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Abstract

This thesis concerns the study of regularization strategies for the identification of the

diffusion coefficient in a parabolic PDE arising in quantitative finance. Using the properties

of the parameter-to-solution map, we address the use of convex and iterative regularization

to the specific problem. We present a unified framework for the calibration of local volatility

models which makes use of recent tools of convex regularization of ill-posed problems.

The unique aspect of the present approach is to address the key issue of convergence and

sensitivity analysis of the regularized solution, when the noise level of the observations goes

to zero, in a general and rigorous way. In particular, we present convergence results that

include convergence rates with respect to noise level in a fairly general context and goes

beyond the classical quadratic regularization. Our approach directly relates to many of

the different techniques that have been used in volatility surface estimation. In particular,

it has direct connections with the Statistical concept of exponential families and entropy-

based estimation.

Another aspect of this work concerns the iterative regularization of the local volatility

calibration problem. The novelty of this approach is based on the existence of a local

tangential cone condition. In this direction, we perform a rigorous convergence analysis of

the nonlinear Landweber iteration and the adequacy of this to the local volatility calibration

problem. Numerical tests confirm the iteration performance. Moreover, we rewrite the

problem as a system of nonlinear ill-posed equations end explore iterative-Kaczmarz type

regularization strategies.

Finally, we connect the convex regularization framework with the Financial concept of

Convex Risk Measures.

Key words: local volatility surface identification, convex regularization, convergence

rates, tangential cone condition, iterative regularization, convex risk measures.
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Introduction

Results about existence, uniqueness and stability for the identification of coefficients in

partial differential equations from indirect observations have many applications in problems

arising in geophysics, medical diagnostics, quantitative finance, and other areas [13, 39, 58,

79, 87].

In general, these mathematical problems are nonlinear and ill-posed in the sense of

Hadamard [48]. Moreover, in practical applications we only have access to data obtained

by measurements. The sparsity of the measurements and the imperfection of models and

measuring instruments imply that the data is inevitably corrupted by noise. Hence, these

problems lead to challenging mathematical questions including issues of existence, unique-

ness and stability of solutions. Open questions and interesting applications have attracted

the attention of a considerable number of researchers from different areas of mathematics

to the identification problems of coefficients in partial differential equations (PDEs).

Existence and uniqueness play an important role in identification problems. Indeed,

they imply that we have enough data to determine the solution. In other words, the exis-

tence and uniqueness of the problem mean that the operator F that assigns the unknown

coefficient to the solution of the PDE (in suitable spaces) is bijective. Moreover, in some

cases, under natural constraints, uniqueness implies continuity of F−1 (stability). However,

in many applications we have ill-posedness due to lack of continuity for F−1. This creates

serious numerical problems: If one wants, using a numerical method, to approximate the

solution of a well-posed problem whose solution does not depend continuously on the data,

then, in general, the numerical method becomes unstable. Differently, from the existence

and uniqueness requirement, the stability cannot be recovered with “mathematical tricks”,

such as imposing additional constraints.

An alternative for recovering stable solutions of ill-posed problems is to use the so-called

regularization methods. These consist in the approximation of the ill-posed problem by a

family of well-posed ones. Applying regularization methods to ill-posed problems consti-
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2 Introduction

tutes a compromise between accuracy and stability. The modern regularization theory was

developed throughout the 1950s and 1960s by Jhon and Tikhonov [81]. To this day, a

vast number of publications have been written on regularization for inverse problems. See,

for example, [10, 64] for linear inverse problems and [13, 39, 61, 79] for nonlinear inverse

problems.

Coefficient identification in elliptic, parabolic and hyperbolic PDE models is a source

of interesting inverse problems [41, 57, 58]. All these identification problems call for some

type of regularization method. In particular, inverse problems in diffusion processes have

enjoyed a good amount of attention from the mathematical community. See for instance

[41]. Volatility identification (calibration) in the evolution of European option prices [15,

22, 33, 35, 55, 58] is a typical example of that kind of problems, and it is also of great

relevance in mathematical finance. The first formulation of the direct problem in terms of

PDEs was given by Black-Scholes [15] in 1973. In 1997, Scholes and Merton received the

Nobel Prize in Economics for their contribution in this area.

This thesis is concerned with the theoretical aspects of the practical problem of cali-

brating (identifying) the volatility surface from the market-observed prices of European call

options. This is a nonlinear ill-posed problem whose solution required regularization tech-

niques. Here, we analyze Tikhonov with convex regularization and iterative regularization

methods for the calibration problem in a European option price model.

We consider a complete financial market, where cash can be borrowed at a constant

interest rate r, and a risky stock of value S = S(t) that yields a continuously compounded

dividend at a constant rate q, satisfying the diffusion price processes

dS(t) = S(t) (ν(t, S(t))dt+ σ(t, S(t))dW (t)) , t > 0 , S(0) = S0 > 0 , (1)

where W (t) denotes the standard Wiener process [63, 65]. The parameters ν and σ are

called drift rate and underlying asset volatility, respectively.

A European call option with maturity date T > 0 and strike K ≥ 0, on the underlying

asset S ≥ 0, consists of the right, but not the obligation, to buy, at a price K, a unit of

S at time T . In the context of complete and arbitrage-free markets, the theoretical fair

price, for the European call on S, has the probabilistic representation

U(0, S0;T,K, r, q, σ
2) = exp(−rT )E0,S0

Q (S(T )−K)+ , (2)

where E0,S0

Q is the expected value with respect to the risk-neutral probability measure Q
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given that, at t = 0, we have S(0) = S0. Here, as usual, we define

(S −K)+ := max{S −K, 0} .

An interpretation of equation (2) would be: for each realization ω of the market, the

payoff (S(T, ω)−K)+ should be brought to its present value e−rT (S(T, ω)−K)+ by means

of discounting by the interest rate r. Then, we average over all the possible realizations

with respect to the risk-neutral measure Q. The risk-neutral measure differs from the so-

called subjective one in the sense that it is the one for which the discounted process St/e
rt

is a martingale. See more details in [63, 65].

In this framework, the fair price for a European call option is given by the solution of

the Black-Scholes partial differential equation [15]

Ut +
1

2
σ2(t, S)S2USS + (r − q)SUS − rU = 0 , t < T , S ≥ 0 , (3)

with final condition

U(t = T, S) = (S −K)+ . (4)

An important consequence of the Black-Sholes-Merton theory is that the drift rate ν

in Equation (1) is not considered in (3). In fact, this lies at the core of the concept of the

risk-neutral measure Q.

In the instance where σ is a deterministic function of time or a constant, an explicit

formula for the price U is well known as shown in the seminal paper [15] and also [52, 55]. In

this context, a careful analysis of the theoretical volatility calibration problem was carried

out in [36, 52, 55, 58].

On the other hand, it is also well know that the option price U depends on the maturity

T and strike K too. This satisfies the, by now classical, Dupire forward equation [33]

− UT +
1

2
σ2(T,K)K2UKK − (r − q)KUK − qU = 0 , T > 0 , K ≥ 0 , (5)

with the initial value

U(T = 0, K) = (S0 −K)+, for K > 0 . (6)

Dupire’s equation is the starting point of our inverse problem analysis. As usual, the

dividend and interest rates are known during the option life. If the volatility σ is known,



4 Introduction

this initial value problem is well-posed in the sense of Hadamard [48] and allows for the

stable computation of the option price [58]. However, in practice, the volatility is not known

explicitly, i.e., the crucial (unknown) parameter in the initial value problem determined

by (5) and (6) is the volatility. Hence the importance of the inverse problem to be able to

estimate or reconstruct the volatility function for observable market prices.

When performing the usual change of variables

K = S0e
y , τ = T − t , b = q − r , u(τ, y) = eqτU t,S(T,K) (7)

and

a(τ, y) =
1

2
σ2(T − τ ;S0e

y) , (8)

in (5) and (6), this yields the Dupire equation with forward variables (τ, y)

− uτ + a(τ, y)(uyy − uy) + buy = 0 (9)

and initial condition

u(0, y) = S0(1− ey)+ (10)

We shall make use of the following notation: Let I ⊂ R be an open (probably un-

bounded) interval and 1 ≤ p ≤ ∞. We assume that T > 0 and use the notation

Ω := (0, T ) × I. Furthermore, as usual, W 1,2
p (Ω) denotes the space of functions u(., .)

satisfying

||u||W 1,2
p (Ω) := ||u||Lp(Ω) + ||ut||Lp(Ω) + ||uy||Lp(Ω) + ||uyy||Lp(Ω) <∞ .

For a fixed ε > 0 we denote by H(Ω) := H1+ε(Ω).

We are concerned with the following

Definition 1. Let a > a > 0 and a ≤ a0 ≤ a where a0 ∈ H(Ω) is known a priori. We

define the admissible class of parameter by

D(F ) := {a ∈ a0 +H(Ω) : a ≤ a ≤ a} . (11)

We remark that D(F ) is a convex set.

For existence, uniqueness and some regularity estimates to the solution of (9) and (10)

in W 1,2
p (Ω), for any p ∈ [2, p̃) for some p̃ < 3, with a ∈ D(F ), see, for example, [22, 35, 58]
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for a full demonstration or Chapter 1 for a sketch of the proof.

The Inverse Problem of European Option Prices

In the last decades, the option price inverse problem has attracted attracted a large amount

of research and attention. See Section 1.6 and references cited therein as a starting point.

The idea is, given a few assumptions about the underlying process, to attempt to derive the

corresponding dynamics in the risk neutral measure from the option price observations. A

correct derivation of the underlying process requires a complete knowledge of the volatility.

The volatility is in fact the diffusion coefficient of the stochastic process (1). In a practical

situation, it is not the local volatility σ(T,K) that is known but the European option prices

U themselves. Indeed, the local volatility is the unique quantity in (1), (9) and (10) that

cannot be obtained from the market.

The nonlinear inverse problem of option pricing that we are concerned with is the

identification (or calibration) of a local volatility surface σ(T,K) by observations of the

solutions

UT,K(·; r, q, σ) = UT,K
∗ (T, S) (12)

of (5) and (6) to match quoted market prices U∗(T,K). Each observation is linked to the

solution of (5) and (6) with different values of K and T .

The calibrated local volatility function is used by risk managers and traders to evaluate

risk exposures, calculate the option risk sensitivities, such as delta and vega (the Greeks

in financial literature) and the hedging instruments [45, 82]. If the model cannot price

correctly European options, the hedging ratio will be difficult to calculate.

In practical situations, the price U t,S(T,K) is only known for a discrete set of maturities

and strikes. Since we are interested in continuous observations of the price U t,S(T,K), this

leads to an interpolation or an approximation that introduces noisy data uδ, whose level δ

is assumed to be known a priori and satisfies the inequality

||u∗ − uδ||L2(Ω) ≤ δ , (13)

where u∗ is the data associated to the actual value a∗ ∈ D(F ).

Therefore, given the framework developed earlier, the inverse problem that we are
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concerned with in this thesis is the calibration (identification) of the parameter

a∗ = a∗(τ, y) ∈ D(F ) , (14)

solution of the operator equation

F :D(F ) ⊂ H(Ω) −→ W 1,2
2 (Ω)

a 7−→ F (a) = u(a)− u(a0) , (15)

where u(a) and u(a0) are solutions of (9) and (10) for a, a0 ∈ D(F ), given a set of data,

probably corrupted by noise, that satisfies (13).

In this context, a0 ∈ D(F ) represents an a-priori in the Tikhonov regularization method

in Chapter 2 and the starting point from iterative regularization methods studied in Chap-

ter 3.

The thesis is organized as follows:

In the beginning of Chapter 1, we explain some properties of the direct problem of

the Black-Scholes model to pricing European call options. In Subsection 1.2, we present

some results of existence, uniqueness and some regularity estimates to the solution of the

PDE (9) with the initial condition (10) and parameters in the admissible class D(F ). These

results are well known and can be found, for example, in [22, 35, 58]. Therefore, we only

present a sketch of the proof. In Section 1.3, we prove properties of the parameter-to-

solution map F that imply the ill-posedness of the inverse problem. In Theorem 1.3.1, we

prove that the parameter-to-solution map F is continuous, compact and weakly closed. In

Lemma 1.3.1, we prove the Fréchet differentiability of F .

In Section 1.4 we prove the new results about the parameter-to-solution map F . In

Subsection 1.4.1, we characterize the kernel and the range of the Fréchet derivative of F .

See Lemmas 1.4.1 and 1.4.2. These results are important for obtaining convergence rates

for the Tikhonov regularization method proposed in Chapter 2 and Appendix A.

In Subsection 1.4.2 we present the main result of the Section 1.4. This is the verification

of the local tangential cone condition to the parameter-to-solution map F defined in

(15) for the calibration problem. This property is introduced in Theorem 1.4.2. The

contribution of this result becomes apparent in the proof of convergence and stability of

iterative regularization for the calibration problem in Chapter 3. The novel results of
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the chapter also appear in the articles [28, 29, 30] that have recently been submitted for

publication.

At the end of this chapter, we briefly review some volatility calibration literature.

In Chapter 2 we propose the use of Tikhonov regularization by means of a convex

regularizing functional as an extension to the quadratic regularization problem that has

been used previously in the inverse problem literature [22, 23, 35]. Thus, we focus on inverse

problem from the perspective of convex analysis methods and Bregman distances. On the

theoretical side, our result yields better convergence rates and allows for convergence in

spaces different from those in the quadratic regularization setting. For instance, it applies to

Orlicz-Sobolev regularization [1]. In fact, in some cases, the convergence of certain convex

regularization expressions implies convergence in the L1-norm. Besides these results, our

approach connects with central topics in different areas of current research. Such topics

include exponential families of probability distributions, which is an important subject in

Statistics.

In Section 2.1.1 we use recent convergence analysis results for nonlinear Tikhonov regu-

larization [79] to prove existence and stability of the regularized solution of the calibration

problem. In Subsections 2.1.3 and 2.1.4 we improve convergence rates in the literature

to the specific inverse problem under consideration making use of results from Subsec-

tion 2.1.2. In inverse problems, to obtain convergence rate results, some a-priori informa-

tion on the solution is needed. This a-priori information is called the source condition.

From convex regularization, a natural source condition is

ξ† := F ′(a†)∗ω† ∈ ∂f(a†) , (16)

where ∂f denotes the subdifferential of the convex functional f , as revised in the Appen-

dix B. A heuristic financial interpretation of the source condition (16) is that we have a

restriction that allows us to quantify the risk associated to a given volatility level. By this

we mean that upon computing the corresponding Black-Scholes solution as a function of

the volatility, we will be quantifying the level of risk one has in the space of random vari-

ables associated to such volatility. This is done with the help of the source condition (16)

in Chapter 4. This way we construct a functional that, through the Fenchel duality, defines

different convex risk measures. The availability of such risk measures permits quantifying

the risk associated to random variables and portfolios of the underlying model.

The results in Subsection 2.1.2 help us prove the existence of an approximated source
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condition to the calibration problem.

In Section 2.2 we approach the regularization theory with convex penalization from a

statistical point of view. In particular, we make use of the concept of exponential families

of probability distributions to motivate Bregman distance as a regularization to the cali-

bration problem. The connection between Bregman distances and exponential families is

well-established in some contexts [2, 8], although in the present context our motivation in

Section 2.2 is heuristic. This chapter is based on the accepted paper [29] and the submitted

paper [28].

In Chapter 3, we analyze iterative regularization theory for the inverse problem (15),

still focusing at local volatility surface calibration of the Black-Scholes model (9) and (10).

Iterative regularization of the local volatility calibration problem is novel to the best of

our knowledge. This chapter’s main contribution is the calibration of the local volatility

surface by Landweber methods.

In Section 3.1, we review the convergence analysis of the Landweber iteration of non-

linear inverse problems. In Subsection 3.1.1, we verify that the assumptions of the classical

Landweber iteration are satisfied by the parameter-to-solution map F as defined in (15).

The implementation of the Landweber iteration in the W 1,2
2 -inner product implies the eval-

uation of F ′(·)∗ with respect to this inner product for each iteration. The complexity of

the inner product results in analytical and numerical difficulties evaluating F ′(·)∗. Hence,

in Section 3.2, we recover the convergence analysis of the Landweber iteration using the

discrepancy principle formulated in the L2(Ω)-norm. This simplifies the iteration imple-

mentation, for the calculation of F ′(·) in the W 1,2
2 (Ω)-inner product is not an easy task.

Some comments on the implementation of the nonlinear Landweber iteration are offered

in Section 3.3. In this subsection we also present some numerical results that show the

performance of the Landweber iteration to the calibration problem. In Section 3.4, we look

at the calibration inverse problem as a system of nonlinear ill-posed equations. Kaczmarz

type strategies [12, 11, 24, 50, 66] to solve nonlinear ill-posed problems are analyzed as

possible iterative regularization methods to the calibration problem. This Chapter’s results

are collected from the working paper [30].

In Chapter 4, we demonstrate a connection between convex risk measures and the

interpretation of source condition (16). The main point is a construction that allows us

to allocate a convex risk measure to each convex regularization functional f involved in

the source condition. This construction implies a financial interpretation of the source
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condition (16) as a restriction that allows us to quantify the risk associated to a given

volatility level. This circle of ideas is novel and deserves careful further investigation of

its financial and economical implications. In Section 4.1, we make use of the definition

of the subdifferential and the source condition (16) to define a functional that, through

the Fenchel conjugate, serves as our starting point to construct a convex risk measure in

Section 4.2. In Subsection 4.2.1, we give an example of a specific convex risk measure

associated with the Boltzmann-Shannon entropy. This chapter is based on the accepted

paper [29] and the submitted paper [28].

In Chapter 5, we conclude with some remarks about the choice of the admissible para-

meters in relation to those that appear in the literature [22, 35]. We also make suggestions

for future research related to the theory developed in this work.

In Appendix A, we provide a brief review of no-arbitrage results related to the volatility

surface calibration proposed in this work. In Section A.2, we encourage the addition of a

regularization term in the Tikhonov functional that will act as a penalization of arbitrage

restriction on the shape of the option price surfaces. This restriction can be interpreted as

a data preprocessing in the minimization. In Section A.3, using the penalization f(a) =

‖a− a0‖2
H(Ω) in the Tikhonov functional and properties of the calibration problem, we

obtain better convergence rates of the regularized solution than those obtained in [22, 35],

without using the general framework developed in Chapter 2.

In Appendix B, we present some definitions used in this work, in particular, definitions

related to convex analysis used in Chapters 2 and 4 and concepts related to sufficient

statistic and exponential families in Section 2.2.
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Chapter 1

Direct versus Inverse Problem of

Option Pricing

The new results contained in this chapter are shown in Section 1.4. In Subsection 1.4.1,

we characterize the kernel and the range of the Fréchet derivative of F as L2(Ω)-subsets.

See Lemmas 1.4.1 and 1.4.2. These results are important for obtaining convergence rates

for the Tikhonov regularization method proposed in Chapter 2 and Appendix A.

The Theorem 1.4.2 in Subsection 1.4.2 is the main result of the Section 1.4. This

theorem proves the local tangential cone condition to the parameter-to-solution map

F defined in (15). The contribution of this result appears in the prove of convergence and

stability of iterative regularization to the calibration problem in Chapter 3.

In financial markets a number of contracts are negotiated in such a way that their

values are derived from other underlying assets or equities. Such derivative contracts play

a fundamental role in risk management and corporate strategies. Their presence became

so widespread that currently the volume of many derivative markets surpasses the value

of the corresponding underlying markets.

The development of mathematical methods for pricing derivatives was a major reason

for the expansion of derivative markets. Such theoretical achievement was recognized by

the Nobel Prize in Economics award to R. Merton and M. Scholes. The corresponding

methods involve the solution of the Black-Scholes partial differential equation, which in

turn depends on the risk-free interest rate prevalent in the market, the dividend rate, and

the volatility of the underlying asset. There are many models to describe the volatility.

Among those, one that is very popular under practitioners is to assume that such volatilities

are functions of the form σ = σ(t, S), where t is the time and S is the asset price. It is

11
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usually referred to as Dupire’s local volatility model [33] and σ = σ(t, S) is called the local

volatility surface.

Dupire’s equation (5), with the initial value (6), is the starting point of our inverse

problem analysis. As usual, the dividend and interest rates are known during the option

life. If the volatility σ is known, this boundary value problem is well posed in the sense

of Hadamard [48] and allows the stable computation of the option price. However, in

practice, the volatility is not known explicitly, i.e., the crucial (unknown) parameter in the

initial value problem determined by (5) and (6) is the volatility. Hence, the importance of

the inverse problem, where one tries to estimate or reconstruct the volatility function for

observable market prices.

1.1 The Direct Problem of European Option Pricing

For a constant volatility model, or a function of time alone, explicit formulas for the

European option price U are well known [15, 36, 52, 55]. Indeed, it is the famous Black-

Scholes formula [15]

U(S0;T,K, r, q, σ
2) = S0N (d1)− e−rtKN (d2) , (1.1)

with

d1 =
ln(s0/K) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T ,

and N (·) denoting the distribution function of the standard normal distribution.

The price of a European call option as a function of volatility U(σ) is strictly monotone

(see [22]) and the unique value of σ corresponding to a given option price U(K,T ;S, t)

is called the “Black-Scholes” impled volatility. In contrast to the constant parameter as-

sumption of the Black-Scholes model, implied volatility shows a distinct dependence on the

strike and maturity. This phenomena is referred as the smile effect [33, 34]. A possibility to

explain this phenomena is by using the deterministic function σ(K,T ) in Dupire’s option

price PDE.

Below we do a brief review about existence and uniqueness of solutions of parabolic

equations like (9) and (10) in Sobolev spaces. The presented results are collected from

[22, 35, 58].
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1.2 Existence and Uniqueness of the Parabolic Prob-

lem

Initially, our focus is to show existence and uniqueness of a solution u to the parabolic

PDE (9) and (10). This is done following some ideas in [22, 35, 58, 70].

Remark 1.2.1. In [22, 35], they consider the admissible class of parameters as a subset

of H1(Ω). We return to this question in Chapter 5.

Our particular focus here concerns on existence and uniqueness in the space W 1,2
2 (Ω).

But it is well known that the results which follow are true in W 1,2
p (Ω) for some p ∈ [2, 3).

See, for example, [22, 35]. The results are based on extending, by density, the well known

results in parabolic PDEs with Hölder continuous coefficients [58, 70].

Proposition 1.2.1. [70, Theorem IV 9.2] Let a be Hölder continuous with a ≤ a ≤ a,

b ∈ L∞(Ω) and f ∈ Lp(Ω) ∩ L2(Ω). Then

− vτ + avyy + bvy = f (1.2)

v(0, y) = 0 (1.3)

has a unique solution v ∈ W 1,2
2 (Ω). Moreover,

‖v‖
W 1,2

2 (Ω)
≤ C‖f‖

L2(Ω)
, were C = C(‖a‖

L∞(Ω)
, ‖b‖

L∞(Ω)
). (1.4)

Using density embedding theorems for Sobolev spaces it follows:

Proposition 1.2.2. [35, Proposition A1] Let a ∈ D(F ), b ∈ L∞(Ω) and f ∈ Lp(Ω) ∩
L2(Ω). Then, the initial value problem (1.2) and (1.3) has a unique solution v ∈ W 1,2

2 (Ω).

Moreover, it satisfies the regularity estimate (1.4).

Here we present only the proof of existence of solutions in W 1,2
2 (Ω). For a complete

proof, see [35, Proposition A1].

Given a Hölder coefficient an, Proposition 1.2.1 implies that there exists a unique solu-

tion vn ∈ W 1,2
2 (Ω) of

−vnτ + anv
n
yy + bvny = f (1.5)

v(0, y) = 0
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that satisfies the estimate

‖vn‖W 1,2
2 (Ω) ≤ C‖f‖L2(Ω) . (1.6)

Let wn := vny . By linearity of equation (1.5) its satisfies

−wnτ + (anw
n
y )y + (bwn)y = fy

wn(0, y) = 0

with the estimate

‖wn‖2
W 0,1

2 (Ω) ≤ c1

∫ T

0

‖fy(t)‖2

W−1
2 (R)

dt ≤ c2‖f‖L2(Ω) , (1.7)

where c1 and c2 depend on the limitation of the coefficients.

From the definition of W 1,2
2 (Ω)-norm

‖vn‖L2(Ω) ≤ C‖f‖L2(Ω) .

Thus (1.6) holds uniformly for smooth coefficients an ∈ D(F ).

Let a ∈ D(F ). By density of Hölder spaces on H(Ω) [1], there exists a sequence of

Hölder coefficients an such that an → a ∈ D(F ) (in the H-norm). Weak compactness

of Hilbert spaces [84, 86] implies that there exists a subsequence vnk of vn such that

vnk ⇀ v̂ ∈ W 1,2
2 (Ω). Take ψ ∈ C∞0 (Ω). Hence∫

Ω

(−v̂τ + av̂yy + bv̂y)ψd(y, τ) = lim
k→∞

∫
Ω

(
−vnk

τ + avnk
yy + bvnk

y

)
ψd(y, τ) =

∫
Ω

fψd(y, τ) .

By the weakly lower semi-continuity of W 1,2
2 (Ω)-norm v̂ satisfies (1.7). Hence, v := v̂

is the unique weak solution of (1.2) with initial condition (1.3). �

In the following we give a representation of the solution of (9) and (10).

Corollary 1.2.1. [35, Corollary A1] Let a ∈ D(F ), b ∈ L∞(Ω). Then, there exists a

unique solution u ∈ W 1,2
2,loc(Ω) to the problem (9) and (10) that satisfies

‖u‖ ≤ S0 and ‖uy‖W 0,1
2 (Ω)

≤ C , (1.8)

were c = c(a, ‖a‖L∞(Ω), ‖a‖L∞(Ω)) and C = C(a, ‖a‖L∞(Ω), ‖a‖L∞(Ω)).
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Sketch of the proof. Define

ū(τ, y) :=

∫ 0

−∞

1√
4πτ

e−
(y−θ)2

4τ S0(1− eθ)+dθ ∈ W 1,2
2,loc(Ω) .

Take w = u− ū. By linearity, w solves

−wτ + a(wyy − wy) + bwy = ūτ − a(ūyy − ūy) + būy ,

with homogeneous boundary conditions. Proposition 1.2.2 concludes the assertion. For

more details see [35, Corollary A1]. �

Proposition 1.2.2 and Corollary 1.2.1 hold true inW 1,2
p (Ω) for p ∈ [2, p̃) with some p̃ > 2.

Moreover, with similar arguments the above results remain true for a ∈ D(F ) ⊂ H1(Ω).

For more details see [22, 35].

The fact that the parameter-to-solution map F : a −→ u(a) − u(a0) is well defined

follows from linearity of (9) and Corollary 1.2.1.

The following lemma will be useful in the next section.

Lemma 1.2.1. [22, Proposition 4.4 (1)] Assume that p1 ∈ ]2, p̃[. Let u ∈ W 1,2
p1

(Ω) be

a solution of (9) and (10). Then, there exists a constant C that depends only on the

boundedness of the coefficients and p1 such that

‖uyy − uy‖Lp1 (Ω)
≤ C . (1.9)

Sketch of the proof. A complete proof can be see in [22, Proposition 4.4 (1)]. �

1.3 Known Properties of the Forward Operator

In this section, we summarize some properties of the parameter-to-solution map F defined

by (15). The results in this section are collected from [22, 35]. In [22], the results are

based on probabilistic arguments. After that, in [35], similar results are obtained using a

PDE approach. In particular, Theorem 1.3.1 and Lemma 1.3.1 are particular cases of [35,

Theorem 2.1] and [35, Proposition 4.1]. Analogous results appeared also in [22, Proposition

5.1].

In this thesis we use the following definition of compactness:

Definition 1.3.1. F : D(F ) ⊂ U → V is compact if for every bounded sequence (xk) in
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D(F ), (F (xk)) has a convergent subsequence.

In particular, the composition of a compact linear operator and a sequentially contin-

uous (not necessarily linear) operator is compact.

The next result implies in compactness and weak closedness of F .

Theorem 1.3.1. [35, Theorem 2.1] The operator F : D(F ) ⊂ H(Ω) → W 1,2
2 (Ω) is

compact. Moreover, F is weakly (sequentially) continuous and thus weakly closed.

Sketch of the proof. We present only a simple version of the proof. For a complete

version, see [35, Theorem 2.1]. Let un = u(an) and u = u(a) with an, a ∈ D(F ) satisfying

an ⇀ a (in H-topology) and un ⇀ u (in W 1,2
2 -topology). Let Ωc ⊂ Ω compact. By the

Sobolev compact embedding Theorem [1, Theorem 4.12, case B, pg 85]

an → a ∈ Lq(Ωc) 1 ≤ q <∞ . (1.10)

By linearity wn := un − u satisfies

−wnτ + an(w
n
yy − wny ) + bwny = −(a− an)(uyy − uy) , (1.11)

with homogeneous boundary conditions.

Take Ωc = (0, T )× (−M,M) and Ωc
c = Ω−Ωc. So, equation (1.11) can be rewriting as

−wnτ + an(w
n
yy − wny ) + bwny = −(a− an)(uyy − uy) · χΩc − (a− an)(uyy − uy) · χΩc

c
.

Proposition 1.2.2 implies the estimate

‖wn‖W 1,2
2 (Ω) ≤ c

(
‖an − a‖Lq(Ωc)

‖uy‖W 1,1
p (Ωc)

+ ‖an − a‖Lq(Ωc
c)
‖uy‖W 1,1

p (Ωc
c)

)
(1.12)

for 1
2

+ 1
q

= 1
p
.

Equations (1.8) and (1.10) imply that the first term on the right hand side of (1.12)

goes to zero with n → ∞. Moreover ‖uy‖W 1,1
p (Ωc

c)
→ 0 as M → ∞. Consequently, the

second term in the estimate (1.12) goes to zero as a suitable choice of M . This concludes

the assertion. �

The next lemma guarantees the existence of the one-sided directional derivative of F

for a ∈ D(F ) in the direction h such that a + h ∈ D(F ). For a definition of an one-side

directional derivatives see [84, 21].
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Lemma 1.3.1. [35, Proposition 4.1] Consider the operator F as in Theorem 1.3.1. Then,

F admits a one side derivative at a ∈ D(F ) in the direction h such that a+h ∈ D(F ). The

derivative F ′(a) satisfies ‖F ′(a)h‖W 1,2
p (Ω) ≤ c‖h‖H(Ω). In other words, F ′(a) is extendable

to a bounded linear operator on H(Ω). Moreover, F ′(a) satisfies the Lipschitz condition

‖F ′(a)− F ′(a+ h)‖L(H(Ω),W 1,2
p (Ω)) ≤ γ‖h‖H(Ω) , (1.13)

for all a and h such that a, a+ h ∈ D(F ).

Sketch of the proof. The proof follows similar arguments of the full proves in [35,

Proposition 4.1]. Let a ∈ D(F ) and the direction h ∈ H(Ω) be such that a + h ∈ D(F ).

For simplicity of exposition, let us assume that b = 0 in (9) and (10). By the linearity of

equation (9) the directional derivative u′ · h in the direction h satisfies

−(u′ · h)τ + a((u′ · h)yy − (u′ · h)y) = −h(uyy − uy) (1.14)

with homogeneous initial conditions. From Proposition 1.2.2 there exists a single solution

u′ · h ∈ W 1,2
p (Ω) of (1.14), for 2 ≤ p < p̄.

Using regularity estimates to the parabolic problem (see for example [70]) we have

‖u′ · h‖W 1,2
p (Ω) ≤ c‖h(uyy − uy)‖Lp(Ω) (1.15)

≤ c‖h‖Lp2 (Ω)‖(uyy − uy)‖Lp1 (Ω) ,

where p1 ∈ (p, p̄) and p2 satisfies 1/p = 1/p1 + 1/p2. Note that, p2 = p1p
p1−p . Lemma 1.2.1

implies that ‖uyy − uy‖Lp1 (Ω)
≤ C for all a ∈ D(F ).Moreover, from the Sobolev Embedding

Theorem [1, Theorem 4.12, case B, pg 85] it follows that there exists a constant c > 0 such

that ‖h‖Lp2 (Ω) ≤ c‖h‖H(Ω), for all h ∈ H(Ω). Now, equation (1.15) implies that

‖u′(a) · h‖W 1,2
p (Ω) ≤ C‖h‖H(Ω) . (1.16)

Thus, the derivative u′(a) = F ′(a) can to be extended as a bounded linear operator to

H(Ω). The next step is to obtain the Lipschitz condition (1.13). To do this, denote by

ũ(ã) the solution of (9) and (10) with a replaced by ã = a + h with h ∈ H(Ω). Setting

v := (F ′(ã) − F ′(a)) · q = (ũ′ − u′) · q with q ∈ H(Ω). Then, from linearity of (9), v is a
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solution of

(v)τ + a((v)y − (v)yy) = q((ũ− u)yy − (ũ− u)y) + (ã− a)((ũ′ · q)yy − (ũ′ · q)y) . (1.17)

Using an estimate analogous to (1.16) we find

‖v‖W 1,2
p (Ω) ≤ (c̃‖q‖H(Ω)‖ũ− u‖W 1,2

p̄ (Ω) + c̄‖ã− a‖H(Ω)‖ũ′ · q‖W 1,2
p̄ (Ω))

≤ C‖q‖H(Ω)‖ã− a‖H(Ω) .

Taking the sup over all q ∈ H(Ω) satisfying ‖q‖H(Ω) ≤ 1, on both sides of the above

inequalities we have the Lipschitz condition (1.13). �

As observed in [35, Remark 4.1], D(F ) has no interior points when equipped with the

H1(Ω) norm. Because of that, F ′(a) is not necessarily differentiable in every direction

h ∈ H1(Ω). In other words, F ′(a) is not Gateaux differentiable. This will not affect the

convergence analysis that follows. In fact, for such analysis we only need that the operator

F attains a one-sided directional derivative at a† in the directions a− a† for all a ∈ D(F ).

The sufficient condition for this to happen is D(F ) to be starlike with respect to a†. That

is, for every a ∈ D(F ) there exists t0 > 0 such that

a† + t(a− a†) = ta+ (1− t)a† ∈ D(F ) ∀0 ≤ t ≤ t0 .

As D(F ) is convex, the requirement above follows. Moreover, the bounded linear operator

F ′(a†) has properties that mimic the Gâteaux derivative.

In particular, there exists an adjoint operator

F ′(a†)∗ : V −→ U

defined by

〈F ′(a†)∗v, a〉L2 = 〈v, F ′(a†)a〉H(Ω) , a ∈ H(Ω) , v ∈ V .

We emphasize that Theorem 1.3.1 holds true if we restrict our attention to

D(F ) := {a ∈ a0 +H1+ε(Ω) : a ≤ a ≤ a}. (1.18)

and a convex, weakly lower semi-continuous functional f on H(Ω) with D(F ) ⊆ D(f).

Moreover, for ε > 0, by the Sobolev embedding theorem, each function of D(F ) ⊂ H(Ω)
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is an interior point, for which Fréchet-differentiability holds, as Lemma 1.3.1 shows.

1.4 New Results and Properties of the Forward Op-

erator

In this section we show the new results obtained to the parameter-to-solution map F as

defined in (15). In particular, the results in this section represent our main contribution

in the development of convergence rates to Tikhonov regularization in Chapter 2 and in

the analysis of stability and convergence for iterative calibration of the volatility surface

in Chapter 3.

We start the section with the proof of the properties of F obtained before in Theo-

rem 1.3.1 in the context of the L2(Ω)-norm.

Theorem 1.4.1. The operator F : D(F ) ⊂ H(Ω) → L2(Ω) in Equation 15 is continuous

and compact. Moreover, F is sequentially weakly continuous and weakly closed.

Proof. The proof follows from Theorem 1.3.1, where it is proven that F : D(F ) ⊂ H(Ω) →
W 1,2
p (Ω) satisfies the property for all 2 ≤ p < p̄ with an appropriate p̄ > 2. The result then

follows by using that the embedding from W 1,2
p (Ω) into L2(Ω) is linear and bounded.

1.4.1 An L2(Ω) Characterization of R(F ′(a)) and N (F ′(a)∗)

Below, we characterize the image of the operators F ′(·) and F ′(·)∗ as L2(Ω) subsets. The

contribution of these results appears in the proof of convergence rates of Tikhonov regu-

larization at Chapters 2 and Appendix A, respectively.

Lemma 1.4.1. Let a ∈ D(F ). Then, the Fréchet derivative of the operator F is injective

and compact.

Proof. Let h ∈ N (F ′(a)) ⊂ H(Ω). Because of equation (1.14) we have that

h · (uyy − uy) = 0 , (1.19)

where u is the solution of (9) and (10). However, G(τ, y) = (uyy − uy) is the distributional
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solution of the initial value problem

∂τG(τ, y) =
1

2
(∂2
y − ∂y)(a(t, y)G(τ, y)) + bG(τ, y) (1.20)

G(0, y) = δ(y) ,

where δ(y) is the Dirac’s delta. In others words, G(τ, y) is the Green’s function of the

Cauchy problem (1.20). Hence, G(τ, y) > 0 for every y and τ > 0 (See [58, Theorem 9.3.1

pg 271]). Thus, it follows from (1.19) that h = 0 a.e. The compactness of F ′(a) follows

from the compactness of F .

Lemma 1.4.2. The operator F ′(a†)∗ has a trivial kernel.

Proof. As before, we take b = 0 for simplicity. Denote by

Lu := −∂τ + a(∂yy − ∂y)

and by Guyy−uy , the parabolic partial differential operator on the left hand side of Equa-

tion (1.14) with homogeneous boundary condition and the multiplication operator by

the function uyy − uy, respectively. Hence, the solution of (1.14) has a functional form

u′(a) := F ′(a) =
(
Lu

)−1
Guyy−uy , where by

(
Lu

)−1
we mean the left-inverse of the operator

Lu with vanishing boundary and initial conditions.

From the definition of F ′(a†)∗ : V −→ H(Ω), we have

〈F ′(a†)h, z〉V = 〈h, ϕ〉H(Ω) , ∀h ∈ H(Ω) , ∀z ∈ V

and F ′(a†)∗z = ϕ. Now, let z ∈ N (F ′(a†)∗). Then,

0 = 〈F ′(a†)h, z〉V = 〈
(
Lu

)−1
Guyy−uyh, z〉V = 〈Guyy−uyh,

((
Lu

)−1)∗
z〉V

= 〈Guyy−uyh, g〉V =

∫
Ω

(uyy − uy)h g dτ dy ∀h ∈ H(Ω) .

where g is a solution of the adjoint equation

gτ + (a†g)yy + (a†g)y = z ,

with homogeneous final and boundary conditions. Since z ∈ V = L2(Ω), g ∈ H(Ω). See
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[70]. In particular ∫
Ω

(uyy − uy)h gdτ dy = 0 ,

holds true for h = g. Since Guyy−uy > 0 (see the end of the proof of Lemma 1.4.1) it follows

that g = 0. Consequently, z = 0 and N (F ′(a†)∗) = {0}.

Remark 1.4.1. The range of F ′(a†)∗ is dense in H(Ω). Indeed, H(Ω) = R(F ′(a†)∗)
H1+ε

⊕
N (F (a†)) and the claim follows from Lemma 1.4.1.

1.4.2 The Local Tangential Cone Condition for the Calibration

Problem

In this subsection we prove the main contribution of this thesis in order to characterize

properties of the parameter-to-solution map F . The importance of the result presented

below is that, given the local tangential cone condition, we are able prove stability and

convergence of iterative regularization for the calibration problem in Chapter 3. This is

novel to the best of our knowledge.

We remark that, a consequence of Lemma 1.4.1 is that F cannot be constant along

any affine subspace through a and parallel to N (F ′(a)). This means that the tangential

cone condition (see (1.21) below) is not still a severe requirement. See the commentaries

in [39, Chapter 11]. The next result is one of our contributions in iterative methods to the

volatility calibration inverse problem. It is one of the main results of this section.

Theorem 1.4.2. The parameter-to-solution map F : D(F ) ⊂ H(Ω) → W 1,2
2 (Ω) satisfies

the local tangential cone condition

‖F (a)− F (ã)− F ′(ã)(a− ã)‖W 1,2
2 (Ω) ≤ η‖F (a)− F (ã)‖W 1,2

2 (Ω) , η <
1

2
, (1.21)

for all a, ã in a ball Bρ(a
∗) ⊂ D(F ) with some ρ > 0.

Proof. For easiness we consider b = 0 in (9). Denote by u = u(a) = F (a) and ũ = u(ã) =

F (ã) the solutions of (9) with a, ã ∈ D(F ). Moreover, let ũ′h be the directional derivative

of F (ã) in the direction h = a − ã (that exist from Lemma 1.3.1). It satisfies the partial

differential equations (9) and (1.14), for a, ã ∈ D(F ), respectively. Subtracting the last

two equations from the first, it satisfies the PDE

−uτ + a(uyy − uy) + ũτ − ã(ũyy − ũy) + (ũ′ · h)τ − ã((ũ′ · h)yy − (ũ′ · h)y) = h(ũyy − ũy) .
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Rewritten, we have

−(uτ − ũτ − (ũ′ · h)τ ) +
(a+ ã)

2
(uyy − uy) +

(a− ã)

2
(uyy − uy)−

(a+ ã)

2
(ũyy − ũy)

+
(a− ã)

2
(ũyy − ũy)−

(a+ ã)

2
((ũ′ · h)yy − (ũ′ · h)y)

+
(a− ã)

2
((ũ′ · h)yy − (ũ′ · h)y) = h(ũyy − ũy)

or,

−(uτ − ũτ − (ũ′ · h)τ ) +
(a+ ã)

2
[(uyy − uy)− (ũyy − ũy)− ((ũ′ · h)yy − (ũ′ · h)y)]

= −(a− ã)

2
(uyy − uy)−

(a− ã)

2
((ũ′ · h)yy − (ũ′ · h)y)

− (a− ã)

2
(ũyy − ũy) + h(ũyy − ũy) .

Now consider the direction h = a− ã. By linearity w = u− ũ− ũ′(a− ã) satisfies the PDE

−wτ +
(a+ ã)

2
(wyy − wy) = −(a− ã)

2
[(ũ′h)yy − (ũ′h)y] (1.22)

− (a− ã)

2
(uyy − uy) +

(a− ã)

2
(ũyy − ũy)

with homogeneous initial and boundary conditions.

From (1.17)

−(a− ã)

2
[(ũ′h)yy − (ũ′h)y] = −1

2
[−(ũ′h− u′h)τ + a((ũ′h− u′h)yy − (ũ′h− u′h)y)]

− h

2
[(ũ− u)yy − (ũ− u)y] .

Substituting the above equation into (1.22) we have

−wτ +
a+ ã

2
(wyy − wy) = −1

2
(−[(ũ− u)′h]τ + a [((ũ− u)′h)yy − ((ũ− u)′h)y])

− 2
a− ã

2
((ũ− u)yy − ((ũ− u))y)

Note that the right hand side of the above equation is in L2(Ω). Hence, using a regularity
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estimate similar to (1.16) and the continuous Sobolev embedding Theorem [1]

‖w‖W 1,2
2 (Ω) ≤ c

(
1

2
‖(ũ− u)′h‖W 1,2

2 (Ω) + ‖a− ã‖L2(Ω)‖ũ− u‖L2(Ω)

)
≤ C

(
‖(ũ− u)′h‖W 1,2

2 (Ω) + ‖a− ã‖H(Ω)‖ũ− u‖W 1,2
2 (Ω)

)
(1.23)

≤ C1‖a− ã‖H(Ω)‖ũ− u‖W 1,2
2 (Ω) ,

where C1 = C1(a, ‖a‖L∞(Ω), a).

Let ρ > 0 be small enough such that η := C1‖a− ã‖H(Ω) <
1
2

for all a, ã ∈ Bρ(a
∗) ⊂

D(F ). Then, from (1.23) the tangential cone condition (1.21) is satisfied.

The local tangential cone condition (1.21) and the scaled property (1.16) for all a , ã ∈
B2ρ(a

∗) ⊂ D(F ) are strong enough to ensure the local convergence of the iterative regular-

ization method in Chapter 3 to a solution of (15), if (15) is solvable in Bρ(a
∗). They also

guarantee that the iterative methods are well defined in a suitable neighborhood of a∗.

1.5 Ill-Posedness of the Inverse Problem

For a given (incomplete) set of option prices, it is important to determine what information

about the structure of the local volatility can be recovered in a unique and stable way. That

is, how much information is needed for the calibrated local volatility surface be well-posed

in Hadamard’s sense [48]. We emphasize that stability plays a crucial role for a robust

calibration of the option pricing model.

Analysis of the ill-posedness of the calibrated inverse problems for a time dependent

volatility σ(τ) was investigated by many authors. See [35, 52, 55] and references in there.

Uniqueness and stability results for space dependent coefficients σ(y) were given by

[16]. There, the volatility is considered in Hölder spaces. On of the main results in this

issue is

Theorem 1.5.1. [16, Theorem 1] Let u1 and u2 be solutions to the parabolic problem (9)

and (10), respectively, with a1(y) and a2(y) only space dependent, where a1 and a2 are

Hölder continuous. Moreover, let the corresponding final data given by u∗1(y) = u1(τ
∗, y)

and u∗2(y) = u2(τ
∗, y) and I0 be a non-empty open subinterval of I.

If u∗1(y) = u∗2(y) on I and a1(y) = a2(y) on I0, then a1(y) = a2(y) on I.

If, in addition, a1(y) = a2(y) on I0 ∪ (R − I) and I is bounded, then there exists a

constant C that depends only on Hölder norms |a1|λ, |a2|λ, I, I0, τ ∗ such that the following
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stability estimate holds

|a1 − a2|λ ≤ C|u∗1 − u∗2|2+λ .

One of the biggest advantages of considering only space-dependent volatility is that so-

lutions of parabolic problems with a time-independent coefficient are analytic with respect

to τ [70].

The ill-posedness of calibrating the local volatility surface σ(T,K) is given by

Lemma 1.5.1. The inverse problem of identifying the local volatility surface σ(T,K) from

the operator equation (15) is ill-posed.

Proof. The compactness and weak closedness of the operator F , concluded in Theorem 1.3.1,

imply the local ill-posedness of the inverse problem of identification of the local volatil-

ity surface σ(T,K). In fact, for any H-bounded sequence {an}n∈N in D(F ), that has

no strong convergent subsequences, we can extract an H-weakly convergent subsequence,

say {ank
}k∈N. Since D(F ) is weakly closed with respect to the H-norm, the weak limit of

{ank
}k∈N belongs to D(F ). Thus, as F is compact, {F (ank

)} has a convergent subsequence,

which we again, for simplicity of notation, denote by {F (ank
)}. So, similar option prices

may correspond to completely different volatilities.

The ill-posedness characteristic of the calibration of the local volatility surface prob-

lem calls for regularization methods. One of the contributions of this work is analyzing

Tikhonov and iterative regularization to the inverse calibration problem. It is done in

Chapters 2 and 3, respectively.

1.6 Review of Volatility Calibration for European Op-

tions

In this section, we review some facts about volatility calibration for the standard Black-

Scholes model (see [15]) for pricing options. This model assumes that the underlining asset

price S satisfies the stochastic differential equation (1). Under a non-arbitrage principle,

the European option price U satisfies the parabolic partial differential equation (3) with

terminal condition (4).

Specially after the equity market crash in 1987, market participants and academic re-

searchers are all aware that it is impossible to use a single constant σ to fit all European
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option prices in the market. To overcome those difficulties, some models have been pro-

posed, such as the local volatility function model [33], the stochastic volatility model [56],

the jump-diffusion model [9], etc.

The so-called local volatility σ(S, T ) is a quantity of fundamental importance to the

trading of options on a stock S. It measures the standard deviation of the rate of change

of S.

Obtaining estimates (calibration) for the volatility is a major challenge for market

finance. Unlike historical observation of the volatility, based upon a times-series of the

stock price, calibration implies an anticipation of the trading agents reflected in the prices

of the traded option products derived from S. Because of this, calibration of the volatility

σ is crucial to pricing correctly an option.

Volatility calibration (identification) has received intense attention in the last decades.

The list of references on the subject is too vast to cite them all here. For some interesting

and recent results see, for instance, [7, 16, 22, 23, 33, 35, 52, 54, 55, 59, 68].

One kind of calibration of the volatility σ is estimating it via statistical analysis of

historical series for S = S(t). This however dos not lead to the σ(S, T ) used by market

participants to price the options. Another one is to use the so-called implied volatility.

The implied volatility is obtained by inverting for σ the result of the Black-Scholes formula

(1.1). In practice, volatility varies with both strike K and maturity T . This phenomena is

known as the volatility smile. See [33, 34] for references. It follows that no one constant

volatility choice can give prices consistent with the market data.

Assuming that Dupire’s model (5) and (6) holds true and that the option prices are

known for all possible strikes K and maturities T , the local volatility function σ(T,K) can

be theoretically found directly from equation (5)

σ(T,K) =

√
2

(
UT + (r − q)KUK − qU

K2UKK

)
. (1.24)

In the absence of arbitrage the radicand must be positive. However, this formula has many

practical problems. In practice, we have a limited amount of discrete market prices with

noise. To make matters worse, the volatility function is extremely sensitive to changes of

the prices, i.e., the problem is ill-posed. See Lemma 1.5.1. Hence, the positivity of the

radicand or the smoothness restrictions on the volatility function given by (1.24) may be

violated. Moreover, there exists numerical instability associated to the ill-posedness of the

calibration problem. The reader is invited to review the examples in [23].
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Therefore, some regularization strategy is needed for a correct calibration of the local

volatility function.

In [68] Lagnardo and Osher proposed a regularized minimization method to fit the

smile of option prices using finite difference methods. The minimization process implies

a self-stability (regularization) with restriction of σ to the smoothest functional that min-

imizes the difference between Black-Scholes prices and known market prices. Avellaneda

et al. [7] had proposed a representation of the volatility σ(S, t) using a relative-entropy

minimization method. This method can generate volatilities that change abruptly and

drawback numerical solutions. In particular, it may replicate a given set of market prices

far from to the numerical solution of Black-Scholes model. In [59] Jackson et al. proposed

a spline interpolation so as to choose a smooth volatility function σ(S, t). This choice is

done via a regularization method that consists in a weighted minimization of the difference

between the Black-Scholes prices and the known market prices over a set of strikes and

maturities. In [68], a penalization on the smoothness of σ(S, t) is added to the minimiza-

tion functional in [68]. This incorporation implies numerical stability and smoothness of

the recovered volatility surface σ(S, t). Numerical tests presented on [59] shows that the

method is robust. On the other hand, in [59] there is no theoretical proof of efficiency of

the proposed method.

Approaches including regularization techniques of the inverse problems have been used

to calibrate the local volatility [22, 35, 52, 54, 55]. Instead, there are two standard tech-

niques to solve nonlinear inverse problems. Tikhonov type regularization or iterative type

regularization methods [39, 61].

Tikhonov regularization to calibrate volatility model was investigated by [22, 35, 52,

54, 55]. Crépey [22] and after Egger and Engl [35] investigated the stable identification of

local volatility surfaces σ(t, S) in the Black - Scholes equation from market prices using

standard Tikhonov regularization with ‖·‖2
H penalization. Convergence analysis and rates

are also discussed in these papers. In [52, 55] the inverse problem of identification of the

time dependent volatility function of a European call option with a fixed strike K > 0 is

considered. In [54], Hofmann et al. analyzed the same financial problem of [55] in terms

of the Bregman distances applied to a special case where f(·) = ‖·‖2
L2(0,T ).

In Chapter 2, we propose Tikhonov regularization by means of a convex regularizing

functional as an extension to the quadratic regularization that has been used previously

in the inverse problem literature [22, 35, 54]. We address the regularization problem from

the perspective of convex analysis methods and Bregman distances. On the theoretical
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side, our result is that this yields better convergence rates and allows for convergence

in spaces different from those in the quadratic regularization setting. In fact, in some

cases, the convergence of certain convex regularization expressions implies convergence in

the L1-norm. Moreover, our approach can be applied to some Orlicz-Sobolev norms [1].

Besides those results, our approach connects with central topics in different areas of current

research. Such topics include exponential families of probability distributions, which is an

important subject in Statistics [2, 8].

On the other hand, iterative methods for the regularization of the inverse problems of

identification (calibration) the volatility σ is not standard in the literature. As we showed

above, this problem typically leads to mathematical models that are ill-posed, i.e., their

solution is unstable under data perturbation. Numerical methods that can cope with these

problems are the so-called iterative regularization methods. In the last years, more emphasis

was put on the investigation of iterative regularization methods. It turned out that they

are attractive alternatives to Tikhonov regularization, especially for large scale nonlinear

inverse problems. The biggest difficulty in applying iterative regularization techniques to

nonlinear ill-posed problems comes from the necessary assumptions on the nonlinearity of

the problems. It is done by the assumption that the operator F satisfies the so called local

tangential cone condition (1.21). See [39, 61]. Thanks to Theorem 1.4.2 that verifies the

local tangential cone condition (1.21) to the parameter-to-solution map F we can apply

iterative regularization to the calibration problem.

Iterative regularization of the local volatility calibration problem is novel to the best of

our knowledge. The contribution to the regularization of the local volatility by Landweber

iteration is performed in Chapter 3.
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Chapter 2

Tikhonov Regularization

The main contribution of the present chapter is that we propose Tikhonov regularization

by means of a convex regularizing functional as an extension to the quadratic regularization

that has been used previously in the inverse problem literature [7, 22, 35, 54]. We address

the regularization problem from the perspective of convex analysis methods and Bregman

distances. On the theoretical side, our result is that this yields better convergence rates

and allows for convergence in spaces different from those in the quadratic regularization

setting as presented in Subsection 2.1.2. Besides those results, our approach connects

with central topics in different areas of current research. Such topics include exponential

families of probability distributions, which is an important subject in Statistics [2, 8]. See

Section 2.2.

In general, the theory of regularization of ill-posed problems [10, 13, 39, 79, 81],

Tikhonov Regularization is a compromise between precision and stability. This compro-

mise is attained from a suitable a priori choice of the regularization parameter β in a

minimization of the Tikhonov functional

Fβ,uδ(a) :=
1

2
||F (a)− uδ||2L2(Ω) + βfa0(a) . (2.1)

Minimization of (2.1) is a compromise between minimizing the residual norm (precision)

and keeping the ”penalization term” f small, i.e., enforcing stability. In general, f takes

values on [0,∞] and a0 is some a priori information about the true solution of the problem.

See, for example, [10, 13, 39, 79, 81, 87].

The theory of linear ill-posed problems is by now well understood and pretty complete

[10, 39, 64]. Differently from the linear case, where the bound for the operator F is enough

29
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to prove Tikhonov regularization, in a nonlinear setting, more restrictive assumptions

are needed in order to prove well-posedness of the Tikhonov functional and convergence

analysis of the approximated solutions. See, [13, 39, 79].

For fully nonlinear ill-posed problems, the Tikhonov regularization theory is under

development. In special, for the last two decades a great deal of articles and books present

new results in Tikhonov regularization. See, [13, 39, 79] as some recent references. Using

the framework of Bregman distances, new results on convergence analysis and rates to

nonlinear inverse problems were derived under generalized source conditions [18, 54, 74,

75, 76].

Motivated by the ideas on [18, 54, 76], in this chapter, we propose Tikhonov regu-

larization by means of a convex regularizing functional as an extension to the quadratic

regularization that has been used previously in the inverse problem literature [22, 35].

For instance, it applies to Orlicz-Sobolev regularization [1]. We address the regulariza-

tion problem from the perspective of convex analysis methods and Bregman distances

[18, 54, 74, 76, 79]. On the theoretical side, our result is that this yields better convergence

rates and allows for convergence in spaces different from those in the quadratic regular-

ization setting. In fact, in some cases, the convergence of certain convex regularization

expressions implies convergence in the L1-norm.

2.1 Convex Regularization of the Calibration Prob-

lem

We apply convex regularization as discussed in [18, 54, 76] to calibrate the local volatility

function given by the inverse problem associated to the operator equation (15).

The novelty of the present article vis-a-vis [22, 35, 54, 55] is that we consider a regular-

ization method for solving the calibration problem for a general class of convex functionals

f . For given a convex f , the proposed method consists in minimizing the Tikhonov func-

tional (2.1) over D(F ), where, β > 0 is the regularization parameter.

In this paper, we make only the following assumptions on f :

Assumption 2.1.1. Let ε ≥ 0 be fixed. f : D(f) ⊂ H(Ω) −→ [0,∞] is a convex, proper

and sequentially weakly lower semi-continuous functional with domain D(f) containing

D(F ).

An important tool in the studies of Tikhonov type regularization [18, 54, 74, 76] is the



2.1. CONVEX REGULARIZATION OF THE CALIBRATION PROBLEM 31

Bregman distance with respect to f .

Definition 2. Let f as in Assumption 2.1.1. For given a ∈ D(f), let ∂f(a) ⊂ H(Ω)

denote the subdifferential of the functional f at a, which we define and denote by

D(∂f) = {ã : ∂f(ã) 6= ∅}

the domain of the subdifferential [21]. The Bregman distance with respect to ζ ∈ ∂f(a1) is

defined on D(f)×D(∂f) by

Dζ(a2, a1) = f(a2)− f(a1)− 〈ζ, a2 − a1〉 .

Concerning the definition of the subdifferential and the Bregman distance, we emphasize

that the subdifferential is a subset of the dual of H(Ω). However, in Hilbert spaces there

is an isomorphism between the space H(Ω) and its dual H(Ω)∗. This justifies Definition 2

where ∂f(a) is considered a subset of H(Ω) and the Bregman distance, which is considered

with respect to the H(Ω)-inner product.

2.1.1 Well-posedness and Convergence Analysis

In the following, we use recent convergence analysis results for nonlinear Tikhonov regular-

ization [79] to prove existence and stability of a regularized solution of (15) by minimization

of the Tikhonov functional (2.1). We will first prove that the minimization problem (2.1)

has a solution aδβ that is stable in the sense of continuous dependence of the solution on

the data uδ. Thus, we make the following abstract assumptions:

Assumption 2.1.2.

1. The Banach spaces U and V are endowed with topologies τU and τV that are weaker

than the norm topologies. In our context, we later take U = H(Ω), V = L2(Ω), and

endow those spaces with their weak topologies.

2. The norm ‖·‖V is sequentially lower semi-continuous with respect to τV . In our case

V is a Hilbert space and thus the assumption holds.

3. The functional f : D(f) ⊆ U → [0,∞] is convex and sequentially lower semi-

continuous with respect to τU and D := D(F ) ∩ D(f) 6= ∅. In the context of this

paper, we have D(F ) 6= ∅ and D(F ) ⊆ D(f) and thus the assumption is satisfied.
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4. Let Fβ,ū the Tikhonov functional defined in (2.1). Then,

Mβ(M) := levelM(Fβ,ū) = {a : Fβ,ū(a) ≤M}

is sequentially pre-compact and closed with respect to τU . The restrictions of F to

Mβ(M) are sequentially continuous with respect to the topologies τU and τV .

The general result of [79] then implies well-posedness, stability, convergence. These

results are summarized below.

Theorem 2.1.1 (Existence, Stability, Convergence). Suppose that F , f , D, U , and V

satisfy Assumption 2.1.2. Furthermore, assume that β > 0 and uδ ∈ V . Then, we have

that

• There exists a minimizer of Fβ,uδ .

• If (uk) is a sequence converging to u in V with respect to the norm topology, then

every sequence (ak) with

ak ∈ argmin
{
Fβ,uk

(a) : a ∈ D
}

has a subsequence which converges with respect to τU . The limit of every τU -convergent

subsequence (ak′) of (ak) is a minimizer ã of Fβ,u, and
(
f(ak′)

)
converges to f(ã).

• If there exists a solution of (15) in D, then there exists an f -minimizing solution of

(15).

• Assume that (15) has a solution in D (which implies the existence of an f -minimizing

solution) and that β : (0,∞) → (0,∞) satisfies

β(δ) → 0 and
δ2

β(δ)
→ 0 , as δ → 0 . (2.2)

Moreover, we assume that the sequence (δk) converges to 0, and that uk := uδk satisfies

‖ū− uk‖ ≤ δk.

Set βk := β(δk). Then, every sequence (ak) of elements minimizing Fβk,uk
, has a

subsequence (ak′) that converges with respect to τU . The limit a† of any τU conver-

gent subsequence (ak′) is an f -minimizing solution of (15), and f(ak) → f(a†). In

addition, if the f -minimizing solution a† is unique, then ak → a† with respect to τU .
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The first three conditions on the Assumption 2.1.2 are satisfied for our particular prob-

lem. Theorem 1.4.1 implies that Item 4 of Assumption 2.1.2 holds. Therefore, Theorem

2.1.1 is applicable for the functional Fβ,uδ defined in (2.1) to calibrate the local volatility

inverse problem.

2.1.2 State of the Art on Convergence Rates

We now summarize the convergence-rate results to the proposed problem available in the

literature. In all the examples, the regularization parameter is chosen by β = β(δ) ∼ δ.

(i) Egger and Engl [35] applied the standard results for nonlinear Tikhonov regulariza-

tion in a Hilbert space setting, and obtained convergence rates of

∥∥aδβ − a†
∥∥ = O(

√
δ) and

∥∥F (aδβ)− uδ
∥∥ = O(δ) (2.3)

to aδβ, a
† ∈ D(F ) ⊂ H1(Ω) under the assumption of the source condition

a0 − a† = F ′(a†)∗w

with ‖w‖ sufficiently small. Moreover, the above convergence rates are proved for

time-independent volatilities in a more regular set and with a variational source

condition. See [35, Theorem 4.1].

(ii) Focusing on the time dependent case only, Hofmann and Krämer [55] studied the

maximum entropy regularization functional f(·) in the setting of D(F ) ⊂ L1[0, T ]

and data in L2[0, T ]. Under the source condition log(a†/â) = F ′(a†)∗w, the rates of

‖aδβ − a†‖L1[0,T ] = O(
√
δ) (2.4)

were obtained assuming the nonlinear estimate

‖F (a)− F (a†)− F ′(a− a†)‖L2[0,T ] ≤ C‖a− a†‖L1[0,T ]. (2.5)

We will return to maximum entropy regularization in Section 2.2 and, more generally,

to Bregman distance regularization in Section 2.1.4.

(iii) Hofmann et al. [54] improved the convergence rates of [55] for the regularization

functional f(·) = ‖ · ‖L2[0,T ]. We note that in [54, 55] the volatility parameter is
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considered to be time-dependent only.

One of the goals of the present subsection is to improve the above convergence rate

results by using recent convergence results for the Tikhonov regularization [79]. It is done

based on the following theorem which requires further abstract assumptions.

Assumption 2.1.3. Besides Assumption 2.1.2, we have that

1. There exists an f -minimizing solution a† of (15), which is an element of the Bregman

domain DB(f).

2. There exist β1 ∈ [0, 1), β2 ≥ 0, and ξ† ∈ ∂f(a†) such that

〈ξ†, a† − a〉U∗,U ≤ β1Dξ†(a, a
†) + β2

∥∥F (a)− F (a†)
∥∥ , (2.6)

for a ∈Mβmax(ρ), where βmax, ρ > 0 satisfy the relation ρ > βmaxf(a†).

Under this assumption we have the following:

Theorem 2.1.2 (Convergence rates [79]). Let F , f , D, U , and V satisfy Assumption

2.1.3. Moreover, let β : (0,∞) → (0,∞) satisfy β(δ) ∼ δ. Then

Dξ†(a
δ
β, a

†) = O(δ) , and
∥∥F (aδβ)− uδ

∥∥
V

= O(δ) ,

and there exists c > 0, such that f(aδβ) ≤ f(a†) + δ/c for every δ with β(δ) ≤ βmax.

The following proposition reveals that the technical conditions in Assumption 2.1.2 can

be obtained from rather classical ones:

Proposition 2.1.1. Let F , f , D, U , and V satisfy Assumption 2.1.2. Assume that there

exists an f -minimizing solution a† of (15), and that F is Gâteaux differentiable at a†.

Moreover, assume that there exists γ ≥ 0 and ω† ∈ V ∗ with γ
∥∥ω†∥∥ < 1, such that

ξ† := F ′(a†)∗ω† ∈ ∂f(a†) (2.7)

and there exists βmax > 0 satisfying ρ > βmaxf(a†) such that

∥∥F (a)− F (a†)− F ′(a†)(a− a†)
∥∥ ≤ γ Dξ†(a, a

†) , a ∈Mβmax(ρ) . (2.8)

Then, Assumption 2.1.3 holds.
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The convergence rates to the specific inverse problem of calibrate the local volatility

require the investigation of (2.6), or alternatively (2.7) and (2.8), respectively. The next

subsection is dedicated to the investigation of condition that mimics the above conditions.

2.1.3 Attainment of Source Conditions

The convergence result of Theorem 2.1.2 is directly connected to the existence of a source

function w that satisfies the source condition (2.7).

Theorem 2.1.3. Assume that â ∈ D(F ) ⊂ H(Ω) is a minimizer of (2.1) with uδ substi-

tuted by ũ. Then, there exists w̃ := λ(ũ− F (â)) such that

ζ = λF ′(â)∗w̃ ∈ ∂f(â)

In particular, if â = a†, then (2.7) holds.

Proof. The existence of F ′(â) follows from Lemma 1.3.1. Since â is a minimizer of (2.1),

we must have that [21]

0 ∈ ∂(‖F (â)− ũ‖2
L2(Ω) + βf(â)) ⊂ ∂(‖F (â)− ũ‖2

L2(Ω)) + β∂f(â)) . (2.9)

Then, if we set λ =: 2/β, it follows from (2.9) that

λF ′(â)∗(ũ− F (â)) ∈ ∂f(â) . (2.10)

We remark that there are examples in linear inverse problem cases where the minimizers

of (2.1) are different from a†. See, for example, [39].

It turns out that, for the specific problem under consideration, we are not able to

characterize the source condition (2.7). However, we can guarantee (2.6). See section 2.1.4.

The first step in order to guarantee (2.6) is the following simple Lemma:

Lemma 2.1.1. Let ζ† ∈ ∂f(a†). Then, there exists a function w† ∈ L2(Ω) and a function

r ∈ H(Ω) such that

ζ† = F ′(a†)∗w† + r (2.11)

holds. Furthermore, ‖r‖H(Ω) can be taken arbitrarily small.
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Proof. Indeed, Lemma 1.4.1 implies that R(F ′(a†)∗) is dense in H(Ω).

2.1.4 Convergence Rates

In this subsection, we exhibit a class of functionals for which that we are able to prove

that condition (2.6) holds provided the variational source condition (2.11) is satisfied. For

that we shall make use of the following concept:

Definition 3. Let 1 ≤ q < ∞. The Bregman distance Dζ(·, ã) of f : U → R ∪ {+∞} at

ã ∈ DB(f) and ζ ∈ ∂f is said to be q-coercive with constant c > 0 if

Dζ(a, ã) ≥ c‖a− ã‖q
U , ∀a ∈ D(f). (2.12)

In the next lemma, we prove that the existence of an approximated source condition

as (2.11) and f satisfying Definition 3 is sufficient for convergence rates:

Lemma 2.1.2. Let ζ† ∈ ∂f(a†) satisfy (2.11) with w† and r such that

c
(
C‖w†‖V + ‖r‖U

)
:= β1 ∈ [0, 1),

and the Bregman distance with respect to f is 1−coercive with U := H(Ω). Then, equation

(2.6) holds. In particular, the convergence rates of Theorem 2.1.2 hold.

Proof. Using the continuously Sobolev embedding theorem [1], Equations (2.11) and (1.16),

we have that

|〈ζ†, a− a†〉| ≤ |〈ζ† − r, a− a†〉+ 〈r, a− a†〉|

≤ |〈w†, F ′(a†)(a− a†)〉|+ ‖r‖U ‖a− a†‖U
≤ ‖w†‖V ‖F ′(a†)(a− a†)‖V + ‖r‖U ‖a− a†‖U
≤

(
C‖w†‖V + ‖r‖U

)
‖a− a†‖U .

From the assumption that f satisfies Definition 3 and the definition of β1 we have

|〈ζ†, a− a†〉| ≤
(
C‖w†‖V + ‖r‖U

)
‖a− a†‖U

≤ β1Dζ†(a, a
†) ≤ β1Dζ†(a, a

†) + β2

∥∥F (a)− F (a†)
∥∥
V
.

The convergence rates now follow from Theorem 2.1.2.
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In the sequel we present possible choices for q-coercive Bregman distance.

Example 2.1.1 (q-coercive Bregman distance). Let U be a Hilbert space and D(f) ⊂ U

and f(a) := q−1
∥∥a− a†

∥∥q
U
. Then, the Bregman distance associated to f is q-coercive. See

[53] and references therein.

Example 2.1.2. Let 1 < q ≤ 2 and ε > 0. We consider the functional

f(a) =
∞∑
n=1

| < a, φn > |q ,

where {φn} is an orthonormal basis in H(Ω). The functional is convex, proper and sequen-

tially weakly lower semi-continuous. An easy calculation shows that

∂f(a†) =
∞∑
n=1

q| < a†, φn > |q−1 sgn(< a†, φn >)φn .

Therefore, the Bregman distance of the functional f satisfies

f(a)−f(a†)− 〈∂f(a†), a− a†〉

=
∞∑
i=1

[
| < a, φn > |q − | < a†, φn > |q − q| < a†, φn > |q−1 sgn(< a†, φn >)〈φn, a− a†〉

]
≥ Cq

∞∑
n=1

|〈a− a†, φn〉|2 = Cq‖a− a†‖2
U .

Here, we use the following inequality [32, Section 5]

Cq|x− y|2 ≤ (|y|2 − |x|2 − q|x|q−1 sgn(x)(y − x))

in the estimate. Hence, f is 2-coercive. According to Lemma 2.1.2 and Equation (2.13)

the rate of O(δ) holds for the H(Ω)-norm.

This method is usually considered in the case of sparsity regularization [47]. The case

p = 1, which refers to the original sparsity regularization is not taken into account here,

since we aim at convergence rates in the Hilbert’s space norm.

Other interesting possibilities would be to consider looking for Orlicz-Sobolev norms

[1].
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With the assumption of Lemma 2.1.2, if in addition f is q-coercive, a convergence rate

in the norm holds:

∥∥aδβ − a†
∥∥q
U
≤ Dζ†(a

δ
β, a

†) = O(δ) , 1 ≤ q <∞ . (2.13)

In other words, convergence of q-coercive Bregman distances imply in convergence in the

norm.

2.2 Exponential Families

The concept of exponential family arises naturally in order to answer the question: What

is the maximum entropy distribution consistent with given constraints on expected values?

Given the interpretation of option prices as expected values, with respect to appropri-

ate measures, which depend on the local volatility surface, a minute’s thought leads us

to naturally associate the problem of volatility estimation from observed option prices to

exponential measures. Financially, it can be understood as follows: Each volatility surface

leads to a corresponding risk neutral measure whose expectation of the payoff is the ob-

served derivative prices. Thus, if we are given the problem of inferring the volatility surface

from the market observed option prices, the use of Bregman distances leads to the choice

of certain exponential families of probability distributions. The latter, can be thought of

as optimal (in an appropriate sense) a posteriori distributions for the class of models under

consideration. This hints to yet another connection with the now classical work developed

by Avellaneda et al. See [7] and references therein.

Because of its minimum information, entropy regularization has been proposed by sev-

eral authors [37, 40, 67, 75]. The Kullback-Leibler-fuctional (see (2.16) below) allows one

to perform regularization from an information perspective, in the sense that one constraint,

the closeness of the data a to its observed perturbation aδ to satisfy an information mea-

sure rather than some distance measure associated with some functional space. In this

way, a more natural characterization of the relationship between the data and its observa-

tional realization is achieved, and thereby becomes a basis for assessing the convergence os

the regularized solution to the exact data. Moreover, The Kullback-Leibler-fuctional has

numerous properties that can be exploited mathematically [19, 75, 74].

In this section, we will motivate the use of Bregman distances for regularization from

a statistical perspective and then connect it to the general theory developed earlier.

The Darmois-Koopman-Pitman theorem states that under certain regularity conditions
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on the probability density, a necessary and sufficient condition for the existence of a suffi-

cient statistic of fixed dimension is that the probability density belongs to the exponential

family [4]. Formally, a sufficient statistic is a statistic for which the conditional distribution

of the original data, given that statistic, depends only on that data. This leads naturally

to the idea that the value of any definition of information must, with respect to the set

of sufficient statistic transformations that can be applied to the given measurements, be

invariant over the corresponding set of transformed measurements [67].

We start with the definition of an exponential family in dimension 1, which is used later

on to define appropriate priors.

Definition 2.2.1 (Regular Exponential Family). Let ψ : R → R ∪ {+∞} be convex and

p0 : R → R+ by continuous. The family of functions pψ,θ : R → R+ defined by

pψ,θ(s) := exp(s · θ − ψ(θ))p0(s)

is called a regular exponential family. In this context the function ψ is called log-partition

or circulant function. The expectation number a(θ) is defined by

a(θ) :=

∫
R
spψ,θ(s) ds .

This definition calls for an example, namely:

Example 2.2.1. We consider the exponential family of normal distributions on R with

known variance $2 = 1. The density is

pψ,θ(s) =
1√
2π

exp

(
−(s− θ)2

2

)
, s > 0.

This is a one parameter exponential family with

p0(s) =
1√
2π

exp

(
−s

2

2

)
and ψ(θ) =

θ2

2
,
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The expectation number is

a(θ) =
1√
2π

∫
R
s exp

(
−(s− θ)2

2

)
ds

=
1√
2π

∫
R
(s− θ) exp

(
−(s− θ)2

2

)
ds+

θ√
2π

∫
R

exp

(
−s

2

2

)
ds

= 0 + θ .

We have the following result from [8] which relates exponential families with Bregman

distances.

Theorem 2.2.1. [8, Theorem 4] Let ψ∗ denote the Fenchel transform of ψ, which we

assume to be differentiable. Then, the Bregman distance with respect to ψ∗ is given by

Dψ∗(â, ã) = ψ∗(â)− ψ∗(ã)− ψ∗′(ã)(â− ã) .

We assume that a(θ) ∈ int(dom(ψ∗)). Then,

pψ,θ(a) = exp
(
−Dψ∗ (a, a(θ))

)
exp

(
ψ∗(a)

)
p0(a) . (2.14)

An interesting example is given by

Example 2.2.2 (Exponential Families and Fenchel conjugate). For a Gaussian distrib-

ution ψ(θ) = $2

2
θ2, then ψ∗(a) = a2

2$2 . For Poisson distribution ψ(θ) = exp(θ) we have

ψ∗(a) = a log(a)− a.

2.2.1 Bregman Distance Regularization

Among others, Bregman distance becomes, for appropriate choices of a generating func-

tional, the Hilbert space norm and the Kulback-Leibler distance. The generality of this

framework for the analysis of entropy regularization and its extensions have proven suc-

cessful in establishing error estimates and convergence rates [18, 54, 76, 74].

We shall now motivate Bregman distance regularization as a log-maximum a-posteriori

estimator for an exponential family. The connection between Bregman distances and expo-

nential families is well established in some contexts [2, 8], albeit in the present context our

motivation in this section is heuristic. From the financial intuition, it can be understood

as follows: Each volatility surface leads to a corresponding risk neutral measure whose ex-

pectation of the payoff is the observed derivative prices. Thus, if we are given the problem
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of inferring the volatility surface from market observed option prices, the use of Bregman

distances leads to the choice of certain exponential families of probability distributions.

The latter, can be thought of as optimal (in an appropriate sense) a posteriori distribution

for the class of models under consideration. Indeed, under some circumstances, exponential

families are connected to minimal entropy measures. This hints to yet another connection

with the now classical work developed by Avellaneda et al. See [7] and references therein.

For the moment, for motivation purposes, we consider a discrete statistical setting. As

usual, we denote by (X ,F ,P) a probability space. We let ~x := (xi)i be a sequence of

elements in X and ~a = (ai)i, where ai = a(xi) ∈ R. We assume that the conditional

probability density for observable data uδi := uδ(xi) from ui := F (a)(xi) are normally

and identically distributed with mean zero and variance $2. That is, the probability of

observing uδi given ui is given by

p(uδi |ui) =
1

$
√

2π
exp

(
−|u

δ
i − ui|2

2$2

)
.

Now, for a ∈ R>0 denote θ := θ(a). With this notation, for some prior â, the a priori

distribution is defined by

p(a) := pψ,θ(â) = exp (âθ − ψ(θ))p0(â) .

In order to clarify this formula, recall that θ depends on a and this is the only a dependence

that shows up on the right hand side.

This in turn, according to Theorem 2.2.1, can be rewritten as

p(a) = exp (−Dψ∗(â, a)) exp(ψ∗(â))p0(â) .

The advantage of this representation is that it does not involve any parametrization of

the exponential family (that is, with respect to θ). In this context the Log-maximum

estimation then consists in minimizing the functional

~a 7−→
∑
i

(
− log(p(uδi |ui))− log(p(ai))

)
,

which is equivalent to minimizing the functional

~a 7−→
∑
i

(ui − uδi )
2 + β

∑
i

Dψ∗(âi, ai) ,
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where β = 2$2. Note that the Bregman distance is in general not symmetric, and we

minimize with respect to the second component of the Bregman distance.

In summary, we have shown that Bregman distance regularization can be considered

a log maximum a-posteriori estimator for the expectation number, in our case for the

expected volatility.

In this model, we shall introduce some regularization techniques. For notational sim-

plicity, we formulate them in an infinite dimensional framework. Hereafter, we shall as-

sume again that Ω is a bounded subdomain of R2. With this framework, we remark that

D(F ) ⊂ H(Ω)∩L∞>0(Ω) ⊂ L1(Ω), where L∞>0(Ω) is the set of functions that are (essentially)

bounded from below and above by some positive constants.

Example 2.2.3. According to Example 2.2.2, if we use the exponential family associated to

Poisson distributions, we obtain Kullback-Leibler regularization, consisting in minimization

of

a 7−→ Fβ,uδ(a) :=
∥∥F (a)− uδ

∥∥2

L2(Ω)
+ βKL(â, a) , (2.15)

where

KL(â, a) =

∫
Ω

a log ((â/a)− (â− a)) dx . (2.16)

We note that the Kullback-Leibler distance is the Bregman distance associated to the

Boltzmann-Shannon entropy

G(a) :=

∫
Ω

a log(a) dx . (2.17)

We also note that the standard Kullback-Leibler regularization [75], and more gener-

ally, the Bregman distance regularization, is in general considered with respect to the first

component.

However, the modelling with exponential families results in Bregman distances with

respect to the second component.

Remark 2.2.1. The domains of G, D(G), and of the subgradient of G, D(∂G), are L∞≥0(Ω)

(the set of bounded non-negative functions) and L∞>0(Ω), respectively.

The Kullback-Leibler distance, which is the Bregman distance of the Boltzmann-Shannon

entropy, is defined the Bregamn domain on DB(G), that is a subset of L∞>0. Moreover,

the Kullback-Leibler distance is lower semi-continuous with respect to the L1-norm [75].

Based on this property we extend the Kullback-Leibler distance, to take value +∞ if either

a /∈ D(G) or b /∈ DB(G).
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Note that there are exceptional cases, when the integral∫
Ω

(a log(a/â)− (a− â)) dx

is actually finite, but KL(a, â) = ∞. This can be seen by taking for instance a ∈ L1
>0(Ω)

which is not in L∞(Ω) and â = Ca, where C is a constant. The reason here, is that a is

not an element of the subgradient of the Boltzmann-Shannon entropy.

This follows directly from the definition of the domains of the convex functionals and

subgradients.

Example 2.2.4. Alternatively to the Example 2.2.3, if we use the exponential family as-

sociated to Gaussian distributions in the Example 2.2.2, we obtain the standard quadratic

Tikhonov functional, consisting in

a 7−→ Fβ,uδ(a) :=
∥∥F (a)− uδ

∥∥2

L2(Ω)
+ β‖a− â‖2 . (2.18)

2.2.2 Convergence Analysis

To prove that the minimization of Fβ,uδ defined in (2.15) is well–posed, we have to choose

appropriate spaces and topologies first. We choose τŨ , τṼ the weak topologies on L1(Ω)

and L2(Ω), respectively.

As it follows, we have some auxiliary lemmas from [37, 75].

Lemma 2.2.1. Let a, â ∈ D(∂G) as in the Remark 2.2.1. Then, the following statements

holds:

(i) The function (a, â) 7−→ KL(a, â) is convex.

(ii) For any C > 0 and any â ∈ L∞+ (Ω) the sets

EC := {a ∈ L1(Ω) : KL(a, â) ≤ C }

are weakly closed in L1(Ω).

(iii) The functional a 7−→ KL(a, â) is weakly lower semicontinuous in the τŨ -topology.

(iv) The sets EC are weakly compact subset of L1(Ω).
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Lemma 2.2.2. Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, assume

that F is continuous with respect to the weak topologies on L1(Ω) and L2(Ω), respectively.

1. Let a, b ∈ D(G). Then

‖a− b‖2
L1(Ω) ≤

(
2

3
‖a‖L1(Ω) +

4

3
‖b‖L1(Ω)

)
KL(a, b) . (2.19)

Here, we use the convention that 0 · (+∞) = 0.

2. With the generalization of the Kullback-Leibler distance. For sequences (ak)k and

(bk)k in L1(Ω), such that one of them is bounded: If the sequence KL(ak, bk) → 0,

then ‖ak − bk‖L1(Ω) → 0.

3. Let 0 6= â ∈ DB(G), then the sets

Mβ,uδ(M) := {a ∈ DB(G) : Fβ,uδ(a) ≤M}

are τŨ sequentially compact.

Proof. For the proofs of Item 1 and Item 2 see [75]. To prove Item 3, we use (2.19). Let

(ak)k be a sequence in Mβ,uδ(M), then according to (2.19), it is uniformly bounded in

L1(Ω). According to Lemma 2.2.1 the KL functional satisfies

KL(â, ã) ≤ lim inf KL(â, ak)

Now, since F is continuous with respect to weak topologies on L1(Ω) and L2(Ω), it follows

that ∥∥F (ã)− uδ
∥∥2

L2(Ω)
+ βKL(â, ã) ≤M .

Note that (2.19) implies that convergence of a sequence {an} to some a in the KL-

distance, together with convergence in the weak topology implies in the strong convergence

in L1(Ω).

Definition 4. We say that a minimizer of Fβ,uδ as defined in the Equation (2.15) is stable

if the argminFβ,uδk → argminFβ,u0 for δk → 0 and that argminFβ(δk),uδk converges to a

solution of (15) with minimal energy.
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The above Lemmas 2.2.1 and 2.2.2 imply immediately in the well posedness and con-

vergence to the functional (2.15). Indeed, we have

Theorem 2.2.2. Let Ω bounded. There exists a minimizer of Fβ,uδ in (2.15). The mini-

mizers are stable and convergent for β(δ) → 0 and δ2/β(δ) → 0.

Proof. Note that, since D(F ) ⊂ H(Ω) we have D(F ) ⊂ DB(G). From Theorem 1.3.1,

F : D(F ) ⊂ H(Ω) → W 1,2
2 (Ω) is weakly continuous. Since Ω is bounded, we have D(F ) ⊂

H(Ω) ⊂ L2(Ω) ⊂ L1(Ω) and W 1,2
2 (Ω) ⊂ L2(Ω), with continuous embedding. It follows

that F : D(F ) ⊂ L1(Ω) → L2(Ω) is weakly continuous, i.e., it satisfies the assumptions on

the Lemma 2.2.2. Moreover, D(F ) is a convex and closed subset of EC for some C > 0

sufficiently large. Hence, it is weakly closed on the L1(Ω)-topology. The prove follows

the standard arguments on Tikhonov regularization of nonlinear inverse problems [39, 79]

together with the results on Lemmas 2.2.1 and 2.2.2.

2.2.3 Convergence Rates

An important consequence of (2.19) and Theorem 2.1.2 is that, with the framework devel-

oped in Section 2.2, is possible to get convergence rates in the L1(Ω). In particular, this

extends the convergence rates results obtained by [55] to the local volatility calibration

framework.

Theorem 2.2.3. Given the assumptions in Section 2.2, we have the following rates of con-

vergence for the regularized solution obtained by minimization of the Tikhonov functional

(2.15)

∥∥aδβ − a†
∥∥
L1(Ω)

= O(
√
δ) . (2.20)

Proof. Follows directly from (2.19) and the convergence rates in Theorem 2.1.2 to the

Bregman distance.

Therefore, let δk be a sequence converging to zero and ak = aδkβk
the respective mini-

mizers of the Tikhonov functional (2.1). Take the sequence bk = a† for all k ∈ N. Then,

from Lemma 2.2.2 Item 2 we have

∥∥ak − a†
∥∥
L1(Ω)

→ 0 , as δk → 0 .
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Chapter 3

Iterative Regularization

The main contribution of this chapter is the verification and implementation of iterative reg-

ularization to the local volatility calibration problem. The main result of Subsection 3.1.1 is

the Lemma 3.1.1. In the Section 3.2 we extend the framework of stability and convergence

of the Landweber iteration to the L2(Ω)-norm by means of a non-classical discrepancy

principle. A numerical implementation that confirms the robustness of the Landweber

iteration for the calibration problem is presented in Section 3.3. Moreover, derivation of

Kaczmarz type regularization methods are presented in Section 3.4.

The minimization of the Tikhonov functional is often performed by means of iterative

methods in order to solve the first order necessary conditions on the minimizer. Historically,

iterative methods had been used to solve well-posed problems. However, many iterative

methods also have interesting self regularization properties if one terminates the iteration

early enough [39, 61]. Thus, it allows iterative methods to be successfully applied to

solve many inverse problems. An example of this idea is employed in many algorithms of

Computerized Tomography [72]. Differently from Tikhonov regularization [13, 39, 79, 87],

in classical iterative methods [13, 39, 51, 61, 69] the index of the iteration plays the role

of the regularization parameter, and the stopping index of the iteration plays the role of

parameter selection method [39, 61].

Many iterative methods are based on solving the first-order optimality condition for

the least square problem

min
c

2
‖F (a)− u‖2 , a ∈ D(F ) , (3.1)

47
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i.e., solving the normal equations

0 = cF ′(a)∗(u− F (a)) . (3.2)

Thus, to solve (3.2), the iteration is defined as an appropriate fixed point equation given

by

a = ψ(a) := a+ cF ′(a)∗(u− F (a)) , (3.3)

where F : D(F ) ⊂ X −→ Y is assumed to be Fréchet differentiable and X and Y are Hilbert

spaces.

Convergence of (3.3), for well-posed problems, is typically obtained by contractive (or

nonexpansive) operators ψ. The constant c is a weight used to guarantee the nonexpan-

sivity of ψ. On the other hand, in the case of an ill-posed problem, to check analytically

whether the operator ψ is contractive is almost impossible in many practical examples.

Therefore, in iterative methods for nonlinear inverse problems, the contractiveness of ψ

is replaced by local properties, as the tangential cone condition and the local scaling of

the Fréchet derivative of F (see Theorem 1.4.2 and Equation (1.15)). Both properties are

strong enough to ensure the local convergence of some iterative regularization methods

to a solution of (15). Moreover, it guarantees that the iteration remains in D(F ), which

makes the iteration well defined.

Our interest here is to analyze iterative regularization theory applied to the inverse

problem (15), with application to the calibration of the local volatility surface in the

Black-Scholes model (9) and (10). In this chapter, we focus on the Landweber iteration

[39, 61, 69]. Other methods, like the steepest descent, iterated Tikhonov and Newton type

methods to solve ill-posed problems have similar ideas associated. Convergence analysis of

these iterative methods is well known [14, 39, 51, 61, 78]. Of course, each of these methods

requires different assumptions in order to guarantee convergence of the iteration.

3.1 The Classical Landweber Regularization

In 1951, Landweber [69] proved strong convergence of the method of successive approxima-

tions applied to (3.3) for a linear compact operator F . The generalization of the Landweber
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idea to nonlinear operators [39, 61] consists in iterating Equation (3.3) as

aδk+1 = aδk + cF ′(aδk)
∗(uδ − F (aδk)) . (3.4)

In a noisy case, the iterative methods (3.4) only becomes a regularization method, if

an early stop of the iterative process is considered. In other words, only if, for a suitable

stopping index k∗, the iterate aδk∗ yields a stable approximation to the solution a∗ of the

operator equation (15). Differently from the Tikhonov regularization, the stopping index

of the iteration plays the role of the regularization parameter. A successful early stopping

strategy is determined by the stopping index k∗(δ, y
δ) given by the discrepancy principle

(see [39, 61]) ∥∥∥uδ − F (aδk∗(δ,yδ))
∥∥∥ ≤ rδ <

∥∥uδ − F (aδk)
∥∥ , (3.5)

where

r > 2
1 + η

1− 2η
, (3.6)

is a relaxation term. By this, we mean that, if the iteration is stopped at index k∗(δ, y
δ)

such that for the first time, the residual becomes small compared to the quantity rδ.

The convergence analysis for the Landweber iteration (3.4), for a nonlinear inverse

problem, in general, does not hold globally [61]. As in the linear case [39], the Landweber

iteration (3.4) only converges if

‖F ′(a)‖ ≤ 1/c a ∈ B2ρ(a0) ⊂ D(F ) , (3.7)

where F ′(·) is the Fréchet derivative of the operator F defined in (15). This is the motiva-

tion of adding a relaxation parameter c at iteration (3.4).

To prove local convergence we shall use the following assumption:

Assumption 3.1.1. We will assume that the equation F (a) = u(a) − u(a0), as in (15),

is solvable in the open ball Bρ(a0) ⊂ D(F ), where the operator F : D(F ) ⊂ X −→ Y is

continuous and weakly closed with a continuous Fréchet derivative F ′(·).

The assumption of solvability of (15), in the open ball Bρ(a0) ⊂ D(F ), implies the

existence of a solution of minimal distance to a0. The so called a0-minimum-norm solution.

It is, often, denoted by a†. In general, uniqueness of a† does not hold. However, we have
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the following:

Proposition 3.1.1. [61, Proposition 2.1] Let ρ, ε > 0 be such that

‖F (a)− F (ã)− F ′(a)(a− ã)‖ ≤ c(a, ã)‖F (a)− F (ã)‖ , a, ã ∈ Bρ(a0) ⊂ D(F ) , (3.8)

for some c(a, ã) > 0, where c(a, ã) < 1 if ‖a− ã‖ ≤ ε.

If F (a) = u(a)−u(a0) is solvable in Bρ(a0), then a unique a0-minimal-norm solution exists

and satisfies the condition

a† − a0 ∈ N (F ′(a†))⊥ . (3.9)

The local convergence of the iteration (3.4) is summarized in the following result:

Theorem 3.1.1. Assume that Equations (3.7) and (1.21) are satisfied. Consider the

Landweber iteration (3.4). For any a∗ ∈ Bρ(a0), a solution of (15), and a noise level∥∥uδ − u∗
∥∥ ≤ δ, we have that

1. While
∥∥uδ − F (aδk)

∥∥ ≥ rδ

∥∥a∗ − aδk+1

∥∥ ≤ ∥∥a∗ − aδk
∥∥ . (3.10)

Moreover, if a0 ∈ Bρ(a
∗) ⊂ D(F ), then aδk ∈ B2ρ(a

∗) for all k and

k∗(rδ)
2 ≤

k∗−1∑
k=0

∥∥uδ − F (aδk)
∥∥2 ≤ r‖a∗ − a0‖2

(1− 2η)r − 2(1 + η)
, ∀ 0 ≤ k ≤ k∗ . (3.11)

In particular, if uδ = u (i.e., δ = 0), then

∞∑
k=0

‖u− F (ak)‖2 <∞ . (3.12)

2. If there exists a∗ ∈ Bρ(a0) solution of (15) and δ = 0, then the iterated ak given by

(3.4) converges to a∗.

3. In the noisy data case, if the iterations are stopped according to the discrepancy

principle (3.5) and r is given by (3.6), then aδ
k(δ,uδ)

converges to a solution of (15)

as δ → 0.
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Proof. See, for example, the Chapter 2 of [61] .

Details of the proof of Theorem 3.1.1 follow the similar analysis done in the Section 3.2

below.

In contrast to Tikhonov regularization, the existence of a source condition [39, 61] is

not enough to prove convergence rates for the Landweber iteration. Indeed, in iterative

methods, the Fréchet derivative F ′(·) changes for each iteration, with the iterate ak. This

implies that assumptions on source conditions are more restrictive than in Tikhonov-type

methods [39, 61]. Moreover, even if we can prove convergence rates for the Landweber

iteration, the convergence is, in general, arbitrarily slow. For results on convergence rates

of iterative methods and respective source condition see [39, 61].

3.1.1 Application to the Local Volatility Calibration Inverse Prob-

lem

The application of the Landweber iteration to calibrate the local volatility requires that

the operator F , defined in Equation (15), satisfies the assumption of Theorem 3.1.1.

Lemma 3.1.1. Let D(F ) ⊂ H(Ω). The operator F : D(F ) ⊂ H(Ω) −→ W 1,2
2 (Ω), defined

in Equation (15), satisfies the assumptions of Theorem 3.1.1. Moreover, there exists a

unique a0-minimal-norm solution.

Proof. It follows from Theorem 1.3.1 that F is compact, weakly (sequentially) continuous

and weakly closed. Lemma 1.3.1 implies that the operator F has a continuous and uni-

formly bounded Fréchet derivative, with ‖F ′(·)‖ ≤ C. Moreover, from Theorem 1.4.2, the

operator F satisfies the local tangential cone condition (1.21). The existence of a unique

a0-minimal-norm-solution follows from (1.23) in Theorem 1.4.2 and Proposition 3.1.1.

Lemma 3.1.1 tells us that, we can apply the Landweber iteration (3.4) to the volatility

calibration inverse problem.

We stress that Theorem 3.1.1 is valid with the discrepancy principle measured in

W 1,2
2 (Ω)-norm. In this framework, the implementation of the Landweber iteration (3.4)

requires us to calculate F ′(·)∗ in the W 1,2
2 -inner product. However, this is not an easy task.

In order to simplify the calculation of F ′(·)∗, we look for the convergence of the Landwe-

ber iteration (3.4) in the L2-norm. With this new framework, F ′(·)∗ can be calculated in

the L2(Ω)-inner product. See Section 3.2 below.
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3.2 Landweber Iteration with a Non-Classical Dis-

crepancy Principle

The convergence analysis of the Landweber iteration in Section 3.1 is based on the discrep-

ancy principle (3.5) measured with the W 1,2
2 (Ω)-norm. This means that, for each iteration,

we have to compare the residual norm in W 1,2
2 (Ω). This becomes numerically expensive

and difficult to implement, since, the adjoint of F ′(·) in the W 1,2
2 -inner product is not so

easy to be calculated.

In this section, we plan to recover the theoretical assertions of Theorem 3.1.1, with

the discrepancy principle available in the L2(Ω)-norm. The principal improvement in the

analysis of the iteration (3.4) in the L2-norm is an obvious simplification in the numerical

implementation of the algorithm. See Subsection 3.3.

We start with the convergence analysis to the Landweber iteration in the L2-norm

by stating some auxiliary lemmas. They characterize the necessary assumptions for the

convergence of the iteration in the L2-norm.

Lemma 3.2.1. The operator F : D(F ) ⊂ H(Ω) −→ L2(Ω) is continuous, compact, weakly

(sequentially) closed and Fréchet differentiable. The Fréchet derivative satisfies

‖F ′(a)h‖L2(Ω) ≤ C1‖h‖H(Ω) , ∀a ∈ B2ρ(a0) ⊂ D(F ) . (3.13)

Moreover, the local tangential cone condition (1.21) can be replaced by

‖F (a)− F (ã)− F ′(ã)(a− ã)‖L2(Ω) ≤ η‖F (a)− F (ã)‖W 1,2
2 (Ω) , (3.14)

for all a, ã ∈ B2ρ(a0) ⊂ D(F ) and with η < 1
2
.

Proof. This follows from the continuous embedding of W 1,2
2 (Ω) in L2(Ω) applied to (1.16)

in Lemma 1.3.1 and (1.21) in Theorem 1.4.2.

3.2.1 Convergence Analysis

Before starting with the convergence analysis of the nonlinear Landweber iteration (3.4),

we would like to emphasize that for a fixed index k the iterated aδk depends continuously

on the data uδ. This is the case because aδk is a combination of a chain of continuous

operations.
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In order to provide regularization properties of the nonlinear Landweber iteration with

the discrepancy principle in L2(Ω), we assume that uδ ∈ W 1,2
2 (Ω) and satisfies

∥∥u∗ − uδ
∥∥
W 1,2

2 (Ω)
≤ δ . (3.15)

The intuition behind the data measurements in W 1,2
2 (Ω) is that, we can have access to

the information about the solution of (9) and its derivatives in L2(Ω). We recognize that

this is a restrictive assumption, since, in practice, the data are measured in L2(Ω). On the

other hand, given the data as in (3.15), we can measure the discrepancy principle in the

L2(Ω)-norm.

We start by an auxiliary lemma.

Lemma 3.2.2. Assume that the conditions (3.13) and (3.14) hold for all a, ã ∈ B2ρ(a0)

with C1 ≤ 1. Moreover, assume that the equation F (a) = u has a solution a† ∈ Bρ(a0). If

aδk ∈ Bρ(a
†), then, while

∥∥uδ − F (aδk)
∥∥
L2(Ω)

> 2
1 + η

1− 2η
δ (3.16)

we have

∥∥aδk+1 − a†
∥∥2

L2(Ω)
−

∥∥aδk − a†
∥∥2

L2(Ω)
≤

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[
2

1 + η

1− 2η
δ −

∥∥uδ − F (aδk)
∥∥
L2(Ω)

]
(3.17)

Proof. Let aδk ∈ Bρ(a
†). It is follows from the triangular inequality that a†, aδk ∈ B2ρ(a0).
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Hence, (3.13) and (3.14) are applicable. From (3.4) and (3.15) we obtain

∥∥aδk+1 − a†
∥∥2

L2(Ω)
−

∥∥aδk − a†
∥∥2

L2(Ω)
= 2〈aδk+1 − aδk, a

δ
k − a†〉+

∥∥aδk+1 − aδk
∥∥2

L2(Ω)

= 2〈F ′(aδk)∗(uδ − F (aδk)), a
δ
k − a∗〉+

∥∥F ′(aδk)∗(uδ − F (aδk))
∥∥2

L2(Ω)

≤ 2〈uδ − F (aδk),−F ′(aδk)(a∗ − aδk)〉+
∥∥uδ − F (aδk)

∥∥2

L2(Ω)

= 2〈uδ − F (aδk), u
δ − F (aδk)− F ′(aδk)(a

∗ − aδk)〉 − 2
∥∥uδ − F (aδk)

∥∥2

L2(Ω)
+

∥∥uδ − F (aδk)
∥∥2

L2(Ω)

≤ 2
∥∥uδ − F (aδk)

∥∥
L2(Ω)

∥∥uδ − F (aδk)− F ′(aδk)(a
∗ − aδk)

∥∥
L2(Ω)

−
∥∥uδ − F (aδk)

∥∥2

L2(Ω)

≤
∥∥uδ − F (aδk)

∥∥
L2(Ω)

[
2δ + 2

∥∥F (a∗)− F (aδk)− F ′(aδk)(a
∗ − aδk)

∥∥
L2(Ω)

−
∥∥uδ − F (aδk)

∥∥
L2(Ω)

]
≤

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[
2δ + 2η

∥∥F (a∗)− F (aδk)
∥∥
W 1,2

2 (Ω)
−

∥∥uδ − F (aδk)
∥∥
L2(Ω)

]
≤

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[
2(1 + η)δ + 2η

∥∥uδ − F (aδk)
∥∥
W 1,2

2 (Ω)
−

∥∥uδ − F (aδk)
∥∥
L2(Ω)

]
From the continuous embedding of W 1,2

2 (Ω) in L2(Ω) and (3.16) we have

∥∥aδk+1 − a†
∥∥2

L2(Ω)
−

∥∥aδk − a†
∥∥2

L2(Ω)

≤
∥∥uδ − F (aδk)

∥∥
L2(Ω)

[
2(1 + η)δ + 4η

1 + η

1− 2η
δ −

∥∥uδ − F (aδk)
∥∥
L2(Ω)

]
=

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[
2

1 + η

1− 2η
δ −

∥∥uδ − F (aδk)
∥∥
L2(Ω)

]

The following Proposition has a key meaning in the convergence analysis of Landweber

iterations.

Proposition 3.2.1 (Monotonicity). Assume that assumptions of Lemma 3.2.2 hold. Then,

aδk+1 is a better approximation of a† than aδk. Moreover, aδk, a
δ
k+1 ∈ Bρ(a

†).

Proof. The first assertion follows, since, the right hand side of (3.17) is negative. The

second assertion follows by an inductive argument as Theorem 3.1.1.

Given the proof of Lemma 3.2.2, we are able to guarantee that the stopping index k∗

in (3.5), available in the L2(Ω)-norm, is finite and hence, well defined.

Corollary 3.2.1. Assume that the assumptions of Lemma 3.2.2 hold. Let k∗ be chosen

according to the stopping rule (3.5) in the L2(Ω)-norm, with r given by (3.6). If δ > 0

then, k∗ is finite.
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In particular, if δ = 0 then

∞∑
k=0

‖u− F (ak)‖2
L2(Ω) <∞ . (3.18)

Proof. Given that aδ0 = a0 ∈ Bρ(a
†), it follows from induction and (3.17) that aδk ∈ Bρ(a

†)

for all 0 ≤ k < k∗. Hence, Proposition 3.2.1 is applicable for all 0 ≤ k < k∗. Adding up

(3.17) with k from 0 through k∗ − 1, we obtain

K∗−1∑
k=0

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[∥∥uδ − F (aδk)
∥∥
L2(Ω)

− 2
1 + η

1− 2η
δ

]
≤ ‖a0 − a∗‖2

L2(Ω) −
∥∥aδk∗ − a†

∥∥2

L2(Ω)
≤

∥∥a0 − a†
∥∥2

L2(Ω)
.

Using (3.5) and (3.6), we have that

k∗rδ
2

(
r − 2

1 + η

1− 2η

)
≤

K∗−1∑
k=0

∥∥uδ − F (aδk)
∥∥
L2(Ω)

[∥∥uδ − F (aδk)
∥∥
L2(Ω)

− 2
1 + η

1− 2η
δ

]
. (3.19)

Given the choice of r as in (3.6), it follows that the left hand side of (3.19) is positive.

Hence, k∗ is finite. Obviously, if δ = 0, then Proposition 3.2.1 follows for all k. From

(3.19), we have (3.18).

Note that (3.18) is also followed by the continuous embedding of W 1,2
2 (Ω) in L2(Ω)

and Theorem 3.1.1. Equation (3.18) means that, if the Landweber iteration is running

with noise-free data (δ = 0) and if the iteration converges, then the limit is a solution of

F (a) = u. The convergence of the Landweber iteration with accurate data will be proved

in the next theorem. The proof of this theorem follows similar arguments to those found

in [61]. However, it differs in a few arguments. Therefore we prefer to present the proof in

a full version.

Theorem 3.2.1 (Convergence for exact data). Suppose the assumptions of Lemma 3.2.2

are satisfied. Then, the Landweber iteration (3.4), applied to exact data u, converges to an

a0-minimum-norm solution a† of F (a) = u.

Proof. The existence of a unique a0-minimum-norm solution a† follows from Lemma 3.1.1.

Let

ek = ak − a† .
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Then, Proposition 3.2.1 implies that {‖ek‖} is monotonically decreasing. Hence, it con-

verges to some ε > 0. The convergence argument is based in showing that {ek} is a Cauchy

sequence. Given j ≥ k, select an index j, with k ≤ l ≤ j, such that

∥∥F (a†)− F (al)
∥∥
L2(Ω)

≤
∥∥F (a†)− F (ai)

∥∥
L2(Ω)

for all k ≤ i ≤ j . (3.20)

The triangular inequality implies that

‖aj − ak‖L2(Ω)
≤ ‖aj − al‖L2(Ω)

+ ‖al − ak‖L2(Ω) .

We are going to show that ‖aj − al‖L2(Ω)
converges to zero as k →∞. A similar argument

applied to ‖al − ak‖L2(Ω) concludes the assertion. Note that

‖aj − al‖2

L2(Ω)
= 2〈aj − al, el〉+ ‖aj‖2

L2(Ω)
− ‖al‖2

L2(Ω) ,

and the last two terms on the right hand side go to ε2 − ε2 = 0 for k → ∞. Moreover,

applying (3.14)

|〈aj − al, el〉| =

∣∣∣∣∣
j−1∑
i=l

〈F ′(ai)∗(u− F (ai)), el〉

∣∣∣∣∣ ≤
j−1∑
i=l

∣∣〈u− F (ai), F
′(ai)(al − a†)〉

∣∣
≤

j−1∑
i=l

∥∥F (a†)− F (ai)
∥∥
L2(Ω)

∥∥F ′(ai)(al − ai + ai − a†)
∥∥
L2(Ω)

≤
j−1∑
i=l

∥∥F (a†)− F (ai)
∥∥
L2(Ω)

(∥∥F (ai)− F (a†)− F ′(ai)(a
† − ai)

∥∥
L2(Ω)

+
∥∥F (a†)− F (al)

∥∥
L2(Ω)

+ ‖F (ai)− F (al)− F ′(ai)(al − ai)‖
)

≤
j−1∑
i=l

∥∥F (a†)− F (ai)
∥∥
L2(Ω)

(
η
∥∥F (a†)− F (ai)

∥∥
W 1,2

2 (Ω)

+
∥∥F (a†)− F (al)

∥∥
L2(Ω)

+ η‖F (al)− F (ai)‖W 1,2
2 (Ω)

)
≤ (1 + 3η)

j−1∑
i=l

∥∥F (a†)− F (ai)
∥∥2

W 1,2
2 (Ω)

,

where to obtain the last inequality, we used the continuous embedding of W 1,2
2 (Ω) in L2(Ω)

and equation (3.20). From Theorem 3.1.1, the sequence {‖u− F (ai)‖2
W 1,2

2 (Ω)} converges to

zero as k →∞. Hence, {ek} and consequently {ak} are Cauchy sequences. Now, equation
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(3.18) implies that the limit of ak should be a solution of F (a) = u.

By the definition of the Landweber iteration (3.4) and Lemma 1.4.1

ak+1 − ak ∈ R(F ′(ak)
∗) ⊂ N (F ′(ak))

⊥ ⊂ N (F ′(a†))⊥

and hence

ak − a0 ∈ N (F ′(a†))⊥ for all k ∈ N . (3.21)

Hence the limit of {ak} also satisfies (3.21). As a† is the unique solution for which (3.21)

holds, it follows that ak → a†.

The next theorem shows that the stopping rules given by (3.5), in the L2(Ω)-norm,

renders the Landweber iteration a regularization method.

Theorem 3.2.2. Suppose the assumptions of Theorem 3.2.1 hold and k∗ = k∗(δ, u
δ) is

selected according to the stopping rule (3.5) in the L2(Ω)-norm. Then, the Landweber

iteration aδk∗ converges to a† as δ → 0.

Proof. See [61].

3.3 Numerical Validation

Successful numerical strategy for pricing options, for example, binomial trees, Monte Carlo

methods, finite-element and finite difference methods are frequently used. See references

and implementations in [23, 34, 35, 59].

The numerical implementation of the nonlinear Landweber iteration requires the evalu-

ation of the gradient direction F ′(ak)
∗(uδ−F (ak)). In the calibration problem, this means

that, for each step of the algorithm, we need to solve the PDE (9) and evaluate the adjoint

operator F ′(ak). Depending of the inner product, the numerical evaluation of F ′(·)∗ would

be expensive.

However, in the L2(Ω)-inner product, the evaluation of the iteration (3.4) can be per-

formed efficiently via a variational approach.

Denote by R = uδ − u(a). Let W the solution of the adjoint equation

Wτ + (aW )yy + (aW )y = R , (3.22)
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with homogeneous boundary and final condition. Then, formally, we have

〈R, u′(a)[h]〉L2(Ω) =

∫
Ω

(u′(a)[h])(τ, y)R(τ, y)dydτ (3.23)

=

∫
Ω

(u′(a)[h])(Wτ + (aW )yy + (aW )y)dyds

=

∫
Ω

[−(u′(a)[h])τ + a((u′(a)[h])yy − (u′(a)[h])y)Wdyds

=

∫
Ω

−h(uyy − uy)Wdyds . (3.24)

Summarizing, each step of the Landweber iteration requires a solution of parabolic PDE

(9) and (3.22), with respective boundary and initial conditions. Moreover, the evaluation

of (3.23).

Below we present some examples of reconstructions using the nonlinear Landweber

iteration (3.4).

The routines to solve (9) and the adjoint equation (3.22) are implemented using Crank-

Nicholson methods [83] with an explicit drift term. In other words, we use a forward-

difference approximation to the time partial derivative to obtain the explicit scheme

um+1
n − umn
δτ

+O(δτ) =
umn+1 − 2umn + umn−1

(δy)2
+O((δy)2) ,

and a backward difference to obtain an implicit scheme

um+1
n − umn
δτ

+O(δτ) =
um+1
n+1 − 2um+1

n + um+1
n−1

(δy)2
+O((δy)2) .

The average of these two equations is

um+1
n − umn
δτ

+O(δτ) =
1

2

(
umn+1 − 2umn + umn−1

(δy)2
+
um+1
n+1 − 2um+1

n + um+1
n−1

(δy)2

)
+O((δy)2) .

Ignoring the error terms leads to the Crank-Nicholson methods

um+1
n − α

2

(
um+1
n+1 − 2um+1

n + um+1
n−1

)
= umn +

α

2

(
umn+1 − 2umn + umn−1

)
,

where α := δτ
(δy)2

. Here, δτ and δy represent the time and space step size, respectively.

Hence α < 1 for the stability condition to be satisfied.

Again, we assume that we can truncate the infinite mesh y = N+δy and y = N−δy,
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and take N+ and N− sufficient large, such that no errors are introduced. This restriction

implies in artificial boundary conditions umN− and umN+ .

The algorithm stars with um+1
n = umn . Then, we shift to the right using the boundary

condition umN− to evaluate the left hand side of the Crank-Nicholson methods and shift to

the left using the boundary condition umN+ to evaluate the right hand side of the Crank-

Nicholson methods. The internal looping is implemented using SSOR iteration without

relaxation.

Examples

For the numerical implementation, the domain needs to be restricted to a finite region. In

our examples, we solve the equation (9) with initial condition (10) and the adjoint equation

(3.22) on the domain Ω0 := (0, 0.2) × (−5, 5). This restriction to the domain Ω0 implies

the introduction of artificial boundary condition u(−5, τ) = 1 and u(5, τ) = 0. With this

choice, it is possible to prove that the error introduced is approximately 10−3.

In the present validation we use as data generator the same code that produces the

reconstruction. Thus we are committing so-called “inverse crime” [39]. Moreover, in all

examples, we take the initial guess a0 identically 1.

Example 3.3.1. [Noise free data] In the first example, Figure 3.1 the value of the exact

variance a that solves the inverse problem. Figures 3.2 and 3.3 show the reconstructed

parameters obtained from the Landweber iteration. Figure 3.5 shows the respective error

between the true parameter and the calculated, without noise in the data. The numer-

Figure 3.1: Exact variance. Left, described as a surface. Right, as an intensity plot.

ical results in Example 3.3.1 shows that, in the noise free case, the Landweber iteration
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Figure 3.2: Reconstructed parameter after 500 iteration steps. Noise free data.

converges to a solution of the problem (15), as k → ∞. See Figures 3.4. This confirms

numerically the results in Theorem 3.1.1.

Example 3.3.2. [0.5% of noise in the data] In this example, we have 0.5% of noise in the

data in the L2(Ω)-norm (or 0.1% in the L∞(Ω)-norm as shows in Figure 3.6), concentrated

in a region of the form y ∈ [−5/3, 5/3] and τ ∈ [1/30, 1/5] as shown in Figure 3.6. As

before, Figure 3.1 shows the exact solution of the inverse problem. Figure 3.7 shows the

reconstructed solution using the Landweber iteration. Figure 3.8, shows the error between

the true parameter and the calculated one as the iterations progress. The Landweber iter-

ation stops after 1800 steps, as shown in Figure 3.9, confirms the discrepancy principle,

with r = 4.8. Example 3.3.2 shows that, in the noisy case, the calculated solution is not

as good as in the noise free case. On the other hand, Figures 3.7 and 3.8 validate, after

the discrepancy principle, the result in Theorem 3.1.1.

Example 3.3.3. [5% of noise in the data] In this example, we have 5% of noise in the

data, measured in the L2(Ω0)-norm (or 1% of noise in the L∞(Ω0)-norm) concentrated in

a region of the form y ∈ [−5/3, 5/3] and τ ∈ [1/30, 1/5] as shown in Figure 3.10. As

before, Figure 3.1 shows the exact solution. Figure 3.11 shows the reconstructed solution

using the Landweber iteration. Figure 3.12, shows the error between the true variance and

the computed one. The Landweber iteration stops after 500 steps as shown in Figure 3.13,

confirming the discrepancy principle, with r = 4.8. In the bottom right corner of Fig-

ure 3.12 we show the reconstructed parameter after 2000 iterations. In Figure 3.13 we also

plot the evolution of the residual and the error before the discrepancy principle, i.e., after

2000 iteration. The result shows that the residual of the iteration is monotone, but the
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iteration is not [61]. Hence, we should have stopped the iteration in accordance with the

discrepancy principle.

The financial interpretation of the choice of domains in Example 3.3.2 and 3.3.3 is the

following: The market data is given for a finite set of maturities and strikes. Moreover,

prices are influenced by the bid-ask spreads. Therefore, the actual set of observed prices,

for the calibration problem, are only known up to some noise level δ.

Example 3.3.4. [Noise free data] In this example, we have the true parameter given by

Figure 3.14. Note that, the structure of the solution is more complicated. Figure 3.15

shows the approximated solution after 4000 steps of the Landweber iteration.

In Example 3.3.4, we see that, after 4000 iterations, the error between the true solution

and the reconstructed is bigger than the same approximation given in Example 3.3.1. This

phenomenon is expected, since, the initial guess in both examples is the same. Hence, the

initial guess is far from the true solution in Example 3.3.4, compared with the situation in

Example 3.3.1. However, we have good numerical approximation result in Example 3.3.4.

A final remark about the numerical implementation is that the inverse problem is

hard to solve. Given our choice of τ = 0.2, y ∈ (−5, 5) and the mesh with δτ = 0.002 and

δy = 0.1, the matrix representing u has dimension 101×101. The examples are obtained in

an Intel Core2 with 1.5 Hz. The total processing time for Example 3.3.1 was approximately

2 minutes.

3.4 Kaczmarz Strategies Applied to the Inverse Prob-

lem of Option Prices

In this section, we analyze Kaczmarz type strategies [11, 24, 50, 49, 66] applied to the

calibration problem for European call option prices.

The motivation is the following: In practice, options are only sold for a very few

maturities, typically, only one pre-assigned day per month qualifies for a maturity time.

We denote them by T1, · · · , TN . For each Tj , j = 1, · · ·N , a certain number of strikes is

available, and we shall assume, for simplicity, that the smallest and largest of these, Kmin

and Kmax are the same for each maturity. Given the above motivation, the inverse problem

of option price seeks for σ given

U j(t, S,K, Tj) = U j
∗ (K) , k ∈ [Kmin, Kmax] . (3.25)
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Here S is the market price of the stock at time t, and U j
∗ (K) denotes the market price of

options with different strikes for a correspondent maturity Tj, for j = 1, · · · , N .

As before, we know that the option premium Uj(·, ·, K, Tj) satisfies the Dupire’s equa-

tion (9) with the initial value (10), for each Tj.

For simplicity, we assume that σ = σ(K) and that b = q − r is constant, i.e., is

independent of the time. In this framework, the nonlinear inverse problem is the stable

calibration of the volatility σ(K) by observation of market prices (3.25), associated with the

solutions of the Dupire’s equation (5) with initial condition (6), to match quoted market

prices U j
∗ (K), for a given set of maturities Tj, with j = 1, · · · , N .

Making use of the change of variables (7) and (8), we obtain a system of PDEs

− ujτ + a(y)(ujyy − ujy) + b ujy = 0 in Ωj (3.26)

uj(0, y) = S0(1− ey)+ , (3.27)

where, Ωj = (0, Tj)× I, for j = 1, · · · , N . Here, I denotes the interval [Kmin, Kmax] in the

y-variable.

In the analysis that follows, we are interested in a continuous observation of prices

U j
∗ (K) as in (3.25). Since, financial markets typically allow only a few and prefixed maturity

dates with a discrete sample of strikes for each maturity and, the prices are defined as bid-

ask spreads, this leads to an interpolation procedure or approximation to the value of the

option. Therefore, the actual set of observed prices U j,δj , or input data, for the calibration,

is only known up to some noise level δj, which we assume to satisfy

∥∥ūj − uj,δj
∥∥ ≤ δj . (3.28)

Thus, the inverse problem can now be formulated as follows: Calibrate the volatility

parameter a(y) in the system of nonlinear operator equations

Fj(a) = uj , j = 1, · · · , N , (3.29)

where Fj : D(Fj) ⊂ H(Ω) −→ W 1,2
2 (Ωj) is the parameter-to-solution map and uj = uj(a)

is the solution of (9) and (10) to the corresponding Tj.

Here, we assume that the admissible set of parameters D(Fj) is defined by

D(Fj) := {a ∈ D(F ) : a = a(y) and a0 is constant}, ∀j ∈ {1, · · · , N} .
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Remark 3.4.1. Note that, all the assumptions of Theorem 3.1.1 are satisfied by operators

Fj on (3.29), for any j ∈ {1, · · · , N}.

3.4.1 Kaczmarz Type Strategies Applied to Solving Nonlinear

System of Equations.

Standard methods for the solution of the system (3.29) are based on the use of Tikhonov

type regularization methods [13, 39, 79] or iterative type regularization methods [39, 61]

after rewriting (3.29) as a single equation F (a) = u(a), where

F := (F1, · · · , FN) :
N⋂
j=1

D(Fj) −→ (W 1,2
2 (Ωj))

N ,

with u(a) = (u1(a), · · · , uN(a)). However, these methods become inefficient and expensive

if N is large. In such situation, Kaczmarz type methods [60] are more efficient and are

often used in practice. A group of N subsequent steps (starting at some multiple k of N)

shall be called a cycle. Kaczmarz type algorithm, consist in, given a starting point a0,

cyclically consider each equation in (3.29), separately. A famous Kaczmarz type algorithm

is the ART iteration in Computerized Tomography [72].

Recently, Kaczmarz type methods for systems of ill-posed equations were analyzed. We

refer the reader to [11, 12, 17, 24, 49, 50, 66].

In [66] the Landweber-Kaczmarz method(LK) that consists in applying the Landweber

iteration (3.4) to each equation on (3.29) as a cycle was analyzed. The authors used the

termination of the iteration as the first index such that the discrepancy principle (3.5) is

attained for any component of the system (3.29). In [49, 50] the Landweber-Kaczmarz

approach was analyzed with the incorporation of a bang-bang relaxation parameter in the

classical Landweber-Kaczmarz iteration [66], combined with a new stopping rule. This is

called loping-Landweber-Kaczmarz iteration(lLK). Indeed, it consists on the iteration

aδk+1 = aδk + ωkF
′
[k](a

δ
k)(u

δ
[k] − F[k](a

δ
k)) (3.30)

with

ω[k] = ω[k](δ, u
δ
[k]) =

 1 if
∥∥∥uδ[k] − F[k](a

δ
k)

∥∥∥ > τδ

0 otherwise .
(3.31)
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Here, [k] = kmodN ∈ {0, · · · , N − 1}. The iteration is stopped when ω[k] = 0 in a cycle.

In [24] the loped strategy was analyzed together with the steepest-descent iteration

to solve nonlinear systems of ill-posed equations. It is called the loping-Steepest-Descent-

Kaczmarz (l-SDK). The (I-SDK) iteration consists in incorporating the loped parameter

ω[k] in the steepest-descent iteration coupled with a Kaczmarz strategy. Once again, the

iteration is stopped when ω[k] = 0 in a cycle. In [12] the so-called loping-Levenberg-

Marquardt-Kaczmarz (l-LMK) iteration is proposed to solve (3.29). This corresponds to

introducing the loped parameter ω[k] in the Levenberg-Marquardt iteration and use a cycle

strategy. Finally, in [11] iterated-Tikhonov-Kaczmarz (iTK) and loping-iterate-Tikhonov-

Kaczmarz (L-iTK) methods are analyzed. This consists in incorporating the Kaczmarz and

loped strategy in the iterated Tikhonov method. The difference with respect to the above

methods is that these are implicit methods (see [11]).

The regularization properties of the Kaczmarz type strategies are summarized in the

next Theorem.

Theorem 3.4.1. Let Fj : D(Fj) ⊂ X −→ Yj satisfying all the assumption on Theo-

rem 3.1.1, for all j ∈ {1, · · · , N}. Let the stopping index k∗ be such that ω[k∗] = 0 in a

cycle. Then, Kaczmarz type strategies (LK), (l-LK), (l-SDK) and (l-LMK) are regulariza-

tion methods for solving nonlinear systems of equations (3.29). Moreover, if the Fréchet

derivative of Fj is locally Lipschitz continuous, then the iteration (iTK) and (L-iTK) are

also regularization methods.

Proof. See in [66, 50, 24, 12, 11].

Corollary 3.4.1. The Kaczmarz strategies in the Theorem 3.4.1 can be applied to the

calibration problem in (3.29).

Proof. Indeed, the system of nonlinear operators (3.29) satisfies all the assumption of

Theorem 3.4.1 as we show below.

First, by definition, D(Fj) ⊂ D(F ) ⊂ H(Ω). Hence, from Theorem 1.3.1 and Lemma 1.3.1,

we have that Fj is continuous and weakly closed and with a continuous Fréchet derivative,

for j = 1, ·, N . Moreover, Lemma 1.3.1 implies that the Fréchet derivative of Fj is locally

Lipschitz continuous, for j = 1, ·, N .

Now, Theorem (1.4.2) applied to each Fj, for j = 1, ·, N , guarantees that the local

tangential cone condition (1.21) is satisfied.

Numerical implementation and comparison of Kaczmarz type strategies to the calibra-

tion problem will be performed in future works.
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Figure 3.3: Reconstructed variance after 1000, 2000, 3000 and 4000 iteration steps respectively.
Noise free data.
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Figure 3.4: Evolution of the log of the residual and error in the approximate L2(Ω)-norm.

Figure 3.5: The error in the reconstruction after 500, 1000, 2000 and 4000 iteration steps.
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Figure 3.6: Noise data of 0.5% concentrated in a region of the form y ∈ [−5/3, 5/3] and τ ∈
[1/30, 1/5].
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Figure 3.7: Reconstructed parameter after 800, 1200 and at the stopping iterate. Noise level of
0.5% concentrated in a region of the form y ∈ [−5/3, 5/3] and τ ∈ [1/30, 1/5] concentrated near
y = 0. On the left, the surface plot of the reconstructed solution. On the right, the intensity
plot.
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Figure 3.8: Error in the reconstruction after 400, 800, 1200 and at the stopping iterate.

Figure 3.9: Evolution of the residual and the error in the approximated L2(Ω)-norm.
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Figure 3.10: Noise data of 5% concentrated in a region of the form y ∈ [−5/3, 5/3] and τ ∈
[1/30, 1/5].
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Figure 3.11: Reconstructed parameter after 100, 300 and at stopping final iteration. On the left,
the reconstructed solution as a surface. On the right, the intensity plot.
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Figure 3.12: Error in the reconstruction for the respective iterations given in Figure 3.11.

Figure 3.13: Evolution of the residual and the error in the approximate L2(Ω)-norm. In the left
we can see the stopping index. In the right we can see the monotonicity properties of the iterates.
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Figure 3.14: True parameter. On the left, as a surface, on the right as an intensity.

Figure 3.15: On the top, the reconstructed solution after 4000 iteration steps. On the bottom
left, the error in the reconstruction. On the bottom right, the evolution of the residual and the
error in the approximate L2(Ω)-norm.
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Chapter 4

Relationship with Convex Risk

Measures

In this chapter, we show a possible connection between convex risk measures and the inter-

pretation of source condition (2.7). The main point is that we present a construction that

allows us to associate the convex regularization functional f involved in the source condi-

tion to a convex risk measure. This circle of ideas is novel, to the best of our knowledge,

and deserves careful further investigations.

From a heuristic perspective, a financial interpretation of the source condition (2.7) is

carried out so that we have a restriction that allows us to quantify the risk associated to

a given volatility level. By this we mean that upon computing the corresponding Black-

Scholes solution as a function of the volatility, we are quantifying how much risk one has

in the space of random variables associated to such volatility. In other words, we prove the

following:

Theorem 4.0.2. The source condition (2.7) can be interpreted as an a priori assumption

on the risk associated to the correspondent position, given the volatility level.

Proof. The proof is given at the end of Section 4.2.

In financial practice, a number of ways have been proposed to assess the risk of a given

portfolio or investment choice [71]. Perhaps the most well-known is the so-called value at

risk (VaR), which is defined as follows: For a given portfolio, probability level and time

period, the (VaR) is defined as the threshold value such that the probability of loss on the

portfolio over the given time period exceeds this value is the given probability level. In

other words, given a confidence level α ∈ (0, 1), the (VaR) of the portfolio at the confidence

75
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level α is given by the smallest number l such that the probability that the loss L exceeds

l is not larger than (1− α)

VaRα = inf{l ∈ R : P (L > l) ≤ 1− α} .

After some consideration it seems clear that the higher the (VaR) the higher the risk, and,

in principle, the more undesirable such an investment would be. It turns out that the

(VaR) has a serious pitfall, namely, it does not encourage diversification. This is related

to the fact that it is not in general a convex function of the portfolio choice.

Several authors have developed theories about desirable properties for risk measures.

See [71] and references therein. One of the most popular is the concept of a convex risk

measure. It represents a quantitative assessment of the risk involved in the investor’s pref-

erence for a financial position. Usually a position is described by the resulting discounted

net worth at the end of a given period. Thus, it is represented by a random variable ν in

a suitable probability space Γ. More precisely, we denote by X := {ν Γ −→ R} a convex

set of real-valued random variables over all possible scenarios. Following [6, 42, 43, 44] we

shall now introduce the definition of convex risk measure and give a brief explanation of

its meaning.

Definition 5. A map ρ : X −→ R will be called a convex measure of risk if it satisfies the

following conditions:

• Convexity.

• Non-increasing monotonicity, i.e., if the random variable ν2 is dominated by the

random variable ν1 a.e., then ρ(ν2) ≥ ρ(ν1).

• Translation invariance, i.e., if m ∈ R is a deterministic variable in the sense that it

takes the value m a.e., then

ρ(ν +m) = ρ(ν)−m. (4.1)

We now digress to give an intuitive interpretation of the different requirements above.

The condition of convexity is related to risk aversion and it is important in diversifying

risk. See [71] for details. The translation invariance condition is natural, since adding a

deterministic quantity to a portfolio will decrease its risk in proportion to that quantity.

The monotonicity says that if two portfolios ν1 and ν2 are such that for almost all events
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the return of ν1 is greater than, or equal to, the return of ν2, then the risk associated to

ν1 is smaller than the corresponding risk associated to ν2.

4.1 Preliminary Results

In this section, we present the assumptions and preliminary results used later. The first

assumption is that Ω is a bounded set. This is the same to assuming that the strikes K are

bounded below and above by some positive constants. Moreover, we define the functional

f(a) = +∞ if a /∈ D(F ). Using the assumption of the existence of a source function

w† ∈ L2(Ω) that satisfies (2.7) and the definition of ∂f(a†) we have that

f(a)− 〈w†, F ′(a†)a〉 ≥ f(a†)− 〈w†, F ′(a†)a†〉 , (4.2)

∀a ∈ U and ∀w† s.t.F ′(a†)∗w† ∈ ∂f(a†) .

Let us set g(−F ′(a†)a) := 〈w,−F ′(a†)a〉. The existence of w† satisfying (4.2) implies that

it is the Lagrangian multiplier of

L : D(F )× L2(Ω) −→ R

(a, w) → f(a) + g(−F ′(a†)a) ,

i.e., it satisfies

L(a†, w) ≤ L(a†, w†) ≤ L(a, w†) .

However, it is not clear whether we have more than one w† ∈ R(F ′(a†)) satisfying (4.2).

Indeed, it depends on the choice of f . For example, if f is differentiable on a†, then ∂f(a†)

is a single element. Then, from Lemma 1.4.2 it follows that w† satisfies Equation (2.7) and

therefore it is unique.

We define a family of separately convex functions (meaning that for a fixed w it is

convex in a and vice versa) by

L2(Ω) 3 w 7−→ hw :D(F ) −→ R ∪ {+∞}

a 7−→ L(a, w) = f(a) + g(−F ′(a†)a) . (4.3)

Observe that hw(a) is a family of functions of the variable a depending on the parameter

w.
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Remark 4.1.1. A particular property of hw† is that

hw†(a)− hw†(a
†) = L(a, w†)− L(a†, w†) = Dζ†(a, a

†) .

However, this property holds true only in the special case when w† satisfies (4.2).

Remark 4.1.2. Note that the source condition (2.7) together with the existence of an f -

minimum norm solution for (15) is equivalent to the Karush-Kuhn-Tucker condition in

convex optimization [38].

Now, from the Fenchel conjugation theory [77, 85] we obtain a unique Fenchel conjugate

function of hw given by

ĥ∗w :L2(Ω) −→ R

v 7−→ g∗(v) + f ∗(−F ′(a†)∗v) . (4.4)

If it happens that

g∗(v) =

0 if v = w

+∞ otherwise .

Otherwise we would have difficulties in the above definition of ĥ∗w. Hence, we focus on the

related function h∗w defined as

h∗w : X ⊂ L2(Ω) −→ R

v 7−→ h∗w(v) := f ∗(−F ′(a†)∗v) , (4.5)

where X := {v ∈ L2(Ω) : f ∗(−F ′(a†)∗v) is finite}.
We note that since {0} = N (F ′(a†)∗), then h∗w(0) = f ∗(0) = 0.

Lemma 4.1.1. The functional h∗w satisfies the convexity and monotonicity axioms.

Proof. The convexity follows directly from the properties of the Fenchel conjugate function

[85, Theorem 2.3.1]. To prove the monotonicity: let v1, v2 ∈ X satisfy v1 ≥ v2. From the

definition of the Fenchel conjugate we have h∗w(v) = f ∗(−F ′(a†)∗v) ≥ 〈a,−F ′(a†)∗v〉−f(a).

Positivity of F ′(a†)a (see [22, Theorem 4.2]) implies that

0 ≤ 〈F ′(a†)a, v1 − v2〉 = 〈F ′(a†)a, v1〉+ f(a)− (〈F ′(a†)a, v2〉+ f(a))

≤ −h∗w(v1) + h∗w(v2) .
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In the sequel we give a construction of a convex risk measure ρ in the present con-

text. This will be achieved using the properties of h∗w and an interesting probabilistic

representation of v ∈ X coming from Malliavin Calculus [45].

We start by associating our notation with that of [45]. Equation (9) is associated to

the diffusion process {yt : 0 ≤ t ≤ T} that satisfies the dynamics

dyt =

(
r − q − σ(t, yt)

2

2

)
dt+ σ(t, yt)dWt , yt0 = y0 , (4.6)

in the risk neutral probability measure Q.

We recall that the process (4.6) is the diffusion (1) in logarithmic variables where

σ 7−→ a ∈ D(F ) by (8).

For the sake of simplicity, we assume that the process (4.6) has no dividend nor interest

rates, i.e., b = 0.

Following [45], denoted by {Yt : 0 ≤ t ≤ T} the first variation process associated to

{yt : 0 ≤ t ≤ T} and defined by the stochastic differential equation

dYt = (σ2(Yt))
′Ytdt+ σ′(Yt)dWt Yt0 = 1 .

Remark 4.1.3. We now identify σ† 7−→
√

2a† and σ̃ 7−→
√

2ã given by (8) with a†, ã ∈
D(F ). Then, for sufficiently small ε > 0, the diffusion coefficient σ† + εσ̃ satisfies the

uniform ellipticity condition

∃η > 0 : ζT (σ† + εσ̃)T (x)(σ† + εσ̃)(x)ζ ≥ η|ζ|2,

for all ζ ∈ R2 and for all x ∈ Ω.

We introduce the auxiliary set

Γ :=

{
Θ ∈ L2[0, T ] |

∫ T

0

Θ(t)dt = 1

}
,

which contains for example the constant function Θ(t) = 1/T .

Our first result is a representation lemma.

Lemma 4.1.2. Let v ∈ R(F ′(a†)). Then, there exists a random variable πa† such that
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v = Ey0
Q [Φ(yt)πa† ] , (4.7)

where Q is the risk neutral probability measure.

Proof. Let

β̃Θ = Θ(t)(β(T )− β(0))χ0≤t≤T

where {β(t) : 0 ≤ t ≤ T} is the process given in [45, Lemma 3.1].

Since σ†+εσ̃ satisfies the uniform ellipticity condition (see Remark 4.1.3) we have from

[45, Proposition 3.3] that the Gâteaux derivative at σ† in the direction σ̃ is given by

Ey0
Q [Φ(yt)D

∗
t ((σ

†)−1(yt)Ytβ̃Θ(T ))] ,

where D∗
t ((σ

†)−1(yt)Ytβ̃Θ(T )) is the Skorohod integral [73] of the possibly anticipative

process

{(σ†)−1(yt)Ytβ̃Θ(T ) : 0 ≤ t ≤ T}

for any Θ ∈ Γ.

We remark that the linearity of D∗
t with respect to σ̃ arises through the process βt. See

Proposition 3.3 of [45].

Lemma 4.1.3. The constants do not belong to R(F ′(a†)).

Proof. If 1 ∈ R(F ′(a†)), then there exists h ∈ D(F ′(a†)) such that F ′(a†)h = 1. Thus, 1

would satisfy (1.14), i.e.,

0 = 1τ + a†(1yy − 1y) = h(uyy − uy) .

Using the same argument in the proof of Lemma 1.4.1 we have that (uyy − uy) cannot

vanish in a set of positive measures. Thus h = 0 a.e. This is a contradiction with the fact

that F ′(a†)h = 1 since F ′(a†) is linear.

At this point, we have two interesting sets of random variables for our convex risk

measure construction. Firstly,

X := {ν +m : ν = Φ(yt) and m ∈ C}
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and secondly,

X1 := {πa† +m : πa† = D∗
t ((σ

†)−1(yt)Ytβ̃Θ(T )) and m ∈ C} ,

where C is the set of all constants.

Remark 4.1.4. It follows from Lemma 4.1.2 that we have a representation of X by X and

X1 given by the weighted expectation Ey0
Q [·] with weight D∗

t ((σ
†)−1(yt)Ytβ̃Θ(T )) and Φ(yt)

respectively. We remark that the terminology weight here is used in a loose sense, since

indeed D∗
t ((σ

†)−1(yt)Ytβ̃Θ(T )) may have a negative value.

The following lemma plays a central role in our analysis below.

Lemma 4.1.4. If ν ≡ 1, then

Ey0
Q [νD∗

t ((σ
†)−1(yt)Ytβ̃Θ(T ))] = 0 .

Proof. This follows directly from the duality between the Skorohod integral and the Malli-

avin derivative [73], and the fact that Dt1 = 0.

4.2 Convex Risk Measures

We are now ready to state the main results from this chapter.

Proposition 4.2.1. [First alternative for a convex risk measure] The functional

ρ :X −→ R ν 7−→ ρ(ν) := h∗w(Ey0
Q [ν · πa† ])− Ey0

Q [ν] (4.8)

satisfies the convex risk measure axioms.

Proof. From the linearity of the expectation operator and the properties of the functional

h∗w in Lemma 4.1.1, the convexity and monotonicity axioms follow.

In order to prove the translation axiom, we write

ρ̃ :X −→ R ν 7−→ ρ̃(ν) := h∗w(Ey0
Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0
Q [ν] .
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Let ν +m ∈ X . From the linearity of the expected value

ρ̃(ν +m) = h∗w(Ey0
Q [(ν +m− Ey0

Q [ν +m]) · πa† ])− Ey0
Q [ν +m]

= h∗w(Ey0
Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0
Q [ν]−m = ρ̃(ν)−m.

Hence ρ̃ satisfies the translation axiom.

Now we show that ρ̃ = ρ. Indeed, by definition, X = D(ρ̃) = D(ρ). Let us now take

ν ∈ X ; by definition of expectation Ey0
Q [ν] = c where c is a constant, it follows from Lemma

4.1.4 that

ρ̃(ν) = h∗w(Ey0
Q [(ν − Ey0

Q [ν]) · πa† ])− Ey0
Q [ν]

= h∗w(Ey0
Q [ν · πa† ]− Ey0

Q [c · πa† ])− Ey0
Q [ν] = ρ(ν) for all ν ∈ X .

Thus ρ̃ = ρ.

Proposition 4.2.2. [Second alternative for a convex measure of risk] The functional

ρ1 :X1 −→ R π 7−→ ρ1(π) := h∗w(Ey0
Q [ν · π]) , (4.9)

satisfies the convex risk measure axioms.

Proof. Using the same argument of Proposition 4.2.1, the convexity and monotonicity

axioms follow.

In order to prove the translation axiom, we write

ρ̃1 :X1 −→ R π 7−→ ρ̃1(π) := h∗w(Ey0
Q [ν · (π − Ey0

Q [π])])− Ey0
Q [π] .

Then, for π +m ∈ X1, from the linearity of the expectation operator we have that

ρ̃1(π +m) = h∗w(Ey0
Q [ν · (π +m− Ey0

Q [π +m])])− Ey0
Q [π +m]

= h∗w(Ey0
Q [ν · (π − Ey0

Q [π])])− Ey0
Q [π]−m = ρ̃1(π)−m.

Hence, ρ̃1 satisfies the translation axiom.

By definition, X1 = D(ρ̃1) = D(ρ1). Let us take π ∈ X1. From Lemma 4.1.4 we

conclude that Ey0
Q [π] = Ey0

Q [1 · π] = 0.

Thus, ρ̃1(π) = ρ(π) for all π ∈ X1 .
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We note that the choice of σ† enters in a crucial and nonlinear way in the convex

risk measure. Furthermore, the source condition (2.7) allows us to construct convex risk

measures in the spaces of random variables associated to the diffusion process (4.6).

Proof of Theorem 4.0.2. Given (2.7) satisfied, Propositions 4.2.1 and 4.2.2 show the

existence of a convex risk measure for the associated position. Therefore, the assertion of

Theorem 4.0.2 follows. �

4.2.1 A Convex Risk Measure Associated with the Boltzmann-

Shannon Entropy

We now illustrate the construction of the convex risk measure by considering the process

(4.6) under constant volatility with vanishing interest and dividend rates. For this partic-

ular case, the representation (4.7) (or the vega in financial terms) is given by the formula

(see [45])

Ey0
Q

[
Φ

(
y exp

(
σ†Wτ −

(σ†)2

2
τ

))
·
(
W 2
τ

σ†τ
−Wτ −

1

σ†

)]
=

∫
Ω

dz dτ p(z, τ)Φ

(
y exp

(
σ†z − (σ†)2

2
τ

))
·
(
z2

σ†τ
− z − 1

σ†

)
, (4.10)

where p(z, τ) = e−
z2

2τ /
√

2πτ is the Gaussian probability density function.

Let us take v ∈ X and compute F ′(a†)∗v. By Fubini’s Theorem

〈F ′(a†)a, v〉

=
∫

Ω

dτ ′ dyv(τ ′, y)
∫

Ω

dτ dzp(z, τ)Φ
(

y exp
(

σ†z − (σ†)2

2
τ

))
·
(

z2

σ†τ
− z − 1

σ†

)
=

∫
Ω

dτ dzp(z, τ)
(

z2

σ†τ
− z − 1

σ†

) ∫
Ω

dτ ′ dyv(τ ′, y)Φ
(

y exp
(

σ†z − (σ†)2

2
τ

))
Thus,

−F ′(a†)∗v =

(
z2

σ†τ
− z − 1

σ†

)
〈−v,Φ(·)〉 . (4.11)

We now consider the regularization functional f as the Boltzmann-Shannon entropy
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f(a) =

∫
Ω

a log(a) dx , a ∈ D(F ) ,

whose Fenchel conjugate is given by

f ∗(µ) =

∫
Ω

eµ−1 dx̃ .

Since we are in a Gaussian model, applying [2, Lemma 11] and (4.11) to the definition of

ρ with ν = Φ
(
y exp

(
σ†(z)− (σ†)2τ/2

))
we get

ρ(ν) = − log

(
Ey0

Q

[
exp

(
z2

σ†τ
− z − 1

σ†

)
〈−v, ν〉

])
− Ey0

Q [ν] . (4.12)

Compare with [43, Example 12].



Chapter 5

Conclusions and Future Directions

In this chapter, we draw some conclusions concerning the results developed in this work.

We also discuss some future directions of work in this area.

In [22, 35], the Tikhonov regularization theory was developed to calibrate the local

volatility that belongs to a more general admissible set. Indeed, they look for a ∈ D(F ) ⊂
H1(Ω). One of the main difficulties to work with the admissible parameter class given by

(11) is that, D(F ) has no interior points in the H1(Ω)-norm. This is due to the fact that

we are in the critical Sobolev embedding exponent for Ω ⊂ R2. See [1].

Within this framework, many results presented in this work remain true. On the other

hand, some main results become unproved. More specifically, we have the following:

• Existence, uniqueness and the regularity estimates of the solution to the PDE equa-

tion (9) with initial condition (10) developed at Section 1.2 remain true by use similar

arguments. See also the Appendix in [35] or reference [22].

• Theorem 1.3.1 of Section 1.3 also holds. Moreover, there exists a directional derivative

F ′(a) · h in all directions h ∈ H1(Ω) such that a + h ∈ D(F ) ⊂ H1(Ω), as the

Lemma 1.3.1 shows. Since, D(F ) has no interior points when equipped with the

H1(Ω)-norm, F ′(a) is not necessarily differentiable in any direction h ∈ H1(Ω). In

other words, F is not Gateaux differentiable. This will not affect the convergence

analysis of the Tikhonov regularization developed early. In fact, for such analysis we

only need that the operator F admits a one-side directional derivative at a† in the

directions a− a†, for all a ∈ D(F ). See Subsection 2.1.1 at Chapter 2. The sufficient

condition in this case is that, for all a ∈ D, there exists t0 > 0 such that

a† + t(a− a†) = ta+ (1− t)a† ∈ D(F ) ∀t ≤ t0 .

85
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As D(F ) is convex, the requirement above is satisfied. Thanks to the convexity of

D(F ), the operator F ′(a†) has properties that mimic the Gâteaux derivative. In

particular, there is an adjoint operator F ′(a†)∗ : (W 1,2
p (Ω))∗ −→ H(Ω) defined as

〈F ′(a†)∗v, a〉 = 〈v, F ′(a†)a〉((W 1,2
p (Ω))∗,W 1,2

p (Ω)) , a ∈ H(Ω) , v ∈ (W 1,2
p (Ω))∗ .

• The loss of the Fréchet derivative properties of F affect the convergence rates of the

Tikhonov regularization. Indeed, without the assumption of a continuous Fréchet

differentiability of the operator F , we are not able to prove Lemmas 1.4.1 and

1.4.2. Hence, we do not have Lemma 2.1.1. Moreover, we are not able to prove

the main result on iterative methods, the tangential cone condition properties (see

Theorem 1.4.2). Without continuity of the Fréchet derivative of F we are not able

to prove the convergence of the Landweber iteration in Chapter 3.

In Chapter 1, we analyzed the existence and uniqueness of solutions to the PDE (9)

with initial condition (10). Also, we verified well known properties of the parameter-to-

solution map F with parameters in the admissible class D(F ) ⊂ H(Ω). These properties

imply the ill-posedness of the calibration problem. Moreover, we characterized the sets

N (F ′(a†)) and R(F ′(a†)∗) as L2(Ω) subsets. This characterization implies in the existence

of an approximate source condition to the problem and, consequently, in convergence rates.

The main novelty is the proof of the local tangential cone condition for the parameter-to-

solution map F . See Theorem 1.4.2. The local tangential cone condition (1.21) and the

uniform limitation of F ′(·) (see equation 1.16) are enough to prove regularization properties

of iterative methods during the Chapter 3.

In Chapter 2, we prove existence and convergence results for the regularized solutions of

the inverse problem associated to the calibration of local volatility surface in European op-

tion prices. This is done using Tikhonov regularization. The main novelty was the use of a

regularization term that only requires convexity properties and weak lower-semicontinuity.

Thus, the present regularization applies to a large class of regularization functionals.

A general theoretical framework based on Tikhonov regularization by means of convex

penalizing functions is an extension of the quadratic regularization that has been previously

studied in the Inverse Problem literature [35]. We prove the existence of approximate source

condition (2.11) for the regularization problem under consideration. In particular, if the

regularization functional is f(·) = ‖·‖2
H(Ω), then the source condition (2.7) coincides with

the representation that remained an open problem in [22, 35]. On the theoretical side, the
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strength is that this yields better convergence rates with respect to the noise level in the

measurements. Furthermore, it allows for convergence in spaces different from those in the

quadratic regularization setting. In fact, in some cases, the convergence of certain convex

regularization expressions implies convergence in the L1-norm.

Related to the regularization method under consideration, we establish for Bregman

distances better convergence rates than those available in the literature to this problem.

Another advantage of the current approach is the requirement of weaker conditions than

those previously required in the literature. Namely, we only require (2.12). This analy-

sis also allows us to obtain convergence of the regularized solution with respect to the

noise level in L1(Ω) by means of a Kullback-Leibler regularization functional. See Equa-

tion (2.20). The Bregman distance regularization is motivated in Section 2.2 using expo-

nential families. The construction of the Tikhonov functional (2.15) is heuristic. On the

other hand, the convergence analysis of the regularized solutions is completely rigorous.

The same convergence results hold true if we measure the misfit of the Tikhonov func-

tional (2.1) in W 1,2
p (Ω). The intuition behind the use of the W 1,2

p (Ω) norm is that we have

continuous dependence of the Tikhonov functional with respect to information not only

about the prices but also with respect to the sensitivities uτ , uyy, and uy. Those are the

so-called Greeks in financial engineering. On the other hand, we need more information

on the measurement data uδ.

In Chapter 3, we prove regularizing properties of approximated solutions to the cali-

bration problem given by iterative methods. The main novelty is the use of an iterative

regularization of the local volatility surface.

In the beginning we analyze the nonlinear Landweber iteration to the calibration prob-

lem. Originally, the Landweber iteration holds with the discrepancy principle measured in

the W 1,2
2 (Ω)-norm and F ′(·)∗ evaluated in the W 1,2

2 (Ω)-inner product. Given the difficulties

in calculating F ′(·)∗ in the W 1,2
2 (Ω)-inner product we recover the convergence analysis of

the iteration in the L2(Ω) - inner product, making use of continuous Sobolev embedding

Theorems and a discrepancy principle in the L2(Ω)-norm. Moreover, in Section 3.4, we

reformulate the inverse problem of calibrating the local volatility in a system of nonlinear

ill-posed problems. Kaczmarz-type strategies to solve nonlinear ill-posed problems in the

literature are revised. The possibility of applications to inverse problem under considera-

tion is obtained.

A heuristic financial interpretation of the source condition (2.7) is that we have a

restriction that allows us to quantify the risk associated to a given volatility level. By this
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we mean that upon computing the corresponding Black-Scholes solution as a function of

the volatility, we are quantifying how much risk one has in the space of random variables

associated to such volatility. This is done by means of the source condition (2.7). Indeed,

in Chapter 4, we constructed a functional that through the Fenchel duality defines different

convex risk measures. The availability of such risk measures permits quantifying the risk

associated to random variables and portfolios of the underlying model.

In Apendice A, we do a brief review about no-arbitrage principles and its relations to

volatility surface calibration proposed in this work. We motivate a shape restriction on the

option price surfaces, using the Tikhonov regularization approach derived in Section 2.2.

Moreover, using the penalization f(a) = ‖a− a0‖2
H(Ω) in the Tikhonov functional and

properties of the calibration problem, we obtain better convergence rates to the regularized

solutions than those obtained in [22, 35].

Some directions of future research would be:

• The numerical implementation of the present results with actual market data. An

implementation for the case of the standard quadratic Tikhonov regularization can

be found in [35, 59].

• The validation of the results obtained here to American options [65, 63]. This is

a free boundary problem [46]. An interesting inverse problem related to American

options is the identification of the free boundary interface. Related to this, are the

well known level set approach developed in [26, 25, 27] and references therein.

• Verification of the local tangential cone condition to others diffusive parabolic prob-

lems [41].

• Explore further the connection to risk measures [42, 43]. In particular the freedom

in the choice of such measures.



Appendix A

Tikhonov Regularization and

No-Arbitrage Conditions

The development of mathematical methods for pricing derivatives was a major player in the

expansion of derivative markets. The absence of arbitrage opportunities in an equilibrium

market situation is a fundamental principle underlying the modern theory of financial asset

pricing. We recall that an arbitrage portfolio consists of a portfolio whose value Vt at t = 0

vanishes, and such that P[VT ≥ 0] = 1 and P[VT 6= 0] > 0 [63]. If the nature of uncertainty

can be described by a stochastic process as (1), then the absence of arbitrage opportunities

implies that there exists a risk-neutral density p(ST |St, T, t, r) such that the European call

option price at time t has a probabilistic representation given by (2). See, for example,

[63, 65].

Call option prices are, usually, quoted by their Black-Scholes implied volatility, i.e., the

unique volatility parameter value for with the Black-Scholes formula yields the observable

option price. Under the no-arbitrage principle, a European option price can be expressed

as a function of five parameters: the current underlining price S0, the time to expiration τ ,

the strike price K, the risk-free interesting rates r and the volatility parameter σ. As it is

well known, σ is the unique free parameter, i.e., is the unique quantity in the Black-Scholes

model that cannot be directly observed.

Given a call option contract and its market price, we can always invert the Black-

Scholes formula to get the volatility parameter σ. This inversion is ill-posed in the sense

of Hadamard. See Subsection 1.5. This option price model inverse problem has attracted

intensive attention in the last several years [7, 18, 22, 28, 35, 55]. The interesty of the

models proposed in the literature is to price European options correctly given a set of

89
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observations as in (12). A model which can price correctly all the relevant option or can

capture the skewness seems to be able to give more accurate risk sensitivity calculations.

The latter are the so called Greeks in mathematical finance [63, 65].

A.1 Motivation and some Definitions

Absence of arbitrage imposes shape restrictions on the surface of the option prices function.

See, for example, [20, 62, 80, 82].

Following [20, 62, 80, 82], an arbitrage opportunity is a self-financing portfolio of secu-

rities that has a negative value today and a nonnegative value at a given time in the future

independent of the market behavior, with positive probability.

In a model with implied volatility given for all maturities and strikes there is no-

arbitrage in the input if, and only if, the following properties hold [20, 62, 80, 82]:

1. For a given maturity, the call price is non-increasing and convex with respect to the

strike.

2. The call price is a decreasing function of time.

Assuming the underlying volatility to be constant in the Black-Scholes model of the

European call option, it is well known that the price of the option satisfies (2). Taking the

first derivative with respect to K in (2), it follows that

∂UT,K(St, K, r, σ
2)

∂K
= − exp(−rτ)

∫ ∞

K

ρ(ST |St, τ, r)dST , (A.1)

where τ = T − t. Differentiating the call price U twice with respect to K, we have

∂2UT,K(St, K, r, σ
2)

∂K2
= exp(−rτ)ρ(K|St, τ, r) . (A.2)

Since the density function ρ is non-negative, it follows that the call price U must be non-

increasing and convex with respect to K. The monotonicity of the price UT,K with respect

to maturity T follows directly by the Black-Scholes formula [15]. Its means that, in a

constant volatility model, the European option price is arbitrage-free, i.e., satisfies the

Items 1 and 2 above.

The dependence of the implied surface volatility quoted on European options from

maturity and strikes implies in a phenomena referred as smile effect [33, 34]. In the presence
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of smiles, arbitrage opportunities may exist among the quoted options, even if there is no-

arbitrage in the original set of observed option prices. Because of this, the inverse models

may use some algorithms to correct the arbitrage opportunities. See [5, 31, 62, 82] and

references in there.

To make the things worse, in a typical option market, often, the prices are observed in

very few different maturities and strike levels. Moreover, some of those option contracts are

not liquid at all. As many of the option price inverse problem models require a complete

set of European option price observations, over a continuous of maturities and strikes, a

good method of interpolation for the option prices is required [22, 28, 35, 68, 82]. For a

given discrete set of observations satisfying Items 1 and 2, there are many interpolation

methods that preserve monotonicity and convexity properties.

Standard market practices include to interpolate the implied volatility, then substitute

the implied volatility into the Black-Scholes equation to quote the option prices. Cubic-

spline volatility interpolation is a common method used in option price models. See [62, 82]

and references in there. In [82] a cubic B-spline interpolation method was proposed to

preserve the shape of the option price function that minimizes the distance between the

implied risk-neutral density and the prior approximation in L2-norm. The authors of [82]

assume that the volatility depends only on the strike, and the set of observations satisfies

Items 1 and 2. Kahalé [62] developed an interpolation strategy to interpolate the local

volatility surfaces that produces prices of options close to the input prices.

An interpolation strategy implies in introducing errors in the input data. As the volatil-

ity calibration problem is strongly sensitive to the small variations on the input data (see

Lemma 1.5.1), some regularization methods need to be considered. On the other hand,

measurement or numerical errors on the observation data can imply in a set of options that

does not satisfy Items 1 and 2.

It is well known that for a model like (1) to be arbitrage-free, the coefficients ν(t, S(t))

and σ(t, S(t)) cannot be arbitrarily specified, but they should be linked by certain relations.

Those specifications are know as drift restrictions. Many works have reported characteri-

zations of absence of arbitrage opportunities in terms of drift conditions. See [20, 80] and

references in there.

As mentioned before, the calibration of the local volatility parameter in the European

option price model has a fundamental importance. However, no-arbitrage principle implies

shape restrictions on the option price function. The presence of arbitrage in the option

price inverse problem may make the model break down [5, 31, 82]. So, when we use the
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Black-Scholes formula and the interpolated volatilities to price options, we need to make

sure that the final option price function satisfies Items 1 and 2.

Convexity and monotonicity of solutions to Dupire’s partial differential equation (9)

and (10) with respect to the strike were obtained in [22], as follows:

Theorem A.1.1. [22, Theorem 4.3] The solution of Dupire’s equation (9) with initial

condition (10) is convex and non-increasing with respect to K, non-decreasing with respect

to the local volatility and converges to 0, when K →∞, uniformly with T .

A.2 Tikhonov Functional and its Minimum

Tikhonov regularization of the inverse problem for the volatility surface σ(K,T ) was pro-

posed previously in Chapter 2. A regularized volatility surface was obtained by minimiza-

tion of the Tikhonov functional (2.1), where f is a convex penalization. Other approaches

to calibrate the local volatility by Tikhonov regularization were reviewed in Section 2.1.1.

However, the question is: Is the calibrated volatility resulting of the minimization of the

Tikhonov functional, an arbitrage-free volatility surface?

We show below that, in a market model where the dividend rates q is smaller than the

interesting rates r, any algorithm that gives calibrate volatilities belongs to D(F ) produces

arbitrage-free option prices.

Lemma A.2.1. Let a ∈ D(F ). If u(a) is a solution of (9) with initial condition (10) and

q ≤ r, then u(a) satisfies the no-arbitrage conditions of Items 1 and 2.

Proof. Note that, from Theorem A.1.1, we have that UK ≤ 0 and UKK ≥ 0. Using the

change of variables (7), we conclude that uy ≤ 0. Moreover, from [58, Theorem 9.3.1]

uyy − uy > 0. Positivity of a ∈ D(F ) and definition of the equation (9) implies that

uτ > 0.

However, only convexity of the call option price U with respect to the strike K, can,

in practice, imply in violation of the no-arbitrage restrictions. Indeed, as equation (A.2)

shows, UKK is equivalent to the risk-neutral density. Hence, we cannot choose a freely inter-

polation methods. Because of this, the model in [31] sometimes has negative probabilities

on some nodes and [5] found negative local volatility problems. In order to overcome this

problem, [82] proposes an interpolation method that consists in minimizing the distance
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between the density and the prior density in L2. An often good choice for a log-normal,

prior, density function is

ρ0(K|St, τ, r) = (1/K
√

2πa0τ) exp
[
−(log(K)− log(St)− rτ + a0τ/2)2/2a0τ

]
(A.3)

with at-the-money option implies volatility a0 ∈ D(F ).

Using the approach derived in Section 2.2, we propose to combine the useful prior

information to make the approximation more accurate.

According to Example 2.2.3, if we incorporate the assumption that the conditional

probability density of observed data UKK given e−rτρ0(K|St, τ, r) is normally distributed,

then we have the Tikhonov regularization given by

Fα,λ(a) :=
1

2

∥∥F (a)− uδ
∥∥2

L2(Ω)
+ α{Rλ(a) +KL(a, a0)} , (A.4)

where,

Rλ(a) := λ
∥∥UKK(a)− e−rτρ0(K|St, τ, r)

∥∥2

L2(Ω)
.

Here, α plays the role of the regularization parameter and λ acts as a weight. The

incorporation of the functional Rλ in the Tikhonov functional (A.4) can be interpreted as

a data preprocessing step that adds some more regularity to our approach. In [82], the

functional Rλ(·) is used to construct a B-spline interpolation method that preserves the

shape restriction of the option price function.

Continuity, compactness and weakly closedness of F : D(F ) −→ W 1,2
2 (Ω) shows that

Rλ(·) is weakly lower semi-continuous, convex. Therefore, the convergence analysis in

Chapter 2 is applicable to the Tikhonov functional (A.4).

Remark A.2.1. Note that if we incorporate in Example 2.2.3 an exponential family as-

sociated to a Poisson distribution of observed ρ(K|St, r, τ) given ρ0, we obtain a Tikhonov

regularization with Rλ(ρ, ρ0) = KL(ρ, ρ0).

A particular Tikhonov functional with convex regularization is

Fα(a) :=
1

2

∥∥F (a)− uδ
∥∥2

L2(Ω)
+ α‖a− a0‖2

H(Ω)
, (A.5)

where α is the regularization parameter and a0 ∈ D(F ) is some a priori information about

the true solution of the problem (15).
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The minimizers of (A.5) generate arbitrage-free price surfaces.

In the next section, we look for convergence rates of this particular Tikhonov functional.

Using properties of the problem, we are able to show better convergence rates than those

proposed in [22, 35].

A.3 Convergence Rates and No-Arbitrage

We shall now focus on the convergence rate analysis of the minimizer for the Tikhonov

functional (A.5).

In order to do this, we need some regularity assumptions on the a0-minimal-norm

solution a† of (15). This assumption is called the source condition in regularization theory.

A natural source condition to this problem is

a† − a0 ∈ R(F ′(a†)∗) . (A.6)

Remark A.3.1. We remark that the adjoint of F ′(·) in (A.6) is considered in the L2(Ω)-

inner product. Indeed, we are looking for the continuous extension of F ′(·) to L2(Ω). A

preliminary review of the density of H(Ω) and W 1,2
2 (Ω) in L2(Ω) and the Banach extension

theorem provides support for the claim. Hence, it follows from Lemma 2.1.1 that there

exists w† ∈ L2(Ω) and r† = r(w†) ∈ L2(Ω) such that the approximate source condition

1

2
∂
∥∥a† − a0

∥∥2
= a† − a0 = F ′(a†)∗w† + r† (A.7)

is attainable. Moreover, for a fixed given δ > 0, it follows that
∥∥r†∥∥

L2(Ω)
≤ δ.

From the existence of an approximate source condition (A.7), we are able to obtain con-

vergence rates of the regularized solutions that were obtained by minimizing the Tikhonov

functional (A.5).

Theorem A.3.1. Let a† ∈ D(F ) denote an a0-minimum-norm-solution of F (a) = u(a)

and aδα the minimizer of (A.5), with uδ satisfying equation (13). Suppose that

C
∥∥w†∥∥ < 1/2 , (A.8)

where C is the constant in (1.13) and w† given in Remark A.3.1. From the choice of α ∼ δ,
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we obtain

∥∥aαδ − a†
∥∥
H(Ω)

= O(δ) and
∥∥F (aδα)− uδ

∥∥ = O(δ). (A.9)

Proof. Let aδα be a minimizer of Fα. The definition of Fα and (13) implies that

∥∥F (aδα)− uδ
∥∥2

L2(Ω)
+ α

∥∥aδα − a0

∥∥2

H(Ω)
≤ Fα(aδα) ≤ Fα(a†) ≤ δ2 + α

∥∥a† − a0

∥∥2

H(Ω)
.

Since,
∥∥a† − aδα

∥∥2

H(Ω)
=

∥∥aδα − a0

∥∥2

H(Ω)
−

∥∥a† − a0

∥∥2

H(Ω)
− 2〈a† − a0, a

δ
α − a†〉, we have from

the above estimate and (A.7) that

∥∥F (aδα)− uδ
∥∥2

L2(Ω)
+ α

∥∥aδα − a†
∥∥2

H(Ω)
≤ δ2 − 2α〈a† − a0, a

δ
α − a†〉

= δ2 − 2α〈F ′(a†)∗w† + r†, aδα − a†〉

= δ2 + 2α〈w†,−F ′(a†)(aδα − a†)〉 − 2α〈r†, aδα − a†〉

≤ δ2 + 2α
∥∥w†∥∥∥∥F (aδα)− F (a†)− F ′(a†)(aδα − a†)

∥∥
+ 2α

∥∥w†∥∥∥∥F (aδα)− F (a†)
∥∥ + 2α

∥∥r†∥∥∥∥aδα − a†
∥∥ .

Using (1.13), it follows that

∥∥F (aδα)− F (a†)− F ′(a†)(aδα − a†)
∥∥ ≤ C

∥∥aδα − a†
∥∥2
.

From the last two inequalities we get

‖F (aδα)− uδ‖2
L2(Ω) + α

∥∥aδα − a†
∥∥2

H(Ω)

≤ δ2 + 2Cα
∥∥w†∥∥∥∥aδα − a†

∥∥2
+ 2αδ

∥∥w†∥∥ + 2α
∥∥w†∥∥∥∥F (aδα)− uδ

∥∥ + 2α
∥∥r†∥∥∥∥aδα − a†

∥∥ .
Using (A.8) and Lemma 2.1.1, we conclude that(∥∥F (aδα)− uδ

∥∥
L2(Ω)

− α
∥∥w†∥∥)2

+ α(1− 2C
∥∥w†∥∥)

(∥∥aδα − a†
∥∥
H(Ω)

−
∥∥r†∥∥/(1− 2C

∥∥w†∥∥)
)2

≤ δ2 + 2αδ
∥∥w†∥∥ + α2

∥∥w†∥∥2
+ α

∥∥r†∥∥2
/(1− 2C

∥∥w†∥∥)

≤ (δ + α
∥∥w†∥∥)2 + αδ2/(1− 2C

∥∥w†∥∥) .

Now, with the choice of α ∼ δ, we have the assertion.

Note that, in the above theorem, we improve the convergence rates of the regularized
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solution without using the general framework developed in Chapter 2.



Appendix B

Background Material and Definitions

In this appendix we present some definitions and concepts used in this work. In the sequel,

U and V denote Banach spaces and U∗ and V ∗ their respective dual spaces.

B.1 Convex Analysis

We start by recalling some definitions from convex analysis [19, 21, 38] used throughout

this work.

Definition 6. A subset Ũ of U is convex if, for any a, b ∈ Ũ , we have

αa+ (1− α)b ∈ Ũ , ∀α ∈ [0, 1] .

Definition 7. A functional f : U −→ R ∪ {+∞} is said to be a convex function if the

domain of f

D(f) := {a ∈ U : f(a) < +∞}

is a convex subset of U and

f(αa+ (1− α)b) ≤ αf(a) + (1− α)f(b) ∀a, b ∈ D(f) and ∀α ∈ [0, 1] .

A convex function f is called proper if D(f) 6= ∅.

Definition 8. Let f : U −→ R be a real-valued convex function defined in a convex set Ũ

of a Banach space U . An element ξ ∈ U∗ is called a called a subgradient at a point a† in
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Ũ if for any a in Ũ one has

f(a)− f(a†) ≥ 〈ξ, a− a†〉 . (B.1)

Definition 9. The set of all subgradients at a† is called the subdifferential at a† and is

denoted ∂f(a†).

An important tool in the study of Tikhonov regularization in Chapter 2 is the notion

of Bregman distance.

Definition 10. Let f be a convex function. For given a ∈ D(f), let ∂f(a) ⊂ U∗ denote

the subdifferential of the functional f at a. We denote by

D(∂f) = {ã : ∂f(ã) 6= ∅}

the domain of the subdifferential [21]. The Bregman distance with respect to ζ ∈ ∂f(a1) is

defined on D(f)×D(∂f) by

Dζ(a2, a1) = f(a2)− f(a1)− 〈ζ, a2 − a1〉 .

It is important to notice that the Bregman distance is not a distance in the actual

meaning of the term, since it is not necessarily symmetric. It is however always positive

and if f is proper and strictly convex it vanishes if and only if a1 = a2.

The concept of Fenchel conjugation can be motivated as a generalization of the Legendre

transform in Hamiltonian mechanics. It plays an important role in the connection with

Convex Risk Measures in Chapter 4.

Definition 11. The Fenchel conjugation of a convex function f : U −→ R ∪ {+∞} is the

function f ∗ : U∗ −→ R ∪ {+∞} defined by

f ∗(φ) = sup
a∈U

{〈φ, a〉 − f(a)} ,

where 〈·, ·〉 denotes the duality application between U and U∗.

Note that, f ∗ is convex. Moreover, if D(f) 6= ∅, then f ∗ never take the value −∞.
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B.2 Sufficient Statistic and Exponential Families

We briefly recall the concept of exponential families and sufficient statistic. Such concepts

play a fundamental rôle in a number of areas. In particular, from our perspective the con-

nection between inverse problems and information geometry. See [3, 4, 75] and references

therein.

Consider a measurable space (Ω,B) with B a σ-algebra of subsets of Ω. Let t a mea-

surable function from Ω into R. 1

Let p0 : R −→ R+ be any function such that if (Ω,B) is endowed with a measure

dP0(ω) = p0(t(ω))dt(ω), then
∫
ω∈Ω

dP0(ω) < ∞. Note that the measure P0 is absolutely

continuous with respect to the Lebesgue measure dt(ω).

Thus, t(ω) is a random variable from (Ω,B, P0) to (R,B(R)), where B(R) denotes de

σ-algebra of Borel sets in R.

Let Θ be defined as the set of all parameters θ ∈ R for which∫
ω∈Ω

exp [〈θ, t(ω)〉]dP0(ω) <∞ .

Define the function ψ : Θ −→ R such that

ψ(θ) = log

(∫
ω∈Ω

exp [〈θ, t(ω)〉]dP0(ω)

)
. (B.2)

A family of probability distributions Fψ parameterized by θ ∈ Θ such that the probability

density function with respect to the measure t(ω) can be expressed in the form

q(ω; θ) = exp (〈θ, t(ω)〉 − ψ(θ))p0(t(ω))

is called an exponential family with natural statistic t(ω), natural parameter θ and natural

parameter space Θ. If, in addition, the parameter space Θ is an open set, then Fψ is called

a regular exponential family.

Let s denote the natural statistic t(ω). If the probability density (with respect to the

appropriate measure ds) given by

g(s; θ) = exp [〈θ, s〉 − ψ(θ)]p0(s)

1To fix ideas, the function t can be defined from Ω to RN .
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is such that
q(ω; θ)

g(s; θ)

does not depend on θ, then s is a sufficient statistic for the family.

Remark B.2.1. For our analysis, we redefine the concept of regular exponential families in

terms of the probability density s. But, the original probability space could be quite general.

Definition 12. A parametric family Fψ of distributions {p(ψ,θ) : θ ∈ Θ = D(ψ)} is called

a regular exponential family if each probability density is of the form

p(ψ,θ)(s) = exp [〈s, θ〉 − ψ(θ)]p0(s) , (B.3)

where s is a sufficient statistic for the family.

The function ψ(θ) is known as the log partition function corresponding to the family.

B.3 Entropy

The concept of entropy is a measure of how organized a physical system is. It goes back to

the principles of Thermodynamics and in particular to the Second Law, which states that

the entropy of a system cannot decrease other than by increasing the entropy of another

system. Statistical mechanics views entropy as the amount of uncertainty which remains

about a system, after its observable macroscopic properties have been taken into account.

More specifically, entropy is a logarithmic measure of the density of states:

g(pi) = −
∑
i∈I

pi log(pi) , (B.4)

where the summation is over all the microstates the system can be in, and the pi are the

probabilities for the system to be in the i-th microstate.

In information theory, entropy is the measure of the amount of information that is

missing before reception. Sometimes referred to as Shannon entropy.

The definition in Equation (B.4) makes the tacit assumption the underlying measure

is the counting measure on the discrete space I. In other words, it is a relative entropy

with respect to the uniform distribution. As it turns out, in more general contexts, it is

necessary to consider the relative entropy of one measure with respect to another. This

brings in the concept of the Kullback-Leibler distance between two probability density
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functions. More specifically, we have for two probability density functions p and q the

following natural definition

KL(p, q) =

∫
p(x) log(q(x)/p(x))dx .

Of more generally if P and Q are the probability measures, with Q absolutely continuous

with respect to P ,

KL(dP ||dQ) :=

∫
log(dQ/dP )dP .

This can be rewritten as

KL(dP ||dQ) = EP log(dQ/dP ) .

Jensen’s inequality yields that KL(dP ||dQ) ≥ 0.

The concept of exponential family arises naturally in order to answer the question:

What is the maximum entropy distribution consistent with given constraints on expected

values?

More precisely, if we now consider a collection of random variables Xi. Then, the

probability distribution P whose entropy with respect to Q is maximal, subject to the

restriction that the expected value of Xi are equal to si, is a member of the exponential

family with P as reference measure and (X1, ..., Xn) as sufficient statistic.
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[62] N. Karalé, Smile interpolation and calibration of the local volatility model,

http://nkahale.free.fr/papers/Interpolation.pdf (2005), 1–18.

[63] I. Karatzas and S. E. Shreve, Methods of mathematical finance, Applications of Math-

ematics (New York), vol. 39, Springer-Verlag, New York, 1998.

[64] A. Kirsch, An introduction to the mathematical theory of inverse problems, Applied

Mathematical Sciences, vol. 120, Springer-Verlag, New York, 1996.

[65] R. Korn and E. Korn, Option pricing and portfolio optimization, Graduate Studies in

Mathematics, vol. 31, American Mathematical Society, Providence, RI, 2001, Modern

methods of financial mathematics, Translated from the 1999 German original by the

authors.

[66] R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method

for solving nonlinear ill-posed problems, Ill-posed and inverse problems, VSP, Zeist,

2002, pp. 253–270.

[67] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics

22 (1951), 79–86.

[68] R. Lagnardo and S. Osher, A technique for calibtrating derivative security pricing

models: numerical solution of an inverse problem, Journal of Computational Finance

1 (1997), no. 1, 13–25.

[69] L. Landweber, An iteration formula for Fredholm integral equations of the first kind,

Amer. J. Math. 73 (1951), 615–624.



BIBLIOGRAPHY 109

[70] O. A. Landyzenskaya, V. A. Solonikov, and N. N. Urealceva, Linear and quasilinear

equations of parabolic type, Translations of Mathematical Monographs vol 23, AMS,

Providence, RI, 1968.

[71] A. Meucci, Risk and asset allocation, Springer Finance, Springer-Verlag, Berlin, 2005.
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