- Z/Td a;;(x)(Ow, uo(x))d(a’ © Wy),
j=1

as N — oo.
Proof. We begin by noting that

1

i > flun —ug) =0, (3.6.1)
IGT%

as N — oo since uy — ug converges weakly to 0 in Hy y (T?). On the other hand, we have

1 1
Na Z fluny —ug) = Nd Z My — VN ANV un) (un — uo)
zeTY, zeTY,
A 1
zeT% zeT,
A 1
— ya 2wt g Y wVN AN Vi,
zeT4, z€T4

Using the weak convergences of uy and ajjavj\{,ju ~, and the convergence in (3.6.1), we obtain, after a
summation by parts in the above expressions

i 2 Wt e IZ > a0, un) Wi () + 1)/N) — Wi(a;)

zeTY, J=1zeT¢
d
N:)>o )\/ ugdl‘+2/ ajj(aWjUO)zd(Ij@) W]) (362)
Td =/
By Lemma 3.5.3, the sequence uy is || - [|1,w bounded uniformly. Suppose, now, that uy does not

converge to ug in L?(T%). That is, there exist € > 0 and a subsequence (uy, ) such that
luny, — uollz2(ray > €,

for all k. By Rellich-Kondrachov Theorem (Proposition 3.2.9), we have that there exists v € L?(T%) and
a further subsequence (also denoted by uy, ) such that

k—o0

uy, —3 v, in L*(T%).
This implies that
uy, — v, weakly in L*(T9),
but this is a contradiction, since
up, — ug, weakly in L*(T%),

and |lv—ugl|p2(ray > €. Therefore, uy — ug in L?(T). The proof thus follows from expression (3.6.2). O

This Proposition shows that even though the H-convergence only requires weak convergence in its
definition, it yields a convergence in the strong sense (convergence in the L?-norm).
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3.6.2 Random environment

In this subsection we introduce the statistically homogeneous rapidly oscillating coefficients that will be
used to define the random W-generalized difference elliptic operators, where the W-generalized difference
elliptic operator was given in Section 3.5.

Let (2, F, i) be a standard probability space and {7}, : Q — Q;z € Z%} be a group of F-measurable
and ergodic transformations which preserve the measure pu:

o T, :Q — Qis F-measurable for all z € Z¢,

w(ToA) = pu(A), for any A € F and = € Z4,

To=1, TooTy="Thiy,

For any f € L'(2) such that f(T,w) = f(w) p-a.s for each x € Z?, is equal to a constant u-a.s.

The last condition implies that the group T is ergodic.
Let us now introduce the vector-valued F-measurable functions {a;(w);j =1,...,d} such that there
exists § > 0 with
67" < aj(w) <9,

forallw € Q and j =1,...,d. Then, define the diagonal matrices AN whose elements are given by
afi(2) = a) = a;(Ti,w), w€Th, j=1,...,d. (3.6.3)

3.6.3 Homogenization of random operators

Let A > 0, fx be a functional on the space of functions hy : T — R, f € H{,}l (T?) (see also, subsection
3.2.5), un be the unique weak solution of

AN — VNANV%UN = fn,
and ug be the unique weak solution of
)\’ILQ - VAVWUO = f (364)

For more details on existence and uniqueness of such solutions see Sections 3.3 and 3.5.
We say that the diagonal matrix A is a homogenization of the sequence of random matrices AV if
the following conditions hold:

e For each sequence fy — f in Hy'(T%), uy converges weakly in Hyw to ug, when N — oo;

e a0y uN — a;0w,u, weakly in Li@wi (T?) when N — oo.

Note that homogenization is a particular case of H-convergence.
We will now state and prove the main result of this Section.

Theorem 3.6.2. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (w) admits a homogenization, where the homogenized
matriz A does not depend on the realization w.

Proof. Fix f € H~(T%), and consider the problem
Aun — VNANV{;VVUN = f

Using Lemma 3.5.3 and Remark 3.5.5, there exists a unique weak solution uy of the problem above,
such that its H{YW norm is uniformly bounded in N. That is, there exists a constant C' > 0 such that

lun ey sy < Cllf 2 ey
Thus, the L*(T4% )-norm of a8} uy is uniformly bounded.

3
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From W-interpolation (see subsection 3.5.1) and the fact that Hj 1y (T9) is a Hilbert space (Lemma
3.2.4), there exists a convergent subsequence of uy (which we will also denote by ux) such that

uN — o, weakly in  Hy yw (T?),
and
a;y Oy un — vo weakly in  L*(T%), (3.6.5)
as N — 00; vy being some function in L2, (T%).

First, observe that the weak convergence in H LW(Td) implies that

O un =X Ow,u weakly in L2y, (T9). (3.6.6)

From Birkhoff’s ergodic theorem, we obtain the almost sure convergence, as N tends to infinity, of the
random coefficients:

al¥ — a;, (3.6.7)

where a; = E[a}], for any Ny € N.
From convergences in (3.6.5), (3.6.6) and (3.6.7), we obtain that

v = a;0w, Uo,

where, from the weak convergences, ug clearly solves problem (3.6.4).
To conclude the proof it remains to be shown that we can pass from the subsequence to the sequence.
This follows from uniquenesses of weak solutions of the problem (3.6.4). O

Remark 3.6.3. At first sight, one may think that we are dealing with a very special class of matrices A
(diagonal matrices). Nevertheless, the random environment for random walks proposed in [14, Section
2.8], which is also exactly the same random environment employed in [7], results in diagonal matrices.
This is essentially due to the fact that in symmetric nearest-neighbor interacting particle systems (for
example, the zero-range dynamics considered in [7]), a particle at a site x € T;lv may jump to the sites
xte;, j=1,...,d. In such a case, the jump rate from x to x + e; determines the jth element of the
diagonal matriz.

Remark 3.6.4. Note that if u € Dy is a strong solution (or weak, in view of Remark 3.5.4) of
A — VAVwu = f
and uy 1s strong solution of the discrete problem
My — VVNANY Y uy = f

then, the homogenization theorem also holds, that is, un also converges weakly in Hy w to u.

3.7 Hydrodynamic limit of gradient processes with conductances
in random environment

Lastly, as an application of all the theory developed in the previous sections, we prove a hydrodynamic
limit for gradient processes with conductances in random environments. Hydrodynamic limits for gradient
processes with conductances have been obtained in [6] for the one-dimensional setup and in [16] for the
d-dimensional setup. However, the proof given here is much simpler and more natural, in view of the
theory developed here, than the proofs given in [6, 17]. Furthermore, the proof of this hydrodynamic
limit also provides an existence theorem for the W-generalized parabolic equations in (3.4.1).

The hydrodynamic limit allows one to deduce the macroscopic behavior of the system from the micro-
scopic interaction among particles. Moreover, this approach justifies rigorously a method often used by
physicists to establish the partial differential equations that describe the evolution of the thermodynamic
characteristics of a fluid.

This Section is structured as follows: in subsection 7.1 we present the model, derive some properties
and fix the notations; subsection 7.2 deals with the hydrodynamic equation; finally, subsections 7.3 and
7.4 are devoted to the proof of the hydrodynamic limit.
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3.7.1 The exclusion processes with conductances in random environments

Fix a typical realization w € Q of the random environment defined in Section 3.6. For each z € T4, and
J=1,...,d, define the symmetric rate §; v1e; = aote; z DY

aj (x) a¥ ()

St = NI (Gt 6)N) - WM N+ 0 -y Y

N(z) is given by (3.6.3), and ey, ..., eq is the canonical basis of R%. Also, let b > —1/2 and

where a;

Coate; (1) = 1+ b{n(z —e¢;) +n(z+2¢)},

where all sums are modulo N.

Distribute particles on ’]T‘Iiv in such a way that each site of ']I“Iiv is occupied at most by one particle.
Denote by 71 the configurations of the state space {0, 1}T(11V so that n(x) = 0 if site = is vacant, and
n(z) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is a continuous-time Markov
process {n; : t > 0} with state space {0,1}“11\1 = {n : T4 — {0,1}}, whose generator Ly acts on
functions f : {0, 1}va — R as

d
(LNf)(n) = Z Z £$,I+8j Cx x+te; (77) {f(aw7m+€j77) - f(n)} ) (372)

J=1zeTg
where o™**¢in is the configuration obtained from 7 by exchanging the variables n(z) and n(x + ¢;):

n(z+e;) ify=u,
(™" n)(y) = {n(z) if y =z +ej, (3.7.3)
n(y) otherwise.

We consider the Markov process {n; : t > 0} on the configurations {0, 1}11‘51V associated to the generator
Ly in the diffusive scale, i.e., Ly is speeded up by NZ2.

We now describe the stochastic evolution of the process. After a time given by an exponential
distribution, a random choice of a point € T% is made. At rate §e,x+e; the occupation variables 7(x),
n(x+e;) are exchanged. Note that only nearest neighbor jumps are allowed. The conductances are given
by the function W, whereas the random environment is given by the matrix AN := (a%(:c))dxd. The
discontinuity points of W may, for instance, model a membrane which obstructs the passage of particles
in a fluid. For more details see [16].

The effect of the factor cg zye;(n) is the following: if the parameter b is positive, the presence of
particles in the neighboring sites of the bond {z,z+e;} speeds up the exchange rate by a factor of order
one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the
exchange rate also by a factor of order one. More details are given in Remark 3.7.1 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the
Bernoulli product measures {vY : 0 < a < 1} are invariant, in fact reversible, for the dynamics. The
measure V)Y is obtained by placing a particle at each site, independently from the other sites, with

probability a. Thus, vY is a product measure over {0, 1}T§iv with marginals given by

vi{n:in) =1} = «

for z in T4,. For more details see [8, chapter 2].

Consider the random walk {X;};>0 of a particle in T% induced by the generator Ly given as follows.
Let £y z4e; given by (3.7.1). If the particle is on a site x € T, it will jump to z+e; with rate N2§z7x+ej.
Furthermore, only nearest neighbor jumps are allowed. The generator Ly of the random walk {X;};>0

acts on functions f : T% — R as
d
o (5) - S (2),
j=
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where,

Lot () = ¥ {ese [1(557) 1 ()] + e[/ (F7) -1 (F)])

It is not difficult to see that the following equality holds:

Ly f(x/N) = ZaN (a5 0, (@) = VNAVVY f(2). (3.74)
J=1
Note that several properties of the above operator have been obtained in Section 3.5. The counting
measure my on N _1']I“}V is reversible for this process. This random walk plays an important role in the
proof of the hydrodynamic limit of the process 7;, as we will see in subsection 7.3.
Let D(R,, {0,1}T%) be the path space of cadlag trajectories with values in {0,1}T%. For a measure
pun on {0, 1}?3{,, denote by P, the probability measure on D(R, {0, 1}T51V) induced by the initial state
pn and the Markov process {n; : t > 0}. Expectation with respect to P, is denoted by E,, .

Remark 3.7.1. The specific form of the rates cg z1e; is not important, but two conditions must be
fulfilled. The rates must be strictly positive, they may not depend on the occupation variables n(z),
n(x + e;), but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter
7 in [8] for the definition of gradient processes).

We may define rates cy yie, to obtain any polynomial ® of the form ®(a) = a + > hoic,, ajal,
m > 1, with 1+ Z2§j§m ja; > 0. Let, for instance, m = 3. Then the rates

éw,w-{-ei (77) = Cx,x+te; (77) +
b{n(z —2ei)n(z — e;) +n(z — ei)n(x + 2e;) + n(x + 2e;)n(x + 3e;)}

satisfy the above three conditions, where cg 4y, 5 the rate defined at the beginning of Section 2 and a,
b are such that 1 +2a+ 3b > 0. An elementary computation shows that ®(a) = 1+ aa? + ba>.

3.7.2 The hydrodynamic equation

The hydrodynamic equation is, roughly, a PDE that describes the time evolution of the thermodynamical
quantities of the model in a fluid.

Let A = (aj;j)axd be a diagonal matrix with a;; > 0,7 =1,...,d, and consider the operator
d
VAVw =Y a;j;0., 0w,
j=1

defined on Dyy. )
A sequence of probability measures {uy : N > 1} on {0,1}T¥ is said to be associated to a profile
po: T4 —[0,1] if

Jim ’Nd S H(a/N)y /H Yoo(w)du| > 8% =0 (3.7.5)

me'ﬂ"i

for every § > 0 and every function H € Dyy.
Let v : T¢ — [I,7] be a bounded density profile and consider the parabolic differential equation

{ dip = VAV ®(p)
p(0,-) = () ’

where the function @ : [I,r] — R is given as in the beginning of Section 3.4, and ¢t € [0,T], for T > 0
fixed.

Recall, from Section 3.4, that a bounded function p : [0,7] x T¢ — [I,7] is said to be a weak solution
of the parabolic differential equation (3.7.6) if the following conditions hold. ®(p(-,-)) and p(-,-) belong
to L2([0,T], Hy,w (T%)), and we have the integral identity

/po(t,u)H(u)du—/ p(0, du—/ /w p(s,u)) VAV H(u)duds ,
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for every function H € Dy, and all ¢ € [0,T].

Existence of such weak solutions follow from the tightness of the process proved in subsection 7.3,
and from the energy estimate obtained in Lemma 3.7.5. Uniquenesses of weak solutions was proved in
subsection 3.4.1.

Theorem 3.7.2. Fir a continuous initial profile py : T¢ — [0,1] and consider a sequence of probability
measures iy on {0, 1}T§lV associated to po, in the sense of (3.7.5). Then, for anyt > 0,

1
lim P <7 > H(z/N)p(x /H p(t,u)du| > 83 = 0

for every § > 0 and every function H € Dy. Here, p is the unique weak solution of the non-linear
equation (3.7.6) with =0, r =1, v = pg and ®(a) = a + aa?.

Let M be the space of positive measures on T¢ with total mass bounded by one endowed with the
weak topology. Recall that /¥ € M stands for the empirical measure at time ¢. This is the measure on
T9 obtained by rescaling space by N and by assigning mass 1/N¢ to each particle:

1
T = N Z () Ou/N (3.7.7)

d
zeTg

where ¢,, is the Dirac measure concentrated on wu.
For a function H : T¢ — R, {7V, H) stands for the integral of H with respect to 7}":

(r) H) = Nd Z (x/N)m(z) .

z€TY,

This notation is not to be mistaken with the inner product in L?(T%) introduced earlier. Also, when m,
has a density p, w(t, du) = p(t, u)du.

Fix T > 0 and let D([0,T], M) be the space of M-valued cadlag trajectories 7 : [0,7] — M endowed
with the uniform topology. For each probability measure py on {0, 1}T7V, denote by QMWNN the measure
on the path space D([0,T], M) induced by the measure yy and the process 7Y introduced in (3.7.7).

Fix a continuous profile py : T¢ — [0,1] and consider a sequence {uy : N > 1} of measures on
{0, 1}T3l\' associated to pg in the sense (3.7.5). Further, we denote by Qu  the probability measure on
D([0,T], M) concentrated on the deterministic path 7 (t,du) = p(t,u)du, where p is the unique weak
solution of (3.7.6) with v = po, [y =0, 7, =1,k =1,...,d and ®(a) = o + ba?.

In subsection 3.7.3 we show that the sequence {QIZ\;N : N > 1} is tight, and in subsection 3.7.4 we
characterize the limit points of this sequence.

3.7.3 Tightness

The goal of this subsection is to prove tightness of sequence {Qu .Vt N > 1} We will do it by showing
that the set of equicontinuous paths of the empirical measures (3.7.7) has probability close to one.

Fix A > 0 and consider, initially, the auxiliary M-valued Markov process {H;\ N ¢ > 0} defined by
1
AN
I (H) = <7T£N,H,J\V> =~ Nd Z Hiv(fv/N)m(:r%
z€eZ4
for H in Dy, where HY' is the unique weak solution in Hy w (T%) (see Section 3.5) of
MHY —VNANYY HY = \H — VAV H,

with the right-hand side being understood as the restriction of the function to the lattice T4, (see
subsection 3.5.1).

We first prove tightness of the process {II" : 0 < ¢ < T'},then we show that {II™ : 0 < ¢ < T}
and {7 : 0 <t < T} are not far apart.
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It is well known [8] that to prove tightness of {II""Y : 0 < ¢ < T} it is enough to show tightness of
the real-valued processes {II""N (H) : 0 < ¢ < T} for a set of smooth functions H : T% — R dense in
C(T?) for the uniform topology.

Fix a smooth function H : T¢ — R. Keep in mind that I} (H) = (xV, HY'), and denote by MNA
the martingale defined by

t
MM = N (H) - myN(H) - / ds N’Ln(xN, HY) . (3.7.8)
0

Clearly, tightness of H?’N(H ) follows from tightness of the martingale MtN A and tightness of the additive
functional fot ds N?Ly (N, HY).

A long computation, albeit simple, shows that the quadratic variation (M™*); of the martingale
MtN”\ is given by:

d
S O 0 ONHY NPTV (& 4 e5)/N) = W/ N)] x

j=1zeTd
t
X / Ca,ate; (Ns) Ns(x + €5) — Us(fl?)]2 ds .
0
In particular, by Lemma 3.5.3,

d
Cot C(H)t
N 0 N2
<M >t < N2d—1 E ||H/\ ||Wj,N < AN

j=1

for some finite constant C'(H), which depends only on H. Thus, by Doob inequality, for every A > 0,
0 >0,

lim P, { sup | M| > 5] =0. (3.7.9)
N—o0 0<t<T

In particular, the sequence of martingales {MtN’)‘ : N > 1} is tight for the uniform topology.

It remains to be examined the additive functional of the decomposition (3.7.8). The generator of the
exclusion process Ly can be decomposed in terms of the generator of the random walk L. By a long
but simple computation, we obtain that N2Ly (7™, HY) is equal to

d
S ixa 3 WhHY) /N n(a)
j=1

d
zeTY

b s S (WAHN((@ + e)/N) + WA HY ) a/N)] (b 5) ()

d
€Ty

_ % > WAHY)(@/N)(raha ) (1)}

d
z€T$,

where {7, : z € Z4} is the group of translations, so that (7,7)(y) = n(z + ) for z, y in Z?, and the sum
is understood modulo N. Also, hy j, ha ; are the cylinder functions

hi(m) = n(0)n(e;), haj(m) = n(—e;)nle;) .

Since H ;\V is the weak solution of the discrete equation, we have by Remark 3.5.4 that it is also a
strong solution. Then, we may replace Ly Hy' by UY = AHY — H in the previous formula. In particular,
foral0<s<t<T,

‘/ dr N*Ly(zN, HY)| < % > U /)]

d
z€T4,
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It follows from the estimate given in Lemma 3.5.3, and from Schwartz inequality, that the right hand
side of the previous expression is bounded above by C(H,b)(t — s) uniformly in N, where C(H,b) is
a finite constant depending only on b and H. This proves that the additive part of the decomposition
(3.7.8) is tight for the uniform topology and, therefore, that the sequence of processes {H?’N N> 1}
is tight.

Lemma 3.7.3. The sequence of measures {QZK’,N : N > 1} is tight for the uniform topology.
Proof. Fix A > 0. It is enough to show that for every function H € Dy, and every € > 0, we have

lim P~ [ sup | (H) — (N, H) | > e} = 0,
N—oo 0<t<T

whence tightness of 71V follows from tightness of H? N By Chebyshev’s inequality, the last expression
is bounded above by

Ep [ sup TN (H) — (=, 1) ﬂ <oy — H|
0<t<T

since there exists at most one particle per site. By Theorem 3.6.2 and Proposition 3.6.1, || HY —H||% — 0
as N — oo, and the proof follows. O

3.7.4 Uniqueness of limit points

We prove in this subsection that all limit points Q* of the sequence Q%N are concentrated on absolutely
continuous trajectories 7 (t, du) = p(t, u)du, whose density p(t,u) is a weak solution of the hydrodynamic
equation (3.7.6) with [ = 0, r = 1 and ®(a) = o + aa?.

We now state a result necessary to prove the uniqueness of limit points. Let, for a local function
g: {0, 1}Zd — R, g:[0,1] — R be the expected value of g under the stationary states:

gla) = E, [g(n)] .

For £ > 1 and d-dimensional integer x = (z1,...,z4), denote by n‘(z) the empirical density of particles
in the box B (z) = {(y1,...,yq) € Z¢;0 < y; —x; < {}:

i@ = Y )

yEB (z)

Proposition 3.7.4 (Replacement lemma). Fiz a cylinder function g and a sequence of functions {Fy :
N >1}, Fn: N_l']I‘ﬁlV — R such that

1
Jim > Fy(z/N)* < oo.

lim
d
IETN

Then, for any t > 0 and any sequence of probability measures {py : N > 1} on {0, 1}T(Ii\',

| =o0.

i T E,, || /0 w1 O Fw(a/N) {regn) — 0N (@) d.}

e—0 N—oc
IET%

The proof can be found in [16, subsection 5.3].

Let Q* be a limit point of the sequence QYX’VN and assume, without loss of generality, that QmN
converges to Q*.

Since there is at most one particle per site, it is clear that Q* is concentrated on trajectories m:(du)
which are absolutely continuous with respect to the Lebesgue measure, m;(du) = p(t,u)du, and whose
density p is non-negative and bounded by 1.
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Fix a function H € Dy, and A > 0. Recall the definition of the martingale MtN’/\ introduced in the
previous section. From (3.7.9) we have, for every § > 0,

lim P, { sup |MtNA| > 5] =0,
N—o0 0<t<T

and from (3.7.8), for fixed 0 < ¢ < T and § > 0, we have
lim W’N“(w;’v,Hiv> — (n), H / ds N*Ly(n A)‘ >5} = 0.

Note that the expression N2Ly(mN, HY A ) has been computed in the previous subsection in terms
of generator L. On the other hand, LNH)\ = )\H/J\V — AMH + VAVw H. Since there is at most one
particle per site, we may apply Theorem 3.6.2 to replace (7Y, HY) and (r{¥, HY) by (m;, H) and (rg, H),
respectively, and replace Ly Hi' by VAVy H plus a term that vanishes as N — oo.

Since E,_[hi;] = a?, i=1,2and j = 1,...,d, we have by Proposition 3.7.4 that, for every ¢ > 0,
A>0,0>0,i=1, 2,

lim Tim P, / ds + %;VAVWH(JJ/N)
S

x {rhiing) = [N @)°} | > 8] = 0.
Since 7N (z) = 5"17@’(1—[?:1[%- /N,z;/N + ee;]), we obtain, from the previous considerations, that

. . W,N .
tm Jim, O [ e 20

—<7r0,H>—/Ot < —‘“Vlj +ee;))) VAVWH>‘>6 —0.

Using the fact that N converges in the uniform topology to Q*, we have that

;lir(l)(@* H<7Tt,G)\H> — <7T0,G)\H> —

t

[ (ot

Recall that Q* is concentrated on absolutely continuous paths m;(du) = p(¢, u)du with positive density
bounded by 1. Therefore, E*dﬂ's(]_[;lzl[-, -+ ee;]) converges in L(T9) to p(s,.) as e | 0. Thus,

.::‘&

- teej])) >’>§ =0.

" UW,H) ~ lro, HY — /Otds@)(ps), VAV H)| >5} ~ o

Letting 6 | 0, we see that, Q* a.s.,

/Wp(t,u)H(u)du—/ p(0,u) duf/ /w (s,u))VAVw H(u)duds .

This identity can be extended to a countable set of times ¢. Taking this set to be dense we obtain,
by continuity of the trajectories m;, that it holds for all 0 < ¢ < T.

We now have a lemma regarding the energy of such limit points whose proof can be found in [16,
Section 6].

Lemma 3.7.5. There exists a finite constant K, depending only on b, such that

Eqz,

sup {/0 ds » dx (O, 0w, H)(s,7) ®(p(s,x))

HeDw

- K /OTds [8WjH(s,:z:)]2d(:cj®Wj)}] < K,.

Td
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From Lemma 3.7.5, we may conclude that all limit points have, almost surely, finite energy, and
therefore, by Lemma 3.4.1, ®(p(,-)) € L2([0,7T], Hy,w(T%)). Analogously, it is possible to show that
p(+,-) has finite energy and hence it belongs to L?([0, T], Hy w (T¢)).

W,N

uy . converges in the uniform

Proposition 3.7.6. As N T oo, the sequence of probability measures
topology to Qyy .

Proof. In the previous subsection, we showed that the sequence of probability measures (@%N is tight for

the uniform topology. Moreover, we just proved that all limit points of this sequence are concentrated
on weak solutions of the parabolic equation (3.7.6). The proposition now follows from the uniqueness
proved in subsection 3.4.1. O

Proof of Theorem 3.7.2. Since (@mN converges in the uniform topology to Qu, a measure which is
concentrated on a deterministic path, for each 0 < ¢t < T and each continuous function H : T¢ — R,
(m{N,H) converges in probability to [, dup(t,u)H (u), where p is the unique weak solution of (3.7.6)
with I, = 0, 7, = 1, v = pp and ®(a) = a + aa?. O
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Chapter 4

Equilibrium fluctuations for
exclusion processes with
conductances in random
environments

Artigo em colaboracao com J. Farfan e F.J. Valentim. Foi publicado no periédico Stochastic Processes
and Their Applications, 120, p. 1535-1562, 2010.

Abstract

Fix a function W : R? — R such that W (zy,...,z4) = ZZ=1 Wi (xr), where d > 1, and each function
Wi : R — R is strictly increasing, right continuous with left limits. We prove the equilibrium fluctuations
for a gradient exclusion process with conductances, induced by W, in random environments when the
system starts from an equilibrium measure. The asymptotic behavior of the empirical distribution is
governed by the unique solution of a stochastic differential equation taking values in a certain nuclear
Fréchet space.

4.1 Introduction

In this article we study the equilibrium fluctuations for a gradient exclusion process with conductances
in random environments, which can be viewed as a central limit theorem for the empirical distribution
of particles when the system starts from an equilibrium measure.

Let W : R — R be a function such that W(xy,...,24) = Zizl Wi (zk), where d > 1 and each
function Wy, : R — R is strictly increasing, right continuous with left limits (cadlag), and periodic in the
sense that Wi (u + 1) — Wi(u) = Wi(1) — W(0), for all w € R. The inverse of the increments of the
function W will play the role of conductances in our system.

The random environment we considered is governed by the coefficients of the discrete formulation of
the model (the process on the lattice). We will assume the underlying random field is ergodic, stationary
and satisfies an ellipticity condition.

Informally, the exclusion process with conductances induced by W in random environments is an
interacting particle systems on the d-dimensional discrete torus N~1T%, in which at most one particle
per site is allowed, and only nearest-neighbor jumps are permitted. Moreover, the jump rate in the
direction e; is proportional to the reciprocal of the increments of W with respect to the jth coordinate
times a term a(w) coming from an elliptic and ergodic random field. Such a system can be understood as
a model for diffusion in heterogeneous media. More precisely, it may model diffusions in which permeable
membranes, at the points of discontinuities of W, tend to reflect particles, creating space discontinuities
in the density profiles. Note that these membranes are (d — 1)-dimensional hyperplanes embedded in
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a d-dimensional environment. Moreover, if we consider W; having more than one discontinuity point
for more than one j, these membranes will be more sophisticated manifolds, for instance, unions of
(d — 1)-dimensional boxes.

The purpose of this article is to study the density fluctuation field of this system as N — oo, and
also the influence of the randomness in this limit. For any realization of the random environment, the
scaling limit depends on the randomness only through some constants which depend on the distribution
of the random transition rates, but not on the particular realization of the random environment.

The evolution of one-dimensional exclusion processes with random conductances has attracted some
attention recently [9, 3, 4, 5]. The hydrodynamic limit proved in [9] was obtained independently in [2]. In
all of these papers, a hydrodynamic limit was proved. The hydrodynamic limit may be interpreted as a
law of large numbers for the empirical density of the system. Our goal is to go beyond the hydrodynamic
limit and provide a new result for such processes, which is the equilibrium fluctuations and can be seen
as a central limit theorem for the empirical density of the process.

To prove the equilibrium fluctuations, we would like to call attention to the main tools we needed: (i)
the theory of nuclear spaces and (ii) homogenization of differential operators. The first one followed the
classical approach of Kallianpur and Perez-Abreu [11] and Gel’fand and Vilenkin [6]. Nuclear spaces are
very suitable to attain existence and uniqueness of solutions for a general class of stochastic differential
equations. Furthermore, tightness of processes on such spaces was established by Mitoma [13]. A wide
literature on these spaces can be found cited inside the fourth volume of the amazing collection by
Gel'fand [6]. The second tool is motivated by several applications in mechanics, physics, chemistry and
engineering. We will consider stochastic homogenization. In the stochastic context, several works on
homogenization of operators with random coefficients have been published (see, for instance, [14, 15] and
references therein). In homogenization theory, only the stationarity of such random field is used. The
notion of stationary random field is formulated in such a manner that it covers many objects of non-
probabilistic nature, e.g., operators with periodic or quasi-periodic coefficients. We follow the approach
given in [16], which was introduced by [15].

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coeflicients can be obtained by the discretization of random high-
contrast lattice structures. Furthermore, the introduction of a corrected empirical measure was needed.
The corrected empirical measure was used in the literature, for instance, by [9, 5, 7, 17, 16]. It can be
understood as a version of Tartar’s compensated compactness lemma in the context of particle systems.
In this situation, the averaging due to the dynamics and the inhomogeneities introduced by the random
media factorize after introducing the corrected empirical process, in such a way that we can average
them separately. It is noteworthy that we managed to prove an equivalence between the asymptotic
behavior with respect to both the corrected empirical measure and the uncorrected one. This equivalence
was helpful in the sense that whenever the calculation with the corrected empirical measure turned
cumbersome, we changed to a calculation with respect to the uncorrected one, and the other way around.
This whole approach made the proof a more simpler than the usual one with respect solely to the corrected
empirical measure developed in the articles mentioned above.

We now describe the organization of the article. In Section 4.2 we state the main results of the article;
in Section 4.3 we define the nuclear space needed in our context; in Section 4.4 we recall some results
obtained in [16] about homogenization, and then we prove the equilibrium fluctuations by showing that
the density fluctuation field converges to a process that solves the martingale problem. We also show
that the solution of the martingale problem corresponds to a generalized Ornstein-Uhlenbeck process.
In Section 4.5 we prove tightness of the density fluctuation field, as well as tightness of other related
quantities. In Section 4.6 we prove the Boltzmann-Gibbs principle, which is a key result for proving the
equilibrium fluctuations. Finally, the Appendix contains some known results about nuclear spaces and
stochastic differential equations evolving on topologic dual of such spaces.

4.2 Notation and results

Denote by T¢ = (R/Z)¢ = [0,1)¢ the d-dimensional torus, and by T% = (Z/NZ)? = {0,..., N — 1}¢ the
d-dimensional discrete torus with N points.
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Fix a function W : R? — R such that

M=

W(.’l?l,...,l‘d) = Wk(xk), (4.2.1)

k=1

where each Wi, : R — R is a strictly increasing right continuous function with left limits (cadlag),
periodic in the sense that for all u € R

Wk(u + 1) — Wk(u) = Wk(l) — Wk(O)
Define the generalized derivative dyy, of a function f : T — R by

. [, xkt e xg) — f(X1,e s Ty sy )
0 e Tl =1
ka('rla s LThes axd) 621(1) Wk(xkz I 6) — Wk;(mk) 5

(4.2.2)

when the above limit exists and is finite. If for a function f : T — R the generalized derivatives dyy,
exist for all k =1,...,d, denote the generalized gradient of f by

va: (8W1f7"'7aWdf)'

Further details on these generalized derivatives can be found in subsection 4.3.1 and in the article [16].
We now introduce the statistically homogeneous rapidly oscillating coefficients that will be used to
define the random rates of the exclusion process with conductances of which we want to study the
equilibrium fluctuations.
Let (9, F, 1) be a standard probability space and {T, : @ — Q;z € Z%} be an ergodic group of
F-measurable transformations which preserve the measure u:

o T, :Q — Qis F-measurable for all z € Z¢,

e u(T,A) = p(A), for any A € F and z € Z,

o To=1, TyoT, =Tuiy

e Any f € LY(Q) such that f(T,w) = f(w) p-a.s for each x € Z¢, is equal to a constant j-a.s.

The last condition implies that the group T, is ergodic.
Let us now introduce the vector-valued F-measurable functions {a;(w);j = 1,...,d} that satisty an
ellipticity condition: there exists # > 0 such that

07! <aj(w) <9,

for allw € Q and j =1,...,d. Then, define the diagonal matrices AN whose elements are given by
N N d
aji(v) =aj =aj(Tn.w), €Ty, j=1,...,d (4.2.3)
Fix a typical realization w € ) of the random environment. For each = € T?V and j =1,...,d, define
the symmetric rate § z1e; = Exte;,x DY
a¥ (z) a? ()

Soates = N ¥ o)/N) — Wia/N)] . NIW;(@; + D)/N) — W, (0, /)] (4.24)

where e1, ..., eq is the canonical basis of R?.

Distribute particles on ’]T‘Iiv in such a way that each site of ’]I“Iiv is occupied at most by one particle.
Denote by 71 the configurations of the state space {0, 1}T(11V so that n(xz) = 0 if site = is vacant, and
n(z) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is the continuous-time Markov
process {n; : t > 0} with state space {0, 1}7?% = {n: T4 — {0,1}}, whose generator Ly acts on functions
f: {0,1}va — R as

d

(LNf)(n) = Z Z gx,x-i-ej Cx,z+te; (77) {f(Cfm’HejT]) - f(n)} ) (425)

i d
J=lzeT¢
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where o™**¢iy is the configuration obtained from 7 by exchanging the variables n(z) and n(z + e;):

n(x+e;) ify=uz,
(@™ ) (y) = §nx) ify=z+e;, (4.2.6)
n(y) otherwise,

and
C:z:,erej (77) =1+ b{n(‘r - ej) + 77(33 +2 e])} ’
with b > —1/2 , and where all sums are modulo N.

We consider the Markov process {n; : t > 0} on the configurations {0, 1}T1dv associated to the generator
Ly in the diffusive scale, i.e., Ly is speeded up by N2.

We now describe the stochastic evolution of the process. Let z = (z1,...,24) € T%. At rate
e 24¢;Ca,ate; () the occupation variables n(x), n(z + e;) are exchanged. Note that the random field
affects the rate by a multiplicative factor. If W is differentiable at /N € [0,1), the rate at which
particles are exchanged is of order 1 for each direction, but if some W; is discontinuous at x;/N , it no
longer holds. In fact, assume, to fix ideas, that W} is discontinuous at z,; /N, and smooth on the segments
(xj/N,z;/N +ee;) and (xz;/N —ee;,x;/N). Assume, also, that W, is differentiable in a neighborhood of
x/N for k # j. In this case, the rate at which particles jump over the bonds {y—e;,y}, with y; = z;, is
of order 1/N, whereas in a neighborhood of size N of these bonds, particles jump at rate 1. Thus, note
that a particle at site y — e; jumps to y at rate 1/N and jumps at rate 1 to each one of the 2d — 1 other
options. Particles, therefore, tend to avoid the bonds {y — e;,y}. However, since time will be scaled
diffusively, and since on a time interval of length N2 a particle spends a time of order IV at each site v,
particles will be able to cross the slower bond {y — e;,y}. Therefore, the conductances are induced by
the function W through the inverse of the gradient of W, whereas the random environment is given by
the diagonal matrix AY := (a}(x))axd-

The effect of the factor ¢y zye;(n) is the following: if the parameter b is positive, the presence of
particles in the neighboring sites of the bond {z,z+e;} speeds up the exchange rate by a factor of order
one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the
exchange rate also by a factor of order one. More details are given in Remark 4.2.2 below.

The dynamics informally presented describes a Markov evolution. A computation shows that the
Bernoulli product measures {Vlﬂv : 0 < p < 1} are invariant, in fact reversible, for the dynamics. The

N

measure v, is obtained by placing a particle at each site, independently from the other sites, with

probability p. Thus, V,év is a product measure over {0, 1}T1d\f with marginals given by

vi{n:n(x)=1} = p

for z in TY,.

Consider the random walk {X;};>0 of a particle in T% induced by the generator Ly given as follows.
Let £ 24¢,; given by (4.2.4). If the particle is on a site x € T, it will jump to z +e; with rate N2§$,I+ej.
Furthermore, only nearest neighbor jumps are allowed. The generator Ly of the random walk {X;}:>0

acts on functions f : T4 — R as
d
x ; x
AV J,Z:l AV

L () = 8o, [1(552) ~ 1 ()] + a1 (5572) - £(R)]}
It is not difficult to see that the following equality holds:

where,

d
L f(z/N) =Y 0N (aY o, f)(z) == VNANVY f(2), (4.2.7)

Zj
j=1

where, ag is the standard difference operator:

i (5) = v (52) - (3]
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and 8%j is the Wj-difference operator:

x f w—;/ey. _f(%)
) )

N il
W) e e

N
for x € T% . Several properties of the above operator have been obtained in [16].

The counting measure my on N *IT?\, is reversible for this process. This random walk plays an
important role in the proof of the equilibrium fluctuations of the process 7;, as we will see in subsection
4.4.1.

Now we state a central limit theorem for the empirical measure, starting from an equilibrium measure
v,. Fix p > 0 and denote by Sw (T9) the generalized Schwartz space on T¢, whose definition as well as
some properties are given in Section 4.3.

Denote by YV the density fluctuation field, which is the bounded linear functional acting on functions
G € Sw(T?) as

1
YNNG = Nz Z G(z)[m(z) — pl. (4.2.8)
z€T4
Let D([0,T], X) be the path space of cadlag trajectories with values in a metric space X. In this
way we have defined a process in D([0,T], S}, (T¢)), where Sj;,(T?) is the topologic dual of the space
Sw (T?).
Theorem 4.2.1. Consider the fluctuation field YV defined above. Then, YN converges weakly to the
unique Sty (T?)-solution, Y; € D([0,T], S}y, (T9)), of the stochastic differential equation

aYy = ¢'(p)VAVwYidt + /2x(p)¢' (p) Ad N, (4.2.9)

where x(p) = p(1 — p), ¢(p) = p + bp?, and ¢' is the derivative of ¢, ¢'(p) = 1 + 2bp; A is a constant
diagonal matriz with jth diagonal element given by a; := E(a?’), for any N € N; and Ny is a S}, (T9)-
valued mean-zero martingale, with quadratic variation

d ,
N@) =Y [ [ow,Gla))” diw? @ W)

where d(x? @ W;) is the product measure drq ® -+ @ drj_1 @ dW; ® dzj41 @ -+ @ dxg. Furthermore,
Ny is a Gaussian process with independent increments. More precisely, for each G € Sy (T?), N¢(G)
is a time deformation of a standard Brownian motion. The process Y; is known in the literature as the

generalized Ornstein-Uhlenbeck process with characteristics ¢'(p)VAVw and \/2x(p)¢'(p) AVw .
The proof of this theorem is given in Section 4.4.

Remark 4.2.2. The specific form of the rates cg z1e;, s not important, but two conditions must be
fulfilled. The rates must be strictly positive, they may not depend on the occupation variables n(z),
n(z + e;), but they have to be chosen in such a way that the resulting process is gradient. (cf. Chapter
7 in [12] for the definition of gradient processes).

We may define rates cq g e, to obtain any polynomial ¢ of the form ¢(a) = a+3 o< ey, ajad, m>1,
with 1 4 Z2§j§m ja; > 0. Let, for instance, m = 3. Then the rates

ém,z-ﬁ-ei(n) - Cﬂ?@-ﬁ-&:(”) +
b{n(x —2ei)n(z — ;) +n(x — eq)n(x + 2€;) + 1z + 2e)n(@ + 3e:)}

satisfy the above three conditions, where cg 4y, s the rate defined at the beginning of Section 2 and a,
b are such that 1+ 2a + 3b > 0. An elementary computation shows that ¢(a) = 1+ aa® + ba3.

4.3 The space Sy (T9)

In this Section we build the space Sy (T?), which is associated to the operator Ly = VVy. This space,
as we shall see, is a natural environment to attain existence and uniqueness of solutions of the stochastic
differential equation (4.2.9). Furthermore, several lemmas are obtained to fulfill the conditions to ensure
existence and uniqueness of such solutions.
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4.3.1 The operator Ly
Consider the operator Ly, : Dy, C L*(T) — R given by

Lw,.f = 0z, Ow, [, (4.3.1)

whose domain Dyy, consists of all functions f in L?(T) such that
y
fe) = 0+ W) + [ W) / i(2) d=
0,z 0
for some function f in L?(T) that satisfies

/01 f(z)dz = 0 and o Wk(dy){b+/0yf(z) dz} =0.

In [5] the authors prove that these operators have a countable complete orthonormal system of eigenvec-
tors, which we denote by Ay, . Then, following [17], we define

S

w o= {f:T*=R: f(z1,..., 24 H (1), fr € Aw,},

where W is given by (4.2.1).
We may now build an operator analogous to Ly, in T¢. For a given set A, we denote by span(A)
the linear space generated by A. Let Dy = span(Aw ), and define the operator Ly : Dy — L?(T?) as

follows: for f = szl fr € Aw,

d  d
Lw (f)(@1,..2a) =Y [ filz;)Lw, falar), (4.3.2)

k=1j=1,j#k

and extend to Dy, by linearity. It is easy to see that if f € Dy,

d
Lwf=> Lw,/, (4.3.3)

k=1

where the application of Ly, on a function f: T¢ — R is the natural one, i.e., it considers f only as a
function of the kth coordinate, and keeps all the remaining coordinates fixed.
Let, for each k =1,...,d, fi € Aw, be an eigenvector of Ly, associated to the eigenvalue ;. Then

f= szl fx belongs to Dy, and is an eigenvector of Ly, with eigenvalue 22:1 k. Moreover, [17] proved
the following result:

Lemma 4.3.1. The following statements hold:
(a) The set Dy is dense in L?(T?);
(b) The operator Ly, : Dy — L2?(T%) is symmetric and non-positive:

<_]L‘Wfa f> > 07
where (-,-) is the standard inner product in L?(T?).

Also, the set Ay forms a complete, orthonormal, countable system of eigenvectors for the operator
Lw. Let Aw = {p;};>1, {ozj }]>1 be the corresponding eigenvalues of —Lyy, and consider Dy = {v =
Y2y vips € LA(T9); 3772 viaF < +oo}. We define the operator Ly : Dy — L*(T¢) by

+oo

—Lwv = Zajvjcpj (4.3.4)
J=1

The operator Ly is clearly an extension of the operator Ly, and we present some properties of this
operator in Proposition 4.3.2, whose proof can be found in [17].
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Proposition 4.3.2. The operator Ly : Dy — L?(T?) enjoys the following properties:

(a) The domain Dy is dense in L*(T?). In particular, the set of eigenvectors Aw = {p;};>1 forms a
complete orthonormal system;

(b) The eigenvalues of the operator —Lyw form a countable set {a;}j>1. All eigenvalues have finite
multiplicity, and it is possible to obtain a re-enumeration {a;};>1 such that

O=a;<ay<--- and lim a, = oo;

(c) The operator 1 — Ly, : Dy — L*(T?) is bijective;
(d) Lw : Dw — L2(T9) is self-adjoint and non-positive:

(e) Lw is dissipative.

4.3.2 The nuclear space Sy (T%)

Our goal is to build a countably Hilbert nuclear space associated the self-adjoint operator Ly,. The
reader is referred to Appendix.

Let {p;};>1 be the complete orthonormal set of the eigenvectors (in L%(T¢)) of the operator £ =
I— Lw, and {\;},>1 the associated eigenvalues. Note that A\; =1+ «;.

Consider the following increasing sequence || - ||, n € N, of Hilbertian norms:

Py f, Prg)\p k",

WK

<fag>’ﬂ =

>
Il

1

where we denote by P, the orthogonal projection on the linear space generated by the eigenvector .
So,

IF17 = D IR fIPAR K2,

k=1

where || - || is the L?(T%) norm.

Consider the Hilbert spaces S,, which are obtained by completing the space Dy with respect to the
inner product (-, ).

The set

Sw(T?) = ﬁ Sn
n=0

endowed with the metric (4.7.2) is our countably Hilbert space, and even more, it is a countably Hilbert
nuclear space, see the Appendix for further details. In fact, fixed n € N and m > n + 1/2, we have that
{W%— }j>1 is a complete orthonormal set in S,,,. Therefore,

> Iyl < gj(ml) <o
The above formula corresponds to formula (4.7.3) in Appendix.
Lemma 4.3.3. Let Ly : Dy — L?(T?) be the operator obtained in Theorem 4.5.2. We have
(a) Lyw is the generator of a strongly continuous contraction semigroup {P, : L*(T%) — L?(T%)};>0;
(b) Lw is a closed operator;

(c) For each f € L*(T?), t — P, f is a continuous function from [0,00) to L*(T%);
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(d) LwPf = P.Lwf for each f € Ly andt > 0;
() I—Lw)"Pif = P(I—Lw)"f for each f € Dy ,t >0 and n € N;

Proof. Ttem (a) follows from Theorem 4.3.2 and Hille-Yosida’s theorem. Items (b), (¢) and (d) follows
from item (a), see, for instance, [1, chapter 1]. Item (e) follows from item (d) and from the fact that

The next Lemma permits to conclude that the semigroup {P; : t > 0} acting on the domain Sy (T?)
is a Cjp,1-semigroup, whose definition is recalled in Appendix 4.7.2.

Lemma 4.3.4. Let {P, : t > 0} the semigroup whose infinitesimal generator is Ly . Then for each
q € N we have:
1P fllg < N1 £llqs
for all f € Sw(T). In particular, {P; : t > 0} is a Cp 1-semigroup.
Proof. Let f € Dy, then

k
F=Y_Be;,
j=1

for some k € N, and some constants (1, ..., 8. A simple calculation shows that

k
Bf = Zﬁjet(l—k;‘)@j

j=1
Therefore, for f € Dy :

k
1A = 1) Bie il
j=1
k
= ) 1Bt 2 A2
j=1
k
< D UBiwslPAT = I£1In
j=1
We use the density of Dy in Sy (T¢) to conclude the proof of the lemma. O

Lemma 4.3.5. The operator Ly belongs to L(Sw (T?), Sy (T?)), the space of linear continuous operators
from Sy (T?) into Sy (T9).

Proof. Let f € Sw(T?), and {¢,};>1 be the complete orthonormal set of eigenvectors of Ly, with
{(1 = Aj)};>1 being their respectively eigenvalues. We have that

f= Zﬂjtpj, with Zﬂ? < 0.
j=1 j=1

We also have that
Lwf= Z 1- 5] Pj-

For every n € N:

1Lw I = an Lw HIPATE™ = 1181 = M)kl PAZ"E"
k=1 k=1

= Z 1Bl (1 = )2 AZ k"
< Z |]P;kf||2)\ink2n +2Z H]P’kf||2)\i(n+1)k2(n+l)
k= k=1

= 2(f IIn + [ fllnt1)-
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Therefore, by the definition of Sy (T9), Ly f belongs to Sy (T?). Furthermore, Ly is continuous
from Sy (T9) to Sy (T9). O

4.4 Equilibrium Fluctuations

We begin by stating some results on homogenization of differential operators obtained in [16], which will
be very useful along this section.

Let L?ci@)wi (T%) be the space of square integrable functions with respect to the product measure

dr1 ®@ - - @dr;—; @ dW; ® dz;y1 ® --- @ dxy, and HLW(']I‘d) be the Sobolev space with W-generalized
derivatives. More precisely, Hq yw (T?) is the space of functions g € L?(T?) such that for each i = 1,...,d

there exist functions G; € Lii@)wi o(T?) satisfying the following integral by parts identity.

/ (020w, f) gdz = — / (Ow, f) Gid(z'® W), (4.4.1)
’]I‘d ’]I‘d

for every function f € Sy (T¢). We denote G; simply by 9y, g. See [16] for further details on this space.
Let A > 0, f be a functional on Hy w (T?), ux be the unique weak solution of

Muy — VNANY Y uy = f,
and ug be the unique weak solution of
/\UO — VAVWUO = f (442)

For more details on existence and uniqueness of such solutions see [16].
In this context, we say that the diagonal matrix A is a homogenization of the sequence of random

matrices AV, denoted by AN A, A, if the following conditions hold:

e uy converges weakly in Hy yw (T?) to ug, when N — oo;

e alY oy u™ — a;0w,u, weakly in L?ﬂ@Wi (T?) when N — oc.

Theorem 4.4.1. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (w) admits a homogenization, where the homogenized
matriz A does not depend on the realization w.

The following proposition regards the convergence of energies:
Proposition 4.4.2. Let AN A, A, as N — oo, with uy being the solution of
Muy — VNANY Y uy = f,

where f is a fived functional on Hy w(T%). Then, the following limit relations hold true:

1
Nd Z ui () — ud(z)dr,

veT, E
and
ST S @O, un ) I (o 1)/ Wy /)
i=1zeT?, d
-3 [, 5@, o) 2 ),
as N — oo.
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4.4.1 Martingale Problem

We say that Y; € Sfy(T?) solves the martingale problem with initial condition Yj if for any G € Sy (T¢)
t

Mi(G) = Yi(@) - YolG) - 9'(p) [ Y.(VAVwG)ds (4.4.3)
0

is a martingale with quadratic variation
d ) ‘
(ML(G)) = 2x(p)8 (0) S /T a5 (0w,G)" d(a? & W), (4.4.4)
j=1

Observe that if Y; is the generalized Ornstein-Uhlenbeck process with characteristics ¢'(p)VAVy and

V2x(p)¢' (p) AV, then Y; solves the martingale problem above.
Recall that YV is the bounded linear functional acting on functions G' € Sy (T4):

V(€)= yan 3 G~ ). (4.4.5)

zeTe

This process YV is called density fluctuation field.

Denote by Q x the distribution in D([0, T, Sy (T¢)) induced by the process Y} and initial distribution
v,. Our goal is to show that any limit point of YN solves the martingale problem. To this end, we need
to introduce the corrected density fluctuation field:

YNNG) = s 0 GA@) )~ g, (1.46)

z€Td
where G, is the weak solution for the equation
MGy — LnGN = MG — VAV G (4.4.7)
that, via homogenization, converges to G which is the trivial solution of the problem
AG — VAV G = AG — VAV G.

The processes YV and Y.M* have the same asymptotic behavior, as we will see. But some calculations
are simpler with one of them than with the other. In this way, we have defined two processes in
D([0,T], 8}, (T)), where Sj;,(T%) is the topologic dual of the space Sy (T4).

Given a process Y. in D([0,T], S} (T%)), and for t > 0, let F; be the o-algebra generated by Y;(H)

for s <t and H € Sy (T9). Furthermore, set F, = O'(Utzo ft). Denote by Q4 the distribution on

D([0,T], S}, (T%)) induced by the corrected density fluctuation field Y.** and initial distribution Vp.
Theorem 4.2.1 is a consequence of the following result about the corrected fluctuation field.

Theorem 4.4.3. Let Q be the probability measure on D([0,T], Sk, (T¢)) corresponding to the generalized

Ornstein-Uhlenbeck process of mean zero and characteristics ¢'(p)V - AVw, +/2x(p)¢'(p)AVw . Then
the sequence {Q?V}Nzl converges weakly to the probability measure Q.

Note also that the above theorem implies that any limit point of YV solves the martingale problem
(4.4.3)-(4.4.4).

Before proving the Theorem 4.4.3, we will state and prove a lemma. This lemma shows that tightness
of YN follows from tightness of YN, and even more, that they have the same limit points. So we can
derive our main theorem from Theorem 4.4.3.

Lemma 4.4.4. For all t € [0,T] and G € Sy (T?), limy o0 B, [VN(G) = YN NG)] = 0.

Proof. By convergence of energies, we have that limy_... Gy = G in L% (T?), i.e.

IGx — Gl% = % > [GN(@/N) = G(z/N)? -0,  as N — . (4.4.8)

d
z€T$,
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Since v, is a product measure we obtain

B, [YN(@G) - YN @) =

1

= El’p [m

Y [GX(z/N) = G(a/N)[GN (y/N) = Gly/N)(ne(x) = p)(m(y) = p)] =

z,yeTY,

= B, [5g Y (GM/N) ~ Gla/N)P@) )] < S S (@ (/) - Ola/N)P,

z€TY, z€TY

where C(p) is a constant that depend on p. By (4.4.8) the last expression vanishes as N — oo. O

Proof of Theorem 4.4.3
Consider the martingale

t
MY(G) = YN(E) - Y(6) - [ NLyYY(G)is (1.49)
0
associated to the original process and
t
MNMNG) = YN G) - YN G) - / N2LyYNN@G)ds (4.4.10)
0

associated to the corrected process.
A long, albeit simple, computation shows that the quadratic variation of the martingale MtN ’)‘(G),
(MNA(G))y, is given by:

d
% SO S a0, GA(@/N)EW (@ + ¢;)/N) — W (z/N)]x (4.4.11)

J=1xeTd

X /0 Cx,x+te; (ns) [ns(x + ej) - 778(37)]2 ds .

Is not difficult see that the quadratic variation of the martingale M (G), (MY (G));, has the expres-
sion (4.4.11) with G replacing G3,. Further,

Ey, [cawte,(n) s(z +€5) —ns(x)]*)] = By, [14b(n(z — ;) + n(x))]Ey, [(n(z + €;) — n(x))?]
2(1 + 2bp)p(1 — p)
26’ (p)x(p)-

Lemma 4.4.5. Fiz G € Sy (T%) andt > 0, and let (MNG))¢ and (MY (GQ)); be the quadratic variation
of the martingales M (G) and M} (G), respectively. Then,

Jim E,, [(MN(G)), ~ (MY (@)]? = 0. (4.4.12)
Proof. Fix G € Sy(T?) and ¢ > 0. A straightforward calculation shows that
B, [(MNA(G)) — (MY (@)]” <

d 2
< [P S0 37 a1, ON (/N))’ — (O, Gla/N)) W (ar + €)/N) — W (/N

j=1zeTd

where the constant k comes from the integral term. By the convergence of energies (Proposition 4.4.2),
the last term vanishes as N — oo. O
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Lemma 4.4.6. Let G € Sy (T%) and d > 1. Then

. 1
Jim B, [y / dZZ W (O, G (/N2 W((x + ) /N) — W(a/N)]x

X [Caare; (0s) [0s(2 + €5) — ns(2)]” — 2x(p)¢’(P)H = 0.

Proof. The case d = 1 follows from calculations similar to the ones found in Lemma 12 of [8].
Fix G € Sy (T?) and d > 1. The term in the previous expression is less than or equal to
t294C( )

N1 VWGl (4.4.13)

where
IV Gl na = Nd 1 Z Z 8W x/N) W((z +e;)/N) —W(z/N)].
Jj=1zeTd
Thus, since for G € Sy (T?), |V}, G|[fy, x4 is bounded, the term in (4.4.13) converges to zero as N —
00. 0

So, by Lemma 4.4.5 and 4.4.6, (M™*(G)); is given by

QtX Z Z a5 aW G ( x/N)) (W((z+ej)/N) = W(z/N)]

j=12eTd

plus a term that vanishes in L%p (T%) as N — oo. By the convergence of energies, Proposition 4.4.2, it
converges, as N — oo, to

2tx(p Z/Td a (0w, G ) dzi ® W;.

Our goal now consists in showing that it is possible to write the integral part of the martingale as
the integral of a function of the density fluctuation field plus a term that goes to zero in Lgp (T4). By a
long, but simple, computation, we obtain that

d
NLNYNNG) = 3 s 3 LAGA /N ne(a)

wETﬁ

37 LGN (@ + ¢))/N) + LAGN (/N)] (roha ) (715)

zeTE

_ % 3 LGN (@/N)(rhay) ()}

zGTﬁ

T N2

where {7, : z € Z?} is the group of translations, so that (7,7)(y) = n(z +y) for 2, y in Z4¢, and the sum
is understood modulo N. Also, hy j, ha ; are the cylinder functions

hii(m) = n0)nle;) .  haj(m) = n(—e;)n(e;) -

Note that inside the expression N2LxY N} we may replace Lg\,Gj\V by a;0.,0w,;G. Indeed, the
expression
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t d
1 ,
B [ Lo 3 [ACH ~ 00, 6] 06 =) +
b
Nd/2

> [TAGH (@ + €)/N) = 000,00, G((x + ) /N) +

d
€T

LAGN (@/N) = 302,00, G(x/N)| ((7ah 5) (1,) = 07) —
o 2 [LANGN@/N) — 4y, 0w, Gl /N (o)) — 7))

d
z€Tq

is less than or equal to

Clp.b / Ndz [LyG(z/N) — VAV G(z/N)]%

zeTd

Now, recall that G;\V is solution of the equation (4.4.7), and therefore, the previous expression is less
than or equal to
tC(;% b)

IGX = Gli%,

thus, by homogenization and energy estimates in Theorem 4.4.1 and Proposition 4.4.2, respectively, the
last expression converges to zero as N — .

By the Boltzmann Gibbs principle, Theorem 4.6.1, we can replace (7,h; ;)(ns) — p? by 2p[ns(z) — p]
for i = 1,2. Doing so, the martingale (4.4.10) can be written as

M¥NG) = YNNG — YN G / ~ar Z VAVwG(z/N)¢' (p)(ns — p)ds, (4.4.14)

zeTd

plus a term that vanishes in L? ('H‘d) as N — oo.

Notice that, by (4.4.5), the 1ntegrand in the previous expression is a function of the density fluctuation
field Y,. By Lemma 4.4.4, we can replace the term inside the integral of the above expression by a term
which is a function of the corrected density fluctuation field Y,V*.

;From the results of Section 4.5, the sequence {Qy }n>1 is tight and let Q* be a limit point of it.
Let Y; be the process in D([0, T, Siy(T?)) induced by the canonical projections under @Q*. Taking the
limit as N — oo, under an appropriate subsequence, in expression (4.4.14), we obtain that

MMNG) = Y,(G) / Y.(¢'(p)V - AV G)ds (4.4.15)

where M} is some S}, (T¢)-valued process. In fact, M} is a martingale. To see this, note that for a mea-
surable set U with respect to the canonical o-algebra 7y, Eqa [M; N @)1y] converges to Egr[M}MG)1y).
Since M} (@) is a martingale, Eqy [M:JFV M@ 1y] = Eqy [MN*(G)1y]. Taking a further subsequence if

necessary, this last term converges to Egx [M (G)1y], which proves that M*(G) is a martingale for any
G € Sy (T?). Since all the projections of M;* are martingales, we conclude that M} is a Sfy (T%)-valued
martingale.

Now, we need obtain the quadratic variation (M*(G)); of the martingale M*(G). A simple applica-
tion of Tchebyshev’s inequality proves that (M™*(G)); converges in probability to

d 2
200 (03 [ o [ow ] dta' W),

Where x(p) stand for the static compressibility given by x(p) = p(1 — p). Remember the definition of
quadratic variation. We need to prove that

d 2 4
NNG) = MNGE = 2x()8 ()Y [ as[ow, 6] dlato W)
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is a martingale. The same argument we used above applies now if we can show that sup EQR; [M}V A ()Y <
oo and supy Egy [(MN2(G))2] < 0o. Both bounds follows easily from the explicit form of (M™*(G)),

and (4.4.14).
On the other hand, by a standard central limit theorem, Y} is a Gaussian field with covariance

E[Yo(G)Yo(H)] = x(p) | C(a)H(x)dx.

Td

Therefore, by Theorem 4.4.7, Q* is equal to the probability distribution Q of a generalized Ornstein-
Uhlenbeck process in D([0, T, S}, (T?)) (and it does not depend on A). By uniqueness of the generalized
Ornstein-Uhlenbeck processes (also due to Theorem 4.4.7), the sequence {Q} } x>1 has at most one limit
point, and from tightness, it does have a unique limit point. This concludes the proof of Theorem 4.4.3.

4.4.2 Generalized Ornstein-Uhlenbeck Processes

In this subsection we show that the generalized Ornstein-Uhlenbeck process obtained as the solution
martingale problem which we are interested, is also a Sf;, (T¢)-solution of a stochastic differential equation,
and then we apply the theory in Appendix to conclude that there is at most one solution of the martingale
problem. Moreover, we also conclude that this process is a Gaussian process.

Theorem 4.4.7. Let Yy be a Gaussian field on Siy,(T9). Then the unique S}y, (T¢)-solution, Y;, of the
stochastic differential equation

dY; = ¢'(p) VAV Yedt + /2x(p)¢’ (p) AdNy, (4.4.16)

solves the martingale problem (4.4.3)-(4.4.4) with initial condition Yo, where Ny is a mean-zero Sfy, (T?)-
valued martingale with quadratic variation given by

d
<N(G)>t = tZAd [8W7G}2d(l‘] & WJ)

Moreover, Yy is a Gaussian process.

Proof. In view of definition of solutions in Appendix, Y; is a Sy, (T¢)-solution of (4.4.16). In fact, by
hypothesis Y; satisfies the integral identity (4.4.3), and is also an additive functional of a Markov process.

We now check the conditions in Proposition 4.7.1 to ensure uniqueness of S}, (T¢)-solutions of (4.4.16).
Since by hypothesis Yj is a Gaussian field, condition 1 is satisfied, and since the martingale M; has the
quadratic variation given by (4.4.4), we use Remark 4.7.2 to conclude that condition 2 holds. Condition
3 follows from Lemmas 4.3.4 and 4.3.5. Therefore Y; is unique.

Finally, by Blumenthal’s 0-1 law for Markov processes, M; and Y, are independent, since for measur-
able sets A and B, P(YO e A M, € B) = E<1Y0€A1MtEB) = E[E(]-YOEA]-]VQEBLFOJr)] = E[lYoeAE(lMt€B|f0+)] =
E[ly,caP(M; € B)] = P(Yy € A)P(M; € B). Applying Lévy’s martingale characterization of Brownian
motions, the quadratic variation of My, given by (4.4.4), yields that M; is a time deformation of a Brow-
nian motion. Therefore, M; is a Gaussian process with independent increments. Since Y} is a Gaussian
field, we apply Proposition 4.7.3 to conclude that Y; is a Gaussian process in D([0, T, S}y, (T%)). O

4.5 Tightness

In this section we prove tightness of the density fluctuation field {YV} 5 introduced in Section 4.2. We
begin by stating Mitoma’s criterion [13]:

Proposition 4.5.1. Let ®,, be a nuclear Fréchet space and ®' its topological dual. Let {QN}n be a
sequence of distributions in D([0,T],®" ), and for a given function G € @, let QN'C be the distribu-
tion in D([0,T],R) defined by Q¢ [y € D([0,T],R);y(:) € A] = QN [Y € D([0,T],®..); Y (-)(G) € A].
Therefore, the sequence {QN}n is tight if and only if {QN'C}n is tight for any G € @
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;From Mitoma’s criterion, {Y.V}x is tight if and only if {YV(G)}y is tight for any G € Sy (T?),
since Sy (T?) is a nuclear Fréchet space. By Dynkin’s formula and after some manipulations, we see that

e = e [ Z{NW > LiGr(e/N)ma(a)

xer

Y [LAGN((@ +e)/N) + LG (a/N)] (rsha;)(ns)

a:e']l‘d

+ Nd/2

> LAGN(2/N)(ha;)(10) bs + MM (G), (4.5.1)

z€TY,

Nd/2

where M (G) is a martingale of quadratic variation

d
(Y@ = sy D0 3 a0, O (/NP IW (r + €)/N) — W (/)]

j=1zeTd
t
X / Cx,x+e; (775> [778(37 + ej) - 773(95)]2 ds .
0

In order to prove tightness for the sequence {YV (G)} v, it is enough to prove tightness for {Y{¥ (G)}n,
{MN(G)} N and the integral term in (4.5.1). The easiest one is the initial condition: from the usual central
limit theorem, Y§¥ (G) converges to a normal random variable of mean zero and variance x(p) [ G(z)%dz,
where x(p) = p(1 — p). For the other two terms, we use Aldous’ criterion:

Proposition 4.5.2 (Aldous’ criterion). A sequence of distributions { PN} in the path space D([0,T],R)
is tight if:

i) For anyt € [0,T)] the sequence { PN} of distributions in R defined by PN (A) = PN [y € D([0,T],R) : y(t) € A]
is tight,

it) For any e > 0,

lim Iim sup PV [y € D([0,T],R) : [y(r +0) — y(7)| > €] =0,
§>0n—00 re7
<5

where Y is the set of stopping times bounded by T and y(t+6) =y(T) if T+ 0 > T.

Now we prove tightness of the martingale term. By the optional sampling theorem, we have

O [IM0(G) - MY(@)] > ] < & Boy [(M20(6)) — (M2(©))]

j (@) @)

= EQN% Z > aji(@) [0, G /N)PW((x + e;)/N) — W(x)]

i=1zeTd,
t+6
X / Cz,x+e; (773)[778(x + ej) - ns(x)]QdS
t
J 1 <
< s +2b)0 = DD O, Gla/N)PW (@ +e¢j)/N) = W(2)] (4.5.2)
J=1zeT¢,
)
< S+ 2OV Gl +9),
for N sufficiently large, since the rightmost term on (4.5.2) converges to | Vw G||3,, as N — oo. Therefore,

the martingale MY (G) satisfies the conditions of Aldous’ criterion. The integral term can be handled in
a similar way:
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T+48

Nd/2 Z Z {L] (x/N)(ne — p)

j=1 =z

gor| (]

T

+ BLAG((x +¢;)/N) + Ly G(z/N))(roh1 — p?)
— BLG(x/N)(rohs — p2))2dt]
= b Na 21 2 (LJ (z/N) )
J=1zeT¢
< 6C(G,b),

where C(b) is a constant that depends on b, and C(G, b) is a constant that depends on C(b) and on the
function G € Sy (T?). Therefore, we conclude, by Mitoma’s criterion, that the sequence {Y. N}y is tight.
Thus, the sequence of S}y, (T?)-valued martingales {M N}y is also tight.

4.6 Boltzmann-Gibbs Principle

We show in this section that the martingales MY (G) introduced in Section 4.4 can be expressed in terms
of the fluctuation fields Y,V. This replacement of the cylinder function (7,h; ;)(ns) — p* by 2p[ns(z) — p]
for i = 1,2, constitutes one of the main steps toward the proof of equilibrium fluctuations.

Recall that (Q, F, ) is a standard probability space where we consider the vector-valued F-measurable
functions {a;(w);j = ..., d} that form our random environment (see Sections 4.2 and 4.4 for more de-
tails).

Take a function f: Q x {0, 1}TdN — R. Fix a realization w € Q, and let x € T, define

f(z,n) = f(x,n,w) = f(TNew, T2n),

where 7,7 is the shift of i to z: 7,n(y) = n(z + ).

We say that f is local if there exists R > 0 such that f(w,n) depends only on the values of n(y) for
ly| < R. On this case, we can consider f as defined in all the spaces 2 x {0, I}TJdV for N > R.

We say that f is Lipschitz if there exists ¢ = ¢(w) > 0 such that for all z, |f(w,n) — f(w,n")] <
cln(z) — n'(z)| for any n,n" € {0, 1}T51V such that n(y) = n'(y) for any y # x. If the constant ¢ can be
chosen independently of w, we say that f is uniformly Lipschitz.

Theorem 4.6.1. (Boltzmann-Gibbs principle)

For every G € Sy (T%), everyt > 0 and every local, uniformly Lipschitz function f : Qx{0, I}M\f — R,
it holds

NIEHOOEVP / N2 Z z)Vi(x m)ds} =0, (4.6.1)
z€TY

where

Vi(z,n) = f(z,n) — By, [f(z,n)] - GPE[/f(x,n)dvp(n)] (n(z) — p).
Here, E denotes the expectation with respect to u, the random environment.

Let f: Q x {0, 1}T7V — R be a local, uniformly Lipschitz function and take f(x,n) = f(On.w, 72n).
Fix a function G € Sy (T?) and an integer K that shall increase to oo after N. For each N, we subdivide
’]I‘?lv into non-overlapping boxes of linear size K. Denote them by {B;,1 < i < M%}, where M =
More precisely,

(%]
Bi=y +{1,...,K}%

where y; € T4, and B; N B, = ) if i # r. We assume that the points y; have the same relative position
on the boxes.
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Let By be the set of points that are not included in any B;, then |By| < dK N4=1. If we restrict the
sum in the expression that appears inside the integral in (4.6.1) to the set By, then its L,%p (T%)-norm
clearly vanishes as N — +o0, since the variables V;(xz,n) are independent and have mean zero.

Let As, be the smallest cube centered at the origin that contains the support of f and define sy as
the radius of A e Denote by B? the interior of the box B;, namely the sites x in B; that are at a distance
at least sy 4 2 from the boundary:

BY ={x € By, d(z,T% \ B;) > sy + 2}.

Denote also by B¢ the set of points that are not included in any BY. By construction, it is easy to

see that |B¢| < de(% + £, where ¢(f) is a constant that depends on f.
We have that for continuous H : T¢ — R,

Nd/2 > H(@)V(w,m) Nd/2 > H(@)Vy(w,me)+

zeTY, zEBe
+ Z > [H@) - B Vi) + a7 ZH vi) D Vila,m):
i=1 mGBO IEBO

Note that we may take H continuous, since the continuous functions are dense in L?(T%). The first step

is to prove that
2

t
1
Jm Jim 5[ [ i X it o
o zEB*

As v, is an invariant product measure and V; has mean zero with respect to the measure v, the last

expectation is bounded above by
12

Ni 2 H@HE, [Vi(z.n)V;(y.n)].

z,y€B®
lz—y|<2s

Since V} belongs to L?,p (T?) and |B¢| < dN d(c(lp + £, the last expression vanishes by taking first
N — 400 and then K — +o0.
JFrom the continuity of H, and applying similar arguments, one may show that

hm IEUP / Nz Z Z yl)]Vf(x m)ds}2 = 0.

i=1 zeB?

In order to conclude the proof it remains to be shown that

lim lim E,, / i ZH i) S Vi(z,m ds} —0. (4.6.2)

K—o0o N—oo
z€BY
To this end, recall proposition A 1.6.1 of [12]:
t
B, | [ Vons| < 00 vie, (163)
where || - || -1 is given by

VIE = s {z [virama, - LNF>p} |

FeL?(v,

and (-, ), denotes the inner product in L*(v,).
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Let Ly be the generator of the exclusion process without the random environment, and without the
conductances (that is, taking a(w) = 1, and Wj(z;) = x;, for j =1,...,d, in (4.2.5)), and also without
the diffusive scaling N?2:

d
Lngm) =D > cawre, () g™ +) — g(n)],

J=1z€eTY,

for cylindric functions g on the configuration space {0, 1}T7V. }
For each i = 1,.., M denote by (; the configuration {n(z),z € B;} and by Lp, the restriction of the
generator Ly to the box B;, namely:

Lgh() =Y caym)[p™) = h(n)].

z,y€DB;
|lz—y|=1/N

We would like to emphasize that we introduced the generator Ly because it is translation invariant.
Now we introduce some notation. Let L?*(P ® v,) the set of measurable functions g such that

E[[ g(w,n)?dv,] < co. Fix a local function h : Q x {0, 1}71“11V — R in L?(P ®v,), measurable with respect
to o(n(r),r € By), and let h; be the translation of h by y; — y1: hi(2,1) = h(0(y,—y, ) NWs Ty, —y,M)-

Consider
M4

1 -
Virn(n) = Naz ZH(yi)LBihi(Ci)'
i=1
The strategy of the proof (4.6.2) is the following: we show that V', vanishes in some sense as
N — o0, and then, that the difference between V; and Vé\f ;, also vanishes, as N — co. The result follows
a simple triangle inequality. The first part is done by obtaining estimates on boxes, whereas the second

part mainly considers the projections of V¢ on some appropriate Hilbert spaces, plus ergodicity of the
environment.

Let .,
Naj(x) .
L h — v e J h T, r+e; —h .
w,5,h(n) ;I%;C e () ey — 7wy (T 0) = )]
Note that the following estimate holds
Md
Z<h7 _LW,Bih>P < <h7 _LNh>P'
i=1

Furthermore,
= Wi (1) = Wi(0)}
— ) <
(fi=Lp.h) < max, N

6(h,—Lw,B,h),.

Using the Cauchy-Schwartz inequality, we have, for each i,

- 1 - i -
(Lphi, F)p < 2 (=L, hi, hi), + %(F, —Lp,F)y,
where ~; is a positive constant.
Therefore,
2 Z 1 ~
N 7 i I3
2 [V, < 2 > Hw) [2%<—L3ihi7 hidot P ~Lp )| (46.4)
Choose
N1+d/2

ni O max) <p<a{Wi(1) = Wi(0)}HH (y:)|’
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and observe that the generator Ly is already speeded up by the factor N2. We, thus, obtain

Md

2 i . -

a2 ZH(%‘)52<F, —Lp,F), < (F,—LnF),.
=1

The above bound and (4.6.4) allow us to use inequality (4.6.2) on Vé\fh, with the generator Ly p,.
Therefore, we have that the expectation in (4.6.3) with Vlf}f 5 1s bounded above by

Md
200t <~ |H (y1)] (

Nd/2 _LBih’iahi>,07
=1

which in turn is less than or equal to

d
20t || H|| oo M 462 MZ Lo
Nd+1 maxlgkgd{Wk(l) - Wk(O)} Md

LB hzah >

By Birkhoff’s ergodic theorem, the sum in the previous expression converges to a finite value as N — oo.
Therefore, this whole expression vanishes as N — oo. This concludes the first part of the strategy of the
proof.

To conclude the proof of the theorem it is enough to show that

KlgnooheL;(rIljfp@P)A}gnmEy,, / Nz ZH Yi { GZB:O Vi(z,ns) — L, hi(G(s ))}] =0.

To this end, observe that the expectation in the previous expression is bounded by

Nd ZHHH2 Vp( Z Vi(x,m) iBihi(Ci))27

z€BY

because the measure v, is invariant under the dynamics and the supports of Vi(z,n) — Lp,hi(¢;) and
Vi(y,n) — Lp, h-(¢) are disjoint for z € BY and y € BY, with i # r.
By the ergodic theorem, as N — oo, this expression converges to

] [ (3 Vit — Lo hteom) i, (46.5)

z€BY

So, it remains to be shown that

. 2 9 . - 2
I{lglocﬁHHHooheL;E’E@P E{/( Z Vi(a,m) LB‘h(w’n)> du”} =0

z€BY
Denote by R(Lp,) the range of the generator Lp, in L?(v,® P) and by R(Lp, )" the space orthogonal
to R(Lp,). The infimum of (4.6.5) over all h € L?(v, ® P) is equal to the projection of ZmeB? Vi(z,n)
into R(Lp, )" }
The set R(Lp, )" is the space of functions that depends on 1 only through the total number of
particles on the box Bj. So, the previous expression is equal to

i U [ (5, 5 o] ) 426

z€BY
where nf1 = K¢ Z%Bl n(x).

Let us call this last expression Zy. Define ¢ (z,p) = E,, [f(f,w)]. Notice that Vi(z,n) = f(z,n) —
U(x, p) — E[0,0(x, p)] (n(z) — p), since in the last term the partial derivative with respect to p commutes
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with the expectation with respect to the random environment. In order to estimate the expression (4.6.6),
we use the elementary inequality (z+y)? < 222 + 2y2. Therefore, we obtain Zy < 4(Z; +Zy + Z3), where

I, = [/( > B, [f(@n)n™] —w(x,nBl))zdvp},

.LEB

B= %E[ / (X wlan™) (. p) = Opo(a p) ™ — p])2dyp],

s = IidE[E Kz;jo(891/’(%@—E[apf/)(fvvp)])[nBl_p]>2H'

Recall the equivalence of ensembles (see Lemma A.2.2.2 in [12]):

Lemma 4.6.2. Let h : {0,1}7?11V — R be a local uniformly Lipschitz function. Then, there exists a
constant C' that depends on h only through its support and its Lipschitz constant, such that

C

Ev, ()] = Ev, < [h0)]| < <,

where S € N, and

@)= g7 Y )

yeCs
with C% = {0,...,9 — 1}<.
Applying Lemma 4.6.2, we get

[/( > B, [f@n)n®] —w(m,nBl))dep} < %

xBO

which vanishes as K — oo.
Using a Taylor expansion for ¢(z, p), we obtain that

<zl / (X vlen™) = vle,p) — 9. )™ —p})Qd,,,,} < KQ

wEB?
and also goes to 0 as K — 0.
Finally, we see that
1 2
Ty = B, [(n(0) = p)?] - B (77 2. Op(a.p) — E0,(x.p)) |

z€BY

and it goes to 0 as K — oo by the L?-ergodic theorem. This concludes the proof of Theorem 4.6.1.

4.7 Appendix: Stochastic differential equations on nuclear spaces

4.7.1 Countably Hilbert nuclear spaces

In this subsection we introduce countably Hilbert nuclear spaces which will be the natural environment
for the study of the stochastic evolution equations obtained from the martingale problem. We will begin
by recalling some basic definitions on these spaces. To this end, we follow the ideas of Kallianpur and
Perez-Abreu [10, 11] and Gel'fand and Vilenkin [6].

Let ® be a (real) linear space, and let | - ||, 7 € N be an increasing sequence of Hilbertian norms.
Define @, as the completion of ® with respect to | - ||,. Since for n < m
1l < 11 fllm for all f € @, (4.7.1)
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we have,
®,, C @, for all m > n.

Let

D)

o= ()0,

1

T

Then @, is a Fréchet space with respect to the metric

oo

Ny M =gl
p(fr9) =) 2 T (4.7.2)

r=1

and (®.., p) is called a countably Hilbert space.

A countably Hilbert space @, is called nuclear if for each n > 0, there exists m > n such that the
canonical injection 7, ,, : ®,, — @5, is Hilbert-Schmidst, i.e., if {f;};>1 is a complete orthonormal system
in ®,, we have

N7 < oo (4.7.3)
j=1

We now characterize the topologic dual ®/_ of the countably Hilbert nuclear space ®, in terms of
the topologic dual of the auxiliary spaces ®,,.
Let @/, be the dual (Hilbert) space of ®,,, and for ¢ € &/, let

[6ll—n = sup [8[f]l,

1 flln<1
where ¢[f] means the value of ¢ at f. Equation (4.7.1) implies that
@;L C (I){m for all m > n.

Let ®’_ be the topologic dual of ®,, with respect to the strong topology, which is given by the
complete system of neighborhoods of zero given by sets of the form, {¢ € ®._ : |[¢|lp < €}, where
lolls = sup{|o[f]| : f € B} and B is a bounded set in ®,. So,

@@:G@@
r=1

4.7.2 Stochastic differential equations

The aim of this subsection is to recall some results about existence and uniqueness of stochastic evolution
equations in nuclear spaces.

We denote by L£(Poo, Poo) (resp. L(PL, P’ )) the class of continuous linear operators from P, to
Do, (resp. @l to DL).

A family {S(¢) : t > 0} of the linear operators on @, is said to be a Cp 1-semigroup if the following
three conditions are satisfied:

L] S(tl)S(tg) = S(tl + tQ) for all t17t2 Z O, S(O) =1.
e The map t — S(t)f is Poo-continuous for each f € P.

e For each g > 0 there exist numbers M, > 0,0, > 0 and p > ¢ such that

1S()fllq < Mg e”**||fll, forall fe€ Ps, t>0.

Let A in £(®o, Poo) be infinitesimal generator of the semigroup {S(t) : t > 0} in L(Pwo, Poo). The
relations

oS f] = (S'(t))[f] forall t >0, f € Py and ¢ € D__;
olAf] = (A'¢)[f] forall fe Py and ¢ € P/ _;
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define the infinitesimal generator A’ in L(®._, ®’ ) of the semigroup {S’(¢) : t > 0} in L(D_, D ).

Let (X,U, P) be a complete probability space with a right continuous filtration (U;);>0, Uy containing
all the P-null sets of U, and M = (M,);>0 be a ®, -valued martingale with respect to U, i.e., for each
f € ®s, Mi[f] is a real-valued martingale with respect to Uz, t > 0. We are interested in results of
existence and uniqueness of the following ®/_-valued stochastic evolution equation:

dé-t == Alé-tdt + th, t> 0,

e . (4.7.4)

where 7 is a ®/_-valued random variable, and A is the infinitesimal generator of a Cy 1-semigroup on
D
We say that £ = (§;):>0 is a ®/_-solution of the stochastic evolution equation (4.7.4) if the following
conditions are satisfied:

o ¢ is @/ _-valued, progressively measurable, and U;-adapted;

e the following integral identity holds:

&lfl =11+ /Ot §s[Af]ds + M[f],

forall f e @&, t>0as..

It is proved in [11, Corollary 2.2] the following result on existence and uniqueness of solutions of the
stochastic differential equation (4.7.4):

Proposition 4.7.1. Assume the conditions below:
(H1) ~ is a P, -valued Uy-measurable random element such that, for some ro > 0, E|7|2,T0 < 005

MH2) M = (My)i>o is a P, -valued martingale such that My = 0 and, for each t > 0 and f €
©, E(M;[f])* < oo;

(H3) A is a continuous linear operator on ®o,, and is the infinitesimal generator of a Cop 1-semigroup
{S(t): t >0} on Pe.

Then the @, -valued homogeneous stochastic evolution equation (4.7.4) has a unique solution & = (&)i>0
given explicitly by the “evolution solution”:

& =5 (t)y + /O S'(t — 5)dM..

Remark 4.7.2. The statement E(M;[f])> < oo in condition 2 of Proposition 4.7.1 is satisfied if
E(M[f))* = tQ(f, f), where f € ®, and Q(-,-) is a positive definite continuous bilinear form on
P X .

We now state a proposition, whose proof can be found in Corollary 2.1 of [11], that gives a sufficient
condition for the solution & of the equation (4.7.4) be a Gaussian process.

Proposition 4.7.3. Assume v is a ®'_-valued Gaussian element independent of the ®’_-valued Gaussian
martingale with independent increments My. Then, the solution & = (&) of (4.7.4) is a . _-valued
Gaussian process.
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