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pelo aux́ılio financeiro.

Também agradeço a muitas outras pessoas que não cito neste agradecimentos, mais

com quem meu coração esta igualmente grato, a amizade que tem me oferecido com
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Resumo

Para cada par de ideais fracionários de um anel local em um ponto singular de uma

curva algébrica, geometricamente integral e definida sobre um corpo finito, há associada

uma serie de Poincaré em m variáveis, onde m é o número de ramos da singularidade

da curva. Esta serie codifica as cardinalidades de certos conjuntos finitos de ideais fra-

cionários e pode ser representada como uma integral no contexto da análise harmônica.

Além disso, também permite estudar funções zeta locais. Neste trabalho desenvolve-

mos métodos para computar estas series e estudamos o comportamento das mesmas

à respeito de mudança do corpo de constantes e de explosões do anel local. Como os

anéis que resultam após estas operações não são anéis locais, embora semi locais, nós

estendemos naturalmente a definição da serie de Poincaré multi-variáveis para anéis

semi-locais e mostramos a relação entre as duas teorias. Além disso, provamos no caso

semi-local algumas propriedades provadas no caso local. Neste trabalho, nós também

mostramos que quando o anel local é residualmente racional o semi-grupo associado

determina as series de Poincaré multi-variáveis. Em particular, para curvas algebroides

planas, esta serie permite associar ao anel local da curva uma serie em m variáveis, que

é um invariante completo da classe de equi-singularidade. Esta serie é também simi-

lar as series de Poincaré em varias variáveis associadas a germes de curvas algébricas

singulares complexas.

Palavras chaves: Series de Poincaré, funções zeta e singularidades de curvas sobre

corpos finitos.
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Introduction

In 1949, André Weil [31] formulated his now famous conjectures concerning the number

of solutions of polynomial equations over finite fields. These conjectures suggested a

deep connection between the arithmetic of algebraic varieties defined over finite fields

and the topology of algebraic varieties defined over the complex numbers. Weil was led

to his conjectures by consideration of the zeta functions of some special varieties. In

the zeta functions associated with algebraic curves over finite fields there are encoded

properties of arithmetic nature of the curves. In the non-singular case the theory

is well-known, and it culminates in the Hasse-Weil theorem about the Riemann hy-

pothesis for curves and in Deligne’s theorem about the Weil’s conjectures for higher

dimensional varieties. One of Weil’s major pieces of work was the proof of the fact that

his conjectures hold for curves, say the rationality and the functional equation of this

zeta function, and the analogue to the Riemann hypothesis. In 1973 Galkin published

Paper [14], which deals with a zeta function of orders in global fields that encodes the

number of ideals with given norms and is defined in the half-plane. His zeta-function

coincides with Schmidt’s zeta function in the case of a non-singular curve but it satis-

fies a functional equation only in Gorenstein case. In 1989, by slightly modifying the

zeta function introduced by Galkin, Green [15] obtained a new zeta function in terms

of the index of non-zero fractional ideals. Green’s zeta function satisfies a functional

equation, but it is not uniquely determined by the curve. Finally, in [26] Stöhr intro-

duced a zeta function of a local ring O of a possibly singular, complete, geometrically

irreducible algebraic curve X define over a finite field k = Fq of q elements with rational

function field K. This zeta function, which encodes the number of positive fractional

ideals (O-ideals) of given degrees, is defined in the half-plane {s ∈ C : < (s) > 0} by

the absolutely convergent Dirichlet series

ζ (O, s) :=
∑
d⊇O

# (d/O)−s , <(s) > 0

where the sum is taken over the O-ideals d that contain the local ring O. Moreover, this

zeta function coincides with the zeta function of Galkin in the Gorenstein case. It is a

rational function and always satisfies a functional equation. Stöhr also introduced and
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studied, for any non-zero fractional ideal a of the local ring O, the local zeta function

defined by the Dirichlet series

ζ (a, s) :=
∑
d⊇a

# (d/a)−s , <(s) > 0

where the sum is taken over the O-ideals d that contain a. By breaking up the set

of O-ideals d that contain a according to finitely many ideal classes, it is obtained a

partition of the series ζ (a, s) as a finite sum of the partial local zeta functions

ζ (a, b, s) :=
∑

d⊇a, d∼b

# (d/a)−s , <(s) > 0

where the sum is taken over all O-ideals d that contain a and that are equivalent to

b. These partial series only depend on the ideal classes [a] and [b]. And these partial

series can be written as power series Z (a, b, t) in t := q−s with integer coefficients,

which converge absolutely in the disk |t| < 1 (cf. [26]).

In a recent paper, Stöhr [27] introduced, for any local ring O of a curve X (complete,

geometrically irreducible, algebraic curve defined over a finite field k = Fq of q elements

with rational function field K), and any pair of O-ideal classes [a] and [b], the multi-

variable Poincaré series defined to be the multi-variable power series

P (a, b, t) :=
∑

ηn (a, b) tn ∈ Z[[t1, . . . , tm]]

whose coefficients are the cardinalities

ηn (a, b) := #{O-ideals d satisfying d ⊇ a, d ∼ b and d · Õ = a · p−n}

where tn := tn1
1 · · · tnm

m for each n := (n1, · · · , nm) ∈ Zm and m is the number of

branches centered at the curve singularity (cf. [27], Definition 2.1.) This series only

depends on the O-ideal classes [a] and [b] and it converges absolutely in the poly-disk

|t1| < 1, · · · , |tm| < 1. Moreover, it is a rational function

P (a, b, t1, · · · , tm) =
Λ(a, b, t1, · · · , tm)

(1− t1) · · · (1− tm)

where Λ(a, b; t1, . . . , tm) ∈ Z[t1, · · · , tm] is a polynomial of multi-degree ≤ b, where

b = (b1, · · · , bm) is the multi-exponent of the fractional ideal (b : Õ) : bÕ in the

integral closure Õ of O in K. The polynomial Λ(a, b; t1, . . . , tm) satisfies the following

functional equation

Λ(a, b, t1, · · · , tm) = [Ub:a : Ub]q
dim(b:a/(b:a):Õ)tb11 · · · tbm

m Λ(O, a · b∗, 1

qr1t1
, · · · ,

1

qrmtm
)
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where b∗ is the dual O-ideal of b, b : a is the quotient between the two O-ideals a and

b, and r1, · · · , rm are the degrees of the branches centered at the singularity (cf. [27],

Theorem 7.1.)

It is important to notice that the multi-variable Poincaré series P (a, b, t) can be

represented by an integral within the framework of harmonic analysis. The series

P (O,O, q−r1t1, · · · , q−rmtm) is, up to a constant factor, equal to the series Pg(t1, . . . , tm)

defined by Delgado and Moyano [11], which may be viewed as an analogue of a multi-

variable Poincaré series for complex algebraic curve singularities (cf. [27], Theorems

5.2 and 6.3.). Even more, the partial zeta function can be expressed in terms of the

Poincaré series as

Z (a, b, t) = tdim(aÕ/a)−dim(bÕ/b)P (a, b, tr1 , . . . , trm)

(cf. [27], Theorem 2.3). Thus, the multi-variable Poincaré series P (a, b, t) furnishes a

deeper discernment into the nature of local zeta functions.

The main objective of this thesis is to study the properties of the local zeta function

ζ (a, s) and the multi-variable Poincaré series P (a, b, t1, · · · , tm). One of our purposes

is to describe a procedure which is useful to determine the ideal classes of a local ring

O and to compute the Poincaré series P (a, b, t) for each pair of O-ideal classes [a] and

[b]. Moreover, we give some examples of multi-variable Poincaré series of some curves

where we show the behavior of them under constant field extensions.

In a natural way, we extend the definitions of zeta function, partial zeta function

and multi-variable Poincaré series to a semilocal ring of a curve X (possibly singular,

complete, geometrically irreducible algebraic curve X define over a finite field k = Fq

of q elements with rational function field K). Let S be a proper semilocal subring of

the function field K | k of a curve X. We associate to each S-ideal a, as well as to

each pair of S-ideal (non-zero fractional ideal of S) classes [a] and [b], the zeta function

ζS (a, s), the partial zeta function ZS (a, b, t) and the multi-variable Poincaré series

PS(a, b, t1, · · · , tm) ∈ Z[t1, . . . , tm] in m variables with integer coefficients (see 3.1, 3.2

and 29). Just as in the local case, the series PS(a, b, t1, · · · , tm) converges absolutely

in the unit poly-disk |t1| < 1, · · · , |tm| < 1, where m is the number of places lying over

S. We prove the link between the local and semilocal definitions by means of an Euler

product identity (see 33 and 35) that provides us a way to prove, for ZS (a, b, t) and

PS(a, b, t1, · · · , tm), some similar properties to those proved by Stöhr in [26] and [27].

The extended definitions for semilocal rings are important because they permit

us to study the behavior of the series ζ (a, s) , Z (a, b, t) and P (a, b, t1, · · · , tm) under

constant field extensions (see Section 4.3): if O is a local ring of the geometrically

integral algebraic curve defined over a field k = Fq, whose function field in one variable
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is K | k, and if k′ is a finite field extension of k, then k′ · K | k′ is also a function

field in one variable and k′ · O is a semilocal subring of k′ · K | k′, where k′ · O just

consists of all linear combination of elements of the local ring O with coefficients in

the field k′ (cf. [22] section 3). The extended definitions associated to semilocal rings

are also important because they permit us to study the behavior of the series ζ (O, s),

Z (a, b, t) , and P (a, b, t), attached to the local ring O of the curve X, with respect to

the blow-up of the local ring O, since the blow-up of a local ring O with respect to

its maximal ideal m is a semilocal ring Om (cf. [20] Chapter VIII). Furthermore, they

permit us to associate to a geometrically integral algebraic curve X defined over a finite

field Fq of q elements the multi-variable Poincaré series PS(S, S; t1, . . . , tm), where S is

a semilocal ring of the curve X which is contained in the semilocal ring defined as the

intersection of all the local rings corresponding to singular points of X.

We also observe that the mentioned definitions of zeta function, partial zeta function

and multi-variable Poincaré series associated to non-zero fractional ideals of a local ring

O of the irreducible algebraic curve X, can also be defined for regular fractional ideals

of a reduced local ring O of a possibly singular, complete, reduced algebraic curve X

define over a finite field k = Fq (see Section 5.1).

Let O be the local ring at a singular point of a geometrically integral algebraic

curve defined over a finite field k = Fq. We prove that, if b is an O-ideal such that

the ring b : b is a local ring, then the Poincaré series P (O, b, t) is congruent modulo

(q − 1)Z[[t1, · · · , tm]] with the series (t1−1)···(tm−1)
t1···tm−1

∑
n∈Zm

lengthb:b

(
b ∩ bpn/b ∩ bpn+1

)
tn,

which is a polynomial when m ≥ 2. Hence, in particular, if the local ring O correspond

to a rational point, then

P (O,O, t) ≡ (t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑

n∈Zm

dimk

(O ∩ pn/O ∩ pn+1
)
tn

modulo (q − 1)Z[[t1, · · · , tm]]. This establishes a link with the Poincaré series

PC(t1, ..., tm) defined by Campillo, Delgado and Gusein-Zade in [7], which is a series

attached to a germ (C, 0) ⊆ (C2, 0), and is equal to the Alexander polynomial of the

link C ∩ S3
ε ⊆ S3

ε for sufficiently small ε > 0.

We show that, if O is a residually rational local ring, then the multi-variable

Poincaré series P (O,O, t1, · · · , tm) depends only on the semigroup S (O) of O (see

37 and 4.3). Thus, if O is a residually rational local ring and the residue field k of O
is not too small, then we can associate to O ⊗k k the multi-variable rational function

P (O ⊗k k,O ⊗k k, T1, · · · , Tm) := P (O,O, T1, · · · , Tm) mod (q − 1)Z[[t1, · · · , tm]],

where T1, · · · , Tm are indeterminates. The rational function P (O⊗kk,O⊗kk, T1, · · · , Tm)

only depends on S (O) and it is a polynomial when m ≥ 2. A key ingredient is
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a result proved by Zuñiga in [36] (cf. Proposition 4.7, page 35). If O is a residu-

ally rational local ring, then there exists a unique finite field extension k0 | k such

that for each finite field extension l of k0 the semigroups S(O ⊗k k0) and S (O ⊗k l)

are the same and, hence, S (O ⊗k k0) = S
(O ⊗k k

)
. In virtue of this fact we may

assume that O is residually rational ring and S (O) = S
(O ⊗k k

)
. Thus, the series

P (O⊗kk,O⊗kk, T1, · · · , Tm) is well defined. We study, in particular, the multi-variable

Poincaré series P (O,O, t1, · · · , tm) of the reduced local ring O := Fq[[X, Y ]]/ (f(X,Y ))

of a plane algebroid curve totally defined over a finite field Fq. If the residue field of the

algebroid curve is not too small, P (O,O, t1, · · · , tm) becomes a complete invariant of

the equisingularity class of the algebroid curve O (cf. [30], [33]). Finally, we study a re-

lation between P (O⊗kk,O⊗kk, T1, · · · , Tm) and
∏

σ(1−T
mσ(f1)
1 · · ·Tmσ(fm)

m )#(Eσ\E0
σ)−2,

which is a series associated to the minimal embedded resolution of the algebroid curve

defined by the series f = f1 · · · fm, taken free from multiple factors. In this case,

D =
⋃

σ∈Γ Eσ is the exceptional divisor, Eo
σ ⊆ Eσ is the complement in Eσ of the

intersection with all other components of the total transform and mσ(f1), · · · ,mσ(fm)

are the multiplicities along Eσ of the liftings of f1, · · · , fm, respectively.

The organization of this Thesis and results is as follows.

In Chapter 1 we review the notion of complete, geometrically irreducible, algebraic

curves defined over a field as well as their main properties and local duality. We also

recall the definition and main properties of zeta functions and Stöhr’s Poincaré series

of local rings of algebraic curves defined over a finite field.

In Chapter 2 we give the definition and main properties of semilocal subrings of a

function field K | k of one variable with constant field k. In particular, the property

that, given a proper semilocal subring of a function field, it may be expressed as

intersection of a finite number of local rings, no two of which are contained in the same

valuation ring. Then, we prove that each fractional ideal of that semilocal ring may

be expressed as an intersection of fractional ideals of the several components of the

semilocal ring. We prove also that its degree may be expressed as sum of the degrees

of the several fractional ideal components. Furthermore, we study the connection

between some objects associated to non-zero fractional ideals of the semilocal ring and

the corresponding objects of the local rings of its decomposition. In the last part of

this chapter we prove some properties on semigroups.

In Chapter 3 we introduce the extended definitions of the multi-variable Poincaré

series PS(a, b, t1, · · · , tm), the zeta function ZS (a, t) and the partial local zeta function

ZS (a, b, t) , associated to each pair of S-ideal a and b of a semilocal ring S of a possibly

singular, complete, geometrically irreducible algebraic curve X defined over a finite field
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k = Fq of q elements with rational function field K. After this, we prove the Euler

product identity which gives the link between the local and semilocal theory. We finish

Chapter 3 by studying some properties of the multi-variable Poincaré series attached

to semilocal ring which are similar to that proved in [27].

In Chapter 4 we indicate a procedure which is useful to determine the ideal classes

of a local ring O and to compute the Poincaré series PO(a, b, t) for each pair of ideal

classes [a] and [b]. Moreover, we discuss basic examples of these objects that show the

behavior of them under constant field extensions. After this, we discuss the behavior

of the Multi-variable Poincaré series under constant field extensions.

In Chapter 5 we observe that the preceding theory about zeta function and multi-

variable Poincaré series can be extended to reduced curves and we indicate the ne-

cessary modifications in order to show, in this case, some mentioned results. Then

we study the multi-variable Poincaré series of a class of algebroid plane curves totally

defined over a finite field. We show that its multi-variable Poincaré series is a complete

invariant of its equisingularity class, in the sense of Zariski. We associate to a local

ring O the rational function P (O ⊗k k,O ⊗k k, T1, · · · , Tm). We finish Chapter 5 by

studying for algebroid plane curves a relation between P (O ⊗k k,O ⊗k k, T1, · · · , Tm)

and the series
∏

σ(1−T
mσ(f1)
1 · · ·Tmσ(fm)

m )#(Eσ\E0
σ)−2 (a similar relation to Formula 5.1,

which was proved by Campillo, Delgado and Gusein-Zade for germs of complex plane

curves). We prove it in some particular cases.

12



Chapter 1

Preliminaries

This chapter contains some preliminary definitions and results about singular curves,

zeta functions and Poincaré series needed in the sequel (cf. [25], [26], [27] and [22]).

1.1 Singular curves

In this section we present the basic facts about singular curves, for a treatment of them

we followed as main reference [25].

Let X be a complete, geometrically irreducible, algebraic curve defined over a field

k and let K be the rational functions on X. This means that K is the functions field in

one variable with the constant field k and that X is (the index set of) a set {OP}P∈X

of local k-algebras, properly contained in K with quotient field K, satisfying the two

properties:

i. For almost all P ∈ X, the local ring OP is discrete valuation ring.

ii. For each discrete valuation ring R of K | k there is an unique P ∈ X such that

OP ⊆ R.

(In the schemes language X has one more point, namely its generic point whose local

ring is the function field K.) Thus, by the first condition the number of singular points

of X is finite. By the second condition there exists a morphism π : X̃ −→ X where X̃

denote the set of all discrete valuation rings of K | k and it is called the non-singular

model of X (also named the normalizations of X over k.) For each P ∈ X the elements
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of the fiber π−1 (P ) are called the branches of X centered at P. By the extension

theorem of valuation theory, the morphism π : X̃ −→ X is surjective. Furthermore,

the number of branches centered at P is finite, because the branches centered at P are

precisely the zeros of each rational function vanishing at P .

By a divisor of X we mean a coherent fractional ideal sheaf or, equivalently, a

formal product

a =
∏
P∈X

aP

where for each P the P -component aP (i.e the stalk of a at P ) is a non-zero fractional

ideal of OP and aP = OP for almost all P . We say that aP is an OP -ideal. The set of

divisors of X is denoted by Div(X). A divisor a is called locally principal (or a Cartier

divisor) if each P -component aP is a principal OP -ideal.

Given two divisors a and b it is defined the product a · b and the quotient a : b by

setting:

(a · b)P = aP · bP

and

(a : b)P = aP : bP

where aP · bP is the OP -ideal generated by the products ab with a ∈ aP and b ∈ bP ,

and aP : bP = {z ∈ K : zbP ⊆ aP}

In Div(X), it is defined a partial order by: a ≥ b if and only if aP ⊇ bP for all

P ∈ X. Hence, a divisor a is called positive (or effective) if a ≥ O, where O :=
∏

P∈X

OP

is the structure divisor of X. It is common in the literature but it would be inconvenient

in our approach, to invert the ordering.

The degree of a divisor is uniquely defined by the properties:

i. deg(O) := 0 and

ii. deg (a)− deg (b) =
∑

P∈X

dim (aP /bP ) whenever a ≥ b.

For each non-zero rational function z ∈ K\{0} let div (z) be its principal divisor defined

by

div (z) :=
∏
P∈X

z−1OP .

For each a divisor of X let

L (a) :=
⋂

P∈X

aP = {z ∈ K : div (z) · a ≥ O}

14



be the k-vector space of global sections of a (Also denoted by H0 (X, a)) and let

Λ (a) :=
∏
P∈X

âP

be the paralleletope of a, where âP is the the completion of the P -component aP of

a divisor a. It is well known (cf. [22] and [25]) that L (a) = Λ (a) ∩ K and that

Λ (a) is contained in the k-algebra AK|k of adeles of K | k defined to be the restricted

product of the local fields K̂Q of the branches Q ∈ X̃. Moreover, the two dimensions

l (a) := dim L (a) and i (a) := dim(AK|k/Λ (a)+K) are finite. In this way, the Riemann-

Roch Theorem for functions field was generalized by Rosenlicht to curves with singu-

larities, that is, each divisor a of X satisfies l (a) = deg (a) + 1 − g + i (a) , where

g := i (O) is called the arithmetic genus of X. Thus, the degree of a only depends on

the linear equivalence class

{div (z) · a : z ∈ K, z 6= 0}
of the divisor a. By the Riemann-Roch theorem it is gotten the genus formula

g = g̃ +
∑
P∈X

δP

where g̃ is the geometric genus of X defined to be the genus of the non-singular model

X̃ (cf. [22] and [25]).

A (Weil) differential of X is defined as a k-linear functional AK|k −→ k vanishing

on Λ (a)+K for some divisor a of X. Since Λ(a : Õ) ⊆ Λ(a) ⊆ Λ(a · Õ) this notion only

depends on the non-singular model X̃. The k-vector space of all differentials vanishing

on Λ (a) is denoted by Ω (a) . Thus, i (a) = dim Ω (a) .

Let λ be a non-zero differential. Among the paralleletopes where λ vanishes there

is a largest one, say Λ (c) (cf. [25]). The divisor div (λ) := c is called the divisor of λ

on X. Observe that the divisor of λ on the non-singular model X̃ corresponds to the

divisor c : Õ of X which is the largest Õ-divisor smaller than or equal to c.

Since the space ΩK|k of differentials is one-dimensional vector apace over the func-

tion field K (cf. [21]), the linear equivalence class of the divisor c = div (λ) does not

depend on the choice of the non-zero differential λ, and it is called the canonical class.

It is deduced that Ω (a) = L (c : a) λ and, therefore, that i (a) = l (c : a) for each divisor

a of X. In particular it follows that

l (c) = i (O) = dim Ω (O) = g.

Furthermore, by applying the Riemann-Roch theorem,

deg (c) = 2g − 2
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The mentioned definitions and results are the main ingredient in the study of the

Dirichlet series

ζ (OX , s) :=
∑
a≥O

q−s deg(a)

where a ranges over the positive divisors of X. In the next section we present some

known facts about this important series.

We finish this section given some local definitions and properties of the curve X

which are the essential tools to study the local factors of the zeta function ζ (OX , s) as

well as the Poincaré series P (aP , bP , t). Let P be a point of X, let OP be the local ring

of X at P and let ÕP be the integral closure of OP in K. The degree of singularity of

X at P is defined as

δP := dim(ÕP /OP ).

Since K is a function field in one variable with constant field k, each integral k-algebra

A with quotient field K has finite k-codimension in its integral closure Ã (cf. [22]).

Therefore δP is an integer number. Thus, the degree of singularity of X, defined by

δ :=
∑
P∈X

δP ,

is well defined as well as the local degree function degP defined by the properties:

i. degP (OP ) := 0 and

ii. degP (aP )− degP (bP ) = dim (aP /bP ) whenever aP ⊇ bP .

The Local Duality Theorem was also generalized to singular curves (cf. [25]).

Theorem 1 (Local Duality) Let aP , bP be OP -ideals such that aP ⊇ bP . Then there

is an isomorphism of k-vector spaces

(cP : bP )/(cP : aP )
∼−→ homk (aP /bP , k) (1.1)

defined by c 7→ (a 7→ λP (ac)), where c = div (λ), λP is the P -component of the differ-

ential λ and λP is defined to be the composition homomorphism:

λP : K ↪→ K̂Q1 × · · · × K̂Qm ↪→ AK|k
λ−→ k.

It follows from the local duality that degP (aP )+degP (cP : aP ) does not depend on

the OP -ideal (fractional) aP and therefore

degP (cP : aP ) = degP (cP )− degP (aP ). (1.2)
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Thus, from local duality and from the previous equality, it was proved the following

reciprocity formula (cf. [25]):

Corollary 2 (Reciprocity formula) For each divisor a of X,

c : (c : a) = a (1.3)

In particular c : (c : O) = O, that is, c : c = O. Observe that each divisor c

satisfying l (c) ≥ g and deg (c) = 2g−2 is a canonical divisor. The divisor c is uniquely

determined up equivalence by Property 1.3, that is, a divisor d satisfies d : (d : a) = a

for each divisor a if and only if d = b · c for some locally principal divisor b i.e. for each

point P there is zP ∈ K\{0} such that dP = z−1
P cP (cf. [19]).

In the set of OP -ideals it is defined the following equivalence relation: for each

OP -ideals dP and bP , dP ∼ bP if and only if dP = z−1
P bP for some zP ∈ K\{0}. For

instance, dP is an ÕP -ideal if and only if dP ∼ ÕP . The ring bP : bP and its group of

units

UbP
:= {u ∈ K\{0} : bP = u−1bP},

which is a multiplicative subgroup of K\{0}, only depend on the OP -class [bP ].

By the reciprocity, the assignment

aP 7−→ a∗P := cP : aP

defines an anti-monotonous permutation between the OP -ideals and a∗P is called dual

ideal of aP . It satisfies the following properties (cf. [27]):

Proposition 3 Let aP and bP be OP -ideals. Then

1. dim(b∗P /a∗P ) = dim(aP /bP )

2. degP (a∗P )− deg (b∗P ) = degP (bP )− degP (aP )

3. a∗P : b∗P = bP : aP

4. (bP ∩ aP )∗ = a∗P + b∗P and (bP + aP )∗ = a∗P ∩ b∗P

5. (aP · b∗P )∗ = bP : aP and (aP : bP )∗ = b∗P · aP .

In particular, if aP is an ÕP -ideal say aP = pn1
1 · · · pnm

m then a∗P = Õ∗
P : aP = a−1

P ·Õ∗
P

i.e. (pn1
1 · · · · · pnm

m )∗ =
(
p−n1

1 · · · · · p−nm
m

) · Õ∗
P .
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Proposition 4 Let bP be an OP -ideal. Then

1. (bP · ÕP )∗ = b∗P : ÕP and (bP : ÕP )∗ = b∗P · ÕP

2. b∗P : b∗P = bP : bP , Ub∗P = UbP
and (b∗P : ÕP ) : (b∗P · ÕP ) = (bP : ÕP ) : (bP · ÕP ).

This means that the ring bP : bP , the group UbP
and the ÕP -ideal (bP : ÕP ) :

(bP · ÕP ), which only depend on the ideal class [bP ], remain unchanged if bP is

replaced by the dual ideal b∗P .

3. dim(b∗P · ÕP /b∗P ) = dim(bP /bP : ÕP ) and dim(b∗P /b∗P : ÕP ) = dim(bP · ÕP /bP ).

This means that the dimensions dim(bP · ÕP /bP ) and dim(bP /bP : ÕP ), which

only depend on the ideal class [bP ], are interchanged if bP is replaced by the dual

ideal b∗P .

By using the previous proposition, it follows that the sum and the product of

dim((bP · ÕP )/bP ) and dim(bP /(bP : ÕP )) remain unchanged if bP is replaced by

b∗P .

The OP -ideal fP := OP : ÕP is called the conductor ideal. Observe that fP is an

ÕP -ideal too. The one-dimensional local ring OP is called Gorenstein ring if

dim (OP /fP ) = δP . An algebraic curve X is called a Gorenstein curve if all its lo-

cal rings are Gorenstein rings. It is well known the following result due to Rosenlicht

(cf. [22] and [25]). The curve X is a Gorenstein curve if and only if its canonical

divisors are locally principal.

Let Q1, · · · , Qm ∈ X̃ be the branches centered at P and let OQ1 , · · · ,OQm be the

corresponding local rings at these points. Since the function field of X and X̃ are the

same and X̃ is a non-singular curve, the local rings OQ1 , · · · ,OQm are precisely the

valuation rings of K | k over OP . The integral closure of OP is ÕP = OQ1 ∩ · · · ∩ OQm

and ÕP is a semi-local principal ideal domain whose maximal ideals, say p1, · · · , pm,

correspond bijectively to the branches Q1, · · · , Qm, that is, for each i = 1, · · · ,m

pi = {z ∈ ÕP : vi(z) ≥ 1}

where vi = ordQi
is the corresponding valuation of the function field K | k. Thus the

divisors of the non-singular model X̃ correspond bijectively to the divisors of X whose

P -components are non-zero fractional ideals of ÕP too. The completion of the local

ring OP is denoted by ÔP and the completion of the semilocal ring ÕP with respect

to its Jacobson ideal is denoted by
̂̃OP . Since OP has finite k-codimension in ÕP , that

is, δP < ∞, by the Artin Rees Lemma the topology of OP is induced by the topology
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of ÕP , and so ÔP is a closed subring of
̂̃OP of k-codimension δP . By applying the

Chinese remainder theorem to the residue ring ÕP and passing to the projective limit

is obtained ̂̃OP = ÔQ1 × · · · × ÔQm

which is contained in the product K̂Q1 × · · · × K̂Qm .

We let ÔPPj
(j = 1, · · · ,m) denote the completion of the local ring ÔP with respect

to its minimal prime Pj and we let ψ : ÔP −→ ÔPP1×· · ·×ÔPPm denote the diagonal

homomorphism. Since ÔP is a reduced ring, ψ is injective. We have the following

commutative diagram:

̂̃OP −→ ÔQ1 × · · · × ÔQm

↑ ↑
ÔP −→ ÔPP1 × · · · × ÔPPm

By the Cohen ’s structure theorem for regular complete local rings each ÔQj
is isomor-

phic to kj[[tj]], where kj = ÔQj
/p̂j is the residue field of ÔQj

,that is, each kj = ÕP /pj.

Thus ̂̃OP 'ÔQ1 × · · · × ÔQm

'k1[[t1]]× · · · × km[[tm]].

This isomorphism is an important tool to determine the ideal classes of a local ring O
and to compute the mentioned series.

1.2 Zeta functions

Let X be a complete, geometrically irreducible, algebraic curve defined over a finite

field k = Fq of q elements and let K be the rational functions on X. The zeta-function

of X is defined to be the Euler product

ζ (X, s) :=
∏
P∈X

1

1− q−s deg(P )

when the real part < (s) of s ∈ C is larger than 1. The zeta-function ζ (X, s) is important

in algebraic geometry because it satisfies the well known identity

ζ (X, s) = exp

( ∞∑
n=1

1

n
Nnt

n

)
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where Nn := #X (Fqn) is the number of rational points over the extension field Fqn of

Fq of degree n and t := q−s (see [23]). The zeta-function ζ (X, s), except for possible

new zeros on the imaginary axis < (s) = 0, has the same zeros as the zeta-function

ζ(X̃, s) of the non-singular model of X. By the Riemann hypothesis for non-singular

curves, ζ(X̃, s) may be written

ζ(X̃, s) =
L(X̃, t)

(1− t) (1− qt)

where L(X̃, t) is an polynomial with integer coefficients in t = q−s of degree 2g̃ whose

zeros are on the circle |t| = q−1/2 (or equivalently on the line < (s) = 1
2

in the s-plane)

and it satisfies the global functional equation

L(X̃, t) = qg̃t2g̃L(X̃, 1/qt).

Thus

ζ (X, s) =
L (X, t)

(1− t) (1− qt)
,

where

L (X, t) := L(X̃, t) ·
∏

P∈Xsing

∏
Q|P

(
1− tdeg(Q)

)

(1− tdeg(P ))
,

P ranges over the singular points of X and the symbol “Q | P” indicate that Q ranges

over the branches centered at P. Since deg (P ) divide deg (Q) whenever Q is a branch

centered at P, L (X, t) is a polynomial in t = q−s with integer coefficients (see [25]).

The zeta function ζ (X, s) is compared with the Dirichlet series

ζ (OX , s) :=
∑

a≥OX

q−s deg(a)

where a ranges over the positive divisors of X, and it satisfies the following functional

equation: the function qs(g−1)ζ (OX , s) is invariant when s is replaced by 1− s.

The Dirichlet series ζ (OX , s) may be expanded as

ζ (OX , s) =
∏
P∈X

ζ (OP , s) . (1.4)

Formula 1.4 establishes the link between the local and the global theory.

Since ζ (OP , s) = 1
1−q−s deg(P ) whenever P is a non-singular point of the curve X,

it follows that the zeta-function ζ (X, s) coincide with the Dirichlet series ζ (OX , s)

whenever X is a non-singular curve. In particular, the zeta function ζ(X̃, s) and the

Dirichlet series ζ(OX̃ , s) of the non-singular model of the curve X are the same.
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Let OP be a local ring of the curve X. Let us omit the subindex P , so that we

write O instead of OP . For each O-ideal a the Dirichlet series ζ (a, s) , with < (s) > 0,

was introduced by Stöhr modifying the definitions of Galkin and Green in order to

obtain a zeta function canonically associated to the local ring O which always satisfies

the functional equations and which in the Gorenstein case coincides with Galkin ’s

zeta functions. By using the assignment d 7−→ c : d, which defines a bijection between

the set of O-ideals that contain a and the set of O-ideals that are contained in a, it

is obtained the connection between the local zeta function ζ (a, s) and Green’s zeta

function (cf. [14], [15] and [26]).

Let a be an O-ideal. For each O-ideal d containing a,

# (d/a) = qdimk(d/a).

Thus the series ζ (a, s) writes as follows as power series in t = q−s with integer coeffi-

cients

Z (a, t) :=
∑
d⊇a

tdimk(d/a)

where the sum is taken over the O-ideals d containing a. The series Z (a, t) encodes

the number of O-ideals that admit a as subspace of given codimension. Moreover the

series Z (O, t) is a rational function

Z (O, t) =
L(O, t)

m∏
i=1

(1− tri)

where L(O, t) ∈ Z[t] is a polynomial with integer coefficient of degree 2δ in t, which

satisfies the following functional equation

t−δL(O, t) =

(
1

qt

)−δ

L(O,
1

qt
).

(cf. [26], Theorem 3.10.)

It is well known that the integral closure Õ of O in K is a principal ideal domain,

then each O-ideal d is equivalent to some one O-ideal b satisfying b ·Õ = Õ and, hence,

O : Õ ⊆ b ⊆ Õ. This property permits to decompose the series Z (a, t) in the following

way:

Z (a, t) =
∑

b·Õ=Õ

( ∑

d⊇a, d∼b

tdimk(d/a)

)

where b varies over the finitely many O-ideals satisfying b · Õ = Õ and d varies over

O-ideals that contain a and are equivalent to b. On the other hand, for each pair of
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O-ideals a and b the partial zeta-function ζ (a, b, s) , with < (s) > 0, may be written

as a power series in t = q−s with integer coefficients as follows:

Z (a, b, t) :=
∑

d⊇a, d∼b

tdimk(d/a), |t| < 1

where the sum is taken over all O-ideals that contain a and are equivalent to b. There-

fore,

Z (a, t) =
∑

[b]

Z (a, b, t)

where b ranges in (a complete system of representatives of) the ideal class semigroup

of O.

1.3 Poincaré series

In this section we present the main facts about the multi-variable Poincaré series

P (a, b, t). We use as reference [27].

Let O be a local ring of a geometrically irreducible algebraic curve defined over a

finite field k = Fq with rational function field K, and let a and b be O-ideals. The

maximal ideal, say p1, · · · , pm, of the integral closure Õ ofO in K correspond bijectively

to the valuations v1 = ordp1 , · · · , vm = ordpm in the function field K | k. Each Õ-ideal

is just of the form

pn := pn1
1 · · · pnm

m , where n := (n1, · · · , nm) ∈ Zm.

It is defined its multi-exponent by v (pn) := n. And for each non-zero rational function

z ∈ K\{0} is abbreviated

v (z) := v(zÕ) = (v1 (z) , · · · , vm (z)) ∈ Zm.

Definition 5 The multi-variable Poincaré series associated to a pair of O-ideal classes

[a] and [b] is defined to be the multi-variable power series

P (a, b, t) :=
∑

ηn (a, b) tn ∈ Z[[t1, . . . , tm]],

whose coefficients are the cardinalities

ηn (a, b) := #{O-ideals d satisfying d ⊇ a, d ∼ b and d · Õ = a · p−n}
where tn := tn1

1 · · · tnm
m for each n := (n1, · · · , nm) ∈ Zm (cf. [27] Definition 2.1).
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It was proved that this cardinalities are really finite an that the convergence domain

of this multi-variable series is the unit poly-disk (see [27] Theorem 3.2 (ii) and (iii)).

This series only depends on the O-ideal classes [a] and [b]. Moreover, it may be

expressed in the form

P (a, b, t) =
∑

d⊃a,d∼b

tv(a·Õ)−v(d·Õ) ∈ Z[[t1, . . . , tm]]

where the sum is taken over all O-ideals d that contain a and are equivalent to b.

Given that each Õ-ideal is equivalent to the O-ideal Õ and that the Õ-ideals con-

taining a are precisely of the form a · p−n, where n = (n1, · · · , nm) ∈ Nm and N stands

for the additive semi-group of non-negative integers, it follows that, if b is both O-ideal

and Õ-ideal, then

P (a, b, t) =
∑

(n1,··· ,nm)∈Nm

tn1
1 · · · tnm

m =
1

(1− t1) · · · (1− tm)
for any O-ideal a.

Theorem 6 The following identity holds;

Z (a, b, t) = tdimk(a·Õ/a)−dimk(b·Õ/b)P (a, b, tr1 , . . . , trm)

where r1 := dimk(Õ/p1), · · · , rm := dimk(Õ/pm) are the degrees of the residue fields of

Õ over the constant field k.

This means that the partial local-zeta function may be expressed in terms of the

multi-variable Poincaré series. The previous theorem was proved by using the following

property

Lemma 7 For each non-zero rational function z ∈ K\{0} and for each O-ideal a,

deg (a)− deg (za) = r · v (z) =
m∑

i=1

rivi (z) .

In particular,

deg (zO) = −r · v (z) .

In this case, r · n :=
m∑

i=1

rini for each n = (n1, · · · , nm) ∈ Zm.

For each O-ideal b was defined the vector with integer coordenates

b := v((b : Õ) : b · Õ),
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the set

S (b) := {v (z)− v(b · Õ) : z ∈ b\{0}}
and

bn = {z ∈ b : v (z) = n}, for each integer vector n ∈ Zm.

Both the vector b and the set S (b) only depend on the ideal class [b]. Moreover, they

satisfy the following properties:

b+Nm ⊆ S (b) ⊆ Nm

and

S (O) + S (b) ⊆ S (b) .

In particular, S (O) is a semigroup intermediate between f+Nm and Nm. It is called

the semi-group associated to the local ring O. Since

(b : Õ) : b = (b : Õ) : b · Õ = (b : Õ) · (b · Õ)−1

and

f ⊆ (b : Õ) : b · Õ ⊆ Õ,

where f := O : Õ is the conductor ideal of O in its integral closure Õ (see [27] Lemma

3.1), it follows that

b := v((b : Õ) : b · Õ) = v(b : Õ)− v(b · Õ)

and

0 ≤ b ≤ f := v (f)

where “≤” stands for the natural partial ordering of the Cartesian product Zm. Thus,

if b · Õ = Õ then (b : Õ) : b = b : Õ, f ⊆ b ⊆ Õ, b = v(b : Õ) and, hence, b is the

smallest vector in the partial ordering of Zm such that pb ⊆ b.

The vector b and the set S (b) are important because they provide important in-

formations about the coefficients of the multi-variable Poincaré series (see [27]).

Theorem 8 The coefficients of the Poincaré series P (a, b, t) :=
∑

ηn (a, b) tn satis-

fies:

1. ηn (a, b) =
#((b:a)j/UO)

[Ub:UO]
where j = n− v(a · Õ) + v(b · Õ) for each n ∈Zm
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2. ηn (a, b) > 0 if and only if n ∈S (b)

3. 0 ≤ ηn (a, b) ≤ [UÕ : Ub] for each n ∈Zm

4. b is the smallest vector in the partial ordering of Nm with the following property:

if n ≥ b then ηn (a, b) = [UÕ : Ub].

The multi-variable Poincaré series P (a, b, t) can be represented by an integral within

the framework of harmonic analysis as follows (see [27]):

LetR :=
∏m

i=1 K̂vi
be the locally compact total ring of fractions of the completion Ô

of the local ring O, and let UR :=
∏m

i=1 K̂∗
vi

be its group of units. The homomorphism

v :K∗ −→ Zm extends naturally to the group homomorphism v :UR −→ Zm that maps

each unity u := (u1, · · · , um) in UR to the integer vector v(u) = (v̂1 (u1) , · · · , v̂m (um))

in Zm. Moreover, there exists a Haar measure µ̂ on the additive group of the locally

compact Fq-algebra R, normalized so that µ̂S(Ô) = 1. Thus,

Theorem 9 P (a, b, t) = q%

[Ub:US ](q%−1)

∫
(b̂:â)∩UR

qr·v(z)tv(z)dµ̂(z) in the unit poly-disk

|t1| < 1, · · · , |tm| < 1, where % := dimk(O/m) is the degree of the residue field of

O over the constant field k.

It was also proved in [27] that:

Theorem 10 P (a, b, t) is a rational function

P (a, b, t1, · · · , tm) =
Λ(a, b, t1, · · · , tm)

(1− t1) · · · (1− tm)
,

where Λ(a, b; t1, . . . , tm) ∈ Z[t1, · · · , tm] is a polynomial of multi-degree ≤ b, where

b = (b1, · · · , bm) is the multi-exponent of the fractional ideal (b : Õ) : bÕ in the

integral closure Õ of O in K, which satisfies a functional equations

Λ(a, b, t1, · · · , tm) = [Ub:a : Ub]q
dim(b:a/(b:a):Õ)tb11 · · · tbm

m Λ(O, a · b∗, 1

qr1t1
, · · · ,

1

qrmtm
),

where b∗ is the dual O-ideal of b.

Furthermore, the multi-variable Poincaré series can be expressed in the following

form:
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Theorem 11

P (O, b, t) =
qδ−deg(bÕ)

[Ub : UO] (1− q−%)

m∏
i=1

(qriti − 1)

q|r|t1 · · · tm − 1

∑

n∈Zm

qr·n(qdeg(b∩bpn) − qdeg(b∩bpn+1))tn.

The previous identity is useful because it permit us to view the multi-variable

Poincaré series as an analogue of a formula for Poincaré series of germs of complex

curves, which was introduced by Campillo, Delgado and Gusein-Zade in [7].
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Chapter 2

Semilocal rings and fractional ideals

The intersection of local rings of points on a singular curve is a semilocal ring; in this

chapter we study this class of rings. After giving some results on semilocal rings in

section 1, our main interest in section 2 is the decomposition of fractional ideals of

a semilocal ring as intersection of fractional ideals of its several components. We use

this decomposition for getting some results, which shall play a decisive role in the next

chapter to extend to semilocal rings of a singular curve the definitions of zeta functions

and multi-variable Poincaré series associated to local rings of a singular curve.

2.1 Semilocal rings

In this section we present the basic facts about semilocal subrings of a function field,

and we use as main reference the Rosenlicht’s paper [22].

A Noetherian ring is said to be a semilocal ring if it contains precisely only a finite

number of maximal ideals. Let K | k be a function field of one variable with constant

field k and let R be a subring of K. The ring R is called a subring of K | k if R contains

the field k and the quotient field of R is K. We say that a is an R-ideal of K | k if a

is a non-zero fractional ideal of R.

The next theorem gives a characterization of semilocal subrings of a function field

of one variable. It contains some equivalent properties which were proved in [22]. We

add properties 4 and 5, which will be useful for us in this work.

Theorem 12 Let K | k be a function field in one variable with constant field k and
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let S be a subring of K | k. The following properties are equivalent:

1. S is a semilocal ring.

2. There exist x, y1, · · · , yr in S such that x is not constant and S is the set of

of elements of the form F (x, y1, · · · , yr) /G (x) where F and G are polynomials

in k[T0, T1, · · · , Tr] and k[T0], respectively, with coefficients in k and such that

G (0) 6= 0.

3. There exist valuations v1, · · · , vm of the function field K | k and an integer N

such that S contains {z ∈ K : vi (z) ≥ N, 1 ≤ i ≤ m}.

4. There exist valuations v1, · · · , vm of the function field K | k and integers n1, · · · , nm

such that S contains {z ∈ K : vi (z) ≥ ni, 1 ≤ i ≤ m}.

5. There exist valuations v1, · · · , vm of the function field K | k and integers f1, · · · , fm

such that

(S : S̃) = {z ∈ K : vi (z) ≥ fi, 1 ≤ i ≤ m},
where (S : S̃) is the conductor ideal of S in its integral closure S̃.

6. S is contained only in a finite number of valuation rings of the function field

K | k.

Proof. For the proof of (1) =⇒ (2) , (2) =⇒ (3) , and (6) =⇒ (1) see [22] Theorem

2.

(3) =⇒ (4) Let ni = N for each i = 1, · · · ,m. Then, by (3) , the ring S contains

the set {z ∈ K : vi (z) ≥ ni, 1 ≤ i ≤ m}.

(4) =⇒ (5) Observe that, if v is a valuation of K | k distinct from v1, · · · , vm then,

by the approximation theorem, there exists z ∈ K such that v (z) < 0 and vi (z) ≥ ni

for each i = 1, · · · ,m, and hence z /∈ Ov and z ∈ S. Thus any valuation of K | k

whose valuation ring contains the ring S is contained in v1, · · · , vm. On the other hand,

if the ring S is not contained in the valuation ring Ovm then there exists z1 ∈ S with

vm (z1) < 0. By the approximation theorem there exists z2 ∈ K such that vm (z2) = nm

and vi (z2) is very large for each i = 1, · · · , m − 1, so that z2 ∈ S and vi (z
nm
1 z2) > 0

for each i = 1, · · · ,m − 1. Setting y := znm
1 z2 + 1 we have y ∈ S, vi (y) = 0 for

each i = 1, · · · ,m − 1 and vm (y) ≤ −nm. Then, if z ∈ K and vi (z) ≥ ni for each

i = 1, · · · ,m − 1, we have zy−n ∈ S for every sufficiently large integer n such that

vm (zy−n) ≥ nm. Hence z ∈ S. Thus, if the valuation ring Ovm does not contain the

ring S, then S contains the set {z ∈ K : vi (z) ≥ ni, 1 ≤ i ≤ m− 1}. Therefore we can
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assume that the valuations v1, · · · , vm are precisely those whose valuation rings contain

the ring S. Hence S̃ = ∩m
i=1Ovi

. Now, we set (f1, · · · , fm) to be the smallest vector in

the partial ordering of Zm such that S contains the set {z ∈ K : vi (z) ≥ fi, 1 ≤ i ≤ m}.
Since zS̃ = {y ∈ K : vi (y) ≥ vi (z) , 1 ≤ i ≤ m} for any z ∈ K\{0}, we conclude that

z ∈ (S : S̃) i.e. zS̃ ⊆ S if and only if vi (z) ≥ fi, 1 ≤ i ≤ m, proving (5) .

(5) =⇒ (6) If v is a valuation of K | k distinct from v1, · · · , vm then, by the

approximation theorem, there exists z ∈ K such that v (z) < 0 and vi (z) ≥ fi for each

i = 1, · · · ,m, that is, z ∈ (S : S̃) ⊆ S and z /∈ Ov. Thus, the ring S is only contained

in the valuation rings corresponding to the valuations v1, · · · , vm.

Let S be a semilocal subring of a function field K | k. From (5) , in Theorem 12, it

follows that there exist valuations v1, · · · , vm of the function field K | k and integers

f1, · · · , fm such that

(S : S̃) = {z ∈ K : vi (z) ≥ fi, 1 ≤ i ≤ m}.

The valuations v1, · · · , vm are precisely those valuations of K | k whose valuation rings

contain S.

The next known corollary is consequence of the previous theorem:

Corollary 13 Let S1 and S2 be subrings of the function field K | k.

1. If S1 ⊆ S2 and S1 is semilocal, then S2 is semilocal.

2. If S1 and S2 are semilocal then S1 ∩ S2 is semilocal.

Proof. Each valuation ring of K | k containing S2 contains the semilocal ring S1,

which is contained in only a finite number of valuation rings of K | k, and hence S2 is

semilocal.

The second sentence will follow from the fact that the ring S1 ∩ S2 contains the

intersection (S1 : S̃1) ∩ (S2 : S̃2). Since the semilocal rings S1 and S2 satisfy Property

(5) of Theorem 12, the ring S1 ∩S2 also satisfies Property (4) of that theorem. On the

other hand, by the approximation theorem, we can choose a non zero rational function

y in (S1 : S̃1) ∩ (S2 : S̃2) and, hence, y is contained in S1 ∩ S2. Then every rational

function z in K may be expressed as the quotient z = zyn

yn , for every sufficiently large

integer n, so that zyn−1 ∈ S̃1 ∩ S̃2 and, hence, zyn = (zyn−1) y ∈ S1 ∩ S2. Thus K

is the quotient field of S1 ∩ S2. Therefore we have proved that S1 ∩ S2 is a semilocal
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subring of K | k and the valuation rings of the function field K | k containing S1 ∩ S2

are precisely those containing S1 or S2.

Note that, by the first part of the preceding corollary, S1 and S2 are semilocal

subrings of K | k if and only if S1 ∩ S2 is a semilocal subring of K | k.

Theorem 14 Let S be a semilocal subring of the function field K | k with S 6= K.

Then S may be expressed, in one and only one way, as the intersection of a finite

number of local subrings of K | k such that there do not exist two of them which are

contained in the same valuation ring of K | k.

This theorem was proved in [22] using the following lemma (see [22] Theorem 3)

Lemma 15 Let S1 and S2 be semilocal subrings of the function field K | k such that

S1 and S2 are not contained in the same valuation ring and S1 ∩S2 is contained in the

local ring O. Then S1 ⊆ O or S2 ⊆ O.

The preceding features have a geometric interpretation (see [22] Theorem 5). In-

deed, let S be a semilocal subring of the function field K | k. By Theorem 12, there

exist x, y1, · · · , yr in S such that x is not constant and S is the totality of elements of

the form F (x, y1, · · · , yr) /G (x) , where F and G are polynomials in k[T0, T1, · · · , Tr]

with coefficients in k and G (0) 6= 0. Thus, the curve X whose non-homogeneus general

point over k is (x, y1, · · · , yr) will have K as function field. The semilocal ring S is then

the localization of the ring k[x, y1, · · · , yr] respect to the multiplicative closed subset

U = {G (x) ∈ k[x, y1, · · · , yr] : G (T0) ∈ k[T0], G (0) 6= 0}. Then, maximal ideals of

the semilocal ring S contract in k[x, y1, · · · , yr] to maximal ideals that do not intersect

the closed subset U . Indeed, let P1, · · · , Ps be all the points of X which are at finite

distance and for which x = 0. Then P1, · · · , Ps are algebraic over k and form a set that

is closed under conjugation over k. Let OX,Pi
be the local ring of Pi (i = 1, · · · , s).

Since S is the totality of elements of the form F (x, y1, · · · , yr) /G (x) where F and

G are polynomials in k[T0, T1, · · · , Tr] with coefficients in k and G (0) 6= 0, we have

S ⊆ OX,P1∩· · ·∩OX,Ps . But, every maximal ideal in S must be a prime ideal of the ideal

Sx, generated by x, so that any quotient ring of S with respect to a maximal ideal of

S is some OX,Pi
, for some i = 1, · · · , s. Thus S = Sm1 ∩· · ·∩Sms = OX,P1 ∩· · ·∩OX,Ps ,

where m1, · · · ,ms are the maximal ideals of S.

Therefore, if O1, · · · ,Os are local subrings of the function field K | k, no two of

which are contained in the same valuation ring of K | k, then the ring S =: O1∩· · ·∩Os
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is a semilocal subring of K | k and O1, · · · ,Os are local rings of some curve X over k

whose rational function field is K. Conversely, given a geometrically integral algebraic

curve X defined over a field k with rational function K, we may define a semilocal

subring of its function field K | k to be the intersection S of finite local rings of the

curve X. In particular, the intersection S of the local rings of the singular points of

the curve X is a semilocal subring of K | k.

2.2 Decomposition of S-ideals

Given a proper semilocal subring of a function field of one variable, it may be expressed

as intersection of a finite number of local rings, no two of which are contained in the

same valuation ring. In this section we prove that each fractional ideal of that semilocal

ring may be expressed as intersection of fractional ideals of the several components of

the semilocal ring. We also prove that its degree may be expressed as the sum of the

degrees of the several fractional ideal components. Furthermore, we study the connec-

tion between some objects associated to non-zero fractional ideals of the semilocal ring

and the corresponding objects of its decomposition.

Let S be a semilocal subring of a function field K | k, with S 6= K, whose expression

as intersection of local rings given by Theorem 14 is S = O1∩· · ·∩Os. Given that S is

a semilocal ring there exists only a finite number of valuations of K | k. Let v1, · · · , vm

be all the valuations of K | k whose corresponding valuation rings contain S. Then the

integral closure of S is S̃ = Ov1 ∩ · · · ∩ Ovm . Hence S̃ is a semilocal principal ideal

domain and, from Theorem 14, it follows that the maximal ideals of it, say p1, · · · , pm,

correspond bijectively to the valuations v1, · · · , vm and S̃pi
= Ovi

for i = 1, · · · ,m.

Thus S̃ is a Dedekind domain and each S̃-ideal of K | k is just of the form

pn := pn1
1 · · · pnm

m where n := (n1, · · · , nm) ∈ Zm.

As in [27], we defined its multi-exponent by v (pn) := n. We abbreviate

v (z) := v(zS̃) = (v1 (z) , · · · , vm (z)) ∈ Zm

for each non-zero rational function z ∈ K∗ and we denote by rj := dimk(S̃/pj) the

degree of the residue field of pj over the constant field k for j = 1, · · · ,m. Thus, by

the Chinese remainder theorem,

dimk(S̃/pn) = r · n :=
m∑

j=1

rjnj, for each n := (n1, · · · , nm) ∈ Nm.

31



The degree degS (a) of an S-ideal a is defined by the properties:

i. degS (S) := 0

ii. dimk (a/b) = degS (a)− degS (b) whenever a ⊇ b.

Let

δS := degS(S̃) = dimk(S̃/S)

be the singularity degree of the semilocal ring S. Then

degS (pn) = δS − r · n, for each integer vector n ∈ Zm.

From (5) in Theorem 12, it follows that there exist integers f1, · · · , fm such that the

conductor ideal f := (S : S̃) is

f = {z ∈ K : vi (z) ≥ fi, 1 ≤ i ≤ m} = pf1

1 · · · pfm
m = pf

where f := (f1, · · · , fm) ∈ Zm.

We observe that the multi-exponent and the degree of an S̃-ideal pn may be ex-

pressed in terms of those of the integral closure of its local rings in the decomposition

given by Theorem 14. Indeed, if vi1, · · · , vimi
are all the valuations of K | k whose val-

uation rings contain Oi for i = 1, · · · , s, then the valuations vij, 1 ≤ i ≤ s, 1 ≤ j ≤ mi,

are precisely the valuations of K | k whose valuation rings contain S. So the integral

closure of S is S̃ = ∩Ovij
= Õ1 ∩ · · · ∩ Õs . Its maximal ideals , say pij 1 ≤ i ≤ s,

1 ≤ j ≤ mi, correspond bijectively to the valuations vij 1 ≤ i ≤ s, 1 ≤ j ≤ mi and

S̃pij
= Ovij

1 ≤ i ≤ s, 1 ≤ j ≤ mi. Thus each S̃-ideal of K | k may be expressed in

terms of those of the several components as

pn := Pn1
1 · · ·Pns

s

where Pni
i := pni1

i1 · · · pnimi
im , ni := (ni1, · · · , nimi

) ∈ Zmi , 1 ≤ i ≤ s, and

n := (n1, · · · ,ns) ∈ Zm1 × · · · × Zms . Its multi-exponent may be expressed by

v (pn) = (v1 (pn1
1 ) , · · · ,vs (pns

s ))

where pni
i := Pni

i Õi, vi (p
ni
i ) := ni 1 ≤ i ≤ s, and for each non-zero rational function

z ∈ K∗,
v (z) := v(zS̃) = (v1 (z) , · · · ,vs (z)) ∈ Zm1 × · · · × Zms

with vi (z) = (vi1 (z) , · · · , vimi
(z)) ∈ Zmi for i = 1, · · · , s. Therefore,

dimk(S̃/pn) =
s∑

i=1

dimk(Õi/p
ni
i ) =

s∑
i=1

ri · ni=
s∑

i=1

mi∑
j=1

rijnij
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where rij := dimk(S̃/pij) = dimk(Õi/pijÕi), 1 ≤ i ≤ s, 1 ≤ j ≤ mi.

The conductor ideal of S in S̃ may be expressed in terms of those of its components

as f = Pf1
1 · · ·Pfs

s , where Pfi
i Õi = pfi1

i1 · · · p
fimi
imi

Õi = (Oi : Õi) is the conductor ideal of

Oi in Õi and fi := (fi1, · · · , fimi
) ∈ Zmi for each i = 1, · · · , s.

Lemma 16 Let S1 and S2 be semilocal subrings of the function field K | k such that

S1 and S2 are not contained in the same valuation ring. Then

dimk

(
a1 ∩ a2

b1 ∩ b2

)
= dimk

(
a1

b1

)
+ dimk

(
a2

b2

)
,

where ai and bi are Si-ideals such that bi ⊆ ai for i = 1, 2.

Proof. We have

dimk

(
a1 ∩ a2

b1 ∩ b2

)
= dimk

(
b1 ∩ a2

b1 ∩ b2

)
+ dimk

(
a1 ∩ a2

b1 ∩ a2

)
.

So we must prove that dimk

(
a1∩a2

b1∩a2

)
= dimk

(
a1

b1

)
and dimk

(
b1∩a2

b1∩b2

)
= dimk

(
a2

b2

)
. In

fact, the k-linear application

a1 ∩ a2

b1 ∩ a2

→ a1

b1

, x + b1 ∩ a2 7→ x + b1

is one to one. To prove that this application is surjective, we consider both the

S1-ideal b1 : S̃1, which is the largest S̃1-ideal contained in b1, and the S2-ideal a2 : S̃2,

which is the largest S̃2-ideal contained in a2. Thus, if y ∈ a1 then, by the approximation

theorem, there exists x ∈ K such that v1 (x− y) ≥ v1(b1 : S̃1) and v2 (x) ≥ v2(a2 : S̃2),

where v1 and v2 are the multi-exponents of the semilocal rings S1 and S2, respectively.

Thus x−y ∈ (b1 : S̃1) ⊆ b1 ⊆ a1 and x ∈ (a2 : S̃2) ⊆ a2, hence, x = y+(x− y) ∈ a1∩a2

and x− y ∈ b1. Therefore, dimk

(
a1∩a2

b1∩a2

)
= dimk

(
a1

b1

)
. In a similar way we obtain the

second identity dimk

(
b1∩a2

b1∩b2

)
= dimk

(
a2

b2

)
.

Proposition 17 Let S be a semilocal subring of the function field K | k, with S 6= K,

whose expression as intersection of local rings is S = O1 ∩ · · · ∩ Os. Then, for each

S-ideal a

a = aO1 ∩ · · · ∩ aOs

Moreover,
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1. dimk (a/b) =
s∑

i=1

dimk (aOi/bOi) whenever b is an S-ideal with b ⊆ a

2. dimk (a/a ∩ pn) =
s∑

i=1

dimk (aOi/aOi ∩ pni
i ) for each n := (n1, · · · ,ns) ∈ Zm1 ×

· · · × Zms .

Proof. Let m1, · · · ,ms be the maximal ideals of the semilocal ring S. Since a is

contained in aOi for each i = 1, · · · , s it follows that a ⊆ aO1 ∩ · · · ∩ aOs.

Conversely, if x ∈ aO1 ∩ · · · ∩ aOs then x may be expressed as the quotient x = ai

bi
,

where ai ∈ a and bi ∈ S −mi, for each i = 1, · · · , s and x = a
b
, where a, b are elements

of S and b 6= 0. Given that a is an S-ideal, there exists a non zero y ∈ S such that ya

is an ideal (integral) of S. So bya is an ideal of S and it has the primary decomposition

bya = q1 ∩ · · · ∩ qd, where each qj is a mj-primary ideal of S. Then yabj = yajb ∈ qj

for j = 1, · · · , d, and hence ya ∈ qj for j = 1, · · · , d i.e. ya ∈ bya i.e. a ∈ ba i.e x ∈ a.

From item (1) and from Lemma 16 we have

dimk (a/b) = dimk

(
s⋂

i=1

aOi/

s⋂
i=1

bOi

)

=
s∑

i=1

dimk (aOi/bOi) .

This proves the second statement.

From the item (1) it follows that

a ∩ pn = (aO1 ∩ pn) ∩ · · · ∩ (aOs ∩ pn)

= (aO1 ∩ pn1
1 ) ∩ · · · ∩ (aOs ∩ pns

s ) ,

and, hence, that

dimk (a/a ∩ pn) = dimk

(
s⋂

i=1

aOi/

s⋂
i=1

aOi ∩ pni
i

)

=
s∑

i=1

dimk (aOi/aOi ∩ pni
i )

Corollary 18 For each S-ideal a

degS (a) =
s∑

i=1

degOi
(aOi) .
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In particular,

degS(S̃) =
s∑

i=1

degOi
(Õi) =

s∑
i=1

δOi

where each degOi
and δOi

are the degree and the singularity degree of the local ring Oi,

respectively.

Proposition 19 The assignment a 7−→ (aOj)j=1,··· ,s defines a one-to-one monotonous

bijection between the partially ordered set of S-ideals and the partially ordered direct

product of Oj-ideals, j = 1, · · · , s, and it satisfies:

1. If c is a dualizing ideal of the semilocal ring S, then cOj is a dualizing ideal of

the local ring Oj for each j = 1, · · · , s.

2. If cj is a dualizing ideal of the local ring Oj for each j = 1, · · · , s, then there

exists an S-ideal c such that c is a dualizing ideal of the ring S and cOj = cj for

j = 1, · · · , s.

Proof. Since aOj is an Oj-ideal j = 1, · · · , s for each S-ideal a it follows that the

assignment a 7−→ (aOj)j=1,··· ,s is well defined. By Proposition 17 a = aO1 ∩ · · · ∩ aOs,

then this function is one-to-one. It is well known that for every prime ideal p of the ring

S the assignment q 7−→ qe = qSp gives a bijection between the set of primary ideals with

radical p in S and the set of proper ideals in the local ring Sp (cf. [2]). Let (bj)j=1,··· ,s be

an s-tuple of Oj-ideals j = 1, · · · , s. Then for each j = 1, · · · , s there exists a non-zero

rational function xj in Oj such that xjbj ⊆ Oj and xjbj is an ideal of Oj. Since K is the

quotient field of S we can assume that each xj ∈ S, so, by setting x := x1 · · ·xs ∈ S,

we have xbj ⊆ Oj and xbj is an ideal of Oj for each j = 1, · · · , s. Thus, for each

j = 1, · · · , s there exists an ideal qj of the ring S such that qe
j = qjOj = xbj, where qj is

either the mj-primary ideal of S given by the assignment q 7−→ qe, if xbj is a proper ideal

of Oj, or qj is equal to S, if xbj = Oj. In either case x−1qj is an S-ideal, (x−1qj)Oj = bj

and (x−1qj)Oi = x−1Oi for each i 6= j. Then a := x−1q1 ∩ · · · ∩ x−1qs is an S-ideal and

aOj = (x−1q1 ∩ · · · ∩ x−1qs)Oj = (x−1q1)Oj ∩ · · · ∩ (x−1qs)Oj = bj ∩ x−1Oj = bj for

each j = 1, · · · , s.

In the proof of (1) and (2) we will use the following result: if N and P are submodu-

les of an S-module M and P is finitely generated, then U−1 (N : P ) = (U−1N : U−1P ),

where U is a multiplicative closed subset of S (cf. [2] page. 43). Thus, if c is a dualizing

ideal of the ring S, then, for each S-ideal a, it follows that cOj : (cOj : aOj) = aOj for

each j = 1, · · · , s. Given that for each Oj-ideal b we can choose an S-ideal a such that
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aOj = b we have cOj : (cOj : b) = b for each Oj-ideal b i.e. cOj is a dualizing ideal of

the local ring Oj.

By the first part of this proposition there exists an S-ideal c such that cOj = cj,

where cj is a dualizing ideal of Oj for each j = 1, · · · , s. If a is an S-ideal, then

c : (c : a) =
s⋂

j=1

(c : (c : a))Oj =
s⋂

j=1

(cOj : (cOj : aOj)) =
s⋂

j=1

aOj = a.

Thus c is the dualizing ideal of S.

The index [a : b] of any two S-ideals a and b, is defined by considering the following

cases:

i. If b ⊆ a, then [a : b] is the index of b in a, that is, the order of the quotient group

a/b.

ii. [a : b] := [a : d]/[b : d] for any S-ideal d contained in a and b.

It is proved that this definition is independent on the choice of d and it extends

to a definition of index given when b ⊆ a. One can see that [a : b] = [b : a]−1,

[a : b] = [a : d][d : b] for all S-ideals a, b and d. The S-norm of any S-ideal a can be

expressed in terms of the index as ‖a‖S = [a : S], so that the norm of any non-zero

rational function z is ‖z‖ = ‖zS‖S (cf. [14]). From the properties of the index we

observe that, if S is a semilocal subring of the function field K | k, with S 6= K,

and k = Fq is a finite field, then logq ‖S‖S = 0 and dim (a/b) = logq ‖a‖S − logq ‖b‖S

whenever b ⊆ a. Thus, in this case, ‖a‖S = qdegS(a) for each S-ideal a. We observe

that, if S is a semilocal subring of the function field K | k, with S 6= K, and k = Fq is

a finite field, then for each pair of S-ideals a and b we have:

1. [a : b] =
s∏

j=1

[aOj : bOj] and

2. ‖a‖S =
s∏

j=1

‖aOj‖Oj
.

Indeed, by the definition of index for S-ideals, [a : b] = [a : d]/[b : d], where d is any

S-ideal contained in a and b. Thus

[a : b] = qdim(a/d)−dim(b/d)
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where d is any S-ideal contained in a and b. Since dOj is an Oj-ideal contained in aOj

and bOj, it follows

[aOj : bOj] = [aOj : dOj]/[bOj : dOj] = qdim(aOj/dOj)−dim(bOj/dOj).

Now, by applying Proposition 17, it follows that [a : b] =
s∏

j=1

[aOj : bOj] for each pair

of S-ideals a and b. So the second item follows from the first one.

From the second formula we can prove the Euler product identity of Green’s zeta

function ςO (d, s) (see [15] page. 486). This zeta function was obtained by Green, by

slightly modifying the zeta function introduced by Galkin in [14]. It was defined in

terms of the index of non-zero fractional ideals as:

ςO (d, s) =
∑

a⊆d
‖a‖s

O , < (s) > 0

where the sum is taken over the O-ideals a that are contained in the O-ideal d and s

is a complex variable, for an order O in a global field. Green’s zeta function satisfies a

functional equation, but it is not uniquely determined by the curve. By the reciprocity

2, the assignment a 7−→ a∗ := c : a, which defines an anti-monotonus permutation

between the O-ideals, indicates the connection between the local zeta function and

Green’s zeta function.

In the set of S-ideals is defined the following equivalence relation: a ∼ b if b = z−1a

for some z ∈ K\{0}. The equivalence classes form a semigroup (cf. [14]).

As in [27], for each S-ideal b, we consider the S̃-ideal (b : S̃) : b · S̃, which is the

quotient of b : S̃, the largest S̃-ideal contained in b, and bS̃, the smallest S̃-ideal that

contains b. This quotient only depends on the S-ideal class [b]. Moreover,

(b : S̃) : b = (b : S̃) : bS̃ = (b : S̃) · (bS̃)−1, f ⊆ (b : S̃) : bS̃ ⊆ S̃

and, hence,

0 ≤ v((b : S̃) : bS̃) = v(b : S̃)− v(bS̃) ≤ f

where 0 := (0, · · · , 0) and f := v (f) = (f1, · · · , fm). If bS̃ = S̃ then (b : S̃) : b = (b : S̃)

and b := v((b : S̃) : bS̃) is the smallest vector in the partial ordering of Zm such that

pb ⊆ b. We also consider the set

S (b) := {v (z)− v(bS̃) | z ∈ b\{0}},

which only depends on the S-ideal class [b]. Moreover

b + Nm ⊆ S (b) ⊆ Nm and S (S) + S (b) ⊆ S (b) .
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In fact, let n be in Nm. Since S̃ is a principal ideal domain there exist z1, z2 ∈ K∗ such

that (b : S̃) = S̃z1 and pn = S̃z2 ⊆ S̃. By setting z := z1z2 we obtain z ∈ b\{0}
such that v (z) = v(b : S̃) + n, that is, b + n = v (z)− v(bS̃) for some z ∈ b\{0} i.e.

b + n ∈S (b) . Similarly, we can prove that S (S) + S (b) ⊆ S (b) .

In particular, S (S) is an intermediate semigroup between f + Nm and Nm, called

the semigroup associated to the semilocal ring S.

In the same way, as it was observed by Stöhr (see [27]) in the local case, we observe

that for each semilocal subring S of the function field K | k and each S-ideal b, the set

Ub := {u ∈ K\{0} : b = u−1b}

is a group, it only depends on the class [b] and it is equal to the group Ub:b of units of

the semilocal ring b : b, which is also an S-ideal.

Proposition 20 Let S be a semilocal subring of the function field K | k, with S 6= K,

whose expression as intersection of local rings is S = O1 ∩ · · · ∩ Os and let b be an

S-ideal. Then

1. Ub = UbO1 ∩ · · · ∩ UbOs

2. The application

(b\{0}) /Ub −→ (bO1\{0}) /UbO1 × · · · × (bOs\{0}) /UbOs (2.1)

defined by zUb 7−→ (zUbO1 , · · · , zUbOs) , is a bijective function, where (b\{0}) /Ub

and (bOi\{0}) /UbOi
(i = 1, · · · s) denote the quotient of b\{0} and bOi\{0}

(i = 1, · · · s) by the action of the groups Ub and UbOi
(i = 1, · · · s) respectively.

3. There is an isomorphism of multiplicative abelian groups

Ub/US
∼−→ UbO1/UO1 × · · · × UbOs/UOs

defined by uUS 7−→ (uUO1 , · · · , uUOs) .

4. S (b) = S (bO1)× · · · × S (bOs) .

Proof. (1) From Proposition 17 (1), it follows that

b : b = (bO1 : bO1) ∩ · · · ∩ (bOs : bOs)
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and, hence,

Ub:b = UbO1:bO1 ∩ · · · ∩ UbOs:bOs .

(2) Let z, w ∈ b\{0}. Then (zUbO1 , · · · , zUbOs) = (wUbO1 , · · · , wUbOs) if and only

if zUbOi
= wUbOi

for each i = 1, · · · , s i.e z−1w ∈ UbOi
for each i = 1, · · · , s i.e

z−1w ∈ Ub i.e zUb = wUb. Thus the application 2.1 is well defined and it is injec-

tive. Let (z1UbO1 , · · · , zsUbOs) ∈ (bO1\{0}) /UbO1 × · · · × (bOs\{0}) /UbOs . For each

i = 1, · · · , s we pick an element wi ∈ (∩j 6=imj) \mi. Then vi (wi) = 0 in Oi = Smi

and vj (wi) has only positive coordinates whenever j 6= i. Let us choose N1, · · · , Ns to

be positive integers, and let z :=
s∑

j=1

zjw
Nj

j . Since S ⊆ Oi ⊆ (bOi : bOi), wi ∈ S and

zi ∈ bOi, it follows that ziw
Ni
i ∈ bOi and wNi

i ∈ bOi : bOi for each i = 1, · · · , s. On the

other hand, if j 6= i and Nj is sufficiently large, then vi

(
zjw

Nj

j

)
and vi

(
z−1

i zjw
Nj

j

)

have sufficiently large positive coordinates. Thus, as vi (wi) = 0, bOi : Õi ⊆ bOi,

bOi ⊆ bOi : bOi, for each i = 1, · · · , s, and b = ∩s
i=1bOi, we have, by taking N1, · · · , Ns

sufficiently large, z :=
s∑

j=1

zjw
Nj

j ∈ b, vi

(
z−1

i z
)

= 0 and zz−1
i ∈ bOi : bOi. Whence,

zz−1
i ∈ UbOi:bOi

i.e. zUbOi
= ziUbOi

for each i = 1, · · · , s.

(3) The application

Ub −→ UbO1/UO1 × · · · × UbOs/UOs

defined by u 7−→ (uUO1 , · · · , uUOs) is a homomorphism of groups whose kernel is equal

to US = UO1 ∩ · · · ∩ UOs . It remains to prove that this homomorphism is surjective.

Let ui ∈ UbOi
= UbOi:bOi

for each i = 1, · · · , s. For each i = 1, · · · , s we pick

an element yi ∈ (∩j 6=imj) \mi. Then vi (yi) = 0 in Oi = Smi
and vj (yi) has only

positive coordinates whenever j 6= i. Since b : b = (bO1 : bO1) ∩ · · · ∩ (bOs : bOs) and

Oi ⊆ bOi : bOi ⊆ Õi, for each i = 1, · · · , s, by taking sufficiently large powers of yi, the

element u :=
s∑

i=1

uiy
Ni
i ∈ Ub:b = Ub and u−1

i u ∈ UOi
for each i = 1, · · · , s (because we

can choose sufficiently large powers of each yj such that u ∈ b : b, v (u) = 0, u−1
i u ∈ Oi

and vi

(
u−1

i u
)

= 0).

(4) Since the set S (b) only depends on the class [b] , we can assume that bS̃ = S̃,

hence (bOi) Õi = Õi (i = 1, · · · , s). It is clear that S (b) ⊆ S (bO1) × · · · × S (bOs) .

Conversely, if n := (n1, · · · ,ns)∈S (bO1) × · · · × S (bOs), then there exists zi ∈ bOi

such that vi (zi) = ni in Oi = Smi
(i = 1, · · · , s). For each i = 1, · · · , s we pick an

element xi ∈ (∩j 6=imj) \mi. Then vi (xi) = 0 in Oi = Smi
and vj (xi) has only positive

coordinates whenever j 6= i. Hence, taking sufficiently large powers of xi, the element

z :=
s∑

i=1

zix
Ni
i ∈ b and v (z) = (n1, · · · ,ns) = n.
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Corollary 21 For each S-ideal b,

[Ub : US] = [UbO1 : UO1 ] · · · · · [UbOs : UOs ]

and for each pair of S-ideals a and b,

[Ub:a : Ub] = [UbO1:aO1 : UbO1 ] · · · · · [UbOs:aOs : UbOs ].

2.3 Dimension formulae and some properties on semi-

groups

Let S be a semilocal subring of a function field K | k, with S 6= K, and let b be

an S-ideal. We have associated to the S-ideal b both the set S (b) and the vector

b := v((b : S̃) : bS̃) = (b1, · · · , bm), which only depend on the ideal class [b]. They

satisfy 0 ≤ b ≤ f, b is the smallest vector in the partial ordering of Zm satisfying

S (b) ⊇ b + Nm. Moreover, if b · S̃ = S̃, then b is the smallest vector in the partial

ordering of Zm such that pb ⊆ b.

Given the integer vector n = (n1, · · · , nm) ∈ Zm, we observe that

b ∩ bpn = {z ∈ b : v (z) ≥ n + v(bS̃)}

and

0 −→ b ∩ bpn/b ∩ bpn+ei −→ b/b ∩ bpn+ei −→ b/b ∩ bpn −→ 0

is an exact sequence for each i = 1, · · · , m, where ei ∈ Zm denotes the vector whose

i-th coordinated is 1 while all other coordinates are 0. We denote by

l (b,n) := dimk (b/b ∩ bpn)

the codimension of the S-ideal b ∩ bpn in b. Thus,

l(b,n + ei)−l(b,n) = dimk

(
b ∩ bpn/b ∩ bpn+ei

)
for each i = 1, · · · ,m.

In particular, if O is a local subring of the function field K | k, then l(O,0) = 0 and

l(O, ei) = dimk (O/m) for each i = 1, · · · ,m, where m is the maximal ideal of O.

Lemma 22 Let S be a semilocal subring of a function field K | k, with S 6= K, and

let b be an S-ideal and let n ∈ Zm. Then
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1.

0 ≤ dimk

(
b ∩ pn/b ∩ bpn+ei

) ≤ ri for each i = 1, · · · ,m

where each ri is the degree of the residue field of pi over the constant field k. In

particular, if S is residually rational, then

0 ≤ dimk

(
b ∩ bpn/b ∩ bpn+ei

) ≤ 1 for each i = 1, · · · ,m.

2. dimk

(
b ∩ bpn/b ∩ bpn+ei

)
= ri for each i = 1, · · · ,m whenever n ≥ b.

3. If nj ≥ bj for some j = 1, · · · ,m then dimk

(
b ∩ bpn/b ∩ bpn+ej

)
= rj.

4. dimk

(
b ∩ bpb−ei/b ∩ bpb

)
< ri for each i = 1, · · · ,m.

Proof. We choose generators π1, · · · , πm of the maximal integral S̃-ideals p1, · · · , pm,

respectively. By the weak approximation theorem, we can assume that vj (πi − 1) ≥ fj

whenever j 6= i. Then, we have an injective k-linear application

b ∩ bpn/b ∩ bpn+ei ↪→ bS̃/bpi

defined by x + b ∩ bpn+ei 7−→ xπ−ni
i + bpi. Thus

dimk

(
b ∩ bpn/b ∩ bpn+ei

) ≤ dimk(bS̃/bpi) = ri,

so (1) is valid.

(2) Since bpb = b : S̃ ⊆ b, we have bpn ⊆ b whenever n ≥ b. Hence, if n ≥ b then

dimk

(
b ∩ bpn/b ∩ bpn+ei

)
= dimk

(
bpn/bpn+ei

)
= ri.

(3) If s ≥ n, then b ∩ bps ⊆ b ∩ bpn and, hence, we have a k-linear application

b ∩ bps/b ∩ bps+ej −→ b ∩ bpn/b ∩ bpn+ej

defined by x + b ∩ bps+ej 7−→ x + b ∩ bpn+ej , which is injective if and only if nj = sj

or b ∩ bps = b ∩ bps+ej . On the other hand, if nj ≥ bj for some j = 1, · · · ,m, then we

can choose s ∈ Nm such that s ≥ n, s ≥ b and sj = nj ≥ bj. Thus (3) follows from (1)

and (2).

(4) Let i ∈ {1, · · · ,m} . We observe that b := v((b : S̃) : bS̃) = (b1, · · · , bm)

satisfies πb−ei /∈ (b : S̃) : bS̃. Then there exists z ∈ bS̃ such that zπb−ei /∈ b. Let

y := zπbπ−bi
i . Then y ∈ bS̃. On the other hand, if x ∈ b ∩ bpb−ei , that is, if x ∈ b

and v (x) ≥ b− ei + v(bS̃), it follows that zπb−ei − x ∈ bpb−ei , zπb−ei − x /∈ b

and, hence, zπb−ei − x /∈ b : S̃ = bpb, so, vi

(
zπb−ei − x

)
= bi − 1 + vi(bS̃) i.e.
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vi(zπ
bπ−bi

i − xπ
−(bi−1)
i ) = vi(bS̃) i.e. vi(y − xπ

−(bi−1)
i ) = vi(bS̃), where vi

(
bS̃

)

denotes the i-th entry of the vector v(bS̃). Thus the injective k-linear application

b ∩ bpb−ei/b ∩ bpb ↪→ bS̃/bpi defined by x + b ∩ bpb−ei 7−→ xπ
−(bi−1)
i + bpi is not

surjective. So (4) is valid.

Note that, if S is residually rational, then l(b,n + ei) ≤l(b,n) + 1 and equality

holds if and only if b∩bpn+ei $ b∩bpn, that is, if and only if there exists s ∈S (b) such

that s ≥ n with si = ni. Since l(b,n) = 0 when n = (0, · · · , 0) , we see in this case, by

induction, that the integers l(b,n) may be expressed in terms of the set S (b) .

Proposition 23 Let S be a semilocal subring of a function field K | k, with S 6= K,

let b be an S-ideal such that b · S̃ = S̃ and, let n ∈ Zm. Then

dimk

(
b ∩ pn/b ∩ pn+ei

)
+ dimk

(
b ∩ pb−n−ei/b ∩ pb−n

) ≤ ri

for each i = 1, · · · ,m.

Proof. For each s ∈ Zm we can consider the quotient b∩ ps/b∩ ps+ei as a k-vector

subspace of S̃/pi under the injective k-linear application

b ∩ ps/b ∩ ps+ei ↪→ S̃/pi

defined by x + b ∩ ps+ei 7−→ xπ−si
i + pi. Since dimk

(
b ∩ pb−ei/b ∩ pb

)
< ri we can

choose a one-codimensional k-vector subspace Vi of S̃/pi which contains the image of

b ∩ pb−ei/b ∩ pb. Let us to consider the k-bilinear application

S̃/pi × S̃/pi −→ S̃/pi

Vi

defined by (x, y) 7−→ x · y + Vi, which is non-degenerated because the multiplication

by a non-zero element of S̃/pi defines a k-automorphism of S̃/pi. Let n ∈ Zm. If

x = aπ−ni
i + pi and y = bπ

−(bi−ni−1)
i + pi are elements of S̃/pi, where a ∈ b ∩ pn and

b ∈ b ∩ pb−n−ei , then x · y = abπ
−(bi−1)
i + pi and ab ∈ b ∩ pb−ei , hence x · y ∈ Vi. Thus,

the image of b∩ pn/b∩ pn+ei in S̃/pi is contained in the orthogonal complement of the

image of b ∩ pb−n−ei/b ∩ pb−n in S̃/pi. Therefore,

dimk

(
b ∩ pn/b ∩ pn+ei

) ≤ dimk

((
b ∩ pb−n−ei/b ∩ pb−n

)⊥)

≤ ri − dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
.
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Lemma 24 Let n = (n1, · · · , nm) ∈ Zm. Then the vector n′ := n− ∑
nj<0

njej ∈ Zm,

where the sum is over the integers j = 1, · · · ,m with nj < 0, and the integer vector

n′′ := n− ∑
nj>bj

njej ∈ Zm, where the sum is over the integers j = 1, · · · ,m with nj > bj,

satisfy the following properties:

1. If n < b then

0 ≤ n′< b, dimk

(
b ∩ pn/b ∩ pn+ei

)
= dimk(b ∩ pn′/b ∩ pn′+ei),

and

dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= dimk(b ∩ pb−n′−ei/b ∩ pb−n′)

for each i = 1, · · · ,m such that ni ≥ 0.

2. If n > b then

n′′≤ b, dimk

(
b ∩ pn/b ∩ pn+ei

)
= dimk(b ∩ pn′′/b ∩ pn′′+ei),

and

dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= dimk(b ∩ pb−n′′−ei/b ∩ pb−n′′)

for each i = 1, · · · ,m such that ni ≤ bi.

Proof. We claim:

(i) If ni ≥ 0 then

dimk

(
b ∩ pn/b ∩ pn+ei

)
= dimk

(
b ∩ pn+ej/b ∩ pn+ej+ei

)

and

dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= dimk

(
b ∩ pb−n−ei−ej/b ∩ pb−n−ej

)

for each j = 1, · · · ,m such that nj < 0.

(ii) If ni ≤ bi then

dimk

(
b ∩ pn/b ∩ pn+ei

)
= dimk

(
b ∩ pn−ej/b ∩ pn−ej+ei

)

and

dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= dimk

(
b ∩ pb−n−ei+ej/b ∩ pb−n+ej

)

for each j = 1, · · · ,m such that nj > bj.
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(i) Since b · S̃ = S̃, it follows that b ⊆ S̃. Hence, b ∩ pn = b ∩ pn+ej and

b∩pn+ei = b∩pn+ej+ei for each j = 1, · · · ,m such that nj < 0. So, the first sentence in

(i) holds. Let j ∈ {1, · · · ,m} such that nj < 0. It is clear that

b∩pb−n =
(
b ∩ pb−n−ei

)∩(
b ∩ pb−n−ej

)
and b∩pb−n−ei +b∩pb−n−ej ⊆ b∩pb−n−ei−ej .

We assert that b ∩ pb−n−ei + b ∩ pb−n−ej = b ∩ pb−n−ei−ej . Indeed, let us to consider

s = (s1, · · · , sm) ∈ Zm defined by sj := bj − nj − 1 and sk := max{bk − nk, bk} for each

k = 1, · · · , m with k 6= j. Thus, s ≥ b− n − ej, hence b ∩ ps ⊆ b ∩ pb−n−ej . Since

sj := bj − nj − 1 ≥ bj, it follows from Lemma 22 that the homomorphism defined

by x + b ∩ ps+ej 7−→ x + b ∩ pb−n−ei , for any x ∈ b ∩ ps, is an isomorphism between

b ∩ ps/b ∩ ps+ej and b ∩ pb−n−ei−ej/b ∩ pb−n−ei . Therefore, if z ∈ b ∩ pb−n−ei−ej then

there exists x ∈ b ∩ ps such that z − x ∈ b ∩ pb−n−ei , in consequence we have that

z = (z − x) + x ∈ b ∩ pb−n−ei + b ∩ pb−n−ej . Thus,

b ∩ pb−n−ei/b ∩ pb−n = b ∩ pb−n−ei/
(
b ∩ pb−n−ei

) ∩ (
b ∩ pb−n−ej

)

' (
b ∩ pb−n−ei + b ∩ pb−n−ej

)
/b ∩ pb−n−ej

= b ∩ pb−n−ei−ej/b ∩ pb−n−ej ,

and so the second sentence in (i) holds.

(ii) Since b ∩ pb−n = b ∩ pb−n+ej and b ∩ pb−n−ei = b ∩ pb−n−ei+ej for each

j = 1, · · · ,m such that nj > bj, it follows that the second sentence in (ii) holds.

Let j ∈ {1, · · · ,m} such that nj > bj. As in (i), b ∩ pn+ei = (b ∩ pn−ej) ∩ (b ∩ pn) and

b ∩ pn + b ∩ pn+ei−ej = b ∩ pn−ej , which implies the first sentence in (ii).

The Lemma will follow by repeated application of (i) and (ii).

Theorem 25 Let S be a semilocal subring of a function field K | k, with S 6= K, and

let b be an S-ideal such that b · S̃ = S̃. Then

dimk

(
b ∩ pn/b ∩ pn+ei

)
+ dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= ri (2.2)

for each i = 1, · · · ,m and for each n ∈ Zm if and only if

2 dimk(b/b : S̃) = dimk(S̃/b : S̃).

Proof. We observe that, if
(
n(j)

)
1≤j≤l

is a strictly increasing sequence in Zm such

that n(0) = 0, n(l) = b and for each j = 1, · · · , l there exists i (j) ∈ {1, · · · ,m}
satisfying n(j) − n(j−1) = ei(j), then 2 dimk

(
b/b : S̃

)
= dimk

(
S̃/b : S̃

)
if and only if

dimk(b ∩ pn(j)

/b ∩ pn(j)+ei(j+1)) + dimk(b ∩ pb−n(j)−ei(j+1)/b ∩ pb−n(j)

) = ri(j+1)
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for each j = 0, · · · , l − 1. Indeed,

b = b ∩ pn(0) ⊇ b ∩ pn(1) ⊇ · · · ⊇ b ∩ pn(l)

= b : S̃

and

b : S̃ = b ∩ pb−n(0) ⊆ b ∩ pb−n(1) ⊆ · · · ⊆ b ∩ pb−n(l)

= b,

hence

dimk(b/b : S̃) =
l−1∑
j=0

dimk(b ∩ pn(j)

/b ∩ pn(j)+ei(j+1))

=
l−1∑
j=0

dimk(b ∩ pb−n(j+1)

/b ∩ pb−n(j+1)+ei(j+1)).

Since n(j+1) − n(j) = ei(j+1) for each j = 0, · · · , l − 1, by Proposition 23, we have

2 dimk

(
b/b : S̃

)
=

l−1∑
j=0

dimk

(
b ∩ pn(j)

b ∩ pn(j)+ei(j+1)

)
+ dimk

(
b ∩ pb−n(j)−ei(j+1)

b ∩ pb−n(j)

)

≤
l−1∑
j=0

ri(j+1)

=
m∑

i=1

ribi

= dimk(S̃/b : S̃).

In this manner, the observation is proved.

Now, by choosing any sequence as in the previous observation, it follows that, if 2.2

holds for each n in Zm and for each i = 1, · · · ,m, then 2 dimk(b/b : S̃) = dimk(S̃/b : S̃).

Conversely, assume that we have the equality 2 dimk(b/b : S̃) = dimk(S̃/b : S̃). Let

n = (n1, · · · , nm) ∈ Zm and let i ∈ {1, · · · ,m}. If n = b, then, by Lemma 22 and by

Proposition 23, 2.2 holds in this case. Thus we can assume that n 6= b. To prove that

2.2 holds for n and for i we consider three cases:

First case: assume that 0 ≤ n < b. Observe that we can choose a strictly increasing

sequence
(
n(j)

)
1≤j≤l

in Zm such that n(0) = 0, n(l) = b and for each j = 1, · · · , l there

exists i (j) ∈ {1, · · · ,m} satisfying n(j) − n(j−1) = ei(j), n(k) = n and i = i (k + 1)

for some k ∈ {1, · · · , l − 1}. Thus, it follows from the previous observation, by taking

j = k, that

dimk(b ∩ pn(k)

/b ∩ pn(k)+ei(k+1)) + dimk(b ∩ pb−n(k)−ei(k+1)/b ∩ pb−n(k)

) = ri(k+1)
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i.e

dimk

(
b ∩ pn/b ∩ pn+ei

)
+ dimk

(
b ∩ pb−n−ei/b ∩ pb−n

)
= ri.

Second case: assume that n < b and nj < 0 for some j ∈ {1, · · · ,m}. If ni < 0,

then b ∩ pn = b ∩ pn+ei and bi − ni − 1 ≥ bi. Hence 2.2 holds from Lemma 22. Now,

we assume that ni ≥ 0. Consequently, from Lemma 24,

dimk

(
b∩pn

b∩pn+ei

)
+ dimk

(
b∩pb−n−ei

b∩pb−n

)
= dimk

(
b∩pn

′

b∩pn
′+ei

)
+ dimk

(
b∩pb−n′−ei

b∩pb−n′

)
= ri.

Third case: assume that n > b and nj > bj for some j ∈ {1, · · · ,m}. If ni > bi,

then 2.2 holds from Lemma 22. Now, we assume that ni ≤ bi. Thus, from Lemma 24,

dimk

(
b∩pn

b∩pn+ei

)
+ dimk

(
b∩pb−n−ei

b∩pb−n

)
= dimk

(
b∩pn

′′

b∩pn
′′+ei

)
+ dimk

(
b∩pb−n′′−ei

b∩pb−n′′

)
= ri.

Corollary 26 Let S be a semilocal subring of a function field K | k, with S 6= K, and

let b be an S-ideal such that b · S̃ = S̃. Then for each n ∈ Zm

dimk(b ∩ pn/b ∩ pn+
∑m

i=1 ei) + dimk(b ∩ pb−n−∑m
i=1 ei/b ∩ pb−n) ≤

m∑
i=0

ri. (2.3)

The equality holds for each n ∈ Zm if and only if 2 dimk(b/b : S̃) = dimk(S̃/b : S̃).

Proof. Let
(
n(j)

)
1≤j≤m

be a strictly increasing sequence in Zm such that

n(0) = n, n(m) = n+
∑m

i=1 ei. Then, for each j = 1, · · · ,m there exists a unique

i (j) ∈ {1, · · · , m} satisfying n(j) − n(j−1) = ei(j). Thus,

b ∩ pn = b ∩ pn(0) ⊇ b ∩ pn(1) ⊇ · · · ⊇ b ∩ pn(m)

= b ∩ pn+
∑m

i=1 ei

and

b ∩ pb−n = b ∩ pb−n(0) ⊆ b ∩ pb−n(1) ⊆ · · · ⊆ b ∩ pb−n(m)

= b ∩ pb−n−∑m
i=1 ei .

Hence,

dimk(b ∩ pn/b ∩ pn+
∑m

i=1 ei) =
m−1∑
j=0

dimk(b ∩ pn(j)

/b ∩ pn(j)+ei(j+1))

and

dimk(b ∩ pb−n−∑m
i=1 ei/b ∩ pb−n) =

m−1∑
j=0

dimk(b ∩ pb−n(j+1)

/b ∩ pb−n(j+1)+ei(j+1)).
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Since n(j+1)−n(j) = ei(j+1) for each j = 0, · · · ,m− 1, it follows by Proposition 23 that

dimk(b ∩ pn/b ∩ pn+
∑m

i=1 ei) + dimk(b ∩ pb−n−∑m
i=1 ei/b ∩ pb−n) ≤

m−1∑
j=0

ri(j+1) =
m∑

i=0

ri.

Assume that we have the equality in 2.3 for each n ∈ Zm. Let n ∈ Zm and let

i ∈ {1, · · · ,m}. Let us consider a strictly increasing sequence
(
n(j)

)
1≤j≤m

in Zm such

that n(0) = n, n(1) = n + ei, and n(m) = n+
∑m

i=1 ei. Then, by de above formula,

dimk(b∩pn(j)
/b∩pn(j)+ei(j+1))+dimk(b∩pb−n(j+1)

/b∩pb−n(j+1)+ei(j+1)) = ri(j+1) for each

j = 0, · · · ,m − 1. Thus, dimk (b ∩ pn/b ∩ pn+ei) + dimk

(
b ∩ pb−n/b ∩ pb−n+ei

)
= ri,

and so the result follows from Theorem 25.

Conversely, assume that 2 dimk(b/b : S̃) = dimk(S̃/b : S̃). From the previous

formula and Theorem 25 we conclude that the equality in 2.3 holds.

In particular, by choosing b = S, we obtain the following corollary:

Corollary 27 Let S be a semilocal subring of a function field K | k, with S 6= K. The

following properties are equivalent:

1. S is a Gorenstein ring.

2. 2 dimk(S/S : S̃) = dimk(S̃/S : S̃).

3. dimk (S ∩ pn/S ∩ pn+ei)+dimk

(
S ∩ pf−n−ei/S ∩ pf−n

)
= ri for each i = 1, · · · ,m.

4. dimk

(
S ∩ pn/S ∩ pn+

∑m
i=1 ei

)
+ dimk

(
S ∩ pf−n−∑m

i=1 ei/S ∩ pf−n
)

=
m∑

i=0

ri where

f = v(S : S̃) is the multi-exponent of the conductor ideal of S in its integral

closure S̃.

It is known (see [10], Proposition 1.2 page. 2942) that if O is a residually rational local

subring of K | k and the field k has more than m elements, then the semigroup S (O)

satisfies the following properties:

1. If n = (n1, · · · , nm) and s = (s1, · · · , sm) are elements of S (O) then the vector

whose coordinates are min{ni, si} also belongs to S (O)

2. If n = (n1, · · · , nm) and s = (s1, · · · , sm) are elements of S (O) and ni = si for

some i, then there exists a vector t = (t1, · · · , tm) in S (O) such that ti > ni and

tj ≥ min{nj, sj} for each j and tj = min{nj, sj} whenever nj 6= sj.
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3. There exists f ∈ Nm such that S (O) ⊇ f + Nm.

4. n ∈S (O) if and only if dimk (O/O ∩ pn+ei) = dimk (O/O ∩ pn) + 1 for each

i = 1, · · · ,m.

Now we prove that some of these properties are also satisfied by the set S (b) , when b

is an S-ideal of a semilocal ring S.

Proposition 28 Let S be a semilocal subring of a function field K | k, with

S 6= K, and let b be an S-ideal. Assume that the field k has more than m elements.

If n =(n1, · · · , nm) and s = (s1, · · · , sm) are elements of S (b) then the vector whose

coordinates are min{ni, si} also belongs to S (b) .

Proof. Since S (b) only depends on the ideal class [b] we can assume that b · S̃ = S̃

so that f ⊆ b ⊆ S̃, where f = (S : S̃) is the conductor ideal of S. Let x and y be

elements of b such that n = (v1 (x) , · · · , vm (x)) and s = (v1 (y) , · · · , vm (y)) . If ni 6= si

for each i = 1, · · · ,m, then vi (x + y) = min{vi (x) , vi (y)} for each i = 1, · · · ,m. This

proves the proposition in this case. Assume (eventually renumbering the indexes) that

n1 6= s1, · · · , nj−1 6= sj−1 and nj = sj, nj+1 = sj+1, · · · , nm = sm, for some j > 1.

Since b ⊆ S̃ and x, y ∈ b, it follows for each i = j, · · · , m that x = πni
i ui ∈ Ovi

and

y = πni
i wi ∈ Ovi

, where πi ∈ Ovi
is a local parameter of Ovi

and ui, wi ∈ Ovi
\mvi

. If

the classes ui + mvi
and wi + mvi

are linearly independent over k then ui + αwi /∈ mvi

for all α ∈ k. On the other hand if ui + mvi
and wi + mvi

are linearly dependent then

ui + αiwi ∈ mvi
for some αi ∈ k. Thus, since # (k) > m, we can choose a constant

α ∈ k\{0} such that ui + αwi /∈ mvi
for each i = j, · · · ,m (by choosing α ∈ k\{0}

such that α 6= αi whenever ui + αiwi ∈ mvi
). Hence, for each i = j, · · · ,m we have

vi (x + αy) = vi (π
ni
i (ui + αwi)) = ni + vi (ui + αwi) = ni = min{ni, si}. Therefore,

there exists α ∈ k\{0} such that vi (x + αy) = min{vi (x) , vi (y)} for each i = 1, · · · ,m.

So the proposition is valid.

Observe that, if the field k has more than m elements, then n ∈S (b) if and only if

l(b,n) <l(b,n + ei) for each i = 1, · · · ,m, that is, dimk (b ∩ pn/b ∩ pn+ei) > 0 for each

i = 1, · · · ,m. In fact, if n ∈S (b), then we can choose x ∈ b\{0} such that v (x) = n,

hence x ∈ b∩pn and x /∈ b∩pn+ei for each i = 1, · · · ,m, i.e. dimk (b ∩ pn/b ∩ pn+ei) > 0

for each i = 1, · · · ,m. The converse follows from the minimum property in Proposition

28. In particular, if S is residually rational, then S (b) satisfies (4) too.

S (b) does not satisfy the previous property (2) without the assumption that the

semilocal ring S is residually rational. For example, if

S (O) = {(0, 0) , (1, 1)} ∪ ((2, 1) + N× {0})∪ ((2, 2) + N× N)
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(cf. See Example 48), then (1, 1) and (2, 1) belong to S (O) , but does not exists

(1, t2) ∈ S (O) such that t2 > 1. Nevertheless, when S is a residually rational semilocal

subring of K | k, then S (b) satisfies (2). Indeed, since S (b) only depends on the ideal

class [b], we can assume that b · S̃ = S̃. Hence if n = (n1, · · · , nm) and s = (s1, · · · , sm)

are elements of S (b) , then there exist x and y in b such that n= (v1 (x) , · · · , vm (x))

and s = (v1 (y) , · · · , vm (y)) . Assume that ni = si for some i, that is vi (x/y) = 0 for

some i. By the assumption, the ring S is residually rational. Then there exists α ∈ k

such that vi (α + x/y) > 0. Hence, vi (x + αy) = vi (y (α + x/y)) > vi (y) . From the

properties of the valuation functions we also get that vj (x + αy) ≥ min{nj, sj} for

each j 6= i (and that the equality holds if nj 6= sj).
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Chapter 3

Zeta functions and Multi-variable

Poincaré series associated to

semilocal rings of a geometrically

integral algebraic curve defined

over a finite field.

3.1 Introduction

Throughout this chapter we start to treat one of our purpose of this work. In fact, we

want to extend the definitions of the series Z (a, t), Z (a, b, t) and P (a, b, t) to the series

ZS (a, t), ZS (a, b, t) and PS(a, b, t1, . . . , tm) associated to S-ideals a and b, where S is

a semilocal ring of a geometrically integral algebraic curve X defined over a field Fq of

q elements. The extended definitions ZS (a, t), ZS (a, b, t) and PS(a, b, t1, . . . , tm) are

important because they permit us to study the behavior of these series under constant

field extensions: if O is a local ring of a geometrically integral algebraic curve defined

over a field k = Fq whose function field in one variable is K | k, and if k′ is a finite

field extension of k, then k′ · K | k′ is also a function field in one variable and k′ · O
is a semilocal subring of k′ ·K | k′, where k′ · O just consists of all linear combination

of elements of the local ring O with coefficients in the field k′ (cf. [22] section 3).

The extended definitions of zeta functions and multi-variable Poincaré series are also

important because they permit us to study the behavior of these series with respect

to blow-up of the local ring O, since the blow-up of a local ring O with respect to
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its maximal ideal m is a semilocal ring Om (cf. [20] Chapter VIII). Furthermore, they

permit us to associate to a geometrically integral algebraic curve X defined over a finite

field Fq of q elements the multi-variable Poincaré series PS(S, S; t1, . . . , tm), where S is

a semilocal ring which is contained in the semilocal ring of the curve X defined as the

intersection of all the local rings corresponding to singular points of X.

3.2 Semilocal zeta functions and multi-variable Poincaré

series

Let S be a semilocal ring of a geometrically integral algebraic curve X defined over a

field Fq of q elements, that is, S is a semilocal subring of the function field K | k whose

expression as intersection of local rings given by Theorem 14 is S = O1∩· · ·∩Os where

each Oj is a local ring of the curve X. Let v1, · · · , vm be the valuations of K | k whose

valuation rings contain S.

Following the same ideas as in [26] and [27], we consider for any S-ideal a the

semi-local zeta function

ζS (a, z) :=
∑
d⊇a

# (d/a)−z , < (z) > 0 (3.1)

where the sum is taken over all S-ideals d that contain a. This series can be written as

power series ZS (a, t) ∈ Z[[t]] in t := q−z with integer coefficients. In a similar way, we

consider the partial semi-local zeta function

ζS (a, b, z) :=
∑

d⊇a, d∼b

# (d/a)−z , < (z) > 0 (3.2)

where the sum is taken over all S-ideals d that contain a and are equivalent to b. Those

series only depend on the ideal classes [a] and [b] and they can be written as power

series ZS (a, b, t) ∈ Z[[t]] in t := q−z, with integer coefficients, which converge in the

unit disk |t| < 1. Moreover, as the local zeta functions, the semi-local zeta function

may be expressed as a finite sum of the partial semi-local zeta functions.

Since the integral closure S̃ = Ov1 ∩ · · · ∩Ovm of the semilocal ring S is a semilocal

principal ideal domain, whose maximal ideals, say p1, · · · , pm, correspond bijectively to

the valuations v1, · · · , vm, we have observed in the previous chapter that each S̃-ideal

may be expressed as pn := pn1
1 · · · pnm

m , where n := (n1, · · · , nm) ∈ Zm, and that its

multi-exponent is v (pn) := n. Then, similarly, we can extend to semilocal rings of

geometrically irreducible curves Definition 5 of multi-variable Poincaré series defined
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in [27] for local rings of geometrically irreducible curves. For each non-zero rational

function z ∈ K∗ and for each n := (n1, · · · , nm) ∈ Zm we abbreviate by

v (z) := v(zS̃) = (v1 (z) , · · · , vm (z)) ∈ Zm

the multi-valuation, and by

tn := tn1
1 · · · tmm,

the Laurent monomial, respectively.

Definition 29 Associated to the semi-local ring S and to the pair of S-ideal classes

[a] and [b] it is defined the multi-variable Poincaré series

PS(a, b, t) :=
∑

d⊃a,d∼b

tv(aÕ)−v(dÕ)

where the sum is taken over all S-ideals d that contain a and are equivalent to b.

In order to prove the relation between partial semilocal zeta function and semilocal

multi-variable Poincaré series as well as to prove the reduction to the case a = S,

we observe that for each pair of S-ideals a and b the S-ideals d that contain a and

are equivalent to b are of the form z−1b, where z varies over a complete system of

representatives of (b : a)\{0} modulo the action of the group Ub, as in the local case

(cf. [27] sections 2 and 3). Thus, from Definition 3.2 we obtain

ZS (a, b, t) =
∑

z∈b:a\{0}/Ub

tdimk(z−1b/a) (3.3)

and from Definition 29 we deduce

PS(a, b, t) =
∑

z∈b:a\{0}/Ub

tv(a·S̃)−v(b·S̃)+v(z). (3.4)

In the sequel, let

dn := {z ∈ d : v(z) = n},
where d is an S-ideal and n ∈Zm is an integral vector.

It follows that, if we restrict the action of Ub to US in Formula 3.4, then we have

to divide by the index [Ub : US]. Hence

PS(a, b, t) =
∑

n∈Zm

#((b : a)n/US)

[Ub : US]
tv(a·S̃)−v(b·S̃)+n. (3.5)

52



Theorem 30 The following identity holds;

ZS (a, b, t) = tdimk(a·S̃/a)−dimk(b·S̃/b)PS(a, b, tr1 , . . . , trm)

where r1 := dimk(S̃/p1), · · · , rm := dimk(S̃/pm). This means that the partial local-zeta

function may be expressed in terms of the multi-variable Poincaré series.

Proof. By Formula 3.3,

ZS (a, b, t) =
∑

z∈(b:a)\{0}/Ub

tdegS(z−1b)−degS(a)

and, by Formula 3.4,

PS(a, b, tr1 , . . . , trm) =
∑

z∈(b:a)\{0}/Ub

tr·v(a·S̃)−r·v(b·S̃)+r·v(z)

where r ·n :=
m∑

i=1

rini for each n = (n1, · · · , nm) ∈ Zm. The Chinese remainder theorem

now yields

dimk(S̃/pn) = r · n for each n ∈ Nm

and, hence,

degS(pn) = degS(S̃)− r · n for each n ∈ Zm.

We thus get

PS(a, b, tr1 , . . . , trm) =
∑

z∈(b:a)\{0}/Ub

t− degS(a·S̃)+degS(b·S̃)+r·v(z).

So, to prove the theorem we must prove

dimk(aS̃/a)− dimk(bS̃/b)− degS(aS̃) + degS(bS̃) + r · v (z) = degS(z−1b)− degS(a)

i.e.

degS (b)− degS

(
z−1b

)
= r · v (

z−1
)
.

But, the last equality follows from the local case (cf. Lemma 7) and from Corollary

18.

Theorem 31 (Reduction to the case a = S) Let a and b be S-ideals. Then

PS(a, b, t) = [Ub:a : Ub]t
v((b:S̃):b·S̃)−v(((b:a):S̃):(b:a)·S̃)PS(S, b : a, t)

and

0 ≤ b− d = v((b:a)·S̃) + v(a·S̃)− v(b·S̃) ≤ b

where d := b : a, b := ((b : S̃) :b·S̃) and d := ((d : S̃) :d·S̃).
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Proof. From Formula 3.4 we deduce

PS(a, b, t) =
∑

n∈Zm

#((b : a)n/Ub)t
v(a·S̃)−v(b·S̃)+n (3.6)

and

PS(S, b : a, t) =
∑

n∈Zm

#((b : a)n/Ub:a)t
−v((b:a)·S̃)+n.

If we restrict the action of Ub:a to Ub, then we have to divide by the index [Ub:a : Ub].

Hence

PS(S, b : a, t) =
∑

n∈Zm

#((b : a)n/Ub)

[Ub:a : Ub]
t−v((b:a)·S̃)+n. (3.7)

We now obtain the first result of this theorem by comparing the coefficients of the

two series in Formula 3.6 and Formula 3.7. On the other hand, since (b : a) · a ⊆ b, it

follows that ((b : a)·S̃)·(a·S̃) ⊆ b · S̃, that is, the multi-exponent b− d ≥ 0. Moreover,

(b:a) : S̃ = (b : S̃) : (a · S̃).

Indeed, z ∈ (b : S̃) : (a·S̃) if and only if z(a·S̃) ⊆b, i.e. zS̃⊆b : a, i.e. z ∈ (b : a) : S̃.

Thus, v((b : a) : S̃) = v(b : S̃)−v(a ·S̃), hence b− d = v((b : a)·S̃) + v(a·S̃)− v(b·S̃)

and therefore b− d ≤ b.

The previous theorem justifies that, from now on, we will sometimes assume that

the S-ideal a is equal to the semilocal ring S, as in the local case.

Corollary 32 Let a and b be S-ideals. Then

ZS(a, b, t) = [Ub:a : Ub]t
degS (b)− degS (a)−degS (b:a)ZS(S, b : a, t)

3.3 Euler product identities

Now, we establish the link between the local and semilocal theory.

Lemma 33 Euler product identity

ζS (a, z) =
s∏

j=1

ζOj
(aOj, z)

for each S-ideal a.
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Proof. From Proposition 17, d = dO1∩· · ·∩dOs and dim(d/a) =
s∑

j=1

dim(dOj/aOj)

for each S-ideal d that contains a. On the other hand, #(d/a) = qdim(d/a) and

#(dOj/aOj) = qdim(dOj/aOj) for each j = 1, · · · , s. Thus #(d/a) =
s∏

j=1

#(dOj/aOj). By

Proposition 19, if dj is an Oj-ideal, for each j = 1, · · · , s, then there exists an S-ideal

d such that dOj = dj for each j = 1, · · · , s. So the product identity follows from this.

Theorem 34 (Euler product identity of partial zeta functions) Let S be a

semilocal ring of a geometrically integral algebraic curve X, defined over a field Fq of

q elements whose expression as intersection of local rings is S = O1 ∩ · · · ∩ Os, where

Oj is a local ring of the curve X for j = 1, · · · , s.Then

ZS(a, b, t) =
s∏

j=1

ZOj
(aOj, bOj, t) for each pair of S-ideals a and b.

Proof. We prove the particular case a = S. The general case follows from the case

a = S, by applying Corollary 18 and Corollary 21. By Formula 3.3,

ZS(S, b, t) =
∑

z∈b\{0}/Ub

tdegS(z−1b)−degS(a)

where b\{0}/Ub denotes the quotient of b\{0} by the action of the group Ub and z

varies over a complete system of representatives of b\{0}/Ub. Similarly, by Formula

3.3,

ZOj
(Oj, bOj, t) =

∑

z∈bOj\{0}/UbOj

t
degOj

(z−1bOj)−degOj
(aOj) for each j = 1, · · · , s,

where bOj\{0}/UbOj
denotes the quotient of bOj\{0} by the action of the group UbOj

and z varies over a complete system of representatives of bOj\{0}/UbOj
. By Proposition

20, the assignment zUb 7−→ (zUbO1 , · · · , zUbOs) defines a bijection between the quotient

b\{0}/Ub and the product of quotients (bO1\{0}) /UbO1×· · ·× (bOs\{0}) /UbOs . Now,

we conclude from Corollary 18 that

degS(z−1b)− degS(a) =
s∑

j=1

degOj
(z−1bOj)− degOj

(aOj),

hence, that

∑

z∈b\{0}/Ub

tdegS(z−1b)−degS(a) =
s∏

j=1

∑

zj∈bOj\{0}/UbOj

t
degOj

(z−1bOj)−degOj
(aOj)
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and finally that the Euler product identity for partial zeta functions holds.

In the following result we prove the link between the multi-variable Poincaré series

associated to a semilocal ring and those series of its several local ring components.

Theorem 35 (Euler product identity of Poincaré series) Let S be a semilocal

ring of a geometrically integral algebraic curve X, defined over a finite field Fq of q

elements whose expression as intersection of local rings is S = O1 ∩ · · · ∩Os, where Oj

is a local ring of the curve X for j = 1, · · · , s. Then

PS(a, b, t) =
s∏

j=1

POj
(aOj, bOj, tj) for each pair of S-ideals a and b

where t := (t1, · · · , ts) and tj :=
(
t1, · · · , tmj

)
for j = 1, · · · , s.

Proof. We can obtain this identity from the case a = S, and from Corollary 21.

Thus we assume that a = S. We have, from Formula 3.4, that

PS(S, b, t) =
∑

z∈b\{0}/Ub

t−v(b·S̃)+v(z)

and

POj
(Oj, bOj, t) =

∑

z∈bOj\{0}/UbOj

t
−v(bOj ·Õj)+vj(z)
j , for each j = 1, · · · , s

where, as in the previous theorem, b\{0}/Ub and bOj\{0}/UbOj
denote the quotient of

b\{0} and bOj\{0} by the action of the group Ub and UbOj
, respectively; and z varies

over a complete system of representatives of b\{0}/Ub and bOj\{0}/UbOj
, respectively.

From Proposition 20, the assignment zUb 7−→ (zUbO1 , · · · , zUbOs) define a bijection

between b\{0}/Ub and the product (bO1\{0}) /UbO1×· · ·× (bOs\{0}) /UbOs such that

v (z) = (v1 (z) , · · · ,vs (z)) for each representative z of the class zUb ∈ b\{0}/Ub.

Thus, due to

v(b · S̃) = (v1(bO1 · Õ1), · · · ,vs(bOs · Õs)),

we have ∑

z∈b\{0}/Ub

t−v(b·S̃)+v(z) =
s∏

j=1

∑

zj∈bOj\{0}/UbOj

t
−v(bOj ·Õj)+vj(zj)
j .

So, the Euler product identity for Poincaré series holds.

As consequence of the previous theorem, we obtain for each S-ideal a the multi-

variable geometric series

PS(a, S̃, t) =
1

(1− t1) · · · (1− tm)
.
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We observe that the Euler product identity of partial zeta functions can be obtained

from the Euler product identity of multi-variable Poincaré series and from the relation

between the partial zeta functions and multi-variable Poincaré series. Indeed, from the

last one we obtain

ZS (S, b, t) = tdim(S̃/S)−dim(b·S̃/b)PS(S, b, tr1 , · · · , trm)

and

ZOj
(Oj, bOj, t) = tdim(Õj/Oj)−dim(b·Õj/bOj)POj

(Oj, bOj, t
rj1 , · · · , trjmj ) for j = 1, · · · , s.

Thus, due to dim(S̃/S) =
s∑

j=1

dim(Õj/Oj) and dim(b · S̃/b) =
s∑

j=1

dim(b · Õj/bOj) we

deduce the Euler identity for partial zeta functions from that for Poincaré series.

Similarly, we can prove the relation between the partial zeta functions and multi-

variable Poincaré series from the Euler product identities of partial zeta functions and

multi-variable Poincaré series. In fact,

ZS(S, b, t) =
s∏

j=1

ZOj
(Oj, bOj, t)

=
s∏

j=1

tdim(Õj/Oj)−dim(b·Õj/bOj)POj
(Oj, bOj, t

rj1 , · · · , trjmj )

= t
∑s

j=1(dim(Õj/Oj)−dim(b·Õj/bOj))

s∏
j=1

POj
(Oj, bOj, t

rj1 , · · · , trjmj )

= tdim(S̃/S)−dim(b·S̃/b)PS(S, b, tr1 , · · · , trm).

Corollary 36 Let S1,· · · , Sn be semilocal subrings of the function field K | Fq such

that no two of them are contained in the same valuation ring, and let b be an S-ideal,

where S := S1 ∩ · · · ∩ Sn. Then

PS(S, b, t) =
n∏

j=1

PSj
(Sj, bSj, tj)

where t := (t1, · · · , tn) and tj :=
(
tj1, · · · , tjmj

)
for j = 1, · · · , n.

Proof. We obtain this corollary from Theorem 35, by induction over n.

The Poincaré series PS(a, b, t) is a power series in t1, · · · , tm, say

PS(a, b, t) =
∑

ηS,n(a, b)tn ∈ Z[t1, · · · , tm],

that encodes the cardinalities of certain sets of S-ideals:
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ηS,n(a, b) = #{S-ideals d satisfying d ⊇ a, d ∼ b and d · S̃ = a · p−n}.

It is clear, from Euler product and from Theorem 8, that these cardinalities are

actually finite and that the radius of convergence of PS(a, b, t) is equal to one. Using

the local properties of the multiple Poincaré series we can prove some properties of the

multiple Poincaré series PS(a, b, t), for example its rationality. We can also investigate

how it behaves if the S-ideals a and b are replaced by the dual S-ideals c : a and c : b

of a and b, respectively, which is expressed in a reciprocity formula. Furthermore, we

can derive explicit formulae for the coefficients of this series.

Theorem 37 The coefficients of the Poincaré series PS(a, b, t) :=
∑

ηS,n (a, b) tn sat-

isfy:

1. ηS,n (a, b) =
#((b:a)j/US)

[Ub:US ]
where j = n− v(a · S̃) + v(b · S̃) for each n ∈Zm.

2. ηS,n (a, b) > 0 if and only if n ∈S (b) .

3. 0 ≤ ηS,n (a, b) ≤ [US̃ : Ub] for each n ∈Zm.

4. b is the smallest vector in the partial order of Nm with the following property:

if n ≥ b then ηS,n (a, b) = [US̃ : Ub].

Proof. (1) From Formula 3.5 we obtain the first sentence.

Let n = (n1, · · · ,ns) be an integer vector in Zm1 × · · · ×Zms , where each mj is the

number of branches of the local ring Oj. We have from the Euler product identity that

ηS,n (a, b) =
s∏

j=1

ηOj ,nj
(aOj, bOj) .

(2) So, ηS,n (a, b) > 0 if and only if ηOj ,nj
(aOj, bOj) > 0 for each j = 1, · · · , s.

Hence, from Proposition 20, we obtain the second sentence by applying the local case

(see [27], Theorem 3.2 (i)).

(3) By the local case (see [27], Theorem 3.2(ii)), 0 ≤ ηOj ,nj
(aOj, bOj) ≤ [UÕj

: UbOj
]

for each j = 1, · · · , s. Therefore we obtain the third claim from Corollary 21.

(4) Let bj be the multi-exponent of the Õj-ideal (bOj : Õj) : bOj. We have that

b = (b1, · · · ,bs) and, by the local case (see [27], Theorem 3.2(iii)), we have that bj
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is the smallest vector in the partial order of Nmj satisfying the following property: if

nj≥ bj then ηOj ,nj
(aOj, bOj) = [UÕj

: UbOj
]. Thus, the fourth claim follows from

Corollary 21.

The semilocal ring S = O1 ∩ · · · ∩ Os has a finite number of maximal ideals, say

m1, · · · , ms. Let us denote by

%j := dimk (Oj/mjOj)

and by

δj := dimk(Õj/Oj)

the degree of the residue field and the singularity degree of the local ring Oj, respec-

tively, for each j = 1, · · · , s.

Theorem 38

ηS,n (S, b) =
q

∑s
j=1(δj+%j)

[Ub : US]
∏s

j=1 (q%j − 1)

∑

i∈{0,1}m

(−1)|i| q−dimk(bpn/b∩bpn+i).

where the sum is taken over the vectors i = (i1, · · · , im) ∈{0, 1}m.

Proof. Let bj denote bOj, for j = 1, · · · , s. Let n = (n1, · · · ,ns) ∈ Nm1×· · ·×Nms .

By Theorem 6 in [27], it follows that

ηOj ,n (Oj, bj) =
q%j+δj

[Ubj
: UOj

] (q% − 1)

∑

ij∈{0,1}mj

(−1)|ij | q−dim(bjp
nj
j /bj∩p

nj+ij
j )

for each j = 1 · · · , s.Then, by Euler product identity for Poincaré series, we obtain

ηS,n (S, b) =
s∏

j=1

ηOj ,n (Oj, bj)

=
s∏

j=1


 q%j+δj

[Ubj
: UOj

] (q%j − 1)

∑

ij∈{0,1}mj

(−1)|ij | q
− dim

(
bjp

nj
j /bj∩p

nj+ij
j

)
 .

Therefore,

ηS,n (S, b) =
q

∑s
j=1(δj+%j)

[Ub : US]
∏s

j=1 (q%j − 1)

∑

i∈{0,1}m

(−1)|i| q−dimk(bpn/b∩bpn+i).

The last equality being a consequence of

dimk

(
bpn/b ∩ bpn+i

)
=

∑s

j=1
dimk(bjp

nj

j /bj ∩ bjp
nj+ij
j ) (3.8)

59



for each i = (i1, · · · , is) ∈{0, 1}m1 × · · · × {0, 1}ms = {0, 1}m, and

s∏
j=1

[Ubj
: UOj

] = [Ub : US] (3.9)

which are due to Lemma 22 and Corollary 21, respectively.

In [27], for each local ring O of a geometrically integral algebraic curve defined over

a field Fq, and for each set M in the Boolean algebra generated by the cosets z + a

(z ∈ K) of the O-ideals was attributed a volume µ (M) ≥ 0, uniquely determined by

the three axioms: µ (O) = 1, µ (z + M) = µ (M) and µ (M ∪N) = µ (M) + µ (N)

whenever M ∩N = ∅. Using this measure Stöhr proved the precedent theorem in the

local case. Similarly, we can attribute to each M ∈ MS, where MS is the Boolean

algebra generated by the cosets z + a (z ∈ K) of the S-ideals, a volume µS (M) ≥ 0,

uniquely determined by the three axioms: µS (S) = 1, µS (z + M) = µS (M) and

µS (M ∪N) = µS (M) + µS (N) whenever M ∩ N = ∅. By using this measure and

following the same ideas that were used by Stöhr to prove the local case, we can prove

the above theorem without any use the Euler product identity. We can also prove

Euler product identity for Poincaré series in a similar fashion.

Indeed, since the S-ideal b is a disjoint finite union of cosets of the S-ideal a,

whenever a ⊆ b, it follows that the volume

µS (b) = # (b/a) µS (a) whenever a ⊆ b are S-ideals.

Thus, for each S-ideal b we have that zb ⊆ S for some z ∈ S, hence we get that

µS (S) = # (S/zb) µS (zb) = q− degS(zb)µS (zb) and, finally, we get that

µS (b) = # (b/zb) µS (zb) = qdegS(b)−degS(zb).

Then, due to the normalization µS (S) = 1,

µS (b) = qdegS(b) for each S- ideal b.

The group US, of units of the semilocal ring S, is the complement of the union of the

finite maximal ideals m1, · · · ,ms of S. Hence

µS (US) = µS (S\ ∪s
i=1 mi) = 1− µS (∪s

i=1mi) .
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On the other hand, since µS (·) is additive, it follows from the inclusion-exclusion

principle that

µS (US) = 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

µS(mi1 ∩ · · · ∩mij)

= 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

qdegS(mi1
∩···∩mij

)

= 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

q
∑j

k=1 degOik
(mik

Oik
)

= (1− qdegO1
(m1O1)) · · · (1− qdegOs

(msOs)).

Therefore, since each %i = dimk (Oi/miOi), we obtain

µS (US) =
(
1− q−%1

) · · · (1− q−%s
)
.

Now, the Euler product identity for multiple Poincaré series follows from 3.8 and 3.9

in the proof of Theorem 38.

In [27] (Proposition 2.6) it was proved that, if b is an O-ideal of a local ring O,

then

PO(O, b, t) = PO(b : b, b, t) = Pb:b(b : b, b, t).

Similarly, we can extend this property to semilocal rings.

Proposition 39 If b is an S-ideal of a semilocal ring S, then

PS(S, b, t) = PS(b : b, b, t) = Pb:b(b : b, b, t). (3.10)

Proof. We have that S ⊆ b : b ⊆ S̃, then the ring b : b is a semilocal ring.

According to [27] we first observe that the S-ideal b, and even any S-ideal equivalent

to b, may be viewed as an (b : b)-ideal and if d is an S-ideal equivalent to b, then d ⊇ S

if and only if d ⊇ b : b. Furthermore, since b : b is a ring, it follows that (b : b) S̃ = S̃.

Now, the proposition follows from Definition 29.

Corollary 40 If S ′ is any subring of S̃ containing the semilocal ring S, then

PS(S, S ′, t) = PS′(S
′, S ′, t).

In particular, if S ′ := Sa is the blow-up of S with respect to an ideal a, then

PS(S, Sa, t) = PSa(Sa, Sa, t) = PS(S, an : an, t)

for all sufficiently large integer n.
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Proof. We observe that S ′ is an S-ideal and S ′ : S ′ = S ′. Thus the first equality

follows from the previous proposition. On the other hand, it is known that Sa = an : an

for all sufficiently large integer n (cf. [20] Proposition 4.3). Hence the second equality

holds.

Let b be an O-ideal of a local ring O. The ring S := b : b is a semilocal ring and it

may be expressed as a finite intersection of local rings S = O1 ∩ · · · ∩ Os. We denote

by %j := dimk (Oj/mjOj) and δj := dimk(Õj/Oj) the degree of the residue field and

the singularity degree of the local ring Oj, respectively, for each j = 1, · · · , s.

From Identity 3.10 and from the Euler product identity of Poincaré series we obtain

the following result:

Corollary 41 [Ub : UO] =
q

%+δ−∑s
j=1(δj+%j) ∏s

j=1(q%j−1)
(q%−1)

.

Proof. Let n = (n1, · · · ,ns) ∈ Nm1 × · · ·×Nms . From Theorem 6 in [27], it follows

that

ηn (O, b) =
q%+δ

[Ub : UO] (q% − 1)

∑

i∈{0,1}m

(−1)|i| q− dimk(bpn/b∩bpn+i). (3.11)

On the other hand, since Ub = Ub:b, b : b = S and, hence, [Ub : US] = 1; it follows from

Theorem 38 that

ηS,n (S, b) =
q

∑s
j=1(δj+%j)

∏s
j=1 (q%j − 1)

∑

i∈{0,1}m

(−1)|i| q− dimk(bpn/b∩bpn+i). (3.12)

So, by comparing 3.11 and 3.12, we obtain the result.

In particular, if O1 := (b : b) is a local ring, then m1 := O1 ∩ (∩m
i=1pi) is the

maximal ideal of O1, and [Ub : UO] = q%+δ−(δ1+%1)(q%1−1)
(q%−1)

, where %1 := dimk (O1/m1)

and δ1 := dimk(Õ1/O1). Thus, in this case, % divides %1 and the natural homomor-

phism O/m ↪→ O1/m1 is an isomorphism of fields if and only if % = %1 if and only if

[Ub : UO] = qδ−δ1 if and only if O1 = O+m1 i.e. O1 ⊆ O+(∩m
i=1pi) . Hence, according to

Stöhr the local ring O′ := O+(∩m
i=1pi) is the largest local ring between O and Õ whose

residue field is equal to the residue field of O. It follows that [UO′ : UO] = q%+δ−|r|,
[UÕ : UO′ ] =

∏m
i=1(q

ri−1)

q%−1
and UO′/UO is the maximal p-subgroup of UÕ/UO.

We observe that, if S is a semilocal ring of a geometrically integral algebraic curve

X defined over a field Fq of q elements, whose expression as an intersection of local

rings is S = O1 ∩ · · · ∩Os, where each Oj is a local ring of the curve X, and, if b is an

S-ideal, then b : b is a semilocal ring and it may be expressed as the finite intersection
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of local rings b : b = O(b)
1 ∩ · · · ∩ O(b)

sb , where O(b)
i is a local ring for each i = 1, · · · , sb.

Hence (bO1 : bO1)∩· · ·∩ (bOs : bOs) = O(b)
1 ∩· · ·∩O(b)

sb , with sb ≥ s. As before, let us

denote by %j and by %
(b)
i the degree of the residue field of the local rings Oj and O(b)

i ,

respectively. From the previous corollary we deduce that

[Ub : US] =
qδS+%S−(δb:b+%b:b)

∏sb

i=1(q
%
(b)
i − 1)∏s

j=1 (q%j − 1)
(3.13)

where δS := dimk(S̃/S) and δb:b := dimk(S̃/ (b : b)) are the singularity degree of the

semilocal rings S and b : b, respectively; and %S := dimk (S/r), %b:b := dimk

(
b : b/r(b)

)
,

where r and r(b) are the Jacobson radical of S and b : b, respectively.

3.4 Integral representation

Let R :=
∏m

i=1 K̂vi
be the locally compact total ring of fractions of the completion

Ŝ of the semilocal ring S, and let UR :=
∏m

i=1 K̂∗
vi

be its group of units. As in the

local case (cf. [27]), the assignment a 7−→ â = Ŝ · a defines a one-to-one monotone

degree-preserving bijection between the S-ideals and the regular Ŝ-ideals. Its inverse

mapping is given by â 7−→ â∩K. Two S-ideals a and b are equivalent if and only if the

corresponding Ŝ-ideals â and b̂ are equivalent, that is, there exists z ∈ UR such that

b̂ = zâ (see [14], section 3). Moreover, b̂ : a = b̂ : â for each pair of S-ideals a and b

(see [27], section 5).

The homomorphism v :K∗ −→ Zm extends naturally to the group homomorphism

v :UR −→ Zm that maps each unity u := (u1, · · · , um) in UR to the integer vector

v(u) = (v̂1 (u1) , · · · , v̂m (um)) in Zm.

Let µ̂S be the Haar measure on the additive group of the locally compact

Fq-algebra R, normalized so that µ̂S(Ŝ) = 1. The multiple Poincaré series PS(a, b, t)

may be expressed as an integral in terms of this measure.

Since the Ŝ-ideal b̂ is a finite disjoint union of cosets of the S-ideal â, whenever

a ⊆ b, it follows that the volume

µ̂S(b̂) = #(b̂/â)µ̂S (â) whenever a ⊆ b are S-ideals.

Thus, for each S-ideal b we have that zb̂ ⊆ Ŝ for some z ∈ Ŝ, hence, we have that

µ̂S(Ŝ) = #(Ŝ/zb̂)µ̂S(zb̂) = q−degS(zb̂)µ̂S(zb̂). Finally we have that

µ̂S(b̂) = #(b̂/zb̂)µ̂S(zb̂) = qdegS(b̂)−degS(zb̂).
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Then, due to the normalization µ̂S(Ŝ) = 1,

µ̂S(b̂) = qdegS(b) for each S- ideal b.

Because, the group UŜ of units of the semilocal ring Ŝ is the complement of the union

of the finite maximal ideals, say m̂1, · · · , m̂s, of Ŝ we conclude

µ̂S(UŜ) = µ̂S(Ŝ\ ∪s
i=1 m̂i) = 1− µ̂S(∪s

i=1m̂i).

On the other hand, since µ̂S (·) is additive it follows from the inclusion-exclusion prin-

ciple that

µ̂S (US) = 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

µ̂S(m̂i1 ∩ · · · ∩ m̂ij)

= 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

qdegS(mi1
∩···∩mij

)

= 1−
∑s

j=1
(−1)j−1

∑
0≤i1<···<ij≤s

q
∑j

k=1 degOik
(mik

Oik
)

= (1− qdegO1
(m1O1)) · · · (1− qdegOs

(msOs)).

Thus, given that %i = dimk (Oi/miOi), we obtain

µ̂S

(
UŜ

)
=

(
1− q−%1

) · · · (1− q−%s
)
.

Moreover, we have µ̂S(zŜ) = q−r·v(z) for each z ∈ K∗ and even more, for each z ∈ UR.

Now, from the uniqueness of the normalized Haar measure we get

µ̂S (zM) = q−r·v(z)µ̂S (M)

for each z ∈ K∗ and for each measurable subset M of R.

The multiple power series PS(a, b, t) can be realized by an integral in the following

form:

Theorem 42

PS(a, b, t) =

∏s
j=1(1− q−%j)

[Ub : US]

∫

(b̂:â)∩UR
qr·v(z)tv(z)dµ̂S(z)

in the unit poly-disk |t1| < 1, · · · , |tm| < 1, where %j := dimk (Oj/mjOj) is the degree

of the residue field of the local ring Oj over the constant field k for each j = 1, · · · , s.
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Proof. Since d̂ ∩ UR is the disjoint union of the sets d̂n = {z ∈ d̂ : v (z) = n} and

since v (z) assumes on d̂n the constant value n, we have
∫

d̂∩UR
qr·v(z)tv(z)dµ̂S(z) =

∑

n∈Zm

qr·ntnµ̂S(d̂n) ∈ C[[t1, · · · , tm]]tv(d·S̃)

in the domain of the absolute convergence of the Laurent series on the right hand side

series. Since d̂n is the disjoint union of the cosets zUŜ, where z varies over a complete

system of representatives of dn modulo US, and each of this cosets has the volume

µ̂S

(
zUŜ

)
= q−r·v(z)µ̂S

(
UŜ

)
= q−r·v(z)

(
1− q−%1

) · · · (1− q−%s
)

we obtain

µ̂S(d̂n) = #(dn/US)q−r·n (
1− q−%1

) · · · (1− q−%s
)
.

So, ∫

d̂∩UR
qr·v(z)tv(z)dµ̂S(z) =

(
1− q−%1

) · · · (1− q−%s
) ∑

n∈Zm

#(dn/US)tn

for each S-ideal d. Thus, by setting d = b : a and by applying Formula 3.5, we obtain

the integral representation of the Poincaré series.

3.5 Functional equation

Theorem 43 The Poincaré series PS(a, b, t) is a rational function of the form

PS(a, b, t1, · · · , tm) =
ΛS(a, b, t1, · · · , tm)

(1− t1) · · · (1− tm)

where ΛS(a, b, t1, · · · , tm) is a polynomial in t1, · · · , tm with integer coefficients of multi-

degree smaller than or equal to b = (b1, · · · , bm) := v((b:S̃) : (b·S̃)), which satisfies the

functional equation:

ΛS(a, b, t1, · · · , tm) = [Ub:a : Ub]q
dim(b:a/(b:a):S̃)tb11 · · · tbm

m ΛS(S, a · b∗, 1

qr1t1
, · · · ,

1

qrmtm
).

(3.14)

In particular,

ΛS(S, b, t1, · · · , tm) = qdim(b/b:S̃)tb11 · · · tbm
m ΛS(S, b∗,

1

qr1t1
, · · · ,

1

qrmtm
),

or equivalently,

ΛS(S, b∗, t1, · · · , tm) = qdim(b·S̃/b)tb11 · · · tbm
m ΛS(S, b,

1

qr1t1
, · · · ,

1

qrmtm
).

65



Proof. We put bj = bOj, aj = aOj and dj = bj : aj, for j = 1, · · · , s. By the local

case (see [27], theorem 7.1), we have

POj
(aj, bj, t1, · · · , tm) =

ΛOj
(aj, bj, tj1, · · · , tjmj

)

(1− tj1) · · · (1− tjmj
)

where each ΛOj
(aj, bj, tj1, · · · , tjmj

) is a polynomial in tj1, · · · , tjmj
with integer coeffi-

cients of multi-degree smaller than or equal to bj = (bj1, · · · , bjmj
) := v((bj:Õj) : (bjÕj))

which satisfies the functional equation equation

ΛOj
(aj, bj, tj) = [Udj

: Ubj
]qdim(dj/dj :Õj)t

bj1

j1 · · · t
bjmj

jmj
ΛOj

(Oj, aj · bj
∗,

1

qrj1tj1
, · · · ,

1

qrjmj tjmj

)

(3.15)

where tj :=
(
tj1, · · · , tjmj

)
for j = 1, · · · , n. Now, set

ΛS(a, b, t1, · · · , tm) :=
s∏

j=1

ΛOj
(aj, bj, tj1, · · · , tjmj

).

Then, ΛS(a, b, t1, · · · , tm) is a polynomial in t1, · · · , tm with integer coefficients of multi-

degree smaller than or equal to b = (b1, · · · , bm) := v((b:S̃) : (b·S̃)) and so, by the

Euler product identity, PS(a, b, t1, · · · , tm) = ΛS(a,b,t1,··· ,tm)
(1−t1)···(1−tm)

. From Proposition 19 and

Corollary 21, a ·b∗ = a1 ·bj
∗∩· · ·∩as ·bs

∗ and
∏s

j=1[Udj
: Ubj

] = [Ub:a : Ub], respectively.

Thus, From 3.15 we conclude that ΛS(a, b, t1, · · · , tm) satisfies the functional equation

3.14.

66



Chapter 4

Computation of Poincaré series and

ground field extension

4.1 Computation of Poincaré series

In this section we indicate a procedure which is useful to determine the ideal classes

of a local ring O and to compute the Poincaré series PO(a, b, t) for each pair of ideal

classes [a] and [b]. Let O be a local ring of a geometrically irreducible algebraic curve

defined over a finite field k = Fq with rational function field K, and let a and b be

O-ideals.

Let us consider the semilocal subring O0 := k ⊕ f of O, where f = O : Õ is the

conductor ideal of the local ring O. We first give a procedure to compute the multiple

Poincaré series PO0(O0,O0, t) which indicates a general procedure to compute the

multi-variable Poincaré series PO(a, b, t).

We observe that O0 ⊆ O ⊆ Õ and that the valuation rings of K | k containing

O0 are precisely the valuation rings of K | k containing O, hence Õ0 = Õ. Moreover,

f = O0 : Õ, that is, f is also the conductor ideal of O0. The completion of the ring O0

is the ring Ô0 = k(1, · · · , 1)⊕ f̂. Let a and b be O0-ideals.

For each n := (n1, · · · , nm) ∈ Zm the coefficient ηO0,n (a, b) of the multi-variable
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Poincaré series PO0(a, b, t) is

ηO0,n (a, b) = #{O0-ideals d satisfying d ⊇ a, d ∼ b and d · Õ = a · p−n}
= #{O0-ideals d satisfying d · Õ = Õ, d ∼ b and pna ⊆ d}
= #{Ô0-ideals d̂ satisfying d̂ · ̂̃O =

̂̃O, d̂ ∼ b̂ and p̂nâ ⊆ d̂}.

Given that Ô0 is a subring of
̂̃O that contains the conductor ideal f̂, we have

̂̃O = Ṽ ⊕ f̂

for some vector space Ṽ . Since f ⊆ (d : Õ) : (dÕ) ⊆ Õ for each O0-ideal d (cf. [27]

Lemma 3.1), it follows that each Ô0-ideal d̂, which satisfies d̂ · ̂̃O =
̂̃O, is of the form

d̂ = D ⊕ f̂, where D is a vector subspaces of Ṽ satisfying k(1, · · · , 1) ·D ⊆ D ⊕ f̂ and

contains for each i = 1, · · · ,m a vector whose i-th entry has order 0. In particular,

â = A ⊕ f̂ and b̂ = B ⊕ f̂ where A and B are vector subspaces of Ṽ that satisfy

k(1, · · · , 1)·A ⊆ A⊕ f̂ and k(1, · · · , 1)·B ⊆ B⊕ f̂ and they contain for each i = 1, · · · ,m

a vector whose i-th entry has order 0. Another such an ideal d̂ = D ⊕ f̂ is equivalent

to b̂ = B ⊕ f̂ if and only if there is a vector z ∈ Ṽ with entries of order 0 such

that D ⊕ f̂ = zB + f̂. In particular (for â = Ô0 and b̂ = Ô0) the Ô0-ideals d̂ satisfying

d̂ · ̂̃O =
̂̃O, d̂ ∼ Ô0 and p̂nÔ0 ⊆ d̂ correspond to the vector subspaces D of Ṽ satisfying:

k(1, · · · , 1) ·D ⊆ D⊕ f̂, D contains for each i = 1, · · · ,m a vector whose i-th entry has

order 0, there is a vector z ∈ Ṽ with entries of order 0 such that D⊕ f̂ = zk(1, · · · , 1)+ f̂,

and p̂n ⊆ D ⊕ f̂. Thus, we obtain (see Theorem 44)

PO0(O0,O0, t) =
(1− t1) · · · (1− tm) + (qr·f−|r| ∏m

i=1(q
ri − 1)/(q − 1))tf

(1− t1) · · · (1− tm)
.

Similarly, the completion of the local ring O can be expressed in the form Ô = V ⊕ f̂

for some vector subspace V of Ṽ such that k(1, · · · , 1) · V ⊆ V ⊕ f̂ and V contains for

each i = 1, · · · ,m a vector whose i-th entry has order 0. Moreover, each Ô0-ideals d̂

satisfying d̂ · ̂̃O =
̂̃O, d̂ ∼ Ô and p̂nÔ0 ⊆ d̂ corresponds to a vector subspace D of Ṽ

satisfying: k(1, · · · , 1) ·D ⊆ D⊕ f̂, D contains for each i = 1, · · · ,m a vector whose i-th

entry has order 0, there is a vector z ∈ Ṽ with entries of order 0 such that D⊕ f̂ = zV + f̂

and p̂n ⊆ D ⊕ f̂. From Proposition 39, PO0(O0,O, t) = PO0(O,O, t) = PO(O,O, t).

Thus, in this way, we can compute the Poincaré series PO(O,O, t).

Now, we proceed to indicate a general procedure to compute the Poincaré series

PO(a, b, t) for each pair of ideal classes [a] and [b]. Since the normalization Õ of O
is a semilocal principal ideal domain, we choose generators π1, · · · , πm of the maximal

integral Õ-ideals p1, · · · , pm, respectively. By the weak approximation theorem we can

assume that

vj (πi − 1) ≥ fj whenever j 6= i.
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Observe that each O-ideal can be written in a unique way in the form π−nd where

πn := πn1
1 · · · πnm

m for some n = (n1, · · · , nm) ∈ Zm and where d is one of the finitely

many O-ideals satisfying d · Õ = Õ and that the O-ideal π−nd contains a if and only if

πna ⊆ d, that is, πn ∈ d : a. Hence the Poincaré series PO(a, b, t) admits the following

partition

PO(a, b, t) =
∑

d·Õ=Õ, d∼b

( ∑
πn∈d:a

tn+v(a·Õ)

)

where d varies over the O-ideals that are equivalent to b and that satisfy d · Õ = Õ
(the number of O-ideals satisfying these properties is [UÕ : Ub] ), and n varies over the

integer vectors satisfying πn ∈ d : a. Therefore, the coefficient ηn (a, b) of PO(a, b, t)

satisfies

ηn (a, b) = #{O-ideals d satisfying d · Õ = Õ, d ∼ b and πn−v(a·Õ)a ⊆ d}. (4.1)

Theorem 44 The Poincaré series PO(a, b, t) converges absolutely in the unit poly-disk

|t1| < 1, · · · , |tm| < 1 to a rational function

PO(a, b, t) =
ΛO (a, b, t)

(1− t1) · · · (1− tm)
,

where ΛO (a, b, t) ∈ Z[t1, · · · , tm] is a polynomial of multi-degree ≤ b. More precisely,

ΛO (a, b, t) =
∑

0≤n≤b

ηn (a, b) tn
∏

ni<bi

(1− ti)

where the index i runs through the integers i = 1, · · · ,m with ni < bi in the product.

Proof. The polynomial ΛO (a, b, t) can be obtained from the Functional Equation.

Here we give an algorithmic proof. The theorem will follow from the next assertion:

ηn (a, b) = ηinf(n,b) (a, b)

where inf (n,b) := (min (n1, b1) , · · · , min (nm, bm)) for each n. To prove this assertion

we can assume that a · Õ = Õ. Since vi (πi) = 1, vj (πi − 1) ≥ fj whenever j 6= i, and

fj ≥ bj, we deduce

v
(
πna− πinf(n,b)a

) ≥ b for each a ∈ Õ.

If d · Õ = Õ and d ∼ b (and therefore d ⊇ pb), then for each element a ∈ Õ we obtain

πna− πinf(n,b)a ∈ d, hence πna ∈ d if and only if πinf(n,b)a ∈ d, and therefore πna ⊆ d
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if and only if πinf(n,b)a ⊆ d, this proves the above assertion. Therefore, the Poincaré

series PO(a, b, t) is a sum of (b1 + 1) · · · (bm + 1) multiple geometric series

PO(a, b, t) =
∑

0≤n≤b

ηn (a, b) tn
∏

ni=bi

1

1− ti

and so the theorem will follow.

By previous Theorem, we have only to compute the finitely many coefficients

ηn (a, b) with 0 ≤ n ≤ b = (b1, · · · , bm) := v((b : Õ) : b · Õ).

Since the coefficients ηn (a, b) only depend on the classes of the O-ideals a and b,

we will assume that a · Õ = b · Õ = Õ. The right-hand side of the equations 4.1 remains

unchanged, if O, Õ, a, b and d are replaced by their respective completions:

ηn (a, b) = #{Ô-ideals d̂ satisfying d̂ · ̂̃O =
̂̃O, d̂ ∼ b̂ and πn−v(â· ̂̃O)â ⊆ d̂}

= #{Ô-ideals d̂ satisfying d̂ · ̂̃O =
̂̃O, d̂ ∼ b̂ and πnâ ⊆ d̂}.

(4.2)

By Cohen’s Structure Theorem, the completion
̂̃O of the normalization of Õ of O is

the direct product of formal power series rings

̂̃O = k1[[π]]× · · · × km[[π]]

where π := π1 · · · πm and k1 = Õ/p1,· · · , km = Õ/pm are the residue fields of Õ at

p1, · · · , pm, respectively. By passing from the constant field k = Fq to the residue field

of O, which coincides with the residue field of Ô and is contained in Ô, and by passing

from t1, · · · , tm to tρ1, · · · , tρm we could assume that k is the residue field of Ô, that is,

ρ = 1.

Since Ô is a subring of
̂̃O =

m∏
i=1

ki[[π]] that contains the conductor ideal

f̂ =
m∏

i=1

πfiki[[π]], we have Ô = V ⊕ f̂ for some vector subspace V of Ṽ :=
m∏

i=1

fi−1⊕
j=0

kiπ
j

that satisfies V · V ⊆ V ⊕ f̂, V contains 1 := (π0, · · · , π0) , and V does not contain

any of the m one-dimensional vector spaces {0} × · · · × kiπ
fi−1 × · · · × {0}. Since

f ⊆ (d : Õ) : (dÕ) ⊆ Õ for each O-ideal d (cf. [27] Lemma 3.1), it follows that any

Ô-ideal d̂, which satisfies d̂ · ̂̃O =
̂̃O, is of the form d̂ = D ⊕ f̂, where D is a vector

subspace of Ṽ satisfying V ·D ⊆ D ⊕ f̂ and D contains for each i = 1, · · · ,m a vector

whose i-th entry has order 0. In particular, â = A⊕ f̂ and b̂ = B ⊕ f̂, where A and B

are vector subspaces of Ṽ satisfying V ·A ⊆ A⊕ f̂, V ·B ⊆ B ⊕ f̂ and they contain for

each i = 1, · · · ,m a vector whose i-th entry has order 0. Another such ideal d̂ = D⊕ f̂
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is equivalent to b̂ = B ⊕ f̂ if and only if there is a vector z ∈ Ṽ with entries of order 0

such that D ⊕ f̂ = zB + f̂. The number of these vector spaces D is equal to the index

[UÕ : Ub].

To compute the coefficients ηn (a, b) by Formula 4.2 we discuss the condition

πnâ ⊆ d̂. By our choice of the generators πi of the ideals pi, we have πn ≡ (πn1 , · · · , πnm)

mod f̂ for each n ∈Nm. Alternatively, the maximal ideal p̂i is generated by vector

π̂i := (1, · · · , π, · · · , 1) with i-th entry is equal to π and any other entry is equal to

1, and we have π̂1
n1 · · · π̂m

nm = (πn1 , · · · , πnm) . The condition πnâ ⊆ d̂ simply means

that (πn1 , · · · , πnm) A ⊆ D⊕ f̂. Hence we have a procedure in terms of Linear Algebra

to compute the coefficients ηn (a, b) of the Poincaré series PO(a, b, t).

Proposition 45 ηn (a, b) is equal to the number of vector subspaces D of Ṽ such that

for each i = 1, · · · ,m, D contains a vector with i-th entry of order 0 and it satisfies

V ·D ⊆ D ⊕ f̂, D ⊕ f̂ ∼ B ⊕ f̂ and (πn1 , · · · , πnm) A ⊆ D ⊕ f̂.

4.2 Examples

In this section we present some examples of zeta functions and multi-variable Poincaré

series of local rings of singular curves defined over a finite field. We observe that this

series are determined by the semigroup of values of the local ring when it is a residually

rational ring. This is no longer true when the local ring is not residually rational, as

the following example shows. Some examples also suggest the behavior of these series

under ground field extension.

Example 46 Let X be the plane projective cubic curve cut out by the absolutely

irreducible homogeneous equation y2z + x2z−x3 = 0 which is defined over the field Fq

of characteristic different from 2 and such that q − 1 is not divisible by 4. This curve

has its unique singularity at the point P = (0 : 0 : 1). We denote by O the local ring

OX,P and by Ô its completion. Then Ô ' Fq[[x, y]]/ (y2 + x2 − x3) , whose minimal

primes correspond bijectively to the irreducible factors of y2 +x2−x3 in Fq[[x, y]], that

is, the branches of X at the point P. Let us consider the finite field extension Fq2 | Fq,

so that Fq2 is isomorphic to the field Fq[T ]/ (T 2 + 1) . Thus

Ô ' Fq[[x]][y]/
(
y2 + x2 − x3

)

⊆ Fq((x))[y]/
(
y2 + x2 − x3

)

⊆ Fq2((x))[y]/
(
y2 + x2 − x3

)
.
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Since, in Fq2((x))[y], y2 +x2−x3 = (y− ξx
∞∑

n=0

(−1)n (
1/2
n

)
xn)(y + ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn),

where ξ ∈ Fq2 is a zero of T 2 + 1 in Fq2 , then it follows by the Chinese remainder

theorem that

Fq2((x))[y]

(y2 + x2 − x3)
' Fq2((x))[y]/(y − ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn)(y + ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn)

' Fq2((x))× Fq2((x)).

Therefore the ring Ô is isomorphic to some subring of Fq2((x)) × Fq2((x)). By Weier-

strass division theorem, it follows that Ô ≈ Fq[[x]] ⊕ Fq[[x]]y. That means, if

f ∈ Fq[[x]][y], then f = h (y2 + x2 − x3) + r, where h, r ∈ Fq[[x]][y] and deg r ≤ 1,

so f = r in Fq[[x]][y]/ (y2 + x2 − x3) and the image in Fq2((x)) × Fq2((x)) of the class

f, under above isomorphism, is

(r(x, ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn), r(x,−ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn)) ∈ Fq2 [[x]]× Fq2 [[x]].

Thus, the ring Ô is isomorphic to the subring

{(r(x, ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn), r(x,−ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn)) : r ∈ Fq[[x]][y], deg r ≤ 1}

of the ring Fq2 [[x]] × Fq2 [[x]]. On the other hand, Galois group of the field extension

Fq2 | Fq is generated by Frobenius automorphism σ which acts on the field Fq2 by

σ (c) = cq. Note that ξ and −ξ are the zeros of the polynomial T 2 + 1 in Fq2 and

σ (ξ) = −ξ. Then the ring Ô is isomorphic to the ring

{r(x, ξx

∞∑
n=0

(−1)n (
1/2
n

)
xn) ∈ Fq2 [[x]] : r ∈ Fq[[x]][y], deg r ≤ 1},

that is, Ô is isomorphic to the ring Fq ⊕ xFq2 [[x]]. Thus, we have % = 1, m = 1, r = 2,
̂̃O = Fq2 [[x]] and

Ô ' Fq ⊕ f̂,

where f̂ = xFq2 [[x]]. Hence δ = 1 and
̂̃O/̂f ∼= Fq2 . The Ô-ideals b̂ that satisfy

b̂ · ̂̃O =
̂̃O contain the conductor ideal f̂ and, therefore, correspond bijectively to the

vector subspaces of Fq2 that contain a vector of order 0. By writing their bases into

standard forms we obtain the following list:

Fq (1 + aξ)⊕ f̂, with a ∈ Fq

Fq (ξ)⊕ f̂

Fq2 ⊕ f̂.
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We pick up representatives

b̂1 = Fq ⊕ f̂,

by putting a = 0 in the first line, and

b̂2 = Fq2 ⊕ f̂.

The first and second lines are in the ideal class represented by b̂1. Let bi := b̂i ∩ K

(i=1,2) be the corresponding representatives of the ideal classes of O. Then b1 = O,

and b2 = Õ and we obtain:
[
UÕ : UO

]
= q + 1,

ΛO (O,O, t) = 1 + qt and ΛO(O, Õ, t) = 1.

Moreover, ZO (O,O, t) = 1+qt2

1−t2
, ZO(O, Õ, t) = t

1−t2
, ZO (O, t) = 1+t+qt2

1−t2
and S (O) = N.

In the precedent example the local ring O of a singular curve defined over a finite

field Fq is not residually rational and for each ideal class b the set S (b) is equal to

N. In the next example we consider the curve defined by the same equation of the

precedent example but, in this case, the local ring is residually rational. We observe

that, if F̂q2O is the completion of the semilocal ring Fq2O which is the extension of

the local ring O to the function field Fq2K | Fq2 , then F̂q2O ' Fq2 (1, 1) ⊕ f̂ where

f̂ = xFq2 [[x]]× xFq2 [[x]].

Example 47 We consider the completion of the local ring of a rational node:

Ô = Fq (1, 1)⊕ f̂ where f̂ = πFq[[π]]× πFq[[π]]. Then O is a Gorenstein ring of singula-

rity degree δ = 1, and
̂̃O/̂f ∼= Fq×Fq. The O-ideals b that satisfy b · Õ = Õ contain the

conductor f and, therefore, correspond bijectively to the vector subspaces of Fq × Fq

that, for i = 1, 2, contain a vector whose i-th entry is not zero. There are only two

bases in standard forms, namely

Fq (1, a)

Fq (1, 0)⊕ Fq (0, 1)

where a varies over the multiplicative group F∗q. Each of them represent one ideal

class, namely the class of principal ideals and the class of Õ-ideals. Thus, we obtain[
UÕ : UO

]
= q − 1,

PO (O,O, t1, t2) =
1− t1 − t2 + qt1t2
(1− t1) (1− t2)

,

ZO (O,O, t) = 1−2t+qt2

(1−t)2
, ZO (O, t) = 1−t+qt2

(1−t)2
and S(O) = {(0, 0)} ∪ ((1, 1) + N2).
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In the following example we compute the zeta series and the multi-variable Poincaré

series of a singularity with two brunches which is not residually rational.

Example 48 Let X be the plane projective quartic curve cut out by the absolutely

irreducible homogeneous equation y3z − (x3z + x4) = 0 with base field Fq. Assume

that in the field Fq the polynomial T 2 + T + 1 ∈ Fq[T ] is irreducible. This curve has

its unique singularity at the point P = (0 : 0 : 1). We denote by O the local ring OX,P

and by Ô its completion. Then Ô ' Fq[[x, y]]/ (y3 − (x3 + x4)) , whose minimal primes

correspond bijectively to the irreducible factors of y3 − (x3 + x4) in Fq[[x, y]], that is,

the branches of X at the point P. Let us consider the finite field extension Fq2 | Fq, so

that Fq2 is isomorphic to the field Fq[T ]/ (T 2 + T + 1) . Thus

Ô ' Fq[[x]][y]/
(
y3 − (

x3 + x4
))

⊆ Fq((x))[y]/
(
y3 − (

x3 + x4
))

⊆ Fq2((x))[y]/
(
y3 − (

x3 + x4
))

.

Since, in Fq2((x))[y], y3 − (x3 + x4) =
3∏

j=1

(y − ξjx
∞∑

n=0

(
1/3
n

)
xn), where ξ ∈ Fq2 is a zero

of T 2 + T + 1 in Fq2 , it follows by the Chinese remainder theorem that

Fq2((x))[y]/
(
y3 − (

x3 + x4
)) '

3∏
j=1

Fq2((x))[y]/(y − ξjx

∞∑
n=0

(
1/3
n

)
xn)

' Fq2((x))× Fq2((x))× Fq2((x)).

Therefore the ring Ô is isomorphic to some subring of Fq2((x)) × Fq2((x)) × Fq2((x)).

By Weierstrass division theorem it follows that Ô ≈ Fq[[x]] ⊕ Fq[[x]]y ⊕ Fq[[x]]y2.

That means, if f ∈ Fq[[x]][y] then f = q (y3 − (x3 + x4))+ r, where q, r ∈ Fq[[x]][y] and

deg r ≤ 2, so that f = r in Fq[[x]][y]/ (y3 − (x3 + x4)) and the image in

Fq2((x))× Fq2((x))× Fq2((x)) of the class f, under above isomorphism, is

(r(x, ξjx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ Fq2 [[x]]× Fq2 [[x]]× Fq[[x]].

Thus, the ring Ô is isomorphic to the subring

{(r(x, ξjx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ Fq2 [[x]]× Fq2 [[x]]× Fq[[x]] : r ∈ Fq[[x]][y], deg r ≤ 2}

of the ring Fq2 [[x]] × Fq2 [[x]] × Fq[[x]]. On the other hand, Galois group of the field

extension Fq2 | Fq is generated by Frobenius automorphism σ which acts on Fq2
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by σ (c) = cq. Note that ξ, and ξ2 are the zeros of the polynomial T 2 + T + 1

in Fq2 and σ (ξ) = ξ2 and σ (ξ3) = ξ. Then the ring Ô is isomorphic to the ring

{(r(x, ξx
∞∑

n=0

(
1/3
n

)
xn), r(x, x

∞∑
n=0

(
1/3
n

)
xn)) ∈ Fq2 [[x]]× Fq[[x]] : r ∈ Fq[[x]][y], deg r ≤ 2},

that is, Ô is isomorphic to the ring Fq (1, 1)⊕Fq (x, x)⊕Fq (ξx, x)⊕x2Fq2 [[x]]×x2Fq[[x]].

Therefore, we have % = 1, m = 2, r = (2, 1) ,
̂̃O = Fq2 [[x]]× Fq[[x]] and

Ô ' Fq (1, 1)⊕ Fq (x, x)⊕ Fq (ξx, x)⊕ f̂,

where f̂ = x2Fq2 [[x]] × x2Fq[[x]]. Hence δ = 3 and
̂̃O/̂f ∼= (Fq2 ⊕ Fq2x) × (Fq ⊕ Fqx) .

The Ô-ideals b̂ that satisfy b̂ · ̂̃O =
̂̃O contain the conductor ideal f̂ and, therefore,

correspond bijectively to the vector subspaces of (Fq2 ⊕ Fq2x)×(Fq ⊕ Fqx) that contain,

for i = 1, 2, a vector whose i-th entry has order 0. By writing their bases into standard

forms we obtain the following list:

Fq (a1 − a1ξ + a2x, 1)⊕ Fq (a1x, x)⊕ Fq (ξx, 0)⊕ f̂, with a1 6= 0

Fq (a1 + a2ξ + a3ξx, 1)⊕ Fq (a4ξx, x)⊕ Fq (x + a5ξx, 0)⊕ f̂, with a1 + a2ξ 6= 0,

a 2 = a4 + a1a5, and a1 − a 2 = a4 − a2a5

Fq (a1 + a2ξ, 1)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂, with a1 + a2ξ 6= 0

Fq (a1, 1)⊕ Fq (ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂,

Fq (a1ξ, 1)⊕ Fq (1 + a2ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂,

Fq (0, 1)⊕ Fq (1, 0)⊕ Fq (ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂

where ai ∈ Fq, for each i = 1, 2, 3, 4, 5 (in each line). We pick up representatives

b̂1 = Fq (1, 1)⊕ Fq (ξx, x)⊕ Fq (x− ξx, 0)⊕ f̂

by putting a1 = 1 and a2 = 0 in the second line,

b̂2 = Fq (1, 1)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂

by putting a1 = 1 and a2 = 0 in the third line,

b̂3 = Fq (1, 1)⊕ Fq (ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂

by putting a1 = 1 in the fourth line,

b̂4 = Fq (0, 1)⊕ Fq (ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂

by putting a1 = 0 in the fourth line, and

b̂5 = Fq (0, 1)⊕ Fq (1, 0)⊕ Fq (ξ, 0)⊕ Fq (0, x)⊕ Fq (x, 0)⊕ Fq (ξx, 0)⊕ f̂
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of each ideal class. The first and second lines are in the ideal class represented by

b̂1, the third line is in the ideal class represented by b̂2. If a1 6= 0 in the fourth and

fifth lines, then they are in the ideal class represented by b̂3, otherwise they are in

the ideal class represented by b̂4. Let bi := b̂i ∩K (i=1,2,3,4,5) be the corresponding

representatives of the ideal classes of O. Then b1 = O, b5 = Õ,
[
UÕ : UO

]
= q (q2 − 1) ,[

UÕ : Ub2

]
= q2− 1,

[
UÕ : Ub3

]
= q2− 1, and

[
UÕ : Ub4

]
= q + 1. Moreover, we obtain:

ΛO (O,O, t1, t2) = 1− t1 − t2 +
(
q2 + 1

)
t1t2 − q2t1t

2
2 − qt21t2 + q3t21t

2
2

ΛO (O, b2, t1, t2) = 1− t1 − t2 + q2t1t2

ΛO (O, b3, t1, t2) = q − t1 − qt2 + q2t1t2

ΛO (O, b4, t1, t2) = 1 + qt2

ΛO(O, Õ, t1, t2) = 1,

and

ZO (O,O, t) =
1− t− t2 + (q2 + 1) t3 − qt4 − q2t5 + q3t6

(1− t) (1− t2)

ZO (O, b2, t) =
t− t2 − t3 + q2t4

(1− t) (1− t2)

ZO (O, b3, t) =
qt2 − t3 − qt4 + q2t5

(1− t) (1− t2)

ZO (O, b4, t) =
t2 + qt4

(1− t) (1− t2)

ZO(O, Õ, t) =
t3

(1− t) (1− t2)
.

Moreover, ZO (O, t) =
1+(q−1)t2+q2t3+(q2−q)t4+q3t6

(1−t)(1−t2)

S (O) = {(0, 0) , (1, 1)} ∪ ((2, 1) + N× {0})∪ ((2, 2) + N× N)

S (b2) = {(0, 0)} ∪ ((1, 1) + N× N)

S (b2) = {(0, 0)} ∪ ((1, 0) + N× {0}) ∪ ((1, 1) + N× N)

S (b3) = ((0, 0) + N× {0}) ∪ ((0, 1) + N× N) .

Example 49 Let X be the plane projective quartic curve cut out by the absolutely

irreducible homogeneous equation y3z − a (x3z + x4) = 0 with base field Fq, where

a ∈ Fq and a /∈ F3
q i. e. the polynomial T 3 − a ∈ Fq[T ] is irreducible over Fq. This

curve has its unique singularity at the point P = (0 : 0 : 1). We denote by O the local

ring OX,P and by Ô its completion. Then Ô ' Fq[[x, y]]/ (y3 − a (x3 + x4)) , whose

minimal primes correspond bijectively to the irreducible factors of y3 − a (x3 + x4) in
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Fq[[x, y]], that is, the branches of X in the point P. Since a ∈ Fq and a /∈ F3
q i.e. q ≡ 1

mod 3, the Weierstrass polynomial y3− a (x3 + x4) is irreducible in Fq[[x]][y], hence in

Fq[[x, y]], and it follows that (a
q−1
3 )j ∈ Fq for each non negative integer j, (a

q−1
3 )3 = 1

and 1 + a
q−1
3 + (a

q−1
3 )2 = 0. Let us consider the finite field extension Fq3 | Fq, so that

a ∈ F3
q3 , that is, Fq3 is isomorphic to the field Fq[T ]/ (T 3 − a) . Thus

Ô ' Fq[[x]][y]/
(
y3 − a

(
x3 + x4

))

⊆ Fq((x))[y]/
(
y3 − a

(
x3 + x4

))

⊆ Fq3((x))[y]/
(
y3 − a

(
x3 + x4

))
.

Since, in Fq3((x))[y], y3 − a (x3 + x4) =
3∏

j=1

(y − (a
q−1
3 )jαx

∞∑
n=0

(
1/3
n

)
xn), where α ∈ Fq3

is a zero of T 3 − a in Fq3 , it follows by the Chinese remainder theorem that

Fq3((x))[y]/
(
y3 − a

(
x3 + x4

)) '
3∏

j=1

Fq3((x))[y]/(y − (a
q−1
3 )jαx

∞∑
n=0

(
1/3
n

)
xn)

' Fq3((x))× Fq3((x))× Fq3((x)).

Therefore the ring Ô is isomorphic to some subring of Fq3((x)) × Fq3((x)) × Fq3((x)).

By Weierstrass division theorem it follows that Ô ≈ Fq[[x]]⊕Fq[[x]]y⊕Fq[[x]]y2. That

means, if f ∈ Fq[[x]][y] then f = q (y3 − a (x3 + x4)) + r, where q, r ∈ Fq[[x]][y] and

deg r ≤ 2, so that f = r in Fq[[x]][y]/ (y3 − a (x3 + x4)) and the image in

Fq3((x))× Fq3((x))× Fq3((x)) of the class f, under above isomorphism, is

(r(x, (a
q−1
3 )jαx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ Fq3 [[x]]× Fq3 [[x]]× Fq3 [[x]].

Thus, the ring Ô is isomorphic to the subring

{(r(x, (a
q−1
3 )jαx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ (Fq3 [[x]])⊕3 : r ∈ Fq[[x]][y], deg r ≤ 2}

of the ring Fq3 [[x]] × Fq3 [[x]] × Fq3 [[x]]. On the other hand, Galois group of the field

extension Fq3 | Fq is generated by Frobenius automorphism σ which acts on Fq3 by

σ (c) = cq. Note that a
q−1
3 α, (a

q−1
3 )2α, and (a

q−1
3 )3α are the zeros of the polyno-

mial T 3 − a in Fq3 and σ (α) = a
q−1
3 α. Then the ring Ô is isomorphic to the ring

{r(x, αx
∞∑

n=0

(
1/3
n

)
xn) ∈ Fq3 [[x]] : r ∈ Fq[[x]][y], deg r ≤ 2}, that is, Ô is isomorphic to

the ring

{A + αx(
∞∑

n=0

(
1/3
n

)
xn)B + α2x2(

∞∑
n=0

(
1/3
n

)
xn)2C ∈ Fq3 [[x]] : A,B,C ∈ Fq[[x]]} i.e.

Ô ' Fq ⊕ xFq ⊕ αxFq ⊕ x2Fq3 [[x]].
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Thus, we have % = 1, m = 1, r = 3,
̂̃O = Fq3 [[x]] and Ô ' Fq ⊕ xFq ⊕ αxFq ⊕ f̂

where f̂ = x2Fq3 [[x]]. Hence δ = 3 and
̂̃O/̂f ∼= Fq3 ⊕ Fq3x. The Ô-ideals b̂ that satisfy

b̂ · ̂̃O =
̂̃O contain the conductor ideal f̂ and, therefore, correspond bijectively to the

vector subspaces of Fq3 ⊕ Fq3x that contain a vector of order 0. By writing their bases

into standard forms we obtain the following list:

Fq (1 + a1α + a2α
2 + a3α

2x)⊕ Fq (x + a4α
2x)⊕ Fq (αx + a5α

2x)⊕ f̂,

with a1 = aa2a4 + a5 and a2 = a4 + a1a5

Fq

(
1 + a1α + 1

aa1
α2 + a3αx

)
⊕ Fq (x + a1αx)⊕ Fq (α2x)⊕ f̂, with a1 6= 0

Fq (α + a1α
2 + a2α

2x)⊕ Fq

(
x + 1

aa1
αx

)
⊕ Fq (αx + a1α

2x)⊕ f̂, with a1 6= 0

Fq (α + a1x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂,

Fq (α2 + a1αx)⊕ Fq (x)⊕ Fq (α2x)⊕ f̂,

Fq (1 + a1α + a2α
2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (α + a1α
2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (α2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (1 + a1α
2)⊕ Fq (α + a2α

2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (1 + a1α)⊕ Fq (α2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (α)⊕ Fq (α2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

Fq (1)⊕ Fq (α)⊕ Fq (α2)⊕ Fq (x)⊕ Fq (αx)⊕ Fq (α2x)⊕ f̂

where ai ∈ Fq, for each i = 1, 2, 3, 4, 5 (in each line). We pick up representatives of each

ideal class by putting a1 = 0 and a2 = 0 in the first, sixth, and ninth line, respectively,

so
b̂1 = Fq (1)⊕ Fq (x)⊕ Fq (αx)⊕ f̂,

b̂2 = Fq (1)⊕ Fq (x)⊕ Fq (αx)⊕ Fq

(
α2x

)⊕ f̂,

b̂3 = Fq (1)⊕ Fq (α)⊕ Fq (x)⊕ Fq (αx)⊕ Fq

(
α2x

)⊕ f̂ and

b̂4 = Fq (1)⊕ Fq (α)⊕ Fq

(
α2

)⊕ Fq (x)⊕ Fq (αx)⊕ Fq

(
α2x

)⊕ f̂.

The ideals in the lines 1,2,3,4, and 5 are in the ideal class represented by b̂1; the ideals

in the lines 6,7, and 8 are in the ideal class represented by b̂2; the ideals in the lines

9,10, and 11 are in the ideal class represented by b̂3. Let bi := b̂i ∩ K (i=1,2,3,4) be

the corresponding representatives of the ideal classes of O. Then b1 = O, b4 = Õ,

[UÕ : UO] = q3 + q2 + q, [UÕ : Ub2 ] = q2 + q + 1, [UÕ : Ub3 ] = q2 + q + 1. Moreover, we

obtain:
ΛO (O,O, t) = 1 +

(
q2 + q − 1

)
t + q3t2

ΛO (O, b2, t) = 1 +
(
q2 + q

)
t

ΛO (O, b3, t) = (q + 1) + q2t

ΛO(O, Õ, t) = 1,
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and

ZO (O,O, t) =
1 + (q2 + q − 1) t3 + q3t6

1− t3

ZO (O, b2, t) =
t + (q2 + q) t4

1− t3

ZO (O, b3, t) =
(q + 1) t2 + q2t5

1− t3

ZO(O, Õ, t) =
t3

1− t3
.

Furthermore, ZO (O, t) =
1+t+(q+1)t2+(q2+q)t3+(q2+q)t4+q2t5+q3t6

1−t3
and S (bi) = N for

i = 1, 2, 3, 4.

In the earlier example the local ring O of a singular curve defined over a finite field

Fq is not residually rational. As in the first example, we have that for each ideal class

b the set S (b) is equal to N.

Now, we consider the curve defined by the same equation of the precedent example

but, in this case, the local ring is residually rational. We can obtain it by doing

extension of the ground field.

Example 50 Let X be the plane projective quartic curve cut out by the absolutely

irreducible homogeneous equation y3z − a (x3z + x4) = 0, where a ∈ Fq and there

exists α ∈ Fq such that α3 = a. This curve has its unique singularity at the point

P = (0 : 0 : 1). We denote by O the local ring OX,P and by Ô its completion. Then

Ô ' Fq[[x, y]]/ (y3 − a (x3 + x4)) , whose minimal primes correspond bijectively to the

irreducible factors of y3 − a (x3 + x4) in Fq[[x, y]], that is, the branches of X at the

point P. Thus

Ô ' Fq[[x]][y]/
(
y3 − a

(
x3 + x4

))

⊆ Fq((x))[y]/
(
y3 − a

(
x3 + x4

))
.

If, in Fq((x))[y], y3 − a (x3 + x4) =
∏

θ3=1

(y − θαx
∞∑

n=0

(
1/3
n

)
xn), then, by the Chinese

remainder theorem, it follows that

Fq((x))[y]/
(
y3 − a

(
x3 + x4

)) '
∏

θ3=1

Fq((x))[y]/(y − θαx

∞∑
n=0

(
1/3
n

)
xn)

' Fq((x))× Fq((x))× Fq((x)).

Therefore, the ring Ô is isomorphic to some subring of Fq((x)) × Fq((x)) × Fq((x)).

By Weierstrass division theorem it follows that Ô ≈ Fq[[x]]⊕Fq[[x]]y⊕Fq[[x]]y2. That
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means, if f ∈ Fq[[x]][y] then f = q (y3 − a (x3 + x4)) + r, where q, r ∈ Fq[[x]][y] and

deg r ≤ 2, so that f = r in Fq[[x]][y]/ (y3 − a (x3 + x4)) and the image in

Fq((x))× Fq((x))× Fq((x)) of the class f, under above isomorphism, is

(r(x, ξjαx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ Fq[[x]]× Fq[[x]]× Fq[[x]],

where ξ2 + ξ + 1 = 0 and ξ 6= 1. Thus, the ring Ô is isomorphic to the subring

{(r(x, ξjαx

∞∑
n=0

(
1/3
n

)
xn))j=1,2,3 ∈ (Fq[[x]])⊕3 : r ∈ Fq[[x]][y], deg r ≤ 2}

of the ring Fq[[x]] × Fq[[x]] × Fq[[x]]. Therefore, the ring Ô is isomorphic to the ring

Fq (1, 1, 1)⊕ Fq (x, x, x)⊕ Fq (ξαx, ξ2αx, αx)⊕ f̂, that is,

Ô ' Fq (1, 1, 1)⊕ Fq (x, x, x)⊕ Fq

(
ξαx, ξ2αx, αx

)⊕ f̂,

where f̂ = (x2Fq[[x]])
⊕3

. Thus, % = 1, m = 3, r = (1, 1, 1) and
̂̃O = Fq[[x]]⊕3. Hence

δ = 3 and
̂̃O/̂f ∼= (Fq ⊕ Fqx) × (Fq ⊕ Fqx) × (Fq ⊕ Fqx) . The Ô-ideals b̂ that satisfy

b̂ · ̂̃O =
̂̃O contain the conductor ideal f̂ and, therefore, correspond bijectively to the

vector subspaces of (Fq ⊕ Fqx) × (Fq ⊕ Fqx) × (Fq ⊕ Fqx) that contain, for i = 1, 2, 3,

a vector whose i-th entry has order 0. By writing their bases into standard forms we

obtain the following list:

Fq(1, a1, a2 + a3x)⊕ Fq (x, 0,−ξa2x)⊕ Fq

(
0, x,−ξ2 a2

a1
x
)
⊕ f̂, with a1 6= 0 and a2 6= 0,

Fq(1, a1, a2)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂, with a1 6= 0 and a2 6= 0

Fq(1, 0, a1)⊕ Fq(0, 1, a2)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂, with a1 6= 0

or a2 6= 0

Fq(1, a1, 0)⊕ Fq(0, 0, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂, with a1 6= 0

Fq(1, 0, 0)⊕ Fq(0, 1, 0)⊕ Fq(0, 0, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂

where ai ∈ Fq, for each i = 1, 2, 3 (in each line). We pick up representatives:

b̂1 = Fq (1, 1, 1)⊕ Fq (x, 0,−ξx)⊕ Fq

(
0, x,−ξ2x

)⊕ f̂

by putting a1 = 1, a2 = 1 and a3 = 0 in the first line;

b̂2 = Fq (1, 1, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂

by putting a1 = 1 and a2 = 1 in the second line;

b̂3 = Fq(1, 0, 0)⊕ Fq(0, 1, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂,
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by putting a1 = 0 and a2 = 1 in the third line;

b̂4 = Fq(1, 0, 1)⊕ Fq(0, 1, 0)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂,

by putting a1 = 1 and a2 = 0 in the third line;

b̂5 = Fq(1, 0, 1)⊕ Fq(0, 1, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂,

by putting a1 = 1 and a2 = 1 in the third line;

b̂6 = Fq(1, 1, 0)⊕ Fq(0, 0, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂,

by putting a1 = 1 in the fourth line, and

b̂7 = Fq(1, 0, 0)⊕ Fq(0, 1, 0)⊕ Fq(0, 0, 1)⊕ Fq (x, 0, 0)⊕ Fq (0, x, 0)⊕ Fq (0, 0, x)⊕ f̂.

Let bi := b̂i ∩ K (i=1,2,3,4,5,6,7) be the corresponding representatives of the ideal

classes of O. Then b1 = O, b7 = Õ,
[
UÕ : UO

]
= q (q − 1)2 ,

[
UÕ : Ub2

]
= (q − 1)2,[

UÕ : Ub3

]
= q − 1,

[
UÕ : Ub4

]
= q − 1,

[
UÕ : Ub5

]
= (q − 1)2 and

[
UÕ : Ub5

]
= q − 1.

Moreover, we obtain:

ΛO (O,O, t1, t2, t3) = q3t21t
2
2t

2
3 − q2t21t

2
2t3 − q2t21t2t

2
3 − q2t1t

2
2t

2
3 + qt21t2t3 + qt1t

2
2t3

+ qt1t2t
2
3 +

(
q2 − 2q − 1

)
t1t2t3 + t1t2 + t1t3 + t2t3 − t1 − t2 − t3 + 1

ΛO (O, b2, t1, t2, t3) =
(
q2 − 2q

)
t1t2t3 + t1t2 + t1t3 + t2t3 − t1 − t2 − t3 + 1

ΛO (O, b3, t1, t2, t3) = qt2t3 − t3 − t2 + 1

ΛO (O, b4, t1, t2, t3) = qt1t3 − t3 − t1 + 1

ΛO (O, b5, t1, t2, t3) = q2t1t2t3 − qt1t2 − qt1t3 − qt2t3 + t1 + t2 + t3 + q − 2

ΛO (O, b6, t1, t2, t3) = qt1t2 − t2 − t1 + 1

ΛO(O, Õ, t1, t2, t3) = 1,
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and

ZO (O,O, t) =
1− 3t + 3t2 + (q2 − 2q − 1) t3 + 3qt4 − 3q2t5 + q3t6

(1− t)3

ZO (O, b2, t) =
t− 3t2 + 3t3 + (q2 − 2q) t4

(1− t)3

ZO (O, b3, t) =
t2 − 2t3 + qt4

(1− t)3

ZO (O, b4, t) =
t2 − 2t3 + qt4

(1− t)3

ZO (O, b5, t) =
(q − 2) t2 + 3t3 − 3qt4 + q2t5

(1− t)3

ZO (O, b6, t) =
t2 − 2t3 + qt4

(1− t)3

ZO(O, Õ, t) =
t3

(1− t)3 .

Moreover, ZO (O, t) =
q3t6−2q2t5+(q2+q)t4+(q2−2q)t3+(q+1)t2−2t+1

(1−t)3
. and

S (O) = {(0, 0, 0), (1, 1, 1)} ∪ ((1, 2, 1) + {0} × N× {0}) ∪ ((2, 1, 1) + N× {0}×{0})
∪ ((2, 2, 2) + N3)

S (b2) = {(0, 0, 0)} ∪ (
(1, 1, 1) + N3

)

S (b3) = {(0, 0, 0)} ∪ ((1, 0, 0) + N×{0}×{0}) ∪ ((0, 1, 1) + {0} × N× N)

∪ (
(1, 1, 1) + N3

)

S (b4) = {(0, 0, 0)} ∪ ((0, 1, 0) + {0} × N× {0}) ∪ ((1, 0, 1) + N× {0}×N)

∪ (
(1, 1, 1) + N3

)

S (b5) = {(0, 0, 0)} ∪ ((0, 1, 0) + {0} × N× {0}) ∪ ((1, 0, 0) + N×{0}×{0})
∪ (

(1, 1, 1) + N3
)

S (b6) = {(0, 0, 0)} ∪ ((0, 0, 1) + {0} × {0}×N) ∪ ((1, 1, 0) + N× N× {0})
∪ (

(1, 1, 1) + N3
)

S (b7) = N3.

4.3 Ground Field Extensions

In this section we discuss the behavior of the multi-variable Poincaré series under

ground field extensions. Before we do this we give some well-known definitions and
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results on the behavior of a function field in one variable under the ground field exten-

sion.

Let K | k be a function field of one variable, let l | k be an algebraic field extension

and let S be a semilocal subring of K | k. It is known that, in this case, the tensor

product l⊗k K is a field. Thus we can identify the compositum l ·K with l⊗k K, the

field l is algebraically closed in the field l ·K and hence l ·K | l is a function field. The

ring l⊗k S can be identify with the semilocal subring l ·S, of the function field l ·K | l,
which consists merely of all linear combinations of elements of S with coefficients in l,

and hence l · S ∩K = S (see [28] and [22] section 3).

Let v be a valuation of the function field K | k. Recall that if w is a valuation

of l · K | l that lies over v, then the ramification index ew|v of w over v is defined as

the group index [w (l ·K\{0}) : w (K\{0})] and the inertia index fw|v of w over v is

defined as the degree of field extensions [kw : kv]. Thus, it is associated to v the divisor

Conl·K|K (v) :=
∑

w|v
ew|v · w

where the sum run over all the valuation w of l · K | l lying over v. It is called the

Conorm of v. The following Theorem is well-known (cf. [28] Theorem III.6.3).

Theorem 51 If l | k is a separable algebraic extension. Then

1. l · Ov = Õv, where Õv is the integral closure of the valuation ring Ov in l ·K

2. v is unramified in l ·K i.e. ew|v = 1 for each valuation w of l ·K | l lying over v.

For each valuation w of l ·K | l lying over v, we may consider both the residue field

kv and the field l as subfield of the residue field lw of w. Thus the compositum l · kv of

the field kv and the field l is well defined.

Corollary 52 If l | k is a separable algebraic field extension. Then

1. l · kv = lw for each valuation w of l ·K | l lying over v.

2. Conl·K|K (v) =
∑

w|v w.

3. If l | k is a finite field extension, then deg(Conl·K|K (v)) = deg (v) .
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In particular, if l = kv then deg(w) = 1 for each valuation w of kv · K | kv lying

over v.

As we are mainly interested in local or semilocal subrings of a function field K | k
whose constant field is the finite field k = Fq with q elements, we assume from now

on that k = Fq and that l | k is a finite field extension. Thus, l | k is a separable

algebraic field extension. In the following, we fix an algebraic closure Fq of Fq. Then,

for any positive integer n, there exists exactly one extension Fqn | Fq of degree n with

Fqn ⊆ Fq. Thus, l = Fqn for some positive integer n.

Let v be a valuation of K | k of degree r, that is r = [kv : k], hence kv = Fqr . By

Theorem 51, the valuation v is unramified in l ·K | l. By Corollary 52, we have that

for each valuation w of l ·K | l lying over v the residue field of w is the compositum of

Fqn with the residue field kv = Fqr of v, that is, Fqn · Fqr = Fql , where l := lcm (r, n) .

Therefore,

deg(w) = [Fql : Fqn ] = r/ gcd (r, n)

for each valuation w of l ·K | l lying over v. Since deg(Conl·K|K (v)) = deg (v) = r, we

conclude the there exists exactly d := gcd (r, n) valuations w of l ·K | l lying over v,

each of them having degree r/d. Summarizing, we have the following proposition (cf.

[28] Lemma V.1.9).

Proposition 53 Let K | k be a function field of one variable, whose constant field is

the finite field k = Fq with q elements, let l | k be a finite field extension of degree n.

If v is a degree r valuation of K | k, then there exist exactly d := gcd (r, n) valuations

w of l · K | l lying over v, each of them having ramification index ew|v = 1, degree

deg (w) = r/d and residue field lw = Fqn · Fqr = Fql, where l = lcm (r, n) .

The ground field of a function field K | k may be extended to the algebraic closure

k of k. Thus, it is defined K =: k ⊗k K. Since l ⊗k K is a field for every finite field

extension l | k, any embedding l −→ k extends to an embedding l⊗k K −→ K. Indeed,

K is just the set-theoric union of the images of such embeddings. In particular every

element of K lies in some subfield, and so K is a field. Thus K | k is a function field.

Let v be a valuation of the function field K | k. There exists a finite field extension

k′ | k such that deg(v′) = 1 for each valuation v′ of k′ ·K | k′ lying over v. Moreover,

we observe that there exists a one to one bijection between valuations w of K | k lying

over v and valuations v′ of k′ ·K | k′ lying over v such that ew|v = ev′|v. Indeed, it is

clear that given a valuation v′ of k′ ·K | k′ lying over v, there exists a valuation w of

K | k lying over v′ and hence lying over v. Remain to prove that there exists exactly
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one. If, by way of contradiction, there were more than one valuations of K | k lying

over v′, they would differ on some element in K, say u =
∑j

i=1 αi⊗xi ∈ K with αi ∈ k

and xi ∈ K (i = 1, · · · , j), then the field k′′ := k′ (α1, · · · , αj) is a finite extension of

k′, u ∈ k′′ ⊗k K and there were more than one valuations v′′ of k′′K | k′′ lying over

v′. However, since fv′′|v′ = [k′′ : k′] and [k′′ : k′] = [k′′ (k′K) : k′K], by fundamental

equality, there exists a unique valuations v′′ of k′′K | k′′ lying over v′. With a similar

argument we can prove that a local parameter t of w lies in some finite field extension

k′′ ⊗k K, where we may assume that k′′ ⊇ k′. By fundamental equality, ew|v′′ = 1

and ev′′|v′ = 1, where v′′ is the valuation restriction of w to k′′K = k′′ (k′K) . Thus,

ew|v = ew|v′′ev′′|v′ev′|v = ev′|v. Therefore, for any valuation v of the function field K | k,

the Conorm ConK|K (v) defined by

ConK|K (v) :=
∑

w|v
ew|v · w

where the sum run over all the valuation w of K | k lying over v, is well-defined. Let l | k
be a finite field extension and let w be a valuation w of K | k. The valuation w is said

to be defined over l if there exists a valuation v of l ·K | l such that ConK|l·K (v) = w.

The valuations of l ·K | l can be identified with the valuations of K | k defined over l.

It is well-known that the Galois group of Fqn | Fq is cyclic Galois group of order n

generated by the Frobenius map that acts on Fqn by α 7→ αq. Let

σ : Fqn ⊗Fq K −→ Fqn ⊗Fq K

be the function defined by α⊗x 7→ αq⊗x. Then, by identifying the compositum Fqn ·K
with Fqn ⊗Fq K, σ is an isomorphism of Fqn ·K into itself. Note that σ is the identity

in K. Consequently, it is deduced the next lemma (cf. [28] Lemma V.1.9).

Lemma 54 Let K | k be a function field of one variable, whose constant field is the

finite field k = Fq with q elements and let l | k be a finite field extension of degree n.

Then l ·K | K is a Galois extension with cyclic Galois group Gal (l ·K | K) of order

n generated by the Frobenius automorphism σ, which acts on l by σ (c) = cq.

Proof. Since the Galois group of l | k is a cyclic Galois group of order n generated

by the Frobenius automorphism α 7→ αq and [l ·K : K] = [l : k] = n, it follows that

the group of automorphisms of l · K | K is generated by the automorphism σ and it

has order n.

It is clear that for each automorphism ψ ∈ Gal (l ·K | K) and for each valuation w

of l ·K | l the composition w ◦ ψ is another valuation of l ·K | l with valuation ring

ψ−1 (Ow) and maximal ideal mw◦ψ := ψ−1 (mw).
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Proposition 55 Let K | k be a function field of one variable, whose constant field is

the finite field k = Fq with q elements, let l | k be a finite field extension of degree n

and let w1 and w2 be valuations of l ·K | l lying over the valuation v of K | k. Then

there exists ψ ∈ Gal (l ·K | K) such that w2 = w1 ◦ ψ.

Proof. Suppose that w2 6= w1 ◦ ψ for each ψ ∈ Gal (l ·K | K) . By the approxima-

tion lemma, there exists x ∈ l · K such that w2 (x) = 1 and w1 ◦ ψ (x) = 0 for each

ψ ∈ Gal (l ·K | K) . If y := Nl·K|K (x), one has y ∈ K, and y =
∏

ψ∈Gal(l·K|K) ψ (x),

whence w2 (y) > 0 and w1 (y) = 0, which contradicts w1 and w2 are valuations of l·K | l
lying over the valuation v of K | k.

This proposition permit us to give a relationship between the set S(b) and S(l · b)

for each S-ideal b of a semilocal subring S. Let S be a semilocal subring of the function

field K | k, whose constant field is the finite field k = Fq with q elements. Let b

be an S-ideal and let l | k be a finite field extension of degree n. Since the set S(b)

only depends on the S-ideal class of b, we can assume that bS̃ = S̃. The valuations

w1, · · · , wm(l) of l ·K | l that contain the semilocal ring l ·S are precisely the extensions

to l · K | l of the valuations v1, · · · , vm of K | k that contain the semilocal ring S

(cf. [22] Section 3). Moreover, if v(z) ∈ S(b), with z ∈ b\{0}, then w(z) ∈ S(l · b),

where v(z) and w(z) are the multi-exponents of z. Thus, we may view the set S(b)

as a subset of the set S(l · b). The Galois group G := Gal (l ·K | K) acts on the set

S(l · b). Indeed, for any ψ ∈ G and any w(z) ∈ S(l · b), with z ∈ l · b\{0}, we have

w(ψ(z)) ∈ S(l · b). Furthermore, S(b) injects in the set of fixed points S(l · b)G.

In the proof of the next theorem we need the following polynomial identity.

Lemma 56 Let n and r be positive integers. Then

(1−Xnr/ gcd(n,r))gcd(n,r) =
∏

θn=1
(1− (θX)r)

where θ runs over over all n-th roots of the unity in the complex number C.

Proof. We observe, if θ is a n-th root of the unity, then ζ := θr is a n/d-th root

of the unity, where d := gcd(n, r). Thus the result follows from the basic polynomial

identity: for any integer k,

1−Xk =
∏

ζk=1
(1− ζX),

where ζ runs over over all k-th roots of the unity in the complex number C. Indeed,
∏

θn=1
(1− (θX)r) = (

∏
ζn/d=1

(1− ζXr))d = (1−Xnr/d)d
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Let O be a local ring of at a singular point of a geometrically integral algebraic

curve defined over a finite field k = Fq and let b be an O-ideal. We denote by

η (O, b, q) :=
qρ+δ−|r|

[Ub : UO] (qρ − 1)

∏m

i=1
(qri − 1),

that is, η (O, b, q) =
[
UÕ : Ub

]
, where [Ub : UO] =

qδ+%−(δb:b+%b:b) ∏sb
i=1(q

%
(b)
i −1)

q%−1
depends on

q too (for the notation see 3.13). The examples that we show in the precedent section

indicate the following result.

Theorem 57 Let O be a local ring of at a singular point of a geometrically integral

algebraic curve defined over a finite field k = Fq and let l = Fqn be a finite field

extension of k. If O is the local ring at rational point, then for each O-ideal b,

η (l · O, l · b, q) = (−1)m(l)+mn−n−1
∏

θn=1
η (O, b, θq) ,

where m(l) :=
∑m

i=1 gcd (ri, n) is equal to the number of valuations of the function field

l ·K | l lying over the ring l · O.

Proof. Since O is the local ring at rational point, it follows that ρ(l) = ρ = 1 and

l · O is also a local ring, hence

η (l · O, l · O, q) =
(qn)ρ(l)+δ(l)−|r(l)|

(qn)ρ(l) − 1

∏m(l)

j=1
((qn)r

(l)
j − 1).

Where δ(l) := diml

(
l̃ · O/l · O

)
, r(l) := (r

(l)
1 , · · · , r

(l)

m(l)) is the integer vector whose

coordinates are the degrees of the branches centered at the singularity and ρ(l) is the

degree of the residue field of l · O over the constant field l.

On the other hand, δ(l) = diml

(
l ⊗k Õ/l ⊗k O

)
= diml

(
l ⊗k Õ/O

)
= δ. From

Lemma 53,
∣∣r(l)

∣∣ = |r| and

∏m(l)

j=1
((qn)r

(l)
j − 1) =

∏m

i=1

∏
w|vi

(qnri/ gcd(ri,n) − 1)

=
∏m

i=1
(−1)gcd(ri,n)

∏
w|vi

(1− qnri/ gcd(ri,n))

=
∏m

i=1
(−1)gcd(ri,n) (1− qnri/ gcd(ri,n))gcd(ri,n).
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By Proposition 53 m(l) :=
∑m

i=1 gcd (ri, n) is the number of valuations of l ·K | l lying

over the ring l · O. Now, from Lemma 56,

∏m(l)

j=1
((qn)r

(l)
j − 1) =

∏m

i=1
(−1)gcd(ri,n)

∏
θn=1

(1− (θq)ri)

=
∏m

i=1
(−1)gcd(ri,n)+n

∏
θn=1

((θq)ri − 1)

= (−1)mn+m(l) ∏
θn=1

∏m

i=1
((θq)ri − 1) .

Thus,

η (l · O, l · O, q) =
(qn)ρ(l)+δ(l)−|r(l)|

(qn)ρ(l) − 1

∏m(l)

j=1
((qn)r

(l)
j − 1)

=
(qn)1+δ−|r|

qn − 1
(−1)mn+m(l) ∏

θn=1

∏m

i=1
((θq)ri − 1)

= (−1)mn−n−1+m(l) ∏
θn=1

(θq)1+δ−|r|

θq − 1

∏m

i=1
((θq)ri − 1)

= (−1)mn−n−1+m(l) ∏
θn=1

η (O,O, θq) .

We observe that, if the local ring is residually rational, then

η (l · O, l · O, q) = η (O,O, qn) .

Let O be a local ring at a singular point of a geometrically integral algebraic curve

defined over a finite field k = Fq. For each finite field extension l | k we consider the

polynomial

∆(O, l | k, t) := L(l · O, tn)−
∏

θn=1
L(O, θt)

and the rational function

Q(O, l | k, t) :=
L(l · O, tn)∏
θn=1 L(O, θt)

where n := [l : k].

We observe that, if O is the local ring of the curve at non-singular point, then

∆(O, l | k, t) = 0 and Q(O, l | k, t) = 1.

Proposition 58 The polynomial ∆(O, l | k, t) and the rational function Q(O, l | k, t)

satisfy the following functional equations:

(t)−nδ ∆(O, l | k, t) = (
1

qt
)−nδ∆(O, l | k,

1

qt
)
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and

Q(O, l | k, t) = Q(O, l | k,
1

qt
)

respectively.

Proof. Since

(
1

qntn
)−δL(l · O,

1

qntn
) = (tn)−δL(l · O, tn)

and

(
1

q(θ−1t)
)−δL(O,

1

q(θ−1t)
) = (θ−1t)−δL(O, θ−1t)

for each n-th root of the unity θ, it follows that

(
1

qt
)−nδ∆(O, l | k,

1

qt
) = (

1

qt
)−nδ

(
L(l · O,

1

qntn
)−

∏
θn=1

L(O,
1

q(θ−1t)
)

)

= (tn)−δL(l · O, tn)−
∏

θn=1
(θ−1t)−δL(O, θ−1t)

= (tn)−δ
(
L(l · O, tn)−

∏
θn=1

L(O, θ−1t)
)

= (tn)−δ∆(O, l | k, t).

Similarly, we prove the second part.

Let X be a geometrically integral algebraic curve defined over a finite field k = Fq.

For each finite field extension l | k we consider the polynomial

∆(OX , l | k, t) := L(OXl
, tn)−

∏
θn=1

L(OX , θt)

and the rational function

Q(OX , l | k, t) :=
L(OXl

, tn)∏
θn=1 L(OX , θt)

,

where n := [l : k] and Xl stands for the curve X ×Spec(k) Spec (l) .

We observe that, if X is a non-singular curve then ∆(OX , l | k, t) = 0 and

Q(OX , l | k, t) = 1. We may prove the following property. Its proof is similar to

the proof of the previous proposition.

Proposition 59 The functions ∆(OX , l | k, t) and Q(OX , l | k, t) satisfy the following

functional equations:

(t)−ng ∆(OX , l | k, t) = (
1

qt
)−ng∆(OX , l | k,

1

qt
)

and

Q(OX , l | k, t) = Q(OX , l | k,
1

qt
),

respectively.

89



4.4 Multi-variable Poincaré series of residually ra-

tional rings

Zuñiga proved that the partial zeta function Z(O,O, t) is determined by the semigroup

S (O), if O is a residually rational local ring (cf. [35], Theorem 5.5). We will show

that this result can be extended to multi-variable Poincaré series of residually rational

semilocal rings.

From Example 49, we can see that the set S(b) does not always determine the

multi-variable Poincaré series PS(S, b, t), where b is an S-ideal of a semilocal subring

of the function field K | k with k = Fq. On the other hand, we had observed that, if

l = kv, then deg(w) = 1 for each valuation w of kv ·K | kv lying over a valuation v of

the function field K | k. Thus there exists a finite field extension l | k such that the

semilocal ring l · S is residually rational.

Assume that S = O1 ∩ · · · ∩ Os is a residually rational semilocal subring of the

function field K | k. In this situation the Poincaré series has the expansion

PS(S, b, t) =
∑

n∈S(b)
ηn (S, b) tn

where

ηn (S, b) =
qs

[Ub : US] (q − 1)s

∑

i∈{0,1}m

(−1)|i| q1·(n+v(bS̃))+degS(b∩bpn+v(bS̃)+i)

=
qs+degS(b)

[Ub : US] (q − 1)s

∑

i∈{0,1}m

(−1)|i| q1·(n+v(bS̃))−dimk(b/b∩bpn+v(bS̃)+i)

=
qs+degS(b)

[Ub : US] (q − 1)s

∑

i∈{0,1}m

(−1)|i| q1·(n+v(bS̃))−l(b,n+v(bS̃)+i)

(4.3)

where l(b,n) := dimk (b/b ∩ bpn) for each n ∈Nm. Since the semilocal ring S is resi-

dually rational, the integers l(b,n) may be expressed by induction in terms of the set

S (b) . In particular, the coefficients

ηn (S, S) =
qs

(q − 1)s

∑

i∈{0,1}m

(−1)|i| q1·n−l(S,n+i)

may be expressed in terms of the semigroup S (S) .
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4.4.1 The one-branch case

In this subsection we assume that S is an unibranch residually rational semilocal ring

S, that is S is a residually rational semilocal ring and m = 1. In this especial situation

S is a local ring O and its semigroup S (O) ⊆ N is a numerical semigroup, whose

conductor is equal to the exponent f := v(O : Õ) and whose genus # (N\S (O)) is

equal to the singularity degree δ. The δ positive integers that do not belong to S (O)

are called the gaps of S (O) or more generally for each O-ideal b the positive integers

that do not belong to the set S (b) are called the gaps of S (b) .

Let b be a O-ideal such that bÕ = Õ. We have that

P (O, b, t) =
q1+degO(b)

[Ub : UO] (q − 1)

∑

n∈S(b)

(
qn−l(b,n) − qn−l(b,n+1)

)
tn

and since n∈S (b) if and only if l(b, n+1) =l(b, n) + 1,

P (O, b, t) =
qdegO(b)

[Ub : UO]

∑

n∈S(b)

qn−l(b,n)tn.

According to Stöhr [26] and Firouzian [13] n−l(b, n) is equal to the number of gaps of

S (b) smaller than n. Thus

P (O, b, t) =
qdegO(b)

[Ub : UO]

∑

n∈S(b)

q#{gaps of S(b)<n}tn.

From 41, [Ub : UO] = qδ−dim(Õ/b:b). Then

P (O, b, t) = q− dim(b:b/b)
∑

n∈S(b)

q#{gaps of S(b)<n}tn.

By multiplying the series with 1− t it follows the following result.

Proposition 60 Let O be the local ring of a rational unibranch point; then

Λ (O, b, t) =
b∑

i=0

λi (O, b) ti

where

λi (O, b) =





q−dim(b:b/b)+#{gaps of S(b)<i} if i ∈ S (b) and i− 1 /∈ S (b)

−q− dim(b:b/b)+#{gaps of S(b)<i} if i /∈ S (b) and i− 1 ∈ S (b)

0 otherwise

and b = v(b : Õ).
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Let m := min (S (O) \{0}) . The Apery sequence of S (O) is defined by picking

up in each residue class of Z module m the smallest element belonging to S (O) , say

α0, · · · , αm−1 with αi ≡ i mod m for each i = 0, · · · ,m− 1 and, by writing up these

elements in their natural order, say a0 < a1 < · · · < am−1. Thus

S (O) =
⋃m−1

i=0
(αi + mN) =

⋃m−1

i=0
(ai + mN)

The Poincaré series of a local ring of a rational unibranch point

Proposition 61 Let O be the local ring of a rational unibranch point. Then

P (O,O, t) =
∑

0≤i≤j≤m−1

qδ−∑m−1
k=j+1b(ak−ai)/mctai

∑b(aj+1−ai)/mc−1

ji=b(aj−ai)/mc
(
q(m−j−1)tm

)ji

where bxc denotes the smallest integer not less than x, that is,

bxc := max{n ∈ Z : n ≤ x}

for each real number x and am := ∞.

Proof. We observe that n ∈ S (O) if and only if there exists only one

i = 0, · · · , m− 1 and only one positive integer j such that n = ai + mj. Then

P (O,O, t) =
m−1∑
i=0

∞∑
j=0

q#{gaps of S(O)<ai+jm}tai+jm.

Let gk (O, n) be the number of gaps of S (O) smaller than n which are congruent with

ak module m. For each k = 1, · · · ,m− 1, we have

gk (O, ai + jm) =

{
bak/mc, if k ≤ i and j ≥ 0 or k > i and j > b(ak − ai) /mc
bak/mc − b(ak − ai) /mc+ j, if k > i and 0 ≤ j ≤ b(ak − ai) /mc

and
m−1∑

k=1

gk (O, ai + jm) = #{gaps of S (O) < ai + jm}.

Observing now that
m−1∑
k=1

bak/mc is the number of gaps of S (O) i.e

m−1∑

k=1

bak/mc = δ,

we shown the proposition.
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4.4.2 The Two-branch case

In this subsection we assume that S is a two-branch residually rational semilocal ring

S, that is S is a residually rational semilocal ring and m = 2. We assume also that the

constant field k has more than 2 elements. In this case, its semigroup S (S) ⊆ N× N
satisfies the two properties (cf. [4]):

i. If (n1, n2) ∈ S (S) and (m1,m2) ∈ S (S) then

(min{n1,m1}, min{n2, m2}) ∈ S (S) .

ii. Let (m1, m2) be a point of S (S) . Then m1 is the largest abscissa of the points

in S (S) with ordinate m2 if and only if m2 is the largest ordinate of the points

of S (S) with abscissa m1.

The points of item ii. are called the maximal points of S (S). The set of maximal

points of S (S) is denoted by M(S). By projecting S(S) on the two coordinates axes,

we obtain the semigroup of the two branches, say S1(S) and S2(S). Let b be an S-

ideal. From Lemma 22, Proposition 28 and remark after it, the set S(b) satisfies similar

properties to i. and ii. Therefore, in a similar way we can define M(b), S1(b) and S2(b).

Proposition 62 PS(S, b, t1, t2) =
∑

(n1,n2)∈S(b) η(n1,n2) (S, b) tn1
1 tn2

2 where

η(n1,n2) (S, b) =





qs−1+degS(b)

[Ub : US] (q − 1)s−1 qs1(b,n1)+s2(b,n2)+m(b,(n1,n2)), if (n1, n2) ∈ M(b)

qs−2+degS(b)

[Ub : US] (q − 1)s−2 qs1(b,n1)+s2(b,n2)+m(b,(n1,n2)), if (n1, n2) ∈ S(b)\M(b)

where si(b, ni) stands for the number of gaps of Si(b) smaller than ni (i=1,2) and

m(b, n1, n2) stands for the number of maximal points of S (b) whose abscissa and co-

ordinate are smaller than n1 and n2 respectively.

Proof. We can assume that bS̃ = S̃. From 4.3, we have

ηn (S, b) =
qs+degS(b)+1·n

[Ub : US] (q − 1)s (q−l(b,n) − q−l(b,n+e1) − q−l(b,n+e2)) + q−l(b,n+e1+e2)).

For each point n := (n1, n2) ∈S (b) we have

l (b, (n1 + 1, n2)) = l (b, (n1, n2 + 1)) = l (b, (n1, n2)) + 1
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(see Lemma 22, Proposition 28 and remark after it). Moreover,

l (b, (n1 + 1, n2 + 1)) =

{
l (b, (n1, n2)) + 1, if (n1, n2) ∈ M(b)

l (b, (n1, n2)) + 2, if (n1, n2) ∈ S(b)\M(b).

It follows that

η(n1,n2) (S, b) =





qs−1+degS(b)

[Ub : US] (q − 1)s−1 qn1+n2−l(b,(n1,n2)), if (n1, n2) ∈ M(b)

qs−2+degS(b)

[Ub : US] (q − 1)s−2 qn1+n2−l(b,(n1,n2)), if (n1, n2) ∈ S(b)\M(b).

By induction we deduce that l(b, (n1, 0)) = s1(b, n1), l(b, (0, n2)) = s2(b, n2) and

l (b, (n1, n2)) = l (b, (n1, 0)) + l (b, (0, n2)) + m(b, (n1, n2)). Therefore,

n1 + n2 − l (b, (n1, n2)) = s1(b, n1) + s2(b, n2) + m(b, (n1, n2)).
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Chapter 5

Multi-variable Poincaré series of

plane algebroid curves

In this chapter, we study the multi-variable Poincaré series of a class of plane algebroid

curves totally defined over a finite field. We show that its multi-variable Poincaré series

is a complete invariant of its equisingularity class, in the sense of Zariski. We can

associate the rational function P (O,O, T1, · · · , Tm) mod (q − 1)Z[[T1, · · · , Tm]] to

an algebroid plane curve. In the first section we observe that the mentioned definitions

of zeta function, partial zeta function and multi-variable Poincaré series associated to

non-zero fractional ideals of a local ring O of the irreducible algebraic curve X can also

be defined for regular fractional ideals of a reduced local ring O of a possibly singular,

complete, reduced algebraic curve X define over a finite field k = Fq.

5.1 Multi-variable Poincaré Series of reduced curves

over finite field

The preceding theory about zeta function and multi-variable Poincaré series can be

extended to reduced curves. We now indicate the necessary modifications in order to

apply the results of previous sections. Before obtaining this extension we give some

preliminary known definitions and results needed in the sequel.

Let X be a complete reduced curve over the field k, an let

X = X1 ∪ · · · ∪Xr

be its decomposition into irreducible components. For each P ∈ X let OP = OX,P be
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the local ring of X at P and mP = mX,P its maximal ideal. The other prime ideals

of OX,P are minimal and correspond bijectively to the irreducible components of X

passing through P. If P ∈ Xj and if pX,Xj ,P is the corresponding minimal prime ideal

of OX,P then

OXj ,P = OX,P /pX,Xj ,P .

Since the local ring OX,P is reduced, the intersection of its minimal primes is zero, and

so we can identify

OX,P ⊆
⊕
Xj3P

OXj ,P

where Xj varies over the irreducible components of X passing through P. The codi-

mension of OX,P in
⊕

Xj3P OXj ,P is denoted by IX,P . The number IX,P is finite and it

can be interpreted in terms of the intersection multiplicities.

The total ring of fractions of OX,P is equal to the direct product

Frac(OX,P ) =
⊕
Xj3P

k(Xj)

of the function fields k(Xj) of the irreducible components of X passing through P.

Observe that, if we put XP :=
⋃

Xj3P

Xj, then Frac(OX,P ) = k (XP ) the k-algebra of

rational functions on X. The integral closure ÕX,P of OX,P is the direct product

ÕX,P =
⊕
Xj3P

ÕXj ,P .

Thus, denoting by

δX,P := dimk(ÕX,P /OX,P )

the singularity degree of X at P, it is obtained the identity

δX,P = IX,P +
∑

Xj3P

δXj ,P < ∞.

By considering the disjoint union

X ′ = X1 t · · · tXr

of the irreducible components of X, the non-singular model X̃ of X may be expressed

as the disjoint union

X̃ = X̃1 t · · · t X̃r

of the non-singular models of the irreducible components of X. Furthermore, the

elements in the inverse image π−1(P ) of the morphism π : X̃ −→ X ′ −→ X correspond
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bijectively to the branches of centred at P. Thus the branches of X are simply the

branches of the irreducible components of X.

By a regular fractional OX,P -ideal we mean a finitely generated OX,P -submodule of

the total ring of fractions Frac(OX,P ) of OX,P not contained in the set of zero divisors

of OX,P . Recall that an element of OX,P is a zero divisor if and only if it is contained in

some minimal prime ideal or equivalently it is a zero divisor of the ring
⊕

Xj3P OXj ,P ,

that is, a non-unity of
⊕

Xj3P k(Xj) i.e. it is identically zero on some irreducible

component passing through P. Moreover, an OX,P -submodule aP of the total ring of

fractions Frac(OX,P ) of OX,P is finitely generated if and only if there exists a non-zero

divisor s of OX,P such that saP ⊆ OX,P . If aP and bP are regular fractional OX,P -ideal

such that aP ⊇ bP then dimk(aP /bP ) < ∞. Thus, the local degree degP (aP ) is defined

by similar properties to that used in the irreducible case, namely:

i. degP (OP ) = 0

ii. dimk(aP /bP ) = degP (aP )− (bP ) whenever aP ⊇ bP .

Since ÕX,P =
⊕

Xj3P

ÕXj ,P , each ÕX,P -ideal aP is a direct sum
⊕

Xj3P a
j

where each a
j

is an ÕXj ,P -ideal. A such ÕX,P -ideal is a maximal ideal of ÕX,P if and only if a
j

is

maximal ideal of ÕXj ,P for some j and ai = ÕXi,P for each other i. The integral closure

ÕXj ,P of OXj ,P is the principal ideal domain

ÕXj ,P =
⋂

Q∈Xj , Q|P
ÕXj ,Q

with quotient field k (Xj) , whose maximal ideals correspond bijectively to the branches

of Xj centered in P. Moreover, Q runs over all branches in Xj centered at P. Set

Q1, · · · , Qm be the branches of X centered at P and let p1, · · · , pm be the corresponding

maximal ideals of ÕX,P . The ÕX,P -ideals are exactly of the form

pn := pn1
1 · · · pnm

m

where n1, · · · , nm are integers. If n1 ≥ 0, · · · , nm ≥ 0 then

ÕX,P /pn = ÕX,P /pn1
1 · · · pnm

m

'
m⊕

i=1

ÕX,P /pni
i

As follows by applying the Chinese remainder theorem. By passing to the projective

limit one obtains ̂̃OX,P = ÔX̃,Q1
× · · · × ÔX̃,Qm
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Since δP := δX,P < ∞ the topology of OP is induced by the topology of ÕP , and so

the completion ÔP is the closed subring of
̂̃OX,P = ÔX̃,Q1

×· · ·×ÔX̃,Qm
of codimension

δP .

Now we indicate a natural way to extend the mentioned definitions of zeta functions

and multiple Poincaré series to local rings of a complete reduced curve defined over

a finite field. Let O be a local ring at a singular point P of a complete reduced

curve X = X1 ∪ · · · ∪ Xr defined over a finite field k = Fq, where X1, · · · , Xr are

the irreducible components of X. Without loss of generality we can assume that each

irreducible component passes through P, in the otherwise we take O to be a local ring

at P of the complete reduced curve XP :=
⋃

Xj3P

Xj. Let O1, · · · ,Or be the local rings

of X1, · · · , Xr at P , respectively. Thus,

Oj = O/Pj,

where Pj is the minimal primes of O corresponding to the irreducible component Xj.

We can identify

O ⊆
r⊕

j=1

Oj.

Moreover, the total ring of fractions of O is equal to the direct product

K := Frac(O) =
r⊕

j=1

Kj

of the function fields Kj := k(Xj) of the irreducible components of X. Hence,

K = k (X) is the k-algebra of rational functions on X. The integral closure Õ of

O is the direct product

Õ =
r⊕

j=1

Õj.

The branches of X centered at P correspond to the maximal ideals of Õ, say p1, · · · , pm,

and the Õ-ideals are exactly of the form

pn := pn1
1 · · · pnm

m

where n1, · · · , nm are integers. We define its multi-exponent by v (pn) := n.

On the other hand, for each j = 1, · · · , r the maximal ideals, say p1j, · · · , pmjj, of the

integral closure Õj of Oj in Kj correspond bijectively to the valuations

v1j = ordp1j
, · · · , vmjj = ordpmjj

in the function field Kj | k. Each such valuation

vij in the function field Kj | k may be extended to a map vij of K onto the set
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Z ∪ {∞} that vanishes on k and has the formal properties of a valuation, by defining

vij(x1, · · · , xr) = vij(xj). Conversely, every map of K onto the set Z ∪ {∞} that vani-

shes on k and has the formal properties of a valuation is of this form. Thus, for each

non-zero rational function z ∈ K\{0} is abbreviated

v(z) := v(zÕ) = (v1 (z) , · · · , vm (z)) ∈ Zm.

We have in this case the ingredients needed to define in similar way the multi-

variable Poincaré series associated to a pair of O-ideal classes [a] and [b]. It is defined

to be the multi-variable power series

PO(a, b, t) :=
∑

ηO,n (a, b) tn ∈ Z[[t1, . . . , tm]]

whose coefficients are the cardinalities

ηO,n (a, b) := #{O-ideals d satisfying d ⊇ a, d ∼ b and d · Õ = a · p−n}

where tn := tn1
1 · · · tnm

m for each n := (n1, · · · , nm) ∈ Zm.

From the definition, this series only depends on the O-ideal classes [a] and [b] and

it can be expressed in the form

PO(a, b, t) =
∑

d⊃a,d∼b

tv(a·Õ)−v(d·Õ) ∈ Z[[t1, . . . , tm]]

where the sum is taken over all O-ideals d that contain a and are equivalent to b.

Similarly, we can associate to each O-ideal a the Stöhr Dirichlet series

ζO (a, s) :=
∑
d⊇a

# (d/a)−s , < (s) > 0

where the sum is taken over the O-ideals d that contain a, with

ZO (a, t) :=
∑
d⊇a

tdimk(d/a).

where t = q−s. Moreover, we can associate to each pair of O-ideals a and b the partial

zeta-function

ζO (a, b, s) :=
∑

d⊇a, d∼b

# (d/a)−s , < (s) > 0

where the sum is taken over O-ideals that contain a and are equivalent to b, and it

may be written as a power series in t = q−s with integer coefficients:

ZO (a, b, t) :=
∑

d⊇a, d∼b

tdimk(d/a), |t| < 1
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and it only depends on the ideals classes [a] and [b]. They also satisfy

Z (a, t) =
∑
[b]

Z (a, b, t) , where b ranges in a complete system of representatives of

O-ideal class. Moreover, ZO (a, b, t) = tdimk(a·Õ/a)−dimk(b·Õ/b)PO(a, b, tr1 , . . . , trm), where

r1 := dimk(Õ/p1), · · · , rm := dimk(Õ/pm).

In similar way, many of the results in [26] and [27] about zeta function and multi-

variable Poincaré series for local rings of a complete irreducible curve X may be ex-

tended to complete reduced curves. Finally, we observe that PÔ(â, b̂, t) = PO(a, b, t),

ZÔ
(
â, b̂, t

)
= ZO (a, b, t) and ZÔ (â, t) = ZO (a, t), when a and b are O-ideal of a local

ring O of a geometrically irreducible algebraic curve defined over a finite field k = Fq.

5.2 Multi-variable Poincaré series of plane algebroid

curves and equisingularity

Let k be a field non necessarily algebraically closed and let f ∈ k[[X, Y ]] be a se-

ries satisfying f (0, 0) = 0, square free and such that each irreducible factor of it is

absolutely irreducible. The reduced local ring O := k[[X,Y ]]/ (f) is called a plane

algebroid curve totally defined over k (see [36]). It can be proved that the local ring

O is residually rational i.e. the localization at maximal ideals of O and Õ have the

same residue field, where Õ denote the integral closure of the ring O in its total ring of

fractions. Let f =
m∏

i=1

fi be the decomposition of f into irreducible factors in k[[X,Y ]]

and let Oi := k[[X,Y ]]/ (fi) be the local ring, called the irreducible component of O,

for each i = 1, · · · , m. It can be proved that Ô ⊗k k = k[[X,Y ]]/ (f) and its irre-

ducible components are of the form Ôi ⊗k k = k[[X,Y ]]/ (fi), i = 1, · · · ,m. Then,

there exists a finite field extension l of k such that S (O ⊗k l) = S

(
Ô ⊗k k

)
(see [36],

Proposition 1.5 page. 40 and Proposition 4.7 page. 35). Thus, we may assume that

S (O) = S (O ⊗k l), where l is any finite extension of k.

Now, let k be an algebraically closed field and let f ∈ k[[X,Y ]] be a series satisfying

f (0, 0) = 0 and square free. We denote by (f) and

O := k[[X, Y ]]/ (f)

the plane algebroid curve defined by f over the field k and the local ring associated to

it, respectively.
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Let f =
m∏

i=1

fi be the corresponding decomposition of the series f into irreducible

factors. The semigroup of a plane algebroid curve (f) is defined by

S (f) := {(I (f1, h) , · · · , I (fm, h)) : h ∈ k[[X,Y ]]} ∩ Nm,

where I (fi, h) denotes the intersection multiplicity of fi and h at the point (0, 0) . It is

well known that there exists a bijection between the minimal primes of the local ring O
and the branches of (f) as well as the valuation lying over the ring O, say v1, · · · , vm.

Moreover, if h ∈ k[[X, Y ]]\fik[[X, Y ]], then vi(h) = I (fi, h), where h := h(x, y) with

x := X +fik[[X,Y ]] and y := Y +fik[[X, Y ]]. Thus, by using the classical construction

of a valuation associated to a branch, we can see that the semigroup S (f) agrees with

the semigroup S (O) of the local ring O.

The equisingularity class of a plane algebroid curves can be defined in several equiv-

alent forms (cf. [30], [33]), for our purposes it is enough to know that two plane al-

gebroid curves defined over an algebraically closed field are equisingular if and only if

there exists a preserving intersection multiplicity bijection between their components

i.e. their branches (cf. [34], Lemma 7.1). The equisingularity class was characterized

by Zariski (in the case m = 1) and by Waldi (in the general case for any m) in terms

of the semigroup, that is, the semigroup determines exactly the equisingularity class

of the plane algebroid curve (cf. [30]). This notion is important because, when k = C,

the notion of equisingularity class agrees with the notion of topological class. It is

known that the semigroup SC and the Alexander polynomial ∆C(t1, ..., tm) characterize

completely the topological class of a germ (C, 0) ⊆ (C2, 0) (cf. [32]).

A general problem in studying singularities of analytic sets is to express their topo-

logical invariants in terms of the analytic ones. The papers [7] and [8] achieve this

nicely in the case of (germs of) reduced plane curves.

Let (C, 0) ⊆ (C2, 0) be a germ of a reduced plane curve given by f = 0 for

f ∈ O(C2,0), and let C =
⋃m

i=1 Ci, with r > 1 be its decomposition into irreducible

components corresponding to f =
∏m

i=1 fi. Let ∆C(t1, ..., tm) be the Alexander polyno-

mial of the link C ∩ S3
ε ⊆ S3

ε for sufficiently small ε > 0 (cf. [12]). The multi-variable

Alexander polynomial is a complete topological invariant of the singularity (C, 0). A

formula for ∆C(t1, ..., tm) in terms of the data of an embedded resolution of C was given

by Eisenbud and Neumann in [12].

Let π : (X , D) −→ (C2, 0) be an embedded resolution with the exceptional divisor

D =
⋃

σ∈Γ Eσ the union of irreducible components Eσ ' CP1, and E0
σ ⊆ Eσ be the

complement in Eσ of the intersection with all other components of the total transform

(f ◦ π)−1 (0) of the curve C. For σ ∈ Γ and g ∈ O(C2,0), with g 6= 0, let mσ(g) be the
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multiplicity along Eσ of the lifting of g to X and let mσ = (mσ(f1), ..., m
σ(fm)) ∈ Zm

≥0.

If SkX denotes the k-th symmetric power of a topological space X, then Eisenbud and

Neumann in [12] showed, by considering the space

Y =
∏

σ

(⋃∞
k=0

SkE0
σ

)
=

⋃
kσ

(∏
σ
SkσE0

σ

)
,

that the Alexander polynomial may be computed as

∆C(t1, ..., tm) =
∏

σ
(1− t

mσ(f1)
1 · · · tmσ(fm)

m )−χ(E0
σ),

where χ(X) stands for the Euler characteristic of the topological space X.

Next, let ϕi : (C, 0) −→ (C2, 0) be uniformizations of the branches Ci of

C (1 ≤ i ≤ m), so that, for a germ g ∈ O(C2,0), with g 6= 0, one may denote by vi = vi(g)

and by ai = ai(g) the exponent and the coefficient, respectively, of the leading monomial

in the expansion of the germ g ◦ ϕi as a power series. Let L = Z[[t1, ..., tm; t−1
1 , ..., t−1

m ]]

be the set of formal Laurent series in the variables ti (L is not a ring). For any

n = (n1, ..., nm) ∈ Zm consider the ideal J(n) = {g ∈ O(C2,0) : vi(g) ≥ ni i = 1, ..., m}
and the set

PC(t1, ..., tm) =
(t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑
n

dimC(J(n)/J(n + 1))tn

where 1 = (1, ..., 1). Campillo, Delgado and Gusein-Zade showed in [7] that PC(t1, ..., tm)

is a polynomial and called it generalized Poincaré polynomial of the multi-indexed fil-

tration induced by the valuation-tuple v. In [7] they further showed that this is none

other than the Alexander polynomial, that is,

PC(t1, ..., tm) =
∏

σ
(1− t

mσ(f1)
1 · · · tmσ(fm)

m )−χ(E0
σ). (5.1)

In the case of algebroid plane curves defined over an algebraically closed field, we

want to prove a similar identity to 5.1 (proved by Campillo, Delgado and Gusein-

Zade). So that, we require some terms similar to that in 5.1. First, according to

the definition of Euler characteristic given in [7] (cf. [7] page 133), we observe that

χ(E0
σ) = 2−# (Eσ\E0

σ) , for each σ ∈ Γ.

Let O be the local ring at a singular point of a geometrically integral algebraic

curve defined over a finite field k and let b be an O-ideal. It was proved by Stöhr (see

[27] Theorem 6.3) that

P (O, b, t) =
qδ−deg(bÕ)

[Ub : UO] (1− q−%)

m∏
i=1

(qriti − 1)

q|r|t1 · · · tm − 1

∑

n∈Zm

qr·n(qdeg(b∩bpn) − qdeg(b∩bpn+1))tn
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where 1 := (1, · · · , 1) . Let

cn (O, b) :=
qδ−deg(bÕ)+r·n

[Ub : UO] (1− q−%)

∑

i∈{0,1}m

(−1)m−|i| (qdeg(b∩bpn−i) − qdeg(b∩bpn−i+1))

for each n ∈Zm. By noting that

m∏
i=1

(qriti − 1) =
∑

i∈{0,1}m

(−1)m−|i| qr·iti,

it follows that

P (O, b, t) =
1

q|r|t1 · · · tm − 1

∑

n∈Zm

cn (O, b) tn.

We observe that:

Lemma 63 Let n = (n1, · · · , nm)∈Zm.

1. If nj < 0 for some j = 1, · · · ,m, then cn (O, b) = 0.

2. If nj ≥ bj + 1 then cn (O, b) = cn+ej
(O, b) .

This means that cn (O, b) = cinf(n,b+1) (O, b) for each n = (n1, · · · , nm)∈Nm,

where b := v((b : S̃) : bS̃) = (b1, · · · , bm)∈Zm is the multi-exponent of the

Õ-ideal (b : S̃) : bS̃.

Proof. Since

b ∩ b · ps = {z ∈ b : v (z) ≥ s+v(bÕ)} for each s ∈Zm,

It follows that b∩bps = b∩bps−ej and b∩bps+1 = b∩bps+1−ej for any s = (s1, · · · , sm)∈Zm

such that sj < 0 for some j = 1, · · · ,m; and so the first sentence will follow.

To prove the second sentence let n = (n1, · · · , nm)∈Nm such that nj ≥ bj + 1

and let i ∈{0, 1}m. Let us consider a strictly increasing sequence
(
n(k)

)
0≤k≤m

, where

n(0) = n− i, n(1) = n− i + ej, n(m) = n− i + 1. Then for each k = 1, · · · , m there

exists i (k) ∈ {1, · · · ,m} such that n(k) = n(k) + ei(k). Hence,

dimk

(
b ∩ bpn−i

b ∩ bpn−i+1

)
= dimk

(
b ∩ bpn−i

b ∩ bpn−i+ej

)
+

m−1∑

k=1

dimk

(
b ∩ bpn(k)

b ∩ bpn(k)+ei(k)

)

and

dimk

(
b ∩ bpn−i+ej

b ∩ bpn−i+ej+1

)
=

m−1∑

k=1

dimk

(
b ∩ bpn(k)

b ∩ bpn(k)+ei(k)

)
+ dimk

(
b ∩ bpn−i+1

b ∩ bpn−i+1+ej

)
.
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Since nj ≥ bj + 1, it follows from Lemma 22 (3) that

dimk

(
b ∩ bpn−i

b ∩ bpn−i+1

)
= dimk

(
b ∩ bpn−i+ej

b ∩ bpn−i+ej+1

)

and deg
(
b ∩ bpn−i+1

)
= rj + deg

(
b ∩ bpn+ej−i+1

)
i.e.

r · n+ deg
(
b ∩ bpn−i+1

)
= r· (n + ej) + deg

(
b ∩ bpn+ej−i+1

)
;

and so the second sentence will follow.

From the precedent Lemma, it follows that

P (O, b, t) =
1

q|r|t1 · · · tm − 1

∑

n∈Nm

cn (O, b) tn

=
1

q|r|t1 · · · tm − 1

∑

0≤n≤b+1

cn (O, b) tn
∏

nj=bj+1

1

1− tj

where in the product the index j runs through the integers j = 1, · · · ,m with

nj = bj + 1. Thus,

P (O, b, t) =

∑
0≤n≤b+1

cn (O, b) tn
∏

nj<bj+1

(1− tj)

(q|r|t1 · · · tm − 1) (1− t1) · · · (1− tm)

where in the product the index j runs through the integers j = 1, · · · , m with nj < bj.

This is another proof of the rationality of the Poincaré series P (O, b, t).

On the other hand, we have that

P (O, b, t) = Pb:b(b : b, b, t) and, hence, [Ub : UO]
(
1− q−%

)
= qδ−δb:b

∏s

i=1

(
1− q−%i

)

where b : b is a semilocal ring and b : b = O1 ∩ · · · ∩Os is its decomposition as a finite

intersection of local rings, moreover, %i := dimk (Oi/mi) and δi := dimk(Õi/Oi) are the

degree of the residue field and the singularity degree of the local ring Oj, respectively,

for each i = 1, · · · , s. Thus

cn (O, b) =
qδb:b−deg(bÕ)+r·n
∏s

i=1 (1− q−%i)

∑

i∈{0,1}m

(−1)m−|i| (qdeg(b∩bpn−i) − qdeg(b∩bpn−i+1)).

Hence, from Lemma 22,

cn (O, b) =
qδb:b−deg(bÕ)+r·n (qrj − 1)∏s

i=1 (1− q−%i)

∑

i∈{0,1}m,ij=0

(−1)m−|i|−1 (qdeg(b∩bpn−i)−qdeg(b∩bpn−i+1))
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for each n = (n1, · · · , nm)∈Nm with nj = bj+1, where the sum is taken over the vectors

i ∈{0, 1}m whose j-th entry is equal to 0 i.e. ij = 0. In particular, if n ≥ b + 1 then

cn (O, b) = qδb:b−|r|∏s
i=1(1−q−%i)

(
q|r| − 1

) ∏m
j=1 (qrj − 1).

It is well known that

dimk (d/a) = % · lengthO (d/a) whenever d ⊇ a.

Thus, we obtain the following proposition:

Proposition 64 Let O be the local ring at a singular point of a geometrically integral

algebraic curve defined over a finite field k and let b be an O-ideal such that the ring

b : b is a local ring. Then P (O, b, t) is congruent modulo (q − 1)Z[[t1, · · · , tm]] to the

series (t1−1)···(tm−1)
t1···tm−1

∑
n∈Zm

lengthb:b

(
b ∩ bpn/b ∩ bpn+1

)
tn, which is a polynomial when

m ≥ 2. In particular,

P (O,O, t) ≡ (t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑

n∈Zm

lengthO

( O ∩ pn

O ∩ pn+1

)
tn

mod (q − 1)Z[[t1, · · · , tm]]. If the local ring O corresponds to a rational point, that

is, if % = 1, then

P (O,O, t) ≡ (t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑

n∈Zm

dimk

(O ∩ pn/O ∩ pn+1
)
tn

mod (q − 1)Z[[t1, · · · , tm]]

Proof. Let %1 := dimk (O1/m1) and δ1 := dimk(Õ1/O1) the degree of the residue

field and the singularity degree of the local ring O1 := b : b, respectively. In this case,

P (O, b, t) =
1

q|r|t1 · · · tm − 1

∑

n∈Nm

cn (O1, b) tn

We observe that

(qdimk(b∩bpn−i/b∩bpn−i+1) − 1)/ (q%1 − 1) ≡ lengthO1

(
b ∩ bpn−i

b ∩ bpn−i+1

)
mod (q − 1)

for each n ∈Nm and for each i ∈{0, 1}m. Then

cn (O1, b) ≡
∑

i∈{0,1}m

(−1)m−|i| lengthO1

(
b ∩ bpn−i

b ∩ bpn−i+1

)
mod (q − 1) , 0 ≤ n ≤ b
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and

cn (O1, b) ≡ 0 mod (q − 1)

for each n = (n1, · · · , nm)∈Nm such that nj = bj + 1 for some j = 1, · · · ,m. Thus,

P (O, b, t) ≡ 1

t1 · · · tm − 1

∑

0≤n≤b


 ∑

i∈{0,1}m

(−1)m−|i| lengthO1

(
b ∩ bpn−i

b ∩ bpn−i+1

)
 tn

=
(t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑

n∈Zm

lengthO1

(
b ∩ bpn

b ∩ bpn+1

)
tn.

where the congruence in the first line is mod (q − 1)Z[[t1, · · · , tm]]

We observe that the previous proposition is not always true for each O-ideal . For

example, if O and b are the local ring and the O-ideal b3, respectively, of Example

in [27], then P (O, b3, t) is not congruent with (t1−1)(t2−1)(t3−1)
t1t2t3−1

∑
n∈Z3

lengthO
(

b3∩pn

b3∩pn+1

)
tn

module (q − 1)Z[[t1, t2, t2]]. Since the O-ideal b3 is a semilocal ring and

P (O, b3, t) = Pb3:b3(b3 : b3, b3, t) = Pb3:b3(b3 : b3, b3 : b3, t)

the above proposition is not always true for semilocal subring of a function field K | k.

In [36] ( cf. Proposition 4.7, page 35) Zuñiga proved that, if O is a residually

rational local ring, then there exists a unique finite field extension k0 | k such that

S (O ⊗k k0) = S
(O ⊗k k

)
.

Moreover, S (O ⊗k k0) = S (O ⊗k l) for each finite field extension of k0. By virtue

of this we may assume that O is residually rational ring and S (O) = S
(O ⊗k k

)
.

Therefore, we can associate to O ⊗k k the multi-variable rational function

P (O ⊗k k,O ⊗k k, T1, · · · , Tm) := P (O,O, T1, · · · , Tm) mod (q − 1)Z[[T1, · · · , Tm]]

where T1, · · · , Tm are indeterminates. This series is a polynomial when m ≥ 2. More-

over, it depends only on S (O) .

Now we give some well known definitions and results about embedded resolution

of curves on surfaces that we use in this section. Let Y be a non-singular irreducible

projective surface over an algebraically closed field k. Let X be a curve on a surface

Y, this means any effective divisor on the surface Y. In particular it may be singular,

reducible or even have multiple components. A point will be mean closed point, unless

otherwise specified. If σ : W −→ Y is the blow-up centered at the point P and X is

a curve on the surface Y passing through P, then the inverse image σ−1(X) consist
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of two components: the exceptional curve E and the curve X ′ that can be defined as

the closure in Y of σ−1(X\P ). It is denoted by X ′ = σ′(X). By considering X as an

effective divisor on the surface Y , it follows that σ∗(X) = σ′(X) + rE where r is the

multiplicity of P on X (cf. [18] Proposition 3.6 page 389). Moreover, we have the

following properties (cf. [24] Theorem 2 page 252 and [18] Theorem 3.9 page 391):

Theorem 65 Let π : Y ′ −→ Y be a birational regular map between two non-singular

projective surfaces over an algebraically closed field k. Then

1. If D1 and D2 are divisors on Y then

π∗(D1)π
∗(D2) = D1D2.

2. If D is a divisor on Y ′ all of whose components are exceptional curves of f and

D is any divisor on Y then

π∗(D)D = 0.

In particular, if X is a plane algebroid curve defined by f =
m∏

i=1

fi ∈ k[[X, Y ]] and

h ∈ k[[X, Y ]], then

vi(h) = I(fi, h) = I(π∗(fi), π
∗(h)′) for i = 1, · · · ,m

where π∗(h)′ denotes the divisor π∗(h) without the points in the exceptional divisor of

π.

Theorem 66 (Embedded resolution of curves in surfaces)

Let X be a curve on the surface Y. Then there exist a finite sequence of monoidal

transformations (i.e. operations of blow-up at suitable points)

Y ′ = Yn −→ Yn−1 −→ · · · −→ Y0 = Y

such that if π : Y ′ −→ Y is their composition, then the total inverse image π−1(X) is

a divisor with normal crossings (this means that each irreducible component of π−1(X)

is non-singular, and whenever r irreducible components X1, · · · , Xr of π−1(X) meet at

the point Q, then the local equations g1, · · · , gr of X1, · · · , Xr at Q, respectively, form

part of a system regular of parameters of OY ′,Q).
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Let π : (Y ′, D) −→ (Y, P ) be an embedded resolution with the exceptional divisor

D =
⋃

σ∈Γ Eσ the union of irreducible components Eσ (isomorphic to the projective

line P1), and let Eo
σ ⊆ Eσ be the complement in Eσ of the intersection with all other

components of the total transform π−1(X) of the curve X. It is associated to this

embedded resolution a dual graph whose vertices α correspond to the irreducible com-

ponents Eα (isomorphic to the projective lines) of D and two vertices are connected

by an edge if the corresponding components intersect. For σ ∈ Γ and g ∈ OY,P ,

with g 6= 0, let mσ(g) be the multiplicity along Eσ of the lifting of g to Y ′ and let

mσ := (mσ(f1), ..., m
σ(fm)) ∈ Zm

≥0, where f1, ..., fm are local equations of the irre-

ducible components of X at the point P .

Thus, we want to study the relation between the series

P (O,O, t1, · · · , tm) =
(t1 − 1) · · · (tm − 1)

t1 · · · tm − 1

∑

n∈Zm

dimk

(O ∩ pn/O ∩ pn+1
)
tn

and the series
∏

σ(1− t
mσ(f1)
1 · · · tmσ(fm)

m )#(Eσ\E0
σ)−2, whenever O is the local ring of an

algebroid plane curve defined over an algebraically closed field k.

5.2.1 Unibranch case

LetO be the local ring of an irreducible plane algebroid curve totally defined over a field

k defined by the irreducible power series f ∈ k[[X,Y ]] with semigroup S (O) ( where

S (O) = S (O ⊗k l) for each finite extension l of k), whose Apery sequence respect to

its multiplicity m is a0 < a1 < · · · < am−1 and, hence, S (O) =
⋃m−1

i=0 (ai + mN). The

blow-up of (f) is the algebroid curve
(
f (1)

)
given by the irreducible series

f (1) = X−1f (X,XY ) where it is assumed that the tangent of (f) is the horizontal

line (Y ) . In [3], Azevedo shows the following two important results:

(i) The semigroup S (O) is strongly increasing, that is, ai + aj ≤ ai+j whenever

0 ≤ i, j, i + j ≤ m.

(ii) S
(O(1)

)
= ∪m−1

i=0 (ai − im + mN) , where O(1) is the local ring of the algebroid

curve
(
f (1)

)
, that is, O(1) = k[[X,Y ]]/

(
f (1)

)
.

Thus, the semigroup S
(O(1)

)
is determined by the semigroup S (O) and conversely,

S (O) is determined by the multiplicity m and the semigroup S
(O(1)

)
.

We have proved that P (O,O, t) ≡ ∑
n∈Z

dimk (O ∩ pn/O ∩ pn+1) tn mod (q − 1)Z[[t]].

Since P (O,O, t) is determined by S (O) and S (O) = S
(O ⊗k k

)
, we may assume that
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the constant field k is algebraically closed. Now, because S (O) =
⋃m−1

i=0 (ai + mN) and

S
(O(1)

)
= ∪m−1

i=0 (ai − im + mN), it follows that

P (O,O, t) =
1 + ta1 + · · ·+ tam−1

1− tm

and

P (O(1),O(1), t) =
1 + ta1−m + · · ·+ tam−1−(m−1)m

1− tm

Thus, we can prove by induction the following proposition.

Proposition 67 Let 0 < v0 < v1 < · · · < vr be the minimal system of generators

of the semigroup S (O), let n0 := 1 and nj := gcd(v0, · · · , vj−1)/ gcd(v0, · · · , vj) for

j = 1, · · · , r. Then

P (O,O, t) =

∏r
j=1(1− tnjvj)∏r
j=0(1− tvj)

Proof. We will prove the result by induction over the number of blowing-ups. We

have that v0 = m. Let wj := vj − n0 · · ·nj−1v0 for j = 1, · · · , r. In [16] was proved

that the minimal system of generators of the semigroup S
(O(1)

)
has one of the three

forms:

1. m < w1 < · · · < wr if m < w1.

2. w1 < m < w2 < · · · < vr if w1 < m and w1 - m.

3. w1 < · · · < wr if w1 | m.

In the first case, by induction hypothesis,

P (O(1),O(1), t) =

∏r
j=1(1− tmjwj)

(1− tm)
∏r

j=1(1− twj)

where m0 := 1,m1 := m
gcd(m,w1)

and mj :=
gcd(m,w1,··· ,wj−1)

gcd(m,w1,··· ,wj)
for j = 2, · · · , r. Since

wj := vj − n0 · · ·nj−1v0; it follows that mj = nj for j = 0, · · · , r. Thus,

1 + ta1−m + · · ·+ tam−1−(m−1)m =

∏r
j=1(1− tmjwj)∏r

j=1(1− twj)
.

Hence, each ai − im = s1v1 + · · · + srvr − (s1 + s2n1 + · · · + srn1 · · ·nr−1)m, for each

i = 0, · · · ,m − 1, is uniquely determined by the integers s1, · · · , sr such that

109



0 ≤ sj ≤ nj − 1 for j = 1, · · · , r. On the other hand, since v0 < v1 < · · · < vr is the mi-

nimal system of generators of the semigroup S (O), each ai = i1v1 + · · ·+ irvr, for each

i = 0, · · · , m−1, where i1, · · · , ir are integers such that 0 ≤ ij ≤ nj−1, j = 1, · · · , r and

they are uniquely determined by the expansion i = i1 + i2n1 + · · ·+ irn1 · · ·nr−1.Then,

P (O,O, t) =
1 + ta1 + · · ·+ tam−1

1− tm

=

∏r
j=1

∑nj−1
ij=0 tijvj

1− tm

=

∏r
j=1(1− tnjvj)

(1− tm)
∏r

j=1(1− tvj)
.

In the second case, by induction hypothesis,

P (O(1),O(1), t) =
(1− tm1m)

∏r
j=2(1− tmjwj)

(1− tw1)(1− tm)
∏r

j=2(1− twj)

where m0 := 1, m1 = (v1−m)
gcd(v1−m,m)

, m2 := gcd(v1−m,m)
gcd(v1−m,m,w2)

and mj :=
gcd(v1−m,m,w2,··· ,wj−1)

gcd(v1−m,m,w2,··· ,wj)

for j = 3, · · · , r. Since, w1 = v1 −m and, hence,

m1m = (v1 −m) m/ gcd(v1 −m,m) = n1 (v1 −m) = n1w1

and wj := vj − n0 · · ·nj−1v0 (j = 2, · · · , r); it follows that mj = nj for j = 2, · · · , r.

Thus,

1 + ta1−m + · · ·+ tam−1−(m−1)m =

∏r
j=1(1− tmjwj)∏r

j=1(1− twj)
.

Now, we proceed as in the first case.

In the third case, by induction hypothesis,

P (O(1),O(1), t) =

∏r
j=2(1− tmjwj)∏r

j=1(1− twj)

where m1 := 1, m2 = w1/ gcd(w1, w2) and mj := gcd(w1, · · · , wj−1)/ gcd(w1, · · · , wj)

for j = 3, · · · , r. In this case, we have that gcd(v0, v1) = v1 − m and, hence,

m = n1 (v1 −m) . Moreover, Since wj := vj − n0 · · ·nj−1v0 (j = 1, · · · , r) it follows

that mj = nj for j = 2, · · · , r. Thus,

1 + ta1−m + · · ·+ tam−1−(m−1)m

1− tm
=

∏r
j=2(1− tmjwj)

(1− tv1−m)
∏r

j=2(1− twj)

i.e.

1 + ta1−m + · · ·+ tam−1−(m−1)m =

(
1− tn1(v1−m)

) ∏r
j=2(1− tmjwj)

(1− tv1−m)
∏r

j=2(1− twj)
=

∏r
j=1(1− tmjwj)∏r

j=1(1− twj)
.
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Now, we proceed as in the first case.

We can prove precedent proposition in another way. In fact, since

dimk (O ∩ pn/O ∩ pn+1) = 1 if and only if n ∈ S (O) ,

it follows that

P (O,O, t) =
∑

n∈S(O)

dimk

(O ∩ pn/O ∩ pn+1
)
tn.

On the other hand, each n in the semigroup S (O) can uniquely be represented in the

form n = s0v0 + s1v1 + · · ·+ srvr with s0 ≥ 0 and 0 ≤ sj < nj for j = 1, · · · , r (cf. [4]).

Therefore,

P (O,O, t) = (
∑∞

s0=0
ts0)

∏r

j=1
(
∑nj−1

sj=0
tsjvj)

=
1

1− tv0

∏r

j=1

1− tnjvj

1− tvj
.

Thus, P (O,O, t) =
∏r

j=1(1−tnjvj )∏r
j=0(1−tvj )

.

Let π : (Y ′, D) −→ (Y, 0) be a minimal embedded resolution of the algebroid

curve, with the exceptional divisor D =
⋃

σ∈Γ Eσ. We observe that #(Eσ\E0
σ) = 1,

#(Eσ\E0
σ) = 2 or #(Eσ\E0

σ) = 3. Moreover, the set of integers mα(f) such that

#(Eα\E0
α) = 1 is precisely the minimal system of generators of the semigroup S(O),

that is, there exist a bijective function j between the set of α ∈ Γ such that

#(Eα\E0
α) = 1 and the set of integer numbers {v0, · · · , vr}. Besides, for each β ∈ Γ,

if #(Eβ\E0
β) = 3 then mβ(f) = nj(α)m

α(f) for only one one α ∈ Γ such that

#(Eα\E0
α) = 1 (cf. [5]). Therefore,

P (O,O, t) =
∏

σ
(1− tm

σ(f))#(Eσ\E0
σ)−2.

Garcia and Stöhr showed that if S (O′) is a semigroup associated to an irreducible

algebroid plane curve of multiplicity m′, then for each positive integer m, there is an

irreducible algebroid curve of multiplicity m whose blow-up has S (O′) as its semigroup

if and only if m ∈ S (O′) and m ≤ min (S (O′) \m′N) . Based in this result they showed

that each strongly increasing semigroup is associated to an irreducible algebroid curve

(see [16]), which was first proved by Angermuller (see [1]), in characteristic zero. The

Garcia and Stöhr’s Theorem also allows to classify semigroups of irreducible singular-

ities which may be resolved by a prescribed number of blowing-ups. For example, the

list of semigroups with multiplicity m of irreducible singularities that can be resolved

by 1, 2 or 3 blowing-ups is:
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1. One blow-up, if S
(O(1)

)
= N then S (O) = mN+ (m + 1)N

2. Two blowing-ups, if S
(O(2)

)
= N and S

(O(1)
) 6= N, then S (O) = mN+ (2m + 1)N

or S (O) = mN+ (2m− 1)N

3. Three blowing-ups, if S
(O(3)

)
= N and S

(O(2)
) 6= N, then S (O) is equal to one

of the following semigroups:

(a) mN+ (3m + 1)N

(b) mN+
(

3m
2

)
N+ (3m + 1)N, where m is even

(c) mN+
(

3m−1
2

)
N, where m is odd

(d) mN+ (3m− 1)N

(e) mN+
(

3m+1
2

)
N, where m is odd

Using 61, we can calculate the Poincaré series P (O,O, t) of this semigroups, for

instance:

1. If S (O) = mN+ (m + 1)N then

P (O,O, t) =

m−2∑
i=0

q
i(i+1)

2
+i(m−i−1)tim (1− ti+1) + q

m(m−1)
2 tm(m−1)

1− t

2. If S (O) = mN+ (2m + 1)N then

P (O,O, t) =

m−2∑
i=0

qi(i+1)+2i(m−i−1)t2im (qm−i−1tm + 1) (1− ti+1) + qm(m−1)t2m(m−1)

1− t

In fact, the Apery sequence of the semigroup S (O) = mN+ (m + 1)N is ai = i (m + 1)

for i = 0, · · · ,m−1, am := ∞ and hence b(ak − ai) /mc = k−i whenever i ≤ k ≤ m−1

and b(am − ai) /mc = ∞. Thus (1) follows from this. The Apery sequence of the

semigroup S (O) = mN+ (2m + 1)N is ai = i (2m + 1) for i = 0, · · · ,m− 1, am := ∞
and hence b(ak − ai) /mc = 2 (k − i) whenever i ≤ k ≤ m−1 and b(am − ai) /mc = ∞.

Thus (2) follows from this.

5.2.2 Two-branch case

Let O be the local ring of an irreducible plane algebroid curve totally defined over

a field k defined by the irreducible power series f ∈ k[[X,Y ]]. Let f = f1f2 be the
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decomposition of f into irreducible factors in k[[X, Y ]] and let Oi := k[[X, Y ]]/ (fi)

(i = 1, 2) be the local components of O. We can assume that k is algebraically closed.

Let 0 < v
(i)
0 < v

(i)
1 < · · · < v

(i)
ri be the minimal system of generators of the semigroup

S (Oi) (i = 1, 2), let % := max{n ∈ N :
v
(1)
j

v
(2)
j

=
v
(1)
0

v
(2)
0

, for each j ≤ n ≤ r1, r2} and let

g
(i)
j := gcd(v

(i)
0 , · · · , v

(i)
j ), j = 0, · · · , ri; g

(i)
−1 := 0 (i = 1, 2). Bayer obtained explicitly

the maximal elements of the semigroup S (O) in terms of the minimal systems of

generators of the semigroups S (Oi) (i = 1, 2) and the intersection multiplicity of the

two components I := I (f1, f2). He also proved that the intersection multiplicity I may

be written in one of the following forms:

i. I = ∞ if S (O1) = S (O2)

ii. I = g
(1)
j−1v

(1)
j + ng

(1)
j g

(2)
j = g

(2)
j−1v

(2)
j + ng

(1)
j g

(2)
j for some positive integers 1 ≤ j < %

and 1 ≤ n <
v
(1)
j+1

g
(1)
j

− g
(1)
j−1

g
(1)
j g

(1)
j

v
(1)
j .

iii. I = g
(1)
%−1v

(1)
% + ng

(1)
% g

(2)
% = g

(2)
%−1v

(2)
% + ng

(1)
% g

(2)
% for some positive integer

1 ≤ n < min{v
(1)
%+1

g
(1)
%

− g
(1)
%−1

g
(1)
% g

(1)
%

v
(1)
% ,

v
(2)
%+1

g
(2)
%

− g
(2)
%−1

g
(2)
% g

(2)
%

v
(2)
% }.

iv. I = g
(1)
% v

(2)
%+1

v. I = g
(2)
% v

(1)
%+1

Moreover, he proved the following theorem (cf. [4] Theorems 3.10 and 3.12):

Theorem 68 If S (O1) is not equal to S (O2) then

1. If I = g
(1)
j−1v

(1)
j + ng

(1)
j g

(2)
j for some positive integers n and j, then the maximal

elements of S (O) are precisely of the form

(
g

(1)
j a, g

(2)
j a

)
+

r1∑

k=j+1

ik

(
v

(1)
k ,

I

g
(1)
k−1

)
+

r2∑
i=j+1

ji

(
I

g
(2)
i−1

, v
(2)
i

)

where a varies over the elements in the Apery sequence of the strongly increa-

sing semigroup
v
(1)
0

g
(1)
j

N+ · · ·+ v
(1)
j

g
(1)
j

N, with respect to the positive integer I

g
(1)
j g

(2)
j

; and

0 ≤ ik <
g
(1)
k−1

g
(1)
k

, 0 ≤ ji <
g
(2)
i−1

g
(2)
i

.
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2. If I = g
(1)
% v

(2)
%+1, then then the maximal elements of S (O) are precisely of the form

(
g(1)

% a, g(2)
% a

)
+

r1∑

k=%+1

ik

(
v

(1)
k ,

I

g
(1)
k−1

)
+

r2∑
i=%+2

ji

(
I

g
(2)
i−1

, v
(2)
i

)

where a varies over the elements in the Apery sequence of the strongly increa-

sing semigroup
v
(1)
0

g
(1)
%

N+ · · ·+ v
(1)
%

g
(1)
%

N, with respect to the positive integer I

g
(1)
% g

(2)
%+1

; and

0 ≤ ik <
g
(1)
k−1

g
(1)
k

, 0 ≤ ji <
g
(2)
i−1

g
(2)
i

.

We obtain the following proposition:

Proposition 69 If we put n
(n)
k :=

g
(n)
k−1

g
(n)
k

, with 0 ≤ k ≤ rn and 1 ≤ n ≤ 2, then

1.

P (O,O, t1, t2) =

r1∏

k=j+1

1− t
n

(1)
k v

(1)
k

1 t
n

(1)
k I/g

(1)
k−1

2

1− t
v
(1)
k

1 t
I/g

(1)
k−1

2

r2∏
i=j+1

1− t
n

(2)
i I/g

(2)
i−1

1 t
n

(2)
i v

(2)
i

2

1− t
v
(1)
i

1 t
v
(2)
i

2

∑
a

t
ag

(1)
j

1 t
ag

(2)
j

2

whenever I = g
(1)
j−1v

(1)
j +ng

(1)
j g

(2)
j for some positive integers n and j, where a varies

over the elements in the Apery sequence of the strongly increasing semigroup
v
(1)
0

g
(1)
j

N+ · · ·+ v
(1)
j

g
(1)
j

N, with respect to the positive integer I

g
(1)
j g

(2)
j

.

2.

P (O,O, t1, t2) =

r1∏

k=%+1

1− t
n

(1)
k v

(1)
k

1 t
n

(1)
k I/g

(1)
k−1

2

1− t
v
(1)
k

1 t
I/g

(1)
k−1

2

r2∏
i=%+2

1− t
n

(2)
i I/g

(2)
i−1

1 t
n

(2)
i v

(2)
i

2

1− t
I/g

(2)
i−1

1 t
v
(2)
i

2

∑
a

t
ag

(1)
%

1 t
ag

(2)
%

2

whenever I = g
(1)
% v

(2)
%+1, where a varies over the elements in the Apery sequence of

the strongly increasing semigroup
v
(1)
0

g
(1)
%

N+ · · · + v
(1)
%

g
(1)
%

N, with respect to the positive

integer I

g
(1)
% g

(2)
%+1

.

Proof. From Proposition 62, we have that

PO(O,O, t1, t2) ≡
∑

(n1,n2)∈M(O)
tn1
1 tn2

2 mod (q − 1)Z[[t1, t2]].

Then, by the precedent theorem, we obtain the result.
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Colóquio Brasileiro de Matemática, (1969), 77-98.
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